Skip to main content

core/num/
f128.rs

1//! Constants for the `f128` quadruple-precision floating point type.
2//!
3//! *[See also the `f128` primitive type][f128].*
4//!
5//! Mathematically significant numbers are provided in the `consts` sub-module.
6//!
7//! For the constants defined directly in this module
8//! (as distinct from those defined in the `consts` sub-module),
9//! new code should instead use the associated constants
10//! defined directly on the `f128` type.
11
12#![unstable(feature = "f128", issue = "116909")]
13
14use crate::convert::FloatToInt;
15use crate::num::FpCategory;
16use crate::panic::const_assert;
17use crate::{intrinsics, mem};
18
19/// Basic mathematical constants.
20#[unstable(feature = "f128", issue = "116909")]
21#[rustc_diagnostic_item = "f128_consts_mod"]
22pub mod consts {
23    // FIXME: replace with mathematical constants from cmath.
24
25    /// Archimedes' constant (π)
26    #[unstable(feature = "f128", issue = "116909")]
27    pub const PI: f128 = 3.14159265358979323846264338327950288419716939937510582097494_f128;
28
29    /// The full circle constant (τ)
30    ///
31    /// Equal to 2π.
32    #[unstable(feature = "f128", issue = "116909")]
33    pub const TAU: f128 = 6.28318530717958647692528676655900576839433879875021164194989_f128;
34
35    /// The golden ratio (φ)
36    #[unstable(feature = "f128", issue = "116909")]
37    pub const GOLDEN_RATIO: f128 =
38        1.61803398874989484820458683436563811772030917980576286213545_f128;
39
40    /// The Euler-Mascheroni constant (γ)
41    #[unstable(feature = "f128", issue = "116909")]
42    pub const EULER_GAMMA: f128 =
43        0.577215664901532860606512090082402431042159335939923598805767_f128;
44
45    /// π/2
46    #[unstable(feature = "f128", issue = "116909")]
47    pub const FRAC_PI_2: f128 = 1.57079632679489661923132169163975144209858469968755291048747_f128;
48
49    /// π/3
50    #[unstable(feature = "f128", issue = "116909")]
51    pub const FRAC_PI_3: f128 = 1.04719755119659774615421446109316762806572313312503527365831_f128;
52
53    /// π/4
54    #[unstable(feature = "f128", issue = "116909")]
55    pub const FRAC_PI_4: f128 = 0.785398163397448309615660845819875721049292349843776455243736_f128;
56
57    /// π/6
58    #[unstable(feature = "f128", issue = "116909")]
59    pub const FRAC_PI_6: f128 = 0.523598775598298873077107230546583814032861566562517636829157_f128;
60
61    /// π/8
62    #[unstable(feature = "f128", issue = "116909")]
63    pub const FRAC_PI_8: f128 = 0.392699081698724154807830422909937860524646174921888227621868_f128;
64
65    /// 1/π
66    #[unstable(feature = "f128", issue = "116909")]
67    pub const FRAC_1_PI: f128 = 0.318309886183790671537767526745028724068919291480912897495335_f128;
68
69    /// 1/sqrt(π)
70    #[unstable(feature = "f128", issue = "116909")]
71    // Also, #[unstable(feature = "more_float_constants", issue = "146939")]
72    pub const FRAC_1_SQRT_PI: f128 =
73        0.564189583547756286948079451560772585844050629328998856844086_f128;
74
75    /// 1/sqrt(2π)
76    #[doc(alias = "FRAC_1_SQRT_TAU")]
77    #[unstable(feature = "f128", issue = "116909")]
78    // Also, #[unstable(feature = "more_float_constants", issue = "146939")]
79    pub const FRAC_1_SQRT_2PI: f128 =
80        0.398942280401432677939946059934381868475858631164934657665926_f128;
81
82    /// 2/π
83    #[unstable(feature = "f128", issue = "116909")]
84    pub const FRAC_2_PI: f128 = 0.636619772367581343075535053490057448137838582961825794990669_f128;
85
86    /// 2/sqrt(π)
87    #[unstable(feature = "f128", issue = "116909")]
88    pub const FRAC_2_SQRT_PI: f128 =
89        1.12837916709551257389615890312154517168810125865799771368817_f128;
90
91    /// sqrt(2)
92    #[unstable(feature = "f128", issue = "116909")]
93    pub const SQRT_2: f128 = 1.41421356237309504880168872420969807856967187537694807317668_f128;
94
95    /// 1/sqrt(2)
96    #[unstable(feature = "f128", issue = "116909")]
97    pub const FRAC_1_SQRT_2: f128 =
98        0.707106781186547524400844362104849039284835937688474036588340_f128;
99
100    /// sqrt(3)
101    #[unstable(feature = "f128", issue = "116909")]
102    // Also, #[unstable(feature = "more_float_constants", issue = "146939")]
103    pub const SQRT_3: f128 = 1.73205080756887729352744634150587236694280525381038062805581_f128;
104
105    /// 1/sqrt(3)
106    #[unstable(feature = "f128", issue = "116909")]
107    // Also, #[unstable(feature = "more_float_constants", issue = "146939")]
108    pub const FRAC_1_SQRT_3: f128 =
109        0.577350269189625764509148780501957455647601751270126876018602_f128;
110
111    /// sqrt(5)
112    #[unstable(feature = "more_float_constants", issue = "146939")]
113    // Also, #[unstable(feature = "f128", issue = "116909")]
114    pub const SQRT_5: f128 = 2.23606797749978969640917366873127623544061835961152572427089_f128;
115
116    /// 1/sqrt(5)
117    #[unstable(feature = "more_float_constants", issue = "146939")]
118    // Also, #[unstable(feature = "f128", issue = "116909")]
119    pub const FRAC_1_SQRT_5: f128 =
120        0.447213595499957939281834733746255247088123671922305144854179_f128;
121
122    /// Euler's number (e)
123    #[unstable(feature = "f128", issue = "116909")]
124    pub const E: f128 = 2.71828182845904523536028747135266249775724709369995957496697_f128;
125
126    /// log<sub>2</sub>(10)
127    #[unstable(feature = "f128", issue = "116909")]
128    pub const LOG2_10: f128 = 3.32192809488736234787031942948939017586483139302458061205476_f128;
129
130    /// log<sub>2</sub>(e)
131    #[unstable(feature = "f128", issue = "116909")]
132    pub const LOG2_E: f128 = 1.44269504088896340735992468100189213742664595415298593413545_f128;
133
134    /// log<sub>10</sub>(2)
135    #[unstable(feature = "f128", issue = "116909")]
136    pub const LOG10_2: f128 = 0.301029995663981195213738894724493026768189881462108541310427_f128;
137
138    /// log<sub>10</sub>(e)
139    #[unstable(feature = "f128", issue = "116909")]
140    pub const LOG10_E: f128 = 0.434294481903251827651128918916605082294397005803666566114454_f128;
141
142    /// ln(2)
143    #[unstable(feature = "f128", issue = "116909")]
144    pub const LN_2: f128 = 0.693147180559945309417232121458176568075500134360255254120680_f128;
145
146    /// ln(10)
147    #[unstable(feature = "f128", issue = "116909")]
148    pub const LN_10: f128 = 2.30258509299404568401799145468436420760110148862877297603333_f128;
149}
150
151#[doc(test(attr(feature(cfg_target_has_reliable_f16_f128), allow(internal_features))))]
152impl f128 {
153    /// The radix or base of the internal representation of `f128`.
154    #[unstable(feature = "f128", issue = "116909")]
155    pub const RADIX: u32 = 2;
156
157    /// The size of this float type in bits.
158    // #[unstable(feature = "f128", issue = "116909")]
159    #[unstable(feature = "float_bits_const", issue = "151073")]
160    pub const BITS: u32 = 128;
161
162    /// Number of significant digits in base 2.
163    ///
164    /// Note that the size of the mantissa in the bitwise representation is one
165    /// smaller than this since the leading 1 is not stored explicitly.
166    #[unstable(feature = "f128", issue = "116909")]
167    pub const MANTISSA_DIGITS: u32 = 113;
168
169    /// Approximate number of significant digits in base 10.
170    ///
171    /// This is the maximum <i>x</i> such that any decimal number with <i>x</i>
172    /// significant digits can be converted to `f128` and back without loss.
173    ///
174    /// Equal to floor(log<sub>10</sub>&nbsp;2<sup>[`MANTISSA_DIGITS`]&nbsp;&minus;&nbsp;1</sup>).
175    ///
176    /// [`MANTISSA_DIGITS`]: f128::MANTISSA_DIGITS
177    #[unstable(feature = "f128", issue = "116909")]
178    pub const DIGITS: u32 = 33;
179
180    /// [Machine epsilon] value for `f128`.
181    ///
182    /// This is the difference between `1.0` and the next larger representable number.
183    ///
184    /// Equal to 2<sup>1&nbsp;&minus;&nbsp;[`MANTISSA_DIGITS`]</sup>.
185    ///
186    /// [Machine epsilon]: https://en.wikipedia.org/wiki/Machine_epsilon
187    /// [`MANTISSA_DIGITS`]: f128::MANTISSA_DIGITS
188    #[unstable(feature = "f128", issue = "116909")]
189    #[rustc_diagnostic_item = "f128_epsilon"]
190    pub const EPSILON: f128 = 1.92592994438723585305597794258492732e-34_f128;
191
192    /// Smallest finite `f128` value.
193    ///
194    /// Equal to &minus;[`MAX`].
195    ///
196    /// [`MAX`]: f128::MAX
197    #[unstable(feature = "f128", issue = "116909")]
198    pub const MIN: f128 = -1.18973149535723176508575932662800702e+4932_f128;
199    /// Smallest positive normal `f128` value.
200    ///
201    /// Equal to 2<sup>[`MIN_EXP`]&nbsp;&minus;&nbsp;1</sup>.
202    ///
203    /// [`MIN_EXP`]: f128::MIN_EXP
204    #[unstable(feature = "f128", issue = "116909")]
205    pub const MIN_POSITIVE: f128 = 3.36210314311209350626267781732175260e-4932_f128;
206    /// Largest finite `f128` value.
207    ///
208    /// Equal to
209    /// (1&nbsp;&minus;&nbsp;2<sup>&minus;[`MANTISSA_DIGITS`]</sup>)&nbsp;2<sup>[`MAX_EXP`]</sup>.
210    ///
211    /// [`MANTISSA_DIGITS`]: f128::MANTISSA_DIGITS
212    /// [`MAX_EXP`]: f128::MAX_EXP
213    #[unstable(feature = "f128", issue = "116909")]
214    pub const MAX: f128 = 1.18973149535723176508575932662800702e+4932_f128;
215
216    /// One greater than the minimum possible *normal* power of 2 exponent
217    /// for a significand bounded by 1 ≤ x < 2 (i.e. the IEEE definition).
218    ///
219    /// This corresponds to the exact minimum possible *normal* power of 2 exponent
220    /// for a significand bounded by 0.5 ≤ x < 1 (i.e. the C definition).
221    /// In other words, all normal numbers representable by this type are
222    /// greater than or equal to 0.5&nbsp;×&nbsp;2<sup><i>MIN_EXP</i></sup>.
223    #[unstable(feature = "f128", issue = "116909")]
224    pub const MIN_EXP: i32 = -16_381;
225    /// One greater than the maximum possible power of 2 exponent
226    /// for a significand bounded by 1 ≤ x < 2 (i.e. the IEEE definition).
227    ///
228    /// This corresponds to the exact maximum possible power of 2 exponent
229    /// for a significand bounded by 0.5 ≤ x < 1 (i.e. the C definition).
230    /// In other words, all numbers representable by this type are
231    /// strictly less than 2<sup><i>MAX_EXP</i></sup>.
232    #[unstable(feature = "f128", issue = "116909")]
233    pub const MAX_EXP: i32 = 16_384;
234
235    /// Minimum <i>x</i> for which 10<sup><i>x</i></sup> is normal.
236    ///
237    /// Equal to ceil(log<sub>10</sub>&nbsp;[`MIN_POSITIVE`]).
238    ///
239    /// [`MIN_POSITIVE`]: f128::MIN_POSITIVE
240    #[unstable(feature = "f128", issue = "116909")]
241    pub const MIN_10_EXP: i32 = -4_931;
242    /// Maximum <i>x</i> for which 10<sup><i>x</i></sup> is normal.
243    ///
244    /// Equal to floor(log<sub>10</sub>&nbsp;[`MAX`]).
245    ///
246    /// [`MAX`]: f128::MAX
247    #[unstable(feature = "f128", issue = "116909")]
248    pub const MAX_10_EXP: i32 = 4_932;
249
250    /// Not a Number (NaN).
251    ///
252    /// Note that IEEE 754 doesn't define just a single NaN value; a plethora of bit patterns are
253    /// considered to be NaN. Furthermore, the standard makes a difference between a "signaling" and
254    /// a "quiet" NaN, and allows inspecting its "payload" (the unspecified bits in the bit pattern)
255    /// and its sign. See the [specification of NaN bit patterns](f32#nan-bit-patterns) for more
256    /// info.
257    ///
258    /// This constant is guaranteed to be a quiet NaN (on targets that follow the Rust assumptions
259    /// that the quiet/signaling bit being set to 1 indicates a quiet NaN). Beyond that, nothing is
260    /// guaranteed about the specific bit pattern chosen here: both payload and sign are arbitrary.
261    /// The concrete bit pattern may change across Rust versions and target platforms.
262    #[allow(clippy::eq_op)]
263    #[rustc_diagnostic_item = "f128_nan"]
264    #[unstable(feature = "f128", issue = "116909")]
265    pub const NAN: f128 = 0.0_f128 / 0.0_f128;
266
267    /// Infinity (∞).
268    #[unstable(feature = "f128", issue = "116909")]
269    pub const INFINITY: f128 = 1.0_f128 / 0.0_f128;
270
271    /// Negative infinity (−∞).
272    #[unstable(feature = "f128", issue = "116909")]
273    pub const NEG_INFINITY: f128 = -1.0_f128 / 0.0_f128;
274
275    /// Sign bit
276    pub(crate) const SIGN_MASK: u128 = 0x8000_0000_0000_0000_0000_0000_0000_0000;
277
278    /// Exponent mask
279    pub(crate) const EXP_MASK: u128 = 0x7fff_0000_0000_0000_0000_0000_0000_0000;
280
281    /// Mantissa mask
282    pub(crate) const MAN_MASK: u128 = 0x0000_ffff_ffff_ffff_ffff_ffff_ffff_ffff;
283
284    /// Minimum representable positive value (min subnormal)
285    const TINY_BITS: u128 = 0x1;
286
287    /// Minimum representable negative value (min negative subnormal)
288    const NEG_TINY_BITS: u128 = Self::TINY_BITS | Self::SIGN_MASK;
289
290    /// Returns `true` if this value is NaN.
291    ///
292    /// ```
293    /// #![feature(f128)]
294    /// # #[cfg(target_has_reliable_f128)] {
295    ///
296    /// let nan = f128::NAN;
297    /// let f = 7.0_f128;
298    ///
299    /// assert!(nan.is_nan());
300    /// assert!(!f.is_nan());
301    /// # }
302    /// ```
303    #[inline]
304    #[must_use]
305    #[unstable(feature = "f128", issue = "116909")]
306    #[allow(clippy::eq_op)] // > if you intended to check if the operand is NaN, use `.is_nan()` instead :)
307    pub const fn is_nan(self) -> bool {
308        self != self
309    }
310
311    /// Returns `true` if this value is positive infinity or negative infinity, and
312    /// `false` otherwise.
313    ///
314    /// ```
315    /// #![feature(f128)]
316    /// # #[cfg(target_has_reliable_f128)] {
317    ///
318    /// let f = 7.0f128;
319    /// let inf = f128::INFINITY;
320    /// let neg_inf = f128::NEG_INFINITY;
321    /// let nan = f128::NAN;
322    ///
323    /// assert!(!f.is_infinite());
324    /// assert!(!nan.is_infinite());
325    ///
326    /// assert!(inf.is_infinite());
327    /// assert!(neg_inf.is_infinite());
328    /// # }
329    /// ```
330    #[inline]
331    #[must_use]
332    #[unstable(feature = "f128", issue = "116909")]
333    pub const fn is_infinite(self) -> bool {
334        (self == f128::INFINITY) | (self == f128::NEG_INFINITY)
335    }
336
337    /// Returns `true` if this number is neither infinite nor NaN.
338    ///
339    /// ```
340    /// #![feature(f128)]
341    /// # #[cfg(target_has_reliable_f128)] {
342    ///
343    /// let f = 7.0f128;
344    /// let inf: f128 = f128::INFINITY;
345    /// let neg_inf: f128 = f128::NEG_INFINITY;
346    /// let nan: f128 = f128::NAN;
347    ///
348    /// assert!(f.is_finite());
349    ///
350    /// assert!(!nan.is_finite());
351    /// assert!(!inf.is_finite());
352    /// assert!(!neg_inf.is_finite());
353    /// # }
354    /// ```
355    #[inline]
356    #[must_use]
357    #[unstable(feature = "f128", issue = "116909")]
358    #[rustc_const_unstable(feature = "f128", issue = "116909")]
359    pub const fn is_finite(self) -> bool {
360        // There's no need to handle NaN separately: if self is NaN,
361        // the comparison is not true, exactly as desired.
362        self.abs() < Self::INFINITY
363    }
364
365    /// Returns `true` if the number is [subnormal].
366    ///
367    /// ```
368    /// #![feature(f128)]
369    /// # #[cfg(target_has_reliable_f128)] {
370    ///
371    /// let min = f128::MIN_POSITIVE; // 3.362103143e-4932f128
372    /// let max = f128::MAX;
373    /// let lower_than_min = 1.0e-4960_f128;
374    /// let zero = 0.0_f128;
375    ///
376    /// assert!(!min.is_subnormal());
377    /// assert!(!max.is_subnormal());
378    ///
379    /// assert!(!zero.is_subnormal());
380    /// assert!(!f128::NAN.is_subnormal());
381    /// assert!(!f128::INFINITY.is_subnormal());
382    /// // Values between `0` and `min` are Subnormal.
383    /// assert!(lower_than_min.is_subnormal());
384    /// # }
385    /// ```
386    ///
387    /// [subnormal]: https://en.wikipedia.org/wiki/Denormal_number
388    #[inline]
389    #[must_use]
390    #[unstable(feature = "f128", issue = "116909")]
391    pub const fn is_subnormal(self) -> bool {
392        matches!(self.classify(), FpCategory::Subnormal)
393    }
394
395    /// Returns `true` if the number is neither zero, infinite, [subnormal], or NaN.
396    ///
397    /// ```
398    /// #![feature(f128)]
399    /// # #[cfg(target_has_reliable_f128)] {
400    ///
401    /// let min = f128::MIN_POSITIVE; // 3.362103143e-4932f128
402    /// let max = f128::MAX;
403    /// let lower_than_min = 1.0e-4960_f128;
404    /// let zero = 0.0_f128;
405    ///
406    /// assert!(min.is_normal());
407    /// assert!(max.is_normal());
408    ///
409    /// assert!(!zero.is_normal());
410    /// assert!(!f128::NAN.is_normal());
411    /// assert!(!f128::INFINITY.is_normal());
412    /// // Values between `0` and `min` are Subnormal.
413    /// assert!(!lower_than_min.is_normal());
414    /// # }
415    /// ```
416    ///
417    /// [subnormal]: https://en.wikipedia.org/wiki/Denormal_number
418    #[inline]
419    #[must_use]
420    #[unstable(feature = "f128", issue = "116909")]
421    pub const fn is_normal(self) -> bool {
422        matches!(self.classify(), FpCategory::Normal)
423    }
424
425    /// Returns the floating point category of the number. If only one property
426    /// is going to be tested, it is generally faster to use the specific
427    /// predicate instead.
428    ///
429    /// ```
430    /// #![feature(f128)]
431    /// # #[cfg(target_has_reliable_f128)] {
432    ///
433    /// use std::num::FpCategory;
434    ///
435    /// let num = 12.4_f128;
436    /// let inf = f128::INFINITY;
437    ///
438    /// assert_eq!(num.classify(), FpCategory::Normal);
439    /// assert_eq!(inf.classify(), FpCategory::Infinite);
440    /// # }
441    /// ```
442    #[inline]
443    #[unstable(feature = "f128", issue = "116909")]
444    pub const fn classify(self) -> FpCategory {
445        let bits = self.to_bits();
446        match (bits & Self::MAN_MASK, bits & Self::EXP_MASK) {
447            (0, Self::EXP_MASK) => FpCategory::Infinite,
448            (_, Self::EXP_MASK) => FpCategory::Nan,
449            (0, 0) => FpCategory::Zero,
450            (_, 0) => FpCategory::Subnormal,
451            _ => FpCategory::Normal,
452        }
453    }
454
455    /// Returns `true` if `self` has a positive sign, including `+0.0`, NaNs with
456    /// positive sign bit and positive infinity.
457    ///
458    /// Note that IEEE 754 doesn't assign any meaning to the sign bit in case of
459    /// a NaN, and as Rust doesn't guarantee that the bit pattern of NaNs are
460    /// conserved over arithmetic operations, the result of `is_sign_positive` on
461    /// a NaN might produce an unexpected or non-portable result. See the [specification
462    /// of NaN bit patterns](f32#nan-bit-patterns) for more info. Use `self.signum() == 1.0`
463    /// if you need fully portable behavior (will return `false` for all NaNs).
464    ///
465    /// ```
466    /// #![feature(f128)]
467    ///
468    /// let f = 7.0_f128;
469    /// let g = -7.0_f128;
470    ///
471    /// assert!(f.is_sign_positive());
472    /// assert!(!g.is_sign_positive());
473    /// ```
474    #[inline]
475    #[must_use]
476    #[unstable(feature = "f128", issue = "116909")]
477    pub const fn is_sign_positive(self) -> bool {
478        !self.is_sign_negative()
479    }
480
481    /// Returns `true` if `self` has a negative sign, including `-0.0`, NaNs with
482    /// negative sign bit and negative infinity.
483    ///
484    /// Note that IEEE 754 doesn't assign any meaning to the sign bit in case of
485    /// a NaN, and as Rust doesn't guarantee that the bit pattern of NaNs are
486    /// conserved over arithmetic operations, the result of `is_sign_negative` on
487    /// a NaN might produce an unexpected or non-portable result. See the [specification
488    /// of NaN bit patterns](f32#nan-bit-patterns) for more info. Use `self.signum() == -1.0`
489    /// if you need fully portable behavior (will return `false` for all NaNs).
490    ///
491    /// ```
492    /// #![feature(f128)]
493    ///
494    /// let f = 7.0_f128;
495    /// let g = -7.0_f128;
496    ///
497    /// assert!(!f.is_sign_negative());
498    /// assert!(g.is_sign_negative());
499    /// ```
500    #[inline]
501    #[must_use]
502    #[unstable(feature = "f128", issue = "116909")]
503    pub const fn is_sign_negative(self) -> bool {
504        // IEEE754 says: isSignMinus(x) is true if and only if x has negative sign. isSignMinus
505        // applies to zeros and NaNs as well.
506        // SAFETY: This is just transmuting to get the sign bit, it's fine.
507        (self.to_bits() & (1 << 127)) != 0
508    }
509
510    /// Returns the least number greater than `self`.
511    ///
512    /// Let `TINY` be the smallest representable positive `f128`. Then,
513    ///  - if `self.is_nan()`, this returns `self`;
514    ///  - if `self` is [`NEG_INFINITY`], this returns [`MIN`];
515    ///  - if `self` is `-TINY`, this returns -0.0;
516    ///  - if `self` is -0.0 or +0.0, this returns `TINY`;
517    ///  - if `self` is [`MAX`] or [`INFINITY`], this returns [`INFINITY`];
518    ///  - otherwise the unique least value greater than `self` is returned.
519    ///
520    /// The identity `x.next_up() == -(-x).next_down()` holds for all non-NaN `x`. When `x`
521    /// is finite `x == x.next_up().next_down()` also holds.
522    ///
523    /// ```rust
524    /// #![feature(f128)]
525    /// # #[cfg(target_has_reliable_f128)] {
526    ///
527    /// // f128::EPSILON is the difference between 1.0 and the next number up.
528    /// assert_eq!(1.0f128.next_up(), 1.0 + f128::EPSILON);
529    /// // But not for most numbers.
530    /// assert!(0.1f128.next_up() < 0.1 + f128::EPSILON);
531    /// assert_eq!(4611686018427387904f128.next_up(), 4611686018427387904.000000000000001);
532    /// # }
533    /// ```
534    ///
535    /// This operation corresponds to IEEE-754 `nextUp`.
536    ///
537    /// [`NEG_INFINITY`]: Self::NEG_INFINITY
538    /// [`INFINITY`]: Self::INFINITY
539    /// [`MIN`]: Self::MIN
540    /// [`MAX`]: Self::MAX
541    #[inline]
542    #[doc(alias = "nextUp")]
543    #[unstable(feature = "f128", issue = "116909")]
544    pub const fn next_up(self) -> Self {
545        // Some targets violate Rust's assumption of IEEE semantics, e.g. by flushing
546        // denormals to zero. This is in general unsound and unsupported, but here
547        // we do our best to still produce the correct result on such targets.
548        let bits = self.to_bits();
549        if self.is_nan() || bits == Self::INFINITY.to_bits() {
550            return self;
551        }
552
553        let abs = bits & !Self::SIGN_MASK;
554        let next_bits = if abs == 0 {
555            Self::TINY_BITS
556        } else if bits == abs {
557            bits + 1
558        } else {
559            bits - 1
560        };
561        Self::from_bits(next_bits)
562    }
563
564    /// Returns the greatest number less than `self`.
565    ///
566    /// Let `TINY` be the smallest representable positive `f128`. Then,
567    ///  - if `self.is_nan()`, this returns `self`;
568    ///  - if `self` is [`INFINITY`], this returns [`MAX`];
569    ///  - if `self` is `TINY`, this returns 0.0;
570    ///  - if `self` is -0.0 or +0.0, this returns `-TINY`;
571    ///  - if `self` is [`MIN`] or [`NEG_INFINITY`], this returns [`NEG_INFINITY`];
572    ///  - otherwise the unique greatest value less than `self` is returned.
573    ///
574    /// The identity `x.next_down() == -(-x).next_up()` holds for all non-NaN `x`. When `x`
575    /// is finite `x == x.next_down().next_up()` also holds.
576    ///
577    /// ```rust
578    /// #![feature(f128)]
579    /// # #[cfg(target_has_reliable_f128)] {
580    ///
581    /// let x = 1.0f128;
582    /// // Clamp value into range [0, 1).
583    /// let clamped = x.clamp(0.0, 1.0f128.next_down());
584    /// assert!(clamped < 1.0);
585    /// assert_eq!(clamped.next_up(), 1.0);
586    /// # }
587    /// ```
588    ///
589    /// This operation corresponds to IEEE-754 `nextDown`.
590    ///
591    /// [`NEG_INFINITY`]: Self::NEG_INFINITY
592    /// [`INFINITY`]: Self::INFINITY
593    /// [`MIN`]: Self::MIN
594    /// [`MAX`]: Self::MAX
595    #[inline]
596    #[doc(alias = "nextDown")]
597    #[unstable(feature = "f128", issue = "116909")]
598    pub const fn next_down(self) -> Self {
599        // Some targets violate Rust's assumption of IEEE semantics, e.g. by flushing
600        // denormals to zero. This is in general unsound and unsupported, but here
601        // we do our best to still produce the correct result on such targets.
602        let bits = self.to_bits();
603        if self.is_nan() || bits == Self::NEG_INFINITY.to_bits() {
604            return self;
605        }
606
607        let abs = bits & !Self::SIGN_MASK;
608        let next_bits = if abs == 0 {
609            Self::NEG_TINY_BITS
610        } else if bits == abs {
611            bits - 1
612        } else {
613            bits + 1
614        };
615        Self::from_bits(next_bits)
616    }
617
618    /// Takes the reciprocal (inverse) of a number, `1/x`.
619    ///
620    /// ```
621    /// #![feature(f128)]
622    /// # #[cfg(target_has_reliable_f128)] {
623    ///
624    /// let x = 2.0_f128;
625    /// let abs_difference = (x.recip() - (1.0 / x)).abs();
626    ///
627    /// assert!(abs_difference <= f128::EPSILON);
628    /// # }
629    /// ```
630    #[inline]
631    #[unstable(feature = "f128", issue = "116909")]
632    #[must_use = "this returns the result of the operation, without modifying the original"]
633    pub const fn recip(self) -> Self {
634        1.0 / self
635    }
636
637    /// Converts radians to degrees.
638    ///
639    /// # Unspecified precision
640    ///
641    /// The precision of this function is non-deterministic. This means it varies by platform,
642    /// Rust version, and can even differ within the same execution from one invocation to the next.
643    ///
644    /// # Examples
645    ///
646    /// ```
647    /// #![feature(f128)]
648    /// # #[cfg(target_has_reliable_f128)] {
649    ///
650    /// let angle = std::f128::consts::PI;
651    ///
652    /// let abs_difference = (angle.to_degrees() - 180.0).abs();
653    /// assert!(abs_difference <= f128::EPSILON);
654    /// # }
655    /// ```
656    #[inline]
657    #[unstable(feature = "f128", issue = "116909")]
658    #[must_use = "this returns the result of the operation, without modifying the original"]
659    pub const fn to_degrees(self) -> Self {
660        // The division here is correctly rounded with respect to the true value of 180/π.
661        // Although π is irrational and already rounded, the double rounding happens
662        // to produce correct result for f128.
663        const PIS_IN_180: f128 = 180.0 / consts::PI;
664        self * PIS_IN_180
665    }
666
667    /// Converts degrees to radians.
668    ///
669    /// # Unspecified precision
670    ///
671    /// The precision of this function is non-deterministic. This means it varies by platform,
672    /// Rust version, and can even differ within the same execution from one invocation to the next.
673    ///
674    /// # Examples
675    ///
676    /// ```
677    /// #![feature(f128)]
678    /// # #[cfg(target_has_reliable_f128)] {
679    ///
680    /// let angle = 180.0f128;
681    ///
682    /// let abs_difference = (angle.to_radians() - std::f128::consts::PI).abs();
683    ///
684    /// assert!(abs_difference <= 1e-30);
685    /// # }
686    /// ```
687    #[inline]
688    #[unstable(feature = "f128", issue = "116909")]
689    #[must_use = "this returns the result of the operation, without modifying the original"]
690    pub const fn to_radians(self) -> f128 {
691        // Use a literal to avoid double rounding, consts::PI is already rounded,
692        // and dividing would round again.
693        const RADS_PER_DEG: f128 =
694            0.0174532925199432957692369076848861271344287188854172545609719_f128;
695        self * RADS_PER_DEG
696    }
697
698    /// Returns the maximum of the two numbers, ignoring NaN.
699    ///
700    /// If exactly one of the arguments is NaN (quiet or signaling), then the other argument is
701    /// returned. If both arguments are NaN, the return value is NaN, with the bit pattern picked
702    /// using the usual [rules for arithmetic operations](f32#nan-bit-patterns). If the inputs
703    /// compare equal (such as for the case of `+0.0` and `-0.0`), either input may be returned
704    /// non-deterministically.
705    ///
706    /// The handling of NaNs follows the IEEE 754-2019 semantics for `maximumNumber`, treating all
707    /// NaNs the same way to ensure the operation is associative. The handling of signed zeros
708    /// follows the IEEE 754-2008 semantics for `maxNum`.
709    ///
710    /// ```
711    /// #![feature(f128)]
712    /// # #[cfg(target_has_reliable_f128_math)] {
713    ///
714    /// let x = 1.0f128;
715    /// let y = 2.0f128;
716    ///
717    /// assert_eq!(x.max(y), y);
718    /// assert_eq!(x.max(f128::NAN), x);
719    /// # }
720    /// ```
721    #[inline]
722    #[unstable(feature = "f128", issue = "116909")]
723    #[rustc_const_unstable(feature = "f128", issue = "116909")]
724    #[must_use = "this returns the result of the comparison, without modifying either input"]
725    pub const fn max(self, other: f128) -> f128 {
726        intrinsics::maxnumf128(self, other)
727    }
728
729    /// Returns the minimum of the two numbers, ignoring NaN.
730    ///
731    /// If exactly one of the arguments is NaN (quiet or signaling), then the other argument is
732    /// returned. If both arguments are NaN, the return value is NaN, with the bit pattern picked
733    /// using the usual [rules for arithmetic operations](f32#nan-bit-patterns). If the inputs
734    /// compare equal (such as for the case of `+0.0` and `-0.0`), either input may be returned
735    /// non-deterministically.
736    ///
737    /// The handling of NaNs follows the IEEE 754-2019 semantics for `minimumNumber`, treating all
738    /// NaNs the same way to ensure the operation is associative. The handling of signed zeros
739    /// follows the IEEE 754-2008 semantics for `minNum`.
740    ///
741    /// ```
742    /// #![feature(f128)]
743    /// # #[cfg(target_has_reliable_f128_math)] {
744    ///
745    /// let x = 1.0f128;
746    /// let y = 2.0f128;
747    ///
748    /// assert_eq!(x.min(y), x);
749    /// assert_eq!(x.min(f128::NAN), x);
750    /// # }
751    /// ```
752    #[inline]
753    #[unstable(feature = "f128", issue = "116909")]
754    #[rustc_const_unstable(feature = "f128", issue = "116909")]
755    #[must_use = "this returns the result of the comparison, without modifying either input"]
756    pub const fn min(self, other: f128) -> f128 {
757        intrinsics::minnumf128(self, other)
758    }
759
760    /// Returns the maximum of the two numbers, propagating NaN.
761    ///
762    /// If at least one of the arguments is NaN, the return value is NaN, with the bit pattern
763    /// picked using the usual [rules for arithmetic operations](f32#nan-bit-patterns). Furthermore,
764    /// `-0.0` is considered to be less than `+0.0`, making this function fully deterministic for
765    /// non-NaN inputs.
766    ///
767    /// This is in contrast to [`f128::max`] which only returns NaN when *both* arguments are NaN,
768    /// and which does not reliably order `-0.0` and `+0.0`.
769    ///
770    /// This follows the IEEE 754-2019 semantics for `maximum`.
771    ///
772    /// ```
773    /// #![feature(f128)]
774    /// #![feature(float_minimum_maximum)]
775    /// # #[cfg(target_has_reliable_f128_math)] {
776    ///
777    /// let x = 1.0f128;
778    /// let y = 2.0f128;
779    ///
780    /// assert_eq!(x.maximum(y), y);
781    /// assert!(x.maximum(f128::NAN).is_nan());
782    /// # }
783    /// ```
784    #[inline]
785    #[unstable(feature = "f128", issue = "116909")]
786    // #[unstable(feature = "float_minimum_maximum", issue = "91079")]
787    #[must_use = "this returns the result of the comparison, without modifying either input"]
788    pub const fn maximum(self, other: f128) -> f128 {
789        intrinsics::maximumf128(self, other)
790    }
791
792    /// Returns the minimum of the two numbers, propagating NaN.
793    ///
794    /// If at least one of the arguments is NaN, the return value is NaN, with the bit pattern
795    /// picked using the usual [rules for arithmetic operations](f32#nan-bit-patterns). Furthermore,
796    /// `-0.0` is considered to be less than `+0.0`, making this function fully deterministic for
797    /// non-NaN inputs.
798    ///
799    /// This is in contrast to [`f128::min`] which only returns NaN when *both* arguments are NaN,
800    /// and which does not reliably order `-0.0` and `+0.0`.
801    ///
802    /// This follows the IEEE 754-2019 semantics for `minimum`.
803    ///
804    /// ```
805    /// #![feature(f128)]
806    /// #![feature(float_minimum_maximum)]
807    /// # #[cfg(target_has_reliable_f128_math)] {
808    ///
809    /// let x = 1.0f128;
810    /// let y = 2.0f128;
811    ///
812    /// assert_eq!(x.minimum(y), x);
813    /// assert!(x.minimum(f128::NAN).is_nan());
814    /// # }
815    /// ```
816    #[inline]
817    #[unstable(feature = "f128", issue = "116909")]
818    // #[unstable(feature = "float_minimum_maximum", issue = "91079")]
819    #[must_use = "this returns the result of the comparison, without modifying either input"]
820    pub const fn minimum(self, other: f128) -> f128 {
821        intrinsics::minimumf128(self, other)
822    }
823
824    /// Calculates the midpoint (average) between `self` and `rhs`.
825    ///
826    /// This returns NaN when *either* argument is NaN or if a combination of
827    /// +inf and -inf is provided as arguments.
828    ///
829    /// # Examples
830    ///
831    /// ```
832    /// #![feature(f128)]
833    /// # #[cfg(target_has_reliable_f128)] {
834    ///
835    /// assert_eq!(1f128.midpoint(4.0), 2.5);
836    /// assert_eq!((-5.5f128).midpoint(8.0), 1.25);
837    /// # }
838    /// ```
839    #[inline]
840    #[doc(alias = "average")]
841    #[unstable(feature = "f128", issue = "116909")]
842    #[rustc_const_unstable(feature = "f128", issue = "116909")]
843    pub const fn midpoint(self, other: f128) -> f128 {
844        const HI: f128 = f128::MAX / 2.;
845
846        let (a, b) = (self, other);
847        let abs_a = a.abs();
848        let abs_b = b.abs();
849
850        if abs_a <= HI && abs_b <= HI {
851            // Overflow is impossible
852            (a + b) / 2.
853        } else {
854            (a / 2.) + (b / 2.)
855        }
856    }
857
858    /// Rounds toward zero and converts to any primitive integer type,
859    /// assuming that the value is finite and fits in that type.
860    ///
861    /// ```
862    /// #![feature(f128)]
863    /// # #[cfg(target_has_reliable_f128)] {
864    ///
865    /// let value = 4.6_f128;
866    /// let rounded = unsafe { value.to_int_unchecked::<u16>() };
867    /// assert_eq!(rounded, 4);
868    ///
869    /// let value = -128.9_f128;
870    /// let rounded = unsafe { value.to_int_unchecked::<i8>() };
871    /// assert_eq!(rounded, i8::MIN);
872    /// # }
873    /// ```
874    ///
875    /// # Safety
876    ///
877    /// The value must:
878    ///
879    /// * Not be `NaN`
880    /// * Not be infinite
881    /// * Be representable in the return type `Int`, after truncating off its fractional part
882    #[inline]
883    #[unstable(feature = "f128", issue = "116909")]
884    #[must_use = "this returns the result of the operation, without modifying the original"]
885    pub unsafe fn to_int_unchecked<Int>(self) -> Int
886    where
887        Self: FloatToInt<Int>,
888    {
889        // SAFETY: the caller must uphold the safety contract for
890        // `FloatToInt::to_int_unchecked`.
891        unsafe { FloatToInt::<Int>::to_int_unchecked(self) }
892    }
893
894    /// Raw transmutation to `u128`.
895    ///
896    /// This is currently identical to `transmute::<f128, u128>(self)` on all platforms.
897    ///
898    /// See [`from_bits`](#method.from_bits) for some discussion of the
899    /// portability of this operation (there are almost no issues).
900    ///
901    /// Note that this function is distinct from `as` casting, which attempts to
902    /// preserve the *numeric* value, and not the bitwise value.
903    ///
904    /// ```
905    /// #![feature(f128)]
906    /// # #[cfg(target_has_reliable_f128)] {
907    ///
908    /// assert_ne!((1f128).to_bits(), 1f128 as u128); // to_bits() is not casting!
909    /// assert_eq!((12.5f128).to_bits(), 0x40029000000000000000000000000000);
910    /// # }
911    /// ```
912    #[inline]
913    #[unstable(feature = "f128", issue = "116909")]
914    #[must_use = "this returns the result of the operation, without modifying the original"]
915    #[allow(unnecessary_transmutes)]
916    pub const fn to_bits(self) -> u128 {
917        // SAFETY: `u128` is a plain old datatype so we can always transmute to it.
918        unsafe { mem::transmute(self) }
919    }
920
921    /// Raw transmutation from `u128`.
922    ///
923    /// This is currently identical to `transmute::<u128, f128>(v)` on all platforms.
924    /// It turns out this is incredibly portable, for two reasons:
925    ///
926    /// * Floats and Ints have the same endianness on all supported platforms.
927    /// * IEEE 754 very precisely specifies the bit layout of floats.
928    ///
929    /// However there is one caveat: prior to the 2008 version of IEEE 754, how
930    /// to interpret the NaN signaling bit wasn't actually specified. Most platforms
931    /// (notably x86 and ARM) picked the interpretation that was ultimately
932    /// standardized in 2008, but some didn't (notably MIPS). As a result, all
933    /// signaling NaNs on MIPS are quiet NaNs on x86, and vice-versa.
934    ///
935    /// Rather than trying to preserve signaling-ness cross-platform, this
936    /// implementation favors preserving the exact bits. This means that
937    /// any payloads encoded in NaNs will be preserved even if the result of
938    /// this method is sent over the network from an x86 machine to a MIPS one.
939    ///
940    /// If the results of this method are only manipulated by the same
941    /// architecture that produced them, then there is no portability concern.
942    ///
943    /// If the input isn't NaN, then there is no portability concern.
944    ///
945    /// If you don't care about signalingness (very likely), then there is no
946    /// portability concern.
947    ///
948    /// Note that this function is distinct from `as` casting, which attempts to
949    /// preserve the *numeric* value, and not the bitwise value.
950    ///
951    /// ```
952    /// #![feature(f128)]
953    /// # #[cfg(target_has_reliable_f128)] {
954    ///
955    /// let v = f128::from_bits(0x40029000000000000000000000000000);
956    /// assert_eq!(v, 12.5);
957    /// # }
958    /// ```
959    #[inline]
960    #[must_use]
961    #[unstable(feature = "f128", issue = "116909")]
962    #[allow(unnecessary_transmutes)]
963    pub const fn from_bits(v: u128) -> Self {
964        // It turns out the safety issues with sNaN were overblown! Hooray!
965        // SAFETY: `u128` is a plain old datatype so we can always transmute from it.
966        unsafe { mem::transmute(v) }
967    }
968
969    /// Returns the memory representation of this floating point number as a byte array in
970    /// big-endian (network) byte order.
971    ///
972    /// See [`from_bits`](Self::from_bits) for some discussion of the
973    /// portability of this operation (there are almost no issues).
974    ///
975    /// # Examples
976    ///
977    /// ```
978    /// #![feature(f128)]
979    ///
980    /// let bytes = 12.5f128.to_be_bytes();
981    /// assert_eq!(
982    ///     bytes,
983    ///     [0x40, 0x02, 0x90, 0x00, 0x00, 0x00, 0x00, 0x00,
984    ///      0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00]
985    /// );
986    /// ```
987    #[inline]
988    #[unstable(feature = "f128", issue = "116909")]
989    #[must_use = "this returns the result of the operation, without modifying the original"]
990    pub const fn to_be_bytes(self) -> [u8; 16] {
991        self.to_bits().to_be_bytes()
992    }
993
994    /// Returns the memory representation of this floating point number as a byte array in
995    /// little-endian byte order.
996    ///
997    /// See [`from_bits`](Self::from_bits) for some discussion of the
998    /// portability of this operation (there are almost no issues).
999    ///
1000    /// # Examples
1001    ///
1002    /// ```
1003    /// #![feature(f128)]
1004    ///
1005    /// let bytes = 12.5f128.to_le_bytes();
1006    /// assert_eq!(
1007    ///     bytes,
1008    ///     [0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
1009    ///      0x00, 0x00, 0x00, 0x00, 0x00, 0x90, 0x02, 0x40]
1010    /// );
1011    /// ```
1012    #[inline]
1013    #[unstable(feature = "f128", issue = "116909")]
1014    #[must_use = "this returns the result of the operation, without modifying the original"]
1015    pub const fn to_le_bytes(self) -> [u8; 16] {
1016        self.to_bits().to_le_bytes()
1017    }
1018
1019    /// Returns the memory representation of this floating point number as a byte array in
1020    /// native byte order.
1021    ///
1022    /// As the target platform's native endianness is used, portable code
1023    /// should use [`to_be_bytes`] or [`to_le_bytes`], as appropriate, instead.
1024    ///
1025    /// [`to_be_bytes`]: f128::to_be_bytes
1026    /// [`to_le_bytes`]: f128::to_le_bytes
1027    ///
1028    /// See [`from_bits`](Self::from_bits) for some discussion of the
1029    /// portability of this operation (there are almost no issues).
1030    ///
1031    /// # Examples
1032    ///
1033    /// ```
1034    /// #![feature(f128)]
1035    ///
1036    /// let bytes = 12.5f128.to_ne_bytes();
1037    /// assert_eq!(
1038    ///     bytes,
1039    ///     if cfg!(target_endian = "big") {
1040    ///         [0x40, 0x02, 0x90, 0x00, 0x00, 0x00, 0x00, 0x00,
1041    ///          0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00]
1042    ///     } else {
1043    ///         [0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
1044    ///          0x00, 0x00, 0x00, 0x00, 0x00, 0x90, 0x02, 0x40]
1045    ///     }
1046    /// );
1047    /// ```
1048    #[inline]
1049    #[unstable(feature = "f128", issue = "116909")]
1050    #[must_use = "this returns the result of the operation, without modifying the original"]
1051    pub const fn to_ne_bytes(self) -> [u8; 16] {
1052        self.to_bits().to_ne_bytes()
1053    }
1054
1055    /// Creates a floating point value from its representation as a byte array in big endian.
1056    ///
1057    /// See [`from_bits`](Self::from_bits) for some discussion of the
1058    /// portability of this operation (there are almost no issues).
1059    ///
1060    /// # Examples
1061    ///
1062    /// ```
1063    /// #![feature(f128)]
1064    /// # #[cfg(target_has_reliable_f128)] {
1065    ///
1066    /// let value = f128::from_be_bytes(
1067    ///     [0x40, 0x02, 0x90, 0x00, 0x00, 0x00, 0x00, 0x00,
1068    ///      0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00]
1069    /// );
1070    /// assert_eq!(value, 12.5);
1071    /// # }
1072    /// ```
1073    #[inline]
1074    #[must_use]
1075    #[unstable(feature = "f128", issue = "116909")]
1076    pub const fn from_be_bytes(bytes: [u8; 16]) -> Self {
1077        Self::from_bits(u128::from_be_bytes(bytes))
1078    }
1079
1080    /// Creates a floating point value from its representation as a byte array in little endian.
1081    ///
1082    /// See [`from_bits`](Self::from_bits) for some discussion of the
1083    /// portability of this operation (there are almost no issues).
1084    ///
1085    /// # Examples
1086    ///
1087    /// ```
1088    /// #![feature(f128)]
1089    /// # #[cfg(target_has_reliable_f128)] {
1090    ///
1091    /// let value = f128::from_le_bytes(
1092    ///     [0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
1093    ///      0x00, 0x00, 0x00, 0x00, 0x00, 0x90, 0x02, 0x40]
1094    /// );
1095    /// assert_eq!(value, 12.5);
1096    /// # }
1097    /// ```
1098    #[inline]
1099    #[must_use]
1100    #[unstable(feature = "f128", issue = "116909")]
1101    pub const fn from_le_bytes(bytes: [u8; 16]) -> Self {
1102        Self::from_bits(u128::from_le_bytes(bytes))
1103    }
1104
1105    /// Creates a floating point value from its representation as a byte array in native endian.
1106    ///
1107    /// As the target platform's native endianness is used, portable code
1108    /// likely wants to use [`from_be_bytes`] or [`from_le_bytes`], as
1109    /// appropriate instead.
1110    ///
1111    /// [`from_be_bytes`]: f128::from_be_bytes
1112    /// [`from_le_bytes`]: f128::from_le_bytes
1113    ///
1114    /// See [`from_bits`](Self::from_bits) for some discussion of the
1115    /// portability of this operation (there are almost no issues).
1116    ///
1117    /// # Examples
1118    ///
1119    /// ```
1120    /// #![feature(f128)]
1121    /// # #[cfg(target_has_reliable_f128)] {
1122    ///
1123    /// let value = f128::from_ne_bytes(if cfg!(target_endian = "big") {
1124    ///     [0x40, 0x02, 0x90, 0x00, 0x00, 0x00, 0x00, 0x00,
1125    ///      0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00]
1126    /// } else {
1127    ///     [0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
1128    ///      0x00, 0x00, 0x00, 0x00, 0x00, 0x90, 0x02, 0x40]
1129    /// });
1130    /// assert_eq!(value, 12.5);
1131    /// # }
1132    /// ```
1133    #[inline]
1134    #[must_use]
1135    #[unstable(feature = "f128", issue = "116909")]
1136    pub const fn from_ne_bytes(bytes: [u8; 16]) -> Self {
1137        Self::from_bits(u128::from_ne_bytes(bytes))
1138    }
1139
1140    /// Returns the ordering between `self` and `other`.
1141    ///
1142    /// Unlike the standard partial comparison between floating point numbers,
1143    /// this comparison always produces an ordering in accordance to
1144    /// the `totalOrder` predicate as defined in the IEEE 754 (2008 revision)
1145    /// floating point standard. The values are ordered in the following sequence:
1146    ///
1147    /// - negative quiet NaN
1148    /// - negative signaling NaN
1149    /// - negative infinity
1150    /// - negative numbers
1151    /// - negative subnormal numbers
1152    /// - negative zero
1153    /// - positive zero
1154    /// - positive subnormal numbers
1155    /// - positive numbers
1156    /// - positive infinity
1157    /// - positive signaling NaN
1158    /// - positive quiet NaN.
1159    ///
1160    /// The ordering established by this function does not always agree with the
1161    /// [`PartialOrd`] and [`PartialEq`] implementations of `f128`. For example,
1162    /// they consider negative and positive zero equal, while `total_cmp`
1163    /// doesn't.
1164    ///
1165    /// The interpretation of the signaling NaN bit follows the definition in
1166    /// the IEEE 754 standard, which may not match the interpretation by some of
1167    /// the older, non-conformant (e.g. MIPS) hardware implementations.
1168    ///
1169    /// # Example
1170    ///
1171    /// ```
1172    /// #![feature(f128)]
1173    ///
1174    /// struct GoodBoy {
1175    ///     name: &'static str,
1176    ///     weight: f128,
1177    /// }
1178    ///
1179    /// let mut bois = vec![
1180    ///     GoodBoy { name: "Pucci", weight: 0.1 },
1181    ///     GoodBoy { name: "Woofer", weight: 99.0 },
1182    ///     GoodBoy { name: "Yapper", weight: 10.0 },
1183    ///     GoodBoy { name: "Chonk", weight: f128::INFINITY },
1184    ///     GoodBoy { name: "Abs. Unit", weight: f128::NAN },
1185    ///     GoodBoy { name: "Floaty", weight: -5.0 },
1186    /// ];
1187    ///
1188    /// bois.sort_by(|a, b| a.weight.total_cmp(&b.weight));
1189    ///
1190    /// // `f128::NAN` could be positive or negative, which will affect the sort order.
1191    /// if f128::NAN.is_sign_negative() {
1192    ///     bois.into_iter().map(|b| b.weight)
1193    ///         .zip([f128::NAN, -5.0, 0.1, 10.0, 99.0, f128::INFINITY].iter())
1194    ///         .for_each(|(a, b)| assert_eq!(a.to_bits(), b.to_bits()))
1195    /// } else {
1196    ///     bois.into_iter().map(|b| b.weight)
1197    ///         .zip([-5.0, 0.1, 10.0, 99.0, f128::INFINITY, f128::NAN].iter())
1198    ///         .for_each(|(a, b)| assert_eq!(a.to_bits(), b.to_bits()))
1199    /// }
1200    /// ```
1201    #[inline]
1202    #[must_use]
1203    #[unstable(feature = "f128", issue = "116909")]
1204    #[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
1205    pub const fn total_cmp(&self, other: &Self) -> crate::cmp::Ordering {
1206        let mut left = self.to_bits() as i128;
1207        let mut right = other.to_bits() as i128;
1208
1209        // In case of negatives, flip all the bits except the sign
1210        // to achieve a similar layout as two's complement integers
1211        //
1212        // Why does this work? IEEE 754 floats consist of three fields:
1213        // Sign bit, exponent and mantissa. The set of exponent and mantissa
1214        // fields as a whole have the property that their bitwise order is
1215        // equal to the numeric magnitude where the magnitude is defined.
1216        // The magnitude is not normally defined on NaN values, but
1217        // IEEE 754 totalOrder defines the NaN values also to follow the
1218        // bitwise order. This leads to order explained in the doc comment.
1219        // However, the representation of magnitude is the same for negative
1220        // and positive numbers – only the sign bit is different.
1221        // To easily compare the floats as signed integers, we need to
1222        // flip the exponent and mantissa bits in case of negative numbers.
1223        // We effectively convert the numbers to "two's complement" form.
1224        //
1225        // To do the flipping, we construct a mask and XOR against it.
1226        // We branchlessly calculate an "all-ones except for the sign bit"
1227        // mask from negative-signed values: right shifting sign-extends
1228        // the integer, so we "fill" the mask with sign bits, and then
1229        // convert to unsigned to push one more zero bit.
1230        // On positive values, the mask is all zeros, so it's a no-op.
1231        left ^= (((left >> 127) as u128) >> 1) as i128;
1232        right ^= (((right >> 127) as u128) >> 1) as i128;
1233
1234        left.cmp(&right)
1235    }
1236
1237    /// Restrict a value to a certain interval unless it is NaN.
1238    ///
1239    /// Returns `max` if `self` is greater than `max`, and `min` if `self` is
1240    /// less than `min`. Otherwise this returns `self`.
1241    ///
1242    /// Note that this function returns NaN if the initial value was NaN as
1243    /// well. If the result is zero and among the three inputs `self`, `min`, and `max` there are
1244    /// zeros with different sign, either `0.0` or `-0.0` is returned non-deterministically.
1245    ///
1246    /// # Panics
1247    ///
1248    /// Panics if `min > max`, `min` is NaN, or `max` is NaN.
1249    ///
1250    /// # Examples
1251    ///
1252    /// ```
1253    /// #![feature(f128)]
1254    /// # #[cfg(target_has_reliable_f128)] {
1255    ///
1256    /// assert!((-3.0f128).clamp(-2.0, 1.0) == -2.0);
1257    /// assert!((0.0f128).clamp(-2.0, 1.0) == 0.0);
1258    /// assert!((2.0f128).clamp(-2.0, 1.0) == 1.0);
1259    /// assert!((f128::NAN).clamp(-2.0, 1.0).is_nan());
1260    ///
1261    /// // These always returns zero, but the sign (which is ignored by `==`) is non-deterministic.
1262    /// assert!((0.0f128).clamp(-0.0, -0.0) == 0.0);
1263    /// assert!((1.0f128).clamp(-0.0, 0.0) == 0.0);
1264    /// // This is definitely a negative zero.
1265    /// assert!((-1.0f128).clamp(-0.0, 1.0).is_sign_negative());
1266    /// # }
1267    /// ```
1268    #[inline]
1269    #[unstable(feature = "f128", issue = "116909")]
1270    #[must_use = "method returns a new number and does not mutate the original value"]
1271    pub const fn clamp(mut self, min: f128, max: f128) -> f128 {
1272        const_assert!(
1273            min <= max,
1274            "min > max, or either was NaN",
1275            "min > max, or either was NaN. min = {min:?}, max = {max:?}",
1276            min: f128,
1277            max: f128,
1278        );
1279
1280        if self < min {
1281            self = min;
1282        }
1283        if self > max {
1284            self = max;
1285        }
1286        self
1287    }
1288
1289    /// Clamps this number to a symmetric range centered around zero.
1290    ///
1291    /// The method clamps the number's magnitude (absolute value) to be at most `limit`.
1292    ///
1293    /// This is functionally equivalent to `self.clamp(-limit, limit)`, but is more
1294    /// explicit about the intent.
1295    ///
1296    /// # Panics
1297    ///
1298    /// Panics if `limit` is negative or NaN, as this indicates a logic error.
1299    ///
1300    /// # Examples
1301    ///
1302    /// ```
1303    /// #![feature(f128)]
1304    /// #![feature(clamp_magnitude)]
1305    /// # #[cfg(all(target_arch = "x86_64", target_os = "linux"))] {
1306    /// assert_eq!(5.0f128.clamp_magnitude(3.0), 3.0);
1307    /// assert_eq!((-5.0f128).clamp_magnitude(3.0), -3.0);
1308    /// assert_eq!(2.0f128.clamp_magnitude(3.0), 2.0);
1309    /// assert_eq!((-2.0f128).clamp_magnitude(3.0), -2.0);
1310    /// # }
1311    /// ```
1312    #[inline]
1313    #[unstable(feature = "clamp_magnitude", issue = "148519")]
1314    #[must_use = "this returns the clamped value and does not modify the original"]
1315    pub fn clamp_magnitude(self, limit: f128) -> f128 {
1316        assert!(limit >= 0.0, "limit must be non-negative");
1317        let limit = limit.abs(); // Canonicalises -0.0 to 0.0
1318        self.clamp(-limit, limit)
1319    }
1320
1321    /// Computes the absolute value of `self`.
1322    ///
1323    /// This function always returns the precise result.
1324    ///
1325    /// # Examples
1326    ///
1327    /// ```
1328    /// #![feature(f128)]
1329    /// # #[cfg(target_has_reliable_f128)] {
1330    ///
1331    /// let x = 3.5_f128;
1332    /// let y = -3.5_f128;
1333    ///
1334    /// assert_eq!(x.abs(), x);
1335    /// assert_eq!(y.abs(), -y);
1336    ///
1337    /// assert!(f128::NAN.abs().is_nan());
1338    /// # }
1339    /// ```
1340    #[inline]
1341    #[unstable(feature = "f128", issue = "116909")]
1342    #[rustc_const_unstable(feature = "f128", issue = "116909")]
1343    #[must_use = "method returns a new number and does not mutate the original value"]
1344    pub const fn abs(self) -> Self {
1345        intrinsics::fabsf128(self)
1346    }
1347
1348    /// Returns a number that represents the sign of `self`.
1349    ///
1350    /// - `1.0` if the number is positive, `+0.0` or `INFINITY`
1351    /// - `-1.0` if the number is negative, `-0.0` or `NEG_INFINITY`
1352    /// - NaN if the number is NaN
1353    ///
1354    /// # Examples
1355    ///
1356    /// ```
1357    /// #![feature(f128)]
1358    /// # #[cfg(target_has_reliable_f128)] {
1359    ///
1360    /// let f = 3.5_f128;
1361    ///
1362    /// assert_eq!(f.signum(), 1.0);
1363    /// assert_eq!(f128::NEG_INFINITY.signum(), -1.0);
1364    ///
1365    /// assert!(f128::NAN.signum().is_nan());
1366    /// # }
1367    /// ```
1368    #[inline]
1369    #[unstable(feature = "f128", issue = "116909")]
1370    #[rustc_const_unstable(feature = "f128", issue = "116909")]
1371    #[must_use = "method returns a new number and does not mutate the original value"]
1372    pub const fn signum(self) -> f128 {
1373        if self.is_nan() { Self::NAN } else { 1.0_f128.copysign(self) }
1374    }
1375
1376    /// Returns a number composed of the magnitude of `self` and the sign of
1377    /// `sign`.
1378    ///
1379    /// Equal to `self` if the sign of `self` and `sign` are the same, otherwise equal to `-self`.
1380    /// If `self` is a NaN, then a NaN with the same payload as `self` and the sign bit of `sign` is
1381    /// returned.
1382    ///
1383    /// If `sign` is a NaN, then this operation will still carry over its sign into the result. Note
1384    /// that IEEE 754 doesn't assign any meaning to the sign bit in case of a NaN, and as Rust
1385    /// doesn't guarantee that the bit pattern of NaNs are conserved over arithmetic operations, the
1386    /// result of `copysign` with `sign` being a NaN might produce an unexpected or non-portable
1387    /// result. See the [specification of NaN bit patterns](primitive@f32#nan-bit-patterns) for more
1388    /// info.
1389    ///
1390    /// # Examples
1391    ///
1392    /// ```
1393    /// #![feature(f128)]
1394    /// # #[cfg(target_has_reliable_f128)] {
1395    ///
1396    /// let f = 3.5_f128;
1397    ///
1398    /// assert_eq!(f.copysign(0.42), 3.5_f128);
1399    /// assert_eq!(f.copysign(-0.42), -3.5_f128);
1400    /// assert_eq!((-f).copysign(0.42), 3.5_f128);
1401    /// assert_eq!((-f).copysign(-0.42), -3.5_f128);
1402    ///
1403    /// assert!(f128::NAN.copysign(1.0).is_nan());
1404    /// # }
1405    /// ```
1406    #[inline]
1407    #[unstable(feature = "f128", issue = "116909")]
1408    #[rustc_const_unstable(feature = "f128", issue = "116909")]
1409    #[must_use = "method returns a new number and does not mutate the original value"]
1410    pub const fn copysign(self, sign: f128) -> f128 {
1411        intrinsics::copysignf128(self, sign)
1412    }
1413
1414    /// Float addition that allows optimizations based on algebraic rules.
1415    ///
1416    /// See [algebraic operators](primitive@f32#algebraic-operators) for more info.
1417    #[must_use = "method returns a new number and does not mutate the original value"]
1418    #[unstable(feature = "float_algebraic", issue = "136469")]
1419    #[rustc_const_unstable(feature = "float_algebraic", issue = "136469")]
1420    #[inline]
1421    pub const fn algebraic_add(self, rhs: f128) -> f128 {
1422        intrinsics::fadd_algebraic(self, rhs)
1423    }
1424
1425    /// Float subtraction that allows optimizations based on algebraic rules.
1426    ///
1427    /// See [algebraic operators](primitive@f32#algebraic-operators) for more info.
1428    #[must_use = "method returns a new number and does not mutate the original value"]
1429    #[unstable(feature = "float_algebraic", issue = "136469")]
1430    #[rustc_const_unstable(feature = "float_algebraic", issue = "136469")]
1431    #[inline]
1432    pub const fn algebraic_sub(self, rhs: f128) -> f128 {
1433        intrinsics::fsub_algebraic(self, rhs)
1434    }
1435
1436    /// Float multiplication that allows optimizations based on algebraic rules.
1437    ///
1438    /// See [algebraic operators](primitive@f32#algebraic-operators) for more info.
1439    #[must_use = "method returns a new number and does not mutate the original value"]
1440    #[unstable(feature = "float_algebraic", issue = "136469")]
1441    #[rustc_const_unstable(feature = "float_algebraic", issue = "136469")]
1442    #[inline]
1443    pub const fn algebraic_mul(self, rhs: f128) -> f128 {
1444        intrinsics::fmul_algebraic(self, rhs)
1445    }
1446
1447    /// Float division that allows optimizations based on algebraic rules.
1448    ///
1449    /// See [algebraic operators](primitive@f32#algebraic-operators) for more info.
1450    #[must_use = "method returns a new number and does not mutate the original value"]
1451    #[unstable(feature = "float_algebraic", issue = "136469")]
1452    #[rustc_const_unstable(feature = "float_algebraic", issue = "136469")]
1453    #[inline]
1454    pub const fn algebraic_div(self, rhs: f128) -> f128 {
1455        intrinsics::fdiv_algebraic(self, rhs)
1456    }
1457
1458    /// Float remainder that allows optimizations based on algebraic rules.
1459    ///
1460    /// See [algebraic operators](primitive@f32#algebraic-operators) for more info.
1461    #[must_use = "method returns a new number and does not mutate the original value"]
1462    #[unstable(feature = "float_algebraic", issue = "136469")]
1463    #[rustc_const_unstable(feature = "float_algebraic", issue = "136469")]
1464    #[inline]
1465    pub const fn algebraic_rem(self, rhs: f128) -> f128 {
1466        intrinsics::frem_algebraic(self, rhs)
1467    }
1468}
1469
1470// Functions in this module fall into `core_float_math`
1471// #[unstable(feature = "core_float_math", issue = "137578")]
1472#[cfg(not(test))]
1473#[doc(test(attr(feature(cfg_target_has_reliable_f16_f128), expect(internal_features))))]
1474impl f128 {
1475    /// Returns the largest integer less than or equal to `self`.
1476    ///
1477    /// This function always returns the precise result.
1478    ///
1479    /// # Examples
1480    ///
1481    /// ```
1482    /// #![feature(f128)]
1483    /// # #[cfg(not(miri))]
1484    /// # #[cfg(target_has_reliable_f128_math)] {
1485    ///
1486    /// let f = 3.7_f128;
1487    /// let g = 3.0_f128;
1488    /// let h = -3.7_f128;
1489    ///
1490    /// assert_eq!(f.floor(), 3.0);
1491    /// assert_eq!(g.floor(), 3.0);
1492    /// assert_eq!(h.floor(), -4.0);
1493    /// # }
1494    /// ```
1495    #[inline]
1496    #[rustc_allow_incoherent_impl]
1497    #[unstable(feature = "f128", issue = "116909")]
1498    #[rustc_const_unstable(feature = "f128", issue = "116909")]
1499    #[must_use = "method returns a new number and does not mutate the original value"]
1500    pub const fn floor(self) -> f128 {
1501        intrinsics::floorf128(self)
1502    }
1503
1504    /// Returns the smallest integer greater than or equal to `self`.
1505    ///
1506    /// This function always returns the precise result.
1507    ///
1508    /// # Examples
1509    ///
1510    /// ```
1511    /// #![feature(f128)]
1512    /// # #[cfg(not(miri))]
1513    /// # #[cfg(target_has_reliable_f128_math)] {
1514    ///
1515    /// let f = 3.01_f128;
1516    /// let g = 4.0_f128;
1517    ///
1518    /// assert_eq!(f.ceil(), 4.0);
1519    /// assert_eq!(g.ceil(), 4.0);
1520    /// # }
1521    /// ```
1522    #[inline]
1523    #[doc(alias = "ceiling")]
1524    #[rustc_allow_incoherent_impl]
1525    #[unstable(feature = "f128", issue = "116909")]
1526    #[rustc_const_unstable(feature = "f128", issue = "116909")]
1527    #[must_use = "method returns a new number and does not mutate the original value"]
1528    pub const fn ceil(self) -> f128 {
1529        intrinsics::ceilf128(self)
1530    }
1531
1532    /// Returns the nearest integer to `self`. If a value is half-way between two
1533    /// integers, round away from `0.0`.
1534    ///
1535    /// This function always returns the precise result.
1536    ///
1537    /// # Examples
1538    ///
1539    /// ```
1540    /// #![feature(f128)]
1541    /// # #[cfg(not(miri))]
1542    /// # #[cfg(target_has_reliable_f128_math)] {
1543    ///
1544    /// let f = 3.3_f128;
1545    /// let g = -3.3_f128;
1546    /// let h = -3.7_f128;
1547    /// let i = 3.5_f128;
1548    /// let j = 4.5_f128;
1549    ///
1550    /// assert_eq!(f.round(), 3.0);
1551    /// assert_eq!(g.round(), -3.0);
1552    /// assert_eq!(h.round(), -4.0);
1553    /// assert_eq!(i.round(), 4.0);
1554    /// assert_eq!(j.round(), 5.0);
1555    /// # }
1556    /// ```
1557    #[inline]
1558    #[rustc_allow_incoherent_impl]
1559    #[unstable(feature = "f128", issue = "116909")]
1560    #[rustc_const_unstable(feature = "f128", issue = "116909")]
1561    #[must_use = "method returns a new number and does not mutate the original value"]
1562    pub const fn round(self) -> f128 {
1563        intrinsics::roundf128(self)
1564    }
1565
1566    /// Returns the nearest integer to a number. Rounds half-way cases to the number
1567    /// with an even least significant digit.
1568    ///
1569    /// This function always returns the precise result.
1570    ///
1571    /// # Examples
1572    ///
1573    /// ```
1574    /// #![feature(f128)]
1575    /// # #[cfg(not(miri))]
1576    /// # #[cfg(target_has_reliable_f128_math)] {
1577    ///
1578    /// let f = 3.3_f128;
1579    /// let g = -3.3_f128;
1580    /// let h = 3.5_f128;
1581    /// let i = 4.5_f128;
1582    ///
1583    /// assert_eq!(f.round_ties_even(), 3.0);
1584    /// assert_eq!(g.round_ties_even(), -3.0);
1585    /// assert_eq!(h.round_ties_even(), 4.0);
1586    /// assert_eq!(i.round_ties_even(), 4.0);
1587    /// # }
1588    /// ```
1589    #[inline]
1590    #[rustc_allow_incoherent_impl]
1591    #[unstable(feature = "f128", issue = "116909")]
1592    #[rustc_const_unstable(feature = "f128", issue = "116909")]
1593    #[must_use = "method returns a new number and does not mutate the original value"]
1594    pub const fn round_ties_even(self) -> f128 {
1595        intrinsics::round_ties_even_f128(self)
1596    }
1597
1598    /// Returns the integer part of `self`.
1599    /// This means that non-integer numbers are always truncated towards zero.
1600    ///
1601    /// This function always returns the precise result.
1602    ///
1603    /// # Examples
1604    ///
1605    /// ```
1606    /// #![feature(f128)]
1607    /// # #[cfg(not(miri))]
1608    /// # #[cfg(target_has_reliable_f128_math)] {
1609    ///
1610    /// let f = 3.7_f128;
1611    /// let g = 3.0_f128;
1612    /// let h = -3.7_f128;
1613    ///
1614    /// assert_eq!(f.trunc(), 3.0);
1615    /// assert_eq!(g.trunc(), 3.0);
1616    /// assert_eq!(h.trunc(), -3.0);
1617    /// # }
1618    /// ```
1619    #[inline]
1620    #[doc(alias = "truncate")]
1621    #[rustc_allow_incoherent_impl]
1622    #[unstable(feature = "f128", issue = "116909")]
1623    #[rustc_const_unstable(feature = "f128", issue = "116909")]
1624    #[must_use = "method returns a new number and does not mutate the original value"]
1625    pub const fn trunc(self) -> f128 {
1626        intrinsics::truncf128(self)
1627    }
1628
1629    /// Returns the fractional part of `self`.
1630    ///
1631    /// This function always returns the precise result.
1632    ///
1633    /// # Examples
1634    ///
1635    /// ```
1636    /// #![feature(f128)]
1637    /// # #[cfg(not(miri))]
1638    /// # #[cfg(target_has_reliable_f128_math)] {
1639    ///
1640    /// let x = 3.6_f128;
1641    /// let y = -3.6_f128;
1642    /// let abs_difference_x = (x.fract() - 0.6).abs();
1643    /// let abs_difference_y = (y.fract() - (-0.6)).abs();
1644    ///
1645    /// assert!(abs_difference_x <= f128::EPSILON);
1646    /// assert!(abs_difference_y <= f128::EPSILON);
1647    /// # }
1648    /// ```
1649    #[inline]
1650    #[rustc_allow_incoherent_impl]
1651    #[unstable(feature = "f128", issue = "116909")]
1652    #[rustc_const_unstable(feature = "f128", issue = "116909")]
1653    #[must_use = "method returns a new number and does not mutate the original value"]
1654    pub const fn fract(self) -> f128 {
1655        self - self.trunc()
1656    }
1657
1658    /// Fused multiply-add. Computes `(self * a) + b` with only one rounding
1659    /// error, yielding a more accurate result than an unfused multiply-add.
1660    ///
1661    /// Using `mul_add` *may* be more performant than an unfused multiply-add if
1662    /// the target architecture has a dedicated `fma` CPU instruction. However,
1663    /// this is not always true, and will be heavily dependant on designing
1664    /// algorithms with specific target hardware in mind.
1665    ///
1666    /// # Precision
1667    ///
1668    /// The result of this operation is guaranteed to be the rounded
1669    /// infinite-precision result. It is specified by IEEE 754 as
1670    /// `fusedMultiplyAdd` and guaranteed not to change.
1671    ///
1672    /// # Examples
1673    ///
1674    /// ```
1675    /// #![feature(f128)]
1676    /// # #[cfg(not(miri))]
1677    /// # #[cfg(target_has_reliable_f128_math)] {
1678    ///
1679    /// let m = 10.0_f128;
1680    /// let x = 4.0_f128;
1681    /// let b = 60.0_f128;
1682    ///
1683    /// assert_eq!(m.mul_add(x, b), 100.0);
1684    /// assert_eq!(m * x + b, 100.0);
1685    ///
1686    /// let one_plus_eps = 1.0_f128 + f128::EPSILON;
1687    /// let one_minus_eps = 1.0_f128 - f128::EPSILON;
1688    /// let minus_one = -1.0_f128;
1689    ///
1690    /// // The exact result (1 + eps) * (1 - eps) = 1 - eps * eps.
1691    /// assert_eq!(one_plus_eps.mul_add(one_minus_eps, minus_one), -f128::EPSILON * f128::EPSILON);
1692    /// // Different rounding with the non-fused multiply and add.
1693    /// assert_eq!(one_plus_eps * one_minus_eps + minus_one, 0.0);
1694    /// # }
1695    /// ```
1696    #[inline]
1697    #[rustc_allow_incoherent_impl]
1698    #[doc(alias = "fmaf128", alias = "fusedMultiplyAdd")]
1699    #[unstable(feature = "f128", issue = "116909")]
1700    #[must_use = "method returns a new number and does not mutate the original value"]
1701    pub const fn mul_add(self, a: f128, b: f128) -> f128 {
1702        intrinsics::fmaf128(self, a, b)
1703    }
1704
1705    /// Calculates Euclidean division, the matching method for `rem_euclid`.
1706    ///
1707    /// This computes the integer `n` such that
1708    /// `self = n * rhs + self.rem_euclid(rhs)`.
1709    /// In other words, the result is `self / rhs` rounded to the integer `n`
1710    /// such that `self >= n * rhs`.
1711    ///
1712    /// # Precision
1713    ///
1714    /// The result of this operation is guaranteed to be the rounded
1715    /// infinite-precision result.
1716    ///
1717    /// # Examples
1718    ///
1719    /// ```
1720    /// #![feature(f128)]
1721    /// # #[cfg(not(miri))]
1722    /// # #[cfg(target_has_reliable_f128_math)] {
1723    ///
1724    /// let a: f128 = 7.0;
1725    /// let b = 4.0;
1726    /// assert_eq!(a.div_euclid(b), 1.0); // 7.0 > 4.0 * 1.0
1727    /// assert_eq!((-a).div_euclid(b), -2.0); // -7.0 >= 4.0 * -2.0
1728    /// assert_eq!(a.div_euclid(-b), -1.0); // 7.0 >= -4.0 * -1.0
1729    /// assert_eq!((-a).div_euclid(-b), 2.0); // -7.0 >= -4.0 * 2.0
1730    /// # }
1731    /// ```
1732    #[inline]
1733    #[rustc_allow_incoherent_impl]
1734    #[unstable(feature = "f128", issue = "116909")]
1735    #[must_use = "method returns a new number and does not mutate the original value"]
1736    pub fn div_euclid(self, rhs: f128) -> f128 {
1737        let q = (self / rhs).trunc();
1738        if self % rhs < 0.0 {
1739            return if rhs > 0.0 { q - 1.0 } else { q + 1.0 };
1740        }
1741        q
1742    }
1743
1744    /// Calculates the least nonnegative remainder of `self` when
1745    /// divided by `rhs`.
1746    ///
1747    /// In particular, the return value `r` satisfies `0.0 <= r < rhs.abs()` in
1748    /// most cases. However, due to a floating point round-off error it can
1749    /// result in `r == rhs.abs()`, violating the mathematical definition, if
1750    /// `self` is much smaller than `rhs.abs()` in magnitude and `self < 0.0`.
1751    /// This result is not an element of the function's codomain, but it is the
1752    /// closest floating point number in the real numbers and thus fulfills the
1753    /// property `self == self.div_euclid(rhs) * rhs + self.rem_euclid(rhs)`
1754    /// approximately.
1755    ///
1756    /// # Precision
1757    ///
1758    /// The result of this operation is guaranteed to be the rounded
1759    /// infinite-precision result.
1760    ///
1761    /// # Examples
1762    ///
1763    /// ```
1764    /// #![feature(f128)]
1765    /// # #[cfg(not(miri))]
1766    /// # #[cfg(target_has_reliable_f128_math)] {
1767    ///
1768    /// let a: f128 = 7.0;
1769    /// let b = 4.0;
1770    /// assert_eq!(a.rem_euclid(b), 3.0);
1771    /// assert_eq!((-a).rem_euclid(b), 1.0);
1772    /// assert_eq!(a.rem_euclid(-b), 3.0);
1773    /// assert_eq!((-a).rem_euclid(-b), 1.0);
1774    /// // limitation due to round-off error
1775    /// assert!((-f128::EPSILON).rem_euclid(3.0) != 0.0);
1776    /// # }
1777    /// ```
1778    #[inline]
1779    #[rustc_allow_incoherent_impl]
1780    #[doc(alias = "modulo", alias = "mod")]
1781    #[unstable(feature = "f128", issue = "116909")]
1782    #[must_use = "method returns a new number and does not mutate the original value"]
1783    pub fn rem_euclid(self, rhs: f128) -> f128 {
1784        let r = self % rhs;
1785        if r < 0.0 { r + rhs.abs() } else { r }
1786    }
1787
1788    /// Raises a number to an integer power.
1789    ///
1790    /// Using this function is generally faster than using `powf`.
1791    /// It might have a different sequence of rounding operations than `powf`,
1792    /// so the results are not guaranteed to agree.
1793    ///
1794    /// Note that this function is special in that it can return non-NaN results for NaN inputs. For
1795    /// example, `f128::powi(f128::NAN, 0)` returns `1.0`. However, if an input is a *signaling*
1796    /// NaN, then the result is non-deterministically either a NaN or the result that the
1797    /// corresponding quiet NaN would produce.
1798    ///
1799    /// # Unspecified precision
1800    ///
1801    /// The precision of this function is non-deterministic. This means it varies by platform,
1802    /// Rust version, and can even differ within the same execution from one invocation to the next.
1803    ///
1804    /// # Examples
1805    ///
1806    /// ```
1807    /// #![feature(f128)]
1808    /// # #[cfg(not(miri))]
1809    /// # #[cfg(target_has_reliable_f128_math)] {
1810    ///
1811    /// let x = 2.0_f128;
1812    /// let abs_difference = (x.powi(2) - (x * x)).abs();
1813    /// assert!(abs_difference <= f128::EPSILON);
1814    ///
1815    /// assert_eq!(f128::powi(f128::NAN, 0), 1.0);
1816    /// assert_eq!(f128::powi(0.0, 0), 1.0);
1817    /// # }
1818    /// ```
1819    #[inline]
1820    #[rustc_allow_incoherent_impl]
1821    #[unstable(feature = "f128", issue = "116909")]
1822    #[must_use = "method returns a new number and does not mutate the original value"]
1823    pub fn powi(self, n: i32) -> f128 {
1824        intrinsics::powif128(self, n)
1825    }
1826
1827    /// Returns the square root of a number.
1828    ///
1829    /// Returns NaN if `self` is a negative number other than `-0.0`.
1830    ///
1831    /// # Precision
1832    ///
1833    /// The result of this operation is guaranteed to be the rounded
1834    /// infinite-precision result. It is specified by IEEE 754 as `squareRoot`
1835    /// and guaranteed not to change.
1836    ///
1837    /// # Examples
1838    ///
1839    /// ```
1840    /// #![feature(f128)]
1841    /// # #[cfg(not(miri))]
1842    /// # #[cfg(target_has_reliable_f128_math)] {
1843    ///
1844    /// let positive = 4.0_f128;
1845    /// let negative = -4.0_f128;
1846    /// let negative_zero = -0.0_f128;
1847    ///
1848    /// assert_eq!(positive.sqrt(), 2.0);
1849    /// assert!(negative.sqrt().is_nan());
1850    /// assert!(negative_zero.sqrt() == negative_zero);
1851    /// # }
1852    /// ```
1853    #[inline]
1854    #[doc(alias = "squareRoot")]
1855    #[rustc_allow_incoherent_impl]
1856    #[unstable(feature = "f128", issue = "116909")]
1857    #[must_use = "method returns a new number and does not mutate the original value"]
1858    pub fn sqrt(self) -> f128 {
1859        intrinsics::sqrtf128(self)
1860    }
1861}