aboutsummaryrefslogtreecommitdiffstats
path: root/include/net/netfilter/nf_conntrack_tuple.h
blob: 14ce790e5c65c81163ede74f7b7a02cb18b43b06 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
/*
 * Definitions and Declarations for tuple.
 *
 * 16 Dec 2003: Yasuyuki Kozakai @USAGI <yasuyuki.kozakai@toshiba.co.jp>
 *	- generalize L3 protocol dependent part.
 *
 * Derived from include/linux/netfiter_ipv4/ip_conntrack_tuple.h
 */

#ifndef _NF_CONNTRACK_TUPLE_H
#define _NF_CONNTRACK_TUPLE_H

#include <linux/netfilter/nf_conntrack_tuple_common.h>

/* A `tuple' is a structure containing the information to uniquely
  identify a connection.  ie. if two packets have the same tuple, they
  are in the same connection; if not, they are not.

  We divide the structure along "manipulatable" and
  "non-manipulatable" lines, for the benefit of the NAT code.
*/

#define NF_CT_TUPLE_L3SIZE	4

/* The l3 protocol-specific manipulable parts of the tuple: always in
   network order! */
union nf_conntrack_man_l3proto {
	u_int32_t all[NF_CT_TUPLE_L3SIZE];
	u_int32_t ip;
	u_int32_t ip6[4];
};

/* The protocol-specific manipulable parts of the tuple: always in
   network order! */
union nf_conntrack_man_proto
{
	/* Add other protocols here. */
	u_int16_t all;

	struct {
		u_int16_t port;
	} tcp;
	struct {
		u_int16_t port;
	} udp;
	struct {
		u_int16_t id;
	} icmp;
	struct {
		u_int16_t port;
	} sctp;
};

/* The manipulable part of the tuple. */
struct nf_conntrack_man
{
	union nf_conntrack_man_l3proto u3;
	union nf_conntrack_man_proto u;
	/* Layer 3 protocol */
	u_int16_t l3num;
};

/* This contains the information to distinguish a connection. */
struct nf_conntrack_tuple
{
	struct nf_conntrack_man src;

	/* These are the parts of the tuple which are fixed. */
	struct {
		union {
			u_int32_t all[NF_CT_TUPLE_L3SIZE];
			u_int32_t ip;
			u_int32_t ip6[4];
		} u3;
		union {
			/* Add other protocols here. */
			u_int16_t all;

			struct {
				u_int16_t port;
			} tcp;
			struct {
				u_int16_t port;
			} udp;
			struct {
				u_int8_t type, code;
			} icmp;
			struct {
				u_int16_t port;
			} sctp;
		} u;

		/* The protocol. */
		u_int8_t protonum;

		/* The direction (for tuplehash) */
		u_int8_t dir;
	} dst;
};

/* This is optimized opposed to a memset of the whole structure.  Everything we
 * really care about is the  source/destination unions */
#define NF_CT_TUPLE_U_BLANK(tuple)                              	\
        do {                                                    	\
                (tuple)->src.u.all = 0;                         	\
                (tuple)->dst.u.all = 0;                         	\
		memset(&(tuple)->src.u3, 0, sizeof((tuple)->src.u3));	\
		memset(&(tuple)->dst.u3, 0, sizeof((tuple)->dst.u3));	\
        } while (0)

#ifdef __KERNEL__

#define NF_CT_DUMP_TUPLE(tp)						    \
DEBUGP("tuple %p: %u %u %04x:%04x:%04x:%04x:%04x:%04x:%04x:%04x %hu -> %04x:%04x:%04x:%04x:%04x:%04x:%04x:%04x %hu\n",					    \
	(tp), (tp)->src.l3num, (tp)->dst.protonum,			    \
	NIP6(*(struct in6_addr *)(tp)->src.u3.all), ntohs((tp)->src.u.all), \
	NIP6(*(struct in6_addr *)(tp)->dst.u3.all), ntohs((tp)->dst.u.all))

/* If we're the first tuple, it's the original dir. */
#define NF_CT_DIRECTION(h)						\
	((enum ip_conntrack_dir)(h)->tuple.dst.dir)

/* Connections have two entries in the hash table: one for each way */
struct nf_conntrack_tuple_hash
{
	struct list_head list;

	struct nf_conntrack_tuple tuple;
};

#endif /* __KERNEL__ */

static inline int nf_ct_tuple_src_equal(const struct nf_conntrack_tuple *t1,
				        const struct nf_conntrack_tuple *t2)
{ 
	return (t1->src.u3.all[0] == t2->src.u3.all[0] &&
		t1->src.u3.all[1] == t2->src.u3.all[1] &&
		t1->src.u3.all[2] == t2->src.u3.all[2] &&
		t1->src.u3.all[3] == t2->src.u3.all[3] &&
		t1->src.u.all == t2->src.u.all &&
		t1->src.l3num == t2->src.l3num &&
		t1->dst.protonum == t2->dst.protonum);
}

static inline int nf_ct_tuple_dst_equal(const struct nf_conntrack_tuple *t1,
				        const struct nf_conntrack_tuple *t2)
{
	return (t1->dst.u3.all[0] == t2->dst.u3.all[0] &&
		t1->dst.u3.all[1] == t2->dst.u3.all[1] &&
		t1->dst.u3.all[2] == t2->dst.u3.all[2] &&
		t1->dst.u3.all[3] == t2->dst.u3.all[3] &&
		t1->dst.u.all == t2->dst.u.all &&
		t1->src.l3num == t2->src.l3num &&
		t1->dst.protonum == t2->dst.protonum);
}

static inline int nf_ct_tuple_equal(const struct nf_conntrack_tuple *t1,
				    const struct nf_conntrack_tuple *t2)
{
	return nf_ct_tuple_src_equal(t1, t2) && nf_ct_tuple_dst_equal(t1, t2);
}

static inline int nf_ct_tuple_mask_cmp(const struct nf_conntrack_tuple *t,
				       const struct nf_conntrack_tuple *tuple,
				       const struct nf_conntrack_tuple *mask)
{
	int count = 0;

        for (count = 0; count < NF_CT_TUPLE_L3SIZE; count++){
                if ((t->src.u3.all[count] ^ tuple->src.u3.all[count]) &
                    mask->src.u3.all[count])
                        return 0;
        }

        for (count = 0; count < NF_CT_TUPLE_L3SIZE; count++){
                if ((t->dst.u3.all[count] ^ tuple->dst.u3.all[count]) &
                    mask->dst.u3.all[count])
                        return 0;
        }

        if ((t->src.u.all ^ tuple->src.u.all) & mask->src.u.all ||
            (t->dst.u.all ^ tuple->dst.u.all) & mask->dst.u.all ||
            (t->src.l3num ^ tuple->src.l3num) & mask->src.l3num ||
            (t->dst.protonum ^ tuple->dst.protonum) & mask->dst.protonum)
                return 0;

        return 1;
}

#endif /* _NF_CONNTRACK_TUPLE_H */