aboutsummaryrefslogtreecommitdiffstats
path: root/fs/xfs/scrub/alloc_repair.c
blob: 45edda096869c7f46554531f08249f7be4a24024 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
// SPDX-License-Identifier: GPL-2.0-or-later
/*
 * Copyright (C) 2018-2023 Oracle.  All Rights Reserved.
 * Author: Darrick J. Wong <djwong@kernel.org>
 */
#include "xfs.h"
#include "xfs_fs.h"
#include "xfs_shared.h"
#include "xfs_format.h"
#include "xfs_trans_resv.h"
#include "xfs_mount.h"
#include "xfs_defer.h"
#include "xfs_btree.h"
#include "xfs_btree_staging.h"
#include "xfs_bit.h"
#include "xfs_log_format.h"
#include "xfs_trans.h"
#include "xfs_sb.h"
#include "xfs_alloc.h"
#include "xfs_alloc_btree.h"
#include "xfs_rmap.h"
#include "xfs_rmap_btree.h"
#include "xfs_inode.h"
#include "xfs_refcount.h"
#include "xfs_extent_busy.h"
#include "xfs_health.h"
#include "xfs_bmap.h"
#include "xfs_ialloc.h"
#include "xfs_ag.h"
#include "scrub/xfs_scrub.h"
#include "scrub/scrub.h"
#include "scrub/common.h"
#include "scrub/btree.h"
#include "scrub/trace.h"
#include "scrub/repair.h"
#include "scrub/bitmap.h"
#include "scrub/agb_bitmap.h"
#include "scrub/xfile.h"
#include "scrub/xfarray.h"
#include "scrub/newbt.h"
#include "scrub/reap.h"

/*
 * Free Space Btree Repair
 * =======================
 *
 * The reverse mappings are supposed to record all space usage for the entire
 * AG.  Therefore, we can recreate the free extent records in an AG by looking
 * for gaps in the physical extents recorded in the rmapbt.  These records are
 * staged in @free_records.  Identifying the gaps is more difficult on a
 * reflink filesystem because rmap records are allowed to overlap.
 *
 * Because the final step of building a new index is to free the space used by
 * the old index, repair needs to find that space.  Unfortunately, all
 * structures that live in the free space (bnobt, cntbt, rmapbt, agfl) share
 * the same rmapbt owner code (OWN_AG), so this is not straightforward.
 *
 * The scan of the reverse mapping information records the space used by OWN_AG
 * in @old_allocbt_blocks, which (at this stage) is somewhat misnamed.  While
 * walking the rmapbt records, we create a second bitmap @not_allocbt_blocks to
 * record all visited rmap btree blocks and all blocks owned by the AGFL.
 *
 * After that is where the definitions of old_allocbt_blocks shifts.  This
 * expression identifies possible former bnobt/cntbt blocks:
 *
 *	(OWN_AG blocks) & ~(rmapbt blocks | agfl blocks);
 *
 * Substituting from above definitions, that becomes:
 *
 *	old_allocbt_blocks & ~not_allocbt_blocks
 *
 * The OWN_AG bitmap itself isn't needed after this point, so what we really do
 * instead is:
 *
 *	old_allocbt_blocks &= ~not_allocbt_blocks;
 *
 * After this point, @old_allocbt_blocks is a bitmap of alleged former
 * bnobt/cntbt blocks.  The xagb_bitmap_disunion operation modifies its first
 * parameter in place to avoid copying records around.
 *
 * Next, some of the space described by @free_records are diverted to the newbt
 * reservation and used to format new btree blocks.  The remaining records are
 * written to the new btree indices.  We reconstruct both bnobt and cntbt at
 * the same time since we've already done all the work.
 *
 * We use the prefix 'xrep_abt' here because we regenerate both free space
 * allocation btrees at the same time.
 */

struct xrep_abt {
	/* Blocks owned by the rmapbt or the agfl. */
	struct xagb_bitmap	not_allocbt_blocks;

	/* All OWN_AG blocks. */
	struct xagb_bitmap	old_allocbt_blocks;

	/*
	 * New bnobt information.  All btree block reservations are added to
	 * the reservation list in new_bnobt.
	 */
	struct xrep_newbt	new_bnobt;

	/* new cntbt information */
	struct xrep_newbt	new_cntbt;

	/* Free space extents. */
	struct xfarray		*free_records;

	struct xfs_scrub	*sc;

	/* Number of non-null records in @free_records. */
	uint64_t		nr_real_records;

	/* get_records()'s position in the free space record array. */
	xfarray_idx_t		array_cur;

	/*
	 * Next block we anticipate seeing in the rmap records.  If the next
	 * rmap record is greater than next_agbno, we have found unused space.
	 */
	xfs_agblock_t		next_agbno;

	/* Number of free blocks in this AG. */
	xfs_agblock_t		nr_blocks;

	/* Longest free extent we found in the AG. */
	xfs_agblock_t		longest;
};

/* Set up to repair AG free space btrees. */
int
xrep_setup_ag_allocbt(
	struct xfs_scrub	*sc)
{
	unsigned int		busy_gen;

	/*
	 * Make sure the busy extent list is clear because we can't put extents
	 * on there twice.
	 */
	busy_gen = READ_ONCE(sc->sa.pag->pagb_gen);
	if (xfs_extent_busy_list_empty(sc->sa.pag))
		return 0;

	return xfs_extent_busy_flush(sc->tp, sc->sa.pag, busy_gen, 0);
}

/* Check for any obvious conflicts in the free extent. */
STATIC int
xrep_abt_check_free_ext(
	struct xfs_scrub	*sc,
	const struct xfs_alloc_rec_incore *rec)
{
	enum xbtree_recpacking	outcome;
	int			error;

	if (xfs_alloc_check_irec(sc->sa.pag, rec) != NULL)
		return -EFSCORRUPTED;

	/* Must not be an inode chunk. */
	error = xfs_ialloc_has_inodes_at_extent(sc->sa.ino_cur,
			rec->ar_startblock, rec->ar_blockcount, &outcome);
	if (error)
		return error;
	if (outcome != XBTREE_RECPACKING_EMPTY)
		return -EFSCORRUPTED;

	/* Must not be shared or CoW staging. */
	if (sc->sa.refc_cur) {
		error = xfs_refcount_has_records(sc->sa.refc_cur,
				XFS_REFC_DOMAIN_SHARED, rec->ar_startblock,
				rec->ar_blockcount, &outcome);
		if (error)
			return error;
		if (outcome != XBTREE_RECPACKING_EMPTY)
			return -EFSCORRUPTED;

		error = xfs_refcount_has_records(sc->sa.refc_cur,
				XFS_REFC_DOMAIN_COW, rec->ar_startblock,
				rec->ar_blockcount, &outcome);
		if (error)
			return error;
		if (outcome != XBTREE_RECPACKING_EMPTY)
			return -EFSCORRUPTED;
	}

	return 0;
}

/*
 * Stash a free space record for all the space since the last bno we found
 * all the way up to @end.
 */
static int
xrep_abt_stash(
	struct xrep_abt		*ra,
	xfs_agblock_t		end)
{
	struct xfs_alloc_rec_incore arec = {
		.ar_startblock	= ra->next_agbno,
		.ar_blockcount	= end - ra->next_agbno,
	};
	struct xfs_scrub	*sc = ra->sc;
	int			error = 0;

	if (xchk_should_terminate(sc, &error))
		return error;

	error = xrep_abt_check_free_ext(ra->sc, &arec);
	if (error)
		return error;

	trace_xrep_abt_found(sc->mp, sc->sa.pag->pag_agno, &arec);

	error = xfarray_append(ra->free_records, &arec);
	if (error)
		return error;

	ra->nr_blocks += arec.ar_blockcount;
	return 0;
}

/* Record extents that aren't in use from gaps in the rmap records. */
STATIC int
xrep_abt_walk_rmap(
	struct xfs_btree_cur		*cur,
	const struct xfs_rmap_irec	*rec,
	void				*priv)
{
	struct xrep_abt			*ra = priv;
	int				error;

	/* Record all the OWN_AG blocks... */
	if (rec->rm_owner == XFS_RMAP_OWN_AG) {
		error = xagb_bitmap_set(&ra->old_allocbt_blocks,
				rec->rm_startblock, rec->rm_blockcount);
		if (error)
			return error;
	}

	/* ...and all the rmapbt blocks... */
	error = xagb_bitmap_set_btcur_path(&ra->not_allocbt_blocks, cur);
	if (error)
		return error;

	/* ...and all the free space. */
	if (rec->rm_startblock > ra->next_agbno) {
		error = xrep_abt_stash(ra, rec->rm_startblock);
		if (error)
			return error;
	}

	/*
	 * rmap records can overlap on reflink filesystems, so project
	 * next_agbno as far out into the AG space as we currently know about.
	 */
	ra->next_agbno = max_t(xfs_agblock_t, ra->next_agbno,
			rec->rm_startblock + rec->rm_blockcount);
	return 0;
}

/* Collect an AGFL block for the not-to-release list. */
static int
xrep_abt_walk_agfl(
	struct xfs_mount	*mp,
	xfs_agblock_t		agbno,
	void			*priv)
{
	struct xrep_abt		*ra = priv;

	return xagb_bitmap_set(&ra->not_allocbt_blocks, agbno, 1);
}

/*
 * Compare two free space extents by block number.  We want to sort in order of
 * increasing block number.
 */
static int
xrep_bnobt_extent_cmp(
	const void		*a,
	const void		*b)
{
	const struct xfs_alloc_rec_incore *ap = a;
	const struct xfs_alloc_rec_incore *bp = b;

	if (ap->ar_startblock > bp->ar_startblock)
		return 1;
	else if (ap->ar_startblock < bp->ar_startblock)
		return -1;
	return 0;
}

/*
 * Re-sort the free extents by block number so that we can put the records into
 * the bnobt in the correct order.  Make sure the records do not overlap in
 * physical space.
 */
STATIC int
xrep_bnobt_sort_records(
	struct xrep_abt			*ra)
{
	struct xfs_alloc_rec_incore	arec;
	xfarray_idx_t			cur = XFARRAY_CURSOR_INIT;
	xfs_agblock_t			next_agbno = 0;
	int				error;

	error = xfarray_sort(ra->free_records, xrep_bnobt_extent_cmp, 0);
	if (error)
		return error;

	while ((error = xfarray_iter(ra->free_records, &cur, &arec)) == 1) {
		if (arec.ar_startblock < next_agbno)
			return -EFSCORRUPTED;

		next_agbno = arec.ar_startblock + arec.ar_blockcount;
	}

	return error;
}

/*
 * Compare two free space extents by length and then block number.  We want
 * to sort first in order of increasing length and then in order of increasing
 * block number.
 */
static int
xrep_cntbt_extent_cmp(
	const void			*a,
	const void			*b)
{
	const struct xfs_alloc_rec_incore *ap = a;
	const struct xfs_alloc_rec_incore *bp = b;

	if (ap->ar_blockcount > bp->ar_blockcount)
		return 1;
	else if (ap->ar_blockcount < bp->ar_blockcount)
		return -1;
	return xrep_bnobt_extent_cmp(a, b);
}

/*
 * Sort the free extents by length so so that we can put the records into the
 * cntbt in the correct order.  Don't let userspace kill us if we're resorting
 * after allocating btree blocks.
 */
STATIC int
xrep_cntbt_sort_records(
	struct xrep_abt			*ra,
	bool				is_resort)
{
	return xfarray_sort(ra->free_records, xrep_cntbt_extent_cmp,
			is_resort ? 0 : XFARRAY_SORT_KILLABLE);
}

/*
 * Iterate all reverse mappings to find (1) the gaps between rmap records (all
 * unowned space), (2) the OWN_AG extents (which encompass the free space
 * btrees, the rmapbt, and the agfl), (3) the rmapbt blocks, and (4) the AGFL
 * blocks.  The free space is (1) + (2) - (3) - (4).
 */
STATIC int
xrep_abt_find_freespace(
	struct xrep_abt		*ra)
{
	struct xfs_scrub	*sc = ra->sc;
	struct xfs_mount	*mp = sc->mp;
	struct xfs_agf		*agf = sc->sa.agf_bp->b_addr;
	struct xfs_buf		*agfl_bp;
	xfs_agblock_t		agend;
	int			error;

	xagb_bitmap_init(&ra->not_allocbt_blocks);

	xrep_ag_btcur_init(sc, &sc->sa);

	/*
	 * Iterate all the reverse mappings to find gaps in the physical
	 * mappings, all the OWN_AG blocks, and all the rmapbt extents.
	 */
	error = xfs_rmap_query_all(sc->sa.rmap_cur, xrep_abt_walk_rmap, ra);
	if (error)
		goto err;

	/* Insert a record for space between the last rmap and EOAG. */
	agend = be32_to_cpu(agf->agf_length);
	if (ra->next_agbno < agend) {
		error = xrep_abt_stash(ra, agend);
		if (error)
			goto err;
	}

	/* Collect all the AGFL blocks. */
	error = xfs_alloc_read_agfl(sc->sa.pag, sc->tp, &agfl_bp);
	if (error)
		goto err;

	error = xfs_agfl_walk(mp, agf, agfl_bp, xrep_abt_walk_agfl, ra);
	if (error)
		goto err_agfl;

	/* Compute the old bnobt/cntbt blocks. */
	error = xagb_bitmap_disunion(&ra->old_allocbt_blocks,
			&ra->not_allocbt_blocks);
	if (error)
		goto err_agfl;

	ra->nr_real_records = xfarray_length(ra->free_records);
err_agfl:
	xfs_trans_brelse(sc->tp, agfl_bp);
err:
	xchk_ag_btcur_free(&sc->sa);
	xagb_bitmap_destroy(&ra->not_allocbt_blocks);
	return error;
}

/*
 * We're going to use the observed free space records to reserve blocks for the
 * new free space btrees, so we play an iterative game where we try to converge
 * on the number of blocks we need:
 *
 * 1. Estimate how many blocks we'll need to store the records.
 * 2. If the first free record has more blocks than we need, we're done.
 *    We will have to re-sort the records prior to building the cntbt.
 * 3. If that record has exactly the number of blocks we need, null out the
 *    record.  We're done.
 * 4. Otherwise, we still need more blocks.  Null out the record, subtract its
 *    length from the number of blocks we need, and go back to step 1.
 *
 * Fortunately, we don't have to do any transaction work to play this game, so
 * we don't have to tear down the staging cursors.
 */
STATIC int
xrep_abt_reserve_space(
	struct xrep_abt		*ra,
	struct xfs_btree_cur	*bno_cur,
	struct xfs_btree_cur	*cnt_cur,
	bool			*needs_resort)
{
	struct xfs_scrub	*sc = ra->sc;
	xfarray_idx_t		record_nr;
	unsigned int		allocated = 0;
	int			error = 0;

	record_nr = xfarray_length(ra->free_records) - 1;
	do {
		struct xfs_alloc_rec_incore arec;
		uint64_t		required;
		unsigned int		desired;
		unsigned int		len;

		/* Compute how many blocks we'll need. */
		error = xfs_btree_bload_compute_geometry(cnt_cur,
				&ra->new_cntbt.bload, ra->nr_real_records);
		if (error)
			break;

		error = xfs_btree_bload_compute_geometry(bno_cur,
				&ra->new_bnobt.bload, ra->nr_real_records);
		if (error)
			break;

		/* How many btree blocks do we need to store all records? */
		required = ra->new_bnobt.bload.nr_blocks +
			   ra->new_cntbt.bload.nr_blocks;
		ASSERT(required < INT_MAX);

		/* If we've reserved enough blocks, we're done. */
		if (allocated >= required)
			break;

		desired = required - allocated;

		/* We need space but there's none left; bye! */
		if (ra->nr_real_records == 0) {
			error = -ENOSPC;
			break;
		}

		/* Grab the first record from the list. */
		error = xfarray_load(ra->free_records, record_nr, &arec);
		if (error)
			break;

		ASSERT(arec.ar_blockcount <= UINT_MAX);
		len = min_t(unsigned int, arec.ar_blockcount, desired);

		trace_xrep_newbt_alloc_ag_blocks(sc->mp, sc->sa.pag->pag_agno,
				arec.ar_startblock, len, XFS_RMAP_OWN_AG);

		error = xrep_newbt_add_extent(&ra->new_bnobt, sc->sa.pag,
				arec.ar_startblock, len);
		if (error)
			break;
		allocated += len;
		ra->nr_blocks -= len;

		if (arec.ar_blockcount > desired) {
			/*
			 * Record has more space than we need.  The number of
			 * free records doesn't change, so shrink the free
			 * record, inform the caller that the records are no
			 * longer sorted by length, and exit.
			 */
			arec.ar_startblock += desired;
			arec.ar_blockcount -= desired;
			error = xfarray_store(ra->free_records, record_nr,
					&arec);
			if (error)
				break;

			*needs_resort = true;
			return 0;
		}

		/*
		 * We're going to use up the entire record, so unset it and
		 * move on to the next one.  This changes the number of free
		 * records (but doesn't break the sorting order), so we must
		 * go around the loop once more to re-run _bload_init.
		 */
		error = xfarray_unset(ra->free_records, record_nr);
		if (error)
			break;
		ra->nr_real_records--;
		record_nr--;
	} while (1);

	return error;
}

STATIC int
xrep_abt_dispose_one(
	struct xrep_abt		*ra,
	struct xrep_newbt_resv	*resv)
{
	struct xfs_scrub	*sc = ra->sc;
	struct xfs_perag	*pag = sc->sa.pag;
	xfs_agblock_t		free_agbno = resv->agbno + resv->used;
	xfs_extlen_t		free_aglen = resv->len - resv->used;
	int			error;

	ASSERT(pag == resv->pag);

	/* Add a deferred rmap for each extent we used. */
	if (resv->used > 0)
		xfs_rmap_alloc_extent(sc->tp, pag->pag_agno, resv->agbno,
				resv->used, XFS_RMAP_OWN_AG);

	/*
	 * For each reserved btree block we didn't use, add it to the free
	 * space btree.  We didn't touch fdblocks when we reserved them, so
	 * we don't touch it now.
	 */
	if (free_aglen == 0)
		return 0;

	trace_xrep_newbt_free_blocks(sc->mp, resv->pag->pag_agno, free_agbno,
			free_aglen, ra->new_bnobt.oinfo.oi_owner);

	error = __xfs_free_extent(sc->tp, resv->pag, free_agbno, free_aglen,
			&ra->new_bnobt.oinfo, XFS_AG_RESV_IGNORE, true);
	if (error)
		return error;

	return xrep_defer_finish(sc);
}

/*
 * Deal with all the space we reserved.  Blocks that were allocated for the
 * free space btrees need to have a (deferred) rmap added for the OWN_AG
 * allocation, and blocks that didn't get used can be freed via the usual
 * (deferred) means.
 */
STATIC void
xrep_abt_dispose_reservations(
	struct xrep_abt		*ra,
	int			error)
{
	struct xrep_newbt_resv	*resv, *n;

	if (error)
		goto junkit;

	list_for_each_entry_safe(resv, n, &ra->new_bnobt.resv_list, list) {
		error = xrep_abt_dispose_one(ra, resv);
		if (error)
			goto junkit;
	}

junkit:
	list_for_each_entry_safe(resv, n, &ra->new_bnobt.resv_list, list) {
		xfs_perag_put(resv->pag);
		list_del(&resv->list);
		kfree(resv);
	}

	xrep_newbt_cancel(&ra->new_bnobt);
	xrep_newbt_cancel(&ra->new_cntbt);
}

/* Retrieve free space data for bulk load. */
STATIC int
xrep_abt_get_records(
	struct xfs_btree_cur		*cur,
	unsigned int			idx,
	struct xfs_btree_block		*block,
	unsigned int			nr_wanted,
	void				*priv)
{
	struct xfs_alloc_rec_incore	*arec = &cur->bc_rec.a;
	struct xrep_abt			*ra = priv;
	union xfs_btree_rec		*block_rec;
	unsigned int			loaded;
	int				error;

	for (loaded = 0; loaded < nr_wanted; loaded++, idx++) {
		error = xfarray_load_next(ra->free_records, &ra->array_cur,
				arec);
		if (error)
			return error;

		ra->longest = max(ra->longest, arec->ar_blockcount);

		block_rec = xfs_btree_rec_addr(cur, idx, block);
		cur->bc_ops->init_rec_from_cur(cur, block_rec);
	}

	return loaded;
}

/* Feed one of the new btree blocks to the bulk loader. */
STATIC int
xrep_abt_claim_block(
	struct xfs_btree_cur	*cur,
	union xfs_btree_ptr	*ptr,
	void			*priv)
{
	struct xrep_abt		*ra = priv;

	return xrep_newbt_claim_block(cur, &ra->new_bnobt, ptr);
}

/*
 * Reset the AGF counters to reflect the free space btrees that we just
 * rebuilt, then reinitialize the per-AG data.
 */
STATIC int
xrep_abt_reset_counters(
	struct xrep_abt		*ra)
{
	struct xfs_scrub	*sc = ra->sc;
	struct xfs_perag	*pag = sc->sa.pag;
	struct xfs_agf		*agf = sc->sa.agf_bp->b_addr;
	unsigned int		freesp_btreeblks = 0;

	/*
	 * Compute the contribution to agf_btreeblks for the new free space
	 * btrees.  This is the computed btree size minus anything we didn't
	 * use.
	 */
	freesp_btreeblks += ra->new_bnobt.bload.nr_blocks - 1;
	freesp_btreeblks += ra->new_cntbt.bload.nr_blocks - 1;

	freesp_btreeblks -= xrep_newbt_unused_blocks(&ra->new_bnobt);
	freesp_btreeblks -= xrep_newbt_unused_blocks(&ra->new_cntbt);

	/*
	 * The AGF header contains extra information related to the free space
	 * btrees, so we must update those fields here.
	 */
	agf->agf_btreeblks = cpu_to_be32(freesp_btreeblks +
				(be32_to_cpu(agf->agf_rmap_blocks) - 1));
	agf->agf_freeblks = cpu_to_be32(ra->nr_blocks);
	agf->agf_longest = cpu_to_be32(ra->longest);
	xfs_alloc_log_agf(sc->tp, sc->sa.agf_bp, XFS_AGF_BTREEBLKS |
						 XFS_AGF_LONGEST |
						 XFS_AGF_FREEBLKS);

	/*
	 * After we commit the new btree to disk, it is possible that the
	 * process to reap the old btree blocks will race with the AIL trying
	 * to checkpoint the old btree blocks into the filesystem.  If the new
	 * tree is shorter than the old one, the allocbt write verifier will
	 * fail and the AIL will shut down the filesystem.
	 *
	 * To avoid this, save the old incore btree height values as the alt
	 * height values before re-initializing the perag info from the updated
	 * AGF to capture all the new values.
	 */
	pag->pagf_repair_levels[XFS_BTNUM_BNOi] = pag->pagf_levels[XFS_BTNUM_BNOi];
	pag->pagf_repair_levels[XFS_BTNUM_CNTi] = pag->pagf_levels[XFS_BTNUM_CNTi];

	/* Reinitialize with the values we just logged. */
	return xrep_reinit_pagf(sc);
}

/*
 * Use the collected free space information to stage new free space btrees.
 * If this is successful we'll return with the new btree root
 * information logged to the repair transaction but not yet committed.
 */
STATIC int
xrep_abt_build_new_trees(
	struct xrep_abt		*ra)
{
	struct xfs_scrub	*sc = ra->sc;
	struct xfs_btree_cur	*bno_cur;
	struct xfs_btree_cur	*cnt_cur;
	struct xfs_perag	*pag = sc->sa.pag;
	bool			needs_resort = false;
	int			error;

	/*
	 * Sort the free extents by length so that we can set up the free space
	 * btrees in as few extents as possible.  This reduces the amount of
	 * deferred rmap / free work we have to do at the end.
	 */
	error = xrep_cntbt_sort_records(ra, false);
	if (error)
		return error;

	/*
	 * Prepare to construct the new btree by reserving disk space for the
	 * new btree and setting up all the accounting information we'll need
	 * to root the new btree while it's under construction and before we
	 * attach it to the AG header.
	 */
	xrep_newbt_init_bare(&ra->new_bnobt, sc);
	xrep_newbt_init_bare(&ra->new_cntbt, sc);

	ra->new_bnobt.bload.get_records = xrep_abt_get_records;
	ra->new_cntbt.bload.get_records = xrep_abt_get_records;

	ra->new_bnobt.bload.claim_block = xrep_abt_claim_block;
	ra->new_cntbt.bload.claim_block = xrep_abt_claim_block;

	/* Allocate cursors for the staged btrees. */
	bno_cur = xfs_allocbt_stage_cursor(sc->mp, &ra->new_bnobt.afake,
			pag, XFS_BTNUM_BNO);
	cnt_cur = xfs_allocbt_stage_cursor(sc->mp, &ra->new_cntbt.afake,
			pag, XFS_BTNUM_CNT);

	/* Last chance to abort before we start committing fixes. */
	if (xchk_should_terminate(sc, &error))
		goto err_cur;

	/* Reserve the space we'll need for the new btrees. */
	error = xrep_abt_reserve_space(ra, bno_cur, cnt_cur, &needs_resort);
	if (error)
		goto err_cur;

	/*
	 * If we need to re-sort the free extents by length, do so so that we
	 * can put the records into the cntbt in the correct order.
	 */
	if (needs_resort) {
		error = xrep_cntbt_sort_records(ra, needs_resort);
		if (error)
			goto err_cur;
	}

	/*
	 * Due to btree slack factors, it's possible for a new btree to be one
	 * level taller than the old btree.  Update the alternate incore btree
	 * height so that we don't trip the verifiers when writing the new
	 * btree blocks to disk.
	 */
	pag->pagf_repair_levels[XFS_BTNUM_BNOi] =
					ra->new_bnobt.bload.btree_height;
	pag->pagf_repair_levels[XFS_BTNUM_CNTi] =
					ra->new_cntbt.bload.btree_height;

	/* Load the free space by length tree. */
	ra->array_cur = XFARRAY_CURSOR_INIT;
	ra->longest = 0;
	error = xfs_btree_bload(cnt_cur, &ra->new_cntbt.bload, ra);
	if (error)
		goto err_levels;

	error = xrep_bnobt_sort_records(ra);
	if (error)
		return error;

	/* Load the free space by block number tree. */
	ra->array_cur = XFARRAY_CURSOR_INIT;
	error = xfs_btree_bload(bno_cur, &ra->new_bnobt.bload, ra);
	if (error)
		goto err_levels;

	/*
	 * Install the new btrees in the AG header.  After this point the old
	 * btrees are no longer accessible and the new trees are live.
	 */
	xfs_allocbt_commit_staged_btree(bno_cur, sc->tp, sc->sa.agf_bp);
	xfs_btree_del_cursor(bno_cur, 0);
	xfs_allocbt_commit_staged_btree(cnt_cur, sc->tp, sc->sa.agf_bp);
	xfs_btree_del_cursor(cnt_cur, 0);

	/* Reset the AGF counters now that we've changed the btree shape. */
	error = xrep_abt_reset_counters(ra);
	if (error)
		goto err_newbt;

	/* Dispose of any unused blocks and the accounting information. */
	xrep_abt_dispose_reservations(ra, error);

	return xrep_roll_ag_trans(sc);

err_levels:
	pag->pagf_repair_levels[XFS_BTNUM_BNOi] = 0;
	pag->pagf_repair_levels[XFS_BTNUM_CNTi] = 0;
err_cur:
	xfs_btree_del_cursor(cnt_cur, error);
	xfs_btree_del_cursor(bno_cur, error);
err_newbt:
	xrep_abt_dispose_reservations(ra, error);
	return error;
}

/*
 * Now that we've logged the roots of the new btrees, invalidate all of the
 * old blocks and free them.
 */
STATIC int
xrep_abt_remove_old_trees(
	struct xrep_abt		*ra)
{
	struct xfs_perag	*pag = ra->sc->sa.pag;
	int			error;

	/* Free the old btree blocks if they're not in use. */
	error = xrep_reap_agblocks(ra->sc, &ra->old_allocbt_blocks,
			&XFS_RMAP_OINFO_AG, XFS_AG_RESV_IGNORE);
	if (error)
		return error;

	/*
	 * Now that we've zapped all the old allocbt blocks we can turn off
	 * the alternate height mechanism.
	 */
	pag->pagf_repair_levels[XFS_BTNUM_BNOi] = 0;
	pag->pagf_repair_levels[XFS_BTNUM_CNTi] = 0;
	return 0;
}

/* Repair the freespace btrees for some AG. */
int
xrep_allocbt(
	struct xfs_scrub	*sc)
{
	struct xrep_abt		*ra;
	struct xfs_mount	*mp = sc->mp;
	char			*descr;
	int			error;

	/* We require the rmapbt to rebuild anything. */
	if (!xfs_has_rmapbt(mp))
		return -EOPNOTSUPP;

	ra = kzalloc(sizeof(struct xrep_abt), XCHK_GFP_FLAGS);
	if (!ra)
		return -ENOMEM;
	ra->sc = sc;

	/* We rebuild both data structures. */
	sc->sick_mask = XFS_SICK_AG_BNOBT | XFS_SICK_AG_CNTBT;

	/*
	 * Make sure the busy extent list is clear because we can't put extents
	 * on there twice.  In theory we cleared this before we started, but
	 * let's not risk the filesystem.
	 */
	if (!xfs_extent_busy_list_empty(sc->sa.pag)) {
		error = -EDEADLOCK;
		goto out_ra;
	}

	/* Set up enough storage to handle maximally fragmented free space. */
	descr = xchk_xfile_ag_descr(sc, "free space records");
	error = xfarray_create(descr, mp->m_sb.sb_agblocks / 2,
			sizeof(struct xfs_alloc_rec_incore),
			&ra->free_records);
	kfree(descr);
	if (error)
		goto out_ra;

	/* Collect the free space data and find the old btree blocks. */
	xagb_bitmap_init(&ra->old_allocbt_blocks);
	error = xrep_abt_find_freespace(ra);
	if (error)
		goto out_bitmap;

	/* Rebuild the free space information. */
	error = xrep_abt_build_new_trees(ra);
	if (error)
		goto out_bitmap;

	/* Kill the old trees. */
	error = xrep_abt_remove_old_trees(ra);
	if (error)
		goto out_bitmap;

out_bitmap:
	xagb_bitmap_destroy(&ra->old_allocbt_blocks);
	xfarray_destroy(ra->free_records);
out_ra:
	kfree(ra);
	return error;
}

/* Make sure both btrees are ok after we've rebuilt them. */
int
xrep_revalidate_allocbt(
	struct xfs_scrub	*sc)
{
	__u32			old_type = sc->sm->sm_type;
	int			error;

	/*
	 * We must update sm_type temporarily so that the tree-to-tree cross
	 * reference checks will work in the correct direction, and also so
	 * that tracing will report correctly if there are more errors.
	 */
	sc->sm->sm_type = XFS_SCRUB_TYPE_BNOBT;
	error = xchk_allocbt(sc);
	if (error)
		goto out;

	sc->sm->sm_type = XFS_SCRUB_TYPE_CNTBT;
	error = xchk_allocbt(sc);
out:
	sc->sm->sm_type = old_type;
	return error;
}