Skip to main content

core/macros/
mod.rs

1#[doc = include_str!("panic.md")]
2#[macro_export]
3#[rustc_builtin_macro(core_panic)]
4#[allow_internal_unstable(edition_panic)]
5#[stable(feature = "core", since = "1.6.0")]
6#[rustc_diagnostic_item = "core_panic_macro"]
7macro_rules! panic {
8    // Expands to either `$crate::panic::panic_2015` or `$crate::panic::panic_2021`
9    // depending on the edition of the caller.
10    ($($arg:tt)*) => {
11        /* compiler built-in */
12    };
13}
14
15/// Asserts that two expressions are equal to each other (using [`PartialEq`]).
16///
17/// Assertions are always checked in both debug and release builds, and cannot
18/// be disabled. See [`debug_assert_eq!`] for assertions that are disabled in
19/// release builds by default.
20///
21/// [`debug_assert_eq!`]: crate::debug_assert_eq
22///
23/// On panic, this macro will print the values of the expressions with their
24/// debug representations.
25///
26/// Like [`assert!`], this macro has a second form, where a custom
27/// panic message can be provided.
28///
29/// # Examples
30///
31/// ```
32/// let a = 3;
33/// let b = 1 + 2;
34/// assert_eq!(a, b);
35///
36/// assert_eq!(a, b, "we are testing addition with {} and {}", a, b);
37/// ```
38#[macro_export]
39#[stable(feature = "rust1", since = "1.0.0")]
40#[rustc_diagnostic_item = "assert_eq_macro"]
41#[allow_internal_unstable(panic_internals)]
42macro_rules! assert_eq {
43    ($left:expr, $right:expr $(,)?) => {
44        match (&$left, &$right) {
45            (left_val, right_val) => {
46                if !(*left_val == *right_val) {
47                    let kind = $crate::panicking::AssertKind::Eq;
48                    // The reborrows below are intentional. Without them, the stack slot for the
49                    // borrow is initialized even before the values are compared, leading to a
50                    // noticeable slow down.
51                    $crate::panicking::assert_failed(kind, &*left_val, &*right_val, $crate::option::Option::None);
52                }
53            }
54        }
55    };
56    ($left:expr, $right:expr, $($arg:tt)+) => {
57        match (&$left, &$right) {
58            (left_val, right_val) => {
59                if !(*left_val == *right_val) {
60                    let kind = $crate::panicking::AssertKind::Eq;
61                    // The reborrows below are intentional. Without them, the stack slot for the
62                    // borrow is initialized even before the values are compared, leading to a
63                    // noticeable slow down.
64                    $crate::panicking::assert_failed(kind, &*left_val, &*right_val, $crate::option::Option::Some($crate::format_args!($($arg)+)));
65                }
66            }
67        }
68    };
69}
70
71/// Asserts that two expressions are not equal to each other (using [`PartialEq`]).
72///
73/// Assertions are always checked in both debug and release builds, and cannot
74/// be disabled. See [`debug_assert_ne!`] for assertions that are disabled in
75/// release builds by default.
76///
77/// [`debug_assert_ne!`]: crate::debug_assert_ne
78///
79/// On panic, this macro will print the values of the expressions with their
80/// debug representations.
81///
82/// Like [`assert!`], this macro has a second form, where a custom
83/// panic message can be provided.
84///
85/// # Examples
86///
87/// ```
88/// let a = 3;
89/// let b = 2;
90/// assert_ne!(a, b);
91///
92/// assert_ne!(a, b, "we are testing that the values are not equal");
93/// ```
94#[macro_export]
95#[stable(feature = "assert_ne", since = "1.13.0")]
96#[rustc_diagnostic_item = "assert_ne_macro"]
97#[allow_internal_unstable(panic_internals)]
98macro_rules! assert_ne {
99    ($left:expr, $right:expr $(,)?) => {
100        match (&$left, &$right) {
101            (left_val, right_val) => {
102                if *left_val == *right_val {
103                    let kind = $crate::panicking::AssertKind::Ne;
104                    // The reborrows below are intentional. Without them, the stack slot for the
105                    // borrow is initialized even before the values are compared, leading to a
106                    // noticeable slow down.
107                    $crate::panicking::assert_failed(kind, &*left_val, &*right_val, $crate::option::Option::None);
108                }
109            }
110        }
111    };
112    ($left:expr, $right:expr, $($arg:tt)+) => {
113        match (&($left), &($right)) {
114            (left_val, right_val) => {
115                if *left_val == *right_val {
116                    let kind = $crate::panicking::AssertKind::Ne;
117                    // The reborrows below are intentional. Without them, the stack slot for the
118                    // borrow is initialized even before the values are compared, leading to a
119                    // noticeable slow down.
120                    $crate::panicking::assert_failed(kind, &*left_val, &*right_val, $crate::option::Option::Some($crate::format_args!($($arg)+)));
121                }
122            }
123        }
124    };
125}
126
127// FIXME add back debug_assert_matches doc link after bootstrap.
128
129/// Asserts that an expression matches the provided pattern.
130///
131/// This macro is generally preferable to `assert!(matches!(value, pattern))`, because it can print
132/// the debug representation of the actual value shape that did not meet expectations. In contrast,
133/// using [`assert!`] will only print that expectations were not met, but not why.
134///
135/// The pattern syntax is exactly the same as found in a match arm and the `matches!` macro. The
136/// optional if guard can be used to add additional checks that must be true for the matched value,
137/// otherwise this macro will panic.
138///
139/// Assertions are always checked in both debug and release builds, and cannot
140/// be disabled. See `debug_assert_matches!` for assertions that are disabled in
141/// release builds by default.
142///
143/// On panic, this macro will print the value of the expression with its debug representation.
144///
145/// Like [`assert!`], this macro has a second form, where a custom panic message can be provided.
146///
147/// # Examples
148///
149/// ```
150/// use std::assert_matches;
151///
152/// let a = Some(345);
153/// let b = Some(56);
154/// assert_matches!(a, Some(_));
155/// assert_matches!(b, Some(_));
156///
157/// assert_matches!(a, Some(345));
158/// assert_matches!(a, Some(345) | None);
159///
160/// // assert_matches!(a, None); // panics
161/// // assert_matches!(b, Some(345)); // panics
162/// // assert_matches!(b, Some(345) | None); // panics
163///
164/// assert_matches!(a, Some(x) if x > 100);
165/// // assert_matches!(a, Some(x) if x < 100); // panics
166/// ```
167#[stable(feature = "assert_matches", since = "CURRENT_RUSTC_VERSION")]
168#[allow_internal_unstable(panic_internals)]
169#[rustc_macro_transparency = "semiopaque"]
170pub macro assert_matches {
171    ($left:expr, $(|)? $( $pattern:pat_param )|+ $( if $guard: expr )? $(,)?) => {
172        match $left {
173            $( $pattern )|+ $( if $guard )? => {}
174            ref left_val => {
175                $crate::panicking::assert_matches_failed(
176                    left_val,
177                    $crate::stringify!($($pattern)|+ $(if $guard)?),
178                    $crate::option::Option::None
179                );
180            }
181        }
182    },
183    ($left:expr, $(|)? $( $pattern:pat_param )|+ $( if $guard: expr )?, $($arg:tt)+) => {
184        match $left {
185            $( $pattern )|+ $( if $guard )? => {}
186            ref left_val => {
187                $crate::panicking::assert_matches_failed(
188                    left_val,
189                    $crate::stringify!($($pattern)|+ $(if $guard)?),
190                    $crate::option::Option::Some($crate::format_args!($($arg)+))
191                );
192            }
193        }
194    },
195}
196
197/// Selects code at compile-time based on `cfg` predicates.
198///
199/// This macro evaluates, at compile-time, a series of `cfg` predicates,
200/// selects the first that is true, and emits the code guarded by that
201/// predicate. The code guarded by other predicates is not emitted.
202///
203/// An optional trailing `_` wildcard can be used to specify a fallback. If
204/// none of the predicates are true, a [`compile_error`] is emitted.
205///
206/// # Example
207///
208/// ```
209/// #![feature(cfg_select)]
210///
211/// cfg_select! {
212///     unix => {
213///         fn foo() { /* unix specific functionality */ }
214///     }
215///     target_pointer_width = "32" => {
216///         fn foo() { /* non-unix, 32-bit functionality */ }
217///     }
218///     _ => {
219///         fn foo() { /* fallback implementation */ }
220///     }
221/// }
222/// ```
223///
224/// The `cfg_select!` macro can also be used in expression position, with or without braces on the
225/// right-hand side:
226///
227/// ```
228/// #![feature(cfg_select)]
229///
230/// let _some_string = cfg_select! {
231///     unix => "With great power comes great electricity bills",
232///     _ => { "Behind every successful diet is an unwatched pizza" }
233/// };
234/// ```
235#[unstable(feature = "cfg_select", issue = "115585")]
236#[rustc_diagnostic_item = "cfg_select"]
237#[rustc_builtin_macro]
238pub macro cfg_select($($tt:tt)*) {
239    /* compiler built-in */
240}
241
242/// Asserts that a boolean expression is `true` at runtime.
243///
244/// This will invoke the [`panic!`] macro if the provided expression cannot be
245/// evaluated to `true` at runtime.
246///
247/// Like [`assert!`], this macro also has a second version, where a custom panic
248/// message can be provided.
249///
250/// # Uses
251///
252/// Unlike [`assert!`], `debug_assert!` statements are only enabled in non
253/// optimized builds by default. An optimized build will not execute
254/// `debug_assert!` statements unless `-C debug-assertions` is passed to the
255/// compiler. This makes `debug_assert!` useful for checks that are too
256/// expensive to be present in a release build but may be helpful during
257/// development. The result of expanding `debug_assert!` is always type checked.
258///
259/// An unchecked assertion allows a program in an inconsistent state to keep
260/// running, which might have unexpected consequences but does not introduce
261/// unsafety as long as this only happens in safe code. The performance cost
262/// of assertions, however, is not measurable in general. Replacing [`assert!`]
263/// with `debug_assert!` is thus only encouraged after thorough profiling, and
264/// more importantly, only in safe code!
265///
266/// # Examples
267///
268/// ```
269/// // the panic message for these assertions is the stringified value of the
270/// // expression given.
271/// debug_assert!(true);
272///
273/// fn some_expensive_computation() -> bool {
274///     // Some expensive computation here
275///     true
276/// }
277/// debug_assert!(some_expensive_computation());
278///
279/// // assert with a custom message
280/// let x = true;
281/// debug_assert!(x, "x wasn't true!");
282///
283/// let a = 3; let b = 27;
284/// debug_assert!(a + b == 30, "a = {}, b = {}", a, b);
285/// ```
286#[macro_export]
287#[stable(feature = "rust1", since = "1.0.0")]
288#[rustc_diagnostic_item = "debug_assert_macro"]
289#[allow_internal_unstable(edition_panic)]
290macro_rules! debug_assert {
291    ($($arg:tt)*) => {
292        if $crate::cfg!(debug_assertions) {
293            $crate::assert!($($arg)*);
294        }
295    };
296}
297
298/// Asserts that two expressions are equal to each other.
299///
300/// On panic, this macro will print the values of the expressions with their
301/// debug representations.
302///
303/// Unlike [`assert_eq!`], `debug_assert_eq!` statements are only enabled in non
304/// optimized builds by default. An optimized build will not execute
305/// `debug_assert_eq!` statements unless `-C debug-assertions` is passed to the
306/// compiler. This makes `debug_assert_eq!` useful for checks that are too
307/// expensive to be present in a release build but may be helpful during
308/// development. The result of expanding `debug_assert_eq!` is always type checked.
309///
310/// # Examples
311///
312/// ```
313/// let a = 3;
314/// let b = 1 + 2;
315/// debug_assert_eq!(a, b);
316/// ```
317#[macro_export]
318#[stable(feature = "rust1", since = "1.0.0")]
319#[rustc_diagnostic_item = "debug_assert_eq_macro"]
320macro_rules! debug_assert_eq {
321    ($($arg:tt)*) => {
322        if $crate::cfg!(debug_assertions) {
323            $crate::assert_eq!($($arg)*);
324        }
325    };
326}
327
328/// Asserts that two expressions are not equal to each other.
329///
330/// On panic, this macro will print the values of the expressions with their
331/// debug representations.
332///
333/// Unlike [`assert_ne!`], `debug_assert_ne!` statements are only enabled in non
334/// optimized builds by default. An optimized build will not execute
335/// `debug_assert_ne!` statements unless `-C debug-assertions` is passed to the
336/// compiler. This makes `debug_assert_ne!` useful for checks that are too
337/// expensive to be present in a release build but may be helpful during
338/// development. The result of expanding `debug_assert_ne!` is always type checked.
339///
340/// # Examples
341///
342/// ```
343/// let a = 3;
344/// let b = 2;
345/// debug_assert_ne!(a, b);
346/// ```
347#[macro_export]
348#[stable(feature = "assert_ne", since = "1.13.0")]
349#[rustc_diagnostic_item = "debug_assert_ne_macro"]
350macro_rules! debug_assert_ne {
351    ($($arg:tt)*) => {
352        if $crate::cfg!(debug_assertions) {
353            $crate::assert_ne!($($arg)*);
354        }
355    };
356}
357
358/// Asserts that an expression matches the provided pattern.
359///
360/// This macro is generally preferable to `debug_assert!(matches!(value, pattern))`, because it can
361/// print the debug representation of the actual value shape that did not meet expectations. In
362/// contrast, using [`debug_assert!`] will only print that expectations were not met, but not why.
363///
364/// The pattern syntax is exactly the same as found in a match arm and the `matches!` macro. The
365/// optional if guard can be used to add additional checks that must be true for the matched value,
366/// otherwise this macro will panic.
367///
368/// On panic, this macro will print the value of the expression with its debug representation.
369///
370/// Like [`assert!`], this macro has a second form, where a custom panic message can be provided.
371///
372/// Unlike [`assert_matches!`], `debug_assert_matches!` statements are only enabled in non optimized
373/// builds by default. An optimized build will not execute `debug_assert_matches!` statements unless
374/// `-C debug-assertions` is passed to the compiler. This makes `debug_assert_matches!` useful for
375/// checks that are too expensive to be present in a release build but may be helpful during
376/// development. The result of expanding `debug_assert_matches!` is always type checked.
377///
378/// # Examples
379///
380/// ```
381/// use std::debug_assert_matches;
382///
383/// let a = Some(345);
384/// let b = Some(56);
385/// debug_assert_matches!(a, Some(_));
386/// debug_assert_matches!(b, Some(_));
387///
388/// debug_assert_matches!(a, Some(345));
389/// debug_assert_matches!(a, Some(345) | None);
390///
391/// // debug_assert_matches!(a, None); // panics
392/// // debug_assert_matches!(b, Some(345)); // panics
393/// // debug_assert_matches!(b, Some(345) | None); // panics
394///
395/// debug_assert_matches!(a, Some(x) if x > 100);
396/// // debug_assert_matches!(a, Some(x) if x < 100); // panics
397/// ```
398#[stable(feature = "assert_matches", since = "CURRENT_RUSTC_VERSION")]
399#[allow_internal_unstable(assert_matches)]
400#[rustc_macro_transparency = "semiopaque"]
401pub macro debug_assert_matches($($arg:tt)*) {
402    if $crate::cfg!(debug_assertions) {
403        $crate::assert_matches!($($arg)*);
404    }
405}
406
407/// Returns whether the given expression matches the provided pattern.
408///
409/// The pattern syntax is exactly the same as found in a match arm. The optional if guard can be
410/// used to add additional checks that must be true for the matched value, otherwise this macro will
411/// return `false`.
412///
413/// When testing that a value matches a pattern, it's generally preferable to use
414/// [`assert_matches!`] as it will print the debug representation of the value if the assertion
415/// fails.
416///
417/// # Examples
418///
419/// ```
420/// let foo = 'f';
421/// assert!(matches!(foo, 'A'..='Z' | 'a'..='z'));
422///
423/// let bar = Some(4);
424/// assert!(matches!(bar, Some(x) if x > 2));
425/// ```
426#[macro_export]
427#[stable(feature = "matches_macro", since = "1.42.0")]
428#[rustc_diagnostic_item = "matches_macro"]
429#[allow_internal_unstable(non_exhaustive_omitted_patterns_lint, stmt_expr_attributes)]
430macro_rules! matches {
431    ($expression:expr, $pattern:pat $(if $guard:expr)? $(,)?) => {
432        #[allow(non_exhaustive_omitted_patterns)]
433        match $expression {
434            $pattern $(if $guard)? => true,
435            _ => false
436        }
437    };
438}
439
440/// Unwraps a result or propagates its error.
441///
442/// The [`?` operator][propagating-errors] was added to replace `try!`
443/// and should be used instead. Furthermore, `try` is a reserved word
444/// in Rust 2018, so if you must use it, you will need to use the
445/// [raw-identifier syntax][ris]: `r#try`.
446///
447/// [propagating-errors]: https://doc.rust-lang.org/book/ch09-02-recoverable-errors-with-result.html#a-shortcut-for-propagating-errors-the--operator
448/// [ris]: https://doc.rust-lang.org/nightly/rust-by-example/compatibility/raw_identifiers.html
449///
450/// `try!` matches the given [`Result`]. In case of the `Ok` variant, the
451/// expression has the value of the wrapped value.
452///
453/// In case of the `Err` variant, it retrieves the inner error. `try!` then
454/// performs conversion using `From`. This provides automatic conversion
455/// between specialized errors and more general ones. The resulting
456/// error is then immediately returned.
457///
458/// Because of the early return, `try!` can only be used in functions that
459/// return [`Result`].
460///
461/// # Examples
462///
463/// ```
464/// use std::io;
465/// use std::fs::File;
466/// use std::io::prelude::*;
467///
468/// enum MyError {
469///     FileWriteError
470/// }
471///
472/// impl From<io::Error> for MyError {
473///     fn from(e: io::Error) -> MyError {
474///         MyError::FileWriteError
475///     }
476/// }
477///
478/// // The preferred method of quick returning Errors
479/// fn write_to_file_question() -> Result<(), MyError> {
480///     let mut file = File::create("my_best_friends.txt")?;
481///     file.write_all(b"This is a list of my best friends.")?;
482///     Ok(())
483/// }
484///
485/// // The previous method of quick returning Errors
486/// fn write_to_file_using_try() -> Result<(), MyError> {
487///     let mut file = r#try!(File::create("my_best_friends.txt"));
488///     r#try!(file.write_all(b"This is a list of my best friends."));
489///     Ok(())
490/// }
491///
492/// // This is equivalent to:
493/// fn write_to_file_using_match() -> Result<(), MyError> {
494///     let mut file = r#try!(File::create("my_best_friends.txt"));
495///     match file.write_all(b"This is a list of my best friends.") {
496///         Ok(v) => v,
497///         Err(e) => return Err(From::from(e)),
498///     }
499///     Ok(())
500/// }
501/// ```
502#[macro_export]
503#[stable(feature = "rust1", since = "1.0.0")]
504#[deprecated(since = "1.39.0", note = "use the `?` operator instead")]
505#[doc(alias = "?")]
506macro_rules! r#try {
507    ($expr:expr $(,)?) => {
508        match $expr {
509            $crate::result::Result::Ok(val) => val,
510            $crate::result::Result::Err(err) => {
511                return $crate::result::Result::Err($crate::convert::From::from(err));
512            }
513        }
514    };
515}
516
517/// Writes formatted data into a buffer.
518///
519/// This macro accepts a 'writer', a format string, and a list of arguments. Arguments will be
520/// formatted according to the specified format string and the result will be passed to the writer.
521/// The writer may be any value with a `write_fmt` method; generally this comes from an
522/// implementation of either the [`fmt::Write`] or the [`io::Write`] trait. The macro
523/// returns whatever the `write_fmt` method returns; commonly a [`fmt::Result`], or an
524/// [`io::Result`].
525///
526/// See [`std::fmt`] for more information on the format string syntax.
527///
528/// [`std::fmt`]: ../std/fmt/index.html
529/// [`fmt::Write`]: crate::fmt::Write
530/// [`io::Write`]: ../std/io/trait.Write.html
531/// [`fmt::Result`]: crate::fmt::Result
532/// [`io::Result`]: ../std/io/type.Result.html
533///
534/// # Examples
535///
536/// ```
537/// use std::io::Write;
538///
539/// fn main() -> std::io::Result<()> {
540///     let mut w = Vec::new();
541///     write!(&mut w, "test")?;
542///     write!(&mut w, "formatted {}", "arguments")?;
543///
544///     assert_eq!(w, b"testformatted arguments");
545///     Ok(())
546/// }
547/// ```
548///
549/// A module can import both `std::fmt::Write` and `std::io::Write` and call `write!` on objects
550/// implementing either, as objects do not typically implement both. However, the module must
551/// avoid conflict between the trait names, such as by importing them as `_` or otherwise renaming
552/// them:
553///
554/// ```
555/// use std::fmt::Write as _;
556/// use std::io::Write as _;
557///
558/// fn main() -> Result<(), Box<dyn std::error::Error>> {
559///     let mut s = String::new();
560///     let mut v = Vec::new();
561///
562///     write!(&mut s, "{} {}", "abc", 123)?; // uses fmt::Write::write_fmt
563///     write!(&mut v, "s = {:?}", s)?; // uses io::Write::write_fmt
564///     assert_eq!(v, b"s = \"abc 123\"");
565///     Ok(())
566/// }
567/// ```
568///
569/// If you also need the trait names themselves, such as to implement one or both on your types,
570/// import the containing module and then name them with a prefix:
571///
572/// ```
573/// # #![allow(unused_imports)]
574/// use std::fmt::{self, Write as _};
575/// use std::io::{self, Write as _};
576///
577/// struct Example;
578///
579/// impl fmt::Write for Example {
580///     fn write_str(&mut self, _s: &str) -> core::fmt::Result {
581///          unimplemented!();
582///     }
583/// }
584/// ```
585///
586/// Note: This macro can be used in `no_std` setups as well.
587/// In a `no_std` setup you are responsible for the implementation details of the components.
588///
589/// ```no_run
590/// use core::fmt::Write;
591///
592/// struct Example;
593///
594/// impl Write for Example {
595///     fn write_str(&mut self, _s: &str) -> core::fmt::Result {
596///          unimplemented!();
597///     }
598/// }
599///
600/// let mut m = Example{};
601/// write!(&mut m, "Hello World").expect("Not written");
602/// ```
603#[macro_export]
604#[stable(feature = "rust1", since = "1.0.0")]
605#[rustc_diagnostic_item = "write_macro"]
606macro_rules! write {
607    ($dst:expr, $($arg:tt)*) => {
608        $dst.write_fmt($crate::format_args!($($arg)*))
609    };
610}
611
612/// Writes formatted data into a buffer, with a newline appended.
613///
614/// On all platforms, the newline is the LINE FEED character (`\n`/`U+000A`) alone
615/// (no additional CARRIAGE RETURN (`\r`/`U+000D`).
616///
617/// For more information, see [`write!`]. For information on the format string syntax, see
618/// [`std::fmt`].
619///
620/// [`std::fmt`]: ../std/fmt/index.html
621///
622/// # Examples
623///
624/// ```
625/// use std::io::{Write, Result};
626///
627/// fn main() -> Result<()> {
628///     let mut w = Vec::new();
629///     writeln!(&mut w)?;
630///     writeln!(&mut w, "test")?;
631///     writeln!(&mut w, "formatted {}", "arguments")?;
632///
633///     assert_eq!(&w[..], "\ntest\nformatted arguments\n".as_bytes());
634///     Ok(())
635/// }
636/// ```
637#[macro_export]
638#[stable(feature = "rust1", since = "1.0.0")]
639#[rustc_diagnostic_item = "writeln_macro"]
640#[allow_internal_unstable(format_args_nl)]
641macro_rules! writeln {
642    ($dst:expr $(,)?) => {
643        $crate::write!($dst, "\n")
644    };
645    ($dst:expr, $($arg:tt)*) => {
646        $dst.write_fmt($crate::format_args_nl!($($arg)*))
647    };
648}
649
650/// Indicates unreachable code.
651///
652/// This is useful any time that the compiler can't determine that some code is unreachable. For
653/// example:
654///
655/// * Match arms with guard conditions.
656/// * Loops that dynamically terminate.
657/// * Iterators that dynamically terminate.
658///
659/// If the determination that the code is unreachable proves incorrect, the
660/// program immediately terminates with a [`panic!`].
661///
662/// The unsafe counterpart of this macro is the [`unreachable_unchecked`] function, which
663/// will cause undefined behavior if the code is reached.
664///
665/// [`unreachable_unchecked`]: crate::hint::unreachable_unchecked
666///
667/// # Panics
668///
669/// This will always [`panic!`] because `unreachable!` is just a shorthand for `panic!` with a
670/// fixed, specific message.
671///
672/// Like `panic!`, this macro has a second form for displaying custom values.
673///
674/// # Examples
675///
676/// Match arms:
677///
678/// ```
679/// # #[allow(dead_code)]
680/// fn foo(x: Option<i32>) {
681///     match x {
682///         Some(n) if n >= 0 => println!("Some(Non-negative)"),
683///         Some(n) if n <  0 => println!("Some(Negative)"),
684///         Some(_)           => unreachable!(), // compile error if commented out
685///         None              => println!("None")
686///     }
687/// }
688/// ```
689///
690/// Iterators:
691///
692/// ```
693/// # #[allow(dead_code)]
694/// fn divide_by_three(x: u32) -> u32 { // one of the poorest implementations of x/3
695///     for i in 0.. {
696///         if 3*i < i { panic!("u32 overflow"); }
697///         if x < 3*i { return i-1; }
698///     }
699///     unreachable!("The loop should always return");
700/// }
701/// ```
702#[macro_export]
703#[rustc_builtin_macro(unreachable)]
704#[allow_internal_unstable(edition_panic)]
705#[stable(feature = "rust1", since = "1.0.0")]
706#[rustc_diagnostic_item = "unreachable_macro"]
707macro_rules! unreachable {
708    // Expands to either `$crate::panic::unreachable_2015` or `$crate::panic::unreachable_2021`
709    // depending on the edition of the caller.
710    ($($arg:tt)*) => {
711        /* compiler built-in */
712    };
713}
714
715/// Indicates unimplemented code by panicking with a message of "not implemented".
716///
717/// This allows your code to type-check, which is useful if you are prototyping or
718/// implementing a trait that requires multiple methods which you don't plan to use all of.
719///
720/// The difference between `unimplemented!` and [`todo!`] is that while `todo!`
721/// conveys an intent of implementing the functionality later and the message is "not yet
722/// implemented", `unimplemented!` makes no such claims. Its message is "not implemented".
723///
724/// Also, some IDEs will mark `todo!`s.
725///
726/// # Panics
727///
728/// This will always [`panic!`] because `unimplemented!` is just a shorthand for `panic!` with a
729/// fixed, specific message.
730///
731/// Like `panic!`, this macro has a second form for displaying custom values.
732///
733/// [`todo!`]: crate::todo
734///
735/// # Examples
736///
737/// Say we have a trait `Foo`:
738///
739/// ```
740/// trait Foo {
741///     fn bar(&self) -> u8;
742///     fn baz(&self);
743///     fn qux(&self) -> Result<u64, ()>;
744/// }
745/// ```
746///
747/// We want to implement `Foo` for 'MyStruct', but for some reason it only makes sense
748/// to implement the `bar()` function. `baz()` and `qux()` will still need to be defined
749/// in our implementation of `Foo`, but we can use `unimplemented!` in their definitions
750/// to allow our code to compile.
751///
752/// We still want to have our program stop running if the unimplemented methods are
753/// reached.
754///
755/// ```
756/// # trait Foo {
757/// #     fn bar(&self) -> u8;
758/// #     fn baz(&self);
759/// #     fn qux(&self) -> Result<u64, ()>;
760/// # }
761/// struct MyStruct;
762///
763/// impl Foo for MyStruct {
764///     fn bar(&self) -> u8 {
765///         1 + 1
766///     }
767///
768///     fn baz(&self) {
769///         // It makes no sense to `baz` a `MyStruct`, so we have no logic here
770///         // at all.
771///         // This will display "thread 'main' panicked at 'not implemented'".
772///         unimplemented!();
773///     }
774///
775///     fn qux(&self) -> Result<u64, ()> {
776///         // We have some logic here,
777///         // We can add a message to unimplemented! to display our omission.
778///         // This will display:
779///         // "thread 'main' panicked at 'not implemented: MyStruct isn't quxable'".
780///         unimplemented!("MyStruct isn't quxable");
781///     }
782/// }
783///
784/// fn main() {
785///     let s = MyStruct;
786///     s.bar();
787/// }
788/// ```
789#[macro_export]
790#[stable(feature = "rust1", since = "1.0.0")]
791#[rustc_diagnostic_item = "unimplemented_macro"]
792#[allow_internal_unstable(panic_internals)]
793macro_rules! unimplemented {
794    () => {
795        $crate::panicking::panic("not implemented")
796    };
797    ($($arg:tt)+) => {
798        $crate::panic!("not implemented: {}", $crate::format_args!($($arg)+))
799    };
800}
801
802/// Indicates unfinished code.
803///
804/// This can be useful if you are prototyping and just
805/// want a placeholder to let your code pass type analysis.
806///
807/// The difference between [`unimplemented!`] and `todo!` is that while `todo!` conveys
808/// an intent of implementing the functionality later and the message is "not yet
809/// implemented", `unimplemented!` makes no such claims. Its message is "not implemented".
810///
811/// Also, some IDEs will mark `todo!`s.
812///
813/// # Panics
814///
815/// This will always [`panic!`] because `todo!` is just a shorthand for `panic!` with a
816/// fixed, specific message.
817///
818/// Like `panic!`, this macro has a second form for displaying custom values.
819///
820/// # Examples
821///
822/// Here's an example of some in-progress code. We have a trait `Foo`:
823///
824/// ```
825/// trait Foo {
826///     fn bar(&self) -> u8;
827///     fn baz(&self);
828///     fn qux(&self) -> Result<u64, ()>;
829/// }
830/// ```
831///
832/// We want to implement `Foo` on one of our types, but we also want to work on
833/// just `bar()` first. In order for our code to compile, we need to implement
834/// `baz()` and `qux()`, so we can use `todo!`:
835///
836/// ```
837/// # trait Foo {
838/// #     fn bar(&self) -> u8;
839/// #     fn baz(&self);
840/// #     fn qux(&self) -> Result<u64, ()>;
841/// # }
842/// struct MyStruct;
843///
844/// impl Foo for MyStruct {
845///     fn bar(&self) -> u8 {
846///         1 + 1
847///     }
848///
849///     fn baz(&self) {
850///         // Let's not worry about implementing baz() for now
851///         todo!();
852///     }
853///
854///     fn qux(&self) -> Result<u64, ()> {
855///         // We can add a message to todo! to display our omission.
856///         // This will display:
857///         // "thread 'main' panicked at 'not yet implemented: MyStruct is not yet quxable'".
858///         todo!("MyStruct is not yet quxable");
859///     }
860/// }
861///
862/// fn main() {
863///     let s = MyStruct;
864///     s.bar();
865///
866///     // We aren't even using baz() or qux(), so this is fine.
867/// }
868/// ```
869#[macro_export]
870#[stable(feature = "todo_macro", since = "1.40.0")]
871#[rustc_diagnostic_item = "todo_macro"]
872#[allow_internal_unstable(panic_internals)]
873macro_rules! todo {
874    () => {
875        $crate::panicking::panic("not yet implemented")
876    };
877    ($($arg:tt)+) => {
878        $crate::panic!("not yet implemented: {}", $crate::format_args!($($arg)+))
879    };
880}
881
882/// Definitions of built-in macros.
883///
884/// Most of the macro properties (stability, visibility, etc.) are taken from the source code here,
885/// with exception of expansion functions transforming macro inputs into outputs,
886/// those functions are provided by the compiler.
887pub(crate) mod builtin {
888
889    /// Causes compilation to fail with the given error message when encountered.
890    ///
891    /// This macro should be used when a crate uses a conditional compilation strategy to provide
892    /// better error messages for erroneous conditions. It's the compiler-level form of [`panic!`],
893    /// but emits an error during *compilation* rather than at *runtime*.
894    ///
895    /// # Examples
896    ///
897    /// Two such examples are macros and `#[cfg]` environments.
898    ///
899    /// Emit a better compiler error if a macro is passed invalid values. Without the final branch,
900    /// the compiler would still emit an error, but the error's message would not mention the two
901    /// valid values.
902    ///
903    /// ```compile_fail
904    /// macro_rules! give_me_foo_or_bar {
905    ///     (foo) => {};
906    ///     (bar) => {};
907    ///     ($x:ident) => {
908    ///         compile_error!("This macro only accepts `foo` or `bar`");
909    ///     }
910    /// }
911    ///
912    /// give_me_foo_or_bar!(neither);
913    /// // ^ will fail at compile time with message "This macro only accepts `foo` or `bar`"
914    /// ```
915    ///
916    /// Emit a compiler error if one of a number of features isn't available.
917    ///
918    /// ```compile_fail
919    /// #[cfg(not(any(feature = "foo", feature = "bar")))]
920    /// compile_error!("Either feature \"foo\" or \"bar\" must be enabled for this crate.");
921    /// ```
922    #[stable(feature = "compile_error_macro", since = "1.20.0")]
923    #[rustc_builtin_macro]
924    #[macro_export]
925    macro_rules! compile_error {
926        ($msg:expr $(,)?) => {{ /* compiler built-in */ }};
927    }
928
929    /// Constructs parameters for the other string-formatting macros.
930    ///
931    /// This macro functions by taking a formatting string literal containing
932    /// `{}` for each additional argument passed. `format_args!` prepares the
933    /// additional parameters to ensure the output can be interpreted as a string
934    /// and canonicalizes the arguments into a single type. Any value that implements
935    /// the [`Display`] trait can be passed to `format_args!`, as can any
936    /// [`Debug`] implementation be passed to a `{:?}` within the formatting string.
937    ///
938    /// This macro produces a value of type [`fmt::Arguments`]. This value can be
939    /// passed to the macros within [`std::fmt`] for performing useful redirection.
940    /// All other formatting macros ([`format!`], [`write!`], [`println!`], etc) are
941    /// proxied through this one. `format_args!`, unlike its derived macros, avoids
942    /// heap allocations.
943    ///
944    /// You can use the [`fmt::Arguments`] value that `format_args!` returns
945    /// in `Debug` and `Display` contexts as seen below. The example also shows
946    /// that `Debug` and `Display` format to the same thing: the interpolated
947    /// format string in `format_args!`.
948    ///
949    /// ```rust
950    /// let args = format_args!("{} foo {:?}", 1, 2);
951    /// let debug = format!("{args:?}");
952    /// let display = format!("{args}");
953    /// assert_eq!("1 foo 2", display);
954    /// assert_eq!(display, debug);
955    /// ```
956    ///
957    /// See [the formatting documentation in `std::fmt`](../std/fmt/index.html)
958    /// for details of the macro argument syntax, and further information.
959    ///
960    /// [`Display`]: crate::fmt::Display
961    /// [`Debug`]: crate::fmt::Debug
962    /// [`fmt::Arguments`]: crate::fmt::Arguments
963    /// [`std::fmt`]: ../std/fmt/index.html
964    /// [`format!`]: ../std/macro.format.html
965    /// [`println!`]: ../std/macro.println.html
966    ///
967    /// # Examples
968    ///
969    /// ```
970    /// use std::fmt;
971    ///
972    /// let s = fmt::format(format_args!("hello {}", "world"));
973    /// assert_eq!(s, format!("hello {}", "world"));
974    /// ```
975    ///
976    /// # Argument lifetimes
977    ///
978    /// Except when no formatting arguments are used,
979    /// the produced `fmt::Arguments` value borrows temporary values.
980    /// To allow it to be stored for later use, the arguments' lifetimes, as well as those of
981    /// temporaries they borrow, may be [extended] when `format_args!` appears in the initializer
982    /// expression of a `let` statement. The syntactic rules used to determine when temporaries'
983    /// lifetimes are extended are documented in the [Reference].
984    ///
985    /// [extended]: ../reference/destructors.html#temporary-lifetime-extension
986    /// [Reference]: ../reference/destructors.html#extending-based-on-expressions
987    #[stable(feature = "rust1", since = "1.0.0")]
988    #[rustc_diagnostic_item = "format_args_macro"]
989    #[allow_internal_unsafe]
990    #[allow_internal_unstable(fmt_internals, fmt_arguments_from_str)]
991    #[rustc_builtin_macro]
992    #[macro_export]
993    macro_rules! format_args {
994        ($fmt:expr) => {{ /* compiler built-in */ }};
995        ($fmt:expr, $($args:tt)*) => {{ /* compiler built-in */ }};
996    }
997
998    /// Same as [`format_args`], but can be used in some const contexts.
999    ///
1000    /// This macro is used by the panic macros for the `const_panic` feature.
1001    ///
1002    /// This macro will be removed once `format_args` is allowed in const contexts.
1003    #[unstable(feature = "const_format_args", issue = "none")]
1004    #[allow_internal_unstable(fmt_internals, fmt_arguments_from_str)]
1005    #[rustc_builtin_macro]
1006    #[macro_export]
1007    macro_rules! const_format_args {
1008        ($fmt:expr) => {{ /* compiler built-in */ }};
1009        ($fmt:expr, $($args:tt)*) => {{ /* compiler built-in */ }};
1010    }
1011
1012    /// Same as [`format_args`], but adds a newline in the end.
1013    #[unstable(
1014        feature = "format_args_nl",
1015        issue = "none",
1016        reason = "`format_args_nl` is only for internal \
1017                  language use and is subject to change"
1018    )]
1019    #[allow_internal_unstable(fmt_internals, fmt_arguments_from_str)]
1020    #[rustc_builtin_macro]
1021    #[doc(hidden)]
1022    #[macro_export]
1023    macro_rules! format_args_nl {
1024        ($fmt:expr) => {{ /* compiler built-in */ }};
1025        ($fmt:expr, $($args:tt)*) => {{ /* compiler built-in */ }};
1026    }
1027
1028    /// Inspects an environment variable at compile time.
1029    ///
1030    /// This macro will expand to the value of the named environment variable at
1031    /// compile time, yielding an expression of type `&'static str`. Use
1032    /// [`std::env::var`] instead if you want to read the value at runtime.
1033    ///
1034    /// [`std::env::var`]: ../std/env/fn.var.html
1035    ///
1036    /// If the environment variable is not defined, then a compilation error
1037    /// will be emitted. To not emit a compile error, use the [`option_env!`]
1038    /// macro instead. A compilation error will also be emitted if the
1039    /// environment variable is not a valid Unicode string.
1040    ///
1041    /// # Examples
1042    ///
1043    /// ```
1044    /// let path: &'static str = env!("PATH");
1045    /// println!("the $PATH variable at the time of compiling was: {path}");
1046    /// ```
1047    ///
1048    /// You can customize the error message by passing a string as the second
1049    /// parameter:
1050    ///
1051    /// ```compile_fail
1052    /// let doc: &'static str = env!("documentation", "what's that?!");
1053    /// ```
1054    ///
1055    /// If the `documentation` environment variable is not defined, you'll get
1056    /// the following error:
1057    ///
1058    /// ```text
1059    /// error: what's that?!
1060    /// ```
1061    #[stable(feature = "rust1", since = "1.0.0")]
1062    #[rustc_builtin_macro]
1063    #[macro_export]
1064    #[rustc_diagnostic_item = "env_macro"] // useful for external lints
1065    macro_rules! env {
1066        ($name:expr $(,)?) => {{ /* compiler built-in */ }};
1067        ($name:expr, $error_msg:expr $(,)?) => {{ /* compiler built-in */ }};
1068    }
1069
1070    /// Optionally inspects an environment variable at compile time.
1071    ///
1072    /// If the named environment variable is present at compile time, this will
1073    /// expand into an expression of type `Option<&'static str>` whose value is
1074    /// `Some` of the value of the environment variable (a compilation error
1075    /// will be emitted if the environment variable is not a valid Unicode
1076    /// string). If the environment variable is not present, then this will
1077    /// expand to `None`. See [`Option<T>`][Option] for more information on this
1078    /// type.  Use [`std::env::var`] instead if you want to read the value at
1079    /// runtime.
1080    ///
1081    /// [`std::env::var`]: ../std/env/fn.var.html
1082    ///
1083    /// A compile time error is only emitted when using this macro if the
1084    /// environment variable exists and is not a valid Unicode string. To also
1085    /// emit a compile error if the environment variable is not present, use the
1086    /// [`env!`] macro instead.
1087    ///
1088    /// # Examples
1089    ///
1090    /// ```
1091    /// let key: Option<&'static str> = option_env!("SECRET_KEY");
1092    /// println!("the secret key might be: {key:?}");
1093    /// ```
1094    #[stable(feature = "rust1", since = "1.0.0")]
1095    #[rustc_builtin_macro]
1096    #[macro_export]
1097    #[rustc_diagnostic_item = "option_env_macro"] // useful for external lints
1098    macro_rules! option_env {
1099        ($name:expr $(,)?) => {{ /* compiler built-in */ }};
1100    }
1101
1102    /// Concatenates literals into a byte slice.
1103    ///
1104    /// This macro takes any number of comma-separated literals, and concatenates them all into
1105    /// one, yielding an expression of type `&[u8; _]`, which represents all of the literals
1106    /// concatenated left-to-right. The literals passed can be any combination of:
1107    ///
1108    /// - byte literals (`b'r'`)
1109    /// - byte strings (`b"Rust"`)
1110    /// - arrays of bytes/numbers (`[b'A', 66, b'C']`)
1111    ///
1112    /// # Examples
1113    ///
1114    /// ```
1115    /// #![feature(concat_bytes)]
1116    ///
1117    /// # fn main() {
1118    /// let s: &[u8; 6] = concat_bytes!(b'A', b"BC", [68, b'E', 70]);
1119    /// assert_eq!(s, b"ABCDEF");
1120    /// # }
1121    /// ```
1122    #[unstable(feature = "concat_bytes", issue = "87555")]
1123    #[rustc_builtin_macro]
1124    #[macro_export]
1125    macro_rules! concat_bytes {
1126        ($($e:literal),+ $(,)?) => {{ /* compiler built-in */ }};
1127    }
1128
1129    /// Concatenates literals into a static string slice.
1130    ///
1131    /// This macro takes any number of comma-separated literals, yielding an
1132    /// expression of type `&'static str` which represents all of the literals
1133    /// concatenated left-to-right.
1134    ///
1135    /// Integer and floating point literals are [stringified](core::stringify) in order to be
1136    /// concatenated.
1137    ///
1138    /// # Examples
1139    ///
1140    /// ```
1141    /// let s = concat!("test", 10, 'b', true);
1142    /// assert_eq!(s, "test10btrue");
1143    /// ```
1144    #[stable(feature = "rust1", since = "1.0.0")]
1145    #[rustc_builtin_macro]
1146    #[rustc_diagnostic_item = "macro_concat"]
1147    #[macro_export]
1148    macro_rules! concat {
1149        ($($e:expr),* $(,)?) => {{ /* compiler built-in */ }};
1150    }
1151
1152    /// Expands to the line number on which it was invoked.
1153    ///
1154    /// With [`column!`] and [`file!`], these macros provide debugging information for
1155    /// developers about the location within the source.
1156    ///
1157    /// The expanded expression has type `u32` and is 1-based, so the first line
1158    /// in each file evaluates to 1, the second to 2, etc. This is consistent
1159    /// with error messages by common compilers or popular editors.
1160    /// The returned line is *not necessarily* the line of the `line!` invocation itself,
1161    /// but rather the first macro invocation leading up to the invocation
1162    /// of the `line!` macro.
1163    ///
1164    /// # Examples
1165    ///
1166    /// ```
1167    /// let current_line = line!();
1168    /// println!("defined on line: {current_line}");
1169    /// ```
1170    #[stable(feature = "rust1", since = "1.0.0")]
1171    #[rustc_builtin_macro]
1172    #[macro_export]
1173    macro_rules! line {
1174        () => {
1175            /* compiler built-in */
1176        };
1177    }
1178
1179    /// Expands to the column number at which it was invoked.
1180    ///
1181    /// With [`line!`] and [`file!`], these macros provide debugging information for
1182    /// developers about the location within the source.
1183    ///
1184    /// The expanded expression has type `u32` and is 1-based, so the first column
1185    /// in each line evaluates to 1, the second to 2, etc. This is consistent
1186    /// with error messages by common compilers or popular editors.
1187    /// The returned column is *not necessarily* the line of the `column!` invocation itself,
1188    /// but rather the first macro invocation leading up to the invocation
1189    /// of the `column!` macro.
1190    ///
1191    /// # Examples
1192    ///
1193    /// ```
1194    /// let current_col = column!();
1195    /// println!("defined on column: {current_col}");
1196    /// ```
1197    ///
1198    /// `column!` counts Unicode code points, not bytes or graphemes. As a result, the first two
1199    /// invocations return the same value, but the third does not.
1200    ///
1201    /// ```
1202    /// let a = ("foobar", column!()).1;
1203    /// let b = ("人之初性本善", column!()).1;
1204    /// let c = ("f̅o̅o̅b̅a̅r̅", column!()).1; // Uses combining overline (U+0305)
1205    ///
1206    /// assert_eq!(a, b);
1207    /// assert_ne!(b, c);
1208    /// ```
1209    #[stable(feature = "rust1", since = "1.0.0")]
1210    #[rustc_builtin_macro]
1211    #[macro_export]
1212    macro_rules! column {
1213        () => {
1214            /* compiler built-in */
1215        };
1216    }
1217
1218    /// Expands to the file name in which it was invoked.
1219    ///
1220    /// With [`line!`] and [`column!`], these macros provide debugging information for
1221    /// developers about the location within the source.
1222    ///
1223    /// The expanded expression has type `&'static str`, and the returned file
1224    /// is not the invocation of the `file!` macro itself, but rather the
1225    /// first macro invocation leading up to the invocation of the `file!`
1226    /// macro.
1227    ///
1228    /// The file name is derived from the crate root's source path passed to the Rust compiler
1229    /// and the sequence the compiler takes to get from the crate root to the
1230    /// module containing `file!`, modified by any flags passed to the Rust compiler (e.g.
1231    /// `--remap-path-prefix`).  If the crate's source path is relative, the initial base
1232    /// directory will be the working directory of the Rust compiler.  For example, if the source
1233    /// path passed to the compiler is `./src/lib.rs` which has a `mod foo;` with a source path of
1234    /// `src/foo/mod.rs`, then calling `file!` inside `mod foo;` will return `./src/foo/mod.rs`.
1235    ///
1236    /// Future compiler options might make further changes to the behavior of `file!`,
1237    /// including potentially making it entirely empty. Code (e.g. test libraries)
1238    /// relying on `file!` producing an openable file path would be incompatible
1239    /// with such options, and might wish to recommend not using those options.
1240    ///
1241    /// # Examples
1242    ///
1243    /// ```
1244    /// let this_file = file!();
1245    /// println!("defined in file: {this_file}");
1246    /// ```
1247    #[stable(feature = "rust1", since = "1.0.0")]
1248    #[rustc_builtin_macro]
1249    #[macro_export]
1250    macro_rules! file {
1251        () => {
1252            /* compiler built-in */
1253        };
1254    }
1255
1256    /// Stringifies its arguments.
1257    ///
1258    /// This macro will yield an expression of type `&'static str` which is the
1259    /// stringification of all the tokens passed to the macro. No restrictions
1260    /// are placed on the syntax of the macro invocation itself.
1261    ///
1262    /// Note that the expanded results of the input tokens may change in the
1263    /// future. You should be careful if you rely on the output.
1264    ///
1265    /// # Examples
1266    ///
1267    /// ```
1268    /// let one_plus_one = stringify!(1 + 1);
1269    /// assert_eq!(one_plus_one, "1 + 1");
1270    /// ```
1271    #[stable(feature = "rust1", since = "1.0.0")]
1272    #[rustc_builtin_macro]
1273    #[macro_export]
1274    macro_rules! stringify {
1275        ($($t:tt)*) => {
1276            /* compiler built-in */
1277        };
1278    }
1279
1280    /// Includes a UTF-8 encoded file as a string.
1281    ///
1282    /// The file is located relative to the current file (similarly to how
1283    /// modules are found). The provided path is interpreted in a platform-specific
1284    /// way at compile time. So, for instance, an invocation with a Windows path
1285    /// containing backslashes `\` would not compile correctly on Unix.
1286    ///
1287    /// This macro will yield an expression of type `&'static str` which is the
1288    /// contents of the file.
1289    ///
1290    /// # Examples
1291    ///
1292    /// Assume there are two files in the same directory with the following
1293    /// contents:
1294    ///
1295    /// File 'spanish.in':
1296    ///
1297    /// ```text
1298    /// adiós
1299    /// ```
1300    ///
1301    /// File 'main.rs':
1302    ///
1303    /// ```ignore (cannot-doctest-external-file-dependency)
1304    /// fn main() {
1305    ///     let my_str = include_str!("spanish.in");
1306    ///     assert_eq!(my_str, "adiós\n");
1307    ///     print!("{my_str}");
1308    /// }
1309    /// ```
1310    ///
1311    /// Compiling 'main.rs' and running the resulting binary will print "adiós".
1312    #[stable(feature = "rust1", since = "1.0.0")]
1313    #[rustc_builtin_macro]
1314    #[macro_export]
1315    #[rustc_diagnostic_item = "include_str_macro"]
1316    macro_rules! include_str {
1317        ($file:expr $(,)?) => {{ /* compiler built-in */ }};
1318    }
1319
1320    /// Includes a file as a reference to a byte array.
1321    ///
1322    /// The file is located relative to the current file (similarly to how
1323    /// modules are found). The provided path is interpreted in a platform-specific
1324    /// way at compile time. So, for instance, an invocation with a Windows path
1325    /// containing backslashes `\` would not compile correctly on Unix.
1326    ///
1327    /// This macro will yield an expression of type `&'static [u8; N]` which is
1328    /// the contents of the file.
1329    ///
1330    /// # Examples
1331    ///
1332    /// Assume there are two files in the same directory with the following
1333    /// contents:
1334    ///
1335    /// File 'spanish.in':
1336    ///
1337    /// ```text
1338    /// adiós
1339    /// ```
1340    ///
1341    /// File 'main.rs':
1342    ///
1343    /// ```ignore (cannot-doctest-external-file-dependency)
1344    /// fn main() {
1345    ///     let bytes = include_bytes!("spanish.in");
1346    ///     assert_eq!(bytes, b"adi\xc3\xb3s\n");
1347    ///     print!("{}", String::from_utf8_lossy(bytes));
1348    /// }
1349    /// ```
1350    ///
1351    /// Compiling 'main.rs' and running the resulting binary will print "adiós".
1352    #[stable(feature = "rust1", since = "1.0.0")]
1353    #[rustc_builtin_macro]
1354    #[macro_export]
1355    #[rustc_diagnostic_item = "include_bytes_macro"]
1356    macro_rules! include_bytes {
1357        ($file:expr $(,)?) => {{ /* compiler built-in */ }};
1358    }
1359
1360    /// Expands to a string that represents the current module path.
1361    ///
1362    /// The current module path can be thought of as the hierarchy of modules
1363    /// leading back up to the crate root. The first component of the path
1364    /// returned is the name of the crate currently being compiled.
1365    ///
1366    /// # Examples
1367    ///
1368    /// ```
1369    /// mod test {
1370    ///     pub fn foo() {
1371    ///         assert!(module_path!().ends_with("test"));
1372    ///     }
1373    /// }
1374    ///
1375    /// test::foo();
1376    /// ```
1377    #[stable(feature = "rust1", since = "1.0.0")]
1378    #[rustc_builtin_macro]
1379    #[macro_export]
1380    macro_rules! module_path {
1381        () => {
1382            /* compiler built-in */
1383        };
1384    }
1385
1386    /// Evaluates boolean combinations of configuration flags at compile-time.
1387    ///
1388    /// In addition to the `#[cfg]` attribute, this macro is provided to allow
1389    /// boolean expression evaluation of configuration flags. This frequently
1390    /// leads to less duplicated code.
1391    ///
1392    /// The syntax given to this macro is the same syntax as the [`cfg`]
1393    /// attribute.
1394    ///
1395    /// `cfg!`, unlike `#[cfg]`, does not remove any code and only evaluates to true or false. For
1396    /// example, all blocks in an if/else expression need to be valid when `cfg!` is used for
1397    /// the condition, regardless of what `cfg!` is evaluating.
1398    ///
1399    /// [`cfg`]: ../reference/conditional-compilation.html#the-cfg-attribute
1400    ///
1401    /// # Examples
1402    ///
1403    /// ```
1404    /// let my_directory = if cfg!(windows) {
1405    ///     "windows-specific-directory"
1406    /// } else {
1407    ///     "unix-directory"
1408    /// };
1409    /// ```
1410    #[stable(feature = "rust1", since = "1.0.0")]
1411    #[rustc_builtin_macro]
1412    #[macro_export]
1413    macro_rules! cfg {
1414        ($($cfg:tt)*) => {
1415            /* compiler built-in */
1416        };
1417    }
1418
1419    /// Parses a file as an expression or an item according to the context.
1420    ///
1421    /// **Warning**: For multi-file Rust projects, the `include!` macro is probably not what you
1422    /// are looking for. Usually, multi-file Rust projects use
1423    /// [modules](https://doc.rust-lang.org/reference/items/modules.html). Multi-file projects and
1424    /// modules are explained in the Rust-by-Example book
1425    /// [here](https://doc.rust-lang.org/rust-by-example/mod/split.html) and the module system is
1426    /// explained in the Rust Book
1427    /// [here](https://doc.rust-lang.org/book/ch07-02-defining-modules-to-control-scope-and-privacy.html).
1428    ///
1429    /// The included file is placed in the surrounding code
1430    /// [unhygienically](https://doc.rust-lang.org/reference/macros-by-example.html#hygiene). If
1431    /// the included file is parsed as an expression and variables or functions share names across
1432    /// both files, it could result in variables or functions being different from what the
1433    /// included file expected.
1434    ///
1435    /// The included file is located relative to the current file (similarly to how modules are
1436    /// found). The provided path is interpreted in a platform-specific way at compile time. So,
1437    /// for instance, an invocation with a Windows path containing backslashes `\` would not
1438    /// compile correctly on Unix.
1439    ///
1440    /// # Uses
1441    ///
1442    /// The `include!` macro is primarily used for two purposes. It is used to include
1443    /// documentation that is written in a separate file and it is used to include [build artifacts
1444    /// usually as a result from the `build.rs`
1445    /// script](https://doc.rust-lang.org/cargo/reference/build-scripts.html#outputs-of-the-build-script).
1446    ///
1447    /// When using the `include` macro to include stretches of documentation, remember that the
1448    /// included file still needs to be a valid Rust syntax. It is also possible to
1449    /// use the [`include_str`] macro as `#![doc = include_str!("...")]` (at the module level) or
1450    /// `#[doc = include_str!("...")]` (at the item level) to include documentation from a plain
1451    /// text or markdown file.
1452    ///
1453    /// # Examples
1454    ///
1455    /// Assume there are two files in the same directory with the following contents:
1456    ///
1457    /// File 'monkeys.in':
1458    ///
1459    /// ```ignore (only-for-syntax-highlight)
1460    /// ['🙈', '🙊', '🙉']
1461    ///     .iter()
1462    ///     .cycle()
1463    ///     .take(6)
1464    ///     .collect::<String>()
1465    /// ```
1466    ///
1467    /// File 'main.rs':
1468    ///
1469    /// ```ignore (cannot-doctest-external-file-dependency)
1470    /// fn main() {
1471    ///     let my_string = include!("monkeys.in");
1472    ///     assert_eq!("🙈🙊🙉🙈🙊🙉", my_string);
1473    ///     println!("{my_string}");
1474    /// }
1475    /// ```
1476    ///
1477    /// Compiling 'main.rs' and running the resulting binary will print
1478    /// "🙈🙊🙉🙈🙊🙉".
1479    #[stable(feature = "rust1", since = "1.0.0")]
1480    #[rustc_builtin_macro]
1481    #[macro_export]
1482    #[rustc_diagnostic_item = "include_macro"] // useful for external lints
1483    macro_rules! include {
1484        ($file:expr $(,)?) => {{ /* compiler built-in */ }};
1485    }
1486
1487    /// This macro uses forward-mode automatic differentiation to generate a new function.
1488    /// It may only be applied to a function. The new function will compute the derivative
1489    /// of the function to which the macro was applied.
1490    ///
1491    /// The expected usage syntax is:
1492    /// `#[autodiff_forward(NAME, INPUT_ACTIVITIES, OUTPUT_ACTIVITY)]`
1493    ///
1494    /// - `NAME`: A string that represents a valid function name.
1495    /// - `INPUT_ACTIVITIES`: Specifies one valid activity for each input parameter.
1496    /// - `OUTPUT_ACTIVITY`: Must not be set if the function implicitly returns nothing
1497    ///   (or explicitly returns `-> ()`). Otherwise, it must be set to one of the allowed activities.
1498    ///
1499    /// ACTIVITIES might either be `Dual` or `Const`, more options will be exposed later.
1500    ///
1501    /// `Const` should be used on non-float arguments, or float-based arguments as an optimization
1502    /// if we are not interested in computing the derivatives with respect to this argument.
1503    ///
1504    /// `Dual` can be used for float scalar values or for references, raw pointers, or other
1505    /// indirect input arguments. It can also be used on a scalar float return value.
1506    /// If used on a return value, the generated function will return a tuple of two float scalars.
1507    /// If used on an input argument, a new shadow argument of the same type will be created,
1508    /// directly following the original argument.
1509    ///
1510    /// ### Usage examples:
1511    ///
1512    /// ```rust,ignore (autodiff requires a -Z flag as well as fat-lto for testing)
1513    /// #![feature(autodiff)]
1514    /// use std::autodiff::*;
1515    /// #[autodiff_forward(rb_fwd1, Dual, Const, Dual)]
1516    /// #[autodiff_forward(rb_fwd2, Const, Dual, Dual)]
1517    /// #[autodiff_forward(rb_fwd3, Dual, Dual, Dual)]
1518    /// fn rosenbrock(x: f64, y: f64) -> f64 {
1519    ///     (1.0 - x).powi(2) + 100.0 * (y - x.powi(2)).powi(2)
1520    /// }
1521    /// #[autodiff_forward(rb_inp_fwd, Dual, Dual, Dual)]
1522    /// fn rosenbrock_inp(x: f64, y: f64, out: &mut f64) {
1523    ///     *out = (1.0 - x).powi(2) + 100.0 * (y - x.powi(2)).powi(2);
1524    /// }
1525    ///
1526    /// fn main() {
1527    ///   let x0 = rosenbrock(1.0, 3.0); // 400.0
1528    ///   let (x1, dx1) = rb_fwd1(1.0, 1.0, 3.0); // (400.0, -800.0)
1529    ///   let (x2, dy1) = rb_fwd2(1.0, 3.0, 1.0); // (400.0, 400.0)
1530    ///   // When seeding both arguments at once the tangent return is the sum of both.
1531    ///   let (x3, dxy) = rb_fwd3(1.0, 1.0, 3.0, 1.0); // (400.0, -400.0)
1532    ///
1533    ///   let mut out = 0.0;
1534    ///   let mut dout = 0.0;
1535    ///   rb_inp_fwd(1.0, 1.0, 3.0, 1.0, &mut out, &mut dout);
1536    ///   // (out, dout) == (400.0, -400.0)
1537    /// }
1538    /// ```
1539    ///
1540    /// We might want to track how one input float affects one or more output floats. In this case,
1541    /// the shadow of one input should be initialized to `1.0`, while the shadows of the other
1542    /// inputs should be initialized to `0.0`. The shadow of the output(s) should be initialized to
1543    /// `0.0`. After calling the generated function, the shadow of the input will be zeroed,
1544    /// while the shadow(s) of the output(s) will contain the derivatives. Forward mode is generally
1545    /// more efficient if we have more output floats marked as `Dual` than input floats.
1546    /// Related information can also be found under the term "Vector-Jacobian product" (VJP).
1547    #[unstable(feature = "autodiff", issue = "124509")]
1548    #[allow_internal_unstable(rustc_attrs)]
1549    #[allow_internal_unstable(core_intrinsics)]
1550    #[rustc_builtin_macro]
1551    pub macro autodiff_forward($item:item) {
1552        /* compiler built-in */
1553    }
1554
1555    /// This macro uses reverse-mode automatic differentiation to generate a new function.
1556    /// It may only be applied to a function. The new function will compute the derivative
1557    /// of the function to which the macro was applied.
1558    ///
1559    /// The expected usage syntax is:
1560    /// `#[autodiff_reverse(NAME, INPUT_ACTIVITIES, OUTPUT_ACTIVITY)]`
1561    ///
1562    /// - `NAME`: A string that represents a valid function name.
1563    /// - `INPUT_ACTIVITIES`: Specifies one valid activity for each input parameter.
1564    /// - `OUTPUT_ACTIVITY`: Must not be set if the function implicitly returns nothing
1565    ///   (or explicitly returns `-> ()`). Otherwise, it must be set to one of the allowed activities.
1566    ///
1567    /// ACTIVITIES might either be `Active`, `Duplicated` or `Const`, more options will be exposed later.
1568    ///
1569    /// `Active` can be used for float scalar values.
1570    /// If used on an input, a new float will be appended to the return tuple of the generated
1571    /// function. If the function returns a float scalar, `Active` can be used for the return as
1572    /// well. In this case a float scalar will be appended to the argument list, it works as seed.
1573    ///
1574    /// `Duplicated` can be used on references, raw pointers, or other indirect input
1575    /// arguments. It creates a new shadow argument of the same type, following the original argument.
1576    /// A const reference or pointer argument will receive a mutable reference or pointer as shadow.
1577    ///
1578    /// `Const` should be used on non-float arguments, or float-based arguments as an optimization
1579    /// if we are not interested in computing the derivatives with respect to this argument.
1580    ///
1581    /// ### Usage examples:
1582    ///
1583    /// ```rust,ignore (autodiff requires a -Z flag as well as fat-lto for testing)
1584    /// #![feature(autodiff)]
1585    /// use std::autodiff::*;
1586    /// #[autodiff_reverse(rb_rev, Active, Active, Active)]
1587    /// fn rosenbrock(x: f64, y: f64) -> f64 {
1588    ///     (1.0 - x).powi(2) + 100.0 * (y - x.powi(2)).powi(2)
1589    /// }
1590    /// #[autodiff_reverse(rb_inp_rev, Active, Active, Duplicated)]
1591    /// fn rosenbrock_inp(x: f64, y: f64, out: &mut f64) {
1592    ///     *out = (1.0 - x).powi(2) + 100.0 * (y - x.powi(2)).powi(2);
1593    /// }
1594    ///
1595    /// fn main() {
1596    ///     let (output1, dx1, dy1) = rb_rev(1.0, 3.0, 1.0);
1597    ///     dbg!(output1, dx1, dy1); // (400.0, -800.0, 400.0)
1598    ///     let mut output2 = 0.0;
1599    ///     let mut seed = 1.0;
1600    ///     let (dx2, dy2) = rb_inp_rev(1.0, 3.0, &mut output2, &mut seed);
1601    ///     // (dx2, dy2, output2, seed) == (-800.0, 400.0, 400.0, 0.0)
1602    /// }
1603    /// ```
1604    ///
1605    ///
1606    /// We often want to track how one or more input floats affect one output float. This output can
1607    /// be a scalar return value, or a mutable reference or pointer argument. In the latter case, the
1608    /// mutable input should be marked as duplicated and its shadow initialized to `0.0`. The shadow of
1609    /// the output should be marked as active or duplicated and initialized to `1.0`. After calling
1610    /// the generated function, the shadow(s) of the input(s) will contain the derivatives. The
1611    /// shadow of the outputs ("seed") will be reset to zero.
1612    /// If the function has more than one output float marked as active or duplicated, users might want to
1613    /// set one of them to `1.0` and the others to `0.0` to compute partial derivatives.
1614    /// Unlike forward-mode, a call to the generated function does not reset the shadow of the
1615    /// inputs.
1616    /// Reverse mode is generally more efficient if we have more active/duplicated input than
1617    /// output floats.
1618    ///
1619    /// Related information can also be found under the term "Jacobian-Vector Product" (JVP).
1620    #[unstable(feature = "autodiff", issue = "124509")]
1621    #[allow_internal_unstable(rustc_attrs)]
1622    #[allow_internal_unstable(core_intrinsics)]
1623    #[rustc_builtin_macro]
1624    pub macro autodiff_reverse($item:item) {
1625        /* compiler built-in */
1626    }
1627
1628    /// Asserts that a boolean expression is `true` at runtime.
1629    ///
1630    /// This will invoke the [`panic!`] macro if the provided expression cannot be
1631    /// evaluated to `true` at runtime.
1632    ///
1633    /// # Uses
1634    ///
1635    /// Assertions are always checked in both debug and release builds, and cannot
1636    /// be disabled. See [`debug_assert!`] for assertions that are not enabled in
1637    /// release builds by default.
1638    ///
1639    /// Unsafe code may rely on `assert!` to enforce run-time invariants that, if
1640    /// violated could lead to unsafety.
1641    ///
1642    /// Other use-cases of `assert!` include testing and enforcing run-time
1643    /// invariants in safe code (whose violation cannot result in unsafety).
1644    ///
1645    /// # Custom Messages
1646    ///
1647    /// This macro has a second form, where a custom panic message can
1648    /// be provided with or without arguments for formatting. See [`std::fmt`]
1649    /// for syntax for this form. Expressions used as format arguments will only
1650    /// be evaluated if the assertion fails.
1651    ///
1652    /// [`std::fmt`]: ../std/fmt/index.html
1653    ///
1654    /// # Examples
1655    ///
1656    /// ```
1657    /// // the panic message for these assertions is the stringified value of the
1658    /// // expression given.
1659    /// assert!(true);
1660    ///
1661    /// fn some_computation() -> bool {
1662    ///     // Some expensive computation here
1663    ///     true
1664    /// }
1665    ///
1666    /// assert!(some_computation());
1667    ///
1668    /// // assert with a custom message
1669    /// let x = true;
1670    /// assert!(x, "x wasn't true!");
1671    ///
1672    /// let a = 3; let b = 27;
1673    /// assert!(a + b == 30, "a = {}, b = {}", a, b);
1674    /// ```
1675    #[stable(feature = "rust1", since = "1.0.0")]
1676    #[rustc_builtin_macro]
1677    #[macro_export]
1678    #[rustc_diagnostic_item = "assert_macro"]
1679    #[allow_internal_unstable(
1680        core_intrinsics,
1681        panic_internals,
1682        edition_panic,
1683        generic_assert_internals
1684    )]
1685    macro_rules! assert {
1686        ($cond:expr $(,)?) => {{ /* compiler built-in */ }};
1687        ($cond:expr, $($arg:tt)+) => {{ /* compiler built-in */ }};
1688    }
1689
1690    /// Prints passed tokens into the standard output.
1691    #[unstable(
1692        feature = "log_syntax",
1693        issue = "29598",
1694        reason = "`log_syntax!` is not stable enough for use and is subject to change"
1695    )]
1696    #[rustc_builtin_macro]
1697    #[macro_export]
1698    macro_rules! log_syntax {
1699        ($($arg:tt)*) => {
1700            /* compiler built-in */
1701        };
1702    }
1703
1704    /// Enables or disables tracing functionality used for debugging other macros.
1705    #[unstable(
1706        feature = "trace_macros",
1707        issue = "29598",
1708        reason = "`trace_macros` is not stable enough for use and is subject to change"
1709    )]
1710    #[rustc_builtin_macro]
1711    #[macro_export]
1712    macro_rules! trace_macros {
1713        (true) => {{ /* compiler built-in */ }};
1714        (false) => {{ /* compiler built-in */ }};
1715    }
1716
1717    /// Attribute macro used to apply derive macros.
1718    ///
1719    /// See [the reference] for more info.
1720    ///
1721    /// [the reference]: ../../../reference/attributes/derive.html
1722    #[stable(feature = "rust1", since = "1.0.0")]
1723    #[rustc_builtin_macro]
1724    pub macro derive($item:item) {
1725        /* compiler built-in */
1726    }
1727
1728    /// Attribute macro used to apply derive macros for implementing traits
1729    /// in a const context.
1730    ///
1731    /// See [the reference] for more info.
1732    ///
1733    /// [the reference]: ../../../reference/attributes/derive.html
1734    #[unstable(feature = "derive_const", issue = "118304")]
1735    #[rustc_builtin_macro]
1736    pub macro derive_const($item:item) {
1737        /* compiler built-in */
1738    }
1739
1740    /// Attribute macro applied to a function to turn it into a unit test.
1741    ///
1742    /// See [the reference] for more info.
1743    ///
1744    /// [the reference]: ../../../reference/attributes/testing.html#the-test-attribute
1745    #[stable(feature = "rust1", since = "1.0.0")]
1746    #[allow_internal_unstable(test, rustc_attrs, coverage_attribute)]
1747    #[rustc_builtin_macro]
1748    pub macro test($item:item) {
1749        /* compiler built-in */
1750    }
1751
1752    /// Attribute macro applied to a function to turn it into a benchmark test.
1753    #[unstable(
1754        feature = "test",
1755        issue = "50297",
1756        reason = "`bench` is a part of custom test frameworks which are unstable"
1757    )]
1758    #[allow_internal_unstable(test, rustc_attrs, coverage_attribute)]
1759    #[rustc_builtin_macro]
1760    pub macro bench($item:item) {
1761        /* compiler built-in */
1762    }
1763
1764    /// An implementation detail of the `#[test]` and `#[bench]` macros.
1765    #[unstable(
1766        feature = "custom_test_frameworks",
1767        issue = "50297",
1768        reason = "custom test frameworks are an unstable feature"
1769    )]
1770    #[allow_internal_unstable(test, rustc_attrs)]
1771    #[rustc_builtin_macro]
1772    pub macro test_case($item:item) {
1773        /* compiler built-in */
1774    }
1775
1776    /// Attribute macro applied to a static to register it as a global allocator.
1777    ///
1778    /// See also [`std::alloc::GlobalAlloc`](../../../std/alloc/trait.GlobalAlloc.html).
1779    #[stable(feature = "global_allocator", since = "1.28.0")]
1780    #[allow_internal_unstable(rustc_attrs)]
1781    #[rustc_builtin_macro]
1782    pub macro global_allocator($item:item) {
1783        /* compiler built-in */
1784    }
1785
1786    /// Attribute macro applied to a function to give it a post-condition.
1787    ///
1788    /// The attribute carries an argument token-tree which is
1789    /// eventually parsed as a unary closure expression that is
1790    /// invoked on a reference to the return value.
1791    #[unstable(feature = "contracts", issue = "128044")]
1792    #[allow_internal_unstable(contracts_internals)]
1793    #[rustc_builtin_macro]
1794    pub macro contracts_ensures($item:item) {
1795        /* compiler built-in */
1796    }
1797
1798    /// Attribute macro applied to a function to give it a precondition.
1799    ///
1800    /// The attribute carries an argument token-tree which is
1801    /// eventually parsed as an boolean expression with access to the
1802    /// function's formal parameters
1803    #[unstable(feature = "contracts", issue = "128044")]
1804    #[allow_internal_unstable(contracts_internals)]
1805    #[rustc_builtin_macro]
1806    pub macro contracts_requires($item:item) {
1807        /* compiler built-in */
1808    }
1809
1810    /// Attribute macro applied to a function to register it as a handler for allocation failure.
1811    ///
1812    /// See also [`std::alloc::handle_alloc_error`](../../../std/alloc/fn.handle_alloc_error.html).
1813    #[unstable(feature = "alloc_error_handler", issue = "51540")]
1814    #[allow_internal_unstable(rustc_attrs)]
1815    #[rustc_builtin_macro]
1816    pub macro alloc_error_handler($item:item) {
1817        /* compiler built-in */
1818    }
1819
1820    /// Keeps the item it's applied to if the passed path is accessible, and removes it otherwise.
1821    #[unstable(
1822        feature = "cfg_accessible",
1823        issue = "64797",
1824        reason = "`cfg_accessible` is not fully implemented"
1825    )]
1826    #[rustc_builtin_macro]
1827    pub macro cfg_accessible($item:item) {
1828        /* compiler built-in */
1829    }
1830
1831    /// Expands all `#[cfg]` and `#[cfg_attr]` attributes in the code fragment it's applied to.
1832    #[unstable(
1833        feature = "cfg_eval",
1834        issue = "82679",
1835        reason = "`cfg_eval` is a recently implemented feature"
1836    )]
1837    #[rustc_builtin_macro]
1838    pub macro cfg_eval($($tt:tt)*) {
1839        /* compiler built-in */
1840    }
1841
1842    /// Provide a list of type aliases and other opaque-type-containing type definitions
1843    /// to an item with a body. This list will be used in that body to define opaque
1844    /// types' hidden types.
1845    /// Can only be applied to things that have bodies.
1846    #[unstable(
1847        feature = "type_alias_impl_trait",
1848        issue = "63063",
1849        reason = "`type_alias_impl_trait` has open design concerns"
1850    )]
1851    #[rustc_builtin_macro]
1852    pub macro define_opaque($($tt:tt)*) {
1853        /* compiler built-in */
1854    }
1855
1856    /// Unstable placeholder for type ascription.
1857    #[allow_internal_unstable(builtin_syntax)]
1858    #[unstable(
1859        feature = "type_ascription",
1860        issue = "23416",
1861        reason = "placeholder syntax for type ascription"
1862    )]
1863    #[rustfmt::skip]
1864    pub macro type_ascribe($expr:expr, $ty:ty) {
1865        builtin # type_ascribe($expr, $ty)
1866    }
1867
1868    /// Unstable placeholder for deref patterns.
1869    #[allow_internal_unstable(builtin_syntax)]
1870    #[unstable(
1871        feature = "deref_patterns",
1872        issue = "87121",
1873        reason = "placeholder syntax for deref patterns"
1874    )]
1875    pub macro deref($pat:pat) {
1876        builtin # deref($pat)
1877    }
1878
1879    /// Derive macro generating an impl of the trait `From`.
1880    /// Currently, it can only be used on single-field structs.
1881    // Note that the macro is in a different module than the `From` trait,
1882    // to avoid triggering an unstable feature being used if someone imports
1883    // `std::convert::From`.
1884    #[rustc_builtin_macro]
1885    #[unstable(feature = "derive_from", issue = "144889")]
1886    pub macro From($item: item) {
1887        /* compiler built-in */
1888    }
1889
1890    /// Externally Implementable Item: Defines an attribute macro that can override the item
1891    /// this is applied to.
1892    #[unstable(feature = "extern_item_impls", issue = "125418")]
1893    #[rustc_builtin_macro]
1894    #[allow_internal_unstable(eii_internals, decl_macro, rustc_attrs)]
1895    pub macro eii($item:item) {
1896        /* compiler built-in */
1897    }
1898
1899    /// Unsafely Externally Implementable Item: Defines an unsafe attribute macro that can override
1900    /// the item this is applied to.
1901    #[unstable(feature = "extern_item_impls", issue = "125418")]
1902    #[rustc_builtin_macro]
1903    #[allow_internal_unstable(eii_internals, decl_macro, rustc_attrs)]
1904    pub macro unsafe_eii($item:item) {
1905        /* compiler built-in */
1906    }
1907
1908    /// Impl detail of EII
1909    #[unstable(feature = "eii_internals", issue = "none")]
1910    #[rustc_builtin_macro]
1911    pub macro eii_declaration($item:item) {
1912        /* compiler built-in */
1913    }
1914}