aboutsummaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
authorIngo Molnar <mingo@kernel.org>2022-02-16 19:38:50 +0100
committerIngo Molnar <mingo@kernel.org>2022-03-15 12:57:28 +0100
commitf38332a82375be9adc5560d536d0621cf9e93a53 (patch)
tree1311fa41a800fdeaffd1fa26d34c4277009246ac
parentb4163ee80ce64bf13aaacb4c6ed75ff47ef039aa (diff)
downloadtip-f38332a82375be9adc5560d536d0621cf9e93a53.tar.gz
headers/deps: net: Split <linux/mmzone.h> into <linux/mmzone_types.h> and <linux/mmzone_api.h>
<linux/mmzone.h> is a pretty large header, included in a lot of other headers. In order to reduce its impact, we are splitting it into three parts: - <linux/mmzone_types.h>: lightweight header with only type definitions and initializers. - <linux/mmzone_api.h>: API declarations and inline functions. This header is inevitably more heavyweight. - <linux/mmzone.h>: Simple default header that right now includes both the types and the API headers, but will only use the types header once all affected code is converted. The size difference is substantial: -------------------------------------------------------------------- | Combined, preprocessed C code size of header, without line markers, | with comments stripped: ------------------------- | #include <linux/mmzone_api.h> | LOC: 7,593 | headers: 214 | #include <linux/mmzone_types.h> | LOC: 815 | headers: 62 No change in functionality in this first step. Signed-off-by: Ingo Molnar <mingo@kernel.org>
-rw-r--r--include/linux/mmzone.h1556
-rw-r--r--include/linux/mmzone_api.h767
-rw-r--r--include/linux/mmzone_types.h809
3 files changed, 1576 insertions, 1556 deletions
diff --git a/include/linux/mmzone.h b/include/linux/mmzone.h
index 6f144185e09aa..4b8dae7ec7d5d 100644
--- a/include/linux/mmzone.h
+++ b/include/linux/mmzone.h
@@ -2,1559 +2,7 @@
#ifndef _LINUX_MMZONE_H
#define _LINUX_MMZONE_H
-#ifndef __ASSEMBLY__
-#ifndef __GENERATING_BOUNDS_H
+#include <linux/mmzone_types.h>
+#include <linux/mmzone_api.h>
-#include <linux/atomic_api.h>
-#include <linux/math.h>
-#include <asm/cpufeature.h>
-#include <linux/spinlock_types.h>
-#include <linux/list.h>
-#include <linux/wait.h>
-#include <linux/bitops.h>
-#include <linux/cache.h>
-#include <linux/threads.h>
-#include <linux/numa.h>
-#include <linux/init.h>
-#include <linux/seqlock.h>
-#include <linux/nodemask.h>
-#include <linux/pageblock-flags.h>
-#include <linux/page-flags-layout.h>
-#include <linux/atomic.h>
-#include <linux/mm_types.h>
-#include <linux/gfp_types.h>
-#include <linux/page-flags.h>
-#include <linux/local_lock.h>
-#include <asm/page.h>
-
-enum migratetype {
- MIGRATE_UNMOVABLE,
- MIGRATE_MOVABLE,
- MIGRATE_RECLAIMABLE,
- MIGRATE_PCPTYPES, /* the number of types on the pcp lists */
- MIGRATE_HIGHATOMIC = MIGRATE_PCPTYPES,
-#ifdef CONFIG_CMA
- /*
- * MIGRATE_CMA migration type is designed to mimic the way
- * ZONE_MOVABLE works. Only movable pages can be allocated
- * from MIGRATE_CMA pageblocks and page allocator never
- * implicitly change migration type of MIGRATE_CMA pageblock.
- *
- * The way to use it is to change migratetype of a range of
- * pageblocks to MIGRATE_CMA which can be done by
- * __free_pageblock_cma() function. What is important though
- * is that a range of pageblocks must be aligned to
- * MAX_ORDER_NR_PAGES should biggest page be bigger than
- * a single pageblock.
- */
- MIGRATE_CMA,
-#endif
-#ifdef CONFIG_MEMORY_ISOLATION
- MIGRATE_ISOLATE, /* can't allocate from here */
-#endif
- MIGRATE_TYPES
-};
-
-/* In mm/page_alloc.c; keep in sync also with show_migration_types() there */
-extern const char * const migratetype_names[MIGRATE_TYPES];
-
-#ifdef CONFIG_CMA
-# define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA)
-# define is_migrate_cma_page(_page) (get_pageblock_migratetype(_page) == MIGRATE_CMA)
-#else
-# define is_migrate_cma(migratetype) false
-# define is_migrate_cma_page(_page) false
-#endif
-
-static inline bool is_migrate_movable(int mt)
-{
- return is_migrate_cma(mt) || mt == MIGRATE_MOVABLE;
-}
-
-#define for_each_migratetype_order(order, type) \
- for (order = 0; order < MAX_ORDER; order++) \
- for (type = 0; type < MIGRATE_TYPES; type++)
-
-extern int page_group_by_mobility_disabled;
-
-#define MIGRATETYPE_MASK ((1UL << PB_migratetype_bits) - 1)
-
-#define get_pageblock_migratetype(page) \
- get_pfnblock_flags_mask(page, page_to_pfn(page), MIGRATETYPE_MASK)
-
-struct free_area {
- struct list_head free_list[MIGRATE_TYPES];
- unsigned long nr_free;
-};
-
-static inline struct page *get_page_from_free_area(struct free_area *area,
- int migratetype)
-{
- return list_first_entry_or_null(&area->free_list[migratetype],
- struct page, lru);
-}
-
-static inline bool free_area_empty(struct free_area *area, int migratetype)
-{
- return list_empty(&area->free_list[migratetype]);
-}
-
-struct pglist_data;
-
-/*
- * Add a wild amount of padding here to ensure data fall into separate
- * cachelines. There are very few zone structures in the machine, so space
- * consumption is not a concern here.
- */
-#if defined(CONFIG_SMP)
-struct zone_padding {
- char x[0];
-} ____cacheline_internodealigned_in_smp;
-#define ZONE_PADDING(name) struct zone_padding name;
-#else
-#define ZONE_PADDING(name)
-#endif
-
-#ifdef CONFIG_NUMA
-enum numa_stat_item {
- NUMA_HIT, /* allocated in intended node */
- NUMA_MISS, /* allocated in non intended node */
- NUMA_FOREIGN, /* was intended here, hit elsewhere */
- NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */
- NUMA_LOCAL, /* allocation from local node */
- NUMA_OTHER, /* allocation from other node */
- NR_VM_NUMA_EVENT_ITEMS
-};
-#else
-#define NR_VM_NUMA_EVENT_ITEMS 0
-#endif
-
-enum zone_stat_item {
- /* First 128 byte cacheline (assuming 64 bit words) */
- NR_FREE_PAGES,
- NR_ZONE_LRU_BASE, /* Used only for compaction and reclaim retry */
- NR_ZONE_INACTIVE_ANON = NR_ZONE_LRU_BASE,
- NR_ZONE_ACTIVE_ANON,
- NR_ZONE_INACTIVE_FILE,
- NR_ZONE_ACTIVE_FILE,
- NR_ZONE_UNEVICTABLE,
- NR_ZONE_WRITE_PENDING, /* Count of dirty, writeback and unstable pages */
- NR_MLOCK, /* mlock()ed pages found and moved off LRU */
- /* Second 128 byte cacheline */
- NR_BOUNCE,
-#if IS_ENABLED(CONFIG_ZSMALLOC)
- NR_ZSPAGES, /* allocated in zsmalloc */
-#endif
- NR_FREE_CMA_PAGES,
- NR_VM_ZONE_STAT_ITEMS };
-
-enum node_stat_item {
- NR_LRU_BASE,
- NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */
- NR_ACTIVE_ANON, /* " " " " " */
- NR_INACTIVE_FILE, /* " " " " " */
- NR_ACTIVE_FILE, /* " " " " " */
- NR_UNEVICTABLE, /* " " " " " */
- NR_SLAB_RECLAIMABLE_B,
- NR_SLAB_UNRECLAIMABLE_B,
- NR_ISOLATED_ANON, /* Temporary isolated pages from anon lru */
- NR_ISOLATED_FILE, /* Temporary isolated pages from file lru */
- WORKINGSET_NODES,
- WORKINGSET_REFAULT_BASE,
- WORKINGSET_REFAULT_ANON = WORKINGSET_REFAULT_BASE,
- WORKINGSET_REFAULT_FILE,
- WORKINGSET_ACTIVATE_BASE,
- WORKINGSET_ACTIVATE_ANON = WORKINGSET_ACTIVATE_BASE,
- WORKINGSET_ACTIVATE_FILE,
- WORKINGSET_RESTORE_BASE,
- WORKINGSET_RESTORE_ANON = WORKINGSET_RESTORE_BASE,
- WORKINGSET_RESTORE_FILE,
- WORKINGSET_NODERECLAIM,
- NR_ANON_MAPPED, /* Mapped anonymous pages */
- NR_FILE_MAPPED, /* pagecache pages mapped into pagetables.
- only modified from process context */
- NR_FILE_PAGES,
- NR_FILE_DIRTY,
- NR_WRITEBACK,
- NR_WRITEBACK_TEMP, /* Writeback using temporary buffers */
- NR_SHMEM, /* shmem pages (included tmpfs/GEM pages) */
- NR_SHMEM_THPS,
- NR_SHMEM_PMDMAPPED,
- NR_FILE_THPS,
- NR_FILE_PMDMAPPED,
- NR_ANON_THPS,
- NR_VMSCAN_WRITE,
- NR_VMSCAN_IMMEDIATE, /* Prioritise for reclaim when writeback ends */
- NR_DIRTIED, /* page dirtyings since bootup */
- NR_WRITTEN, /* page writings since bootup */
- NR_THROTTLED_WRITTEN, /* NR_WRITTEN while reclaim throttled */
- NR_KERNEL_MISC_RECLAIMABLE, /* reclaimable non-slab kernel pages */
- NR_FOLL_PIN_ACQUIRED, /* via: pin_user_page(), gup flag: FOLL_PIN */
- NR_FOLL_PIN_RELEASED, /* pages returned via unpin_user_page() */
- NR_KERNEL_STACK_KB, /* measured in KiB */
-#if IS_ENABLED(CONFIG_SHADOW_CALL_STACK)
- NR_KERNEL_SCS_KB, /* measured in KiB */
-#endif
- NR_PAGETABLE, /* used for pagetables */
-#ifdef CONFIG_SWAP
- NR_SWAPCACHE,
-#endif
- NR_VM_NODE_STAT_ITEMS
-};
-
-/*
- * Returns true if the item should be printed in THPs (/proc/vmstat
- * currently prints number of anon, file and shmem THPs. But the item
- * is charged in pages).
- */
-static __always_inline bool vmstat_item_print_in_thp(enum node_stat_item item)
-{
- if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
- return false;
-
- return item == NR_ANON_THPS ||
- item == NR_FILE_THPS ||
- item == NR_SHMEM_THPS ||
- item == NR_SHMEM_PMDMAPPED ||
- item == NR_FILE_PMDMAPPED;
-}
-
-/*
- * Returns true if the value is measured in bytes (most vmstat values are
- * measured in pages). This defines the API part, the internal representation
- * might be different.
- */
-static __always_inline bool vmstat_item_in_bytes(int idx)
-{
- /*
- * Global and per-node slab counters track slab pages.
- * It's expected that changes are multiples of PAGE_SIZE.
- * Internally values are stored in pages.
- *
- * Per-memcg and per-lruvec counters track memory, consumed
- * by individual slab objects. These counters are actually
- * byte-precise.
- */
- return (idx == NR_SLAB_RECLAIMABLE_B ||
- idx == NR_SLAB_UNRECLAIMABLE_B);
-}
-
-/*
- * We do arithmetic on the LRU lists in various places in the code,
- * so it is important to keep the active lists LRU_ACTIVE higher in
- * the array than the corresponding inactive lists, and to keep
- * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
- *
- * This has to be kept in sync with the statistics in zone_stat_item
- * above and the descriptions in vmstat_text in mm/vmstat.c
- */
-#define LRU_BASE 0
-#define LRU_ACTIVE 1
-#define LRU_FILE 2
-
-enum lru_list {
- LRU_INACTIVE_ANON = LRU_BASE,
- LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
- LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
- LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
- LRU_UNEVICTABLE,
- NR_LRU_LISTS
-};
-
-enum vmscan_throttle_state {
- VMSCAN_THROTTLE_WRITEBACK,
- VMSCAN_THROTTLE_ISOLATED,
- VMSCAN_THROTTLE_NOPROGRESS,
- VMSCAN_THROTTLE_CONGESTED,
- NR_VMSCAN_THROTTLE,
-};
-
-#define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++)
-
-#define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++)
-
-static inline bool is_file_lru(enum lru_list lru)
-{
- return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE);
-}
-
-static inline bool is_active_lru(enum lru_list lru)
-{
- return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE);
-}
-
-#define ANON_AND_FILE 2
-
-enum lruvec_flags {
- LRUVEC_CONGESTED, /* lruvec has many dirty pages
- * backed by a congested BDI
- */
-};
-
-struct lruvec {
- struct list_head lists[NR_LRU_LISTS];
- /* per lruvec lru_lock for memcg */
- spinlock_t lru_lock;
- /*
- * These track the cost of reclaiming one LRU - file or anon -
- * over the other. As the observed cost of reclaiming one LRU
- * increases, the reclaim scan balance tips toward the other.
- */
- unsigned long anon_cost;
- unsigned long file_cost;
- /* Non-resident age, driven by LRU movement */
- atomic_long_t nonresident_age;
- /* Refaults at the time of last reclaim cycle */
- unsigned long refaults[ANON_AND_FILE];
- /* Various lruvec state flags (enum lruvec_flags) */
- unsigned long flags;
-#ifdef CONFIG_MEMCG
- struct pglist_data *pgdat;
-#endif
-};
-
-/* Isolate unmapped pages */
-#define ISOLATE_UNMAPPED ((__force isolate_mode_t)0x2)
-/* Isolate for asynchronous migration */
-#define ISOLATE_ASYNC_MIGRATE ((__force isolate_mode_t)0x4)
-/* Isolate unevictable pages */
-#define ISOLATE_UNEVICTABLE ((__force isolate_mode_t)0x8)
-
-enum zone_watermarks {
- WMARK_MIN,
- WMARK_LOW,
- WMARK_HIGH,
- NR_WMARK
-};
-
-/*
- * One per migratetype for each PAGE_ALLOC_COSTLY_ORDER plus one additional
- * for pageblock size for THP if configured.
- */
-#ifdef CONFIG_TRANSPARENT_HUGEPAGE
-#define NR_PCP_THP 1
-#else
-#define NR_PCP_THP 0
-#endif
-#define NR_PCP_LISTS (MIGRATE_PCPTYPES * (PAGE_ALLOC_COSTLY_ORDER + 1 + NR_PCP_THP))
-
-/*
- * Shift to encode migratetype and order in the same integer, with order
- * in the least significant bits.
- */
-#define NR_PCP_ORDER_WIDTH 8
-#define NR_PCP_ORDER_MASK ((1<<NR_PCP_ORDER_WIDTH) - 1)
-
-#define min_wmark_pages(z) (z->_watermark[WMARK_MIN] + z->watermark_boost)
-#define low_wmark_pages(z) (z->_watermark[WMARK_LOW] + z->watermark_boost)
-#define high_wmark_pages(z) (z->_watermark[WMARK_HIGH] + z->watermark_boost)
-#define wmark_pages(z, i) (z->_watermark[i] + z->watermark_boost)
-
-/* Fields and list protected by pagesets local_lock in page_alloc.c */
-struct per_cpu_pages {
- int count; /* number of pages in the list */
- int high; /* high watermark, emptying needed */
- int batch; /* chunk size for buddy add/remove */
- short free_factor; /* batch scaling factor during free */
-#ifdef CONFIG_NUMA
- short expire; /* When 0, remote pagesets are drained */
-#endif
-
- /* Lists of pages, one per migrate type stored on the pcp-lists */
- struct list_head lists[NR_PCP_LISTS];
-};
-
-struct per_cpu_zonestat {
-#ifdef CONFIG_SMP
- s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
- s8 stat_threshold;
-#endif
-#ifdef CONFIG_NUMA
- /*
- * Low priority inaccurate counters that are only folded
- * on demand. Use a large type to avoid the overhead of
- * folding during refresh_cpu_vm_stats.
- */
- unsigned long vm_numa_event[NR_VM_NUMA_EVENT_ITEMS];
-#endif
-};
-
-struct per_cpu_nodestat {
- s8 stat_threshold;
- s8 vm_node_stat_diff[NR_VM_NODE_STAT_ITEMS];
-};
-
-#endif /* !__GENERATING_BOUNDS.H */
-
-enum zone_type {
- /*
- * ZONE_DMA and ZONE_DMA32 are used when there are peripherals not able
- * to DMA to all of the addressable memory (ZONE_NORMAL).
- * On architectures where this area covers the whole 32 bit address
- * space ZONE_DMA32 is used. ZONE_DMA is left for the ones with smaller
- * DMA addressing constraints. This distinction is important as a 32bit
- * DMA mask is assumed when ZONE_DMA32 is defined. Some 64-bit
- * platforms may need both zones as they support peripherals with
- * different DMA addressing limitations.
- */
-#ifdef CONFIG_ZONE_DMA
- ZONE_DMA,
-#endif
-#ifdef CONFIG_ZONE_DMA32
- ZONE_DMA32,
-#endif
- /*
- * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
- * performed on pages in ZONE_NORMAL if the DMA devices support
- * transfers to all addressable memory.
- */
- ZONE_NORMAL,
-#ifdef CONFIG_HIGHMEM
- /*
- * A memory area that is only addressable by the kernel through
- * mapping portions into its own address space. This is for example
- * used by i386 to allow the kernel to address the memory beyond
- * 900MB. The kernel will set up special mappings (page
- * table entries on i386) for each page that the kernel needs to
- * access.
- */
- ZONE_HIGHMEM,
-#endif
- /*
- * ZONE_MOVABLE is similar to ZONE_NORMAL, except that it contains
- * movable pages with few exceptional cases described below. Main use
- * cases for ZONE_MOVABLE are to make memory offlining/unplug more
- * likely to succeed, and to locally limit unmovable allocations - e.g.,
- * to increase the number of THP/huge pages. Notable special cases are:
- *
- * 1. Pinned pages: (long-term) pinning of movable pages might
- * essentially turn such pages unmovable. Therefore, we do not allow
- * pinning long-term pages in ZONE_MOVABLE. When pages are pinned and
- * faulted, they come from the right zone right away. However, it is
- * still possible that address space already has pages in
- * ZONE_MOVABLE at the time when pages are pinned (i.e. user has
- * touches that memory before pinning). In such case we migrate them
- * to a different zone. When migration fails - pinning fails.
- * 2. memblock allocations: kernelcore/movablecore setups might create
- * situations where ZONE_MOVABLE contains unmovable allocations
- * after boot. Memory offlining and allocations fail early.
- * 3. Memory holes: kernelcore/movablecore setups might create very rare
- * situations where ZONE_MOVABLE contains memory holes after boot,
- * for example, if we have sections that are only partially
- * populated. Memory offlining and allocations fail early.
- * 4. PG_hwpoison pages: while poisoned pages can be skipped during
- * memory offlining, such pages cannot be allocated.
- * 5. Unmovable PG_offline pages: in paravirtualized environments,
- * hotplugged memory blocks might only partially be managed by the
- * buddy (e.g., via XEN-balloon, Hyper-V balloon, virtio-mem). The
- * parts not manged by the buddy are unmovable PG_offline pages. In
- * some cases (virtio-mem), such pages can be skipped during
- * memory offlining, however, cannot be moved/allocated. These
- * techniques might use alloc_contig_range() to hide previously
- * exposed pages from the buddy again (e.g., to implement some sort
- * of memory unplug in virtio-mem).
- * 6. ZERO_PAGE(0), kernelcore/movablecore setups might create
- * situations where ZERO_PAGE(0) which is allocated differently
- * on different platforms may end up in a movable zone. ZERO_PAGE(0)
- * cannot be migrated.
- * 7. Memory-hotplug: when using memmap_on_memory and onlining the
- * memory to the MOVABLE zone, the vmemmap pages are also placed in
- * such zone. Such pages cannot be really moved around as they are
- * self-stored in the range, but they are treated as movable when
- * the range they describe is about to be offlined.
- *
- * In general, no unmovable allocations that degrade memory offlining
- * should end up in ZONE_MOVABLE. Allocators (like alloc_contig_range())
- * have to expect that migrating pages in ZONE_MOVABLE can fail (even
- * if has_unmovable_pages() states that there are no unmovable pages,
- * there can be false negatives).
- */
- ZONE_MOVABLE,
-#ifdef CONFIG_ZONE_DEVICE
- ZONE_DEVICE,
-#endif
- __MAX_NR_ZONES
-
-};
-
-#ifndef __GENERATING_BOUNDS_H
-
-#define ASYNC_AND_SYNC 2
-
-struct zone {
- /* Read-mostly fields */
-
- /* zone watermarks, access with *_wmark_pages(zone) macros */
- unsigned long _watermark[NR_WMARK];
- unsigned long watermark_boost;
-
- unsigned long nr_reserved_highatomic;
-
- /*
- * We don't know if the memory that we're going to allocate will be
- * freeable or/and it will be released eventually, so to avoid totally
- * wasting several GB of ram we must reserve some of the lower zone
- * memory (otherwise we risk to run OOM on the lower zones despite
- * there being tons of freeable ram on the higher zones). This array is
- * recalculated at runtime if the sysctl_lowmem_reserve_ratio sysctl
- * changes.
- */
- long lowmem_reserve[MAX_NR_ZONES];
-
-#ifdef CONFIG_NUMA
- int node;
-#endif
- struct pglist_data *zone_pgdat;
- struct per_cpu_pages __percpu *per_cpu_pageset;
- struct per_cpu_zonestat __percpu *per_cpu_zonestats;
- /*
- * the high and batch values are copied to individual pagesets for
- * faster access
- */
- int pageset_high;
- int pageset_batch;
-
-#ifndef CONFIG_SPARSEMEM
- /*
- * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
- * In SPARSEMEM, this map is stored in struct mem_section
- */
- unsigned long *pageblock_flags;
-#endif /* CONFIG_SPARSEMEM */
-
- /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
- unsigned long zone_start_pfn;
-
- /*
- * spanned_pages is the total pages spanned by the zone, including
- * holes, which is calculated as:
- * spanned_pages = zone_end_pfn - zone_start_pfn;
- *
- * present_pages is physical pages existing within the zone, which
- * is calculated as:
- * present_pages = spanned_pages - absent_pages(pages in holes);
- *
- * present_early_pages is present pages existing within the zone
- * located on memory available since early boot, excluding hotplugged
- * memory.
- *
- * managed_pages is present pages managed by the buddy system, which
- * is calculated as (reserved_pages includes pages allocated by the
- * bootmem allocator):
- * managed_pages = present_pages - reserved_pages;
- *
- * cma pages is present pages that are assigned for CMA use
- * (MIGRATE_CMA).
- *
- * So present_pages may be used by memory hotplug or memory power
- * management logic to figure out unmanaged pages by checking
- * (present_pages - managed_pages). And managed_pages should be used
- * by page allocator and vm scanner to calculate all kinds of watermarks
- * and thresholds.
- *
- * Locking rules:
- *
- * zone_start_pfn and spanned_pages are protected by span_seqlock.
- * It is a seqlock because it has to be read outside of zone->lock,
- * and it is done in the main allocator path. But, it is written
- * quite infrequently.
- *
- * The span_seq lock is declared along with zone->lock because it is
- * frequently read in proximity to zone->lock. It's good to
- * give them a chance of being in the same cacheline.
- *
- * Write access to present_pages at runtime should be protected by
- * mem_hotplug_begin/end(). Any reader who can't tolerant drift of
- * present_pages should get_online_mems() to get a stable value.
- */
- atomic_long_t managed_pages;
- unsigned long spanned_pages;
- unsigned long present_pages;
-#if defined(CONFIG_MEMORY_HOTPLUG)
- unsigned long present_early_pages;
-#endif
-#ifdef CONFIG_CMA
- unsigned long cma_pages;
-#endif
-
- const char *name;
-
-#ifdef CONFIG_MEMORY_ISOLATION
- /*
- * Number of isolated pageblock. It is used to solve incorrect
- * freepage counting problem due to racy retrieving migratetype
- * of pageblock. Protected by zone->lock.
- */
- unsigned long nr_isolate_pageblock;
-#endif
-
-#ifdef CONFIG_MEMORY_HOTPLUG
- /* see spanned/present_pages for more description */
- seqlock_t span_seqlock;
-#endif
-
- int initialized;
-
- /* Write-intensive fields used from the page allocator */
- ZONE_PADDING(_pad1_)
-
- /* free areas of different sizes */
- struct free_area free_area[MAX_ORDER];
-
- /* zone flags, see below */
- unsigned long flags;
-
- /* Primarily protects free_area */
- spinlock_t lock;
-
- /* Write-intensive fields used by compaction and vmstats. */
- ZONE_PADDING(_pad2_)
-
- /*
- * When free pages are below this point, additional steps are taken
- * when reading the number of free pages to avoid per-cpu counter
- * drift allowing watermarks to be breached
- */
- unsigned long percpu_drift_mark;
-
-#if defined CONFIG_COMPACTION || defined CONFIG_CMA
- /* pfn where compaction free scanner should start */
- unsigned long compact_cached_free_pfn;
- /* pfn where compaction migration scanner should start */
- unsigned long compact_cached_migrate_pfn[ASYNC_AND_SYNC];
- unsigned long compact_init_migrate_pfn;
- unsigned long compact_init_free_pfn;
-#endif
-
-#ifdef CONFIG_COMPACTION
- /*
- * On compaction failure, 1<<compact_defer_shift compactions
- * are skipped before trying again. The number attempted since
- * last failure is tracked with compact_considered.
- * compact_order_failed is the minimum compaction failed order.
- */
- unsigned int compact_considered;
- unsigned int compact_defer_shift;
- int compact_order_failed;
-#endif
-
-#if defined CONFIG_COMPACTION || defined CONFIG_CMA
- /* Set to true when the PG_migrate_skip bits should be cleared */
- bool compact_blockskip_flush;
-#endif
-
- bool contiguous;
-
- ZONE_PADDING(_pad3_)
- /* Zone statistics */
- atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS];
- atomic_long_t vm_numa_event[NR_VM_NUMA_EVENT_ITEMS];
-} ____cacheline_internodealigned_in_smp;
-
-enum pgdat_flags {
- PGDAT_DIRTY, /* reclaim scanning has recently found
- * many dirty file pages at the tail
- * of the LRU.
- */
- PGDAT_WRITEBACK, /* reclaim scanning has recently found
- * many pages under writeback
- */
- PGDAT_RECLAIM_LOCKED, /* prevents concurrent reclaim */
-};
-
-enum zone_flags {
- ZONE_BOOSTED_WATERMARK, /* zone recently boosted watermarks.
- * Cleared when kswapd is woken.
- */
- ZONE_RECLAIM_ACTIVE, /* kswapd may be scanning the zone. */
-};
-
-static inline unsigned long zone_managed_pages(struct zone *zone)
-{
- return (unsigned long)atomic_long_read(&zone->managed_pages);
-}
-
-static inline unsigned long zone_cma_pages(struct zone *zone)
-{
-#ifdef CONFIG_CMA
- return zone->cma_pages;
-#else
- return 0;
-#endif
-}
-
-static inline unsigned long zone_end_pfn(const struct zone *zone)
-{
- return zone->zone_start_pfn + zone->spanned_pages;
-}
-
-static inline bool zone_spans_pfn(const struct zone *zone, unsigned long pfn)
-{
- return zone->zone_start_pfn <= pfn && pfn < zone_end_pfn(zone);
-}
-
-static inline bool zone_is_initialized(struct zone *zone)
-{
- return zone->initialized;
-}
-
-static inline bool zone_is_empty(struct zone *zone)
-{
- return zone->spanned_pages == 0;
-}
-
-/*
- * Return true if [start_pfn, start_pfn + nr_pages) range has a non-empty
- * intersection with the given zone
- */
-static inline bool zone_intersects(struct zone *zone,
- unsigned long start_pfn, unsigned long nr_pages)
-{
- if (zone_is_empty(zone))
- return false;
- if (start_pfn >= zone_end_pfn(zone) ||
- start_pfn + nr_pages <= zone->zone_start_pfn)
- return false;
-
- return true;
-}
-
-/*
- * The "priority" of VM scanning is how much of the queues we will scan in one
- * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
- * queues ("queue_length >> 12") during an aging round.
- */
-#define DEF_PRIORITY 12
-
-/* Maximum number of zones on a zonelist */
-#define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
-
-enum {
- ZONELIST_FALLBACK, /* zonelist with fallback */
-#ifdef CONFIG_NUMA
- /*
- * The NUMA zonelists are doubled because we need zonelists that
- * restrict the allocations to a single node for __GFP_THISNODE.
- */
- ZONELIST_NOFALLBACK, /* zonelist without fallback (__GFP_THISNODE) */
-#endif
- MAX_ZONELISTS
-};
-
-/*
- * This struct contains information about a zone in a zonelist. It is stored
- * here to avoid dereferences into large structures and lookups of tables
- */
-struct zoneref {
- struct zone *zone; /* Pointer to actual zone */
- int zone_idx; /* zone_idx(zoneref->zone) */
-};
-
-/*
- * One allocation request operates on a zonelist. A zonelist
- * is a list of zones, the first one is the 'goal' of the
- * allocation, the other zones are fallback zones, in decreasing
- * priority.
- *
- * To speed the reading of the zonelist, the zonerefs contain the zone index
- * of the entry being read. Helper functions to access information given
- * a struct zoneref are
- *
- * zonelist_zone() - Return the struct zone * for an entry in _zonerefs
- * zonelist_zone_idx() - Return the index of the zone for an entry
- * zonelist_node_idx() - Return the index of the node for an entry
- */
-struct zonelist {
- struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
-};
-
-#ifdef CONFIG_TRANSPARENT_HUGEPAGE
-struct deferred_split {
- spinlock_t split_queue_lock;
- struct list_head split_queue;
- unsigned long split_queue_len;
-};
-#endif
-
-/*
- * On NUMA machines, each NUMA node would have a pg_data_t to describe
- * it's memory layout. On UMA machines there is a single pglist_data which
- * describes the whole memory.
- *
- * Memory statistics and page replacement data structures are maintained on a
- * per-zone basis.
- */
-typedef struct pglist_data {
- /*
- * node_zones contains just the zones for THIS node. Not all of the
- * zones may be populated, but it is the full list. It is referenced by
- * this node's node_zonelists as well as other node's node_zonelists.
- */
- struct zone node_zones[MAX_NR_ZONES];
-
- /*
- * node_zonelists contains references to all zones in all nodes.
- * Generally the first zones will be references to this node's
- * node_zones.
- */
- struct zonelist node_zonelists[MAX_ZONELISTS];
-
- int nr_zones; /* number of populated zones in this node */
-#ifdef CONFIG_FLATMEM /* means !SPARSEMEM */
- struct page *node_mem_map;
-#ifdef CONFIG_PAGE_EXTENSION
- struct page_ext *node_page_ext;
-#endif
-#endif
-#if defined(CONFIG_MEMORY_HOTPLUG) || defined(CONFIG_DEFERRED_STRUCT_PAGE_INIT)
- /*
- * Must be held any time you expect node_start_pfn,
- * node_present_pages, node_spanned_pages or nr_zones to stay constant.
- * Also synchronizes pgdat->first_deferred_pfn during deferred page
- * init.
- *
- * pgdat_resize_lock() and pgdat_resize_unlock() are provided to
- * manipulate node_size_lock without checking for CONFIG_MEMORY_HOTPLUG
- * or CONFIG_DEFERRED_STRUCT_PAGE_INIT.
- *
- * Nests above zone->lock and zone->span_seqlock
- */
- spinlock_t node_size_lock;
-#endif
- unsigned long node_start_pfn;
- unsigned long node_present_pages; /* total number of physical pages */
- unsigned long node_spanned_pages; /* total size of physical page
- range, including holes */
- int node_id;
- wait_queue_head_t kswapd_wait;
- wait_queue_head_t pfmemalloc_wait;
-
- /* workqueues for throttling reclaim for different reasons. */
- wait_queue_head_t reclaim_wait[NR_VMSCAN_THROTTLE];
-
- atomic_t nr_writeback_throttled;/* nr of writeback-throttled tasks */
- unsigned long nr_reclaim_start; /* nr pages written while throttled
- * when throttling started. */
- struct task_struct *kswapd; /* Protected by
- mem_hotplug_begin/end() */
- int kswapd_order;
- enum zone_type kswapd_highest_zoneidx;
-
- int kswapd_failures; /* Number of 'reclaimed == 0' runs */
-
-#ifdef CONFIG_COMPACTION
- int kcompactd_max_order;
- enum zone_type kcompactd_highest_zoneidx;
- wait_queue_head_t kcompactd_wait;
- struct task_struct *kcompactd;
- bool proactive_compact_trigger;
-#endif
- /*
- * This is a per-node reserve of pages that are not available
- * to userspace allocations.
- */
- unsigned long totalreserve_pages;
-
-#ifdef CONFIG_NUMA
- /*
- * node reclaim becomes active if more unmapped pages exist.
- */
- unsigned long min_unmapped_pages;
- unsigned long min_slab_pages;
-#endif /* CONFIG_NUMA */
-
- /* Write-intensive fields used by page reclaim */
- ZONE_PADDING(_pad1_)
-
-#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
- /*
- * If memory initialisation on large machines is deferred then this
- * is the first PFN that needs to be initialised.
- */
- unsigned long first_deferred_pfn;
-#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
-
-#ifdef CONFIG_TRANSPARENT_HUGEPAGE
- struct deferred_split deferred_split_queue;
-#endif
-
- /* Fields commonly accessed by the page reclaim scanner */
-
- /*
- * NOTE: THIS IS UNUSED IF MEMCG IS ENABLED.
- *
- * Use mem_cgroup_lruvec() to look up lruvecs.
- */
- struct lruvec __lruvec;
-
- unsigned long flags;
-
- ZONE_PADDING(_pad2_)
-
- /* Per-node vmstats */
- struct per_cpu_nodestat __percpu *per_cpu_nodestats;
- atomic_long_t vm_stat[NR_VM_NODE_STAT_ITEMS];
-} pg_data_t;
-
-#define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages)
-#define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages)
-#ifdef CONFIG_FLATMEM
-#define pgdat_page_nr(pgdat, pagenr) ((pgdat)->node_mem_map + (pagenr))
-#else
-#define pgdat_page_nr(pgdat, pagenr) pfn_to_page((pgdat)->node_start_pfn + (pagenr))
-#endif
-#define nid_page_nr(nid, pagenr) pgdat_page_nr(NODE_DATA(nid),(pagenr))
-
-#define node_start_pfn(nid) (NODE_DATA(nid)->node_start_pfn)
-#define node_end_pfn(nid) pgdat_end_pfn(NODE_DATA(nid))
-
-static inline unsigned long pgdat_end_pfn(pg_data_t *pgdat)
-{
- return pgdat->node_start_pfn + pgdat->node_spanned_pages;
-}
-
-static inline bool pgdat_is_empty(pg_data_t *pgdat)
-{
- return !pgdat->node_start_pfn && !pgdat->node_spanned_pages;
-}
-
-void build_all_zonelists(pg_data_t *pgdat);
-void wakeup_kswapd(struct zone *zone, gfp_t gfp_mask, int order,
- enum zone_type highest_zoneidx);
-bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
- int highest_zoneidx, unsigned int alloc_flags,
- long free_pages);
-bool zone_watermark_ok(struct zone *z, unsigned int order,
- unsigned long mark, int highest_zoneidx,
- unsigned int alloc_flags);
-bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
- unsigned long mark, int highest_zoneidx);
-/*
- * Memory initialization context, use to differentiate memory added by
- * the platform statically or via memory hotplug interface.
- */
-enum meminit_context {
- MEMINIT_EARLY,
- MEMINIT_HOTPLUG,
-};
-
-extern void init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
- unsigned long size);
-
-extern void lruvec_init(struct lruvec *lruvec);
-
-static inline struct pglist_data *lruvec_pgdat(struct lruvec *lruvec)
-{
-#ifdef CONFIG_MEMCG
- return lruvec->pgdat;
-#else
- return container_of(lruvec, struct pglist_data, __lruvec);
-#endif
-}
-
-#ifdef CONFIG_HAVE_MEMORYLESS_NODES
-int local_memory_node(int node_id);
-#else
-static inline int local_memory_node(int node_id) { return node_id; };
-#endif
-
-/*
- * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
- */
-#define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones)
-
-#ifdef CONFIG_ZONE_DEVICE
-static inline bool zone_is_zone_device(struct zone *zone)
-{
- return zone_idx(zone) == ZONE_DEVICE;
-}
-#else
-static inline bool zone_is_zone_device(struct zone *zone)
-{
- return false;
-}
-#endif
-
-/*
- * Returns true if a zone has pages managed by the buddy allocator.
- * All the reclaim decisions have to use this function rather than
- * populated_zone(). If the whole zone is reserved then we can easily
- * end up with populated_zone() && !managed_zone().
- */
-static inline bool managed_zone(struct zone *zone)
-{
- return zone_managed_pages(zone);
-}
-
-/* Returns true if a zone has memory */
-static inline bool populated_zone(struct zone *zone)
-{
- return zone->present_pages;
-}
-
-#ifdef CONFIG_NUMA
-static inline int zone_to_nid(struct zone *zone)
-{
- return zone->node;
-}
-
-static inline void zone_set_nid(struct zone *zone, int nid)
-{
- zone->node = nid;
-}
-#else
-static inline int zone_to_nid(struct zone *zone)
-{
- return 0;
-}
-
-static inline void zone_set_nid(struct zone *zone, int nid) {}
-#endif
-
-extern int movable_zone;
-
-static inline int is_highmem_idx(enum zone_type idx)
-{
-#ifdef CONFIG_HIGHMEM
- return (idx == ZONE_HIGHMEM ||
- (idx == ZONE_MOVABLE && movable_zone == ZONE_HIGHMEM));
-#else
- return 0;
-#endif
-}
-
-#ifdef CONFIG_ZONE_DMA
-bool has_managed_dma(void);
-#else
-static inline bool has_managed_dma(void)
-{
- return false;
-}
-#endif
-
-/**
- * is_highmem - helper function to quickly check if a struct zone is a
- * highmem zone or not. This is an attempt to keep references
- * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
- * @zone: pointer to struct zone variable
- * Return: 1 for a highmem zone, 0 otherwise
- */
-static inline int is_highmem(struct zone *zone)
-{
-#ifdef CONFIG_HIGHMEM
- return is_highmem_idx(zone_idx(zone));
-#else
- return 0;
-#endif
-}
-
-/* These two functions are used to setup the per zone pages min values */
-struct ctl_table;
-
-int min_free_kbytes_sysctl_handler(struct ctl_table *, int, void *, size_t *,
- loff_t *);
-int watermark_scale_factor_sysctl_handler(struct ctl_table *, int, void *,
- size_t *, loff_t *);
-extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES];
-int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int, void *,
- size_t *, loff_t *);
-int percpu_pagelist_high_fraction_sysctl_handler(struct ctl_table *, int,
- void *, size_t *, loff_t *);
-int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
- void *, size_t *, loff_t *);
-int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
- void *, size_t *, loff_t *);
-int numa_zonelist_order_handler(struct ctl_table *, int,
- void *, size_t *, loff_t *);
-extern int percpu_pagelist_high_fraction;
-extern char numa_zonelist_order[];
-#define NUMA_ZONELIST_ORDER_LEN 16
-
-#ifndef CONFIG_NUMA
-
-extern struct pglist_data contig_page_data;
-static inline struct pglist_data *NODE_DATA(int nid)
-{
- return &contig_page_data;
-}
-#define NODE_MEM_MAP(nid) mem_map
-
-#else /* CONFIG_NUMA */
-
-#include <asm/mmzone.h>
-
-#endif /* !CONFIG_NUMA */
-
-extern struct pglist_data *first_online_pgdat(void);
-extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
-extern struct zone *next_zone(struct zone *zone);
-
-/**
- * for_each_online_pgdat - helper macro to iterate over all online nodes
- * @pgdat: pointer to a pg_data_t variable
- */
-#define for_each_online_pgdat(pgdat) \
- for (pgdat = first_online_pgdat(); \
- pgdat; \
- pgdat = next_online_pgdat(pgdat))
-/**
- * for_each_zone - helper macro to iterate over all memory zones
- * @zone: pointer to struct zone variable
- *
- * The user only needs to declare the zone variable, for_each_zone
- * fills it in.
- */
-#define for_each_zone(zone) \
- for (zone = (first_online_pgdat())->node_zones; \
- zone; \
- zone = next_zone(zone))
-
-#define for_each_populated_zone(zone) \
- for (zone = (first_online_pgdat())->node_zones; \
- zone; \
- zone = next_zone(zone)) \
- if (!populated_zone(zone)) \
- ; /* do nothing */ \
- else
-
-static inline struct zone *zonelist_zone(struct zoneref *zoneref)
-{
- return zoneref->zone;
-}
-
-static inline int zonelist_zone_idx(struct zoneref *zoneref)
-{
- return zoneref->zone_idx;
-}
-
-static inline int zonelist_node_idx(struct zoneref *zoneref)
-{
- return zone_to_nid(zoneref->zone);
-}
-
-struct zoneref *__next_zones_zonelist(struct zoneref *z,
- enum zone_type highest_zoneidx,
- nodemask_t *nodes);
-
-/**
- * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
- * @z: The cursor used as a starting point for the search
- * @highest_zoneidx: The zone index of the highest zone to return
- * @nodes: An optional nodemask to filter the zonelist with
- *
- * This function returns the next zone at or below a given zone index that is
- * within the allowed nodemask using a cursor as the starting point for the
- * search. The zoneref returned is a cursor that represents the current zone
- * being examined. It should be advanced by one before calling
- * next_zones_zonelist again.
- *
- * Return: the next zone at or below highest_zoneidx within the allowed
- * nodemask using a cursor within a zonelist as a starting point
- */
-static __always_inline struct zoneref *next_zones_zonelist(struct zoneref *z,
- enum zone_type highest_zoneidx,
- nodemask_t *nodes)
-{
- if (likely(!nodes && zonelist_zone_idx(z) <= highest_zoneidx))
- return z;
- return __next_zones_zonelist(z, highest_zoneidx, nodes);
-}
-
-/**
- * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
- * @zonelist: The zonelist to search for a suitable zone
- * @highest_zoneidx: The zone index of the highest zone to return
- * @nodes: An optional nodemask to filter the zonelist with
- *
- * This function returns the first zone at or below a given zone index that is
- * within the allowed nodemask. The zoneref returned is a cursor that can be
- * used to iterate the zonelist with next_zones_zonelist by advancing it by
- * one before calling.
- *
- * When no eligible zone is found, zoneref->zone is NULL (zoneref itself is
- * never NULL). This may happen either genuinely, or due to concurrent nodemask
- * update due to cpuset modification.
- *
- * Return: Zoneref pointer for the first suitable zone found
- */
-static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
- enum zone_type highest_zoneidx,
- nodemask_t *nodes)
-{
- return next_zones_zonelist(zonelist->_zonerefs,
- highest_zoneidx, nodes);
-}
-
-/**
- * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
- * @zone: The current zone in the iterator
- * @z: The current pointer within zonelist->_zonerefs being iterated
- * @zlist: The zonelist being iterated
- * @highidx: The zone index of the highest zone to return
- * @nodemask: Nodemask allowed by the allocator
- *
- * This iterator iterates though all zones at or below a given zone index and
- * within a given nodemask
- */
-#define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
- for (z = first_zones_zonelist(zlist, highidx, nodemask), zone = zonelist_zone(z); \
- zone; \
- z = next_zones_zonelist(++z, highidx, nodemask), \
- zone = zonelist_zone(z))
-
-#define for_next_zone_zonelist_nodemask(zone, z, highidx, nodemask) \
- for (zone = z->zone; \
- zone; \
- z = next_zones_zonelist(++z, highidx, nodemask), \
- zone = zonelist_zone(z))
-
-
-/**
- * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
- * @zone: The current zone in the iterator
- * @z: The current pointer within zonelist->zones being iterated
- * @zlist: The zonelist being iterated
- * @highidx: The zone index of the highest zone to return
- *
- * This iterator iterates though all zones at or below a given zone index.
- */
-#define for_each_zone_zonelist(zone, z, zlist, highidx) \
- for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
-
-/* Whether the 'nodes' are all movable nodes */
-static inline bool movable_only_nodes(nodemask_t *nodes)
-{
- struct zonelist *zonelist;
- struct zoneref *z;
- int nid;
-
- if (nodes_empty(*nodes))
- return false;
-
- /*
- * We can chose arbitrary node from the nodemask to get a
- * zonelist as they are interlinked. We just need to find
- * at least one zone that can satisfy kernel allocations.
- */
- nid = first_node(*nodes);
- zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK];
- z = first_zones_zonelist(zonelist, ZONE_NORMAL, nodes);
- return (!z->zone) ? true : false;
-}
-
-
-#ifdef CONFIG_SPARSEMEM
-#include <asm/sparsemem.h>
-#endif
-
-#ifdef CONFIG_FLATMEM
-#define pfn_to_nid(pfn) (0)
-#endif
-
-#ifdef CONFIG_SPARSEMEM
-
-/*
- * PA_SECTION_SHIFT physical address to/from section number
- * PFN_SECTION_SHIFT pfn to/from section number
- */
-#define PA_SECTION_SHIFT (SECTION_SIZE_BITS)
-#define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT)
-
-#define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT)
-
-#define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT)
-#define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1))
-
-#define SECTION_BLOCKFLAGS_BITS \
- ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
-
-#if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
-#error Allocator MAX_ORDER exceeds SECTION_SIZE
-#endif
-
-static inline unsigned long pfn_to_section_nr(unsigned long pfn)
-{
- return pfn >> PFN_SECTION_SHIFT;
-}
-static inline unsigned long section_nr_to_pfn(unsigned long sec)
-{
- return sec << PFN_SECTION_SHIFT;
-}
-
-#define SECTION_ALIGN_UP(pfn) (((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK)
-#define SECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SECTION_MASK)
-
-#define SUBSECTION_SHIFT 21
-#define SUBSECTION_SIZE (1UL << SUBSECTION_SHIFT)
-
-#define PFN_SUBSECTION_SHIFT (SUBSECTION_SHIFT - PAGE_SHIFT)
-#define PAGES_PER_SUBSECTION (1UL << PFN_SUBSECTION_SHIFT)
-#define PAGE_SUBSECTION_MASK (~(PAGES_PER_SUBSECTION-1))
-
-#if SUBSECTION_SHIFT > SECTION_SIZE_BITS
-#error Subsection size exceeds section size
-#else
-#define SUBSECTIONS_PER_SECTION (1UL << (SECTION_SIZE_BITS - SUBSECTION_SHIFT))
-#endif
-
-#define SUBSECTION_ALIGN_UP(pfn) ALIGN((pfn), PAGES_PER_SUBSECTION)
-#define SUBSECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SUBSECTION_MASK)
-
-struct mem_section_usage {
-#ifdef CONFIG_SPARSEMEM_VMEMMAP
- DECLARE_BITMAP(subsection_map, SUBSECTIONS_PER_SECTION);
-#endif
- /* See declaration of similar field in struct zone */
- unsigned long pageblock_flags[0];
-};
-
-void subsection_map_init(unsigned long pfn, unsigned long nr_pages);
-
-struct page;
-struct page_ext;
-struct mem_section {
- /*
- * This is, logically, a pointer to an array of struct
- * pages. However, it is stored with some other magic.
- * (see sparse.c::sparse_init_one_section())
- *
- * Additionally during early boot we encode node id of
- * the location of the section here to guide allocation.
- * (see sparse.c::memory_present())
- *
- * Making it a UL at least makes someone do a cast
- * before using it wrong.
- */
- unsigned long section_mem_map;
-
- struct mem_section_usage *usage;
-#ifdef CONFIG_PAGE_EXTENSION
- /*
- * If SPARSEMEM, pgdat doesn't have page_ext pointer. We use
- * section. (see page_ext.h about this.)
- */
- struct page_ext *page_ext;
- unsigned long pad;
-#endif
- /*
- * WARNING: mem_section must be a power-of-2 in size for the
- * calculation and use of SECTION_ROOT_MASK to make sense.
- */
-};
-
-#ifdef CONFIG_SPARSEMEM_EXTREME
-#define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section))
-#else
-#define SECTIONS_PER_ROOT 1
-#endif
-
-#define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT)
-#define NR_SECTION_ROOTS DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT)
-#define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1)
-
-#ifdef CONFIG_SPARSEMEM_EXTREME
-extern struct mem_section **mem_section;
-#else
-extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
-#endif
-
-static inline unsigned long *section_to_usemap(struct mem_section *ms)
-{
- return ms->usage->pageblock_flags;
-}
-
-static inline struct mem_section *__nr_to_section(unsigned long nr)
-{
-#ifdef CONFIG_SPARSEMEM_EXTREME
- if (!mem_section)
- return NULL;
-#endif
- if (!mem_section[SECTION_NR_TO_ROOT(nr)])
- return NULL;
- return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
-}
-extern size_t mem_section_usage_size(void);
-
-/*
- * We use the lower bits of the mem_map pointer to store
- * a little bit of information. The pointer is calculated
- * as mem_map - section_nr_to_pfn(pnum). The result is
- * aligned to the minimum alignment of the two values:
- * 1. All mem_map arrays are page-aligned.
- * 2. section_nr_to_pfn() always clears PFN_SECTION_SHIFT
- * lowest bits. PFN_SECTION_SHIFT is arch-specific
- * (equal SECTION_SIZE_BITS - PAGE_SHIFT), and the
- * worst combination is powerpc with 256k pages,
- * which results in PFN_SECTION_SHIFT equal 6.
- * To sum it up, at least 6 bits are available.
- */
-#define SECTION_MARKED_PRESENT (1UL<<0)
-#define SECTION_HAS_MEM_MAP (1UL<<1)
-#define SECTION_IS_ONLINE (1UL<<2)
-#define SECTION_IS_EARLY (1UL<<3)
-#define SECTION_TAINT_ZONE_DEVICE (1UL<<4)
-#define SECTION_MAP_LAST_BIT (1UL<<5)
-#define SECTION_MAP_MASK (~(SECTION_MAP_LAST_BIT-1))
-#define SECTION_NID_SHIFT 6
-
-static inline struct page *__section_mem_map_addr(struct mem_section *section)
-{
- unsigned long map = section->section_mem_map;
- map &= SECTION_MAP_MASK;
- return (struct page *)map;
-}
-
-static inline int present_section(struct mem_section *section)
-{
- return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
-}
-
-static inline int present_section_nr(unsigned long nr)
-{
- return present_section(__nr_to_section(nr));
-}
-
-static inline int valid_section(struct mem_section *section)
-{
- return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
-}
-
-static inline int early_section(struct mem_section *section)
-{
- return (section && (section->section_mem_map & SECTION_IS_EARLY));
-}
-
-static inline int valid_section_nr(unsigned long nr)
-{
- return valid_section(__nr_to_section(nr));
-}
-
-static inline int online_section(struct mem_section *section)
-{
- return (section && (section->section_mem_map & SECTION_IS_ONLINE));
-}
-
-static inline int online_device_section(struct mem_section *section)
-{
- unsigned long flags = SECTION_IS_ONLINE | SECTION_TAINT_ZONE_DEVICE;
-
- return section && ((section->section_mem_map & flags) == flags);
-}
-
-static inline int online_section_nr(unsigned long nr)
-{
- return online_section(__nr_to_section(nr));
-}
-
-#ifdef CONFIG_MEMORY_HOTPLUG
-void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn);
-void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn);
-#endif
-
-static inline struct mem_section *__pfn_to_section(unsigned long pfn)
-{
- return __nr_to_section(pfn_to_section_nr(pfn));
-}
-
-extern unsigned long __highest_present_section_nr;
-
-static inline int subsection_map_index(unsigned long pfn)
-{
- return (pfn & ~(PAGE_SECTION_MASK)) / PAGES_PER_SUBSECTION;
-}
-
-#ifdef CONFIG_SPARSEMEM_VMEMMAP
-static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn)
-{
- int idx = subsection_map_index(pfn);
-
- return test_bit(idx, ms->usage->subsection_map);
-}
-#else
-static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn)
-{
- return 1;
-}
-#endif
-
-#ifndef CONFIG_HAVE_ARCH_PFN_VALID
-/**
- * pfn_valid - check if there is a valid memory map entry for a PFN
- * @pfn: the page frame number to check
- *
- * Check if there is a valid memory map entry aka struct page for the @pfn.
- * Note, that availability of the memory map entry does not imply that
- * there is actual usable memory at that @pfn. The struct page may
- * represent a hole or an unusable page frame.
- *
- * Return: 1 for PFNs that have memory map entries and 0 otherwise
- */
-static inline int pfn_valid(unsigned long pfn)
-{
- struct mem_section *ms;
-
- /*
- * Ensure the upper PAGE_SHIFT bits are clear in the
- * pfn. Else it might lead to false positives when
- * some of the upper bits are set, but the lower bits
- * match a valid pfn.
- */
- if (PHYS_PFN(PFN_PHYS(pfn)) != pfn)
- return 0;
-
- if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
- return 0;
- ms = __pfn_to_section(pfn);
- if (!valid_section(ms))
- return 0;
- /*
- * Traditionally early sections always returned pfn_valid() for
- * the entire section-sized span.
- */
- return early_section(ms) || pfn_section_valid(ms, pfn);
-}
-#endif
-
-static inline int pfn_in_present_section(unsigned long pfn)
-{
- if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
- return 0;
- return present_section(__pfn_to_section(pfn));
-}
-
-static inline unsigned long next_present_section_nr(unsigned long section_nr)
-{
- while (++section_nr <= __highest_present_section_nr) {
- if (present_section_nr(section_nr))
- return section_nr;
- }
-
- return -1;
-}
-
-/*
- * These are _only_ used during initialisation, therefore they
- * can use __initdata ... They could have names to indicate
- * this restriction.
- */
-#ifdef CONFIG_NUMA
-#define pfn_to_nid(pfn) \
-({ \
- unsigned long __pfn_to_nid_pfn = (pfn); \
- page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \
-})
-#else
-#define pfn_to_nid(pfn) (0)
-#endif
-
-void sparse_init(void);
-#else
-#define sparse_init() do {} while (0)
-#define sparse_index_init(_sec, _nid) do {} while (0)
-#define pfn_in_present_section pfn_valid
-#define subsection_map_init(_pfn, _nr_pages) do {} while (0)
-#endif /* CONFIG_SPARSEMEM */
-
-#endif /* !__GENERATING_BOUNDS.H */
-#endif /* !__ASSEMBLY__ */
#endif /* _LINUX_MMZONE_H */
diff --git a/include/linux/mmzone_api.h b/include/linux/mmzone_api.h
index 1ae138cfbcdf6..b3d7db1566edf 100644
--- a/include/linux/mmzone_api.h
+++ b/include/linux/mmzone_api.h
@@ -1 +1,766 @@
-#include <linux/mmzone.h>
+/* SPDX-License-Identifier: GPL-2.0 */
+#ifndef _LINUX_MMZONE_API_H
+#define _LINUX_MMZONE_API_H
+
+#ifndef __ASSEMBLY__
+
+#include <linux/mmzone_types.h>
+
+#ifndef __GENERATING_BOUNDS_H
+
+#include <linux/spinlock_types.h>
+#include <linux/list.h>
+#include <linux/wait.h>
+#include <linux/bitops.h>
+#include <linux/cache.h>
+#include <linux/threads.h>
+#include <linux/numa.h>
+#include <linux/init.h>
+#include <linux/seqlock.h>
+#include <linux/nodemask.h>
+#include <linux/pageblock-flags.h>
+#include <linux/page-flags-layout.h>
+#include <linux/atomic_api.h>
+#include <linux/math.h>
+#include <asm/cpufeature.h>
+#include <linux/mm_types.h>
+#include <linux/gfp_types.h>
+#include <linux/page-flags.h>
+#include <linux/local_lock.h>
+#include <asm/page.h>
+
+#ifdef CONFIG_CMA
+# define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA)
+# define is_migrate_cma_page(_page) (get_pageblock_migratetype(_page) == MIGRATE_CMA)
+#else
+# define is_migrate_cma(migratetype) false
+# define is_migrate_cma_page(_page) false
+#endif
+
+static inline bool is_migrate_movable(int mt)
+{
+ return is_migrate_cma(mt) || mt == MIGRATE_MOVABLE;
+}
+
+#define for_each_migratetype_order(order, type) \
+ for (order = 0; order < MAX_ORDER; order++) \
+ for (type = 0; type < MIGRATE_TYPES; type++)
+
+#define get_pageblock_migratetype(page) \
+ get_pfnblock_flags_mask(page, page_to_pfn(page), MIGRATETYPE_MASK)
+
+static inline struct page *get_page_from_free_area(struct free_area *area,
+ int migratetype)
+{
+ return list_first_entry_or_null(&area->free_list[migratetype],
+ struct page, lru);
+}
+
+static inline bool free_area_empty(struct free_area *area, int migratetype)
+{
+ return list_empty(&area->free_list[migratetype]);
+}
+
+#define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++)
+
+#define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++)
+
+static inline bool is_file_lru(enum lru_list lru)
+{
+ return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE);
+}
+
+static inline bool is_active_lru(enum lru_list lru)
+{
+ return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE);
+}
+
+static inline unsigned long zone_managed_pages(struct zone *zone)
+{
+ return (unsigned long)atomic_long_read(&zone->managed_pages);
+}
+
+static inline unsigned long zone_cma_pages(struct zone *zone)
+{
+#ifdef CONFIG_CMA
+ return zone->cma_pages;
+#else
+ return 0;
+#endif
+}
+
+static inline unsigned long zone_end_pfn(const struct zone *zone)
+{
+ return zone->zone_start_pfn + zone->spanned_pages;
+}
+
+static inline bool zone_spans_pfn(const struct zone *zone, unsigned long pfn)
+{
+ return zone->zone_start_pfn <= pfn && pfn < zone_end_pfn(zone);
+}
+
+static inline bool zone_is_initialized(struct zone *zone)
+{
+ return zone->initialized;
+}
+
+static inline bool zone_is_empty(struct zone *zone)
+{
+ return zone->spanned_pages == 0;
+}
+
+/*
+ * Return true if [start_pfn, start_pfn + nr_pages) range has a non-empty
+ * intersection with the given zone
+ */
+static inline bool zone_intersects(struct zone *zone,
+ unsigned long start_pfn, unsigned long nr_pages)
+{
+ if (zone_is_empty(zone))
+ return false;
+ if (start_pfn >= zone_end_pfn(zone) ||
+ start_pfn + nr_pages <= zone->zone_start_pfn)
+ return false;
+
+ return true;
+}
+
+static inline unsigned long pgdat_end_pfn(pg_data_t *pgdat)
+{
+ return pgdat->node_start_pfn + pgdat->node_spanned_pages;
+}
+
+static inline bool pgdat_is_empty(pg_data_t *pgdat)
+{
+ return !pgdat->node_start_pfn && !pgdat->node_spanned_pages;
+}
+
+void build_all_zonelists(pg_data_t *pgdat);
+void wakeup_kswapd(struct zone *zone, gfp_t gfp_mask, int order,
+ enum zone_type highest_zoneidx);
+bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
+ int highest_zoneidx, unsigned int alloc_flags,
+ long free_pages);
+bool zone_watermark_ok(struct zone *z, unsigned int order,
+ unsigned long mark, int highest_zoneidx,
+ unsigned int alloc_flags);
+bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
+ unsigned long mark, int highest_zoneidx);
+extern void init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
+ unsigned long size);
+
+extern void lruvec_init(struct lruvec *lruvec);
+
+static inline struct pglist_data *lruvec_pgdat(struct lruvec *lruvec)
+{
+#ifdef CONFIG_MEMCG
+ return lruvec->pgdat;
+#else
+ return container_of(lruvec, struct pglist_data, __lruvec);
+#endif
+}
+
+#ifdef CONFIG_HAVE_MEMORYLESS_NODES
+int local_memory_node(int node_id);
+#else
+static inline int local_memory_node(int node_id) { return node_id; };
+#endif
+
+/*
+ * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
+ */
+#define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones)
+
+#ifdef CONFIG_ZONE_DEVICE
+static inline bool zone_is_zone_device(struct zone *zone)
+{
+ return zone_idx(zone) == ZONE_DEVICE;
+}
+#else
+static inline bool zone_is_zone_device(struct zone *zone)
+{
+ return false;
+}
+#endif
+
+/*
+ * Returns true if a zone has pages managed by the buddy allocator.
+ * All the reclaim decisions have to use this function rather than
+ * populated_zone(). If the whole zone is reserved then we can easily
+ * end up with populated_zone() && !managed_zone().
+ */
+static inline bool managed_zone(struct zone *zone)
+{
+ return zone_managed_pages(zone);
+}
+
+/* Returns true if a zone has memory */
+static inline bool populated_zone(struct zone *zone)
+{
+ return zone->present_pages;
+}
+
+#ifdef CONFIG_NUMA
+static inline int zone_to_nid(struct zone *zone)
+{
+ return zone->node;
+}
+
+static inline void zone_set_nid(struct zone *zone, int nid)
+{
+ zone->node = nid;
+}
+#else
+static inline int zone_to_nid(struct zone *zone)
+{
+ return 0;
+}
+
+static inline void zone_set_nid(struct zone *zone, int nid) {}
+#endif
+
+static inline int is_highmem_idx(enum zone_type idx)
+{
+#ifdef CONFIG_HIGHMEM
+ return (idx == ZONE_HIGHMEM ||
+ (idx == ZONE_MOVABLE && movable_zone == ZONE_HIGHMEM));
+#else
+ return 0;
+#endif
+}
+
+#ifdef CONFIG_ZONE_DMA
+bool has_managed_dma(void);
+#else
+static inline bool has_managed_dma(void)
+{
+ return false;
+}
+#endif
+
+/**
+ * is_highmem - helper function to quickly check if a struct zone is a
+ * highmem zone or not. This is an attempt to keep references
+ * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
+ * @zone: pointer to struct zone variable
+ * Return: 1 for a highmem zone, 0 otherwise
+ */
+static inline int is_highmem(struct zone *zone)
+{
+#ifdef CONFIG_HIGHMEM
+ return is_highmem_idx(zone_idx(zone));
+#else
+ return 0;
+#endif
+}
+
+/* These two functions are used to setup the per zone pages min values */
+struct ctl_table;
+
+int min_free_kbytes_sysctl_handler(struct ctl_table *, int, void *, size_t *,
+ loff_t *);
+int watermark_scale_factor_sysctl_handler(struct ctl_table *, int, void *,
+ size_t *, loff_t *);
+extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES];
+int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int, void *,
+ size_t *, loff_t *);
+int percpu_pagelist_high_fraction_sysctl_handler(struct ctl_table *, int,
+ void *, size_t *, loff_t *);
+int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
+ void *, size_t *, loff_t *);
+int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
+ void *, size_t *, loff_t *);
+int numa_zonelist_order_handler(struct ctl_table *, int,
+ void *, size_t *, loff_t *);
+extern int percpu_pagelist_high_fraction;
+extern char numa_zonelist_order[];
+#define NUMA_ZONELIST_ORDER_LEN 16
+
+#ifndef CONFIG_NUMA
+
+extern struct pglist_data contig_page_data;
+static inline struct pglist_data *NODE_DATA(int nid)
+{
+ return &contig_page_data;
+}
+#define NODE_MEM_MAP(nid) mem_map
+
+#else /* CONFIG_NUMA */
+
+#include <asm/mmzone.h>
+
+#endif /* !CONFIG_NUMA */
+
+extern struct pglist_data *first_online_pgdat(void);
+extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
+extern struct zone *next_zone(struct zone *zone);
+
+/**
+ * for_each_online_pgdat - helper macro to iterate over all online nodes
+ * @pgdat: pointer to a pg_data_t variable
+ */
+#define for_each_online_pgdat(pgdat) \
+ for (pgdat = first_online_pgdat(); \
+ pgdat; \
+ pgdat = next_online_pgdat(pgdat))
+/**
+ * for_each_zone - helper macro to iterate over all memory zones
+ * @zone: pointer to struct zone variable
+ *
+ * The user only needs to declare the zone variable, for_each_zone
+ * fills it in.
+ */
+#define for_each_zone(zone) \
+ for (zone = (first_online_pgdat())->node_zones; \
+ zone; \
+ zone = next_zone(zone))
+
+#define for_each_populated_zone(zone) \
+ for (zone = (first_online_pgdat())->node_zones; \
+ zone; \
+ zone = next_zone(zone)) \
+ if (!populated_zone(zone)) \
+ ; /* do nothing */ \
+ else
+
+static inline struct zone *zonelist_zone(struct zoneref *zoneref)
+{
+ return zoneref->zone;
+}
+
+static inline int zonelist_zone_idx(struct zoneref *zoneref)
+{
+ return zoneref->zone_idx;
+}
+
+static inline int zonelist_node_idx(struct zoneref *zoneref)
+{
+ return zone_to_nid(zoneref->zone);
+}
+
+struct zoneref *__next_zones_zonelist(struct zoneref *z,
+ enum zone_type highest_zoneidx,
+ nodemask_t *nodes);
+
+/**
+ * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
+ * @z: The cursor used as a starting point for the search
+ * @highest_zoneidx: The zone index of the highest zone to return
+ * @nodes: An optional nodemask to filter the zonelist with
+ *
+ * This function returns the next zone at or below a given zone index that is
+ * within the allowed nodemask using a cursor as the starting point for the
+ * search. The zoneref returned is a cursor that represents the current zone
+ * being examined. It should be advanced by one before calling
+ * next_zones_zonelist again.
+ *
+ * Return: the next zone at or below highest_zoneidx within the allowed
+ * nodemask using a cursor within a zonelist as a starting point
+ */
+static __always_inline struct zoneref *next_zones_zonelist(struct zoneref *z,
+ enum zone_type highest_zoneidx,
+ nodemask_t *nodes)
+{
+ if (likely(!nodes && zonelist_zone_idx(z) <= highest_zoneidx))
+ return z;
+ return __next_zones_zonelist(z, highest_zoneidx, nodes);
+}
+
+/**
+ * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
+ * @zonelist: The zonelist to search for a suitable zone
+ * @highest_zoneidx: The zone index of the highest zone to return
+ * @nodes: An optional nodemask to filter the zonelist with
+ *
+ * This function returns the first zone at or below a given zone index that is
+ * within the allowed nodemask. The zoneref returned is a cursor that can be
+ * used to iterate the zonelist with next_zones_zonelist by advancing it by
+ * one before calling.
+ *
+ * When no eligible zone is found, zoneref->zone is NULL (zoneref itself is
+ * never NULL). This may happen either genuinely, or due to concurrent nodemask
+ * update due to cpuset modification.
+ *
+ * Return: Zoneref pointer for the first suitable zone found
+ */
+static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
+ enum zone_type highest_zoneidx,
+ nodemask_t *nodes)
+{
+ return next_zones_zonelist(zonelist->_zonerefs,
+ highest_zoneidx, nodes);
+}
+
+/**
+ * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
+ * @zone: The current zone in the iterator
+ * @z: The current pointer within zonelist->_zonerefs being iterated
+ * @zlist: The zonelist being iterated
+ * @highidx: The zone index of the highest zone to return
+ * @nodemask: Nodemask allowed by the allocator
+ *
+ * This iterator iterates though all zones at or below a given zone index and
+ * within a given nodemask
+ */
+#define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
+ for (z = first_zones_zonelist(zlist, highidx, nodemask), zone = zonelist_zone(z); \
+ zone; \
+ z = next_zones_zonelist(++z, highidx, nodemask), \
+ zone = zonelist_zone(z))
+
+#define for_next_zone_zonelist_nodemask(zone, z, highidx, nodemask) \
+ for (zone = z->zone; \
+ zone; \
+ z = next_zones_zonelist(++z, highidx, nodemask), \
+ zone = zonelist_zone(z))
+
+
+/**
+ * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
+ * @zone: The current zone in the iterator
+ * @z: The current pointer within zonelist->zones being iterated
+ * @zlist: The zonelist being iterated
+ * @highidx: The zone index of the highest zone to return
+ *
+ * This iterator iterates though all zones at or below a given zone index.
+ */
+#define for_each_zone_zonelist(zone, z, zlist, highidx) \
+ for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
+
+/* Whether the 'nodes' are all movable nodes */
+static inline bool movable_only_nodes(nodemask_t *nodes)
+{
+ struct zonelist *zonelist;
+ struct zoneref *z;
+ int nid;
+
+ if (nodes_empty(*nodes))
+ return false;
+
+ /*
+ * We can chose arbitrary node from the nodemask to get a
+ * zonelist as they are interlinked. We just need to find
+ * at least one zone that can satisfy kernel allocations.
+ */
+ nid = first_node(*nodes);
+ zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK];
+ z = first_zones_zonelist(zonelist, ZONE_NORMAL, nodes);
+ return (!z->zone) ? true : false;
+}
+
+
+#ifdef CONFIG_SPARSEMEM
+#include <asm/sparsemem.h>
+#endif
+
+#ifdef CONFIG_FLATMEM
+#define pfn_to_nid(pfn) (0)
+#endif
+
+#ifdef CONFIG_SPARSEMEM
+
+/*
+ * PA_SECTION_SHIFT physical address to/from section number
+ * PFN_SECTION_SHIFT pfn to/from section number
+ */
+#define PA_SECTION_SHIFT (SECTION_SIZE_BITS)
+#define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT)
+
+#define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT)
+
+#define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT)
+#define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1))
+
+#define SECTION_BLOCKFLAGS_BITS \
+ ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
+
+#if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
+#error Allocator MAX_ORDER exceeds SECTION_SIZE
+#endif
+
+static inline unsigned long pfn_to_section_nr(unsigned long pfn)
+{
+ return pfn >> PFN_SECTION_SHIFT;
+}
+static inline unsigned long section_nr_to_pfn(unsigned long sec)
+{
+ return sec << PFN_SECTION_SHIFT;
+}
+
+#define SECTION_ALIGN_UP(pfn) (((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK)
+#define SECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SECTION_MASK)
+
+#define SUBSECTION_SHIFT 21
+#define SUBSECTION_SIZE (1UL << SUBSECTION_SHIFT)
+
+#define PFN_SUBSECTION_SHIFT (SUBSECTION_SHIFT - PAGE_SHIFT)
+#define PAGES_PER_SUBSECTION (1UL << PFN_SUBSECTION_SHIFT)
+#define PAGE_SUBSECTION_MASK (~(PAGES_PER_SUBSECTION-1))
+
+#if SUBSECTION_SHIFT > SECTION_SIZE_BITS
+#error Subsection size exceeds section size
+#else
+#define SUBSECTIONS_PER_SECTION (1UL << (SECTION_SIZE_BITS - SUBSECTION_SHIFT))
+#endif
+
+#define SUBSECTION_ALIGN_UP(pfn) ALIGN((pfn), PAGES_PER_SUBSECTION)
+#define SUBSECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SUBSECTION_MASK)
+
+struct mem_section_usage {
+#ifdef CONFIG_SPARSEMEM_VMEMMAP
+ DECLARE_BITMAP(subsection_map, SUBSECTIONS_PER_SECTION);
+#endif
+ /* See declaration of similar field in struct zone */
+ unsigned long pageblock_flags[0];
+};
+
+void subsection_map_init(unsigned long pfn, unsigned long nr_pages);
+
+struct page;
+struct page_ext;
+struct mem_section {
+ /*
+ * This is, logically, a pointer to an array of struct
+ * pages. However, it is stored with some other magic.
+ * (see sparse.c::sparse_init_one_section())
+ *
+ * Additionally during early boot we encode node id of
+ * the location of the section here to guide allocation.
+ * (see sparse.c::memory_present())
+ *
+ * Making it a UL at least makes someone do a cast
+ * before using it wrong.
+ */
+ unsigned long section_mem_map;
+
+ struct mem_section_usage *usage;
+#ifdef CONFIG_PAGE_EXTENSION
+ /*
+ * If SPARSEMEM, pgdat doesn't have page_ext pointer. We use
+ * section. (see page_ext.h about this.)
+ */
+ struct page_ext *page_ext;
+ unsigned long pad;
+#endif
+ /*
+ * WARNING: mem_section must be a power-of-2 in size for the
+ * calculation and use of SECTION_ROOT_MASK to make sense.
+ */
+};
+
+#ifdef CONFIG_SPARSEMEM_EXTREME
+#define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section))
+#else
+#define SECTIONS_PER_ROOT 1
+#endif
+
+#define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT)
+#define NR_SECTION_ROOTS DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT)
+#define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1)
+
+#ifdef CONFIG_SPARSEMEM_EXTREME
+extern struct mem_section **mem_section;
+#else
+extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
+#endif
+
+static inline unsigned long *section_to_usemap(struct mem_section *ms)
+{
+ return ms->usage->pageblock_flags;
+}
+
+static inline struct mem_section *__nr_to_section(unsigned long nr)
+{
+#ifdef CONFIG_SPARSEMEM_EXTREME
+ if (!mem_section)
+ return NULL;
+#endif
+ if (!mem_section[SECTION_NR_TO_ROOT(nr)])
+ return NULL;
+ return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
+}
+extern size_t mem_section_usage_size(void);
+
+/*
+ * We use the lower bits of the mem_map pointer to store
+ * a little bit of information. The pointer is calculated
+ * as mem_map - section_nr_to_pfn(pnum). The result is
+ * aligned to the minimum alignment of the two values:
+ * 1. All mem_map arrays are page-aligned.
+ * 2. section_nr_to_pfn() always clears PFN_SECTION_SHIFT
+ * lowest bits. PFN_SECTION_SHIFT is arch-specific
+ * (equal SECTION_SIZE_BITS - PAGE_SHIFT), and the
+ * worst combination is powerpc with 256k pages,
+ * which results in PFN_SECTION_SHIFT equal 6.
+ * To sum it up, at least 6 bits are available.
+ */
+#define SECTION_MARKED_PRESENT (1UL<<0)
+#define SECTION_HAS_MEM_MAP (1UL<<1)
+#define SECTION_IS_ONLINE (1UL<<2)
+#define SECTION_IS_EARLY (1UL<<3)
+#define SECTION_TAINT_ZONE_DEVICE (1UL<<4)
+#define SECTION_MAP_LAST_BIT (1UL<<5)
+#define SECTION_MAP_MASK (~(SECTION_MAP_LAST_BIT-1))
+#define SECTION_NID_SHIFT 6
+
+static inline struct page *__section_mem_map_addr(struct mem_section *section)
+{
+ unsigned long map = section->section_mem_map;
+ map &= SECTION_MAP_MASK;
+ return (struct page *)map;
+}
+
+static inline int present_section(struct mem_section *section)
+{
+ return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
+}
+
+static inline int present_section_nr(unsigned long nr)
+{
+ return present_section(__nr_to_section(nr));
+}
+static inline int valid_section(struct mem_section *section)
+{
+ return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
+}
+
+static inline int early_section(struct mem_section *section)
+{
+ return (section && (section->section_mem_map & SECTION_IS_EARLY));
+}
+
+static inline int valid_section_nr(unsigned long nr)
+{
+ return valid_section(__nr_to_section(nr));
+}
+
+static inline int online_section(struct mem_section *section)
+{
+ return (section && (section->section_mem_map & SECTION_IS_ONLINE));
+}
+
+static inline int online_device_section(struct mem_section *section)
+{
+ unsigned long flags = SECTION_IS_ONLINE | SECTION_TAINT_ZONE_DEVICE;
+
+ return section && ((section->section_mem_map & flags) == flags);
+}
+
+static inline int online_section_nr(unsigned long nr)
+{
+ return online_section(__nr_to_section(nr));
+}
+
+#ifdef CONFIG_MEMORY_HOTPLUG
+void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn);
+void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn);
+#endif
+
+static inline struct mem_section *__pfn_to_section(unsigned long pfn)
+{
+ return __nr_to_section(pfn_to_section_nr(pfn));
+}
+
+extern unsigned long __highest_present_section_nr;
+
+static inline int subsection_map_index(unsigned long pfn)
+{
+ return (pfn & ~(PAGE_SECTION_MASK)) / PAGES_PER_SUBSECTION;
+}
+
+#ifdef CONFIG_SPARSEMEM_VMEMMAP
+static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn)
+{
+ int idx = subsection_map_index(pfn);
+
+ return test_bit(idx, ms->usage->subsection_map);
+}
+#else
+static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn)
+{
+ return 1;
+}
+#endif
+
+#ifndef CONFIG_HAVE_ARCH_PFN_VALID
+/**
+ * pfn_valid - check if there is a valid memory map entry for a PFN
+ * @pfn: the page frame number to check
+ *
+ * Check if there is a valid memory map entry aka struct page for the @pfn.
+ * Note, that availability of the memory map entry does not imply that
+ * there is actual usable memory at that @pfn. The struct page may
+ * represent a hole or an unusable page frame.
+ *
+ * Return: 1 for PFNs that have memory map entries and 0 otherwise
+ */
+static inline int pfn_valid(unsigned long pfn)
+{
+ struct mem_section *ms;
+
+ /*
+ * Ensure the upper PAGE_SHIFT bits are clear in the
+ * pfn. Else it might lead to false positives when
+ * some of the upper bits are set, but the lower bits
+ * match a valid pfn.
+ */
+ if (PHYS_PFN(PFN_PHYS(pfn)) != pfn)
+ return 0;
+
+ if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
+ return 0;
+ ms = __pfn_to_section(pfn);
+ if (!valid_section(ms))
+ return 0;
+ /*
+ * Traditionally early sections always returned pfn_valid() for
+ * the entire section-sized span.
+ */
+ return early_section(ms) || pfn_section_valid(ms, pfn);
+}
+#endif
+
+static inline int pfn_in_present_section(unsigned long pfn)
+{
+ if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
+ return 0;
+ return present_section(__pfn_to_section(pfn));
+}
+
+static inline unsigned long next_present_section_nr(unsigned long section_nr)
+{
+ while (++section_nr <= __highest_present_section_nr) {
+ if (present_section_nr(section_nr))
+ return section_nr;
+ }
+
+ return -1;
+}
+
+/*
+ * These are _only_ used during initialisation, therefore they
+ * can use __initdata ... They could have names to indicate
+ * this restriction.
+ */
+#ifdef CONFIG_NUMA
+#define pfn_to_nid(pfn) \
+({ \
+ unsigned long __pfn_to_nid_pfn = (pfn); \
+ page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \
+})
+#else
+#define pfn_to_nid(pfn) (0)
+#endif
+
+void sparse_init(void);
+#else
+#define sparse_init() do {} while (0)
+#define sparse_index_init(_sec, _nid) do {} while (0)
+#define pfn_in_present_section pfn_valid
+#define subsection_map_init(_pfn, _nr_pages) do {} while (0)
+#endif /* CONFIG_SPARSEMEM */
+
+#endif /* !__GENERATING_BOUNDS.H */
+#endif /* !__ASSEMBLY__ */
+
+#endif /* _LINUX_MMZONE_API_H */
diff --git a/include/linux/mmzone_types.h b/include/linux/mmzone_types.h
index 1ae138cfbcdf6..6df9276e3197c 100644
--- a/include/linux/mmzone_types.h
+++ b/include/linux/mmzone_types.h
@@ -1 +1,808 @@
-#include <linux/mmzone.h>
+/* SPDX-License-Identifier: GPL-2.0 */
+#ifndef _LINUX_MMZONE_TYPES_H
+#define _LINUX_MMZONE_TYPES_H
+
+enum zone_type {
+ /*
+ * ZONE_DMA and ZONE_DMA32 are used when there are peripherals not able
+ * to DMA to all of the addressable memory (ZONE_NORMAL).
+ * On architectures where this area covers the whole 32 bit address
+ * space ZONE_DMA32 is used. ZONE_DMA is left for the ones with smaller
+ * DMA addressing constraints. This distinction is important as a 32bit
+ * DMA mask is assumed when ZONE_DMA32 is defined. Some 64-bit
+ * platforms may need both zones as they support peripherals with
+ * different DMA addressing limitations.
+ */
+#ifdef CONFIG_ZONE_DMA
+ ZONE_DMA,
+#endif
+#ifdef CONFIG_ZONE_DMA32
+ ZONE_DMA32,
+#endif
+ /*
+ * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
+ * performed on pages in ZONE_NORMAL if the DMA devices support
+ * transfers to all addressable memory.
+ */
+ ZONE_NORMAL,
+#ifdef CONFIG_HIGHMEM
+ /*
+ * A memory area that is only addressable by the kernel through
+ * mapping portions into its own address space. This is for example
+ * used by i386 to allow the kernel to address the memory beyond
+ * 900MB. The kernel will set up special mappings (page
+ * table entries on i386) for each page that the kernel needs to
+ * access.
+ */
+ ZONE_HIGHMEM,
+#endif
+ /*
+ * ZONE_MOVABLE is similar to ZONE_NORMAL, except that it contains
+ * movable pages with few exceptional cases described below. Main use
+ * cases for ZONE_MOVABLE are to make memory offlining/unplug more
+ * likely to succeed, and to locally limit unmovable allocations - e.g.,
+ * to increase the number of THP/huge pages. Notable special cases are:
+ *
+ * 1. Pinned pages: (long-term) pinning of movable pages might
+ * essentially turn such pages unmovable. Therefore, we do not allow
+ * pinning long-term pages in ZONE_MOVABLE. When pages are pinned and
+ * faulted, they come from the right zone right away. However, it is
+ * still possible that address space already has pages in
+ * ZONE_MOVABLE at the time when pages are pinned (i.e. user has
+ * touches that memory before pinning). In such case we migrate them
+ * to a different zone. When migration fails - pinning fails.
+ * 2. memblock allocations: kernelcore/movablecore setups might create
+ * situations where ZONE_MOVABLE contains unmovable allocations
+ * after boot. Memory offlining and allocations fail early.
+ * 3. Memory holes: kernelcore/movablecore setups might create very rare
+ * situations where ZONE_MOVABLE contains memory holes after boot,
+ * for example, if we have sections that are only partially
+ * populated. Memory offlining and allocations fail early.
+ * 4. PG_hwpoison pages: while poisoned pages can be skipped during
+ * memory offlining, such pages cannot be allocated.
+ * 5. Unmovable PG_offline pages: in paravirtualized environments,
+ * hotplugged memory blocks might only partially be managed by the
+ * buddy (e.g., via XEN-balloon, Hyper-V balloon, virtio-mem). The
+ * parts not manged by the buddy are unmovable PG_offline pages. In
+ * some cases (virtio-mem), such pages can be skipped during
+ * memory offlining, however, cannot be moved/allocated. These
+ * techniques might use alloc_contig_range() to hide previously
+ * exposed pages from the buddy again (e.g., to implement some sort
+ * of memory unplug in virtio-mem).
+ * 6. ZERO_PAGE(0), kernelcore/movablecore setups might create
+ * situations where ZERO_PAGE(0) which is allocated differently
+ * on different platforms may end up in a movable zone. ZERO_PAGE(0)
+ * cannot be migrated.
+ * 7. Memory-hotplug: when using memmap_on_memory and onlining the
+ * memory to the MOVABLE zone, the vmemmap pages are also placed in
+ * such zone. Such pages cannot be really moved around as they are
+ * self-stored in the range, but they are treated as movable when
+ * the range they describe is about to be offlined.
+ *
+ * In general, no unmovable allocations that degrade memory offlining
+ * should end up in ZONE_MOVABLE. Allocators (like alloc_contig_range())
+ * have to expect that migrating pages in ZONE_MOVABLE can fail (even
+ * if has_unmovable_pages() states that there are no unmovable pages,
+ * there can be false negatives).
+ */
+ ZONE_MOVABLE,
+#ifdef CONFIG_ZONE_DEVICE
+ ZONE_DEVICE,
+#endif
+ __MAX_NR_ZONES
+};
+
+#ifndef __GENERATING_BOUNDS_H
+
+#include <generated/bounds.h>
+
+#include <linux/wait_types.h>
+#include <linux/cache.h>
+#include <linux/numa_types.h>
+#include <linux/seqlock_types.h>
+#include <linux/gfp_types.h>
+
+enum migratetype {
+ MIGRATE_UNMOVABLE,
+ MIGRATE_MOVABLE,
+ MIGRATE_RECLAIMABLE,
+ MIGRATE_PCPTYPES, /* the number of types on the pcp lists */
+ MIGRATE_HIGHATOMIC = MIGRATE_PCPTYPES,
+#ifdef CONFIG_CMA
+ /*
+ * MIGRATE_CMA migration type is designed to mimic the way
+ * ZONE_MOVABLE works. Only movable pages can be allocated
+ * from MIGRATE_CMA pageblocks and page allocator never
+ * implicitly change migration type of MIGRATE_CMA pageblock.
+ *
+ * The way to use it is to change migratetype of a range of
+ * pageblocks to MIGRATE_CMA which can be done by
+ * __free_pageblock_cma() function. What is important though
+ * is that a range of pageblocks must be aligned to
+ * MAX_ORDER_NR_PAGES should biggest page be bigger than
+ * a single pageblock.
+ */
+ MIGRATE_CMA,
+#endif
+#ifdef CONFIG_MEMORY_ISOLATION
+ MIGRATE_ISOLATE, /* can't allocate from here */
+#endif
+ MIGRATE_TYPES
+};
+
+/* In mm/page_alloc.c; keep in sync also with show_migration_types() there */
+extern const char * const migratetype_names[MIGRATE_TYPES];
+
+extern int page_group_by_mobility_disabled;
+
+#define MIGRATETYPE_MASK ((1UL << PB_migratetype_bits) - 1)
+
+struct free_area {
+ struct list_head free_list[MIGRATE_TYPES];
+ unsigned long nr_free;
+};
+
+struct pglist_data;
+
+/*
+ * Add a wild amount of padding here to ensure data fall into separate
+ * cachelines. There are very few zone structures in the machine, so space
+ * consumption is not a concern here.
+ */
+#if defined(CONFIG_SMP)
+struct zone_padding {
+ char x[0];
+} ____cacheline_internodealigned_in_smp;
+#define ZONE_PADDING(name) struct zone_padding name;
+#else
+#define ZONE_PADDING(name)
+#endif
+
+#ifdef CONFIG_NUMA
+enum numa_stat_item {
+ NUMA_HIT, /* allocated in intended node */
+ NUMA_MISS, /* allocated in non intended node */
+ NUMA_FOREIGN, /* was intended here, hit elsewhere */
+ NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */
+ NUMA_LOCAL, /* allocation from local node */
+ NUMA_OTHER, /* allocation from other node */
+ NR_VM_NUMA_EVENT_ITEMS
+};
+#else
+#define NR_VM_NUMA_EVENT_ITEMS 0
+#endif
+
+enum zone_stat_item {
+ /* First 128 byte cacheline (assuming 64 bit words) */
+ NR_FREE_PAGES,
+ NR_ZONE_LRU_BASE, /* Used only for compaction and reclaim retry */
+ NR_ZONE_INACTIVE_ANON = NR_ZONE_LRU_BASE,
+ NR_ZONE_ACTIVE_ANON,
+ NR_ZONE_INACTIVE_FILE,
+ NR_ZONE_ACTIVE_FILE,
+ NR_ZONE_UNEVICTABLE,
+ NR_ZONE_WRITE_PENDING, /* Count of dirty, writeback and unstable pages */
+ NR_MLOCK, /* mlock()ed pages found and moved off LRU */
+ /* Second 128 byte cacheline */
+ NR_BOUNCE,
+#if IS_ENABLED(CONFIG_ZSMALLOC)
+ NR_ZSPAGES, /* allocated in zsmalloc */
+#endif
+ NR_FREE_CMA_PAGES,
+ NR_VM_ZONE_STAT_ITEMS };
+
+enum node_stat_item {
+ NR_LRU_BASE,
+ NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */
+ NR_ACTIVE_ANON, /* " " " " " */
+ NR_INACTIVE_FILE, /* " " " " " */
+ NR_ACTIVE_FILE, /* " " " " " */
+ NR_UNEVICTABLE, /* " " " " " */
+ NR_SLAB_RECLAIMABLE_B,
+ NR_SLAB_UNRECLAIMABLE_B,
+ NR_ISOLATED_ANON, /* Temporary isolated pages from anon lru */
+ NR_ISOLATED_FILE, /* Temporary isolated pages from file lru */
+ WORKINGSET_NODES,
+ WORKINGSET_REFAULT_BASE,
+ WORKINGSET_REFAULT_ANON = WORKINGSET_REFAULT_BASE,
+ WORKINGSET_REFAULT_FILE,
+ WORKINGSET_ACTIVATE_BASE,
+ WORKINGSET_ACTIVATE_ANON = WORKINGSET_ACTIVATE_BASE,
+ WORKINGSET_ACTIVATE_FILE,
+ WORKINGSET_RESTORE_BASE,
+ WORKINGSET_RESTORE_ANON = WORKINGSET_RESTORE_BASE,
+ WORKINGSET_RESTORE_FILE,
+ WORKINGSET_NODERECLAIM,
+ NR_ANON_MAPPED, /* Mapped anonymous pages */
+ NR_FILE_MAPPED, /* pagecache pages mapped into pagetables.
+ only modified from process context */
+ NR_FILE_PAGES,
+ NR_FILE_DIRTY,
+ NR_WRITEBACK,
+ NR_WRITEBACK_TEMP, /* Writeback using temporary buffers */
+ NR_SHMEM, /* shmem pages (included tmpfs/GEM pages) */
+ NR_SHMEM_THPS,
+ NR_SHMEM_PMDMAPPED,
+ NR_FILE_THPS,
+ NR_FILE_PMDMAPPED,
+ NR_ANON_THPS,
+ NR_VMSCAN_WRITE,
+ NR_VMSCAN_IMMEDIATE, /* Prioritise for reclaim when writeback ends */
+ NR_DIRTIED, /* page dirtyings since bootup */
+ NR_WRITTEN, /* page writings since bootup */
+ NR_THROTTLED_WRITTEN, /* NR_WRITTEN while reclaim throttled */
+ NR_KERNEL_MISC_RECLAIMABLE, /* reclaimable non-slab kernel pages */
+ NR_FOLL_PIN_ACQUIRED, /* via: pin_user_page(), gup flag: FOLL_PIN */
+ NR_FOLL_PIN_RELEASED, /* pages returned via unpin_user_page() */
+ NR_KERNEL_STACK_KB, /* measured in KiB */
+#if IS_ENABLED(CONFIG_SHADOW_CALL_STACK)
+ NR_KERNEL_SCS_KB, /* measured in KiB */
+#endif
+ NR_PAGETABLE, /* used for pagetables */
+#ifdef CONFIG_SWAP
+ NR_SWAPCACHE,
+#endif
+ NR_VM_NODE_STAT_ITEMS
+};
+
+/*
+ * Returns true if the item should be printed in THPs (/proc/vmstat
+ * currently prints number of anon, file and shmem THPs. But the item
+ * is charged in pages).
+ */
+static __always_inline bool vmstat_item_print_in_thp(enum node_stat_item item)
+{
+ if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
+ return false;
+
+ return item == NR_ANON_THPS ||
+ item == NR_FILE_THPS ||
+ item == NR_SHMEM_THPS ||
+ item == NR_SHMEM_PMDMAPPED ||
+ item == NR_FILE_PMDMAPPED;
+}
+
+/*
+ * Returns true if the value is measured in bytes (most vmstat values are
+ * measured in pages). This defines the API part, the internal representation
+ * might be different.
+ */
+static __always_inline bool vmstat_item_in_bytes(int idx)
+{
+ /*
+ * Global and per-node slab counters track slab pages.
+ * It's expected that changes are multiples of PAGE_SIZE.
+ * Internally values are stored in pages.
+ *
+ * Per-memcg and per-lruvec counters track memory, consumed
+ * by individual slab objects. These counters are actually
+ * byte-precise.
+ */
+ return (idx == NR_SLAB_RECLAIMABLE_B ||
+ idx == NR_SLAB_UNRECLAIMABLE_B);
+}
+
+/*
+ * We do arithmetic on the LRU lists in various places in the code,
+ * so it is important to keep the active lists LRU_ACTIVE higher in
+ * the array than the corresponding inactive lists, and to keep
+ * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
+ *
+ * This has to be kept in sync with the statistics in zone_stat_item
+ * above and the descriptions in vmstat_text in mm/vmstat.c
+ */
+#define LRU_BASE 0
+#define LRU_ACTIVE 1
+#define LRU_FILE 2
+
+enum lru_list {
+ LRU_INACTIVE_ANON = LRU_BASE,
+ LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
+ LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
+ LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
+ LRU_UNEVICTABLE,
+ NR_LRU_LISTS
+};
+
+#define ANON_AND_FILE 2
+
+enum lruvec_flags {
+ LRUVEC_CONGESTED, /* lruvec has many dirty pages
+ * backed by a congested BDI
+ */
+};
+
+struct lruvec {
+ struct list_head lists[NR_LRU_LISTS];
+ /* per lruvec lru_lock for memcg */
+ spinlock_t lru_lock;
+ /*
+ * These track the cost of reclaiming one LRU - file or anon -
+ * over the other. As the observed cost of reclaiming one LRU
+ * increases, the reclaim scan balance tips toward the other.
+ */
+ unsigned long anon_cost;
+ unsigned long file_cost;
+ /* Non-resident age, driven by LRU movement */
+ atomic_long_t nonresident_age;
+ /* Refaults at the time of last reclaim cycle */
+ unsigned long refaults[ANON_AND_FILE];
+ /* Various lruvec state flags (enum lruvec_flags) */
+ unsigned long flags;
+#ifdef CONFIG_MEMCG
+ struct pglist_data *pgdat;
+#endif
+};
+
+/* Isolate unmapped pages */
+#define ISOLATE_UNMAPPED ((__force isolate_mode_t)0x2)
+/* Isolate for asynchronous migration */
+#define ISOLATE_ASYNC_MIGRATE ((__force isolate_mode_t)0x4)
+/* Isolate unevictable pages */
+#define ISOLATE_UNEVICTABLE ((__force isolate_mode_t)0x8)
+
+enum zone_watermarks {
+ WMARK_MIN,
+ WMARK_LOW,
+ WMARK_HIGH,
+ NR_WMARK
+};
+
+/*
+ * One per migratetype for each PAGE_ALLOC_COSTLY_ORDER plus one additional
+ * for pageblock size for THP if configured.
+ */
+#ifdef CONFIG_TRANSPARENT_HUGEPAGE
+#define NR_PCP_THP 1
+#else
+#define NR_PCP_THP 0
+#endif
+#define NR_PCP_LISTS (MIGRATE_PCPTYPES * (PAGE_ALLOC_COSTLY_ORDER + 1 + NR_PCP_THP))
+
+/*
+ * Shift to encode migratetype and order in the same integer, with order
+ * in the least significant bits.
+ */
+#define NR_PCP_ORDER_WIDTH 8
+#define NR_PCP_ORDER_MASK ((1<<NR_PCP_ORDER_WIDTH) - 1)
+
+#define min_wmark_pages(z) (z->_watermark[WMARK_MIN] + z->watermark_boost)
+#define low_wmark_pages(z) (z->_watermark[WMARK_LOW] + z->watermark_boost)
+#define high_wmark_pages(z) (z->_watermark[WMARK_HIGH] + z->watermark_boost)
+#define wmark_pages(z, i) (z->_watermark[i] + z->watermark_boost)
+
+/* Fields and list protected by pagesets local_lock in page_alloc.c */
+struct per_cpu_pages {
+ int count; /* number of pages in the list */
+ int high; /* high watermark, emptying needed */
+ int batch; /* chunk size for buddy add/remove */
+ short free_factor; /* batch scaling factor during free */
+#ifdef CONFIG_NUMA
+ short expire; /* When 0, remote pagesets are drained */
+#endif
+
+ /* Lists of pages, one per migrate type stored on the pcp-lists */
+ struct list_head lists[NR_PCP_LISTS];
+};
+
+struct per_cpu_zonestat {
+#ifdef CONFIG_SMP
+ s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
+ s8 stat_threshold;
+#endif
+#ifdef CONFIG_NUMA
+ /*
+ * Low priority inaccurate counters that are only folded
+ * on demand. Use a large type to avoid the overhead of
+ * folding during refresh_cpu_vm_stats.
+ */
+ unsigned long vm_numa_event[NR_VM_NUMA_EVENT_ITEMS];
+#endif
+};
+
+struct per_cpu_nodestat {
+ s8 stat_threshold;
+ s8 vm_node_stat_diff[NR_VM_NODE_STAT_ITEMS];
+};
+
+#define ASYNC_AND_SYNC 2
+
+struct zone {
+ /* Read-mostly fields */
+
+ /* zone watermarks, access with *_wmark_pages(zone) macros */
+ unsigned long _watermark[NR_WMARK];
+ unsigned long watermark_boost;
+
+ unsigned long nr_reserved_highatomic;
+
+ /*
+ * We don't know if the memory that we're going to allocate will be
+ * freeable or/and it will be released eventually, so to avoid totally
+ * wasting several GB of ram we must reserve some of the lower zone
+ * memory (otherwise we risk to run OOM on the lower zones despite
+ * there being tons of freeable ram on the higher zones). This array is
+ * recalculated at runtime if the sysctl_lowmem_reserve_ratio sysctl
+ * changes.
+ */
+ long lowmem_reserve[MAX_NR_ZONES];
+
+#ifdef CONFIG_NUMA
+ int node;
+#endif
+ struct pglist_data *zone_pgdat;
+ struct per_cpu_pages __percpu *per_cpu_pageset;
+ struct per_cpu_zonestat __percpu *per_cpu_zonestats;
+ /*
+ * the high and batch values are copied to individual pagesets for
+ * faster access
+ */
+ int pageset_high;
+ int pageset_batch;
+
+#ifndef CONFIG_SPARSEMEM
+ /*
+ * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
+ * In SPARSEMEM, this map is stored in struct mem_section
+ */
+ unsigned long *pageblock_flags;
+#endif /* CONFIG_SPARSEMEM */
+
+ /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
+ unsigned long zone_start_pfn;
+
+ /*
+ * spanned_pages is the total pages spanned by the zone, including
+ * holes, which is calculated as:
+ * spanned_pages = zone_end_pfn - zone_start_pfn;
+ *
+ * present_pages is physical pages existing within the zone, which
+ * is calculated as:
+ * present_pages = spanned_pages - absent_pages(pages in holes);
+ *
+ * present_early_pages is present pages existing within the zone
+ * located on memory available since early boot, excluding hotplugged
+ * memory.
+ *
+ * managed_pages is present pages managed by the buddy system, which
+ * is calculated as (reserved_pages includes pages allocated by the
+ * bootmem allocator):
+ * managed_pages = present_pages - reserved_pages;
+ *
+ * cma pages is present pages that are assigned for CMA use
+ * (MIGRATE_CMA).
+ *
+ * So present_pages may be used by memory hotplug or memory power
+ * management logic to figure out unmanaged pages by checking
+ * (present_pages - managed_pages). And managed_pages should be used
+ * by page allocator and vm scanner to calculate all kinds of watermarks
+ * and thresholds.
+ *
+ * Locking rules:
+ *
+ * zone_start_pfn and spanned_pages are protected by span_seqlock.
+ * It is a seqlock because it has to be read outside of zone->lock,
+ * and it is done in the main allocator path. But, it is written
+ * quite infrequently.
+ *
+ * The span_seq lock is declared along with zone->lock because it is
+ * frequently read in proximity to zone->lock. It's good to
+ * give them a chance of being in the same cacheline.
+ *
+ * Write access to present_pages at runtime should be protected by
+ * mem_hotplug_begin/end(). Any reader who can't tolerant drift of
+ * present_pages should get_online_mems() to get a stable value.
+ */
+ atomic_long_t managed_pages;
+ unsigned long spanned_pages;
+ unsigned long present_pages;
+#if defined(CONFIG_MEMORY_HOTPLUG)
+ unsigned long present_early_pages;
+#endif
+#ifdef CONFIG_CMA
+ unsigned long cma_pages;
+#endif
+
+ const char *name;
+
+#ifdef CONFIG_MEMORY_ISOLATION
+ /*
+ * Number of isolated pageblock. It is used to solve incorrect
+ * freepage counting problem due to racy retrieving migratetype
+ * of pageblock. Protected by zone->lock.
+ */
+ unsigned long nr_isolate_pageblock;
+#endif
+
+#ifdef CONFIG_MEMORY_HOTPLUG
+ /* see spanned/present_pages for more description */
+ seqlock_t span_seqlock;
+#endif
+
+ int initialized;
+
+ /* Write-intensive fields used from the page allocator */
+ ZONE_PADDING(_pad1_)
+
+ /* free areas of different sizes */
+ struct free_area free_area[MAX_ORDER];
+
+ /* zone flags, see below */
+ unsigned long flags;
+
+ /* Primarily protects free_area */
+ spinlock_t lock;
+
+ /* Write-intensive fields used by compaction and vmstats. */
+ ZONE_PADDING(_pad2_)
+
+ /*
+ * When free pages are below this point, additional steps are taken
+ * when reading the number of free pages to avoid per-cpu counter
+ * drift allowing watermarks to be breached
+ */
+ unsigned long percpu_drift_mark;
+
+#if defined CONFIG_COMPACTION || defined CONFIG_CMA
+ /* pfn where compaction free scanner should start */
+ unsigned long compact_cached_free_pfn;
+ /* pfn where compaction migration scanner should start */
+ unsigned long compact_cached_migrate_pfn[ASYNC_AND_SYNC];
+ unsigned long compact_init_migrate_pfn;
+ unsigned long compact_init_free_pfn;
+#endif
+
+#ifdef CONFIG_COMPACTION
+ /*
+ * On compaction failure, 1<<compact_defer_shift compactions
+ * are skipped before trying again. The number attempted since
+ * last failure is tracked with compact_considered.
+ * compact_order_failed is the minimum compaction failed order.
+ */
+ unsigned int compact_considered;
+ unsigned int compact_defer_shift;
+ int compact_order_failed;
+#endif
+
+#if defined CONFIG_COMPACTION || defined CONFIG_CMA
+ /* Set to true when the PG_migrate_skip bits should be cleared */
+ bool compact_blockskip_flush;
+#endif
+
+ bool contiguous;
+
+ ZONE_PADDING(_pad3_)
+ /* Zone statistics */
+ atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS];
+ atomic_long_t vm_numa_event[NR_VM_NUMA_EVENT_ITEMS];
+} ____cacheline_internodealigned_in_smp;
+
+enum pgdat_flags {
+ PGDAT_DIRTY, /* reclaim scanning has recently found
+ * many dirty file pages at the tail
+ * of the LRU.
+ */
+ PGDAT_WRITEBACK, /* reclaim scanning has recently found
+ * many pages under writeback
+ */
+ PGDAT_RECLAIM_LOCKED, /* prevents concurrent reclaim */
+};
+
+enum zone_flags {
+ ZONE_BOOSTED_WATERMARK, /* zone recently boosted watermarks.
+ * Cleared when kswapd is woken.
+ */
+ ZONE_RECLAIM_ACTIVE, /* kswapd may be scanning the zone. */
+};
+
+/*
+ * The "priority" of VM scanning is how much of the queues we will scan in one
+ * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
+ * queues ("queue_length >> 12") during an aging round.
+ */
+#define DEF_PRIORITY 12
+
+/* Maximum number of zones on a zonelist */
+#define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
+
+enum {
+ ZONELIST_FALLBACK, /* zonelist with fallback */
+#ifdef CONFIG_NUMA
+ /*
+ * The NUMA zonelists are doubled because we need zonelists that
+ * restrict the allocations to a single node for __GFP_THISNODE.
+ */
+ ZONELIST_NOFALLBACK, /* zonelist without fallback (__GFP_THISNODE) */
+#endif
+ MAX_ZONELISTS
+};
+
+/*
+ * This struct contains information about a zone in a zonelist. It is stored
+ * here to avoid dereferences into large structures and lookups of tables
+ */
+struct zoneref {
+ struct zone *zone; /* Pointer to actual zone */
+ int zone_idx; /* zone_idx(zoneref->zone) */
+};
+
+/*
+ * One allocation request operates on a zonelist. A zonelist
+ * is a list of zones, the first one is the 'goal' of the
+ * allocation, the other zones are fallback zones, in decreasing
+ * priority.
+ *
+ * To speed the reading of the zonelist, the zonerefs contain the zone index
+ * of the entry being read. Helper functions to access information given
+ * a struct zoneref are
+ *
+ * zonelist_zone() - Return the struct zone * for an entry in _zonerefs
+ * zonelist_zone_idx() - Return the index of the zone for an entry
+ * zonelist_node_idx() - Return the index of the node for an entry
+ */
+struct zonelist {
+ struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
+};
+
+#ifdef CONFIG_TRANSPARENT_HUGEPAGE
+struct deferred_split {
+ spinlock_t split_queue_lock;
+ struct list_head split_queue;
+ unsigned long split_queue_len;
+};
+#endif
+
+enum vmscan_throttle_state {
+ VMSCAN_THROTTLE_WRITEBACK,
+ VMSCAN_THROTTLE_ISOLATED,
+ VMSCAN_THROTTLE_NOPROGRESS,
+ VMSCAN_THROTTLE_CONGESTED,
+ NR_VMSCAN_THROTTLE,
+};
+
+/*
+ * On NUMA machines, each NUMA node would have a pg_data_t to describe
+ * it's memory layout. On UMA machines there is a single pglist_data which
+ * describes the whole memory.
+ *
+ * Memory statistics and page replacement data structures are maintained on a
+ * per-zone basis.
+ */
+typedef struct pglist_data {
+ /*
+ * node_zones contains just the zones for THIS node. Not all of the
+ * zones may be populated, but it is the full list. It is referenced by
+ * this node's node_zonelists as well as other node's node_zonelists.
+ */
+ struct zone node_zones[MAX_NR_ZONES];
+
+ /*
+ * node_zonelists contains references to all zones in all nodes.
+ * Generally the first zones will be references to this node's
+ * node_zones.
+ */
+ struct zonelist node_zonelists[MAX_ZONELISTS];
+
+ int nr_zones; /* number of populated zones in this node */
+#ifdef CONFIG_FLATMEM /* means !SPARSEMEM */
+ struct page *node_mem_map;
+#ifdef CONFIG_PAGE_EXTENSION
+ struct page_ext *node_page_ext;
+#endif
+#endif
+#if defined(CONFIG_MEMORY_HOTPLUG) || defined(CONFIG_DEFERRED_STRUCT_PAGE_INIT)
+ /*
+ * Must be held any time you expect node_start_pfn,
+ * node_present_pages, node_spanned_pages or nr_zones to stay constant.
+ * Also synchronizes pgdat->first_deferred_pfn during deferred page
+ * init.
+ *
+ * pgdat_resize_lock() and pgdat_resize_unlock() are provided to
+ * manipulate node_size_lock without checking for CONFIG_MEMORY_HOTPLUG
+ * or CONFIG_DEFERRED_STRUCT_PAGE_INIT.
+ *
+ * Nests above zone->lock and zone->span_seqlock
+ */
+ spinlock_t node_size_lock;
+#endif
+ unsigned long node_start_pfn;
+ unsigned long node_present_pages; /* total number of physical pages */
+ unsigned long node_spanned_pages; /* total size of physical page
+ range, including holes */
+ int node_id;
+ wait_queue_head_t kswapd_wait;
+ wait_queue_head_t pfmemalloc_wait;
+
+ /* workqueues for throttling reclaim for different reasons. */
+ wait_queue_head_t reclaim_wait[NR_VMSCAN_THROTTLE];
+
+ atomic_t nr_writeback_throttled;/* nr of writeback-throttled tasks */
+ unsigned long nr_reclaim_start; /* nr pages written while throttled
+ * when throttling started. */
+ struct task_struct *kswapd; /* Protected by
+ mem_hotplug_begin/end() */
+ int kswapd_order;
+ enum zone_type kswapd_highest_zoneidx;
+
+ int kswapd_failures; /* Number of 'reclaimed == 0' runs */
+
+#ifdef CONFIG_COMPACTION
+ int kcompactd_max_order;
+ enum zone_type kcompactd_highest_zoneidx;
+ wait_queue_head_t kcompactd_wait;
+ struct task_struct *kcompactd;
+ bool proactive_compact_trigger;
+#endif
+ /*
+ * This is a per-node reserve of pages that are not available
+ * to userspace allocations.
+ */
+ unsigned long totalreserve_pages;
+
+#ifdef CONFIG_NUMA
+ /*
+ * node reclaim becomes active if more unmapped pages exist.
+ */
+ unsigned long min_unmapped_pages;
+ unsigned long min_slab_pages;
+#endif /* CONFIG_NUMA */
+
+ /* Write-intensive fields used by page reclaim */
+ ZONE_PADDING(_pad1_)
+
+#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
+ /*
+ * If memory initialisation on large machines is deferred then this
+ * is the first PFN that needs to be initialised.
+ */
+ unsigned long first_deferred_pfn;
+#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
+
+#ifdef CONFIG_TRANSPARENT_HUGEPAGE
+ struct deferred_split deferred_split_queue;
+#endif
+
+ /* Fields commonly accessed by the page reclaim scanner */
+
+ /*
+ * NOTE: THIS IS UNUSED IF MEMCG IS ENABLED.
+ *
+ * Use mem_cgroup_lruvec() to look up lruvecs.
+ */
+ struct lruvec __lruvec;
+
+ unsigned long flags;
+
+ ZONE_PADDING(_pad2_)
+
+ /* Per-node vmstats */
+ struct per_cpu_nodestat __percpu *per_cpu_nodestats;
+ atomic_long_t vm_stat[NR_VM_NODE_STAT_ITEMS];
+} pg_data_t;
+
+#define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages)
+#define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages)
+#ifdef CONFIG_FLATMEM
+#define pgdat_page_nr(pgdat, pagenr) ((pgdat)->node_mem_map + (pagenr))
+#else
+#define pgdat_page_nr(pgdat, pagenr) pfn_to_page((pgdat)->node_start_pfn + (pagenr))
+#endif
+#define nid_page_nr(nid, pagenr) pgdat_page_nr(NODE_DATA(nid),(pagenr))
+
+#define node_start_pfn(nid) (NODE_DATA(nid)->node_start_pfn)
+#define node_end_pfn(nid) pgdat_end_pfn(NODE_DATA(nid))
+
+/*
+ * Memory initialization context, use to differentiate memory added by
+ * the platform statically or via memory hotplug interface.
+ */
+enum meminit_context {
+ MEMINIT_EARLY,
+ MEMINIT_HOTPLUG,
+};
+
+extern int movable_zone;
+
+#endif /* !__GENERATING_BOUNDS.H */
+
+#endif /* _LINUX_MMZONE_TYPES_H */