aboutsummaryrefslogtreecommitdiffstats
path: root/cmd_sign.c
blob: 5a6deb777b78c49eda8ab550f2234fe552832a1d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
// SPDX-License-Identifier: GPL-2.0+
/*
 * The 'fsverity sign' command
 *
 * Copyright (C) 2018 Google LLC
 *
 * Written by Eric Biggers.
 */

#include "commands.h"
#include "fsverity_uapi.h"
#include "hash_algs.h"

#include <fcntl.h>
#include <getopt.h>
#include <limits.h>
#include <openssl/bio.h>
#include <openssl/err.h>
#include <openssl/pem.h>
#include <openssl/pkcs7.h>
#include <stdlib.h>
#include <string.h>

/*
 * Merkle tree properties.  The file measurement is the hash of this structure
 * excluding the signature and with the sig_size field set to 0.
 */
struct fsverity_descriptor {
	__u8 version;		/* must be 1 */
	__u8 hash_algorithm;	/* Merkle tree hash algorithm */
	__u8 log_blocksize;	/* log2 of size of data and tree blocks */
	__u8 salt_size;		/* size of salt in bytes; 0 if none */
	__le32 sig_size;	/* size of signature in bytes; 0 if none */
	__le64 data_size;	/* size of file the Merkle tree is built over */
	__u8 root_hash[64];	/* Merkle tree root hash */
	__u8 salt[32];		/* salt prepended to each hashed block */
	__u8 __reserved[144];	/* must be 0's */
	__u8 signature[];	/* optional PKCS#7 signature */
};

/*
 * Format in which verity file measurements are signed.  This is the same as
 * 'struct fsverity_digest', except here some magic bytes are prepended to
 * provide some context about what is being signed in case the same key is used
 * for non-fsverity purposes, and here the fields have fixed endianness.
 */
struct fsverity_signed_digest {
	char magic[8];			/* must be "FSVerity" */
	__le16 digest_algorithm;
	__le16 digest_size;
	__u8 digest[];
};

static void __printf(1, 2) __cold
error_msg_openssl(const char *format, ...)
{
	va_list va;

	va_start(va, format);
	do_error_msg(format, va, 0);
	va_end(va);

	if (ERR_peek_error() == 0)
		return;

	fprintf(stderr, "OpenSSL library errors:\n");
	ERR_print_errors_fp(stderr);
}

/* Read a PEM PKCS#8 formatted private key */
static EVP_PKEY *read_private_key(const char *keyfile)
{
	BIO *bio;
	EVP_PKEY *pkey;

	bio = BIO_new_file(keyfile, "r");
	if (!bio) {
		error_msg_openssl("can't open '%s' for reading", keyfile);
		return NULL;
	}

	pkey = PEM_read_bio_PrivateKey(bio, NULL, NULL, NULL);
	if (!pkey) {
		error_msg_openssl("Failed to parse private key file '%s'.\n"
				  "       Note: it must be in PEM PKCS#8 format.",
				  keyfile);
	}
	BIO_free(bio);
	return pkey;
}

/* Read a PEM X.509 formatted certificate */
static X509 *read_certificate(const char *certfile)
{
	BIO *bio;
	X509 *cert;

	bio = BIO_new_file(certfile, "r");
	if (!bio) {
		error_msg_openssl("can't open '%s' for reading", certfile);
		return NULL;
	}
	cert = PEM_read_bio_X509(bio, NULL, NULL, NULL);
	if (!cert) {
		error_msg_openssl("Failed to parse X.509 certificate file '%s'.\n"
				  "       Note: it must be in PEM format.",
				  certfile);
	}
	BIO_free(bio);
	return cert;
}

#ifdef OPENSSL_IS_BORINGSSL

static bool sign_pkcs7(const void *data_to_sign, size_t data_size,
		       EVP_PKEY *pkey, X509 *cert, const EVP_MD *md,
		       u8 **sig_ret, u32 *sig_size_ret)
{
	CBB out, outer_seq, wrapped_seq, seq, digest_algos_set, digest_algo,
		null, content_info, issuer_and_serial, signer_infos,
		signer_info, sign_algo, signature;
	EVP_MD_CTX md_ctx;
	u8 *name_der = NULL, *sig = NULL, *pkcs7_data = NULL;
	size_t pkcs7_data_len, sig_len;
	int name_der_len, sig_nid;
	bool ok = false;

	EVP_MD_CTX_init(&md_ctx);
	BIGNUM *serial = ASN1_INTEGER_to_BN(X509_get_serialNumber(cert), NULL);

	if (!CBB_init(&out, 1024)) {
		error_msg("out of memory");
		goto out;
	}

	name_der_len = i2d_X509_NAME(X509_get_subject_name(cert), &name_der);
	if (name_der_len < 0) {
		error_msg_openssl("i2d_X509_NAME failed");
		goto out;
	}

	if (!EVP_DigestSignInit(&md_ctx, NULL, md, NULL, pkey)) {
		error_msg_openssl("EVP_DigestSignInit failed");
		goto out;
	}

	sig_len = EVP_PKEY_size(pkey);
	sig = xmalloc(sig_len);
	if (!EVP_DigestSign(&md_ctx, sig, &sig_len, data_to_sign, data_size)) {
		error_msg_openssl("EVP_DigestSign failed");
		goto out;
	}

	sig_nid = EVP_PKEY_id(pkey);
	/* To mirror OpenSSL behaviour, always use |NID_rsaEncryption| with RSA
	 * rather than the combined hash+pkey NID. */
	if (sig_nid != NID_rsaEncryption) {
		OBJ_find_sigid_by_algs(&sig_nid, EVP_MD_type(md),
				       EVP_PKEY_id(pkey));
	}

	// See https://tools.ietf.org/html/rfc2315#section-7
	if (!CBB_add_asn1(&out, &outer_seq, CBS_ASN1_SEQUENCE) ||
	    !OBJ_nid2cbb(&outer_seq, NID_pkcs7_signed) ||
	    !CBB_add_asn1(&outer_seq, &wrapped_seq, CBS_ASN1_CONTEXT_SPECIFIC |
			  CBS_ASN1_CONSTRUCTED | 0) ||
	    // See https://tools.ietf.org/html/rfc2315#section-9.1
	    !CBB_add_asn1(&wrapped_seq, &seq, CBS_ASN1_SEQUENCE) ||
	    !CBB_add_asn1_uint64(&seq, 1 /* version */) ||
	    !CBB_add_asn1(&seq, &digest_algos_set, CBS_ASN1_SET) ||
	    !CBB_add_asn1(&digest_algos_set, &digest_algo, CBS_ASN1_SEQUENCE) ||
	    !OBJ_nid2cbb(&digest_algo, EVP_MD_type(md)) ||
	    !CBB_add_asn1(&digest_algo, &null, CBS_ASN1_NULL) ||
	    !CBB_add_asn1(&seq, &content_info, CBS_ASN1_SEQUENCE) ||
	    !OBJ_nid2cbb(&content_info, NID_pkcs7_data) ||
	    !CBB_add_asn1(&seq, &signer_infos, CBS_ASN1_SET) ||
	    !CBB_add_asn1(&signer_infos, &signer_info, CBS_ASN1_SEQUENCE) ||
	    !CBB_add_asn1_uint64(&signer_info, 1 /* version */) ||
	    !CBB_add_asn1(&signer_info, &issuer_and_serial,
			  CBS_ASN1_SEQUENCE) ||
	    !CBB_add_bytes(&issuer_and_serial, name_der, name_der_len) ||
	    !BN_marshal_asn1(&issuer_and_serial, serial) ||
	    !CBB_add_asn1(&signer_info, &digest_algo, CBS_ASN1_SEQUENCE) ||
	    !OBJ_nid2cbb(&digest_algo, EVP_MD_type(md)) ||
	    !CBB_add_asn1(&digest_algo, &null, CBS_ASN1_NULL) ||
	    !CBB_add_asn1(&signer_info, &sign_algo, CBS_ASN1_SEQUENCE) ||
	    !OBJ_nid2cbb(&sign_algo, sig_nid) ||
	    !CBB_add_asn1(&sign_algo, &null, CBS_ASN1_NULL) ||
	    !CBB_add_asn1(&signer_info, &signature, CBS_ASN1_OCTETSTRING) ||
	    !CBB_add_bytes(&signature, sig, sig_len) ||
	    !CBB_finish(&out, &pkcs7_data, &pkcs7_data_len)) {
		error_msg_openssl("failed to construct PKCS#7 data");
		goto out;
	}

	*sig_ret = xmemdup(pkcs7_data, pkcs7_data_len);
	*sig_size_ret = pkcs7_data_len;
	ok = true;
out:
	BN_free(serial);
	EVP_MD_CTX_cleanup(&md_ctx);
	CBB_cleanup(&out);
	free(sig);
	OPENSSL_free(name_der);
	OPENSSL_free(pkcs7_data);
	return ok;
}

#else /* OPENSSL_IS_BORINGSSL */

static BIO *new_mem_buf(const void *buf, size_t size)
{
	BIO *bio;

	ASSERT(size <= INT_MAX);
	/*
	 * Prior to OpenSSL 1.1.0, BIO_new_mem_buf() took a non-const pointer,
	 * despite still marking the resulting bio as read-only.  So cast away
	 * the const to avoid a compiler warning with older OpenSSL versions.
	 */
	bio = BIO_new_mem_buf((void *)buf, size);
	if (!bio)
		error_msg_openssl("out of memory");
	return bio;
}

static bool sign_pkcs7(const void *data_to_sign, size_t data_size,
		       EVP_PKEY *pkey, X509 *cert, const EVP_MD *md,
		       u8 **sig_ret, u32 *sig_size_ret)
{
	/*
	 * PKCS#7 signing flags:
	 *
	 * - PKCS7_BINARY	signing binary data, so skip MIME translation
	 *
	 * - PKCS7_DETACHED	omit the signed data (include signature only)
	 *
	 * - PKCS7_NOATTR	omit extra authenticated attributes, such as
	 *			SMIMECapabilities
	 *
	 * - PKCS7_NOCERTS	omit the signer's certificate
	 *
	 * - PKCS7_PARTIAL	PKCS7_sign() creates a handle only, then
	 *			PKCS7_sign_add_signer() can add a signer later.
	 *			This is necessary to change the message digest
	 *			algorithm from the default of SHA-1.  Requires
	 *			OpenSSL 1.0.0 or later.
	 */
	int pkcs7_flags = PKCS7_BINARY | PKCS7_DETACHED | PKCS7_NOATTR |
			  PKCS7_NOCERTS | PKCS7_PARTIAL;
	u8 *sig;
	u32 sig_size;
	BIO *bio = NULL;
	PKCS7 *p7 = NULL;
	bool ok = false;

	bio = new_mem_buf(data_to_sign, data_size);
	if (!bio)
		goto out;

	p7 = PKCS7_sign(NULL, NULL, NULL, bio, pkcs7_flags);
	if (!p7) {
		error_msg_openssl("failed to initialize PKCS#7 signature object");
		goto out;
	}

	if (!PKCS7_sign_add_signer(p7, cert, pkey, md, pkcs7_flags)) {
		error_msg_openssl("failed to add signer to PKCS#7 signature object");
		goto out;
	}

	if (PKCS7_final(p7, bio, pkcs7_flags) != 1) {
		error_msg_openssl("failed to finalize PKCS#7 signature");
		goto out;
	}

	BIO_free(bio);
	bio = BIO_new(BIO_s_mem());
	if (!bio) {
		error_msg_openssl("out of memory");
		goto out;
	}

	if (i2d_PKCS7_bio(bio, p7) != 1) {
		error_msg_openssl("failed to DER-encode PKCS#7 signature object");
		goto out;
	}

	sig_size = BIO_get_mem_data(bio, &sig);
	*sig_ret = xmemdup(sig, sig_size);
	*sig_size_ret = sig_size;
	ok = true;
out:
	PKCS7_free(p7);
	BIO_free(bio);
	return ok;
}

#endif /* !OPENSSL_IS_BORINGSSL */

/*
 * Sign the specified @data_to_sign of length @data_size bytes using the private
 * key in @keyfile, the certificate in @certfile, and the hash algorithm
 * @hash_alg.  Returns the DER-formatted PKCS#7 signature in @sig_ret and
 * @sig_size_ret.
 */
static bool sign_data(const void *data_to_sign, size_t data_size,
		      const char *keyfile, const char *certfile,
		      const struct fsverity_hash_alg *hash_alg,
		      u8 **sig_ret, u32 *sig_size_ret)
{
	EVP_PKEY *pkey = NULL;
	X509 *cert = NULL;
	const EVP_MD *md;
	bool ok = false;

	pkey = read_private_key(keyfile);
	if (!pkey)
		goto out;

	cert = read_certificate(certfile);
	if (!cert)
		goto out;

	OpenSSL_add_all_digests();
	md = EVP_get_digestbyname(hash_alg->name);
	if (!md) {
		fprintf(stderr,
			"Warning: '%s' algorithm not found in OpenSSL library.\n"
			"         Falling back to SHA-256 signature.\n",
			hash_alg->name);
		md = EVP_sha256();
	}

	ok = sign_pkcs7(data_to_sign, data_size, pkey, cert, md,
			sig_ret, sig_size_ret);
out:
	EVP_PKEY_free(pkey);
	X509_free(cert);
	return ok;
}

static bool write_signature(const char *filename, const u8 *sig, u32 sig_size)
{
	struct filedes file;
	bool ok;

	if (!open_file(&file, filename, O_WRONLY|O_CREAT|O_TRUNC, 0644))
		return false;
	ok = full_write(&file, sig, sig_size);
	ok &= filedes_close(&file);
	return ok;
}

#define FS_VERITY_MAX_LEVELS	64

struct block_buffer {
	u32 filled;
	u8 *data;
};

/*
 * Hash a block, writing the result to the next level's pending block buffer.
 * Returns true if the next level's block became full, else false.
 */
static bool hash_one_block(struct hash_ctx *hash, struct block_buffer *cur,
			   u32 block_size, const u8 *salt, u32 salt_size)
{
	struct block_buffer *next = cur + 1;

	/* Zero-pad the block if it's shorter than block_size. */
	memset(&cur->data[cur->filled], 0, block_size - cur->filled);

	hash_init(hash);
	hash_update(hash, salt, salt_size);
	hash_update(hash, cur->data, block_size);
	hash_final(hash, &next->data[next->filled]);

	next->filled += hash->alg->digest_size;
	cur->filled = 0;

	return next->filled + hash->alg->digest_size > block_size;
}

/*
 * Compute the file's Merkle tree root hash using the given hash algorithm,
 * block size, and salt.
 */
static bool compute_root_hash(struct filedes *file, u64 file_size,
			      struct hash_ctx *hash, u32 block_size,
			      const u8 *salt, u32 salt_size, u8 *root_hash)
{
	const u32 hashes_per_block = block_size / hash->alg->digest_size;
	const u32 padded_salt_size = roundup(salt_size, hash->alg->block_size);
	u8 *padded_salt = xzalloc(padded_salt_size);
	u64 blocks;
	int num_levels = 0;
	int level;
	struct block_buffer _buffers[1 + FS_VERITY_MAX_LEVELS + 1] = {};
	struct block_buffer *buffers = &_buffers[1];
	u64 offset;
	bool ok = false;

	if (salt_size != 0)
		memcpy(padded_salt, salt, salt_size);

	/* Compute number of levels */
	for (blocks = DIV_ROUND_UP(file_size, block_size); blocks > 1;
	     blocks = DIV_ROUND_UP(blocks, hashes_per_block)) {
		ASSERT(num_levels < FS_VERITY_MAX_LEVELS);
		num_levels++;
	}

	/*
	 * Allocate the block buffers.  Buffer "-1" is for data blocks.
	 * Buffers 0 <= level < num_levels are for the actual tree levels.
	 * Buffer 'num_levels' is for the root hash.
	 */
	for (level = -1; level < num_levels; level++)
		buffers[level].data = xmalloc(block_size);
	buffers[num_levels].data = root_hash;

	/* Hash each data block, also hashing the tree blocks as they fill up */
	for (offset = 0; offset < file_size; offset += block_size) {
		buffers[-1].filled = min(block_size, file_size - offset);

		if (!full_read(file, buffers[-1].data, buffers[-1].filled))
			goto out;

		level = -1;
		while (hash_one_block(hash, &buffers[level], block_size,
				      padded_salt, padded_salt_size)) {
			level++;
			ASSERT(level < num_levels);
		}
	}
	/* Finish all nonempty pending tree blocks */
	for (level = 0; level < num_levels; level++) {
		if (buffers[level].filled != 0)
			hash_one_block(hash, &buffers[level], block_size,
				       padded_salt, padded_salt_size);
	}

	/* Root hash was filled by the last call to hash_one_block() */
	ASSERT(buffers[num_levels].filled == hash->alg->digest_size);
	ok = true;
out:
	for (level = -1; level < num_levels; level++)
		free(buffers[level].data);
	free(padded_salt);
	return ok;
}

/*
 * Compute the fs-verity measurement of the given file.
 *
 * The fs-verity measurement is the hash of the fsverity_descriptor, which
 * contains the Merkle tree properties including the root hash.
 */
static bool compute_file_measurement(const char *filename,
				     const struct fsverity_hash_alg *hash_alg,
				     u32 block_size, const u8 *salt,
				     u32 salt_size, u8 *measurement)
{
	struct filedes file = { .fd = -1 };
	struct hash_ctx *hash = hash_create(hash_alg);
	u64 file_size;
	struct fsverity_descriptor desc;
	bool ok = false;

	if (!open_file(&file, filename, O_RDONLY, 0))
		goto out;

	if (!get_file_size(&file, &file_size))
		goto out;

	memset(&desc, 0, sizeof(desc));
	desc.version = 1;
	desc.hash_algorithm = hash_alg - fsverity_hash_algs;

	ASSERT(is_power_of_2(block_size));
	desc.log_blocksize = ilog2(block_size);

	if (salt_size != 0) {
		if (salt_size > sizeof(desc.salt)) {
			error_msg("Salt too long (got %u bytes; max is %zu bytes)",
				  salt_size, sizeof(desc.salt));
			goto out;
		}
		memcpy(desc.salt, salt, salt_size);
		desc.salt_size = salt_size;
	}

	desc.data_size = cpu_to_le64(file_size);

	/* Root hash of empty file is all 0's */
	if (file_size != 0 &&
	    !compute_root_hash(&file, file_size, hash, block_size, salt,
			       salt_size, desc.root_hash))
		goto out;

	hash_full(hash, &desc, sizeof(desc), measurement);
	ok = true;
out:
	filedes_close(&file);
	hash_free(hash);
	return ok;
}

enum {
	OPT_HASH_ALG,
	OPT_BLOCK_SIZE,
	OPT_SALT,
	OPT_KEY,
	OPT_CERT,
};

static const struct option longopts[] = {
	{"hash-alg",	required_argument, NULL, OPT_HASH_ALG},
	{"block-size",	required_argument, NULL, OPT_BLOCK_SIZE},
	{"salt",	required_argument, NULL, OPT_SALT},
	{"key",		required_argument, NULL, OPT_KEY},
	{"cert",	required_argument, NULL, OPT_CERT},
	{NULL, 0, NULL, 0}
};

/* Sign a file for fs-verity by computing its measurement, then signing it. */
int fsverity_cmd_sign(const struct fsverity_command *cmd,
		      int argc, char *argv[])
{
	const struct fsverity_hash_alg *hash_alg = NULL;
	u32 block_size = 0;
	u8 *salt = NULL;
	u32 salt_size = 0;
	const char *keyfile = NULL;
	const char *certfile = NULL;
	struct fsverity_signed_digest *digest = NULL;
	char digest_hex[FS_VERITY_MAX_DIGEST_SIZE * 2 + 1];
	u8 *sig = NULL;
	u32 sig_size;
	int status;
	int c;

	while ((c = getopt_long(argc, argv, "", longopts, NULL)) != -1) {
		switch (c) {
		case OPT_HASH_ALG:
			if (hash_alg != NULL) {
				error_msg("--hash-alg can only be specified once");
				goto out_usage;
			}
			hash_alg = find_hash_alg_by_name(optarg);
			if (hash_alg == NULL)
				goto out_usage;
			break;
		case OPT_BLOCK_SIZE:
			if (!parse_block_size_option(optarg, &block_size))
				goto out_usage;
			break;
		case OPT_SALT:
			if (!parse_salt_option(optarg, &salt, &salt_size))
				goto out_usage;
			break;
		case OPT_KEY:
			if (keyfile != NULL) {
				error_msg("--key can only be specified once");
				goto out_usage;
			}
			keyfile = optarg;
			break;
		case OPT_CERT:
			if (certfile != NULL) {
				error_msg("--cert can only be specified once");
				goto out_usage;
			}
			certfile = optarg;
			break;
		default:
			goto out_usage;
		}
	}

	argv += optind;
	argc -= optind;

	if (argc != 2)
		goto out_usage;

	if (hash_alg == NULL)
		hash_alg = &fsverity_hash_algs[FS_VERITY_HASH_ALG_DEFAULT];

	if (block_size == 0)
		block_size = get_default_block_size();

	if (keyfile == NULL) {
		error_msg("Missing --key argument");
		goto out_usage;
	}
	if (certfile == NULL)
		certfile = keyfile;

	digest = xzalloc(sizeof(*digest) + hash_alg->digest_size);
	memcpy(digest->magic, "FSVerity", 8);
	digest->digest_algorithm = cpu_to_le16(hash_alg - fsverity_hash_algs);
	digest->digest_size = cpu_to_le16(hash_alg->digest_size);

	if (!compute_file_measurement(argv[0], hash_alg, block_size,
				      salt, salt_size, digest->digest))
		goto out_err;

	if (!sign_data(digest, sizeof(*digest) + hash_alg->digest_size,
		       keyfile, certfile, hash_alg, &sig, &sig_size))
		goto out_err;

	if (!write_signature(argv[1], sig, sig_size))
		goto out_err;

	bin2hex(digest->digest, hash_alg->digest_size, digest_hex);
	printf("Signed file '%s' (%s:%s)\n", argv[0], hash_alg->name,
	       digest_hex);
	status = 0;
out:
	free(salt);
	free(digest);
	free(sig);
	return status;

out_err:
	status = 1;
	goto out;

out_usage:
	usage(cmd, stderr);
	status = 2;
	goto out;
}