Skip to main content

core/num/
f16.rs

1//! Constants for the `f16` half-precision floating point type.
2//!
3//! *[See also the `f16` primitive type][f16].*
4//!
5//! Mathematically significant numbers are provided in the `consts` sub-module.
6//!
7//! For the constants defined directly in this module
8//! (as distinct from those defined in the `consts` sub-module),
9//! new code should instead use the associated constants
10//! defined directly on the `f16` type.
11
12#![unstable(feature = "f16", issue = "116909")]
13
14use crate::convert::FloatToInt;
15use crate::num::FpCategory;
16#[cfg(not(test))]
17use crate::num::libm;
18use crate::panic::const_assert;
19use crate::{intrinsics, mem};
20
21/// Basic mathematical constants.
22#[unstable(feature = "f16", issue = "116909")]
23#[rustc_diagnostic_item = "f16_consts_mod"]
24pub mod consts {
25    // FIXME: replace with mathematical constants from cmath.
26
27    /// Archimedes' constant (π)
28    #[unstable(feature = "f16", issue = "116909")]
29    pub const PI: f16 = 3.14159265358979323846264338327950288_f16;
30
31    /// The full circle constant (τ)
32    ///
33    /// Equal to 2π.
34    #[unstable(feature = "f16", issue = "116909")]
35    pub const TAU: f16 = 6.28318530717958647692528676655900577_f16;
36
37    /// The golden ratio (φ)
38    #[unstable(feature = "f16", issue = "116909")]
39    pub const GOLDEN_RATIO: f16 = 1.618033988749894848204586834365638118_f16;
40
41    /// The Euler-Mascheroni constant (γ)
42    #[unstable(feature = "f16", issue = "116909")]
43    pub const EULER_GAMMA: f16 = 0.577215664901532860606512090082402431_f16;
44
45    /// π/2
46    #[unstable(feature = "f16", issue = "116909")]
47    pub const FRAC_PI_2: f16 = 1.57079632679489661923132169163975144_f16;
48
49    /// π/3
50    #[unstable(feature = "f16", issue = "116909")]
51    pub const FRAC_PI_3: f16 = 1.04719755119659774615421446109316763_f16;
52
53    /// π/4
54    #[unstable(feature = "f16", issue = "116909")]
55    pub const FRAC_PI_4: f16 = 0.785398163397448309615660845819875721_f16;
56
57    /// π/6
58    #[unstable(feature = "f16", issue = "116909")]
59    pub const FRAC_PI_6: f16 = 0.52359877559829887307710723054658381_f16;
60
61    /// π/8
62    #[unstable(feature = "f16", issue = "116909")]
63    pub const FRAC_PI_8: f16 = 0.39269908169872415480783042290993786_f16;
64
65    /// 1/π
66    #[unstable(feature = "f16", issue = "116909")]
67    pub const FRAC_1_PI: f16 = 0.318309886183790671537767526745028724_f16;
68
69    /// 1/sqrt(π)
70    #[unstable(feature = "f16", issue = "116909")]
71    // Also, #[unstable(feature = "more_float_constants", issue = "146939")]
72    pub const FRAC_1_SQRT_PI: f16 = 0.564189583547756286948079451560772586_f16;
73
74    /// 1/sqrt(2π)
75    #[doc(alias = "FRAC_1_SQRT_TAU")]
76    #[unstable(feature = "f16", issue = "116909")]
77    // Also, #[unstable(feature = "more_float_constants", issue = "146939")]
78    pub const FRAC_1_SQRT_2PI: f16 = 0.398942280401432677939946059934381868_f16;
79
80    /// 2/π
81    #[unstable(feature = "f16", issue = "116909")]
82    pub const FRAC_2_PI: f16 = 0.636619772367581343075535053490057448_f16;
83
84    /// 2/sqrt(π)
85    #[unstable(feature = "f16", issue = "116909")]
86    pub const FRAC_2_SQRT_PI: f16 = 1.12837916709551257389615890312154517_f16;
87
88    /// sqrt(2)
89    #[unstable(feature = "f16", issue = "116909")]
90    pub const SQRT_2: f16 = 1.41421356237309504880168872420969808_f16;
91
92    /// 1/sqrt(2)
93    #[unstable(feature = "f16", issue = "116909")]
94    pub const FRAC_1_SQRT_2: f16 = 0.707106781186547524400844362104849039_f16;
95
96    /// sqrt(3)
97    #[unstable(feature = "f16", issue = "116909")]
98    // Also, #[unstable(feature = "more_float_constants", issue = "146939")]
99    pub const SQRT_3: f16 = 1.732050807568877293527446341505872367_f16;
100
101    /// 1/sqrt(3)
102    #[unstable(feature = "f16", issue = "116909")]
103    // Also, #[unstable(feature = "more_float_constants", issue = "146939")]
104    pub const FRAC_1_SQRT_3: f16 = 0.577350269189625764509148780501957456_f16;
105
106    /// sqrt(5)
107    #[unstable(feature = "more_float_constants", issue = "146939")]
108    // Also, #[unstable(feature = "f16", issue = "116909")]
109    pub const SQRT_5: f16 = 2.23606797749978969640917366873127623_f16;
110
111    /// 1/sqrt(5)
112    #[unstable(feature = "more_float_constants", issue = "146939")]
113    // Also, #[unstable(feature = "f16", issue = "116909")]
114    pub const FRAC_1_SQRT_5: f16 = 0.44721359549995793928183473374625524_f16;
115
116    /// Euler's number (e)
117    #[unstable(feature = "f16", issue = "116909")]
118    pub const E: f16 = 2.71828182845904523536028747135266250_f16;
119
120    /// log<sub>2</sub>(10)
121    #[unstable(feature = "f16", issue = "116909")]
122    pub const LOG2_10: f16 = 3.32192809488736234787031942948939018_f16;
123
124    /// log<sub>2</sub>(e)
125    #[unstable(feature = "f16", issue = "116909")]
126    pub const LOG2_E: f16 = 1.44269504088896340735992468100189214_f16;
127
128    /// log<sub>10</sub>(2)
129    #[unstable(feature = "f16", issue = "116909")]
130    pub const LOG10_2: f16 = 0.301029995663981195213738894724493027_f16;
131
132    /// log<sub>10</sub>(e)
133    #[unstable(feature = "f16", issue = "116909")]
134    pub const LOG10_E: f16 = 0.434294481903251827651128918916605082_f16;
135
136    /// ln(2)
137    #[unstable(feature = "f16", issue = "116909")]
138    pub const LN_2: f16 = 0.693147180559945309417232121458176568_f16;
139
140    /// ln(10)
141    #[unstable(feature = "f16", issue = "116909")]
142    pub const LN_10: f16 = 2.30258509299404568401799145468436421_f16;
143}
144
145#[doc(test(attr(feature(cfg_target_has_reliable_f16_f128), allow(internal_features))))]
146impl f16 {
147    /// The radix or base of the internal representation of `f16`.
148    #[unstable(feature = "f16", issue = "116909")]
149    pub const RADIX: u32 = 2;
150
151    /// The size of this float type in bits.
152    // #[unstable(feature = "f16", issue = "116909")]
153    #[unstable(feature = "float_bits_const", issue = "151073")]
154    pub const BITS: u32 = 16;
155
156    /// Number of significant digits in base 2.
157    ///
158    /// Note that the size of the mantissa in the bitwise representation is one
159    /// smaller than this since the leading 1 is not stored explicitly.
160    #[unstable(feature = "f16", issue = "116909")]
161    pub const MANTISSA_DIGITS: u32 = 11;
162
163    /// Approximate number of significant digits in base 10.
164    ///
165    /// This is the maximum <i>x</i> such that any decimal number with <i>x</i>
166    /// significant digits can be converted to `f16` and back without loss.
167    ///
168    /// Equal to floor(log<sub>10</sub>&nbsp;2<sup>[`MANTISSA_DIGITS`]&nbsp;&minus;&nbsp;1</sup>).
169    ///
170    /// [`MANTISSA_DIGITS`]: f16::MANTISSA_DIGITS
171    #[unstable(feature = "f16", issue = "116909")]
172    pub const DIGITS: u32 = 3;
173
174    /// [Machine epsilon] value for `f16`.
175    ///
176    /// This is the difference between `1.0` and the next larger representable number.
177    ///
178    /// Equal to 2<sup>1&nbsp;&minus;&nbsp;[`MANTISSA_DIGITS`]</sup>.
179    ///
180    /// [Machine epsilon]: https://en.wikipedia.org/wiki/Machine_epsilon
181    /// [`MANTISSA_DIGITS`]: f16::MANTISSA_DIGITS
182    #[unstable(feature = "f16", issue = "116909")]
183    #[rustc_diagnostic_item = "f16_epsilon"]
184    pub const EPSILON: f16 = 9.7656e-4_f16;
185
186    /// Smallest finite `f16` value.
187    ///
188    /// Equal to &minus;[`MAX`].
189    ///
190    /// [`MAX`]: f16::MAX
191    #[unstable(feature = "f16", issue = "116909")]
192    pub const MIN: f16 = -6.5504e+4_f16;
193    /// Smallest positive normal `f16` value.
194    ///
195    /// Equal to 2<sup>[`MIN_EXP`]&nbsp;&minus;&nbsp;1</sup>.
196    ///
197    /// [`MIN_EXP`]: f16::MIN_EXP
198    #[unstable(feature = "f16", issue = "116909")]
199    pub const MIN_POSITIVE: f16 = 6.1035e-5_f16;
200    /// Largest finite `f16` value.
201    ///
202    /// Equal to
203    /// (1&nbsp;&minus;&nbsp;2<sup>&minus;[`MANTISSA_DIGITS`]</sup>)&nbsp;2<sup>[`MAX_EXP`]</sup>.
204    ///
205    /// [`MANTISSA_DIGITS`]: f16::MANTISSA_DIGITS
206    /// [`MAX_EXP`]: f16::MAX_EXP
207    #[unstable(feature = "f16", issue = "116909")]
208    pub const MAX: f16 = 6.5504e+4_f16;
209
210    /// One greater than the minimum possible *normal* power of 2 exponent
211    /// for a significand bounded by 1 ≤ x < 2 (i.e. the IEEE definition).
212    ///
213    /// This corresponds to the exact minimum possible *normal* power of 2 exponent
214    /// for a significand bounded by 0.5 ≤ x < 1 (i.e. the C definition).
215    /// In other words, all normal numbers representable by this type are
216    /// greater than or equal to 0.5&nbsp;×&nbsp;2<sup><i>MIN_EXP</i></sup>.
217    #[unstable(feature = "f16", issue = "116909")]
218    pub const MIN_EXP: i32 = -13;
219    /// One greater than the maximum possible power of 2 exponent
220    /// for a significand bounded by 1 ≤ x < 2 (i.e. the IEEE definition).
221    ///
222    /// This corresponds to the exact maximum possible power of 2 exponent
223    /// for a significand bounded by 0.5 ≤ x < 1 (i.e. the C definition).
224    /// In other words, all numbers representable by this type are
225    /// strictly less than 2<sup><i>MAX_EXP</i></sup>.
226    #[unstable(feature = "f16", issue = "116909")]
227    pub const MAX_EXP: i32 = 16;
228
229    /// Minimum <i>x</i> for which 10<sup><i>x</i></sup> is normal.
230    ///
231    /// Equal to ceil(log<sub>10</sub>&nbsp;[`MIN_POSITIVE`]).
232    ///
233    /// [`MIN_POSITIVE`]: f16::MIN_POSITIVE
234    #[unstable(feature = "f16", issue = "116909")]
235    pub const MIN_10_EXP: i32 = -4;
236    /// Maximum <i>x</i> for which 10<sup><i>x</i></sup> is normal.
237    ///
238    /// Equal to floor(log<sub>10</sub>&nbsp;[`MAX`]).
239    ///
240    /// [`MAX`]: f16::MAX
241    #[unstable(feature = "f16", issue = "116909")]
242    pub const MAX_10_EXP: i32 = 4;
243
244    /// Not a Number (NaN).
245    ///
246    /// Note that IEEE 754 doesn't define just a single NaN value; a plethora of bit patterns are
247    /// considered to be NaN. Furthermore, the standard makes a difference between a "signaling" and
248    /// a "quiet" NaN, and allows inspecting its "payload" (the unspecified bits in the bit pattern)
249    /// and its sign. See the [specification of NaN bit patterns](f32#nan-bit-patterns) for more
250    /// info.
251    ///
252    /// This constant is guaranteed to be a quiet NaN (on targets that follow the Rust assumptions
253    /// that the quiet/signaling bit being set to 1 indicates a quiet NaN). Beyond that, nothing is
254    /// guaranteed about the specific bit pattern chosen here: both payload and sign are arbitrary.
255    /// The concrete bit pattern may change across Rust versions and target platforms.
256    #[allow(clippy::eq_op)]
257    #[rustc_diagnostic_item = "f16_nan"]
258    #[unstable(feature = "f16", issue = "116909")]
259    pub const NAN: f16 = 0.0_f16 / 0.0_f16;
260
261    /// Infinity (∞).
262    #[unstable(feature = "f16", issue = "116909")]
263    pub const INFINITY: f16 = 1.0_f16 / 0.0_f16;
264
265    /// Negative infinity (−∞).
266    #[unstable(feature = "f16", issue = "116909")]
267    pub const NEG_INFINITY: f16 = -1.0_f16 / 0.0_f16;
268
269    /// Sign bit
270    pub(crate) const SIGN_MASK: u16 = 0x8000;
271
272    /// Exponent mask
273    pub(crate) const EXP_MASK: u16 = 0x7c00;
274
275    /// Mantissa mask
276    pub(crate) const MAN_MASK: u16 = 0x03ff;
277
278    /// Minimum representable positive value (min subnormal)
279    const TINY_BITS: u16 = 0x1;
280
281    /// Minimum representable negative value (min negative subnormal)
282    const NEG_TINY_BITS: u16 = Self::TINY_BITS | Self::SIGN_MASK;
283
284    /// Returns `true` if this value is NaN.
285    ///
286    /// ```
287    /// #![feature(f16)]
288    /// # #[cfg(target_has_reliable_f16)] {
289    ///
290    /// let nan = f16::NAN;
291    /// let f = 7.0_f16;
292    ///
293    /// assert!(nan.is_nan());
294    /// assert!(!f.is_nan());
295    /// # }
296    /// ```
297    #[inline]
298    #[must_use]
299    #[unstable(feature = "f16", issue = "116909")]
300    #[allow(clippy::eq_op)] // > if you intended to check if the operand is NaN, use `.is_nan()` instead :)
301    pub const fn is_nan(self) -> bool {
302        self != self
303    }
304
305    /// Returns `true` if this value is positive infinity or negative infinity, and
306    /// `false` otherwise.
307    ///
308    /// ```
309    /// #![feature(f16)]
310    /// # #[cfg(target_has_reliable_f16)] {
311    ///
312    /// let f = 7.0f16;
313    /// let inf = f16::INFINITY;
314    /// let neg_inf = f16::NEG_INFINITY;
315    /// let nan = f16::NAN;
316    ///
317    /// assert!(!f.is_infinite());
318    /// assert!(!nan.is_infinite());
319    ///
320    /// assert!(inf.is_infinite());
321    /// assert!(neg_inf.is_infinite());
322    /// # }
323    /// ```
324    #[inline]
325    #[must_use]
326    #[unstable(feature = "f16", issue = "116909")]
327    pub const fn is_infinite(self) -> bool {
328        (self == f16::INFINITY) | (self == f16::NEG_INFINITY)
329    }
330
331    /// Returns `true` if this number is neither infinite nor NaN.
332    ///
333    /// ```
334    /// #![feature(f16)]
335    /// # #[cfg(target_has_reliable_f16)] {
336    ///
337    /// let f = 7.0f16;
338    /// let inf: f16 = f16::INFINITY;
339    /// let neg_inf: f16 = f16::NEG_INFINITY;
340    /// let nan: f16 = f16::NAN;
341    ///
342    /// assert!(f.is_finite());
343    ///
344    /// assert!(!nan.is_finite());
345    /// assert!(!inf.is_finite());
346    /// assert!(!neg_inf.is_finite());
347    /// # }
348    /// ```
349    #[inline]
350    #[must_use]
351    #[unstable(feature = "f16", issue = "116909")]
352    #[rustc_const_unstable(feature = "f16", issue = "116909")]
353    pub const fn is_finite(self) -> bool {
354        // There's no need to handle NaN separately: if self is NaN,
355        // the comparison is not true, exactly as desired.
356        self.abs() < Self::INFINITY
357    }
358
359    /// Returns `true` if the number is [subnormal].
360    ///
361    /// ```
362    /// #![feature(f16)]
363    /// # #[cfg(target_has_reliable_f16)] {
364    ///
365    /// let min = f16::MIN_POSITIVE; // 6.1035e-5
366    /// let max = f16::MAX;
367    /// let lower_than_min = 1.0e-7_f16;
368    /// let zero = 0.0_f16;
369    ///
370    /// assert!(!min.is_subnormal());
371    /// assert!(!max.is_subnormal());
372    ///
373    /// assert!(!zero.is_subnormal());
374    /// assert!(!f16::NAN.is_subnormal());
375    /// assert!(!f16::INFINITY.is_subnormal());
376    /// // Values between `0` and `min` are Subnormal.
377    /// assert!(lower_than_min.is_subnormal());
378    /// # }
379    /// ```
380    /// [subnormal]: https://en.wikipedia.org/wiki/Denormal_number
381    #[inline]
382    #[must_use]
383    #[unstable(feature = "f16", issue = "116909")]
384    pub const fn is_subnormal(self) -> bool {
385        matches!(self.classify(), FpCategory::Subnormal)
386    }
387
388    /// Returns `true` if the number is neither zero, infinite, [subnormal], or NaN.
389    ///
390    /// ```
391    /// #![feature(f16)]
392    /// # #[cfg(target_has_reliable_f16)] {
393    ///
394    /// let min = f16::MIN_POSITIVE; // 6.1035e-5
395    /// let max = f16::MAX;
396    /// let lower_than_min = 1.0e-7_f16;
397    /// let zero = 0.0_f16;
398    ///
399    /// assert!(min.is_normal());
400    /// assert!(max.is_normal());
401    ///
402    /// assert!(!zero.is_normal());
403    /// assert!(!f16::NAN.is_normal());
404    /// assert!(!f16::INFINITY.is_normal());
405    /// // Values between `0` and `min` are Subnormal.
406    /// assert!(!lower_than_min.is_normal());
407    /// # }
408    /// ```
409    /// [subnormal]: https://en.wikipedia.org/wiki/Denormal_number
410    #[inline]
411    #[must_use]
412    #[unstable(feature = "f16", issue = "116909")]
413    pub const fn is_normal(self) -> bool {
414        matches!(self.classify(), FpCategory::Normal)
415    }
416
417    /// Returns the floating point category of the number. If only one property
418    /// is going to be tested, it is generally faster to use the specific
419    /// predicate instead.
420    ///
421    /// ```
422    /// #![feature(f16)]
423    /// # #[cfg(target_has_reliable_f16)] {
424    ///
425    /// use std::num::FpCategory;
426    ///
427    /// let num = 12.4_f16;
428    /// let inf = f16::INFINITY;
429    ///
430    /// assert_eq!(num.classify(), FpCategory::Normal);
431    /// assert_eq!(inf.classify(), FpCategory::Infinite);
432    /// # }
433    /// ```
434    #[inline]
435    #[unstable(feature = "f16", issue = "116909")]
436    pub const fn classify(self) -> FpCategory {
437        let b = self.to_bits();
438        match (b & Self::MAN_MASK, b & Self::EXP_MASK) {
439            (0, Self::EXP_MASK) => FpCategory::Infinite,
440            (_, Self::EXP_MASK) => FpCategory::Nan,
441            (0, 0) => FpCategory::Zero,
442            (_, 0) => FpCategory::Subnormal,
443            _ => FpCategory::Normal,
444        }
445    }
446
447    /// Returns `true` if `self` has a positive sign, including `+0.0`, NaNs with
448    /// positive sign bit and positive infinity.
449    ///
450    /// Note that IEEE 754 doesn't assign any meaning to the sign bit in case of
451    /// a NaN, and as Rust doesn't guarantee that the bit pattern of NaNs are
452    /// conserved over arithmetic operations, the result of `is_sign_positive` on
453    /// a NaN might produce an unexpected or non-portable result. See the [specification
454    /// of NaN bit patterns](f32#nan-bit-patterns) for more info. Use `self.signum() == 1.0`
455    /// if you need fully portable behavior (will return `false` for all NaNs).
456    ///
457    /// ```
458    /// #![feature(f16)]
459    /// # #[cfg(target_has_reliable_f16)] {
460    ///
461    /// let f = 7.0_f16;
462    /// let g = -7.0_f16;
463    ///
464    /// assert!(f.is_sign_positive());
465    /// assert!(!g.is_sign_positive());
466    /// # }
467    /// ```
468    #[inline]
469    #[must_use]
470    #[unstable(feature = "f16", issue = "116909")]
471    pub const fn is_sign_positive(self) -> bool {
472        !self.is_sign_negative()
473    }
474
475    /// Returns `true` if `self` has a negative sign, including `-0.0`, NaNs with
476    /// negative sign bit and negative infinity.
477    ///
478    /// Note that IEEE 754 doesn't assign any meaning to the sign bit in case of
479    /// a NaN, and as Rust doesn't guarantee that the bit pattern of NaNs are
480    /// conserved over arithmetic operations, the result of `is_sign_negative` on
481    /// a NaN might produce an unexpected or non-portable result. See the [specification
482    /// of NaN bit patterns](f32#nan-bit-patterns) for more info. Use `self.signum() == -1.0`
483    /// if you need fully portable behavior (will return `false` for all NaNs).
484    ///
485    /// ```
486    /// #![feature(f16)]
487    /// # #[cfg(target_has_reliable_f16)] {
488    ///
489    /// let f = 7.0_f16;
490    /// let g = -7.0_f16;
491    ///
492    /// assert!(!f.is_sign_negative());
493    /// assert!(g.is_sign_negative());
494    /// # }
495    /// ```
496    #[inline]
497    #[must_use]
498    #[unstable(feature = "f16", issue = "116909")]
499    pub const fn is_sign_negative(self) -> bool {
500        // IEEE754 says: isSignMinus(x) is true if and only if x has negative sign. isSignMinus
501        // applies to zeros and NaNs as well.
502        // SAFETY: This is just transmuting to get the sign bit, it's fine.
503        (self.to_bits() & (1 << 15)) != 0
504    }
505
506    /// Returns the least number greater than `self`.
507    ///
508    /// Let `TINY` be the smallest representable positive `f16`. Then,
509    ///  - if `self.is_nan()`, this returns `self`;
510    ///  - if `self` is [`NEG_INFINITY`], this returns [`MIN`];
511    ///  - if `self` is `-TINY`, this returns -0.0;
512    ///  - if `self` is -0.0 or +0.0, this returns `TINY`;
513    ///  - if `self` is [`MAX`] or [`INFINITY`], this returns [`INFINITY`];
514    ///  - otherwise the unique least value greater than `self` is returned.
515    ///
516    /// The identity `x.next_up() == -(-x).next_down()` holds for all non-NaN `x`. When `x`
517    /// is finite `x == x.next_up().next_down()` also holds.
518    ///
519    /// ```rust
520    /// #![feature(f16)]
521    /// # #[cfg(target_has_reliable_f16)] {
522    ///
523    /// // f16::EPSILON is the difference between 1.0 and the next number up.
524    /// assert_eq!(1.0f16.next_up(), 1.0 + f16::EPSILON);
525    /// // But not for most numbers.
526    /// assert!(0.1f16.next_up() < 0.1 + f16::EPSILON);
527    /// assert_eq!(4356f16.next_up(), 4360.0);
528    /// # }
529    /// ```
530    ///
531    /// This operation corresponds to IEEE-754 `nextUp`.
532    ///
533    /// [`NEG_INFINITY`]: Self::NEG_INFINITY
534    /// [`INFINITY`]: Self::INFINITY
535    /// [`MIN`]: Self::MIN
536    /// [`MAX`]: Self::MAX
537    #[inline]
538    #[doc(alias = "nextUp")]
539    #[unstable(feature = "f16", issue = "116909")]
540    pub const fn next_up(self) -> Self {
541        // Some targets violate Rust's assumption of IEEE semantics, e.g. by flushing
542        // denormals to zero. This is in general unsound and unsupported, but here
543        // we do our best to still produce the correct result on such targets.
544        let bits = self.to_bits();
545        if self.is_nan() || bits == Self::INFINITY.to_bits() {
546            return self;
547        }
548
549        let abs = bits & !Self::SIGN_MASK;
550        let next_bits = if abs == 0 {
551            Self::TINY_BITS
552        } else if bits == abs {
553            bits + 1
554        } else {
555            bits - 1
556        };
557        Self::from_bits(next_bits)
558    }
559
560    /// Returns the greatest number less than `self`.
561    ///
562    /// Let `TINY` be the smallest representable positive `f16`. Then,
563    ///  - if `self.is_nan()`, this returns `self`;
564    ///  - if `self` is [`INFINITY`], this returns [`MAX`];
565    ///  - if `self` is `TINY`, this returns 0.0;
566    ///  - if `self` is -0.0 or +0.0, this returns `-TINY`;
567    ///  - if `self` is [`MIN`] or [`NEG_INFINITY`], this returns [`NEG_INFINITY`];
568    ///  - otherwise the unique greatest value less than `self` is returned.
569    ///
570    /// The identity `x.next_down() == -(-x).next_up()` holds for all non-NaN `x`. When `x`
571    /// is finite `x == x.next_down().next_up()` also holds.
572    ///
573    /// ```rust
574    /// #![feature(f16)]
575    /// # #[cfg(target_has_reliable_f16)] {
576    ///
577    /// let x = 1.0f16;
578    /// // Clamp value into range [0, 1).
579    /// let clamped = x.clamp(0.0, 1.0f16.next_down());
580    /// assert!(clamped < 1.0);
581    /// assert_eq!(clamped.next_up(), 1.0);
582    /// # }
583    /// ```
584    ///
585    /// This operation corresponds to IEEE-754 `nextDown`.
586    ///
587    /// [`NEG_INFINITY`]: Self::NEG_INFINITY
588    /// [`INFINITY`]: Self::INFINITY
589    /// [`MIN`]: Self::MIN
590    /// [`MAX`]: Self::MAX
591    #[inline]
592    #[doc(alias = "nextDown")]
593    #[unstable(feature = "f16", issue = "116909")]
594    pub const fn next_down(self) -> Self {
595        // Some targets violate Rust's assumption of IEEE semantics, e.g. by flushing
596        // denormals to zero. This is in general unsound and unsupported, but here
597        // we do our best to still produce the correct result on such targets.
598        let bits = self.to_bits();
599        if self.is_nan() || bits == Self::NEG_INFINITY.to_bits() {
600            return self;
601        }
602
603        let abs = bits & !Self::SIGN_MASK;
604        let next_bits = if abs == 0 {
605            Self::NEG_TINY_BITS
606        } else if bits == abs {
607            bits - 1
608        } else {
609            bits + 1
610        };
611        Self::from_bits(next_bits)
612    }
613
614    /// Takes the reciprocal (inverse) of a number, `1/x`.
615    ///
616    /// ```
617    /// #![feature(f16)]
618    /// # #[cfg(target_has_reliable_f16)] {
619    ///
620    /// let x = 2.0_f16;
621    /// let abs_difference = (x.recip() - (1.0 / x)).abs();
622    ///
623    /// assert!(abs_difference <= f16::EPSILON);
624    /// # }
625    /// ```
626    #[inline]
627    #[unstable(feature = "f16", issue = "116909")]
628    #[must_use = "this returns the result of the operation, without modifying the original"]
629    pub const fn recip(self) -> Self {
630        1.0 / self
631    }
632
633    /// Converts radians to degrees.
634    ///
635    /// # Unspecified precision
636    ///
637    /// The precision of this function is non-deterministic. This means it varies by platform,
638    /// Rust version, and can even differ within the same execution from one invocation to the next.
639    ///
640    /// # Examples
641    ///
642    /// ```
643    /// #![feature(f16)]
644    /// # #[cfg(target_has_reliable_f16)] {
645    ///
646    /// let angle = std::f16::consts::PI;
647    ///
648    /// let abs_difference = (angle.to_degrees() - 180.0).abs();
649    /// assert!(abs_difference <= 0.5);
650    /// # }
651    /// ```
652    #[inline]
653    #[unstable(feature = "f16", issue = "116909")]
654    #[must_use = "this returns the result of the operation, without modifying the original"]
655    pub const fn to_degrees(self) -> Self {
656        // Use a literal to avoid double rounding, consts::PI is already rounded,
657        // and dividing would round again.
658        const PIS_IN_180: f16 = 57.2957795130823208767981548141051703_f16;
659        self * PIS_IN_180
660    }
661
662    /// Converts degrees to radians.
663    ///
664    /// # Unspecified precision
665    ///
666    /// The precision of this function is non-deterministic. This means it varies by platform,
667    /// Rust version, and can even differ within the same execution from one invocation to the next.
668    ///
669    /// # Examples
670    ///
671    /// ```
672    /// #![feature(f16)]
673    /// # #[cfg(target_has_reliable_f16)] {
674    ///
675    /// let angle = 180.0f16;
676    ///
677    /// let abs_difference = (angle.to_radians() - std::f16::consts::PI).abs();
678    ///
679    /// assert!(abs_difference <= 0.01);
680    /// # }
681    /// ```
682    #[inline]
683    #[unstable(feature = "f16", issue = "116909")]
684    #[must_use = "this returns the result of the operation, without modifying the original"]
685    pub const fn to_radians(self) -> f16 {
686        // Use a literal to avoid double rounding, consts::PI is already rounded,
687        // and dividing would round again.
688        const RADS_PER_DEG: f16 = 0.017453292519943295769236907684886_f16;
689        self * RADS_PER_DEG
690    }
691
692    /// Returns the maximum of the two numbers, ignoring NaN.
693    ///
694    /// If exactly one of the arguments is NaN (quiet or signaling), then the other argument is
695    /// returned. If both arguments are NaN, the return value is NaN, with the bit pattern picked
696    /// using the usual [rules for arithmetic operations](f32#nan-bit-patterns). If the inputs
697    /// compare equal (such as for the case of `+0.0` and `-0.0`), either input may be returned
698    /// non-deterministically.
699    ///
700    /// The handling of NaNs follows the IEEE 754-2019 semantics for `maximumNumber`, treating all
701    /// NaNs the same way to ensure the operation is associative. The handling of signed zeros
702    /// follows the IEEE 754-2008 semantics for `maxNum`.
703    ///
704    /// ```
705    /// #![feature(f16)]
706    /// # #[cfg(target_has_reliable_f16)] {
707    ///
708    /// let x = 1.0f16;
709    /// let y = 2.0f16;
710    ///
711    /// assert_eq!(x.max(y), y);
712    /// assert_eq!(x.max(f16::NAN), x);
713    /// # }
714    /// ```
715    #[inline]
716    #[unstable(feature = "f16", issue = "116909")]
717    #[rustc_const_unstable(feature = "f16", issue = "116909")]
718    #[must_use = "this returns the result of the comparison, without modifying either input"]
719    pub const fn max(self, other: f16) -> f16 {
720        intrinsics::maxnumf16(self, other)
721    }
722
723    /// Returns the minimum of the two numbers, ignoring NaN.
724    ///
725    /// If exactly one of the arguments is NaN (quiet or signaling), then the other argument is
726    /// returned. If both arguments are NaN, the return value is NaN, with the bit pattern picked
727    /// using the usual [rules for arithmetic operations](f32#nan-bit-patterns). If the inputs
728    /// compare equal (such as for the case of `+0.0` and `-0.0`), either input may be returned
729    /// non-deterministically.
730    ///
731    /// The handling of NaNs follows the IEEE 754-2019 semantics for `minimumNumber`, treating all
732    /// NaNs the same way to ensure the operation is associative. The handling of signed zeros
733    /// follows the IEEE 754-2008 semantics for `minNum`.
734    ///
735    /// ```
736    /// #![feature(f16)]
737    /// # #[cfg(target_has_reliable_f16)] {
738    ///
739    /// let x = 1.0f16;
740    /// let y = 2.0f16;
741    ///
742    /// assert_eq!(x.min(y), x);
743    /// assert_eq!(x.min(f16::NAN), x);
744    /// # }
745    /// ```
746    #[inline]
747    #[unstable(feature = "f16", issue = "116909")]
748    #[rustc_const_unstable(feature = "f16", issue = "116909")]
749    #[must_use = "this returns the result of the comparison, without modifying either input"]
750    pub const fn min(self, other: f16) -> f16 {
751        intrinsics::minnumf16(self, other)
752    }
753
754    /// Returns the maximum of the two numbers, propagating NaN.
755    ///
756    /// If at least one of the arguments is NaN, the return value is NaN, with the bit pattern
757    /// picked using the usual [rules for arithmetic operations](f32#nan-bit-patterns). Furthermore,
758    /// `-0.0` is considered to be less than `+0.0`, making this function fully deterministic for
759    /// non-NaN inputs.
760    ///
761    /// This is in contrast to [`f16::max`] which only returns NaN when *both* arguments are NaN,
762    /// and which does not reliably order `-0.0` and `+0.0`.
763    ///
764    /// This follows the IEEE 754-2019 semantics for `maximum`.
765    ///
766    /// ```
767    /// #![feature(f16)]
768    /// #![feature(float_minimum_maximum)]
769    /// # #[cfg(target_has_reliable_f16)] {
770    ///
771    /// let x = 1.0f16;
772    /// let y = 2.0f16;
773    ///
774    /// assert_eq!(x.maximum(y), y);
775    /// assert!(x.maximum(f16::NAN).is_nan());
776    /// # }
777    /// ```
778    #[inline]
779    #[unstable(feature = "f16", issue = "116909")]
780    // #[unstable(feature = "float_minimum_maximum", issue = "91079")]
781    #[must_use = "this returns the result of the comparison, without modifying either input"]
782    pub const fn maximum(self, other: f16) -> f16 {
783        intrinsics::maximumf16(self, other)
784    }
785
786    /// Returns the minimum of the two numbers, propagating NaN.
787    ///
788    /// If at least one of the arguments is NaN, the return value is NaN, with the bit pattern
789    /// picked using the usual [rules for arithmetic operations](f32#nan-bit-patterns). Furthermore,
790    /// `-0.0` is considered to be less than `+0.0`, making this function fully deterministic for
791    /// non-NaN inputs.
792    ///
793    /// This is in contrast to [`f16::min`] which only returns NaN when *both* arguments are NaN,
794    /// and which does not reliably order `-0.0` and `+0.0`.
795    ///
796    /// This follows the IEEE 754-2019 semantics for `minimum`.
797    ///
798    /// ```
799    /// #![feature(f16)]
800    /// #![feature(float_minimum_maximum)]
801    /// # #[cfg(target_has_reliable_f16)] {
802    ///
803    /// let x = 1.0f16;
804    /// let y = 2.0f16;
805    ///
806    /// assert_eq!(x.minimum(y), x);
807    /// assert!(x.minimum(f16::NAN).is_nan());
808    /// # }
809    /// ```
810    #[inline]
811    #[unstable(feature = "f16", issue = "116909")]
812    // #[unstable(feature = "float_minimum_maximum", issue = "91079")]
813    #[must_use = "this returns the result of the comparison, without modifying either input"]
814    pub const fn minimum(self, other: f16) -> f16 {
815        intrinsics::minimumf16(self, other)
816    }
817
818    /// Calculates the midpoint (average) between `self` and `rhs`.
819    ///
820    /// This returns NaN when *either* argument is NaN or if a combination of
821    /// +inf and -inf is provided as arguments.
822    ///
823    /// # Examples
824    ///
825    /// ```
826    /// #![feature(f16)]
827    /// # #[cfg(target_has_reliable_f16)] {
828    ///
829    /// assert_eq!(1f16.midpoint(4.0), 2.5);
830    /// assert_eq!((-5.5f16).midpoint(8.0), 1.25);
831    /// # }
832    /// ```
833    #[inline]
834    #[doc(alias = "average")]
835    #[unstable(feature = "f16", issue = "116909")]
836    #[rustc_const_unstable(feature = "f16", issue = "116909")]
837    pub const fn midpoint(self, other: f16) -> f16 {
838        const HI: f16 = f16::MAX / 2.;
839
840        let (a, b) = (self, other);
841        let abs_a = a.abs();
842        let abs_b = b.abs();
843
844        if abs_a <= HI && abs_b <= HI {
845            // Overflow is impossible
846            (a + b) / 2.
847        } else {
848            (a / 2.) + (b / 2.)
849        }
850    }
851
852    /// Rounds toward zero and converts to any primitive integer type,
853    /// assuming that the value is finite and fits in that type.
854    ///
855    /// ```
856    /// #![feature(f16)]
857    /// # #[cfg(target_has_reliable_f16)] {
858    ///
859    /// let value = 4.6_f16;
860    /// let rounded = unsafe { value.to_int_unchecked::<u16>() };
861    /// assert_eq!(rounded, 4);
862    ///
863    /// let value = -128.9_f16;
864    /// let rounded = unsafe { value.to_int_unchecked::<i8>() };
865    /// assert_eq!(rounded, i8::MIN);
866    /// # }
867    /// ```
868    ///
869    /// # Safety
870    ///
871    /// The value must:
872    ///
873    /// * Not be `NaN`
874    /// * Not be infinite
875    /// * Be representable in the return type `Int`, after truncating off its fractional part
876    #[inline]
877    #[unstable(feature = "f16", issue = "116909")]
878    #[must_use = "this returns the result of the operation, without modifying the original"]
879    pub unsafe fn to_int_unchecked<Int>(self) -> Int
880    where
881        Self: FloatToInt<Int>,
882    {
883        // SAFETY: the caller must uphold the safety contract for
884        // `FloatToInt::to_int_unchecked`.
885        unsafe { FloatToInt::<Int>::to_int_unchecked(self) }
886    }
887
888    /// Raw transmutation to `u16`.
889    ///
890    /// This is currently identical to `transmute::<f16, u16>(self)` on all platforms.
891    ///
892    /// See [`from_bits`](#method.from_bits) for some discussion of the
893    /// portability of this operation (there are almost no issues).
894    ///
895    /// Note that this function is distinct from `as` casting, which attempts to
896    /// preserve the *numeric* value, and not the bitwise value.
897    ///
898    /// ```
899    /// #![feature(f16)]
900    /// # #[cfg(target_has_reliable_f16)] {
901    ///
902    /// assert_ne!((1f16).to_bits(), 1f16 as u16); // to_bits() is not casting!
903    /// assert_eq!((12.5f16).to_bits(), 0x4a40);
904    /// # }
905    /// ```
906    #[inline]
907    #[unstable(feature = "f16", issue = "116909")]
908    #[must_use = "this returns the result of the operation, without modifying the original"]
909    #[allow(unnecessary_transmutes)]
910    pub const fn to_bits(self) -> u16 {
911        // SAFETY: `u16` is a plain old datatype so we can always transmute to it.
912        unsafe { mem::transmute(self) }
913    }
914
915    /// Raw transmutation from `u16`.
916    ///
917    /// This is currently identical to `transmute::<u16, f16>(v)` on all platforms.
918    /// It turns out this is incredibly portable, for two reasons:
919    ///
920    /// * Floats and Ints have the same endianness on all supported platforms.
921    /// * IEEE 754 very precisely specifies the bit layout of floats.
922    ///
923    /// However there is one caveat: prior to the 2008 version of IEEE 754, how
924    /// to interpret the NaN signaling bit wasn't actually specified. Most platforms
925    /// (notably x86 and ARM) picked the interpretation that was ultimately
926    /// standardized in 2008, but some didn't (notably MIPS). As a result, all
927    /// signaling NaNs on MIPS are quiet NaNs on x86, and vice-versa.
928    ///
929    /// Rather than trying to preserve signaling-ness cross-platform, this
930    /// implementation favors preserving the exact bits. This means that
931    /// any payloads encoded in NaNs will be preserved even if the result of
932    /// this method is sent over the network from an x86 machine to a MIPS one.
933    ///
934    /// If the results of this method are only manipulated by the same
935    /// architecture that produced them, then there is no portability concern.
936    ///
937    /// If the input isn't NaN, then there is no portability concern.
938    ///
939    /// If you don't care about signalingness (very likely), then there is no
940    /// portability concern.
941    ///
942    /// Note that this function is distinct from `as` casting, which attempts to
943    /// preserve the *numeric* value, and not the bitwise value.
944    ///
945    /// ```
946    /// #![feature(f16)]
947    /// # #[cfg(target_has_reliable_f16)] {
948    ///
949    /// let v = f16::from_bits(0x4a40);
950    /// assert_eq!(v, 12.5);
951    /// # }
952    /// ```
953    #[inline]
954    #[must_use]
955    #[unstable(feature = "f16", issue = "116909")]
956    #[allow(unnecessary_transmutes)]
957    pub const fn from_bits(v: u16) -> Self {
958        // It turns out the safety issues with sNaN were overblown! Hooray!
959        // SAFETY: `u16` is a plain old datatype so we can always transmute from it.
960        unsafe { mem::transmute(v) }
961    }
962
963    /// Returns the memory representation of this floating point number as a byte array in
964    /// big-endian (network) byte order.
965    ///
966    /// See [`from_bits`](Self::from_bits) for some discussion of the
967    /// portability of this operation (there are almost no issues).
968    ///
969    /// # Examples
970    ///
971    /// ```
972    /// #![feature(f16)]
973    /// # #[cfg(target_has_reliable_f16)] {
974    ///
975    /// let bytes = 12.5f16.to_be_bytes();
976    /// assert_eq!(bytes, [0x4a, 0x40]);
977    /// # }
978    /// ```
979    #[inline]
980    #[unstable(feature = "f16", issue = "116909")]
981    #[must_use = "this returns the result of the operation, without modifying the original"]
982    pub const fn to_be_bytes(self) -> [u8; 2] {
983        self.to_bits().to_be_bytes()
984    }
985
986    /// Returns the memory representation of this floating point number as a byte array in
987    /// little-endian byte order.
988    ///
989    /// See [`from_bits`](Self::from_bits) for some discussion of the
990    /// portability of this operation (there are almost no issues).
991    ///
992    /// # Examples
993    ///
994    /// ```
995    /// #![feature(f16)]
996    /// # #[cfg(target_has_reliable_f16)] {
997    ///
998    /// let bytes = 12.5f16.to_le_bytes();
999    /// assert_eq!(bytes, [0x40, 0x4a]);
1000    /// # }
1001    /// ```
1002    #[inline]
1003    #[unstable(feature = "f16", issue = "116909")]
1004    #[must_use = "this returns the result of the operation, without modifying the original"]
1005    pub const fn to_le_bytes(self) -> [u8; 2] {
1006        self.to_bits().to_le_bytes()
1007    }
1008
1009    /// Returns the memory representation of this floating point number as a byte array in
1010    /// native byte order.
1011    ///
1012    /// As the target platform's native endianness is used, portable code
1013    /// should use [`to_be_bytes`] or [`to_le_bytes`], as appropriate, instead.
1014    ///
1015    /// [`to_be_bytes`]: f16::to_be_bytes
1016    /// [`to_le_bytes`]: f16::to_le_bytes
1017    ///
1018    /// See [`from_bits`](Self::from_bits) for some discussion of the
1019    /// portability of this operation (there are almost no issues).
1020    ///
1021    /// # Examples
1022    ///
1023    /// ```
1024    /// #![feature(f16)]
1025    /// # #[cfg(target_has_reliable_f16)] {
1026    ///
1027    /// let bytes = 12.5f16.to_ne_bytes();
1028    /// assert_eq!(
1029    ///     bytes,
1030    ///     if cfg!(target_endian = "big") {
1031    ///         [0x4a, 0x40]
1032    ///     } else {
1033    ///         [0x40, 0x4a]
1034    ///     }
1035    /// );
1036    /// # }
1037    /// ```
1038    #[inline]
1039    #[unstable(feature = "f16", issue = "116909")]
1040    #[must_use = "this returns the result of the operation, without modifying the original"]
1041    pub const fn to_ne_bytes(self) -> [u8; 2] {
1042        self.to_bits().to_ne_bytes()
1043    }
1044
1045    /// Creates a floating point value from its representation as a byte array in big endian.
1046    ///
1047    /// See [`from_bits`](Self::from_bits) for some discussion of the
1048    /// portability of this operation (there are almost no issues).
1049    ///
1050    /// # Examples
1051    ///
1052    /// ```
1053    /// #![feature(f16)]
1054    /// # #[cfg(target_has_reliable_f16)] {
1055    ///
1056    /// let value = f16::from_be_bytes([0x4a, 0x40]);
1057    /// assert_eq!(value, 12.5);
1058    /// # }
1059    /// ```
1060    #[inline]
1061    #[must_use]
1062    #[unstable(feature = "f16", issue = "116909")]
1063    pub const fn from_be_bytes(bytes: [u8; 2]) -> Self {
1064        Self::from_bits(u16::from_be_bytes(bytes))
1065    }
1066
1067    /// Creates a floating point value from its representation as a byte array in little endian.
1068    ///
1069    /// See [`from_bits`](Self::from_bits) for some discussion of the
1070    /// portability of this operation (there are almost no issues).
1071    ///
1072    /// # Examples
1073    ///
1074    /// ```
1075    /// #![feature(f16)]
1076    /// # #[cfg(target_has_reliable_f16)] {
1077    ///
1078    /// let value = f16::from_le_bytes([0x40, 0x4a]);
1079    /// assert_eq!(value, 12.5);
1080    /// # }
1081    /// ```
1082    #[inline]
1083    #[must_use]
1084    #[unstable(feature = "f16", issue = "116909")]
1085    pub const fn from_le_bytes(bytes: [u8; 2]) -> Self {
1086        Self::from_bits(u16::from_le_bytes(bytes))
1087    }
1088
1089    /// Creates a floating point value from its representation as a byte array in native endian.
1090    ///
1091    /// As the target platform's native endianness is used, portable code
1092    /// likely wants to use [`from_be_bytes`] or [`from_le_bytes`], as
1093    /// appropriate instead.
1094    ///
1095    /// [`from_be_bytes`]: f16::from_be_bytes
1096    /// [`from_le_bytes`]: f16::from_le_bytes
1097    ///
1098    /// See [`from_bits`](Self::from_bits) for some discussion of the
1099    /// portability of this operation (there are almost no issues).
1100    ///
1101    /// # Examples
1102    ///
1103    /// ```
1104    /// #![feature(f16)]
1105    /// # #[cfg(target_has_reliable_f16)] {
1106    ///
1107    /// let value = f16::from_ne_bytes(if cfg!(target_endian = "big") {
1108    ///     [0x4a, 0x40]
1109    /// } else {
1110    ///     [0x40, 0x4a]
1111    /// });
1112    /// assert_eq!(value, 12.5);
1113    /// # }
1114    /// ```
1115    #[inline]
1116    #[must_use]
1117    #[unstable(feature = "f16", issue = "116909")]
1118    pub const fn from_ne_bytes(bytes: [u8; 2]) -> Self {
1119        Self::from_bits(u16::from_ne_bytes(bytes))
1120    }
1121
1122    /// Returns the ordering between `self` and `other`.
1123    ///
1124    /// Unlike the standard partial comparison between floating point numbers,
1125    /// this comparison always produces an ordering in accordance to
1126    /// the `totalOrder` predicate as defined in the IEEE 754 (2008 revision)
1127    /// floating point standard. The values are ordered in the following sequence:
1128    ///
1129    /// - negative quiet NaN
1130    /// - negative signaling NaN
1131    /// - negative infinity
1132    /// - negative numbers
1133    /// - negative subnormal numbers
1134    /// - negative zero
1135    /// - positive zero
1136    /// - positive subnormal numbers
1137    /// - positive numbers
1138    /// - positive infinity
1139    /// - positive signaling NaN
1140    /// - positive quiet NaN.
1141    ///
1142    /// The ordering established by this function does not always agree with the
1143    /// [`PartialOrd`] and [`PartialEq`] implementations of `f16`. For example,
1144    /// they consider negative and positive zero equal, while `total_cmp`
1145    /// doesn't.
1146    ///
1147    /// The interpretation of the signaling NaN bit follows the definition in
1148    /// the IEEE 754 standard, which may not match the interpretation by some of
1149    /// the older, non-conformant (e.g. MIPS) hardware implementations.
1150    ///
1151    /// # Example
1152    ///
1153    /// ```
1154    /// #![feature(f16)]
1155    /// # #[cfg(target_has_reliable_f16)] {
1156    ///
1157    /// struct GoodBoy {
1158    ///     name: &'static str,
1159    ///     weight: f16,
1160    /// }
1161    ///
1162    /// let mut bois = vec![
1163    ///     GoodBoy { name: "Pucci", weight: 0.1 },
1164    ///     GoodBoy { name: "Woofer", weight: 99.0 },
1165    ///     GoodBoy { name: "Yapper", weight: 10.0 },
1166    ///     GoodBoy { name: "Chonk", weight: f16::INFINITY },
1167    ///     GoodBoy { name: "Abs. Unit", weight: f16::NAN },
1168    ///     GoodBoy { name: "Floaty", weight: -5.0 },
1169    /// ];
1170    ///
1171    /// bois.sort_by(|a, b| a.weight.total_cmp(&b.weight));
1172    ///
1173    /// // `f16::NAN` could be positive or negative, which will affect the sort order.
1174    /// if f16::NAN.is_sign_negative() {
1175    ///     bois.into_iter().map(|b| b.weight)
1176    ///         .zip([f16::NAN, -5.0, 0.1, 10.0, 99.0, f16::INFINITY].iter())
1177    ///         .for_each(|(a, b)| assert_eq!(a.to_bits(), b.to_bits()))
1178    /// } else {
1179    ///     bois.into_iter().map(|b| b.weight)
1180    ///         .zip([-5.0, 0.1, 10.0, 99.0, f16::INFINITY, f16::NAN].iter())
1181    ///         .for_each(|(a, b)| assert_eq!(a.to_bits(), b.to_bits()))
1182    /// }
1183    /// # }
1184    /// ```
1185    #[inline]
1186    #[must_use]
1187    #[unstable(feature = "f16", issue = "116909")]
1188    #[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
1189    pub const fn total_cmp(&self, other: &Self) -> crate::cmp::Ordering {
1190        let mut left = self.to_bits() as i16;
1191        let mut right = other.to_bits() as i16;
1192
1193        // In case of negatives, flip all the bits except the sign
1194        // to achieve a similar layout as two's complement integers
1195        //
1196        // Why does this work? IEEE 754 floats consist of three fields:
1197        // Sign bit, exponent and mantissa. The set of exponent and mantissa
1198        // fields as a whole have the property that their bitwise order is
1199        // equal to the numeric magnitude where the magnitude is defined.
1200        // The magnitude is not normally defined on NaN values, but
1201        // IEEE 754 totalOrder defines the NaN values also to follow the
1202        // bitwise order. This leads to order explained in the doc comment.
1203        // However, the representation of magnitude is the same for negative
1204        // and positive numbers – only the sign bit is different.
1205        // To easily compare the floats as signed integers, we need to
1206        // flip the exponent and mantissa bits in case of negative numbers.
1207        // We effectively convert the numbers to "two's complement" form.
1208        //
1209        // To do the flipping, we construct a mask and XOR against it.
1210        // We branchlessly calculate an "all-ones except for the sign bit"
1211        // mask from negative-signed values: right shifting sign-extends
1212        // the integer, so we "fill" the mask with sign bits, and then
1213        // convert to unsigned to push one more zero bit.
1214        // On positive values, the mask is all zeros, so it's a no-op.
1215        left ^= (((left >> 15) as u16) >> 1) as i16;
1216        right ^= (((right >> 15) as u16) >> 1) as i16;
1217
1218        left.cmp(&right)
1219    }
1220
1221    /// Restrict a value to a certain interval unless it is NaN.
1222    ///
1223    /// Returns `max` if `self` is greater than `max`, and `min` if `self` is
1224    /// less than `min`. Otherwise this returns `self`.
1225    ///
1226    /// Note that this function returns NaN if the initial value was NaN as
1227    /// well. If the result is zero and among the three inputs `self`, `min`, and `max` there are
1228    /// zeros with different sign, either `0.0` or `-0.0` is returned non-deterministically.
1229    ///
1230    /// # Panics
1231    ///
1232    /// Panics if `min > max`, `min` is NaN, or `max` is NaN.
1233    ///
1234    /// # Examples
1235    ///
1236    /// ```
1237    /// #![feature(f16)]
1238    /// # #[cfg(target_has_reliable_f16)] {
1239    ///
1240    /// assert!((-3.0f16).clamp(-2.0, 1.0) == -2.0);
1241    /// assert!((0.0f16).clamp(-2.0, 1.0) == 0.0);
1242    /// assert!((2.0f16).clamp(-2.0, 1.0) == 1.0);
1243    /// assert!((f16::NAN).clamp(-2.0, 1.0).is_nan());
1244    ///
1245    /// // These always returns zero, but the sign (which is ignored by `==`) is non-deterministic.
1246    /// assert!((0.0f16).clamp(-0.0, -0.0) == 0.0);
1247    /// assert!((1.0f16).clamp(-0.0, 0.0) == 0.0);
1248    /// // This is definitely a negative zero.
1249    /// assert!((-1.0f16).clamp(-0.0, 1.0).is_sign_negative());
1250    /// # }
1251    /// ```
1252    #[inline]
1253    #[unstable(feature = "f16", issue = "116909")]
1254    #[must_use = "method returns a new number and does not mutate the original value"]
1255    pub const fn clamp(mut self, min: f16, max: f16) -> f16 {
1256        const_assert!(
1257            min <= max,
1258            "min > max, or either was NaN",
1259            "min > max, or either was NaN. min = {min:?}, max = {max:?}",
1260            min: f16,
1261            max: f16,
1262        );
1263
1264        if self < min {
1265            self = min;
1266        }
1267        if self > max {
1268            self = max;
1269        }
1270        self
1271    }
1272
1273    /// Clamps this number to a symmetric range centered around zero.
1274    ///
1275    /// The method clamps the number's magnitude (absolute value) to be at most `limit`.
1276    ///
1277    /// This is functionally equivalent to `self.clamp(-limit, limit)`, but is more
1278    /// explicit about the intent.
1279    ///
1280    /// # Panics
1281    ///
1282    /// Panics if `limit` is negative or NaN, as this indicates a logic error.
1283    ///
1284    /// # Examples
1285    ///
1286    /// ```
1287    /// #![feature(f16)]
1288    /// #![feature(clamp_magnitude)]
1289    /// # #[cfg(target_has_reliable_f16)] {
1290    /// assert_eq!(5.0f16.clamp_magnitude(3.0), 3.0);
1291    /// assert_eq!((-5.0f16).clamp_magnitude(3.0), -3.0);
1292    /// assert_eq!(2.0f16.clamp_magnitude(3.0), 2.0);
1293    /// assert_eq!((-2.0f16).clamp_magnitude(3.0), -2.0);
1294    /// # }
1295    /// ```
1296    #[inline]
1297    #[unstable(feature = "clamp_magnitude", issue = "148519")]
1298    #[must_use = "this returns the clamped value and does not modify the original"]
1299    pub fn clamp_magnitude(self, limit: f16) -> f16 {
1300        assert!(limit >= 0.0, "limit must be non-negative");
1301        let limit = limit.abs(); // Canonicalises -0.0 to 0.0
1302        self.clamp(-limit, limit)
1303    }
1304
1305    /// Computes the absolute value of `self`.
1306    ///
1307    /// This function always returns the precise result.
1308    ///
1309    /// # Examples
1310    ///
1311    /// ```
1312    /// #![feature(f16)]
1313    /// # #[cfg(target_has_reliable_f16_math)] {
1314    ///
1315    /// let x = 3.5_f16;
1316    /// let y = -3.5_f16;
1317    ///
1318    /// assert_eq!(x.abs(), x);
1319    /// assert_eq!(y.abs(), -y);
1320    ///
1321    /// assert!(f16::NAN.abs().is_nan());
1322    /// # }
1323    /// ```
1324    #[inline]
1325    #[unstable(feature = "f16", issue = "116909")]
1326    #[rustc_const_unstable(feature = "f16", issue = "116909")]
1327    #[must_use = "method returns a new number and does not mutate the original value"]
1328    pub const fn abs(self) -> Self {
1329        intrinsics::fabsf16(self)
1330    }
1331
1332    /// Returns a number that represents the sign of `self`.
1333    ///
1334    /// - `1.0` if the number is positive, `+0.0` or `INFINITY`
1335    /// - `-1.0` if the number is negative, `-0.0` or `NEG_INFINITY`
1336    /// - NaN if the number is NaN
1337    ///
1338    /// # Examples
1339    ///
1340    /// ```
1341    /// #![feature(f16)]
1342    /// # #[cfg(target_has_reliable_f16)] {
1343    ///
1344    /// let f = 3.5_f16;
1345    ///
1346    /// assert_eq!(f.signum(), 1.0);
1347    /// assert_eq!(f16::NEG_INFINITY.signum(), -1.0);
1348    ///
1349    /// assert!(f16::NAN.signum().is_nan());
1350    /// # }
1351    /// ```
1352    #[inline]
1353    #[unstable(feature = "f16", issue = "116909")]
1354    #[rustc_const_unstable(feature = "f16", issue = "116909")]
1355    #[must_use = "method returns a new number and does not mutate the original value"]
1356    pub const fn signum(self) -> f16 {
1357        if self.is_nan() { Self::NAN } else { 1.0_f16.copysign(self) }
1358    }
1359
1360    /// Returns a number composed of the magnitude of `self` and the sign of
1361    /// `sign`.
1362    ///
1363    /// Equal to `self` if the sign of `self` and `sign` are the same, otherwise equal to `-self`.
1364    /// If `self` is a NaN, then a NaN with the same payload as `self` and the sign bit of `sign` is
1365    /// returned.
1366    ///
1367    /// If `sign` is a NaN, then this operation will still carry over its sign into the result. Note
1368    /// that IEEE 754 doesn't assign any meaning to the sign bit in case of a NaN, and as Rust
1369    /// doesn't guarantee that the bit pattern of NaNs are conserved over arithmetic operations, the
1370    /// result of `copysign` with `sign` being a NaN might produce an unexpected or non-portable
1371    /// result. See the [specification of NaN bit patterns](primitive@f32#nan-bit-patterns) for more
1372    /// info.
1373    ///
1374    /// # Examples
1375    ///
1376    /// ```
1377    /// #![feature(f16)]
1378    /// # #[cfg(target_has_reliable_f16_math)] {
1379    ///
1380    /// let f = 3.5_f16;
1381    ///
1382    /// assert_eq!(f.copysign(0.42), 3.5_f16);
1383    /// assert_eq!(f.copysign(-0.42), -3.5_f16);
1384    /// assert_eq!((-f).copysign(0.42), 3.5_f16);
1385    /// assert_eq!((-f).copysign(-0.42), -3.5_f16);
1386    ///
1387    /// assert!(f16::NAN.copysign(1.0).is_nan());
1388    /// # }
1389    /// ```
1390    #[inline]
1391    #[unstable(feature = "f16", issue = "116909")]
1392    #[rustc_const_unstable(feature = "f16", issue = "116909")]
1393    #[must_use = "method returns a new number and does not mutate the original value"]
1394    pub const fn copysign(self, sign: f16) -> f16 {
1395        intrinsics::copysignf16(self, sign)
1396    }
1397
1398    /// Float addition that allows optimizations based on algebraic rules.
1399    ///
1400    /// See [algebraic operators](primitive@f32#algebraic-operators) for more info.
1401    #[must_use = "method returns a new number and does not mutate the original value"]
1402    #[unstable(feature = "float_algebraic", issue = "136469")]
1403    #[rustc_const_unstable(feature = "float_algebraic", issue = "136469")]
1404    #[inline]
1405    pub const fn algebraic_add(self, rhs: f16) -> f16 {
1406        intrinsics::fadd_algebraic(self, rhs)
1407    }
1408
1409    /// Float subtraction that allows optimizations based on algebraic rules.
1410    ///
1411    /// See [algebraic operators](primitive@f32#algebraic-operators) for more info.
1412    #[must_use = "method returns a new number and does not mutate the original value"]
1413    #[unstable(feature = "float_algebraic", issue = "136469")]
1414    #[rustc_const_unstable(feature = "float_algebraic", issue = "136469")]
1415    #[inline]
1416    pub const fn algebraic_sub(self, rhs: f16) -> f16 {
1417        intrinsics::fsub_algebraic(self, rhs)
1418    }
1419
1420    /// Float multiplication that allows optimizations based on algebraic rules.
1421    ///
1422    /// See [algebraic operators](primitive@f32#algebraic-operators) for more info.
1423    #[must_use = "method returns a new number and does not mutate the original value"]
1424    #[unstable(feature = "float_algebraic", issue = "136469")]
1425    #[rustc_const_unstable(feature = "float_algebraic", issue = "136469")]
1426    #[inline]
1427    pub const fn algebraic_mul(self, rhs: f16) -> f16 {
1428        intrinsics::fmul_algebraic(self, rhs)
1429    }
1430
1431    /// Float division that allows optimizations based on algebraic rules.
1432    ///
1433    /// See [algebraic operators](primitive@f32#algebraic-operators) for more info.
1434    #[must_use = "method returns a new number and does not mutate the original value"]
1435    #[unstable(feature = "float_algebraic", issue = "136469")]
1436    #[rustc_const_unstable(feature = "float_algebraic", issue = "136469")]
1437    #[inline]
1438    pub const fn algebraic_div(self, rhs: f16) -> f16 {
1439        intrinsics::fdiv_algebraic(self, rhs)
1440    }
1441
1442    /// Float remainder that allows optimizations based on algebraic rules.
1443    ///
1444    /// See [algebraic operators](primitive@f32#algebraic-operators) for more info.
1445    #[must_use = "method returns a new number and does not mutate the original value"]
1446    #[unstable(feature = "float_algebraic", issue = "136469")]
1447    #[rustc_const_unstable(feature = "float_algebraic", issue = "136469")]
1448    #[inline]
1449    pub const fn algebraic_rem(self, rhs: f16) -> f16 {
1450        intrinsics::frem_algebraic(self, rhs)
1451    }
1452}
1453
1454// Functions in this module fall into `core_float_math`
1455// #[unstable(feature = "core_float_math", issue = "137578")]
1456#[cfg(not(test))]
1457#[doc(test(attr(feature(cfg_target_has_reliable_f16_f128), expect(internal_features))))]
1458impl f16 {
1459    /// Returns the largest integer less than or equal to `self`.
1460    ///
1461    /// This function always returns the precise result.
1462    ///
1463    /// # Examples
1464    ///
1465    /// ```
1466    /// #![feature(f16)]
1467    /// # #[cfg(not(miri))]
1468    /// # #[cfg(target_has_reliable_f16)] {
1469    ///
1470    /// let f = 3.7_f16;
1471    /// let g = 3.0_f16;
1472    /// let h = -3.7_f16;
1473    ///
1474    /// assert_eq!(f.floor(), 3.0);
1475    /// assert_eq!(g.floor(), 3.0);
1476    /// assert_eq!(h.floor(), -4.0);
1477    /// # }
1478    /// ```
1479    #[inline]
1480    #[rustc_allow_incoherent_impl]
1481    #[unstable(feature = "f16", issue = "116909")]
1482    #[rustc_const_unstable(feature = "f16", issue = "116909")]
1483    #[must_use = "method returns a new number and does not mutate the original value"]
1484    pub const fn floor(self) -> f16 {
1485        intrinsics::floorf16(self)
1486    }
1487
1488    /// Returns the smallest integer greater than or equal to `self`.
1489    ///
1490    /// This function always returns the precise result.
1491    ///
1492    /// # Examples
1493    ///
1494    /// ```
1495    /// #![feature(f16)]
1496    /// # #[cfg(not(miri))]
1497    /// # #[cfg(target_has_reliable_f16)] {
1498    ///
1499    /// let f = 3.01_f16;
1500    /// let g = 4.0_f16;
1501    ///
1502    /// assert_eq!(f.ceil(), 4.0);
1503    /// assert_eq!(g.ceil(), 4.0);
1504    /// # }
1505    /// ```
1506    #[inline]
1507    #[doc(alias = "ceiling")]
1508    #[rustc_allow_incoherent_impl]
1509    #[unstable(feature = "f16", issue = "116909")]
1510    #[rustc_const_unstable(feature = "f16", issue = "116909")]
1511    #[must_use = "method returns a new number and does not mutate the original value"]
1512    pub const fn ceil(self) -> f16 {
1513        intrinsics::ceilf16(self)
1514    }
1515
1516    /// Returns the nearest integer to `self`. If a value is half-way between two
1517    /// integers, round away from `0.0`.
1518    ///
1519    /// This function always returns the precise result.
1520    ///
1521    /// # Examples
1522    ///
1523    /// ```
1524    /// #![feature(f16)]
1525    /// # #[cfg(not(miri))]
1526    /// # #[cfg(target_has_reliable_f16)] {
1527    ///
1528    /// let f = 3.3_f16;
1529    /// let g = -3.3_f16;
1530    /// let h = -3.7_f16;
1531    /// let i = 3.5_f16;
1532    /// let j = 4.5_f16;
1533    ///
1534    /// assert_eq!(f.round(), 3.0);
1535    /// assert_eq!(g.round(), -3.0);
1536    /// assert_eq!(h.round(), -4.0);
1537    /// assert_eq!(i.round(), 4.0);
1538    /// assert_eq!(j.round(), 5.0);
1539    /// # }
1540    /// ```
1541    #[inline]
1542    #[rustc_allow_incoherent_impl]
1543    #[unstable(feature = "f16", issue = "116909")]
1544    #[rustc_const_unstable(feature = "f16", issue = "116909")]
1545    #[must_use = "method returns a new number and does not mutate the original value"]
1546    pub const fn round(self) -> f16 {
1547        intrinsics::roundf16(self)
1548    }
1549
1550    /// Returns the nearest integer to a number. Rounds half-way cases to the number
1551    /// with an even least significant digit.
1552    ///
1553    /// This function always returns the precise result.
1554    ///
1555    /// # Examples
1556    ///
1557    /// ```
1558    /// #![feature(f16)]
1559    /// # #[cfg(not(miri))]
1560    /// # #[cfg(target_has_reliable_f16)] {
1561    ///
1562    /// let f = 3.3_f16;
1563    /// let g = -3.3_f16;
1564    /// let h = 3.5_f16;
1565    /// let i = 4.5_f16;
1566    ///
1567    /// assert_eq!(f.round_ties_even(), 3.0);
1568    /// assert_eq!(g.round_ties_even(), -3.0);
1569    /// assert_eq!(h.round_ties_even(), 4.0);
1570    /// assert_eq!(i.round_ties_even(), 4.0);
1571    /// # }
1572    /// ```
1573    #[inline]
1574    #[rustc_allow_incoherent_impl]
1575    #[unstable(feature = "f16", issue = "116909")]
1576    #[rustc_const_unstable(feature = "f16", issue = "116909")]
1577    #[must_use = "method returns a new number and does not mutate the original value"]
1578    pub const fn round_ties_even(self) -> f16 {
1579        intrinsics::round_ties_even_f16(self)
1580    }
1581
1582    /// Returns the integer part of `self`.
1583    /// This means that non-integer numbers are always truncated towards zero.
1584    ///
1585    /// This function always returns the precise result.
1586    ///
1587    /// # Examples
1588    ///
1589    /// ```
1590    /// #![feature(f16)]
1591    /// # #[cfg(not(miri))]
1592    /// # #[cfg(target_has_reliable_f16)] {
1593    ///
1594    /// let f = 3.7_f16;
1595    /// let g = 3.0_f16;
1596    /// let h = -3.7_f16;
1597    ///
1598    /// assert_eq!(f.trunc(), 3.0);
1599    /// assert_eq!(g.trunc(), 3.0);
1600    /// assert_eq!(h.trunc(), -3.0);
1601    /// # }
1602    /// ```
1603    #[inline]
1604    #[doc(alias = "truncate")]
1605    #[rustc_allow_incoherent_impl]
1606    #[unstable(feature = "f16", issue = "116909")]
1607    #[rustc_const_unstable(feature = "f16", issue = "116909")]
1608    #[must_use = "method returns a new number and does not mutate the original value"]
1609    pub const fn trunc(self) -> f16 {
1610        intrinsics::truncf16(self)
1611    }
1612
1613    /// Returns the fractional part of `self`.
1614    ///
1615    /// This function always returns the precise result.
1616    ///
1617    /// # Examples
1618    ///
1619    /// ```
1620    /// #![feature(f16)]
1621    /// # #[cfg(not(miri))]
1622    /// # #[cfg(target_has_reliable_f16)] {
1623    ///
1624    /// let x = 3.6_f16;
1625    /// let y = -3.6_f16;
1626    /// let abs_difference_x = (x.fract() - 0.6).abs();
1627    /// let abs_difference_y = (y.fract() - (-0.6)).abs();
1628    ///
1629    /// assert!(abs_difference_x <= f16::EPSILON);
1630    /// assert!(abs_difference_y <= f16::EPSILON);
1631    /// # }
1632    /// ```
1633    #[inline]
1634    #[rustc_allow_incoherent_impl]
1635    #[unstable(feature = "f16", issue = "116909")]
1636    #[rustc_const_unstable(feature = "f16", issue = "116909")]
1637    #[must_use = "method returns a new number and does not mutate the original value"]
1638    pub const fn fract(self) -> f16 {
1639        self - self.trunc()
1640    }
1641
1642    /// Fused multiply-add. Computes `(self * a) + b` with only one rounding
1643    /// error, yielding a more accurate result than an unfused multiply-add.
1644    ///
1645    /// Using `mul_add` *may* be more performant than an unfused multiply-add if
1646    /// the target architecture has a dedicated `fma` CPU instruction. However,
1647    /// this is not always true, and will be heavily dependant on designing
1648    /// algorithms with specific target hardware in mind.
1649    ///
1650    /// # Precision
1651    ///
1652    /// The result of this operation is guaranteed to be the rounded
1653    /// infinite-precision result. It is specified by IEEE 754 as
1654    /// `fusedMultiplyAdd` and guaranteed not to change.
1655    ///
1656    /// # Examples
1657    ///
1658    /// ```
1659    /// #![feature(f16)]
1660    /// # #[cfg(not(miri))]
1661    /// # #[cfg(target_has_reliable_f16)] {
1662    ///
1663    /// let m = 10.0_f16;
1664    /// let x = 4.0_f16;
1665    /// let b = 60.0_f16;
1666    ///
1667    /// assert_eq!(m.mul_add(x, b), 100.0);
1668    /// assert_eq!(m * x + b, 100.0);
1669    ///
1670    /// let one_plus_eps = 1.0_f16 + f16::EPSILON;
1671    /// let one_minus_eps = 1.0_f16 - f16::EPSILON;
1672    /// let minus_one = -1.0_f16;
1673    ///
1674    /// // The exact result (1 + eps) * (1 - eps) = 1 - eps * eps.
1675    /// assert_eq!(one_plus_eps.mul_add(one_minus_eps, minus_one), -f16::EPSILON * f16::EPSILON);
1676    /// // Different rounding with the non-fused multiply and add.
1677    /// assert_eq!(one_plus_eps * one_minus_eps + minus_one, 0.0);
1678    /// # }
1679    /// ```
1680    #[inline]
1681    #[rustc_allow_incoherent_impl]
1682    #[unstable(feature = "f16", issue = "116909")]
1683    #[doc(alias = "fmaf16", alias = "fusedMultiplyAdd")]
1684    #[must_use = "method returns a new number and does not mutate the original value"]
1685    pub const fn mul_add(self, a: f16, b: f16) -> f16 {
1686        intrinsics::fmaf16(self, a, b)
1687    }
1688
1689    /// Calculates Euclidean division, the matching method for `rem_euclid`.
1690    ///
1691    /// This computes the integer `n` such that
1692    /// `self = n * rhs + self.rem_euclid(rhs)`.
1693    /// In other words, the result is `self / rhs` rounded to the integer `n`
1694    /// such that `self >= n * rhs`.
1695    ///
1696    /// # Precision
1697    ///
1698    /// The result of this operation is guaranteed to be the rounded
1699    /// infinite-precision result.
1700    ///
1701    /// # Examples
1702    ///
1703    /// ```
1704    /// #![feature(f16)]
1705    /// # #[cfg(not(miri))]
1706    /// # #[cfg(target_has_reliable_f16)] {
1707    ///
1708    /// let a: f16 = 7.0;
1709    /// let b = 4.0;
1710    /// assert_eq!(a.div_euclid(b), 1.0); // 7.0 > 4.0 * 1.0
1711    /// assert_eq!((-a).div_euclid(b), -2.0); // -7.0 >= 4.0 * -2.0
1712    /// assert_eq!(a.div_euclid(-b), -1.0); // 7.0 >= -4.0 * -1.0
1713    /// assert_eq!((-a).div_euclid(-b), 2.0); // -7.0 >= -4.0 * 2.0
1714    /// # }
1715    /// ```
1716    #[inline]
1717    #[rustc_allow_incoherent_impl]
1718    #[unstable(feature = "f16", issue = "116909")]
1719    #[must_use = "method returns a new number and does not mutate the original value"]
1720    pub fn div_euclid(self, rhs: f16) -> f16 {
1721        let q = (self / rhs).trunc();
1722        if self % rhs < 0.0 {
1723            return if rhs > 0.0 { q - 1.0 } else { q + 1.0 };
1724        }
1725        q
1726    }
1727
1728    /// Calculates the least nonnegative remainder of `self` when
1729    /// divided by `rhs`.
1730    ///
1731    /// In particular, the return value `r` satisfies `0.0 <= r < rhs.abs()` in
1732    /// most cases. However, due to a floating point round-off error it can
1733    /// result in `r == rhs.abs()`, violating the mathematical definition, if
1734    /// `self` is much smaller than `rhs.abs()` in magnitude and `self < 0.0`.
1735    /// This result is not an element of the function's codomain, but it is the
1736    /// closest floating point number in the real numbers and thus fulfills the
1737    /// property `self == self.div_euclid(rhs) * rhs + self.rem_euclid(rhs)`
1738    /// approximately.
1739    ///
1740    /// # Precision
1741    ///
1742    /// The result of this operation is guaranteed to be the rounded
1743    /// infinite-precision result.
1744    ///
1745    /// # Examples
1746    ///
1747    /// ```
1748    /// #![feature(f16)]
1749    /// # #[cfg(not(miri))]
1750    /// # #[cfg(target_has_reliable_f16)] {
1751    ///
1752    /// let a: f16 = 7.0;
1753    /// let b = 4.0;
1754    /// assert_eq!(a.rem_euclid(b), 3.0);
1755    /// assert_eq!((-a).rem_euclid(b), 1.0);
1756    /// assert_eq!(a.rem_euclid(-b), 3.0);
1757    /// assert_eq!((-a).rem_euclid(-b), 1.0);
1758    /// // limitation due to round-off error
1759    /// assert!((-f16::EPSILON).rem_euclid(3.0) != 0.0);
1760    /// # }
1761    /// ```
1762    #[inline]
1763    #[rustc_allow_incoherent_impl]
1764    #[doc(alias = "modulo", alias = "mod")]
1765    #[unstable(feature = "f16", issue = "116909")]
1766    #[must_use = "method returns a new number and does not mutate the original value"]
1767    pub fn rem_euclid(self, rhs: f16) -> f16 {
1768        let r = self % rhs;
1769        if r < 0.0 { r + rhs.abs() } else { r }
1770    }
1771
1772    /// Raises a number to an integer power.
1773    ///
1774    /// Using this function is generally faster than using `powf`.
1775    /// It might have a different sequence of rounding operations than `powf`,
1776    /// so the results are not guaranteed to agree.
1777    ///
1778    /// Note that this function is special in that it can return non-NaN results for NaN inputs. For
1779    /// example, `f16::powi(f16::NAN, 0)` returns `1.0`. However, if an input is a *signaling*
1780    /// NaN, then the result is non-deterministically either a NaN or the result that the
1781    /// corresponding quiet NaN would produce.
1782    ///
1783    /// # Unspecified precision
1784    ///
1785    /// The precision of this function is non-deterministic. This means it varies by platform,
1786    /// Rust version, and can even differ within the same execution from one invocation to the next.
1787    ///
1788    /// # Examples
1789    ///
1790    /// ```
1791    /// #![feature(f16)]
1792    /// # #[cfg(not(miri))]
1793    /// # #[cfg(target_has_reliable_f16)] {
1794    ///
1795    /// let x = 2.0_f16;
1796    /// let abs_difference = (x.powi(2) - (x * x)).abs();
1797    /// assert!(abs_difference <= f16::EPSILON);
1798    ///
1799    /// assert_eq!(f16::powi(f16::NAN, 0), 1.0);
1800    /// assert_eq!(f16::powi(0.0, 0), 1.0);
1801    /// # }
1802    /// ```
1803    #[inline]
1804    #[rustc_allow_incoherent_impl]
1805    #[unstable(feature = "f16", issue = "116909")]
1806    #[must_use = "method returns a new number and does not mutate the original value"]
1807    pub fn powi(self, n: i32) -> f16 {
1808        intrinsics::powif16(self, n)
1809    }
1810
1811    /// Returns the square root of a number.
1812    ///
1813    /// Returns NaN if `self` is a negative number other than `-0.0`.
1814    ///
1815    /// # Precision
1816    ///
1817    /// The result of this operation is guaranteed to be the rounded
1818    /// infinite-precision result. It is specified by IEEE 754 as `squareRoot`
1819    /// and guaranteed not to change.
1820    ///
1821    /// # Examples
1822    ///
1823    /// ```
1824    /// #![feature(f16)]
1825    /// # #[cfg(not(miri))]
1826    /// # #[cfg(target_has_reliable_f16)] {
1827    ///
1828    /// let positive = 4.0_f16;
1829    /// let negative = -4.0_f16;
1830    /// let negative_zero = -0.0_f16;
1831    ///
1832    /// assert_eq!(positive.sqrt(), 2.0);
1833    /// assert!(negative.sqrt().is_nan());
1834    /// assert!(negative_zero.sqrt() == negative_zero);
1835    /// # }
1836    /// ```
1837    #[inline]
1838    #[doc(alias = "squareRoot")]
1839    #[rustc_allow_incoherent_impl]
1840    #[unstable(feature = "f16", issue = "116909")]
1841    #[must_use = "method returns a new number and does not mutate the original value"]
1842    pub fn sqrt(self) -> f16 {
1843        intrinsics::sqrtf16(self)
1844    }
1845
1846    /// Returns the cube root of a number.
1847    ///
1848    /// # Unspecified precision
1849    ///
1850    /// The precision of this function is non-deterministic. This means it varies by platform,
1851    /// Rust version, and can even differ within the same execution from one invocation to the next.
1852    ///
1853    /// This function currently corresponds to the `cbrtf` from libc on Unix
1854    /// and Windows. Note that this might change in the future.
1855    ///
1856    /// # Examples
1857    ///
1858    /// ```
1859    /// #![feature(f16)]
1860    /// # #[cfg(not(miri))]
1861    /// # #[cfg(target_has_reliable_f16)] {
1862    ///
1863    /// let x = 8.0f16;
1864    ///
1865    /// // x^(1/3) - 2 == 0
1866    /// let abs_difference = (x.cbrt() - 2.0).abs();
1867    ///
1868    /// assert!(abs_difference <= f16::EPSILON);
1869    /// # }
1870    /// ```
1871    #[inline]
1872    #[rustc_allow_incoherent_impl]
1873    #[unstable(feature = "f16", issue = "116909")]
1874    #[must_use = "method returns a new number and does not mutate the original value"]
1875    pub fn cbrt(self) -> f16 {
1876        libm::cbrtf(self as f32) as f16
1877    }
1878}