aboutsummaryrefslogtreecommitdiffstats
path: root/pci.c
blob: 689869cb79a3b64f09cc48bbb4fe6f34879e3058 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
#include "kvm/devices.h"
#include "kvm/pci.h"
#include "kvm/ioport.h"
#include "kvm/irq.h"
#include "kvm/util.h"
#include "kvm/kvm.h"

#include <linux/err.h>
#include <assert.h>

static u32 pci_config_address_bits;

/* This is within our PCI gap - in an unused area.
 * Note this is a PCI *bus address*, is used to assign BARs etc.!
 * (That's why it can still 32bit even with 64bit guests-- 64bit
 * PCI isn't currently supported.)
 */
static u32 io_space_blocks		= KVM_PCI_MMIO_AREA;

/*
 * BARs must be naturally aligned, so enforce this in the allocator.
 */
u32 pci_get_io_space_block(u32 size)
{
	u32 block = ALIGN(io_space_blocks, size);
	io_space_blocks = block + size;
	return block;
}

void *pci_find_cap(struct pci_device_header *hdr, u8 cap_type)
{
	u8 pos;
	struct pci_cap_hdr *cap;

	pci_for_each_cap(pos, cap, hdr) {
		if (cap->type == cap_type)
			return cap;
	}

	return NULL;
}

void pci__assign_irq(struct device_header *dev_hdr)
{
	struct pci_device_header *pci_hdr = dev_hdr->data;

	/*
	 * PCI supports only INTA#,B#,C#,D# per device.
	 *
	 * A#,B#,C#,D# are allowed for multifunctional devices so stick
	 * with A# for our single function devices.
	 */
	pci_hdr->irq_pin	= 1;
	pci_hdr->irq_line	= irq__alloc_line();

	if (!pci_hdr->irq_type)
		pci_hdr->irq_type = IRQ_TYPE_EDGE_RISING;
}

static void *pci_config_address_ptr(u16 port)
{
	unsigned long offset;
	void *base;

	offset	= port - PCI_CONFIG_ADDRESS;
	base	= &pci_config_address_bits;

	return base + offset;
}

static bool pci_config_address_out(struct ioport *ioport, struct kvm_cpu *vcpu, u16 port, void *data, int size)
{
	void *p = pci_config_address_ptr(port);

	memcpy(p, data, size);

	return true;
}

static bool pci_config_address_in(struct ioport *ioport, struct kvm_cpu *vcpu, u16 port, void *data, int size)
{
	void *p = pci_config_address_ptr(port);

	memcpy(data, p, size);

	return true;
}

static struct ioport_operations pci_config_address_ops = {
	.io_in	= pci_config_address_in,
	.io_out	= pci_config_address_out,
};

static bool pci_device_exists(u8 bus_number, u8 device_number, u8 function_number)
{
	union pci_config_address pci_config_address;

	pci_config_address.w = ioport__read32(&pci_config_address_bits);

	if (pci_config_address.bus_number != bus_number)
		return false;

	if (pci_config_address.function_number != function_number)
		return false;

	return !IS_ERR_OR_NULL(device__find_dev(DEVICE_BUS_PCI, device_number));
}

static bool pci_config_data_out(struct ioport *ioport, struct kvm_cpu *vcpu, u16 port, void *data, int size)
{
	union pci_config_address pci_config_address;

	pci_config_address.w = ioport__read32(&pci_config_address_bits);
	/*
	 * If someone accesses PCI configuration space offsets that are not
	 * aligned to 4 bytes, it uses ioports to signify that.
	 */
	pci_config_address.reg_offset = port - PCI_CONFIG_DATA;

	pci__config_wr(vcpu->kvm, pci_config_address, data, size);

	return true;
}

static bool pci_config_data_in(struct ioport *ioport, struct kvm_cpu *vcpu, u16 port, void *data, int size)
{
	union pci_config_address pci_config_address;

	pci_config_address.w = ioport__read32(&pci_config_address_bits);
	/*
	 * If someone accesses PCI configuration space offsets that are not
	 * aligned to 4 bytes, it uses ioports to signify that.
	 */
	pci_config_address.reg_offset = port - PCI_CONFIG_DATA;

	pci__config_rd(vcpu->kvm, pci_config_address, data, size);

	return true;
}

static struct ioport_operations pci_config_data_ops = {
	.io_in	= pci_config_data_in,
	.io_out	= pci_config_data_out,
};

void pci__config_wr(struct kvm *kvm, union pci_config_address addr, void *data, int size)
{
	void *base;
	u8 bar, offset;
	struct pci_device_header *pci_hdr;
	u8 dev_num = addr.device_number;

	if (!pci_device_exists(addr.bus_number, dev_num, 0))
		return;

	offset = addr.w & PCI_DEV_CFG_MASK;
	base = pci_hdr = device__find_dev(DEVICE_BUS_PCI, dev_num)->data;

	if (pci_hdr->cfg_ops.write)
		pci_hdr->cfg_ops.write(kvm, pci_hdr, offset, data, size);

	/*
	 * legacy hack: ignore writes to uninitialized regions (e.g. ROM BAR).
	 * Not very nice but has been working so far.
	 */
	if (*(u32 *)(base + offset) == 0)
		return;

	bar = (offset - PCI_BAR_OFFSET(0)) / sizeof(u32);

	/*
	 * If the kernel masks the BAR it would expect to find the size of the
	 * BAR there next time it reads from it. When the kernel got the size it
	 * would write the address back.
	 */
	if (bar < 6 && ioport__read32(data) == 0xFFFFFFFF) {
		u32 sz = pci_hdr->bar_size[bar];
		memcpy(base + offset, &sz, sizeof(sz));
	} else {
		memcpy(base + offset, data, size);
	}
}

void pci__config_rd(struct kvm *kvm, union pci_config_address addr, void *data, int size)
{
	u8 offset;
	struct pci_device_header *pci_hdr;
	u8 dev_num = addr.device_number;

	if (pci_device_exists(addr.bus_number, dev_num, 0)) {
		pci_hdr = device__find_dev(DEVICE_BUS_PCI, dev_num)->data;
		offset = addr.w & PCI_DEV_CFG_MASK;

		if (pci_hdr->cfg_ops.read)
			pci_hdr->cfg_ops.read(kvm, pci_hdr, offset, data, size);

		memcpy(data, (void *)pci_hdr + offset, size);
	} else {
		memset(data, 0xff, size);
	}
}

static void pci_config_mmio_access(struct kvm_cpu *vcpu, u64 addr, u8 *data,
				   u32 len, u8 is_write, void *kvm)
{
	union pci_config_address cfg_addr;

	addr			-= KVM_PCI_CFG_AREA;
	cfg_addr.w		= (u32)addr;
	cfg_addr.enable_bit	= 1;

	if (is_write)
		pci__config_wr(kvm, cfg_addr, data, len);
	else
		pci__config_rd(kvm, cfg_addr, data, len);
}

struct pci_device_header *pci__find_dev(u8 dev_num)
{
	struct device_header *hdr = device__find_dev(DEVICE_BUS_PCI, dev_num);

	if (IS_ERR_OR_NULL(hdr))
		return NULL;

	return hdr->data;
}

int pci__init(struct kvm *kvm)
{
	int r;

	r = ioport__register(kvm, PCI_CONFIG_DATA + 0, &pci_config_data_ops, 4, NULL);
	if (r < 0)
		return r;

	r = ioport__register(kvm, PCI_CONFIG_ADDRESS + 0, &pci_config_address_ops, 4, NULL);
	if (r < 0)
		goto err_unregister_data;

	r = kvm__register_mmio(kvm, KVM_PCI_CFG_AREA, PCI_CFG_SIZE, false,
			       pci_config_mmio_access, kvm);
	if (r < 0)
		goto err_unregister_addr;

	return 0;

err_unregister_addr:
	ioport__unregister(kvm, PCI_CONFIG_ADDRESS);
err_unregister_data:
	ioport__unregister(kvm, PCI_CONFIG_DATA);
	return r;
}
dev_base_init(pci__init);

int pci__exit(struct kvm *kvm)
{
	ioport__unregister(kvm, PCI_CONFIG_DATA);
	ioport__unregister(kvm, PCI_CONFIG_ADDRESS);

	return 0;
}
dev_base_exit(pci__exit);