#include "kvm/kvm.h" #include "kvm/read-write.h" #include "kvm/util.h" #include "kvm/strbuf.h" #include "kvm/mutex.h" #include "kvm/kvm-cpu.h" #include "kvm/kvm-ipc.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define DEFINE_KVM_EXIT_REASON(reason) [reason] = #reason const char *kvm_exit_reasons[] = { DEFINE_KVM_EXIT_REASON(KVM_EXIT_UNKNOWN), DEFINE_KVM_EXIT_REASON(KVM_EXIT_EXCEPTION), DEFINE_KVM_EXIT_REASON(KVM_EXIT_IO), DEFINE_KVM_EXIT_REASON(KVM_EXIT_HYPERCALL), DEFINE_KVM_EXIT_REASON(KVM_EXIT_DEBUG), DEFINE_KVM_EXIT_REASON(KVM_EXIT_HLT), DEFINE_KVM_EXIT_REASON(KVM_EXIT_MMIO), DEFINE_KVM_EXIT_REASON(KVM_EXIT_IRQ_WINDOW_OPEN), DEFINE_KVM_EXIT_REASON(KVM_EXIT_SHUTDOWN), DEFINE_KVM_EXIT_REASON(KVM_EXIT_FAIL_ENTRY), DEFINE_KVM_EXIT_REASON(KVM_EXIT_INTR), DEFINE_KVM_EXIT_REASON(KVM_EXIT_SET_TPR), DEFINE_KVM_EXIT_REASON(KVM_EXIT_TPR_ACCESS), DEFINE_KVM_EXIT_REASON(KVM_EXIT_S390_SIEIC), DEFINE_KVM_EXIT_REASON(KVM_EXIT_S390_RESET), DEFINE_KVM_EXIT_REASON(KVM_EXIT_DCR), DEFINE_KVM_EXIT_REASON(KVM_EXIT_NMI), DEFINE_KVM_EXIT_REASON(KVM_EXIT_INTERNAL_ERROR), #ifdef CONFIG_PPC64 DEFINE_KVM_EXIT_REASON(KVM_EXIT_PAPR_HCALL), #endif }; static int pause_event; static DEFINE_MUTEX(pause_lock); extern struct kvm_ext kvm_req_ext[]; static char kvm_dir[PATH_MAX]; extern __thread struct kvm_cpu *current_kvm_cpu; static int set_dir(const char *fmt, va_list args) { char tmp[PATH_MAX]; vsnprintf(tmp, sizeof(tmp), fmt, args); mkdir(tmp, 0777); if (!realpath(tmp, kvm_dir)) return -errno; strcat(kvm_dir, "/"); return 0; } void kvm__set_dir(const char *fmt, ...) { va_list args; va_start(args, fmt); set_dir(fmt, args); va_end(args); } const char *kvm__get_dir(void) { return kvm_dir; } bool kvm__supports_vm_extension(struct kvm *kvm, unsigned int extension) { static int supports_vm_ext_check = 0; int ret; switch (supports_vm_ext_check) { case 0: ret = ioctl(kvm->sys_fd, KVM_CHECK_EXTENSION, KVM_CAP_CHECK_EXTENSION_VM); if (ret <= 0) { supports_vm_ext_check = -1; return false; } supports_vm_ext_check = 1; /* fall through */ case 1: break; case -1: return false; } ret = ioctl(kvm->vm_fd, KVM_CHECK_EXTENSION, extension); if (ret < 0) return false; return ret; } bool kvm__supports_extension(struct kvm *kvm, unsigned int extension) { int ret; ret = ioctl(kvm->sys_fd, KVM_CHECK_EXTENSION, extension); if (ret < 0) return false; return ret; } static int kvm__check_extensions(struct kvm *kvm) { int i; for (i = 0; ; i++) { if (!kvm_req_ext[i].name) break; if (!kvm__supports_extension(kvm, kvm_req_ext[i].code)) { pr_err("Unsupported KVM extension detected: %s", kvm_req_ext[i].name); return -i; } } return 0; } struct kvm *kvm__new(void) { struct kvm *kvm = calloc(1, sizeof(*kvm)); if (!kvm) return ERR_PTR(-ENOMEM); mutex_init(&kvm->mem_banks_lock); kvm->sys_fd = -1; kvm->vm_fd = -1; #ifdef KVM_BRLOCK_DEBUG kvm->brlock_sem = (pthread_rwlock_t) PTHREAD_RWLOCK_INITIALIZER; #endif return kvm; } int kvm__exit(struct kvm *kvm) { struct kvm_mem_bank *bank, *tmp; kvm__arch_delete_ram(kvm); list_for_each_entry_safe(bank, tmp, &kvm->mem_banks, list) { list_del(&bank->list); free(bank); } free(kvm); return 0; } core_exit(kvm__exit); int kvm__destroy_mem(struct kvm *kvm, u64 guest_phys, u64 size, void *userspace_addr) { struct kvm_userspace_memory_region mem; struct kvm_mem_bank *bank; int ret; mutex_lock(&kvm->mem_banks_lock); list_for_each_entry(bank, &kvm->mem_banks, list) if (bank->guest_phys_addr == guest_phys && bank->size == size && bank->host_addr == userspace_addr) break; if (&bank->list == &kvm->mem_banks) { pr_err("Region [%llx-%llx] not found", guest_phys, guest_phys + size - 1); ret = -EINVAL; goto out; } if (bank->type == KVM_MEM_TYPE_RESERVED) { pr_err("Cannot delete reserved region [%llx-%llx]", guest_phys, guest_phys + size - 1); ret = -EINVAL; goto out; } mem = (struct kvm_userspace_memory_region) { .slot = bank->slot, .guest_phys_addr = guest_phys, .memory_size = 0, .userspace_addr = (unsigned long)userspace_addr, }; ret = ioctl(kvm->vm_fd, KVM_SET_USER_MEMORY_REGION, &mem); if (ret < 0) { ret = -errno; goto out; } list_del(&bank->list); free(bank); kvm->mem_slots--; ret = 0; out: mutex_unlock(&kvm->mem_banks_lock); return ret; } int kvm__register_mem(struct kvm *kvm, u64 guest_phys, u64 size, void *userspace_addr, enum kvm_mem_type type) { struct kvm_userspace_memory_region mem; struct kvm_mem_bank *merged = NULL; struct kvm_mem_bank *bank; struct list_head *prev_entry; u32 slot; u32 flags = 0; int ret; mutex_lock(&kvm->mem_banks_lock); /* Check for overlap and find first empty slot. */ slot = 0; prev_entry = &kvm->mem_banks; list_for_each_entry(bank, &kvm->mem_banks, list) { u64 bank_end = bank->guest_phys_addr + bank->size - 1; u64 end = guest_phys + size - 1; if (guest_phys > bank_end || end < bank->guest_phys_addr) { /* * Keep the banks sorted ascending by slot, so it's * easier for us to find a free slot. */ if (bank->slot == slot) { slot++; prev_entry = &bank->list; } continue; } /* Merge overlapping reserved regions */ if (bank->type == KVM_MEM_TYPE_RESERVED && type == KVM_MEM_TYPE_RESERVED) { bank->guest_phys_addr = min(bank->guest_phys_addr, guest_phys); bank->size = max(bank_end, end) - bank->guest_phys_addr + 1; if (merged) { /* * This is at least the second merge, remove * previous result. */ list_del(&merged->list); free(merged); } guest_phys = bank->guest_phys_addr; size = bank->size; merged = bank; /* Keep checking that we don't overlap another region */ continue; } pr_err("%s region [%llx-%llx] would overlap %s region [%llx-%llx]", kvm_mem_type_to_string(type), guest_phys, guest_phys + size - 1, kvm_mem_type_to_string(bank->type), bank->guest_phys_addr, bank->guest_phys_addr + bank->size - 1); ret = -EINVAL; goto out; } if (merged) { ret = 0; goto out; } bank = malloc(sizeof(*bank)); if (!bank) { ret = -ENOMEM; goto out; } INIT_LIST_HEAD(&bank->list); bank->guest_phys_addr = guest_phys; bank->host_addr = userspace_addr; bank->size = size; bank->type = type; bank->slot = slot; if (type & KVM_MEM_TYPE_READONLY) flags |= KVM_MEM_READONLY; if (type != KVM_MEM_TYPE_RESERVED) { mem = (struct kvm_userspace_memory_region) { .slot = slot, .flags = flags, .guest_phys_addr = guest_phys, .memory_size = size, .userspace_addr = (unsigned long)userspace_addr, }; ret = ioctl(kvm->vm_fd, KVM_SET_USER_MEMORY_REGION, &mem); if (ret < 0) { ret = -errno; goto out; } } list_add(&bank->list, prev_entry); kvm->mem_slots++; ret = 0; out: mutex_unlock(&kvm->mem_banks_lock); return ret; } void *guest_flat_to_host(struct kvm *kvm, u64 offset) { struct kvm_mem_bank *bank; list_for_each_entry(bank, &kvm->mem_banks, list) { u64 bank_start = bank->guest_phys_addr; u64 bank_end = bank_start + bank->size; if (offset >= bank_start && offset < bank_end) return bank->host_addr + (offset - bank_start); } pr_warning("unable to translate guest address 0x%llx to host", (unsigned long long)offset); return NULL; } u64 host_to_guest_flat(struct kvm *kvm, void *ptr) { struct kvm_mem_bank *bank; list_for_each_entry(bank, &kvm->mem_banks, list) { void *bank_start = bank->host_addr; void *bank_end = bank_start + bank->size; if (ptr >= bank_start && ptr < bank_end) return bank->guest_phys_addr + (ptr - bank_start); } pr_warning("unable to translate host address %p to guest", ptr); return 0; } /* * Iterate over each registered memory bank. Call @fun for each bank with @data * as argument. @type is a bitmask that allows to filter banks according to * their type. * * If one call to @fun returns a non-zero value, stop iterating and return the * value. Otherwise, return zero. */ int kvm__for_each_mem_bank(struct kvm *kvm, enum kvm_mem_type type, int (*fun)(struct kvm *kvm, struct kvm_mem_bank *bank, void *data), void *data) { int ret; struct kvm_mem_bank *bank; list_for_each_entry(bank, &kvm->mem_banks, list) { if (type != KVM_MEM_TYPE_ALL && !(bank->type & type)) continue; ret = fun(kvm, bank, data); if (ret) break; } return ret; } int kvm__recommended_cpus(struct kvm *kvm) { int ret; ret = ioctl(kvm->sys_fd, KVM_CHECK_EXTENSION, KVM_CAP_NR_VCPUS); if (ret <= 0) /* * api.txt states that if KVM_CAP_NR_VCPUS does not exist, * assume 4. */ return 4; return ret; } int kvm__max_cpus(struct kvm *kvm) { int ret; ret = ioctl(kvm->sys_fd, KVM_CHECK_EXTENSION, KVM_CAP_MAX_VCPUS); if (ret <= 0) ret = kvm__recommended_cpus(kvm); return ret; } int __attribute__((weak)) kvm__get_vm_type(struct kvm *kvm) { return KVM_VM_TYPE; } int kvm__init(struct kvm *kvm) { int ret; if (!kvm__arch_cpu_supports_vm()) { pr_err("Your CPU does not support hardware virtualization"); ret = -ENOSYS; goto err; } kvm->sys_fd = open(kvm->cfg.dev, O_RDWR); if (kvm->sys_fd < 0) { if (errno == ENOENT) pr_err("'%s' not found. Please make sure your kernel has CONFIG_KVM " "enabled and that the KVM modules are loaded.", kvm->cfg.dev); else if (errno == ENODEV) pr_err("'%s' KVM driver not available.\n # (If the KVM " "module is loaded then 'dmesg' may offer further clues " "about the failure.)", kvm->cfg.dev); else pr_err("Could not open %s: ", kvm->cfg.dev); ret = -errno; goto err_free; } ret = ioctl(kvm->sys_fd, KVM_GET_API_VERSION, 0); if (ret != KVM_API_VERSION) { pr_err("KVM_API_VERSION ioctl"); ret = -errno; goto err_sys_fd; } kvm->vm_fd = ioctl(kvm->sys_fd, KVM_CREATE_VM, kvm__get_vm_type(kvm)); if (kvm->vm_fd < 0) { pr_err("KVM_CREATE_VM ioctl"); ret = kvm->vm_fd; goto err_sys_fd; } if (kvm__check_extensions(kvm)) { pr_err("A required KVM extension is not supported by OS"); ret = -ENOSYS; goto err_vm_fd; } kvm__arch_init(kvm); INIT_LIST_HEAD(&kvm->mem_banks); kvm__init_ram(kvm); if (!kvm->cfg.firmware_filename) { if (!kvm__load_kernel(kvm, kvm->cfg.kernel_filename, kvm->cfg.initrd_filename, kvm->cfg.real_cmdline)) die("unable to load kernel %s", kvm->cfg.kernel_filename); } if (kvm->cfg.firmware_filename) { if (!kvm__load_firmware(kvm, kvm->cfg.firmware_filename)) die("unable to load firmware image %s: %s", kvm->cfg.firmware_filename, strerror(errno)); } else { ret = kvm__arch_setup_firmware(kvm); if (ret < 0) die("kvm__arch_setup_firmware() failed with error %d\n", ret); } return 0; err_vm_fd: close(kvm->vm_fd); err_sys_fd: close(kvm->sys_fd); err_free: free(kvm); err: return ret; } core_init(kvm__init); bool kvm__load_kernel(struct kvm *kvm, const char *kernel_filename, const char *initrd_filename, const char *kernel_cmdline) { bool ret; int fd_kernel = -1, fd_initrd = -1; fd_kernel = open(kernel_filename, O_RDONLY); if (fd_kernel < 0) die("Unable to open kernel %s", kernel_filename); if (initrd_filename) { fd_initrd = open(initrd_filename, O_RDONLY); if (fd_initrd < 0) die("Unable to open initrd %s", initrd_filename); } ret = kvm__arch_load_kernel_image(kvm, fd_kernel, fd_initrd, kernel_cmdline); if (initrd_filename) close(fd_initrd); close(fd_kernel); if (!ret) die("%s is not a valid kernel image", kernel_filename); return ret; } void kvm__dump_mem(struct kvm *kvm, unsigned long addr, unsigned long size, int debug_fd) { unsigned char *p; unsigned long n; size &= ~7; /* mod 8 */ if (!size) return; p = guest_flat_to_host(kvm, addr); for (n = 0; n < size; n += 8) { if (!host_ptr_in_ram(kvm, p + n)) { dprintf(debug_fd, " 0x%08lx: \n", addr + n); continue; } dprintf(debug_fd, " 0x%08lx: %02x %02x %02x %02x %02x %02x %02x %02x\n", addr + n, p[n + 0], p[n + 1], p[n + 2], p[n + 3], p[n + 4], p[n + 5], p[n + 6], p[n + 7]); } } void kvm__reboot(struct kvm *kvm) { /* Check if the guest is running */ if (!kvm->cpus[0] || kvm->cpus[0]->thread == 0) return; pthread_kill(kvm->cpus[0]->thread, SIGKVMEXIT); } void kvm__continue(struct kvm *kvm) { mutex_unlock(&pause_lock); } void kvm__pause(struct kvm *kvm) { int i, paused_vcpus = 0; mutex_lock(&pause_lock); /* Check if the guest is running */ if (!kvm->cpus || !kvm->cpus[0] || kvm->cpus[0]->thread == 0) return; pause_event = eventfd(0, 0); if (pause_event < 0) die("Failed creating pause notification event"); for (i = 0; i < kvm->nrcpus; i++) { if (kvm->cpus[i]->is_running && kvm->cpus[i]->paused == 0) pthread_kill(kvm->cpus[i]->thread, SIGKVMPAUSE); else paused_vcpus++; } while (paused_vcpus < kvm->nrcpus) { u64 cur_read; if (read(pause_event, &cur_read, sizeof(cur_read)) < 0) die("Failed reading pause event"); paused_vcpus += cur_read; } close(pause_event); } void kvm__notify_paused(void) { u64 p = 1; if (write(pause_event, &p, sizeof(p)) < 0) die("Failed notifying of paused VCPU."); mutex_lock(&pause_lock); current_kvm_cpu->paused = 0; mutex_unlock(&pause_lock); }