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Preface

The purpose of this book is to help you understand how to program shared-memory
parallel machines without risking your sanity.1 By describing the algorithms and designs
that have worked well in the past, we hope to help you avoid at least some of the pitfalls
that have beset parallel projects. But you should think of this book as a foundation on
which to build, rather than as a completed cathedral. Your mission, if you choose to
accept, is to help make further progress in the exciting field of parallel programming,
progress that should in time render this book obsolete. Parallel programming is not as
hard as it is reputed, and it is hoped that this book makes it even easier for you.

This book follows a watershed shift in the parallel-programming field, from being
primarily the domain of science, research, and grand-challenge projects to being primar-
ily an engineering discipline. In presenting this engineering discipline, this book will
examine the specific development tasks peculiar to parallel programming, and describe
how they may be most effectively handled, and, in some surprisingly common special
cases, automated.

This book is written in the hope that presenting the engineering discipline underlying
successful parallel-programming projects will free a new generation of parallel hackers
from the need to slowly and painstakingly reinvent old wheels, instead focusing their
energy and creativity on new frontiers. Although the book is intended primarily for
self-study, it is likely to be more generally useful. It is hoped that this book will be
useful to you, and that the experience of parallel programming will bring you as much
fun, excitement, and challenge as it has provided the authors over the years.

1 Or, perhaps more accurately, without much greater risk to your sanity than that incurred by non-parallel
programming. Which, come to think of it, might not be saying all that much. Either way, Appendix A
discusses some important questions whose answers are less intuitive in parallel programs than in sequential
program.
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Chapter 1

Introduction

Parallel programming has earned a reputation as one of the most difficult areas a hacker
can tackle. Papers and textbooks warn of the perils of deadlock, livelock, race conditions,
non-determinism, Amdahl’s-Law limits to scaling, and excessive realtime latencies. And
these perils are quite real; we authors have accumulated uncounted years of experience
dealing with them, and all of the emotional scars, grey hairs, and hair loss that go with
such experiences.

However, new technologies have always been difficult to use at introduction, but
have invariably become easier over time. For example, there was a time when the
ability to drive a car was a rare skill, but in many developed countries, this skill is now
commonplace. This dramatic change came about for two basic reasons: (1) cars became
cheaper and more readily available, so that more people had the opportunity to learn to
drive, and (2) cars became easier to operate, due to automatic transmissions, automatic
chokes, automatic starters, greatly improved reliability, and a host of other technological
improvements.

The same is true of a host of other technologies, including computers. It is no
longer necessary to operate a keypunch in order to program. Spreadsheets allow
most non-programmers to get results from their computers that would have required
a team of specialists a few decades ago. Perhaps the most compelling example is
web-surfing and content creation, which since the early 2000s has been easily done
by untrained, uneducated people using various now-commonplace social-networking
tools. As recently as 1968, such content creation was a far-out research project [Eng68],
described at the time as “like a UFO landing on the White House lawn”[Gri00].

Therefore, if you wish to argue that parallel programming will remain as difficult as
it is currently perceived by many to be, it is you who bears the burden of proof, keeping
in mind the many centuries of counter-examples in a variety of fields of endeavor.

1.1 Historic Parallel Programming Difficulties
As indicated by its title, this book takes a different approach. Rather than complain about
the difficulty of parallel programming, it instead examines the reasons why parallel
programming is difficult, and then works to help the reader to overcome these difficulties.
As will be seen, these difficulties have fallen into several categories, including:

1. The historic high cost and relative rarity of parallel systems.
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2. The typical researcher’s and practitioner’s lack of experience with parallel sys-
tems.

3. The paucity of publicly accessible parallel code.

4. The lack of a widely understood engineering discipline of parallel programming.

5. The high overhead of communication relative to that of processing, even in tightly
coupled shared-memory computers.

Many of these historic difficulties are well on the way to being overcome. First, over
the past few decades, the cost of parallel systems has decreased from many multiples
of that of a house to a fraction of that of a bicycle, thanks to the advent of multicore
systems. Papers calling out the advantages of multicore CPUs were published as early
as 1996 [ONH+96], IBM introduced simultaneous multi-threading into its high-end
POWER family in 2000, and multicore in 2001. Intel introduced hyperthreading into
its commodity Pentium line in November 2000, and both AMD and Intel introduced
dual-core CPUs in 2005. Sun followed with the multicore/multi-threaded Niagara in late
2005. In fact, by 2008, it was becoming difficult to find a single-CPU desktop system,
with single-core CPUs being relegated to netbooks and embedded devices. By 2012,
even smartphones were starting to sport multiple CPUs.

Second, the advent of low-cost and readily available multicore system means that the
once-rare experience of parallel programming is now available to almost all researchers
and practitioners. In fact, parallel systems are now well within the budget of students and
hobbyists. We can therefore expect greatly increased levels of invention and innovation
surrounding parallel systems, and that increased familiarity will over time make once-
forbidding field of parallel programming much more friendly and commonplace.

Third, in the 20th century, large systems of highly parallel software were almost
always closely guarded proprietary secrets. In happy contrast, the 21st century has
seen numerous open-source (and thus publicly available) parallel software projects,
including the Linux kernel [Tor03c], database systems [Pos08, MS08], and message-
passing systems [The08, UoC08]. This book will draw primarily from the Linux kernel,
but will provide much material suitable for user-level applications.

Fourth, even though the large-scale parallel-programming projects of the 1980s and
1990s were almost all proprietary projects, these projects have seeded the community
with a cadre of developers who understand the engineering discipline required to
develop production-quality parallel code. A major purpose of this book is to present
this engineering discipline.

Unfortunately, the fifth difficulty, the high cost of communication relative to that
of processing, remains largely in force. Although this difficulty has been receiving
increasing attention during the new millennium, according to Stephen Hawking, the
finite speed of light and the atomic nature of matter is likely to limit progress in this
area [Gar07, Moo03]. Fortunately, this difficulty has been in force since the late 1980s,
so that the aforementioned engineering discipline has evolved practical and effective
strategies for handling it. In addition, hardware designers are increasingly aware of
these issues, so perhaps future hardware will be more friendly to parallel software as
discussed in Section 2.3.

Quick Quiz 1.1: Come on now!!! Parallel programming has been known to be
exceedingly hard for many decades. You seem to be hinting that it is not so hard. What
sort of game are you playing?
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However, even though parallel programming might not be as hard as is commonly
advertised, it is often more work than is sequential programming.

Quick Quiz 1.2: How could parallel programming ever be as easy as sequential
programming?

It therefore makes sense to consider alternatives to parallel programming. However,
it is not possible to reasonably consider parallel-programming alternatives without
understanding parallel-programming goals. This topic is addressed in the next section.

1.2 Parallel Programming Goals
The three major goals of parallel programming (over and above those of sequential
programming) are as follows:

1. Performance.

2. Productivity.

3. Generality.

Quick Quiz 1.3: Oh, really??? What about correctness, maintainability, robustness,
and so on?

Quick Quiz 1.4: And if correctness, maintainability, and robustness don’t make the
list, why do productivity and generality?

Quick Quiz 1.5: Given that parallel programs are much harder to prove correct than
are sequential programs, again, shouldn’t correctness really be on the list?

Quick Quiz 1.6: What about just having fun?
Each of these goals is elaborated upon in the following sections.

1.2.1 Performance
Performance is the primary goal behind most parallel-programming effort. After all, if
performance is not a concern, why not do yourself a favor, just write sequential code,
and be happy? It will very likely be easier, and you will probably get done much more
quickly.

Quick Quiz 1.7: Are there no cases where parallel programming is about something
other than performance?

Note that “performance” is interpreted quite broadly here, including scalability
(performance per CPU) and efficiency (for example, performance per watt).

That said, the focus of performance has shifted from hardware to parallel software.
This change in focus is due to the fact that although Moore’s Law continues to deliver
increases in transistor density, it has ceased to provide the traditional single-threaded
performance increases, as can be seen in Figure 1.1.1 This means that writing single-
threaded code and simply waiting a year or two for the CPUs to catch up may no longer
be an option. Given the recent trends on the part of all major manufacturers towards
multicore/multithreaded systems, parallelism is the way to go for those wanting the
avail themselves of the full performance of their systems.

1 This plot shows clock frequencies for newer CPUs theoretically capable of retiring one or more
instructions per clock, and MIPS for older CPUs requiring multiple clocks to execute even the simplest
instruction. The reason for taking this approach is that the newer CPUs’ ability to retire multiple instructions
per clock is typically limited by memory-system performance.
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Figure 1.1: MIPS/Clock-Frequency Trend for Intel CPUs

Even so, the first goal is performance rather than scalability, especially given that the
easiest way to attain linear scalability is to reduce the performance of each CPU [Tor01].
Given a four-CPU system, which would you prefer? A program that provides 100
transactions per second on a single CPU, but does not scale at all? Or a program that
provides 10 transactions per second on a single CPU, but scales perfectly? The first
program seems like a better bet, though the answer might change if you happened to be
one of the lucky few with access to a 32-CPU system.

That said, just because you have multiple CPUs is not necessarily in and of itself
a reason to use them all, especially given the recent decreases in price of multi-CPU
systems. The key point to understand is that parallel programming is primarily a
performance optimization, and, as such, it is one potential optimization of many. If your
program is fast enough as currently written, there is no reason to optimize, either by
parallelizing it or by applying any of a number of potential sequential optimizations.2

By the same token, if you are looking to apply parallelism as an optimization to a
sequential program, then you will need to compare parallel algorithms to the best
sequential algorithms. This may require some care, as far too many publications ignore
the sequential case when analyzing the performance of parallel algorithms.

1.2.2 Productivity

Quick Quiz 1.8: Why all this prattling on about non-technical issues??? And not just
any non-technical issue, but productivity of all things? Who cares?

Productivity has been becoming increasingly important through the decades. To see
this, consider that early computers cost millions of dollars at a time when engineering
salaries were a few thousand dollars a year. If dedicating a team of ten engineers to such
a machine would improve its performance by 10%, their salaries would be repaid many

2 Of course, if you are a hobbyist whose primary interest is writing parallel software, that is more than
enough reason to parallelize whatever software you are interested in.
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Figure 1.2: MIPS per Die for Intel CPUs

times over.
One such machine was the CSIRAC, the oldest still-intact stored-program computer,

put in operation in 1949 [Mus04, Mel06]. Given that the machine had but 768 words
of RAM, it is safe to say that the productivity issues that arise in large-scale software
projects were not an issue for this machine. Because this machine was built before the
transistor era, it was constructed of 2,000 vacuum tubes, ran with a clock frequency of
1kHz, consumed 30kW of power, and weighed more than three metric tons.

It would be difficult to purchase a machine with this little compute power roughly
sixty years later (2008), with the closest equivalents being 8-bit embedded microproces-
sors exemplified by the venerable Z80 [Wik08]. This CPU had 8,500 transistors, and
can still be purchased in 2008 for less than $2 US per unit in 1,000-unit quantities. In
stark contrast to the CSIRAC, software-development costs are anything but insignificant
for the Z80.

The CSIRAC and the Z80 are two points in a long-term trend, as can be seen in
Figure 1.2. This figure plots an approximation to computational power per die over the
past three decades, showing a consistent four-order-of-magnitude increase. Note that
the advent of multicore CPUs has permitted this increase to continue unabated despite
the clock-frequency wall encountered in 2003.

One of the inescapable consequences of the rapid decrease in the cost of hardware
is that software productivity grows increasingly important. It is no longer sufficient
merely to make efficient use of the hardware, it is now also necessary to make extremely
efficient use of software developers. This has long been the case for sequential hardware,
but only recently has parallel hardware become a low-cost commodity. Therefore, the
need for high productivity in creating parallel software has only recently become hugely
important.

Quick Quiz 1.9: Given how cheap parallel hardware has become, how can anyone
afford to pay people to program it?

Perhaps at one time, the sole purpose of parallel software was performance. Now,
however, productivity is increasingly important.
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1.2.3 Generality
One way to justify the high cost of developing parallel software is to strive for maximal
generality. All else being equal, the cost of a more-general software artifact can be
spread over more users than can a less-general artifact.

Unfortunately, generality often comes at the cost of performance, productivity, or
both. To see this, consider the following popular parallel programming environments:

C/C++ “Locking Plus Threads” : This category, which includes POSIX Threads
(pthreads) [Ope97], Windows Threads, and numerous operating-system kernel
environments, offers excellent performance (at least within the confines of a
single SMP system) and also offers good generality. Pity about the relatively low
productivity.

Java : This programming environment, which is inherently multithreaded, is widely
believed to be much more productive than C or C++, courtesy of the automatic
garbage collector and the rich set of class libraries, and is reasonably general
purpose. However, its performance, though greatly improved in the early 2000s,
is generally considered to be less than that of C and C++.

MPI : This Message Passing Interface [MPI08] powers the largest scientific and
technical computing clusters in the world, so offers unparalleled performance
and scalability. It is in theory general purpose, but has generally been used for
scientific and technical computing. Its productivity is believed by many to be
even lower than that of C/C++ “locking plus threads” environments.

OpenMP : This set of compiler directives can be used to parallelize loops. It is thus
quite specific to this task, and this specificity often limits its performance. It is,
however, much easier to use than MPI or C/C++ “locking plus threads.”

SQL : Structured Query Language [Int92] is extremely specific, applying only to
relational database queries. However, its performance is quite good, doing quite
well in Transaction Processing Performance Council (TPC) benchmarks [Tra01].
Productivity is excellent, in fact, this parallel programming environment enables
parallel-programming novices to make good use of a large parallel system.

The nirvana of parallel programming environments, one that offers world-class
performance, productivity, and generality, simply does not yet exist. Until such a
nirvana appears, it will be necessary to make engineering tradeoffs among performance,
productivity, and generality. One such tradeoff is shown in Figure 1.3, which shows how
productivity becomes increasingly important at the upper layers of the system stack,
while performance and generality become increasingly important at the lower layers of
the system stack. The huge development costs incurred near the bottom of the stack must
be spread over equally huge numbers of users on the one hand (hence the importance of
generality), and performance lost near the bottom of the stack cannot easily be recovered
further up the stack. Near the top of the stack, there might be very few users for a given
specific application, in which case productivity concerns are paramount. This explains
the tendency towards “bloatware” further up the stack: extra hardware is often cheaper
than the extra developers. This book is intended for developers working near the bottom
of the stack, where performance and generality are of great concern.

It is important to note that a tradeoff between productivity and generality has existed
for centuries in many fields. For but one example, a nailgun is far more productive than is
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a hammer, but in contrast to the nailgun, a hammer can be used for many things besides
driving nails. It should therefore be absolutely no surprise to see similar tradeoffs appear
in the field of parallel computing. This tradeoff is shown schematically in Figure 1.4.
Here, users 1, 2, 3, and 4 have specific jobs that they need the computer to help them
with. The most productive possible language or environment for a given user is one that
simply does that user’s job, without requiring any programming, configuration, or other
setup.

Quick Quiz 1.10: This is a ridiculously unachievable ideal! Why not focus on
something that is achievable in practice?

Unfortunately, a system that does the job required by user 1 is unlikely to do
user 2’s job. In other words, the most productive languages and environments are
domain-specific, and thus by definition lacking generality.

Another option is to tailor a given programming language or environment to the
hardware system (for example, low-level languages such as assembly, C, C++, or Java)
or to some abstraction (for example, Haskell, Prolog, or Snobol), as is shown by the
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circular region near the center of Figure 1.4. These languages can be considered to
be general in the sense that they are equally ill-suited to the jobs required by users 1,
2, 3, and 4. In other words, their generality is purchased at the expense of decreased
productivity when compared to domain-specific languages and environments. Worse yet,
a language that is tailored to a given abstraction is also likely to suffer from performance
and scalability problems unless and until someone figures out how to efficiently map
that abstraction to real hardware.

With the three often-conflicting parallel-programming goals of performance, pro-
ductivity, and generality in mind, it is now time to look into avoiding these conflicts by
considering alternatives to parallel programming.

1.3 Alternatives to Parallel Programming

In order to properly consider alternatives to parallel programming, you must first have
thought through what you expect the parallelism to do for you. As seen in Section 1.2,
the primary goals of parallel programming are performance, productivity, and generality.
Because this book is intended for developers working on performance-critical code near
the bottom of the software stack, the remainder of this section focuses primarily on
performance improvement.

It is important to keep in mind that parallelism is but one way to improve perfor-
mance. Other well-known approaches include the following, in roughly increasing order
of difficulty:

1. Run multiple instances of a sequential application.

2. Make the application use existing parallel software.

3. Apply performance optimization to the serial application.

These approaches are covered in the sections.

1.3.1 Multiple Instances of a Sequential Application

Running multiple instances of a sequential application can allow you to do parallel
programming without actually doing parallel programming. There are a large number
of ways to approach this, depending on the structure of the application.

If your program is analyzing a large number of different scenarios, or is analyzing a
large number of independent data sets, one easy and effective approach is to create a
single sequential program that carries out a single analysis, then use any of a number of
scripting environments (for example the bash shell) to run a number of instances of
this sequential program in parallel. In some cases, this approach can be easily extended
to a cluster of machines.

This approach may seem like cheating, and in fact some denigrate such programs
as “embarrassingly parallel”. And in fact, this approach does have some potential
disadvantages, including increased memory consumption, waste of CPU cycles recom-
puting common intermediate results, and increased copying of data. However, it is
often extremely productive, garnering extreme performance gains with little or no added
effort.
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1.3.2 Use Existing Parallel Software
There is no longer any shortage of parallel software environments that can present
a single-threaded programming environment, including relational databases [Dat82],
web-application servers, and map-reduce environments. For example, a common design
provides a separate program for each user, each of which generates SQL that is run con-
currently against a common relational database. The per-user programs are responsible
only for the user interface, with the relational database taking full responsibility for the
difficult issues surrounding parallelism and persistence.

Taking this approach often sacrifices some performance, at least when compared
to carefully hand-coding a fully parallel application. However, such sacrifice is often
justified given the huge reduction in development effort required.

1.3.3 Performance Optimization
Up through the early 2000s, CPU performance was doubling every 18 months. In such
an environment, it is often much more important to create new functionality than to do
careful performance optimization. Now that Moore’s Law is “only” increasing transistor
density instead of increasing both transistor density and per-transistor performance, it
might be a good time to rethink the importance of performance optimization. After
all, performance optimization can reduce power consumption as well as increasing
performance.

From this viewpoint, parallel programming is but another performance optimization,
albeit one that is becoming much more attractive as parallel systems become cheaper and
more readily available. However, it is wise to keep in mind that the speedup available
from parallelism is limited to roughly the number of CPUs, while the speedup potentially
available from straight software optimization can be multiple orders of magnitude.

Furthermore, different programs might have different performance bottlenecks.
Parallel programming will only help with some bottlenecks. For example, if your
program spends most of its time waiting on data from your disk drive, using multiple
CPUs is not likely to gain much performance. In fact, if the program was reading from
a large file laid out sequentially on a rotating disk, parallelizing your program might
well make it a lot slower. You should instead add more disk drives, optimize the data so
that the file can be smaller (thus faster to read), or, if possible, avoid the need to read
quite so much of the data.

Quick Quiz 1.11: What other bottlenecks might prevent additional CPUs from
providing additional performance?

Parallelism can be a powerful optimization technique, but it is not the only such
technique, nor is it appropriate for all situations. Of course, the easier it is to parallelize
your program, the more attractive parallelization becomes as an optimization. Paral-
lelization has a reputation of being quite difficult, which leads to the question “exactly
what makes parallel programming so difficult?”

1.4 What Makes Parallel Programming Hard?
It is important to note that the difficulty of parallel programming is as much a human-
factors issue as it is a set of technical properties of the parallel programming problem.
This is the case because we need human beings to be able to tell parallel systems what
to do, and this two-way communication between human and computer is as much a

9



Partitioning
Work

Access Control
Parallel

With Hardware
Interacting

Performance Productivity

Generality

Resource
Partitioning and

Replication

Figure 1.5: Categories of Tasks Required of Parallel Programmers

function of the human as it is of the computer. Therefore, appeals to abstractions or to
mathematical analyses will necessarily be of severely limited utility.

In the Industrial Revolution, the interface between human and machine was eval-
uated by human-factor studies, then called time-and-motion studies. Although there
have been a few human-factor studies examining parallel programming [ENS05, ES05,
HCS+05, SS94], these studies have been extremely narrowly focused, and hence unable
to demonstrate any general results. Furthermore, given that the normal range of pro-
grammer productivity spans more than an order of magnitude, it is unrealistic to expect
an affordable study to be capable of detecting (say) a 10% difference in productivity.
Although the multiple-order-of-magnitude differences that such studies can reliably
detect are extremely valuable, the most impressive improvements tend to be based on a
long series of 10% improvements.

We must therefore take a different approach.
One such approach is to carefully consider the tasks that parallel programmers must

undertake that are not required of sequential programmers. We can then evaluate how
well a given programming language or environment assists the developer with these
tasks. These tasks fall into the four categories shown in Figure 1.5, each of which is
covered in the following sections.

1.4.1 Work Partitioning
Work partitioning is absolutely required for parallel execution: if there is but one “glob”
of work, then it can be executed by at most one CPU at a time, which is by definition
sequential execution. However, partitioning the code requires great care. For example,
uneven partitioning can result in sequential execution once the small partitions have
completed [Amd67]. In less extreme cases, load balancing can be used to fully utilize
available hardware, thus improving performance and scalabilty.

In addition, partitioning of work can complicate handling of global errors and events:
a parallel program may need to carry out non-trivial synchronization in order to safely
process such global events.

Each partition requires some sort of communication: after all, if a given thread did
not communicate at all, it would have no effect and would thus not need to be executed.
However, because communication incurs overhead, careless partitioning choices can
result in severe performance degradation.
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Furthermore, the number of concurrent threads must often be controlled, as each
such thread occupies common resources, for example, space in CPU caches. If too many
threads are permitted to execute concurrently, the CPU caches will overflow, resulting
in high cache miss rate, which in turn degrades performance. On the other hand, large
numbers of threads are often required to overlap computation and I/O.

Quick Quiz 1.12: What besides CPU cache capacity might require limiting the
number of concurrent threads?

Finally, permitting threads to execute concurrently greatly increases the program’s
state space, which can make the program difficult to understand, degrading productivity.
All else being equal, smaller state spaces having more regular structure are more
easily understood, but this is a human-factors statement as much as it is a technical
or mathematical statement. Good parallel designs might have extremely large state
spaces, but nevertheless be easy to understand due to their regular structure, while poor
designs can be impenetrable despite having a comparatively small state space. The best
designs exploit embarrassing parallelism, or transform the problem to one having an
embarrassingly parallel solution. In either case, “embarrassingly parallel” is in fact an
embarrassment of riches. The current state of the art enumerates good designs; more
work is required to make more general judgments on state-space size and structure.

1.4.2 Parallel Access Control
Given a sequential program with only a single thread, that single thread has full access
to all of the program’s resources. These resources are most often in-memory data
structures, but can be CPUs, memory (including caches), I/O devices, computational
accelerators, files, and much else besides.

The first parallel-access-control issue is whether the form of the access to a given
resource depends on that resource’s location. For example, in many message-passing
environments, local-variable access is via expressions and assignments, while remote-
variable access uses an entirely different syntax, usually involving messaging. The
POSIX Threads environment [Ope97], Structured Query Language (SQL) [Int92], and
partitioned global address-space (PGAS) environments such as Universal Parallel C
(UPC) [EGCD03] offer implicit access, while Message Passing Interface (MPI) [MPI08]
offers explicit access because access to remote data requires explicit messaging.

The other parallel-access-control issue is how threads coordinate access to the re-
sources. This coordination is carried out by the very large number of synchronization
mechanisms provided by various parallel languages and environments, including mes-
sage passing, locking, transactions, reference counting, explicit timing, shared atomic
variables, and data ownership. Many traditional parallel-programming concerns such as
deadlock, livelock, and transaction rollback stem from this coordination. This frame-
work can be elaborated to include comparisons of these synchronization mechanisms, for
example locking vs. transactional memory [MMW07], but such elaboration is beyond
the scope of this section.

1.4.3 Resource Partitioning and Replication
The most effective parallel algorithms and systems exploit resource parallelism, so much
so that it is usually wise to begin parallelization by partitioning your write-intensive
resources and replicating frequently accessed read-mostly resources. The resource in
question is most frequently data, which might be partitioned over computer systems,
mass-storage devices, NUMA nodes, CPU cores (or dies or hardware threads), pages,
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cache lines, instances of synchronization primitives, or critical sections of code. For
example, partitioning over locking primitives is termed “data locking” [BK85].

Resource partitioning is frequently application dependent, for example, numerical
applications frequently partition matrices by row, column, or sub-matrix, while com-
mercial applications frequently partition write-intensive data structures and replicate
read-mostly data structures. For example, a commercial application might assign the
data for a given customer to a given few computer systems out of a large cluster. An
application might statically partition data, or dynamically change the partitioning over
time.

Resource partitioning is extremely effective, but it can be quite challenging for
complex multilinked data structures.

1.4.4 Interacting With Hardware

Hardware interaction is normally the domain of the operating system, the compiler,
libraries, or other software-environment infrastructure. However, developers working
with novel hardware features and components will often need to work directly with such
hardware. In addition, direct access to the hardware can be required when squeezing
the last drop of performance out of a given system. In this case, the developer may
need to tailor or configure the application to the cache geometry, system topology, or
interconnect protocol of the target hardware.

In some cases, hardware may be considered to be a resource which may be subject
to partitioning or access control, as described in the previous sections.

1.4.5 Composite Capabilities

Although these four capabilities are fundamental, good engineering practice uses com-
posites of these capabilities. For example, the data-parallel approach first partitions the
data so as to minimize the need for inter-partition communication, partitions the code
accordingly, and finally maps data partitions and threads so as to maximize throughput
while minimizing inter-thread communication, as shown in Figure 1.6. The developer
can then consider each partition separately, greatly reducing the size of the relevant state
space, in turn increasing productivity. Of course, some problems are non-partitionable
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but on the other hand, clever transformations into forms permitting partitioning can
greatly enhance both performance and scalability [Met99].

1.4.6 How Do Languages and Environments Assist With These Tasks?
Although many environments require that the developer deal manually with these
tasks, there are long-standing environments that bring significant automation to bear.
The poster child for these environments is SQL, many implementations of which
automatically parallelize single large queries and also automate concurrent execution of
independent queries and updates.

These four categories of tasks must be carried out in all parallel programs, but that
of course does not necessarily mean that the developer must manually carry out these
tasks. We can expect to see ever-increasing automation of these four tasks as parallel
systems continue to become cheaper and more readily available.

Quick Quiz 1.13: Are there any other obstacles to parallel programming?

1.5 Guide to This Book
This book is not a collection of optimal algorithms with tiny areas of applicability;
instead, it is a handbook of widely applicable and heavily used techniques. We of course
could not resist the urge to include some of our favorites that have not (yet!) passed the
test of time (what author could?), but we have nonetheless gritted our teeth and banished
our darlings to appendices. Perhaps in time, some of them will see enough use that we
can promote them into the main body of the text.

1.5.1 Quick Quizzes
“Quick quizzes” appear throughout this book. Some of these quizzes are based on
material in which that quick quiz appears, but others require you to think beyond that
section, and, in some cases, beyond the entire book. As with most endeavors, what
you get out of this book is largely determined by what you are willing to put into it.
Therefore, readers who invest some time into these quizzes will find their effort repaid
handsomely with increased understanding of parallel programming.

Answers to the quizzes may be found in Appendix F starting on page 575.
Quick Quiz 1.14: Where are the answers to the Quick Quizzes found?
Quick Quiz 1.15: Some of the Quick Quiz questions seem to be from the viewpoint

of the reader rather than the author. Is that really the intent?
Quick Quiz 1.16: These Quick Quizzes just are not my cup of tea. What do you

recommend?

1.5.2 Sample Source Code
This book discusses its fair share of source code, and in many cases this source code
may be found in the CodeSamples directory of this book’s git tree. For example, on
UNIX systems, you should be able to type:

find CodeSamples -name rcu_rcpls.c -print

to locate the file rcu_rcpls.c, which is called out in Section 8.3.5. Other types
of systems have well-known ways of locating files by filename.
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1 git clone git://git.kernel.org/pub/scm/linux/kernel/git/paulmck/perfbook.git
2 cd perfbook
3 make
4 evince perfbook.pdf

Figure 1.7: Creating an Up-To-Date PDF

1 git remote update
2 git checkout origin/master
3 make
4 evince perfbook.pdf

Figure 1.8: Generating an Updated PDF

The source to this book may be found in the git archive at git://git.kernel.
org/pub/scm/linux/kernel/git/paulmck/perfbook.git, and git it-
self is available as part of most mainstream Linux distributions. To create and display
a current LATEX source tree of this book, use the list of Linux commands shown in
Figure 1.7. In some environments, the evince that displays perfbook.pdf may
need to be replaced, for example, with acroread. The git clone command need
only be used the first time you create a PDF, subsequently, you can run the commands
shown in Figure 1.8 to pull in any updates and generate an updated PDF. The commands
in Figure 1.8 must be run within the perfbook directory created by the commands
shown in Figure 1.7.

PDFs of this book are sporadically posted at http://kernel.org/pub/linux/
kernel/people/paulmck/perfbook/perfbook.html and at http://www.
rdrop.com/users/paulmck/perfbook/.
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Chapter 2

Hardware and its Habits

Most people have an intuitive understanding that passing messages between systems is
considerably more expensive than performing simple calculations within the confines of
a single system. However, it is not always so clear that communicating among threads
within the confines of a single shared-memory system can also be quite expensive.
This chapter therefore looks the cost of synchronization and communication within a
shared-memory system. This chapter merely scratches the surface of shared-memory
parallel hardware design; readers desiring more detail would do well to start with a
recent edition of Hennessy and Patterson’s classic text [HP95].

Quick Quiz 2.1: Why should parallel programmers bother learning low-level prop-
erties of the hardware? Wouldn’t it be easier, better, and more general to remain at a
higher level of abstraction?

2.1 Overview
Careless reading of computer-system specification sheets might lead one to believe that
CPU performance is a footrace on a clear track, as illustrated in Figure 2.1, where the
race always goes to the swiftest.

Although there are a few CPU-bound benchmarks that approach the ideal shown
in Figure 2.1, the typical program more closely resembles an obstacle course than a
race track. This is because the internal architecture of CPUs has changed dramatically
over the past few decades, courtesy of Moore’s Law. These changes are described in the
following sections.

2.1.1 Pipelined CPUs
In the early 1980s, the typical microprocessor fetched an instruction, decoded it, and
executed it, typically taking at least three clock cycles to complete one instruction before
proceeding to the next. In contrast, the CPU of the late 1990s and early 2000s will be
executing many instructions simultaneously, using a deep “pipeline” to control the flow
of instructions internally to the CPU, this difference being illustrated by Figure 2.2.

Achieving full performance with a CPU having a long pipeline requires highly
predictable control flow through the program. Suitable control flow can be provided by
a program that executes primarily in tight loops, for example, programs doing arithmetic
on large matrices or vectors. The CPU can then correctly predict that the branch at the
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Figure 2.1: CPU Performance at its Best

end of the loop will be taken in almost all cases. In such programs, the pipeline can be
kept full and the CPU can execute at full speed.

If, on the other hand, the program has many loops with small loop counts, or if the
program is object oriented with many virtual objects that can reference many different
real objects, all with different implementations for frequently invoked member functions,
then it is difficult or even impossible for the CPU to predict where a given branch might
lead. The CPU must then either stall waiting for execution to proceed far enough to
know for certain where the branch will lead, or guess — and, in the face of programs
with unpredictable control flow, frequently guess wrong. In either case, the pipeline will
empty and have to be refilled, leading to stalls that can drastically reduce performance,
as fancifully depicted in Figure 2.3.

Unfortunately, pipeline flushes are not the only hazards in the obstacle course that
modern CPUs must run. The next section covers the hazards of referencing memory.

2.1.2 Memory References

In the 1980s, it often took less time for a microprocessor to load a value from memory
than it did to execute an instruction. In 2006, a microprocessor might be capable of exe-
cuting hundreds or even thousands of instructions in the time required to access memory.
This disparity is due to the fact that Moore’s Law has increased CPU performance at a
much greater rate than it has increased memory performance, in part due to the rate at
which memory sizes have grown. For example, a typical 1970s minicomputer might
have 4KB (yes, kilobytes, not megabytes, let alone gigabytes) of main memory, with
single-cycle access.1 In 2008, CPU designers still can construct a 4KB memory with

1 It is only fair to add that each of these single cycles consumed no less than 1.6microseconds.
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Figure 2.2: CPUs Old and New

single-cycle access, even on systems with multi-GHz clock frequencies. And in fact
they frequently do construct such memories, but they now call them “level-0 caches”.

Although the large caches found on modern microprocessors can do quite a bit to
help combat memory-access latencies, these caches require highly predictable data-
access patterns to successfully hide memory latencies. Unfortunately, common oper-
ations, such as traversing a linked list, have extremely unpredictable memory-access
patterns — after all, if the pattern was predictable, us software types would not bother
with the pointers, right?

Therefore, as shown in Figure 2.4, memory references are often severe obstacles for
modern CPUs.

Thus far, we have only been considering obstacles that can arise during a given
CPU’s execution of single-threaded code. Multi-threading presents additional obstacles
to the CPU, as described in the following sections.

2.1.3 Atomic Operations

One such obstacle is atomic operations. The whole idea of an atomic operation in some
sense conflicts with the piece-at-a-time assembly-line operation of a CPU pipeline. To
hardware designers’ credit, modern CPUs use a number of extremely clever tricks to
make such operations look atomic even though they are in fact being executed piece-at-
a-time, but even so, there are cases where the pipeline must be delayed or even flushed
in order to permit a given atomic operation to complete correctly.

The resulting effect on performance is depicted in Figure 2.5.
Unfortunately, atomic operations usually apply only to single elements of data. Be-

cause many parallel algorithms require that ordering constraints be maintained between
updates of multiple data elements, most CPUs provide memory barriers. These memory
barriers also serve as performance-sapping obstacles, as described in the next section.

Quick Quiz 2.2: What types of machines would allow atomic operations on multiple
data elements?

Fortunately, CPU designers have focused heavily on atomic operations, so that as of
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Figure 2.3: CPU Meets a Pipeline Flush

early 2012 they have greately reduced (but by no means eliminated) their overhead.

2.1.4 Memory Barriers
Memory barriers will be considered in more detail in Section 13.2 and Appendix C. In
the meantime, consider the following simple lock-based critical section:

1 spin_lock(&mylock);
2 a = a + 1;
3 spin_unlock(&mylock);

If the CPU were not constrained to execute these statements in the order shown, the
effect would be that the variable “a” would be incremented without the protection of
“mylock”, which would certainly defeat the purpose of acquiring it. To prevent such
destructive reordering, locking primitives contain either explicit or implicit memory
barriers. Because the whole purpose of these memory barriers is to prevent reorderings
that the CPU would otherwise undertake in order to increase performance, memory
barriers almost always reduce performance, as depicted in Figure 2.6.

As with atomic operations, CPU designers have been working hard to reduce
memory-barrier overhead, and have made substantial progress.

2.1.5 Cache Misses
An additional multi-threading obstacle to CPU performance is the “cache miss”. As
noted earlier, modern CPUs sport large caches in order to reduce the performance
penalty that would otherwise be incurred due to high memory latencies. However, these
caches are actually counter-productive for variables that are frequently shared among
CPUs. This is because when a given CPU wishes to modify the variable, it is most likely
the case that some other CPU has modified it recently. In this case, the variable will be
in that other CPU’s cache, but not in this CPU’s cache, which will therefore incur an
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Figure 2.4: CPU Meets a Memory Reference

expensive cache miss (see Section C.1 for more detail). Such cache misses form a major
obstacle to CPU performance, as shown in Figure 2.7.

Quick Quiz 2.3: So have CPU designers also greatly reduced the overhead of cache
misses?

2.1.6 I/O Operations

A cache miss can be thought of as a CPU-to-CPU I/O operation, and as such is one
of the cheapest I/O operations available. I/O operations involving networking, mass
storage, or (worse yet) human beings pose much greater obstacles than the internal
obstacles called out in the prior sections, as illustrated by Figure 2.8.

This is one of the differences between shared-memory and distributed-system paral-
lelism: shared-memory parallel programs must normally deal with no obstacle worse
than a cache miss, while a distributed parallel program will typically incur the larger
network communication latencies. In both cases, the relevant latencies can be thought
of as a cost of communication—a cost that would be absent in a sequential program.
Therefore, the ratio between the overhead of the communication to that of the actual
work being performed is a key design parameter. A major goal of parallel hardware de-
sign is to reduce this ratio as needed to achieve the relevant performance and scalability
goals. In turn, as will be seen in Chapter 5, a major goal of parallel software design is to
reduce the frequency of expensive operations like communications cache misses.

Of course, it is one thing to say that a given operation is an obstacle, and quite
another to show that the operation is a significant obstacle. This distinction is discussed
in the following sections.
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Figure 2.5: CPU Meets an Atomic Operation

2.2 Overheads

This section presents actual overheads of the obstacles to performance listed out in the
previous section. However, it is first necessary to get a rough view of hardware system
architecture, which is the subject of the next section.

2.2.1 Hardware System Architecture

Figure 2.9 shows a rough schematic of an eight-core computer system. Each die has a
pair of CPU cores, each with its cache, as well as an interconnect allowing the pair of
CPUs to communicate with each other. The system interconnect in the middle of the
diagram allows the four dies to communicate, and also connects them to main memory.

Data moves through this system in units of “cache lines”, which are power-of-two
fixed-size aligned blocks of memory, usually ranging from 32 to 256 bytes in size.
When a CPU loads a variable from memory to one of its registers, it must first load
the cacheline containing that variable into its cache. Similarly, when a CPU stores a
value from one of its registers into memory, it must also load the cacheline containing
that variable into its cache, but must also ensure that no other CPU has a copy of that
cacheline.

For example, if CPU 0 were to perform a compare-and-swap (CAS) operation on
a variable whose cacheline resided in CPU 7’s cache, the following over-simplified
sequence of events might ensue:

1. CPU 0 checks its local cache, and does not find the cacheline.

2. The request is forwarded to CPU 0’s and 1’s interconnect, which checks CPU 1’s
local cache, and does not find the cacheline.

20



Figure 2.6: CPU Meets a Memory Barrier

3. The request is forwarded to the system interconnect, which checks with the other
three dies, learning that the cacheline is held by the die containing CPU 6 and 7.

4. The request is forwarded to CPU 6’s and 7’s interconnect, which checks both
CPUs’ caches, finding the value in CPU 7’s cache.

5. CPU 7 forwards the cacheline to its interconnect, and also flushes the cacheline
from its cache.

6. CPU 6’s and 7’s interconnect forwards the cacheline to the system interconnect.

7. The system interconnect forwards the cacheline to CPU 0’s and 1’s interconnect.

8. CPU 0’s and 1’s interconnect forwards the cacheline to CPU 0’s cache.

9. CPU 0 can now perform the CAS operation on the value in its cache.

Quick Quiz 2.4: This is a simplified sequence of events? How could it possibly be
any more complex?

Quick Quiz 2.5: Why is it necessary to flush the cacheline from CPU 7’s cache?

2.2.2 Costs of Operations
The overheads of some common operations important to parallel programs are displayed
in Table 2.1. This system’s clock period rounds to 0.6ns. Although it is not unusual for
modern microprocessors to be able to retire multiple instructions per clock period, the
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Figure 2.7: CPU Meets a Cache Miss

operations will be normalized to a full clock period in the third column, labeled “Ratio”.
The first thing to note about this table is the large values of many of the ratios.

The best-case CAS operation consumes almost forty nanoseconds, a duration more
than sixty times that of the clock period. Here, “best case” means that the same CPU
now performing the CAS operation on a given variable was the last CPU to operate
on this variable, so that the corresponding cache line is already held in that CPU’s
cache, Similarly, the best-case lock operation (a “round trip” pair consisting of a lock
acquisition followed by a lock release) consumes more than sixty nanoseconds, or
more than one hundred clock cycles. Again, “best case” means that the data structure

Operation Cost (ns) Ratio
Clock period 0.6 1.0
Best-case CAS 37.9 63.2
Best-case lock 65.6 109.3
Single cache miss 139.5 232.5
CAS cache miss 306.0 510.0
Comms Fabric 3,000 5,000
Global Comms 130,000,000 216,000,000

Table 2.1: Performance of Synchronization Mechanisms on 4-CPU 1.8GHz AMD
Opteron 844 System
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Figure 2.8: CPU Waits for I/O Completion

representing the lock is already in the cache belonging to the CPU acquiring and
releasing the lock. The lock operation is more expensive than CAS because it requires
two atomic operations on the lock data structure.

An operation that misses the cache consumes almost one hundred and forty nanosec-
onds, or more than two hundred clock cycles. The code used for this cache-miss
measurement passes the cache line back and forth between a pair of CPUs, so this cache
miss is satisfied not from memory, but rather from the other CPU’s cache. A CAS
operation, which must look at the old value of the variable as well as store a new value,
consumes over three hundred nanoseconds, or more than five hundred clock cycles.
Think about this a bit. In the time required to do one CAS operation, the CPU could
have executed more than five hundred normal instructions. This should demonstrate the
limitations not only of fine-grained locking, but of any other synchronization mechanism
relying on fine-grained global agreement.

Quick Quiz 2.6: Surely the hardware designers could be persuaded to improve
this situation! Why have they been content with such abysmal performance for these
single-instruction operations?

I/O operations are even more expensive. A high performance (and expensive!) com-
munications fabric, such as InfiniBand or any number of proprietary interconnects, has
a latency of roughly three microseconds, during which time five thousand instructions
might have been executed. Standards-based communications networks often require
some sort of protocol processing, which further increases the latency. Of course, ge-
ographic distance also increases latency, with the theoretical speed-of-light latency
around the world coming to roughly 130 milliseconds, or more than 200 million clock
cycles.

Quick Quiz 2.7: These numbers are insanely large! How can I possibly get my
head around them?
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Figure 2.10: Hardware and Software: On Same Side

In short, hardware and software engineers are really fighting on the same side, trying
to make computers go fast despite the best efforts of the laws of physics, as fancifully
depicted in Figure 2.10 where our data stream is trying its best to exceed the speed
of light. The next section discusses some of the things that the hardware engineers
might (or might not) be able to do. Software’s contribution to this fight is outlined in the
remaining chapters of this book.

2.3 Hardware Free Lunch?
The major reason that concurrency has been receiving so much focus over the past few
years is the end of Moore’s-Law induced single-threaded performance increases (or
“free lunch” [Sut08]), as shown in Figure 1.1 on page 4. This section briefly surveys a
few ways that hardware designers might be able to bring back some form of the “free
lunch”.

However, the preceding section presented some substantial hardware obstacles to
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Figure 2.11: Latency Benefit of 3D Integration

exploiting concurrency. One severe physical limitation that hardware designers face is
the finite speed of light. As noted in Figure 2.9 on page 24, light can travel only about
an 8-centimeters round trip in a vacuum during the duration of a 1.8 GHz clock period.
This distance drops to about 3 centimeters for a 5 GHz clock. Both of these distances
are relatively small compared to the size of a modern computer system.

To make matters even worse, electrons in silicon move from three to thirty times
more slowly than does light in a vacuum, and common clocked logic constructs run still
more slowly, for example, a memory reference may need to wait for a local cache lookup
to complete before the request may be passed on to the rest of the system. Furthermore,
relatively low speed and high power drivers are required to move electrical signals
from one silicon die to another, for example, to communicate between a CPU and main
memory.

Quick Quiz 2.8: But individual electrons don’t move anywhere near that fast, even
in conductors!!! The electron drift velocity in a conductor under the low voltages found
in semiconductors is on the order of only one millimeter per second. What gives???

There are nevertheless some technologies (both hardware and software) that might
help improve matters:

1. 3D integration,

2. Novel materials and processes,

3. Substituting light for electrons,

4. Special-purpose accelerators, and

5. Existing parallel software.

Each of these is described in one of the following sections.

2.3.1 3D Integration
3-dimensional integration (3DI) is the practice of bonding very thin silicon dies to
each other in a vertical stack. This practice provides potential benefits, but also poses
significant fabrication challenges [Kni08].

Perhaps the most important benefit of 3DI is decreased path length through the
system, as shown in Figure 2.11. A 3-centimeter silicon die is replaced with a stack of
four 1.5-centimeter dies, in theory decreasing the maximum path through the system by
a factor of two, keeping in mind that each layer is quite thin. In addition, given proper
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attention to design and placement, long horizontal electrical connections (which are
both slow and power hungry) can be replaced by short vertical electrical connections,
which are both faster and more power efficient.

However, delays due to levels of clocked logic will not be decreased by 3D in-
tegration, and significant manufacturing, testing, power-supply, and heat-dissipation
problems must be solved for 3D integration to reach production while still delivering on
its promise. The heat-dissipation problems might be solved using semiconductors based
on diamond, which is a good conductor for heat, but an electrical insulator. That said, it
remains difficult to grow large single diamond crystals, to say nothing of slicing them
into wafers. In addition, it seems unlikely that any of these technologies will be able to
deliver the exponential increases to which some people have become accustomed. That
said, they may be necessary steps on the path to the late Jim Gray’s “smoking hairy golf
balls” [Gra02].

2.3.2 Novel Materials and Processes

Stephen Hawking is said to have claimed that semiconductor manufacturers have but
two fundamental problems: (1) the finite speed of light and (2) the atomic nature of
matter [Gar07]. It is possible that semiconductor manufacturers are approaching these
limits, but there are nevertheless a few avenues of research and development focused on
working around these fundamental limits.

One workaround for the atomic nature of matter are so-called “high-K dielectric”
materials, which allow larger devices to mimic the electrical properties of infeasibly
small devices. These materials pose some severe fabrication challenges, but nevertheless
may help push the frontiers out a bit farther. Another more-exotic workaround stores
multiple bits in a single electron, relying on the fact that a given electron can exist at a
number of energy levels. It remains to be seen if this particular approach can be made
to work reliably in production semiconductor devices.

Another proposed workaround is the “quantum dot” approach that allows much
smaller device sizes, but which is still in the research stage.

2.3.3 Light, Not Electrons

Although the speed of light would be a hard limit, the fact is that semiconductor devices
are limited by the speed of electrons rather than that of light, given that electrons in
semiconductor materials move at between 3% and 30% of the speed of light in a vacuum.
The use of copper connections on silicon devices is one way to increase the speed of
electrons, and it is quite possible that additional advances will push closer still to the
actual speed of light. In addition, there have been some experiments with tiny optical
fibers as interconnects within and between chips, based on the fact that the speed of
light in glass is more than 60% of the speed of light in a vacuum. One obstacle to such
optical fibers is the inefficiency conversion between electricity and light and vice versa,
resulting in both power-consumption and heat-dissipation problems.

That said, absent some fundamental advances in the field of physics, any exponential
increases in the speed of data flow will be sharply limited by the actual speed of light in
a vacuum.
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2.3.4 Special-Purpose Accelerators

A general-purpose CPU working on a specialized problem is often spending significant
time and energy doing work that is only tangentially related to the problem at hand. For
example, when taking the dot product of a pair of vectors, a general-purpose CPU will
normally use a loop (possibly unrolled) with a loop counter. Decoding the instructions,
incrementing the loop counter, testing this counter, and branching back to the top of the
loop are in some sense wasted effort: the real goal is instead to multiply corresponding
elements of the two vectors. Therefore, a specialized piece of hardware designed
specifically to multiply vectors could get the job done more quickly and with less energy
consumed.

This is in fact the motivation for the vector instructions present in many commodity
microprocessors. Because these instructions operate on multiple data items simultane-
ously, they would permit a dot product to be computed with less instruction-decode and
loop overhead.

Similarly, specialized hardware can more efficiently encrypt and decrypt, compress
and decompress, encode and decode, and many other tasks besides. Unfortunately, this
efficiency does not come for free. A computer system incorporating this specialized
hardware will contain more transistors, which will consume some power even when not
in use. Software must be modified to take advantage of this specialized hardware, and
this specialized hardware must be sufficiently generally useful that the high up-front
hardware-design costs can be spread over enough users to make the specialized hardware
affordable. In part due to these sorts of economic considerations, specialized hardware
has thus far appeared only for a few application areas, including graphics processing
(GPUs), vector processors (MMX, SSE, and VMX instructions), and, to a lesser extent,
encryption.

Unlike the server and PC arena, smartphones have long used a wide variety of
hardware accelerators. These hardware accelerators are often used for media decoding,
so much so that a high-end MP3 player might be able to play audio for several minutes—
with its CPU fully powered off the entire time. The purpose of these accelerators is
to improve energy efficiency and thus extend battery life: special purpose hardware
can often compute more efficiently than can a general-purpose CPU. This is another
example of the principle called out in Section 1.2.3: Generality is almost never free.

Nevertheless, given the end of Moore’s-Law-induced single-threaded performance
increases, it seems safe to predict that there will be an increasing variety of special-
purpose hardware going forward.

2.3.5 Existing Parallel Software

Although multicore CPUs seem to have taken the computing industry by surprise, the
fact remains that shared-memory parallel computer systems have been commercially
available for more than a quarter century. This is more than enough time for significant
parallel software to make its appearance, and it indeed has. Parallel operating systems
are quite commonplace, as are parallel threading libraries, parallel relational database
management systems, and parallel numerical software. Use of existing parallel software
can go a long ways towards solving any parallel-software crisis we might encounter.

Perhaps the most common example is the parallel relational database management
system. It is not unusual for single-threaded programs, often written in high-level
scripting languages, to access a central relational database concurrently. In the resulting
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highly parallel system, only the database need actually deal directly with parallelism. A
very nice trick when it works!

2.4 Software Design Implications
The values of the ratios in Table 2.1 are critically important, as they limit the efficiency
of a given parallel application. To see this, suppose that the parallel application uses
CAS operations to communicate among threads. These CAS operations will typically
involve a cache miss, that is, assuming that the threads are communicating primarily
with each other rather than with themselves. Suppose further that the unit of work
corresponding to each CAS communication operation takes 300ns, which is sufficient
time to compute several floating-point transcendental functions. Then about half of the
execution time will be consumed by the CAS communication operations! This in turn
means that a two-CPU system running such a parallel program would run no faster than
one a sequential implementation running on a single CPU.

The situation is even worse in the distributed-system case, where the latency of
a single communications operation might take as long as thousands or even millions
of floating-point operations. This illustrates how important it is for communications
operations to be extremely infrequent and to enable very large quantities of processing.

Quick Quiz 2.9: Given that distributed-systems communication is so horribly
expensive, why does anyone bother with them?

The lesson should be quite clear: parallel algorithms must be explicitly designed to
run nearly independent threads. The less frequently the threads communicate, whether by
atomic operations, locks, or explicit messages, the better the application’s performance
and scalability will be. In short, achieving excellent parallel performance and scalability
means striving for embarrassingly parallel algorithms and implementations, whether by
careful choice of data structures and algorithms, use of existing parallel applications
and environments, or transforming the problem into one for which an embarrassingly
parallel solution exists.

Quick Quiz 2.10: OK, if we are going to have to apply distributed-programming
techniques to shared-memory parallel programs, why not just always use these dis-
tributed techniques and dispense with shared memory?

Chapter 3 will cover some of the low-level tools used for parallel programming,
Chapter 4 will investigate problems and solutions to parallel counting, and Chapter 5
will discuss design disciplines that promote performance and scalability.
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Chapter 3

Tools of the Trade

This chapter provides a brief introduction to some basic tools of the parallel-programming
trade, focusing mainly on those available to user applications running on operating
systems similar to Linux. Section 3.1 begins with scripting languages, Section 3.2 de-
scribes the multi-process parallelism supported by the POSIX API, Section 3.2 touches
on POSIX threads, and finally, Section 3.3 describes atomic operations.

Please note that this chapter provides but a brief introduction. More detail is available
from the references cited, and more information on how best to use these tools will be
provided in later chapters.

3.1 Scripting Languages
The Linux shell scripting languages provide simple but effective ways of managing
parallelism. For example, suppose that you had a program compute_it that you
needed to run twice with two different sets of arguments. This can be accomplished
using UNIX shell scripting as follows:

1 compute_it 1 > compute_it.1.out &
2 compute_it 2 > compute_it.2.out &
3 wait
4 cat compute_it.1.out
5 cat compute_it.2.out

Lines 1 and 2 launch two instances of this program, redirecting their output to two
separate files, with the & character directing the shell to run the two instances of the
program in the background. Line 3 waits for both instances to complete, and lines 4
and 5 display their output. The resulting execution is as shown in Figure 3.1: the two
instances of compute_it execute in parallel, wait completes after both of them do,
and then the two instances of cat execute sequentially.

Quick Quiz 3.1: But this silly shell script isn’t a real parallel program! Why bother
with such trivia???

Quick Quiz 3.2: Is there a simpler way to create a parallel shell script? If so, how?
If not, why not?

For another example, the make software-build scripting language provides a -j
option that specifies how much parallelism should be introduced into the build process.
For example, typing make -j4 when building a Linux kernel specifies that up to four
parallel compiles be carried out concurrently.
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compute_it 1 >
compute_it.1.out &

compute_it 2 >
compute_it.2.out &

wait

cat compute_it.1.out

cat compute_it.2.out

Figure 3.1: Execution Diagram for Parallel Shell Execution

It is hoped that these simple examples convince you that parallel programming need
not always be complex or difficult.

Quick Quiz 3.3: But if script-based parallel programming is so easy, why bother
with anything else?

3.2 POSIX Multiprocessing
This section scratches the surface of the POSIX environment, including pthreads [Ope97],
as this environment is readily available and widely implemented. Section 3.2.1 provides
a glimpse of the POSIX fork() and related primitives, Section 3.2.2 touches on thread
creation and destruction, Section 3.2.3 gives a brief overview of POSIX locking, and,
finally, Section 3.4 presents the analogous operations within the Linux kernel.

3.2.1 POSIX Process Creation and Destruction
Processes are created using the fork() primitive, they may be destroyed using the
kill() primitive, they may destroy themselves using the exit() primitive. A
process executing a fork() primitive is said to be the “parent” of the newly created
process. A parent may wait on its children using the wait() primitive.

Please note that the examples in this section are quite simple. Real-world applica-
tions using these primitives might need to manipulate signals, file descriptors, shared
memory segments, and any number of other resources. In addition, some applications
need to take specific actions if a given child terminates, and might also need to be
concerned with the reason that the child terminated. These concerns can of course
add substantial complexity to the code. For more information, see any of a number of
textbooks on the subject [Ste92].

If fork() succeeds, it returns twice, once for the parent and again for the child.
The value returned from fork() allows the caller to tell the difference, as shown in
Figure 3.2 (forkjoin.c). Line 1 executes the fork() primitive, and saves its return
value in local variable pid. Line 2 checks to see if pid is zero, in which case, this is the
child, which continues on to execute line 3. As noted earlier, the child may terminate via
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1 pid = fork();
2 if (pid == 0) {
3 /* child */
4 } else if (pid < 0) {
5 /* parent, upon error */
6 perror("fork");
7 exit(-1);
8 } else {
9 /* parent, pid == child ID */
10 }

Figure 3.2: Using the fork() Primitive

1 void waitall(void)
2 {
3 int pid;
4 int status;
5
6 for (;;) {
7 pid = wait(&status);
8 if (pid == -1) {
9 if (errno == ECHILD)
10 break;
11 perror("wait");
12 exit(-1);
13 }
14 }
15 }

Figure 3.3: Using the wait() Primitive

the exit() primitive. Otherwise, this is the parent, which checks for an error return
from the fork() primitive on line 4, and prints an error and exits on lines 5-7 if so.
Otherwise, the fork() has executed successfully, and the parent therefore executes
line 9 with the variable pid containing the process ID of the child.

The parent process may use the wait() primitive to wait for its children to com-
plete. However, use of this primitive is a bit more complicated than its shell-script
counterpart, as each invocation of wait() waits for but one child process. It is there-
fore customary to wrap wait() into a function similar to the waitall() function
shown in Figure 3.3 (api-pthread.h), this waitall() function having semantics
similar to the shell-script wait command. Each pass through the loop spanning lines 6-
15 waits on one child process. Line 7 invokes the wait() primitive, which blocks until
a child process exits, and returns that child’s process ID. If the process ID is instead
-1, this indicates that the wait() primitive was unable to wait on a child. If so, line 9
checks for the ECHILD errno, which indicates that there are no more child processes,
so that line 10 exits the loop. Otherwise, lines 11 and 12 print an error and exit.

Quick Quiz 3.4: Why does this wait() primitive need to be so complicated? Why
not just make it work like the shell-script wait does?

It is critically important to note that the parent and child do not share memory. This
is illustrated by the program shown in Figure 3.4 (forkjoinvar.c), in which the
child sets a global variable x to 1 on line 6, prints a message on line 7, and exits on
line 8. The parent continues at line 14, where it waits on the child, and on line 15 finds
that its copy of the variable x is still zero. The output is thus as follows:

Child process set x=1
Parent process sees x=0
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1 int x = 0;
2 int pid;
3
4 pid = fork();
5 if (pid == 0) { /* child */
6 x = 1;
7 printf("Child process set x=1\n");
8 exit(0);
9 }
10 if (pid < 0) { /* parent, upon error */
11 perror("fork");
12 exit(-1);
13 }
14 waitall();
15 printf("Parent process sees x=%d\n", x);

Figure 3.4: Processes Created Via fork() Do Not Share Memory

1 int x = 0;
2
3 void *mythread(void *arg)
4 {
5 x = 1;
6 printf("Child process set x=1\n");
7 return NULL;
8 }
9
10 int main(int argc, char *argv[])
11 {
12 pthread_t tid;
13 void *vp;
14
15 if (pthread_create(&tid, NULL,
16 mythread, NULL) != 0) {
17 perror("pthread_create");
18 exit(-1);
19 }
20 if (pthread_join(tid, &vp) != 0) {
21 perror("pthread_join");
22 exit(-1);
23 }
24 printf("Parent process sees x=%d\n", x);
25 return 0;
26 }

Figure 3.5: Threads Created Via pthread_create() Share Memory

Quick Quiz 3.5: Isn’t there a lot more to fork() and wait() than discussed
here?

The finest-grained parallelism requires shared memory, and this is covered in Sec-
tion 3.2.2. That said, shared-memory parallelism can be significantly more complex
than fork-join parallelism.

3.2.2 POSIX Thread Creation and Destruction

To create a thread within an existing process, invoke the pthread_create() primi-
tive, for example, as shown on lines 15 and 16 of Figure 3.5 (pcreate.c). The first
argument is a pointer to a pthread_t in which to store the ID of the thread to be
created, the second NULL argument is a pointer to an optional pthread_attr_t,
the third argument is the function (in this case, mythread() that is to be invoked
by the new thread, and the last NULL argument is the argument that will be passed to
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mythread.
In this example, mythread() simply returns, but it could instead call pthread_

exit().
Quick Quiz 3.6: If the mythread() function in Figure 3.5 can simply return,

why bother with pthread_exit()?
The pthread_join() primitive, shown on line 20, is analogous to the fork-join

wait() primitive. It blocks until the thread specified by the tid variable completes
execution, either by invoking pthread_exit() or by returning from the thread’s
top-level function. The thread’s exit value will be stored through the pointer passed as
the second argument to pthread_join(). The thread’s exit value is either the value
passed to pthread_exit() or the value returned by the thread’s top-level function,
depending on how the thread in question exits.

The program shown in Figure 3.5 produces output as follows, demonstrating that
memory is in fact shared between the two threads:

Child process set x=1
Parent process sees x=1

Note that this program carefully makes sure that only one of the threads stores a
value to variable x at a time. Any situation in which one thread might be storing a
value to a given variable while some other thread either loads from or stores to that
same variable is termed a “data race”. Because the C language makes no guarantee that
the results of a data race will be in any way reasonable, we need some way of safely
accessing and modifying data concurrently, such as the locking primitives discussed in
the following section.

Quick Quiz 3.7: If the C language makes no guarantees in presence of a data race,
then why does the Linux kernel have so many data races? Are you trying to tell me that
the Linux kernel is completely broken???

3.2.3 POSIX Locking

The POSIX standard allows the programmer to avoid data races via “POSIX locking”.
POSIX locking features a number of primitives, the most fundamental of which are
pthread_mutex_lock() and pthread_mutex_unlock(). These primitives
operate on locks, which are of type pthread_mutex_t. These locks may be declared
statically and initialized with PTHREAD_MUTEX_INITIALIZER, or they may be
allocated dynamically and initialized using the pthread_mutex_init() primitive.
The demonstration code in this section will take the former course.

The pthread_mutex_lock() primitive “acquires” the specified lock, and the
pthread_mutex_unlock() “releases” the specified lock. Because these are “ex-
clusive” locking primitives, only one thread at a time may “hold” a given lock at a given
time. For example, if a pair of threads attempt to acquire the same lock concurrently,
one of the pair will be “granted” the lock first, and the other will wait until the first
thread releases the lock.

Quick Quiz 3.8: What if I want several threads to hold the same lock at the same
time?

This exclusive-locking property is demonstrated using the code shown in Figure 3.6
(lock.c). Line 1 defines and initializes a POSIX lock named lock_a, while line 2
similarly defines and initializes a lock named lock_b. Line 3 defines and initializes a
shared variable x.
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1 pthread_mutex_t lock_a = PTHREAD_MUTEX_INITIALIZER;
2 pthread_mutex_t lock_b = PTHREAD_MUTEX_INITIALIZER;
3 int x = 0;
4
5 void *lock_reader(void *arg)
6 {
7 int i;
8 int newx = -1;
9 int oldx = -1;
10 pthread_mutex_t *pmlp = (pthread_mutex_t *)arg;
11
12 if (pthread_mutex_lock(pmlp) != 0) {
13 perror("lock_reader:pthread_mutex_lock");
14 exit(-1);
15 }
16 for (i = 0; i < 100; i++) {
17 newx = ACCESS_ONCE(x);
18 if (newx != oldx) {
19 printf("lock_reader(): x = %d\n", newx);
20 }
21 oldx = newx;
22 poll(NULL, 0, 1);
23 }
24 if (pthread_mutex_unlock(pmlp) != 0) {
25 perror("lock_reader:pthread_mutex_unlock");
26 exit(-1);
27 }
28 return NULL;
29 }
30
31 void *lock_writer(void *arg)
32 {
33 int i;
34 pthread_mutex_t *pmlp = (pthread_mutex_t *)arg;
35
36 if (pthread_mutex_lock(pmlp) != 0) {
37 perror("lock_reader:pthread_mutex_lock");
38 exit(-1);
39 }
40 for (i = 0; i < 3; i++) {
41 ACCESS_ONCE(x)++;
42 poll(NULL, 0, 5);
43 }
44 if (pthread_mutex_unlock(pmlp) != 0) {
45 perror("lock_reader:pthread_mutex_unlock");
46 exit(-1);
47 }
48 return NULL;
49 }

Figure 3.6: Demonstration of Exclusive Locks
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1 printf("Creating two threads using same lock:\n");
2 if (pthread_create(&tid1, NULL,
3 lock_reader, &lock_a) != 0) {
4 perror("pthread_create");
5 exit(-1);
6 }
7 if (pthread_create(&tid2, NULL,
8 lock_writer, &lock_a) != 0) {
9 perror("pthread_create");
10 exit(-1);
11 }
12 if (pthread_join(tid1, &vp) != 0) {
13 perror("pthread_join");
14 exit(-1);
15 }
16 if (pthread_join(tid2, &vp) != 0) {
17 perror("pthread_join");
18 exit(-1);
19 }

Figure 3.7: Demonstration of Same Exclusive Lock

Lines 5-28 defines a function lock_reader() which repeatedly reads the shared
variable x while holding the lock specified by arg. Line 10 casts arg to a pointer to a
pthread_mutex_t, as required by the pthread_mutex_lock() and pthread_
mutex_unlock() primitives.

Quick Quiz 3.9: Why not simply make the argument to lock_reader() on
line 5 of Figure 3.6 be a pointer to a pthread_mutex_t?

Lines 12-15 acquire the specified pthread_mutex_t, checking for errors and
exiting the program if any occur. Lines 16-23 repeatedly check the value of x, printing
the new value each time that it changes. Line 22 sleeps for one millisecond, which
allows this demonstration to run nicely on a uniprocessor machine. Line 24-27 release
the pthread_mutex_t, again checking for errors and exiting the program if any
occur. Finally, line 28 returns NULL, again to match the function type required by
pthread_create().

Quick Quiz 3.10: Writing four lines of code for each acquisition and release of a
pthread_mutex_t sure seems painful! Isn’t there a better way?

Lines 31-49 of Figure 3.6 shows lock_writer(), which periodically update
the shared variable x while holding the specified pthread_mutex_t. As with
lock_reader(), line 34 casts arg to a pointer to pthread_mutex_t, lines 36-
39 acquires the specified lock, and lines 44-47 releases it. While holding the lock,
lines 40-43 increment the shared variable x, sleeping for five milliseconds between each
increment. Finally, lines 44-47 release the lock.

Figure 3.7 shows a code fragment that runs lock_reader() and lock_writer()
as thread using the same lock, namely, lock_a. Lines 2-6 create a thread running
lock_reader(), and then Lines 7-11 create a thread running lock_writer().
Lines 12-19 wait for both threads to complete. The output of this code fragment is as
follows:

Creating two threads using same lock:
lock_reader(): x = 0

Because both threads are using the same lock, the lock_reader() thread cannot
see any of the intermediate values of x produced by lock_writer() while holding
the lock.

Quick Quiz 3.11: Is “x = 0” the only possible output from the code fragment shown
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1 printf("Creating two threads w/different locks:\n");
2 x = 0;
3 if (pthread_create(&tid1, NULL,
4 lock_reader, &lock_a) != 0) {
5 perror("pthread_create");
6 exit(-1);
7 }
8 if (pthread_create(&tid2, NULL,
9 lock_writer, &lock_b) != 0) {
10 perror("pthread_create");
11 exit(-1);
12 }
13 if (pthread_join(tid1, &vp) != 0) {
14 perror("pthread_join");
15 exit(-1);
16 }
17 if (pthread_join(tid2, &vp) != 0) {
18 perror("pthread_join");
19 exit(-1);
20 }

Figure 3.8: Demonstration of Different Exclusive Locks

in Figure 3.7? If so, why? If not, what other output could appear, and why?
Figure 3.8 shows a similar code fragment, but this time using different locks: lock_

a for lock_reader() and lock_b for lock_writer(). The output of this code
fragment is as follows:

Creating two threads w/different locks:
lock_reader(): x = 0
lock_reader(): x = 1
lock_reader(): x = 2
lock_reader(): x = 3

Because the two threads are using different locks, they do not exclude each other,
and can run concurrently. The lock_reader() function can therefore see the inter-
mediate values of x stored by lock_writer().

Quick Quiz 3.12: Using different locks could cause quite a bit of confusion, what
with threads seeing each others’ intermediate states. So should well-written parallel
programs restrict themselves to using a single lock in order to avoid this kind of
confusion?

Quick Quiz 3.13: In the code shown in Figure 3.8, is lock_reader() guaran-
teed to see all the values produced by lock_writer()? Why or why not?

Quick Quiz 3.14: Wait a minute here!!! Figure 3.7 didn’t initialize shared variable
x, so why does it need to be initialized in Figure 3.8?

Although there is quite a bit more to POSIX exclusive locking, these primitives
provide a good start and are in fact sufficient in a great many situations. The next section
takes a brief look at POSIX reader-writer locking.

3.2.4 POSIX Reader-Writer Locking

The POSIX API provides a reader-writer lock, which is represented by a pthread_
rwlock_t. As with pthread_mutex_t, pthread_rwlock_t may be statically
initialized via PTHREAD_RWLOCK_INITIALIZER or dynamically initialized via
the pthread_rwlock_init() primitive. The pthread_rwlock_rdlock()
primitive read-acquires the specified pthread_rwlock_t, the pthread_rwlock_
wrlock() primitive write-acquires it, and the pthread_rwlock_unlock() prim-
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1 pthread_rwlock_t rwl = PTHREAD_RWLOCK_INITIALIZER;
2 int holdtime = 0;
3 int thinktime = 0;
4 long long *readcounts;
5 int nreadersrunning = 0;
6
7 #define GOFLAG_INIT 0
8 #define GOFLAG_RUN 1
9 #define GOFLAG_STOP 2
10 char goflag = GOFLAG_INIT;
11
12 void *reader(void *arg)
13 {
14 int i;
15 long long loopcnt = 0;
16 long me = (long)arg;
17
18 __sync_fetch_and_add(&nreadersrunning, 1);
19 while (ACCESS_ONCE(goflag) == GOFLAG_INIT) {
20 continue;
21 }
22 while (ACCESS_ONCE(goflag) == GOFLAG_RUN) {
23 if (pthread_rwlock_rdlock(&rwl) != 0) {
24 perror("pthread_rwlock_rdlock");
25 exit(-1);
26 }
27 for (i = 1; i < holdtime; i++) {
28 barrier();
29 }
30 if (pthread_rwlock_unlock(&rwl) != 0) {
31 perror("pthread_rwlock_unlock");
32 exit(-1);
33 }
34 for (i = 1; i < thinktime; i++) {
35 barrier();
36 }
37 loopcnt++;
38 }
39 readcounts[me] = loopcnt;
40 return NULL;
41 }

Figure 3.9: Measuring Reader-Writer Lock Scalability

itive releases it. Only a single thread may write-hold a given pthread_rwlock_t at
any given time, but multiple threads may read-hold a given pthread_rwlock_t, at
least while there is no thread currently write-holding it.

As you might expect, reader-writer locks are designed for read-mostly situations. In
these situations, a reader-writer lock can provide greater scalability than can an exclusive
lock because the exclusive lock is by definition limited to a single thread holding the
lock at any given time, while the reader-writer lock permits an arbitrarily large number
of readers to concurrently hold the lock. However, in practice, we need to know how
much additional scalability is provided by reader-writer locks.

Figure 3.9 (rwlockscale.c) shows one way of measuring reader-writer lock
scalability. Line 1 shows the definition and initialization of the reader-writer lock, line 2
shows the holdtime argument controlling the time each thread holds the reader-writer
lock, line 3 shows the thinktime argument controlling the time between the release
of the reader-writer lock and the next acquisition, line 4 defines the readcounts array
into which each reader thread places the number of times it acquired the lock, and line 5
defines the nreadersrunning variable, which determines when all reader threads
have started running.

Lines 7-10 define goflag, which synchronizes the start and the end of the test.
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Figure 3.10: Reader-Writer Lock Scalability

This variable is initially set to GOFLAG_INIT, then set to GOFLAG_RUN after all the
reader threads have started, and finally set to GOFLAG_STOP to terminate the test run.

Lines 12-41 define reader(), which is the reader thread. Line 18 atomically
increments the nreadersrunning variable to indicate that this thread is now running,
and lines 19-21 wait for the test to start. The ACCESS_ONCE() primitive forces the
compiler to fetch goflag on each pass through the loop—the compiler would otherwise
be within its rights to assume that the value of goflag would never change.

Quick Quiz 3.15: Instead of using ACCESS_ONCE() everywhere, why not just
declare goflag as volatile on line 10 of Figure 3.9?

Quick Quiz 3.16: ACCESS_ONCE() only affects the compiler, not the CPU.
Don’t we also need memory barriers to make sure that the change in goflag’s value
propagates to the CPU in a timely fashion in Figure 3.9?

Quick Quiz 3.17: Would it ever be necessary to use ACCESS_ONCE() when
accessing a per-thred variable, for example, a variable declared using the gcc __
thread storage class?

The loop spanning lines 22-38 carries out the performance test. Lines 23-26 acquire
the lock, lines 27-29 hold the lock for the specified duration (and the barrier()
directive prevents the compiler from optimizing the loop out of existence), lines 30-33
release the lock, and lines 34-36 wait for the specified duration before re-acquiring the
lock. Line 37 counts this lock acquisition.

Line 39 moves the lock-acquisition count to this thread’s element of the readcounts[]
array, and line 40 returns, terminating this thread.

Figure 3.10 shows the results of running this test on a 64-core Power-5 system
with two hardware threads per core for a total of 128 software-visible CPUs. The
thinktime parameter was zero for all these tests, and the holdtime parameter set
to values ranging from one thousand (“1K” on the graph) to 100 million (“100M” on
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the graph). The actual value plotted is:

LN

NL1
(3.1)

where N is the number of threads, LN is the number of lock acquisitions by N threads,
and L1 is the number of lock acquisitions by a single thread. Given ideal hardware and
software scalability, this value will always be 1.0.

As can be seen in the figure, reader-writer locking scalability is decidedly non-ideal,
especially for smaller sizes of critical sections. To see why read-acquisition can be so
slow, consider that all the acquiring threads must update the pthread_rwlock_t
data structure. Therefore, if all 128 executing threads attempt to read-acquire the reader-
writer lock concurrently, they must update this underlying pthread_rwlock_t one
at a time. One lucky thread might do so almost immediately, but the least-lucky thread
must wait for all the other 127 threads to do their updates. This situation will only get
worse as you add CPUs.

Quick Quiz 3.18: Isn’t comparing against single-CPU throughput a bit harsh?
Quick Quiz 3.19: But 1,000 instructions is not a particularly small size for a critical

section. What do I do if I need a much smaller critical section, for example, one
containing only a few tens of instructions?

Quick Quiz 3.20: In Figure 3.10, all of the traces other than the 100M trace deviate
gently from the ideal line. In contrast, the 100M trace breaks sharply from the ideal line
at 64 CPUs. In addition, the spacing between the 100M trace and the 10M trace is much
smaller than that between the 10M trace and the 1M trace. Why does the 100M trace
behave so much differently than the other traces?

Quick Quiz 3.21: Power-5 is several years old, and new hardware should be faster.
So why should anyone worry about reader-writer locks being slow?

Despite these limitations, reader-writer locking is quite useful in many cases, for ex-
ample when the readers must do high-latency file or network I/O. There are alternatives,
some of which will be presented in Chapters 4 and 8.

3.3 Atomic Operations
Given that Figure 3.10 shows that the overhead of reader-writer locking is most severe
for the smallest critical sections, it would be nice to have some other way to protect
the tiniest of critical sections. One such way are atomic operations. We have seen one
atomic operations already, in the form of the __sync_fetch_and_add() primitive
on line 18 of Figure 3.9. This primitive atomically adds the value of its second argument
to the value referenced by its first argument, returning the old value (which was ignored
in this case). If a pair of threads concurrently execute __sync_fetch_and_add()
on the same variable, the resulting value of the variable will include the result of both
additions.

The gcc compiler offers a number of additional atomic operations, including
__sync_fetch_and_sub(), __sync_fetch_and_or(), __sync_fetch_
and_and(), __sync_fetch_and_xor(), and __sync_fetch_and_nand(),
all of which return the old value. If you instead need the new value, you can in-
stead use the __sync_add_and_fetch(), __sync_sub_and_fetch(), __
sync_or_and_fetch(), __sync_and_and_fetch(), __sync_xor_and_
fetch(), and __sync_nand_and_fetch() primitives.

Quick Quiz 3.22: Is it really necessary to have both sets of primitives?
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The classic compare-and-swap operation is provided by a pair of primitives, __
sync_bool_compare_and_swap() and __sync_val_compare_and_swap().
Both of these primitive atomically update a location to a new value, but only if its prior
value was equal to the specified old value. The first variant returns 1 if the operation
succeeded and 0 if it failed, for example, if the prior value was not equal to the spec-
ified old value. The second variant returns the prior value of the location, which, if
equal to the specified old value, indicates that the operation succeeded. Either of the
compare-and-swap operation is “universal” in the sense that any atomic operation on a
single location can be implemented in terms of compare-and-swap, though the earlier
operations are often more efficient where they apply. The compare-and-swap operation
is also capable of serving as the basis for a wider set of atomic operations, though
the more elaborate of these often suffer from complexity, scalability, and performance
problems [Her90].

The __sync_synchronize() primitive issues a “memory barrier”, which con-
strains both the compiler’s and the CPU’s ability to reorder operations, as discussed in
Section 13.2. In some cases, it is sufficient to constrain the compiler’s ability to reorder
operations, while allowing the CPU free rein, in which case the barrier() primitive
may be used, as it in fact was on line 28 of Figure 3.9. In some cases, it is only necessary
to ensure that the compiler avoids optimizing away a given memory access, in which
case the ACCESS_ONCE() primitive may be used, as it was on line 17 of Figure 3.6.
These last two primitives are not provided directly by gcc, but may be implemented
straightforwardly as follows:

#define ACCESS_ONCE(x) (*(volatile typeof(x) *)&(x))
#define barrier() __asm__ __volatile__("": : :"memory")

Quick Quiz 3.23: Given that these atomic operations will often be able to generate
single atomic instructions that are directly supported by the underlying instruction set,
shouldn’t they be the fastest possible way to get things done?

3.4 Linux-Kernel Equivalents to POSIX Operations
Unfortunately, threading operations, locking primitives, and atomic operations were in
reasonably wide use long before the various standards committees got around to them.
As a result, there is considerable variation in how these operations are supported. It is
still quite common to find these operations implemented in assembly language, either
for historical reasons or to obtain better performance in specialized circumstances. For
example, the gcc __sync_ family of primitives all provide memory-ordering semantics,
motivating many developers to create their own implementations for situations where
the memory ordering semantics are not required.

Therefore, Table 3.1 on page 41 provides a rough mapping between the POSIX
and gcc primitives to those used in the Linux kernel. Exact mappings are not always
available, for example, the Linux kernel has a wide variety of locking primitives, while
gcc has a number of atomic operations that are not directly available in the Linux kernel.
Of course, on the one hand, user-level code does not need the Linux kernel’s wide array
of locking primitives, while on the other hand, gcc’s atomic operations can be emulated
reasonably straightforwardly using cmpxchg().

Quick Quiz 3.24: What happened to the Linux-kernel equivalents to fork() and
join()?
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Category POSIX Linux Kernel
Thread Management pthread_t struct task_struct

pthread_create() kthread_create
pthread_exit() kthread_should_stop()(rough)
pthread_join() kthread_stop() (rough)
poll(NULL, 0, 5) schedule_timeout_interruptible()

POSIX Locking pthread_mutex_t spinlock_t (rough)
struct mutex

PTHREAD_MUTEX_INITIALIZER DEFINE_SPINLOCK()
DEFINE_MUTEX()

pthread_mutex_lock() spin_lock() (and friends)
mutex_lock() (and friends)

pthread_mutex_unlock() spin_unlock() (and friends)
mutex_unlock()

POSIX Reader-Writer pthread_rwlock_t rwlock_t (rough)
Locking struct rw_semaphore

PTHREAD_RWLOCK_INITIALIZER DEFINE_RWLOCK()
DECLARE_RWSEM()

pthread_rwlock_rdlock() read_lock() (and friends)
down_read() (and friends)

pthread_rwlock_unlock() read_unlock() (and friends)
up_read()

pthread_rwlock_wrlock() write_lock() (and friends)
down_write() (and friends)

pthread_rwlock_unlock() write_unlock() (and friends)
up_write()

Atomic Operations C Scalar Types atomic_t
atomic64_t

__sync_fetch_and_add() atomic_add_return()
atomic64_add_return()

__sync_fetch_and_sub() atomic_sub_return()
atomic64_sub_return()

__sync_val_compare_and_swap() cmpxchg()
__sync_lock_test_and_set() xchg() (rough)
__sync_synchronize() smp_mb()

Table 3.1: Mapping from POSIX to Linux-Kernel Primitives
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3.5 The Right Tool for the Job: How to Choose?
As a rough rule of thumb, use the simplest tool that will get the job done. If you
can, simply program sequentially. If that is insufficient, try using a shell script to
mediate parallelism. If the resulting shell-script fork()/exec() overhead (about
480 microseconds for a minimal C program on an Intel Core Duo laptop) is too large,
try using the C-language fork() and wait() primitives. If the overhead of these
primitives (about 80 microseconds for a minimal child process) is still too large, then
you might need to use the POSIX threading primitives, choosing the appropriate locking
and/or atomic-operation primitives. If the overhead of the POSIX threading primitives
(typically sub-microsecond) is too great, then the primitives introduced in Chapter 8 may
be required. Always remember that inter-process communication and message-passing
can be good alternatives to shared-memory multithreaded execution.

Quick Quiz 3.25: Wouldn’t the shell normally use vfork() rather than fork()?

Of course, the actual overheads will depend not only on your hardware, but most
critically on the manner in which you use the primitives. Therefore, it is necessary to
make the right design choices as well as the correct choice of individual primitives, as is
discussed at length in subsequent chapters.
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Chapter 4

Counting

Counting is perhaps the simplest and most natural thing a computer can do. However,
counting efficiently and scalably on a large shared-memory multiprocessor can be quite
challenging. Furthermore, the simplicity of the underlying concept of counting allows
us to explore the fundamental issues of concurrency without the distractions of elaborate
data structures or complex synchronization primitives. Counting therefore provides an
excellent introduction to parallel programming.

This chapter covers a number of special cases for which there are simple, fast, and
scalable counting algorithms. But first, let us find out how much you already know
about concurrent counting.

Quick Quiz 4.1: Why on earth should efficient and scalable counting be hard? After
all, computers have special hardware for the sole purpose of doing counting, addition,
subtraction, and lots more besides, don’t they???

Quick Quiz 4.2: Network-packet counting problem. Suppose that you need
to collect statistics on the number of networking packets (or total number of bytes)
transmitted and/or received. Packets might be transmitted or received by any CPU on
the system. Suppose further that this large machine is capable of handling a million
packets per second, and that there is a systems-monitoring package that reads out the
count every five seconds. How would you implement this statistical counter?

Quick Quiz 4.3: Approximate structure-allocation limit problem. Suppose
that you need to maintain a count of the number of structures allocated in order to
fail any allocations once the number of structures in use exceeds a limit (say, 10,000).
Suppose further that these structures are short-lived, that the limit is rarely exceeded,
and that a “sloppy” approximate limit is acceptable.

Quick Quiz 4.4: Exact structure-allocation limit problem. Suppose that you
need to maintain a count of the number of structures allocated in order to fail any
allocations once the number of structures in use exceeds an exact limit (again, say
10,000). Suppose further that these structures are short-lived, and that the limit is rarely
exceeded, that there is almost always at least one structure in use, and suppose further
still that it is necessary to know exactly when this counter reaches zero, for example, in
order to free up some memory that is not required unless there is at least one structure
in use.

Quick Quiz 4.5: Removable I/O device access-count problem. Suppose that
you need to maintain a reference count on a heavily used removable mass-storage device,
so that you can tell the user when it is safe to remove the device. This device follows
the usual removal procedure where the user indicates a desire to remove the device, and
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the system tells the user when it is safe to do so.
The remainder of this chapter will develop answers to these questions. Section 4.1

asks why counting on multicore systems isn’t trivial, and Section 4.2 looks into ways
of solving the network-packet counting problem. Section 4.3 investigates the approxi-
mate structure-allocation limit problem, while Section 4.4 takes on the exact structure-
allocation limit problem. Section 4.5 discusses how to use the various specialized
parallel counters introduced in the preceding sections. Finally, Section 4.6 concludes
the chapter with performance measurements.

Sections 4.1 and 4.2 contain introductory material, while the remaining sections are
more appropriate for advanced students.

4.1 Why Isn’t Concurrent Counting Trivial?
Let’s start with something simple, for example, the straightforward use of arithmetic
shown in Figure 4.1 (count_nonatomic.c). Here, we have a counter on line 1, we
increment it on line 5, and we read out its value on line 10. What could be simpler?

This approach has the additional advantage of being blazingly fast if you are doing
lots of reading and almost no incrementing, and on small systems, the performance is
excellent.

There is just one large fly in the ointment: this approach can lose counts. On my
dual-core laptop, a short run invoked inc_count() 100,014,000 times, but the final
value of the counter was only 52,909,118. Although approximate values do have their
place in computing, accuracies far greater than 50% are almost always necessary.

Quick Quiz 4.6: But doesn’t the ++ operator produce an x86 add-to-memory
instruction? And won’t the CPU cache cause this to be atomic?

Quick Quiz 4.7: The 8-figure accuracy on the number of failures indicates that you
really did test this. Why would it be necessary to test such a trivial program, especially
when the bug is easily seen by inspection?

The straightforward way to count accurately is to use atomic operations, as shown in
Figure 4.2 (count_atomic.c). Line 1 defines an atomic variable, line 5 atomically
increments it, and line 10 reads it out. Because this is atomic, it keeps perfect count.
However, it is slower: on a Intel Core Duo laptop, it is about six times slower than
non-atomic increment when a single thread is incrementing, and more than ten times
slower if two threads are incrementing.1

1 Interestingly enough, a pair of threads non-atomically incrementing a counter will cause the counter to
increase more quickly than a pair of threads atomically incrementing the counter. Of course, if your only goal
is to make the counter increase quickly, an easier approach is to simply assign a large value to the counter.

1 long counter = 0;
2
3 void inc_count(void)
4 {
5 counter++;
6 }
7
8 long read_count(void)
9 {
10 return counter;
11 }

Figure 4.1: Just Count!
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count_nonatomic.c
count_atomic.c


1 atomic_t counter = ATOMIC_INIT(0);
2
3 void inc_count(void)
4 {
5 atomic_inc(&counter);
6 }
7
8 long read_count(void)
9 {
10 return atomic_read(&counter);
11 }

Figure 4.2: Just Count Atomically!
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Figure 4.3: Atomic Increment Scalability on Nehalem

This poor performance should not be a surprise, given the discussion in Chapter 2,
nor should it be a surprise that the performance of atomic increment gets slower as
the number of CPUs and threads increase, as shown in Figure 4.3. In this figure, the
horizontal dashed line resting on the x axis is the ideal performance that would be
achieved by a perfectly scalable algorithm: with such an algorithm, a given increment
would incur the same overhead that it would in a single-threaded program. Atomic
increment of a single global variable is clearly decidedly non-ideal, and gets worse as
you add CPUs.

Quick Quiz 4.8: Why doesn’t the dashed line on the x axis meet the diagonal line
at x = 1?

Quick Quiz 4.9: But atomic increment is still pretty fast. And incrementing a single
variable in a tight loop sounds pretty unrealistic to me, after all, most of the program’s
execution should be devoted to actually doing work, not accounting for the work it has
done! Why should I care about making this go faster?

For another perspective on global atomic increment, consider Figure 4.4. In order

Nevertheless, there is likely to be a role for algorithms that use carefully relaxed notions of correctness in
order to gain greater performance and scalability [And91, ACMS03, Ung11].
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Figure 4.4: Data Flow For Global Atomic Increment

Figure 4.5: Waiting to Count

for each CPU to get a chance to increment a given global variable, the cache line
containing that variable must circulate among all the CPUs, as shown by the red arrows.
Such circulation will take significant time, resulting in the poor performance seen in
Figure 4.3, which might be thought of as shown in Figure 4.5.

The following sections discuss high-performance counting, which avoids the delays
inherent in such circulation.

Quick Quiz 4.10: But why can’t CPU designers simply ship the addition operation
to the data, avoiding the need to circulate the cache line containing the global variable
being incremented?

4.2 Statistical Counters

This section covers the common special case of statistical counters, where the count is
updated extremely frequently and the value is read out rarely, if ever. These will be used
to solve the network-packet counting problem posed in Quick Quiz 4.2.
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1 DEFINE_PER_THREAD(long, counter);
2
3 void inc_count(void)
4 {
5 __get_thread_var(counter)++;
6 }
7
8 long read_count(void)
9 {
10 int t;
11 long sum = 0;
12
13 for_each_thread(t)
14 sum += per_thread(counter, t);
15 return sum;
16 }

Figure 4.6: Array-Based Per-Thread Statistical Counters

4.2.1 Design
Statistical counting is typically handled by providing a counter per thread (or CPU,
when running in the kernel), so that each thread updates its own counter. The aggregate
value of the counters is read out by simply summing up all of the threads’ counters,
relying on the commutative and associative properties of addition. This is an example
of the Data Ownership pattern that will be introduced in Section 5.3.4.

Quick Quiz 4.11: But doesn’t the fact that C’s “integers” are limited in size compli-
cate things?

4.2.2 Array-Based Implementation
One way to provide per-thread variables is to allocate an array with one element per
thread (presumably cache aligned and padded to avoid false sharing).

Quick Quiz 4.12: An array??? But doesn’t that limit the number of threads?
Such an array can be wrapped into per-thread primitives, as shown in Figure 4.6

(count_stat.c). Line 1 defines an array containing a set of per-thread counters of
type long named, creatively enough, counter.

Lines 3-6 show a function that increments the counters, using the __get_thread_
var() primitive to locate the currently running thread’s element of the counter
array. Because this element is modified only by the corresponding thread, non-atomic
increment suffices.

Lines 8-16 show a function that reads out the aggregate value of the counter, us-
ing the for_each_thread() primitive to iterate over the list of currently running
threads, and using the per_thread() primitive to fetch the specified thread’s counter.
Because the hardware can fetch and store a properly aligned long atomically, and
because gcc is kind enough to make use of this capability, normal loads suffice, and no
special atomic instructions are required.

Quick Quiz 4.13: What other choice does gcc have, anyway???
Quick Quiz 4.14: How does the per-thread counter variable in Figure 4.6 get

initialized?
Quick Quiz 4.15: How is the code in Figure 4.6 supposed to permit more than one

counter?
This approach scales linearly with increasing number of updater threads invoking

inc_count(). As is shown by the green arrows in Figure 4.7, the reason for this is
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Figure 4.7: Data Flow For Per-Thread Increment

that each CPU can make rapid progress incrementing its thread’s variable, without any
expensive cross-system communication. As such, this section solves the network-packet
counting problem presented at the beginning of this chapter.

Quick Quiz 4.16: The read operation takes time to sum up the per-thread values,
and during that time, the counter could well be changing. This means that the value
returned by read_count() in Figure 4.6 will not necessarily be exact. Assume
that the counter is being incremented at rate r counts per unit time, and that read_
count()’s execution consumes ∆ units of time. What is the expected error in the
return value?

However, this excellent update-side scalability comes at great read-side expense for
large numbers of threads. The next section shows one way to reduce read-side expense
while still retaining the update-side scalability.

4.2.3 Eventually Consistent Implementation

One way to retain update-side scalability while greatly improving read-side performance
is to weaken consistency requirements. The counting algorithm in the previous section
is guaranteed to return a value between the value that an ideal counter would have taken
on near the beginning of read_count()’s execution and that near the end of read_
count()’s execution. Eventual consistency [Vog09] provides a weaker guarantee: in
absence of calls to inc_count(), calls to read_count() will eventually return
an accurate count.

We exploit eventual consistency by maintaining a global counter. However, updaters
only manipulate their per-thread counters. A separate thread is provided to transfer
counts from the per-thread counters to the global counter. Readers simply access the
value of the global counter. If updaters are active, the value used by the readers will be
out of date, however, once updates cease, the global counter will eventually converge on
the true value—hence this approach qualifies as eventually consistent.

The implementation is shown in Figure 4.8 (count_stat_eventual.c). Lines 1-
2 show the per-thread variable and the global variable that track the counter’s value,
and line three shows stopflag which is used to coordinate termination (for the
case where we want to terminate the program with an accurate counter value). The
inc_count() function shown on lines 5-8 is similar to its counterpart in Figure 4.6.
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count_stat_eventual.c


1 DEFINE_PER_THREAD(unsigned long, counter);
2 unsigned long global_count;
3 int stopflag;
4
5 void inc_count(void)
6 {
7 ACCESS_ONCE(__get_thread_var(counter))++;
8 }
9
10 unsigned long read_count(void)
11 {
12 return ACCESS_ONCE(global_count);
13 }
14
15 void *eventual(void *arg)
16 {
17 int t;
18 int sum;
19
20 while (stopflag < 3) {
21 sum = 0;
22 for_each_thread(t)
23 sum += ACCESS_ONCE(per_thread(counter, t));
24 ACCESS_ONCE(global_count) = sum;
25 poll(NULL, 0, 1);
26 if (stopflag) {
27 smp_mb();
28 stopflag++;
29 }
30 }
31 return NULL;
32 }
33
34 void count_init(void)
35 {
36 thread_id_t tid;
37
38 if (pthread_create(&tid, NULL, eventual, NULL)) {
39 perror("count_init:pthread_create");
40 exit(-1);
41 }
42 }
43
44 void count_cleanup(void)
45 {
46 stopflag = 1;
47 while (stopflag < 3)
48 poll(NULL, 0, 1);
49 smp_mb();
50 }

Figure 4.8: Array-Based Per-Thread Eventually Consistent Counters
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The read_count() function shown on lines 10-13 simply returns the value of the
global_count variable.

However, the count_init() function on lines 34-42 creates the eventual()
thread shown on lines 15-32, which cycles through all the threads, summing the per-
thread local counter and storing the sum to the global_count variable. The
eventual() thread waits an arbitrarily chosen one millisecond between passes. The
count_cleanup() function on lines 44-50 coordinates termination.

This approach gives extremely fast counter read-out while still supporting linear
counter-update performance. However, this excellent read-side performance and update-
side scalability comes at the cost of the additional thread running eventual().

Quick Quiz 4.17: Why doesn’t inc_count() in Figure 4.8 need to use atomic
instructions? After all, we now have multiple threads accessing the per-thread counters!

Quick Quiz 4.18: Won’t the single global thread in the function eventual() of
Figure 4.8 be just as severe a bottleneck as a global lock would be?

Quick Quiz 4.19: Won’t the estimate returned by read_count() in Figure 4.8
become increasingly inaccurate as the number of threads rises?

Quick Quiz 4.20: Given that in the eventually-consistent algorithm shown in
Figure 4.8 both reads and updates have extremely low overhead and are extremely
scalable, why would anyone bother with the implementation described in Section 4.2.2,
given its costly read-side code?

4.2.4 Per-Thread-Variable-Based Implementation

Fortunately, gcc provides an __thread storage class that provides per-thread storage.
This can be used as shown in Figure 4.9 (count_end.c) to implement a statistical
counter that not only scales, but that also incurs little or no performance penalty to
incrementers compared to simple non-atomic increment.

Lines 1-4 define needed variables: counter is the per-thread counter variable, the
counterp[] array allows threads to access each others’ counters, finalcount ac-
cumulates the total as individual threads exit, and final_mutex coordinates between
threads accumulating the total value of the counter and exiting threads.

Quick Quiz 4.21: Why do we need an explicit array to find the other threads’
counters? Why doesn’t gcc provide a per_thread() interface, similar to the Linux
kernel’s per_cpu() primitive, to allow threads to more easily access each others’
per-thread variables?

The inc_count() function used by updaters is quite simple, as can be seen on
lines 6-9.

The read_count() function used by readers is a bit more complex. Line 16
acquires a lock to exclude exiting threads, and line 21 releases it. Line 17 initializes the
sum to the count accumulated by those threads that have already exited, and lines 18-20
sum the counts being accumulated by threads currently running. Finally, line 22 returns
the sum.

Quick Quiz 4.22: Doesn’t the check for NULL on line 19 of Figure 4.9 add extra
branch mispredictions? Why not have a variable set permanently to zero, and point
unused counter-pointers to that variable rather than setting them to NULL?

Quick Quiz 4.23: Why on earth do we need something as heavyweight as a lock
guarding the summation in the function read_count() in Figure 4.9?
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count_end.c


1 long __thread counter = 0;
2 long *counterp[NR_THREADS] = { NULL };
3 long finalcount = 0;
4 DEFINE_SPINLOCK(final_mutex);
5
6 void inc_count(void)
7 {
8 counter++;
9 }
10
11 long read_count(void)
12 {
13 int t;
14 long sum;
15
16 spin_lock(&final_mutex);
17 sum = finalcount;
18 for_each_thread(t)
19 if (counterp[t] != NULL)
20 sum += *counterp[t];
21 spin_unlock(&final_mutex);
22 return sum;
23 }
24
25 void count_register_thread(void)
26 {
27 int idx = smp_thread_id();
28
29 spin_lock(&final_mutex);
30 counterp[idx] = &counter;
31 spin_unlock(&final_mutex);
32 }
33
34 void count_unregister_thread(int nthreadsexpected)
35 {
36 int idx = smp_thread_id();
37
38 spin_lock(&final_mutex);
39 finalcount += counter;
40 counterp[idx] = NULL;
41 spin_unlock(&final_mutex);
42 }

Figure 4.9: Per-Thread Statistical Counters
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Lines 25-32 show the count_register_thread() function, which must be
called by each thread before its first use of this counter. This function simply sets up
this thread’s element of the counterp[] array to point to its per-thread counter
variable.

Quick Quiz 4.24: Why on earth do we need to acquire the lock in count_
register_thread() in Figure 4.9? It is a single properly aligned machine-word
store to a location that no other thread is modifying, so it should be atomic anyway,
right?

Lines 34-42 show the count_unregister_thread() function, which must
be called prior to exit by each thread that previously called count_register_
thread(). Line 38 acquires the lock, and line 41 releases it, thus excluding any
calls to read_count() as well as other calls to count_unregister_thread().
Line 39 adds this thread’s counter to the global finalcount, and then line 40
NULLs out its counterp[] array entry. A subsequent call to read_count() will
see the exiting thread’s count in the global finalcount, and will skip the exiting
thread when sequencing through the counterp[] array, thus obtaining the correct
total.

This approach gives updaters almost exactly the same performance as a non-atomic
add, and also scales linearly. On the other hand, concurrent reads contend for a single
global lock, and therefore perform poorly and scale abysmally. However, this is not a
problem for statistical counters, where incrementing happens often and readout happens
almost never. Of course, this approach is considerably more complex than the array-
based scheme, due to the fact that a given thread’s per-thread variables vanish when that
thread exits.

Quick Quiz 4.25: Fine, but the Linux kernel doesn’t have to acquire a lock when
reading out the aggregate value of per-CPU counters. So why should user-space code
need to do this???

4.2.5 Discussion
These three implementations show that it is possible to obtain uniprocessor performance
for statistical counters, despite running on a parallel machine.

Quick Quiz 4.26: What fundamental difference is there between counting packets
and counting the total number of bytes in the packets, given that the packets vary in
size?

Quick Quiz 4.27: Given that the reader must sum all the threads’ counters, this
could take a long time given large numbers of threads. Is there any way that the
increment operation can remain fast and scalable while allowing readers to also enjoy
reasonable performance and scalability?

Given what has been presented in this section, you should now be able to answer the
Quick Quiz about statistical counters for networking near the beginning of this chapter.

4.3 Approximate Limit Counters
Another special case of counting involves limit-checking. For example, as noted in the
approximate structure-allocation limit problem in Quick Quiz 4.3, suppose that you need
to maintain a count of the number of structures allocated in order to fail any allocations
once the number of structures in use exceeds a limit, in this case, 10,000. Suppose
further that these structures are short-lived, that this limit is rarely exceeded, and that this
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limit is approximate in that it is OK to exceed it sometimes by some bounded amount
(see Section 4.4 if you instead need the limit to be exact).

4.3.1 Design
One possible design for limit counters is to divide the limit of 10,000 by the number
of threads, and give each thread a fixed pool of structures. For example, given 100
threads, each thread would manage its own pool of 100 structures. This approach is
simple, and in some cases works well, but it does not handle the common case where
a given structure is allocated by one thread and freed by another [MS93]. On the one
hand, if a given thread takes credit for any structures it frees, then the thread doing
most of the allocating runs out of structures, while the threads doing most of the freeing
have lots of credits that they cannot use. On the other hand, if freed structures are
credited to the CPU that allocated them, it will be necessary for CPUs to manipulate
each others’ counters, which will require expensive atomic instructions or other means
of communicating between threads.2

In short, for many important workloads, we cannot fully partition the counter.
Given that partitioning the counters was what brought the excellent update-side perfor-
mance for the three schemes discussed in Section 4.2, this might be grounds for some
pessimism. However, the eventually consistent algorithm presented in Section 4.2.3 pro-
vides an interesting hint. Recall that this algorithm kept two sets of books, a per-thread
counter variable for updaters and a global_count variable for readers, with an
eventual() thread that periodically updated global_count to be eventually con-
sistent with the values of the per-thread counter. The per-thread counter perfectly
partitioned the counter value, while global_count kept the full value.

For limit counters, we can use a variation on this theme, in that we partially partition
the counter. For example, each of four threads could have a per-thread counter, but
each could also have a per-thread maximum value (call it countermax).

But then what happens if a given thread needs to increment its counter, but
counter is equal to its countermax? The trick here is to move half of that thread’s
counter value to a globalcount, then increment counter. For example, if a
given thread’s counter and countermax variables were both equal to 10, we do
the following:

1. Acquire a global lock.

2. Add five to globalcount.

3. To balance out the addition, subtract five from this thread’s counter.

4. Release the global lock.

5. Increment this thread’s counter, resulting in a value of six.

Although this procedure still requires a global lock, that lock need only be ac-
quired once for every five increment operations, greatly reducing that lock’s level of
contention. We can reduce this contention as low as we wish by increasing the value
of countermax. However, the corresponding penalty for increasing the value of
countermax is reduced accuracy of globalcount. To see this, note that on a

2 That said, if each structure will always be freed by the same CPU (or thread) that allocated it, then this
simple partitioning approach works extremely well.
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1 unsigned long __thread counter = 0;
2 unsigned long __thread countermax = 0;
3 unsigned long globalcountmax = 10000;
4 unsigned long globalcount = 0;
5 unsigned long globalreserve = 0;
6 unsigned long *counterp[NR_THREADS] = { NULL };
7 DEFINE_SPINLOCK(gblcnt_mutex);

Figure 4.10: Simple Limit Counter Variables

four-CPU system, if countermax is equal to ten, globalcount will be in error by
at most 40 counts. In contrast, if countermax is increased to 100, globalcount
might be in error by as much as 400 counts.

This raises the question of just how much we care about globalcount’s de-
viation from the aggregate value of the counter, where this aggregate value is the
sum of globalcount and each thread’s counter variable. The answer to this
question depends on how far the aggregate value is from the counter’s limit (call it
globalcountmax). The larger the difference between these two values, the larger
countermax can be without risk of exceeding the globalcountmax limit. This
means that the value of a given thread’s countermax variable can be set based on this
difference. When far from the limit, the countermax per-thread variables are set to
large values to optimize for performance and scalability, while when close to the limit,
these same variables are set to small values to minimize the error in the checks against
the globalcountmax limit.

This design is an example of parallel fastpath, which is an important design pattern
in which the common case executes with no expensive instructions and no interactions
between threads, but where occasional use is also made of a more conservatively
designed (and higher overhead) global algorithm. This design pattern is covered in more
detail in Section 5.4.

4.3.2 Simple Limit Counter Implementation
Figure 4.10 shows both the per-thread and global variables used by this implemen-
tation. The per-thread counter and countermax variables are the correspond-
ing thread’s local counter and the upper bound on that counter, respectively. The
globalcountmax variable on line 3 contains the upper bound for the aggregate
counter, and the globalcount variable on line 4 is the global counter. The sum of
globalcount and each thread’s counter gives the aggregate value of the overall
counter. The globalreserve variable on line 5 is the sum of all of the per-thread
countermax variables. The relationship among these variables is shown by Fig-
ure 4.11:

1. The sum of globalcount and globalreserve must be less than or equal
to globalcountmax.

2. The sum of all threads’ countermax values must be less than or equal to
globalreserve.

3. Each thread’s countermust be less than or equal to that thread’s countermax.

Each element of the counterp[] array references the corresponding thread’s
counter variable, and, finally, the gblcnt_mutex spinlock guards all of the global
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Figure 4.11: Simple Limit Counter Variable Relationships

variables, in other words, no thread is permitted to access or modify any of the global
variables unless it has acquired gblcnt_mutex.

Figure 4.12 shows the add_count(), sub_count(), and read_count()
functions (count_lim.c).

Quick Quiz 4.28: Why does Figure 4.12 provide add_count() and sub_
count() instead of the inc_count() and dec_count() interfaces show in Sec-
tion 4.2?

Lines 1-18 show add_count(), which adds the specified value delta to the
counter. Line 3 checks to see if there is room for delta on this thread’s counter, and,
if so, line 4 adds it and line 6 returns success. This is the add_counter() fastpath,
and it does no atomic operations, references only per-thread variables, and should not
incur any cache misses.

Quick Quiz 4.29: What is with the strange form of the condition on line 3 of
Figure 4.12? Why not the following more intuitive form of the fastpath?

3 if (counter + delta <= countermax){
4 counter += delta;
5 return 1;
6 }

If the test on line 3 fails, we must access global variables, and thus must acquire
gblcnt_mutex on line 7, which we release on line 11 in the failure case or on line 16
in the success case. Line 8 invokes globalize_count(), shown in Figure 4.13,
which clears the thread-local variables, adjusting the global variables as needed, thus
simplifying global processing. (But don’t take my word for it, try coding it yourself!)

55

count_lim.c


1 int add_count(unsigned long delta)
2 {
3 if (countermax - counter >= delta) {
4 counter += delta;
5 return 1;
6 }
7 spin_lock(&gblcnt_mutex);
8 globalize_count();
9 if (globalcountmax -
10 globalcount - globalreserve < delta) {
11 spin_unlock(&gblcnt_mutex);
12 return 0;
13 }
14 globalcount += delta;
15 balance_count();
16 spin_unlock(&gblcnt_mutex);
17 return 1;
18 }
19
20 int sub_count(unsigned long delta)
21 {
22 if (counter >= delta) {
23 counter -= delta;
24 return 1;
25 }
26 spin_lock(&gblcnt_mutex);
27 globalize_count();
28 if (globalcount < delta) {
29 spin_unlock(&gblcnt_mutex);
30 return 0;
31 }
32 globalcount -= delta;
33 balance_count();
34 spin_unlock(&gblcnt_mutex);
35 return 1;
36 }
37
38 unsigned long read_count(void)
39 {
40 int t;
41 unsigned long sum;
42
43 spin_lock(&gblcnt_mutex);
44 sum = globalcount;
45 for_each_thread(t)
46 if (counterp[t] != NULL)
47 sum += *counterp[t];
48 spin_unlock(&gblcnt_mutex);
49 return sum;
50 }

Figure 4.12: Simple Limit Counter Add, Subtract, and Read
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Lines 9 and 10 check to see if addition of delta can be accommodated, with the
meaning of the expression preceding the less-than sign shown in Figure 4.11 as the
difference in height of the two red bars. If the addition of delta cannot be accom-
modated, then line 11 (as noted earlier) releases gblcnt_mutex and line 12 returns
indicating failure.

Otherwise, we take the slowpath. Line 14 adds delta to globalcount, and then
line 15 invokes balance_count() (shown in Figure 4.13) in order to update both the
global and the per-thread variables. This call to balance_count() will usually set
this thread’s countermax to re-enable the fastpath. Line 16 then releases gblcnt_
mutex (again, as noted earlier), and, finally, line 17 returns indicating success.

Quick Quiz 4.30: Why does globalize_count() zero the per-thread variables,
only to later call balance_count() to refill them in Figure 4.12? Why not just leave
the per-thread variables non-zero?

Lines 20-36 show sub_count(), which subtracts the specified delta from the
counter. Line 22 checks to see if the per-thread counter can accommodate this subtrac-
tion, and, if so, line 23 does the subtraction and line 24 returns success. These lines
form sub_count()’s fastpath, and, as with add_count(), this fastpath executes
no costly operations.

If the fastpath cannot accommodate subtraction of delta, execution proceeds to
the slowpath on lines 26-35. Because the slowpath must access global state, line 26
acquires gblcnt_mutex, which is released either by line 29 (in case of failure) or
by line 34 (in case of success). Line 27 invokes globalize_count(), shown in
Figure 4.13, which again clears the thread-local variables, adjusting the global variables
as needed. Line 28 checks to see if the counter can accommodate subtracting delta,
and, if not, line 29 releases gblcnt_mutex (as noted earlier) and line 30 returns
failure.

Quick Quiz 4.31: Given that globalreserve counted against us in add_
count(), why doesn’t it count for us in sub_count() in Figure 4.12?

Quick Quiz 4.32: Suppose that one thread invokes add_count() shown in
Figure 4.12, and then another thread invokes sub_count(). Won’t sub_count()
return failure even though the value of the counter is non-zero?

If, on the other hand, line 28 finds that the counter can accommodate subtracting
delta, we complete the slowpath. Line 32 does the subtraction and then line 33
invokes balance_count() (shown in Figure 4.13) in order to update both global
and per-thread variables (hopefully re-enabling the fastpath). Then line 34 releases
gblcnt_mutex, and line 35 returns success.

Quick Quiz 4.33: Why have both add_count() and sub_count() in Fig-
ure 4.12? Why not simply pass a negative number to add_count()?

Lines 38-50 show read_count(), which returns the aggregate value of the
counter. It acquires gblcnt_mutex on line 43 and releases it on line 48, excluding
global operations from add_count() and sub_count(), and, as we will see, also
excluding thread creation and exit. Line 44 initializes local variable sum to the value of
globalcount, and then the loop spanning lines 45-47 sums the per-thread counter
variables. Line 49 then returns the sum.

Figure 4.13 shows a number of utility functions used by the add_count(), sub_
count(), and read_count() primitives shown in Figure 4.12.

Lines 1-7 show globalize_count(), which zeros the current thread’s per-
thread counters, adjusting the global variables appropriately. It is important to note that
this function does not change the aggregate value of the counter, but instead changes how
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1 static void globalize_count(void)
2 {
3 globalcount += counter;
4 counter = 0;
5 globalreserve -= countermax;
6 countermax = 0;
7 }
8
9 static void balance_count(void)
10 {
11 countermax = globalcountmax -
12 globalcount - globalreserve;
13 countermax /= num_online_threads();
14 globalreserve += countermax;
15 counter = countermax / 2;
16 if (counter > globalcount)
17 counter = globalcount;
18 globalcount -= counter;
19 }
20
21 void count_register_thread(void)
22 {
23 int idx = smp_thread_id();
24
25 spin_lock(&gblcnt_mutex);
26 counterp[idx] = &counter;
27 spin_unlock(&gblcnt_mutex);
28 }
29
30 void count_unregister_thread(int nthreadsexpected)
31 {
32 int idx = smp_thread_id();
33
34 spin_lock(&gblcnt_mutex);
35 globalize_count();
36 counterp[idx] = NULL;
37 spin_unlock(&gblcnt_mutex);
38 }

Figure 4.13: Simple Limit Counter Utility Functions

58



g
lo

b
a

lc
o

u
n

t
g

lo
b

a
lr

e
s

e
rv

e

cm 0 c 0

cm 3

cm 2

cm 1

c 3

c 1

c 2
g

lo
b

a
lc

o
u

n
t

g
lo

b
a

lr
e

s
e

rv
e

cm 3

cm 2

cm 1

c 3

c 1

c 2

g
lo

b
a

lc
o

u
n

t

cm 3

cm 2

cm 1

c 3

c 1

c 2

g
lo

b
a

lr
e

s
e

rv
e

cm 0
c 0

globalize_count() balance_count()

Figure 4.14: Schematic of Globalization and Balancing

the counter’s current value is represented. Line 3 adds the thread’s counter variable to
globalcount, and line 4 zeroes counter. Similarly, line 5 subtracts the per-thread
countermax from globalreserve, and line 6 zeroes countermax. It is helpful
to refer to Figure 4.11 when reading both this function and balance_count(),
which is next.

Lines 9-19 show balance_count(), which is roughly speaking the inverse of
globalize_count(). This function’s job is to set the current thread’s countermax
variable to the largest value that avoids the risk of the counter exceeding the globalcountmax
limit. Changing the current thread’s countermax variable of course requires corre-
sponding adjustments to counter, globalcount and globalreserve, as can
be seen by referring back to Figure 4.11. By doing this, balance_count() max-
imizes use of add_count()’s and sub_count()’s low-overhead fastpaths. As
with globalize_count(), balance_count() is not permitted to change the
aggregate value of the counter.

Lines 11-13 compute this thread’s share of that portion of globalcountmax that
is not already covered by either globalcount or globalreserve, and assign the
computed quantity to this thread’s countermax. Line 14 makes the corresponding ad-
justment to globalreserve. Line 15 sets this thread’s counter to the middle of the
range from zero to countermax. Line 16 checks to see whether globalcount can
in fact accommodate this value of counter, and, if not, line 17 decreases counter
accordingly. Finally, in either case, line 18 makes the corresponding adjustment to
globalcount.

Quick Quiz 4.34: Why set counter to countermax / 2 in line 15 of Fig-
ure 4.13? Wouldn’t it be simpler to just take countermax counts?
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It is helpful to look at a schematic depicting how the relationship of the coun-
ters changes with the execution of first globalize_count() and then balance_
count, as shown in Figure 4.14. Time advances from left to right, with the leftmost
configuration roughly that of Figure 4.11. The center configuration shows the rela-
tionship of these same counters after globalize_count() is executed by thread 0.
As can be seen from the figure, thread 0’s counter (“c 0” in the figure) is added
to globalcount, while the value of globalreserve is reduced by this same
amount. Both thread 0’s counter and its countermax (“cm 0” in the figure) are
reduced to zero. The other three threads’ counters are unchanged. Note that this
change did not affect the overall value of the counter, as indicated by the bottommost
dotted line connecting the leftmost and center configurations. In other words, the
sum of globalcount and the four threads’ counter variables is the same in both
configurations. Similarly, this change did not affect the sum of globalcount and
globalreserve, as indicated by the upper dotted line.

The rightmost configuration shows the relationship of these counters after balance_
count() is executed, again by thread 0. One-quarter of the remaining count, denoted
by the vertical line extending up from all three configurations, is added to thread 0’s
countermax and half of that to thread 0’s counter. The amount added to thread 0’s
counter is also subtracted from globalcount in order to avoid changing the
overall value of the counter (which is again the sum of globalcount and the three
threads’ counter variables), again as indicated by the lowermost of the two dotted
lines connecting the center and rightmost configurations. The globalreserve vari-
able is also adjusted so that this variable remains equal to the sum of the four threads’
countermax variables. Because thread 0’s counter is less than its countermax,
thread 0 can once again increment the counter locally.

Quick Quiz 4.35: In Figure 4.14, even though a quarter of the remaining count up
to the limit is assigned to thread 0, only an eighth of the remaining count is consumed,
as indicated by the uppermost dotted line connecting the center and the rightmost
configurations. Why is that?

Lines 21-28 show count_register_thread(), which sets up state for newly
created threads. This function simply installs a pointer to the newly created thread’s
counter variable into the corresponding entry of the counterp[] array under the
protection of gblcnt_mutex.

Finally, lines 30-38 show count_unregister_thread(), which tears down
state for a soon-to-be-exiting thread. Line 34 acquires gblcnt_mutex and line 37
releases it. Line 35 invokes globalize_count() to clear out this thread’s counter
state, and line 36 clears this thread’s entry in the counterp[] array.

4.3.3 Simple Limit Counter Discussion

This type of counter is quite fast when aggregate values are near zero, with some over-
head due to the comparison and branch in both add_count()’s and sub_count()’s
fastpaths. However, the use of a per-thread countermax reserve means that add_
count() can fail even when the aggregate value of the counter is nowhere near
globalcountmax. Similarly, sub_count() can fail even when the aggregate
value of the counter is nowhere near zero.

In many cases, this is unacceptable. Even if the globalcountmax is intended to
be an approximate limit, there is usually a limit to exactly how much approximation can
be tolerated. One way to limit the degree of approximation is to impose an upper limit
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1 unsigned long __thread counter = 0;
2 unsigned long __thread countermax = 0;
3 unsigned long globalcountmax = 10000;
4 unsigned long globalcount = 0;
5 unsigned long globalreserve = 0;
6 unsigned long *counterp[NR_THREADS] = { NULL };
7 DEFINE_SPINLOCK(gblcnt_mutex);
8 #define MAX_COUNTERMAX 100

Figure 4.15: Approximate Limit Counter Variables

1 static void balance_count(void)
2 {
3 countermax = globalcountmax -
4 globalcount - globalreserve;
5 countermax /= num_online_threads();
6 if (countermax > MAX_COUNTERMAX)
7 countermax = MAX_COUNTERMAX;
8 globalreserve += countermax;
9 counter = countermax / 2;
10 if (counter > globalcount)
11 counter = globalcount;
12 globalcount -= counter;
13 }

Figure 4.16: Approximate Limit Counter Balancing

on the value of the per-thread countermax instances. This task is undertaken in the
next section.

4.3.4 Approximate Limit Counter Implementation

Because this implementation (count_lim_app.c) is quite similar to that in the
previous section (Figures 4.10, 4.12, and 4.13), only the changes are shown here.
Figure 4.15 is identical to Figure 4.10, with the addition of MAX_COUNTERMAX, which
sets the maximum permissible value of the per-thread countermax variable.

Similarly, Figure 4.16 is identical to the balance_count() function in Fig-
ure 4.13, with the addition of lines 6 and 7, which enforce the MAX_COUNTERMAX
limit on the per-thread countermax variable.

4.3.5 Approximate Limit Counter Discussion

These changes greatly reduce the limit inaccuracy seen in the previous version, but
present another problem: any given value of MAX_COUNTERMAXwill cause a workload-
dependent fraction of accesses to fall off the fastpath. As the number of threads increase,
non-fastpath execution will become both a performance and a scalability problem.
However, we will defer this problem and turn instead to counters with exact limits.

4.4 Exact Limit Counters

To solve the exact structure-allocation limit problem noted in Quick Quiz 4.4, we need a
limit counter that can tell exactly when its limits are exceeded. One way of implementing
such a limit counter is to cause threads that have reserved counts to give them up. One
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1 atomic_t __thread ctrandmax = ATOMIC_INIT(0);
2 unsigned long globalcountmax = 10000;
3 unsigned long globalcount = 0;
4 unsigned long globalreserve = 0;
5 atomic_t *counterp[NR_THREADS] = { NULL };
6 DEFINE_SPINLOCK(gblcnt_mutex);
7 #define CM_BITS (sizeof(atomic_t) * 4)
8 #define MAX_COUNTERMAX ((1 << CM_BITS) - 1)
9
10 static void
11 split_ctrandmax_int(int cami, int *c, int *cm)
12 {
13 *c = (cami >> CM_BITS) & MAX_COUNTERMAX;
14 *cm = cami & MAX_COUNTERMAX;
15 }
16
17 static void
18 split_ctrandmax(atomic_t *cam, int *old,
19 int *c, int *cm)
20 {
21 unsigned int cami = atomic_read(cam);
22
23 *old = cami;
24 split_ctrandmax_int(cami, c, cm);
25 }
26
27 static int merge_ctrandmax(int c, int cm)
28 {
29 unsigned int cami;
30
31 cami = (c << CM_BITS) | cm;
32 return ((int)cami);
33 }

Figure 4.17: Atomic Limit Counter Variables and Access Functions

way to do this is to use atomic instructions. Of course, atomic instructions will slow
down the fastpath, but on the other hand, it would be silly not to at least give them a try.

4.4.1 Atomic Limit Counter Implementation

Unfortunately, if one thread is to safely remove counts from another thread, both threads
will need to atomically manipulate that thread’s counter and countermax variables.
The usual way to do this is to combine these two variables into a single variable, for
example, given a 32-bit variable, using the high-order 16 bits to represent counter
and the low-order 16 bits to represent countermax.

Quick Quiz 4.36: Why is it necessary to atomically manipulate the thread’s
counter and countermax variables as a unit? Wouldn’t it be good enough to
atomically manipulate them individually?

The variables and access functions for a simple atomic limit counter are shown in
Figure 4.17 (count_lim_atomic.c). The counter and countermax variables
in earlier algorithms are combined into the single variable ctrandmax shown on line 1,
with counter in the upper half and countermax in the lower half. This variable is
of type atomic_t, which has an underlying representation of int.

Lines 2-6 show the definitions for globalcountmax, globalcount, globalreserve,
counterp, and gblcnt_mutex, all of which take on roles similar to their coun-
terparts in Figure 4.15. Line 7 defines CM_BITS, which gives the number of bits in
each half of ctrandmax, and line 8 defines MAX_COUNTERMAX, which gives the
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maximum value that may be held in either half of ctrandmax.
Quick Quiz 4.37: In what way does line 7 of Figure 4.17 violate the C standard?
Lines 10-15 show the split_ctrandmax_int() function, which, when given

the underlying int from the atomic_t ctrandmax variable, splits it into its
counter (c) and countermax (cm) components. Line 13 isolates the most-significant
half of this int, placing the result as specified by argument c, and line 14 isolates the
least-significant half of this int, placing the result as specified by argument cm.

Lines 17-25 show the split_ctrandmax() function, which picks up the un-
derlying int from the specified variable on line 21, stores it as specified by the old
argument on line 23, and then invokes split_ctrandmax_int() to split it on
line 24.

Quick Quiz 4.38: Given that there is only one ctrandmax variable, why bother
passing in a pointer to it on line 18 of Figure 4.17?

Lines 27-33 show the merge_ctrandmax() function, which can be thought
of as the inverse of split_ctrandmax(). Line 31 merges the counter and
countermax values passed in c and cm, respectively, and returns the result.

Quick Quiz 4.39: Why does merge_ctrandmax() in Figure 4.17 return an
int rather than storing directly into an atomic_t?

Figure 4.18 shows the add_count(), sub_count(), and read_count()
functions.

Lines 1-32 show add_count(), whose fastpath spans lines 8-15, with the remain-
der of the function being the slowpath. Lines 8-14 of the fastpath form a compare-and-
swap (CAS) loop, with the atomic_cmpxchg() primitives on lines 13-14 perform-
ing the actual CAS. Line 9 splits the current thread’s ctrandmax variable into its
counter (in c) and countermax (in cm) components, while placing the underlying
int into old. Line 10 checks whether the amount delta can be accommodated
locally (taking care to avoid integer overflow), and if not, line 11 transfers to the
slowpath. Otherwise, line 11 combines an updated counter value with the original
countermax value into new. The atomic_cmpxchg() primitive on lines 13-14
then atomically compares this thread’s ctrandmax variable to old, updating its value
to new if the comparison succeeds. If the comparison succeeds, line 15 returns success,
otherwise, execution continues in the loop at line 9.

Quick Quiz 4.40: Yecch! Why the ugly goto on line 11 of Figure 4.18? Haven’t
you heard of the break statement???

Quick Quiz 4.41: Why would the atomic_cmpxchg() primitive at lines 13-14
of Figure 4.18 ever fail? After all, we picked up its old value on line 9 and have not
changed it!

Lines 16-31 of Figure 4.18 show add_count()’s slowpath, which is protected
by gblcnt_mutex, which is acquired on line 17 and released on lines 24 and 30.
Line 18 invokes globalize_count(), which moves this thread’s state to the global
counters. Lines 19-20 check whether the delta value can be accommodated by the
current global state, and, if not, line 21 invokes flush_local_count() to flush
all threads’ local state to the global counters, and then lines 22-23 recheck whether
delta can be accommodated. If, after all that, the addition of delta still cannot
be accommodated, then line 24 releases gblcnt_mutex (as noted earlier), and then
line 25 returns failure.

Otherwise, line 28 adds delta to the global counter, line 29 spreads counts to the
local state if appropriate, line 30 releases gblcnt_mutex (again, as noted earlier),
and finally, line 31 returns success.
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1 int add_count(unsigned long delta)
2 {
3 int c;
4 int cm;
5 int old;
6 int new;
7
8 do {
9 split_ctrandmax(&ctrandmax, &old, &c, &cm);
10 if (delta > MAX_COUNTERMAX || c + delta > cm)
11 goto slowpath;
12 new = merge_ctrandmax(c + delta, cm);
13 } while (atomic_cmpxchg(&ctrandmax,
14 old, new) != old);
15 return 1;
16 slowpath:
17 spin_lock(&gblcnt_mutex);
18 globalize_count();
19 if (globalcountmax - globalcount -
20 globalreserve < delta) {
21 flush_local_count();
22 if (globalcountmax - globalcount -
23 globalreserve < delta) {
24 spin_unlock(&gblcnt_mutex);
25 return 0;
26 }
27 }
28 globalcount += delta;
29 balance_count();
30 spin_unlock(&gblcnt_mutex);
31 return 1;
32 }
33
34 int sub_count(unsigned long delta)
35 {
36 int c;
37 int cm;
38 int old;
39 int new;
40
41 do {
42 split_ctrandmax(&ctrandmax, &old, &c, &cm);
43 if (delta > c)
44 goto slowpath;
45 new = merge_ctrandmax(c - delta, cm);
46 } while (atomic_cmpxchg(&ctrandmax,
47 old, new) != old);
48 return 1;
49 slowpath:
50 spin_lock(&gblcnt_mutex);
51 globalize_count();
52 if (globalcount < delta) {
53 flush_local_count();
54 if (globalcount < delta) {
55 spin_unlock(&gblcnt_mutex);
56 return 0;
57 }
58 }
59 globalcount -= delta;
60 balance_count();
61 spin_unlock(&gblcnt_mutex);
62 return 1;
63 }

Figure 4.18: Atomic Limit Counter Add and Subtract
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1 unsigned long read_count(void)
2 {
3 int c;
4 int cm;
5 int old;
6 int t;
7 unsigned long sum;
8
9 spin_lock(&gblcnt_mutex);
10 sum = globalcount;
11 for_each_thread(t)
12 if (counterp[t] != NULL) {
13 split_ctrandmax(counterp[t], &old, &c, &cm);
14 sum += c;
15 }
16 spin_unlock(&gblcnt_mutex);
17 return sum;
18 }

Figure 4.19: Atomic Limit Counter Read

Lines 34-63 of Figure 4.18 show sub_count(), which is structured similarly to
add_count(), having a fastpath on lines 41-48 and a slowpath on lines 49-62. A
line-by-line analysis of this function is left as an exercise to the reader.

Figure 4.19 shows read_count(). Line 9 acquires gblcnt_mutex and line 16
releases it. Line 10 initializes local variable sum to the value of globalcount, and
the loop spanning lines 11-15 adds the per-thread counters to this sum, isolating each
per-thread counter using split_ctrandmax on line 13. Finally, line 17 returns the
sum.

Figures 4.20 and 4.21 shows the utility functions globalize_count(), flush_
local_count(), balance_count(), count_register_thread(), and count_
unregister_thread(). The code for globalize_count() is shown on lines 1-
12, of Figure 4.20 and is similar to that of previous algorithms, with the addition of line 7,
which is now required to split out counter and countermax from ctrandmax.

The code for flush_local_count(), which moves all threads’ local counter
state to the global counter, is shown on lines 14-32. Line 22 checks to see if the
value of globalreserve permits any per-thread counts, and, if not, line 23 returns.
Otherwise, line 24 initializes local variable zero to a combined zeroed counter and
countermax. The loop spanning lines 25-31 sequences through each thread. Line 26
checks to see if the current thread has counter state, and, if so, lines 27-30 move that
state to the global counters. Line 27 atomically fetches the current thread’s state while
replacing it with zero. Line 28 splits this state into its counter (in local variable
c) and countermax (in local variable cm) components. Line 29 adds this thread’s
counter to globalcount, while line 30 subtracts this thread’s countermax from
globalreserve.

Quick Quiz 4.42: What stops a thread from simply refilling its ctrandmax vari-
able immediately after flush_local_count() on line 14 of Figure 4.20 empties
it?

Quick Quiz 4.43: What prevents concurrent execution of the fastpath of either
atomic_add() or atomic_sub() from interfering with the ctrandmax variable
while flush_local_count() is accessing it on line 27 of Figure 4.20 empties it?

Lines 1-22 on Figure 4.21 show the code for balance_count(), which refills
the calling thread’s local ctrandmax variable. This function is quite similar to that
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1 static void globalize_count(void)
2 {
3 int c;
4 int cm;
5 int old;
6
7 split_ctrandmax(&ctrandmax, &old, &c, &cm);
8 globalcount += c;
9 globalreserve -= cm;
10 old = merge_ctrandmax(0, 0);
11 atomic_set(&ctrandmax, old);
12 }
13
14 static void flush_local_count(void)
15 {
16 int c;
17 int cm;
18 int old;
19 int t;
20 int zero;
21
22 if (globalreserve == 0)
23 return;
24 zero = merge_ctrandmax(0, 0);
25 for_each_thread(t)
26 if (counterp[t] != NULL) {
27 old = atomic_xchg(counterp[t], zero);
28 split_ctrandmax_int(old, &c, &cm);
29 globalcount += c;
30 globalreserve -= cm;
31 }
32 }

Figure 4.20: Atomic Limit Counter Utility Functions 1

of the preceding algorithms, with changes required to handle the merged ctrandmax
variable. Detailed analysis of the code is left as an exercise for the reader, as it is with
the count_register_thread() function starting on line 24 and the count_
unregister_thread() function starting on line 33.

Quick Quiz 4.44: Given that the atomic_set() primitive does a simple store to
the specified atomic_t, how can line 21 of balance_count() in Figure 4.21 work
correctly in face of concurrent flush_local_count() updates to this variable?

The next section qualitatively evaluates this design.

4.4.2 Atomic Limit Counter Discussion

This is the first implementation that actually allows the counter to be run all the way
to either of its limits, but it does so at the expense of adding atomic operations to the
fastpaths, which slow down the fastpaths significantly on some systems. Although some
workloads might tolerate this slowdown, it is worthwhile looking for algorithms with
better read-side performance. One such algorithm uses a signal handler to steal counts
from other threads. Because signal handlers run in the context of the signaled thread,
atomic operations are not necessary, as shown in the next section.

Quick Quiz 4.45: But signal handlers can be migrated to some other CPU while
running. Doesn’t this possibility require that atomic instructions and memory barriers are
required to reliably communicate between a thread and a signal handler that interrupts
that thread?
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1 static void balance_count(void)
2 {
3 int c;
4 int cm;
5 int old;
6 unsigned long limit;
7
8 limit = globalcountmax - globalcount -
9 globalreserve;
10 limit /= num_online_threads();
11 if (limit > MAX_COUNTERMAX)
12 cm = MAX_COUNTERMAX;
13 else
14 cm = limit;
15 globalreserve += cm;
16 c = cm / 2;
17 if (c > globalcount)
18 c = globalcount;
19 globalcount -= c;
20 old = merge_ctrandmax(c, cm);
21 atomic_set(&ctrandmax, old);
22 }
23
24 void count_register_thread(void)
25 {
26 int idx = smp_thread_id();
27
28 spin_lock(&gblcnt_mutex);
29 counterp[idx] = &ctrandmax;
30 spin_unlock(&gblcnt_mutex);
31 }
32
33 void count_unregister_thread(int nthreadsexpected)
34 {
35 int idx = smp_thread_id();
36
37 spin_lock(&gblcnt_mutex);
38 globalize_count();
39 counterp[idx] = NULL;
40 spin_unlock(&gblcnt_mutex);
41 }

Figure 4.21: Atomic Limit Counter Utility Functions 2
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Figure 4.22: Signal-Theft State Machine

4.4.3 Signal-Theft Limit Counter Design

Even though per-thread state will now be manipulated only by the corresponding thread,
there will still need to be synchronization with the signal handlers. This synchronization
is provided by the state machine shown in Figure 4.22 The state machine starts out in the
IDLE state, and when add_count() or sub_count() find that the combination
of the local thread’s count and the global count cannot accommodate the request, the
corresponding slowpath sets each thread’s theft state to REQ (unless that thread has
no count, in which case it transitions directly to READY). Only the slowpath, which
holds the gblcnt_mutex lock, is permitted to transition from the IDLE state, as
indicated by the green color. The slowpath then sends a signal to each thread, and the
corresponding signal handler checks the corresponding thread’s theft and counting
variables. If the theft state is not REQ, then the signal handler is not permitted to
change the state, and therefore simply returns. Otherwise, if the counting variable is
set, indicating that the current thread’s fastpath is in progress, the signal handler sets the
theft state to ACK, otherwise to READY.

If the theft state is ACK, only the fastpath is permitted to change the theft
state, as indicated by the blue color. When the fastpath completes, it sets the theft
state to READY.

Once the slowpath sees a thread’s theft state is READY, the slowpath is permitted
to steal that thread’s count. The slowpath then sets that thread’s theft state to IDLE.

Quick Quiz 4.46: In Figure 4.22, why is the REQ theft state colored red?

Quick Quiz 4.47: In Figure 4.22, what is the point of having separate REQ and
ACK theft states? Why not simplify the state machine by collapsing them into a
single REQACK state? Then whichever of the signal handler or the fastpath gets there
first could set the state to READY.
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1 #define THEFT_IDLE 0
2 #define THEFT_REQ 1
3 #define THEFT_ACK 2
4 #define THEFT_READY 3
5
6 int __thread theft = THEFT_IDLE;
7 int __thread counting = 0;
8 unsigned long __thread counter = 0;
9 unsigned long __thread countermax = 0;
10 unsigned long globalcountmax = 10000;
11 unsigned long globalcount = 0;
12 unsigned long globalreserve = 0;
13 unsigned long *counterp[NR_THREADS] = { NULL };
14 unsigned long *countermaxp[NR_THREADS] = { NULL };
15 int *theftp[NR_THREADS] = { NULL };
16 DEFINE_SPINLOCK(gblcnt_mutex);
17 #define MAX_COUNTERMAX 100

Figure 4.23: Signal-Theft Limit Counter Data

4.4.4 Signal-Theft Limit Counter Implementation

Figure 4.23 (count_lim_sig.c) shows the data structures used by the signal-theft
based counter implementation. Lines 1-7 define the states and values for the per-thread
theft state machine described in the preceding section. Lines 8-17 are similar to earlier
implementations, with the addition of lines 14 and 15 to allow remote access to a
thread’s countermax and theft variables, respectively.

Figure 4.24 shows the functions responsible for migrating counts between per-thread
variables and the global variables. Lines 1-7 shows globalize_count(), which
is identical to earlier implementations. Lines 9-19 shows flush_local_count_
sig(), which is the signal handler used in the theft process. Lines 11 and 12 check
to see if the theft state is REQ, and, if not returns without change. Line 13 executes
a memory barrier to ensure that the sampling of the theft variable happens before any
change to that variable. Line 14 sets the theft state to ACK, and, if line 15 sees that
this thread’s fastpaths are not running, line 16 sets the theft state to READY.

Quick Quiz 4.48: In Figure 4.24 function flush_local_count_sig(), why
are there ACCESS_ONCE() wrappers around the uses of the theft per-thread vari-
able?

Lines 21-49 shows flush_local_count(), which is called from the slowpath
to flush all threads’ local counts. The loop spanning lines 26-34 advances the theft
state for each thread that has local count, and also sends that thread a signal. Line 27
skips any non-existent threads. Otherwise, line 28 checks to see if the current thread
holds any local count, and, if not, line 29 sets the thread’s theft state to READY and
line 30 skips to the next thread. Otherwise, line 32 sets the thread’s theft state to
REQ and line 33 sends the thread a signal.

Quick Quiz 4.49: In Figure 4.24, why is it safe for line 28 to directly access the
other thread’s countermax variable?

Quick Quiz 4.50: In Figure 4.24, why doesn’t line 33 check for the current thread
sending itself a signal?

Quick Quiz 4.51: The code in Figure 4.24, works with gcc and POSIX. What
would be required to make it also conform to the ISO C standard?

The loop spanning lines 35-48 waits until each thread reaches READY state, then
steals that thread’s count. Lines 36-37 skip any non-existent threads, and the loop
spanning lines 38-42 wait until the current thread’s theft state becomes READY.
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1 static void globalize_count(void)
2 {
3 globalcount += counter;
4 counter = 0;
5 globalreserve -= countermax;
6 countermax = 0;
7 }
8
9 static void flush_local_count_sig(int unused)
10 {
11 if (ACCESS_ONCE(theft) != THEFT_REQ)
12 return;
13 smp_mb();
14 ACCESS_ONCE(theft) = THEFT_ACK;
15 if (!counting) {
16 ACCESS_ONCE(theft) = THEFT_READY;
17 }
18 smp_mb();
19 }
20
21 static void flush_local_count(void)
22 {
23 int t;
24 thread_id_t tid;
25
26 for_each_tid(t, tid)
27 if (theftp[t] != NULL) {
28 if (*countermaxp[t] == 0) {
29 ACCESS_ONCE(*theftp[t]) = THEFT_READY;
30 continue;
31 }
32 ACCESS_ONCE(*theftp[t]) = THEFT_REQ;
33 pthread_kill(tid, SIGUSR1);
34 }
35 for_each_tid(t, tid) {
36 if (theftp[t] == NULL)
37 continue;
38 while (ACCESS_ONCE(*theftp[t]) != THEFT_READY) {
39 poll(NULL, 0, 1);
40 if (ACCESS_ONCE(*theftp[t]) == THEFT_REQ)
41 pthread_kill(tid, SIGUSR1);
42 }
43 globalcount += *counterp[t];
44 *counterp[t] = 0;
45 globalreserve -= *countermaxp[t];
46 *countermaxp[t] = 0;
47 ACCESS_ONCE(*theftp[t]) = THEFT_IDLE;
48 }
49 }
50
51 static void balance_count(void)
52 {
53 countermax = globalcountmax -
54 globalcount - globalreserve;
55 countermax /= num_online_threads();
56 if (countermax > MAX_COUNTERMAX)
57 countermax = MAX_COUNTERMAX;
58 globalreserve += countermax;
59 counter = countermax / 2;
60 if (counter > globalcount)
61 counter = globalcount;
62 globalcount -= counter;
63 }

Figure 4.24: Signal-Theft Limit Counter Value-Migration Functions
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1 int add_count(unsigned long delta)
2 {
3 int fastpath = 0;
4
5 counting = 1;
6 barrier();
7 if (countermax - counter >= delta &&
8 ACCESS_ONCE(theft) <= THEFT_REQ) {
9 counter += delta;
10 fastpath = 1;
11 }
12 barrier();
13 counting = 0;
14 barrier();
15 if (ACCESS_ONCE(theft) == THEFT_ACK) {
16 smp_mb();
17 ACCESS_ONCE(theft) = THEFT_READY;
18 }
19 if (fastpath)
20 return 1;
21 spin_lock(&gblcnt_mutex);
22 globalize_count();
23 if (globalcountmax - globalcount -
24 globalreserve < delta) {
25 flush_local_count();
26 if (globalcountmax - globalcount -
27 globalreserve < delta) {
28 spin_unlock(&gblcnt_mutex);
29 return 0;
30 }
31 }
32 globalcount += delta;
33 balance_count();
34 spin_unlock(&gblcnt_mutex);
35 return 1;
36 }

Figure 4.25: Signal-Theft Limit Counter Add Function

Line 39 blocks for a millisecond to avoid priority-inversion problems, and if line 40
determines that the thread’s signal has not yet arrived, line 41 resends the signal.
Execution reaches line 43 when the thread’s theft state becomes READY, so lines 43-
46 do the thieving. Line 47 then sets the thread’s theft state back to IDLE.

Quick Quiz 4.52: In Figure 4.24, why does line 41 resend the signal?
Lines 51-63 show balance_count(), which is similar to that of earlier exam-

ples.
Figure 4.25 shows the add_count() function. The fastpath spans lines 5-20, and

the slowpath lines 21-35. Line 5 sets the per-thread counting variable to 1 so that
any subsequent signal handlers interrupting this thread will set the theft state to ACK
rather than READY, allowing this fastpath to complete properly. Line 6 prevents the
compiler from reordering any of the fastpath body to precede the setting of counting.
Lines 7 and 8 check to see if the per-thread data can accommodate the add_count()
and if there is no ongoing theft in progress, and if so line 9 does the fastpath addition
and line 10 notes that the fastpath was taken.

In either case, line 12 prevents the compiler from reordering the fastpath body to
follow line 13, which permits any subsequent signal handlers to undertake theft. Line 14
again disables compiler reordering, and then line 15 checks to see if the signal handler
deferred the theft state-change to READY, and, if so, line 16 executes a memory
barrier to ensure that any CPU that sees line 17 setting state to READY also sees the
effects of line 9. If the fastpath addition at line 9 was executed, then line 20 returns
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38 int sub_count(unsigned long delta)
39 {
40 int fastpath = 0;
41
42 counting = 1;
43 barrier();
44 if (counter >= delta &&
45 ACCESS_ONCE(theft) <= THEFT_REQ) {
46 counter -= delta;
47 fastpath = 1;
48 }
49 barrier();
50 counting = 0;
51 barrier();
52 if (ACCESS_ONCE(theft) == THEFT_ACK) {
53 smp_mb();
54 ACCESS_ONCE(theft) = THEFT_READY;
55 }
56 if (fastpath)
57 return 1;
58 spin_lock(&gblcnt_mutex);
59 globalize_count();
60 if (globalcount < delta) {
61 flush_local_count();
62 if (globalcount < delta) {
63 spin_unlock(&gblcnt_mutex);
64 return 0;
65 }
66 }
67 globalcount -= delta;
68 balance_count();
69 spin_unlock(&gblcnt_mutex);
70 return 1;
71 }

Figure 4.26: Signal-Theft Limit Counter Subtract Function
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1 unsigned long read_count(void)
2 {
3 int t;
4 unsigned long sum;
5
6 spin_lock(&gblcnt_mutex);
7 sum = globalcount;
8 for_each_thread(t)
9 if (counterp[t] != NULL)
10 sum += *counterp[t];
11 spin_unlock(&gblcnt_mutex);
12 return sum;
13 }

Figure 4.27: Signal-Theft Limit Counter Read Function

success.
Otherwise, we fall through to the slowpath starting at line 21. The structure of the

slowpath is similar to those of earlier examples, so its analysis is left as an exercise to
the reader. Similarly, the structure of sub_count() on Figure 4.26 is the same as that
of add_count(), so the analysis of sub_count() is also left as an exercise for the
reader, as is the analysis of read_count() in Figure 4.27.

Lines 1-12 of Figure 4.28 show count_init(), which set up flush_local_
count_sig() as the signal handler for SIGUSR1, enabling the pthread_kill()
calls in flush_local_count() to invoke flush_local_count_sig(). The
code for thread registry and unregistry is similar to that of earlier examples, so its
analysis is left as an exercise for the reader.

4.4.5 Signal-Theft Limit Counter Discussion
The signal-theft implementation runs more than twice as fast as the atomic implementa-
tion on my Intel Core Duo laptop. Is it always preferable?

The signal-theft implementation would be vastly preferable on Pentium-4 systems,
given their slow atomic instructions, but the old 80386-based Sequent Symmetry sys-
tems would do much better with the shorter path length of the atomic implementation.
However, this increased update-side performance comes at the prices of higher read-side
overhead: Those POSIX signals are not free. If ultimate performance is of the essence,
you will need to measure them both on the system that your application is to be deployed
on.

Quick Quiz 4.53: Not only are POSIX signals slow, sending one to each thread
simply does not scale. What would you do if you had (say) 10,000 threads and needed
the read side to be fast?

This is but one reason why high-quality APIs are so important: they permit imple-
mentations to be changed as required by ever-changing hardware performance charac-
teristics.

Quick Quiz 4.54: What if you want an exact limit counter to be exact only for its
lower limit, but to allow the upper limit to be inexact?

4.5 Applying Specialized Parallel Counters
Although the exact limit counter implementations in Section 4.4 can be very useful, they
are not much help if the counter’s value remains near zero at all times, as it might when
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1 void count_init(void)
2 {
3 struct sigaction sa;
4
5 sa.sa_handler = flush_local_count_sig;
6 sigemptyset(&sa.sa_mask);
7 sa.sa_flags = 0;
8 if (sigaction(SIGUSR1, &sa, NULL) != 0) {
9 perror("sigaction");
10 exit(-1);
11 }
12 }
13
14 void count_register_thread(void)
15 {
16 int idx = smp_thread_id();
17
18 spin_lock(&gblcnt_mutex);
19 counterp[idx] = &counter;
20 countermaxp[idx] = &countermax;
21 theftp[idx] = &theft;
22 spin_unlock(&gblcnt_mutex);
23 }
24
25 void count_unregister_thread(int nthreadsexpected)
26 {
27 int idx = smp_thread_id();
28
29 spin_lock(&gblcnt_mutex);
30 globalize_count();
31 counterp[idx] = NULL;
32 countermaxp[idx] = NULL;
33 theftp[idx] = NULL;
34 spin_unlock(&gblcnt_mutex);
35 }

Figure 4.28: Signal-Theft Limit Counter Initialization Functions
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counting the number of outstanding accesses to an I/O device. The high overhead of
such near-zero counting is especially painful given that we normally don’t care how
many references there are. As noted in the removable I/O device access-count problem
posed by Quick Quiz 4.5, the number of accesses is irrelevant except in those rare cases
when someone is actually trying to remove the device.

One simple solution to this problem is to add a large “bias” (for example, one
billion) to the counter in order to ensure that the value is far enough from zero that
the counter can operate efficiently. When someone wants to remove the device, this
bias is subtracted from the counter value. Counting the last few accesses will be quite
inefficient, but the important point is that the many prior accesses will have been counted
at full speed.

Quick Quiz 4.55: What else had you better have done when using a biased counter?

Although a biased counter can be quite helpful and useful, it is only a partial
solution to the removable I/O device access-count problem called out on page 43. When
attempting to remove a device, we must not only know the precise number of current
I/O accesses, we also need to prevent any future accesses from starting. One way to
accomplish this is to read-acquire a reader-writer lock when updating the counter, and to
write-acquire that same reader-writer lock when checking the counter. Code for doing
I/O might be as follows:

1 read_lock(&mylock);
2 if (removing) {
3 read_unlock(&mylock);
4 cancel_io();
5 } else {
6 add_count(1);
7 read_unlock(&mylock);
8 do_io();
9 sub_count(1);

10 }

Line 1 read-acquires the lock, and either line 3 or 7 releases it. Line 2 checks to
see if the device is being removed, and, if so, line 3 releases the lock and line 4 cancels
the I/O, or takes whatever action is appropriate given that the device is to be removed.
Otherwise, line 6 increments the access count, line 7 releases the lock, line 8 performs
the I/O, and line 9 decrements the access count.

Quick Quiz 4.56: This is ridiculous! We are read-acquiring a reader-writer lock to
update the counter? What are you playing at???

The code to remove the device might be as follows:

1 write_lock(&mylock);
2 removing = 1;
3 sub_count(mybias);
4 write_unlock(&mylock);
5 while (read_count() != 0) {
6 poll(NULL, 0, 1);
7 }
8 remove_device();

Line 1 write-acquires the lock and line 4 releases it. Line 2 notes that the device is
being removed, and the loop spanning lines 5-7 wait for any I/O operations to complete.
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Reads
Algorithm Section Updates 1 Core 32 Cores
count_stat.c 4.2.2 11.5 ns 408 ns 409 ns
count_stat_eventual.c 4.2.3 11.6 ns 1 ns 1 ns
count_end.c 4.2.4 6.3 ns 389 ns 51,200 ns
count_end_rcu.c 12.2.1 5.7 ns 354 ns 501 ns

Table 4.1: Statistical Counter Performance on Power-6

Reads
Algorithm Section Exact? Updates 1 Core 64 Cores
count_lim.c 4.3.2 N 3.6 ns 375 ns 50,700 ns
count_lim_app.c 4.3.4 N 11.7 ns 369 ns 51,000 ns
count_lim_atomic.c 4.4.1 Y 51.4 ns 427 ns 49,400 ns
count_lim_sig.c 4.4.4 Y 10.2 ns 370 ns 54,000 ns

Table 4.2: Limit Counter Performance on Power-6

Finally, line 8 does any additional processing needed to prepare for device removal.
Quick Quiz 4.57: What other issues would need to be accounted for in a real

system?

4.6 Parallel Counting Discussion

This chapter has presented the reliability, performance, and scalability problems with
traditional counting primitives. The C-language ++ operator is not guaranteed to
function reliably in multithreaded code, and atomic operations to a single variable
neither perform nor scale well. This chapter has also presented a number of counting
algorithms that perform and scale extremely well in certain special cases.

Table 4.1 shows the performance of the four parallel statistical counting algorithms.
All four algorithms provide near-perfect linear scalability for updates. The per-thread-
variable implementation (count_stat.c) is significantly faster on updates than
the array-based implementation (count_end.c), but is slower at reads, and suffers
severe lock contention when there are many parallel readers. This contention can be
addressed using the deferred-processing techniques introduced in Chapter 8, as shown
on the count_end_rcu.c row of Table 4.1. Deferred processing also shines on the
count_stat_eventual.c row, courtesy of eventual consistency.

Quick Quiz 4.58: On the count_stat.c row of Table 4.1, we see that the update
side scales linearly with the number of threads. How is that possible given that the more
threads there are, the more per-thread counters must be summed up?

Quick Quiz 4.59: Even on the last row of Table 4.1, the read-side performance of
these statistical counter implementations is pretty horrible. So why bother with them?

Figure 4.2 shows the performance of the parallel limit-counting algorithms. Exact
enforcement of the limits incurs a substantial performance penalty, although on this
4.7GHz Power-6 system that penalty can be reduced by substituting read-side signals
for update-side atomic operations. All of these implementations suffer from read-side
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lock contention in the face of concurrent readers.
Quick Quiz 4.60: Given the performance data shown in Table 4.2, we should

always prefer update-side signals over read-side atomic operations, right?
Quick Quiz 4.61: Can advanced techniques be applied to address the lock con-

tention for readers seen in Table 4.2?
The fact that these algorithms only work well in their respective special cases might

be considered a major problem with parallel programming in general. After all, the
C-language ++ operator works just fine in single-threaded code, and not just for special
cases, but in general, right?

This line of reasoning does contain a grain of truth, but is in essence misguided.
The problem is not parallelism as such, but rather scalability. To understand this, first
consider the C-language ++ operator. The fact is that it does not work in general, only
for a restricted range of numbers. If you need to deal with 1,000-digit decimal numbers,
the C-language ++ operator will not work for you.

Quick Quiz 4.62: The ++ operator works just fine for 1,000-digit numbers! Haven’t
you heard of operator overloading???

This problem is not specific to arithmetic. Suppose you need to store and query data.
Should you use an ASCII file, XML, a relational database, a linked list, a dense array, a
B-tree, a radix tree, or any of the plethora of other data structures and environments that
permit data to be stored and queried? It depends on what you need to do, how fast you
need it done, and how large your data set is.

Similarly, if you need to count, your solution will depend on how large of numbers
you need to work with, how many CPUs need to be manipulating a given number
concurrently, how the number is to be used, and what level of performance and scalability
you will need.

Nor is this problem specific to software. The design for a bridge meant to allow
people to walk across a small brook might be a simple as a single wooden plank. But
you would probably not use a plank to span the kilometers-wide mouth of the Columbia
River, nor would such a design be advisable for bridges carrying concrete trucks. In
short, just as bridge design must change with increasing span and load, so must software
design change as the number of CPUs increases.

The examples in this chapter have shown that an important tool permitting large
numbers of CPUs to be brought to bear is partitioning. The counters might be fully
partitioned, as in the statistical counters discussed in Section 4.2, or partially partitioned
as in the limit counters discussed in Sections 4.3 and 4.4. Partitioning in general will be
considered in far greater depth in Chapter 5, and partial parallelization in particular in
Section 5.4, where it is called parallel fastpath.

Quick Quiz 4.63: But if we are going to have to partition everything, why bother
with shared-memory multithreading? Why not just partition the problem completely
and run as multiple processes, each in its own address space?

The partially partitioned counting algorithms used locking to guard the global data,
and locking is the subject of Chapter 6. In contrast, the partitioned data tended to be fully
under the control of the corresponding thread, so that no synchronization whatsoever
was required. This data ownership will be introduced in Section 5.3.4 and discussed in
more detail in Chapter 7.

Finally, the eventually consistent statistical counter discussed in Section 4.2.3
showed how deferring activity (in that case, updating the global counter) can pro-
vide substantial performance and scalability benefits. Chapter 8 will examine a number
of additional ways that deferral can improve performance, scalability, and even real-time
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response.
In short, as noted at the beginning of this chapter, the simplicity of the concepts

underlying counting have allowed us to explore many fundamental concurrency issues
without the distraction of elaborate data structures or complex synchronization primitives.
Later chapters will dig more deeply into these issues.
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Chapter 5

Partitioning and
Synchronization Design

This chapter describes how to design software to take advantage of the multiple CPUs
that are increasingly appearing in commodity systems. It does this by presenting a
number of idioms, or “design patterns” [Ale79, GHJV95, SSRB00] that can help you
balance performance, scalability, and response time. As noted in earlier chapters, the
most important decision you will make when creating parallel software is how to carry
out the partitioning. Correctly partitioned problems lead to simple, scalable, and high-
performance solutions, while poorly partitioned problems result in slow and complex
solutions. This chapter will help you design partitioning into your code. The word
“design” is very important: You should partition first and code second. Reversing this
order often leads to poor performance and scalability along with great frustration.

To this end, Section 5.1 presents partitioning exercises, Section 5.2 reviews partition-
ability design criteria, Section 5.3 discusses selecting an appropriate synchronization
granularity, Section 5.4 gives an overview of important parallel-fastpath designs that
provide speed and scalability in the common case with a simpler but less-scalable
fallback “slow path” for unusual situations, and finally Section 5.5 takes a brief look
beyond partitioning.

5.1 Partitioning Exercises
This section uses a pair of exercises (the classic Dining Philosophers problem and a
double-ended queue) to demonstrate the value of partitioning.

5.1.1 Dining Philosophers Problem
Figure 5.1 shows a diagram of the classic Dining Philosophers problem [Dij71]. This
problem features five philosophers who do nothing but think and eat a “very difficult
kind of spaghetti” which requires two forks to eat. A given philosopher is permitted to
use only the forks to his or her immediate right and left, and once a philosopher picks
up a fork, he or she will not put it down until sated.1

1 Readers who have difficulty imagining a food that requires two forks are invited to instead think in terms
of chopsticks.
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Figure 5.1: Dining Philosophers Problem

Figure 5.2: Partial Starvation Is Also Bad

The object is to construct an algorithm that, quite literally, prevents starvation. One
starvation scenario would be if all of the philosophers picked up their leftmost forks
simultaneously. Because none of them would put down their fork until after they ate, and
because none of them may pick up their second fork until at least one has finished eating,
they all starve. Please note that it is not sufficient to allow at least one philosopher to
eat. As Figure 5.2 shows, starvation of even a few of the philosophers is to be avoided.

Dijkstra’s solution used a global semaphore, which works fine assuming negligible
communications delays, an assumption that became invalid in the late 1980s or early
1990s.2 Therefore, recent solutions number the forks as shown in Figure 5.3. Each
philosopher picks up the lowest-numbered fork next to his or her plate, then picks up
the highest-numbered fork. The philosopher sitting in the uppermost position in the

2 It is all too easy to denigrate Dijkstra from the viewpoint of the year 2012, more than 40 years after the
fact. If you still feel the need to denigrate Dijkstra, my advice is to publish something, wait 40 years, and then
see how your words stood the test of time.
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Figure 5.3: Dining Philosophers Problem, Textbook Solution

diagram thus picks up the leftmost fork first, then the rightmost fork, while the rest of the
philosophers instead pick up their rightmost fork first. Because two of the philosophers
will attempt to pick up fork 1 first, and because only one of those two philosophers will
succeed, there will be five forks available to four philosophers. At least one of these
four will be guaranteed to have two forks, and thus be able to proceed eating.

This general technique of numbering resources and acquiring them in numerical
order is heavily used as a deadlock-prevention technique. However, it is easy to imagine
a sequence of events that will result in only one philosopher eating at a time even though
all are hungry:

1. P2 picks up fork 1, preventing P1 from taking a fork.

2. P3 picks up fork 2.

3. P4 picks up fork 3.

4. P5 picks up fork 4.

5. P5 picks up fork 5 and eats.

6. P5 puts down forks 4 and 5.

7. P4 picks up fork 4 and eats.

In short, this algorithm can result in only one philosopher eating at a given time,
even when all five philosophers are hungry, despite the fact that there are more than
enough forks for two philosophers to eat concurrently.

Please think about ways of partitioning the Dining Philosophers Problem before
reading further.
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Figure 5.4: Dining Philosophers Problem, Partitioned

One approach is shown in Figure 5.4, which includes four philosophers rather than
five to better illustrate the partition technique. Here the upper and rightmost philosophers
share a pair of forks, while the lower and leftmost philosophers share another pair of
forks. If all philosophers are simultaneously hungry, at least two will always be able to
eat concurrently. In addition, as shown in the figure, the forks can now be bundled so
that the pair are picked up and put down simultaneously, simplifying the acquisition and
release algorithms.

Quick Quiz 5.1: Is there a better solution to the Dining Philosophers Problem?
This is an example of “horizontal parallelism” [Inm85] or “data parallelism”, so

named because there is no dependency among the pairs of philosophers. In a horizontally
parallel data-processing system, a given item of data would be processed by only one of
a replicated set of software components.

Quick Quiz 5.2: And in just what sense can this “horizontal parallelism” be said to
be “horizontal”?

5.1.2 Double-Ended Queue
A double-ended queue is a data structure containing a list of elements that may be
inserted or removed from either end [Knu73]. It has been claimed that a lock-based
implementation permitting concurrent operations on both ends of the double-ended
queue is difficult [Gro07]. This section shows how a partitioning design strategy can
result in a reasonably simple implementation, looking at three general approaches in the
following sections.

5.1.2.1 Left- and Right-Hand Locks

One seemingly straightforward approach would be to use a doubly linked list with a
left-hand lock for left-hand-end enqueue and dequeue operations along with a right-hand
lock for right-hand-end operations, as shown in Figure 5.5. However, the problem with
this approach is that the two locks’ domains must overlap when there are fewer than
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Figure 5.5: Double-Ended Queue With Left- and Right-Hand Locks
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Figure 5.6: Compound Double-Ended Queue

four elements on the list. This overlap is due to the fact that removing any given element
affects not only that element, but also its left- and right-hand neighbors. These domains
are indicated by color in the figure, with blue with downward stripes indicating the
domain of the left-hand lock, red with upward stripes indicating the domain of the
right-hand lock, and purple (with no stripes) indicating overlapping domains. Although
it is possible to create an algorithm that works this way, the fact that it has no fewer than
five special cases should raise a big red flag, especially given that concurrent activity at
the other end of the list can shift the queue from one special case to another at any time.
It is far better to consider other designs.

5.1.2.2 Compound Double-Ended Queue

One way of forcing non-overlapping lock domains is shown in Figure 5.6. Two separate
double-ended queues are run in tandem, each protected by its own lock. This means
that elements must occasionally be shuttled from one of the double-ended queues to
the other, in which case both locks must be held. A simple lock hierarchy may be used
to avoid deadlock, for example, always acquiring the left-hand lock before acquiring
the right-hand lock. This will be much simpler than applying two locks to the same
double-ended queue, as we can unconditionally left-enqueue elements to the left-hand

84



Lock 0

DEQ 0 DEQ 1

Lock 1

DEQ 2

Lock 2

DEQ 3

Lock 3

Index R

Lock RLock L

Index L

Figure 5.7: Hashed Double-Ended Queue

queue and right-enqueue elements to the right-hand queue. The main complication
arises when dequeuing from an empty queue, in which case it is necessary to:

1. If holding the right-hand lock, release it and acquire the left-hand lock.

2. Acquire the right-hand lock.

3. Rebalance the elements across the two queues.

4. Remove the required element if there is one.

5. Release both locks.

Quick Quiz 5.3: In this compound double-ended queue implementation, what
should be done if the queue has become non-empty while releasing and reacquiring the
lock?

The rebalancing operation might well shuttle a given element back and forth between
the two queues, wasting time and possibly requiring workload-dependent heuristics to
obtain optimal performance. Although this might well be the best approach in some
cases, it is interesting to try for an algorithm with greater determinism.

5.1.2.3 Hashed Double-Ended Queue

One of the simplest and most effective ways to deterministically partition a data structure
is to hash it. It is possible to trivially hash a double-ended queue by assigning each
element a sequence number based on its position in the list, so that the first element left-
enqueued into an empty queue is numbered zero and the first element right-enqueued
into an empty queue is numbered one. A series of elements left-enqueued into an
otherwise-idle queue would be assigned decreasing numbers (-1, -2, -3, ...), while
a series of elements right-enqueued into an otherwise-idle queue would be assigned
increasing numbers (2, 3, 4, ...). A key point is that it is not necessary to actually
represent a given element’s number, as this number will be implied by its position in the
queue.

Given this approach, we assign one lock to guard the left-hand index, one to guard
the right-hand index, and one lock for each hash chain. Figure 5.7 shows the resulting
data structure given four hash chains. Note that the lock domains do not overlap, and
that deadlock is avoided by acquiring the index locks before the chain locks, and by
never acquiring more than one lock of each type (index or chain) at a time.
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Figure 5.8: Hashed Double-Ended Queue After Insertions

Each hash chain is itself a double-ended queue, and in this example, each holds
every fourth element. The uppermost portion of Figure 5.8 shows the state after a
single element (“R1”) has been right-enqueued, with the right-hand index having been
incremented to reference hash chain 2. The middle portion of this same figure shows
the state after three more elements have been right-enqueued. As you can see, the
indexes are back to their initial states (see Figure 5.7), however, each hash chain is
now non-empty. The lower portion of this figure shows the state after three additional
elements have been left-enqueued and an additional element has been right-enqueued.

From the last state shown in Figure 5.8, a left-dequeue operation would return
element “L-2” and leave the left-hand index referencing hash chain 2, which would
then contain only a single element (“R2”). In this state, a left-enqueue running concur-
rently with a right-enqueue would result in lock contention, but the probability of such
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Figure 5.9: Hashed Double-Ended Queue With 12 Elements

1 struct pdeq {
2 spinlock_t llock;
3 int lidx;
4 spinlock_t rlock;
5 int ridx;
6 struct deq bkt[DEQ_N_BKTS];
7 };

Figure 5.10: Lock-Based Parallel Double-Ended Queue Data Structure

contention can be reduced to arbitrarily low levels by using a larger hash table.
Figure 5.9 shows how 12 elements would be organized in a four-hash-bucket parallel

double-ended queue. Each underlying single-lock double-ended queue holds a one-
quarter slice of the full parallel double-ended queue.

Figure 5.10 shows the corresponding C-language data structure, assuming an existing
struct deq that provides a trivially locked double-ended-queue implementation.
This data structure contains the left-hand lock on line 2, the left-hand index on line 3,
the right-hand lock on line 4 (which is cache-aligned in the actual implementation),
the right-hand index on line 5, and, finally, the hashed array of simple lock-based
double-ended queues on line 6. A high-performance implementation would of course
use padding or special alignment directives to avoid false sharing.

Figure 5.11 (lockhdeq.c) shows the implementation of the enqueue and de-
queue functions.3 Discussion will focus on the left-hand operations, as the right-hand
operations are trivially derived from them.

Lines 1-13 show pdeq_pop_l(), which left-dequeues and returns an element if
possible, returning NULL otherwise. Line 6 acquires the left-hand spinlock, and line 7
computes the index to be dequeued from. Line 8 dequeues the element, and, if line 9
finds the result to be non-NULL, line 10 records the new left-hand index. Either way,
line 11 releases the lock, and, finally, line 12 returns the element if there was one, or
NULL otherwise.

Lines 29-38 shows pdeq_push_l(), which left-enqueues the specified element.
Line 33 acquires the left-hand lock, and line 34 picks up the left-hand index. Line 35 left-
enqueues the specified element onto the double-ended queue indexed by the left-hand
index. Line 36 then updates the left-hand index and line 37 releases the lock.

As noted earlier, the right-hand operations are completely analogous to their left-
handed counterparts, so their analysis is left as an exercise for the reader.

Quick Quiz 5.4: Is the hashed double-ended queue a good solution? Why or why
not?

3 One could easily create a polymorphic implementation in any number of languages, but doing so is left
as an exercise for the reader.
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1 struct cds_list_head *pdeq_pop_l(struct pdeq *d)
2 {
3 struct cds_list_head *e;
4 int i;
5
6 spin_lock(&d->llock);
7 i = moveright(d->lidx);
8 e = deq_pop_l(&d->bkt[i]);
9 if (e != NULL)
10 d->lidx = i;
11 spin_unlock(&d->llock);
12 return e;
13 }
14
15 struct cds_list_head *pdeq_pop_r(struct pdeq *d)
16 {
17 struct cds_list_head *e;
18 int i;
19
20 spin_lock(&d->rlock);
21 i = moveleft(d->ridx);
22 e = deq_pop_r(&d->bkt[i]);
23 if (e != NULL)
24 d->ridx = i;
25 spin_unlock(&d->rlock);
26 return e;
27 }
28
29 void pdeq_push_l(struct cds_list_head *e, struct pdeq *d)
30 {
31 int i;
32
33 spin_lock(&d->llock);
34 i = d->lidx;
35 deq_push_l(e, &d->bkt[i]);
36 d->lidx = moveleft(d->lidx);
37 spin_unlock(&d->llock);
38 }
39
40 void pdeq_push_r(struct cds_list_head *e, struct pdeq *d)
41 {
42 int i;
43
44 spin_lock(&d->rlock);
45 i = d->ridx;
46 deq_push_r(e, &d->bkt[i]);
47 d->ridx = moveright(d->ridx);
48 spin_unlock(&d->rlock);
49 }

Figure 5.11: Lock-Based Parallel Double-Ended Queue Implementation

88



5.1.2.4 Compound Double-Ended Queue Revisited

This section revisits the compound double-ended queue, using a trivial rebalancing
scheme that moves all the elements from the non-empty queue to the now-empty queue.

Quick Quiz 5.5: Move all the elements to the queue that became empty? In what
possible universe is this brain-dead solution in any way optimal???

In contrast to the hashed implementation presented in the previous section, the
compound implementation will build on a sequential implementation of a double-ended
queue that uses neither locks nor atomic operations.

Figure 5.12 shows the implementation. Unlike the hashed implementation, this
compound implementation is asymmetric, so that we must consider the pdeq_pop_
l() and pdeq_pop_r() implementations separately.

Quick Quiz 5.6: Why can’t the compound parallel double-ended queue implemen-
tation be symmetric?

The pdeq_pop_l() implementation is shown on lines 1-16 of the figure. Line
5 acquires the left-hand lock, which line 14 releases. Line 6 attempts to left-dequeue
an element from the left-hand underlying double-ended queue, and, if successful, skips
lines 8-13 to simply return this element. Otherwise, line 8 acquires the right-hand
lock, line 9 left-dequeues an element from the right-hand queue, and line 10 moves any
remaining elements on the right-hand queue to the left-hand queue, line 11 initializes
the right-hand queue, and line 12 releases the right-hand lock. The element, if any, that
was dequeued on line 10 will be returned.

The pdeq_pop_r() implementation is shown on lines 18-38 of the figure. As
before, line 22 acquires the right-hand lock (and line 36 releases it), and line 23 attempts
to right-dequeue an element from the right-hand queue, and, if successful, skips lines 24-
35 to simply return this element. However, if line 24 determines that there was no
element to dequeue, line 25 releases the right-hand lock and lines 26-27 acquire both
locks in the proper order. Line 28 then attempts to right-dequeue an element from the
right-hand list again, and if line 29 determines that this second attempt has failed, line 30
right-dequeues an element from the left-hand queue (if there is one available), line 31
moves any remaining elements from the left-hand queue to the right-hand queue, and
line 32 initializes the left-hand queue. Either way, line 34 releases the left-hand lock.

Quick Quiz 5.7: Why is it necessary to retry the right-dequeue operation on line 28
of Figure 5.12?

Quick Quiz 5.8: Surely the left-hand lock must sometimes be available!!! So why
is it necessary that line 25 of Figure 5.12 unconditionally release the right-hand lock?

The pdeq_push_l() implementation is shown on lines 40-47 of Figure 5.12.
Line 44 acquires the left-hand spinlock, line 45 left-enqueues the element onto the
left-hand queue, and finally line 46 releases the lock. The pdeq_enqueue_r()
implementation (shown on lines 49-56) is quite similar.

5.1.2.5 Double-Ended Queue Discussion

The compound implementation is somewhat more complex than the hashed variant
presented in Section 5.1.2.3, but is still reasonably simple. Of course, a more intelligent
rebalancing scheme could be arbitrarily complex, but the simple scheme shown here
has been shown to perform well compared to software alternatives [DCW+11] and even
compared to algorithms using hardware assist [DLM+10]. Nevertheless, the best we
can hope for from such a scheme is 2x scalability, as at most two threads can be holding
the dequeue’s locks concurrently. This limitation also applies to algorithms based on
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1 struct cds_list_head *pdeq_pop_l(struct pdeq *d)
2 {
3 struct cds_list_head *e;
4
5 spin_lock(&d->llock);
6 e = deq_pop_l(&d->ldeq);
7 if (e == NULL) {
8 spin_lock(&d->rlock);
9 e = deq_pop_l(&d->rdeq);
10 cds_list_splice(&d->rdeq.chain, &d->ldeq.chain);
11 CDS_INIT_LIST_HEAD(&d->rdeq.chain);
12 spin_unlock(&d->rlock);
13 }
14 spin_unlock(&d->llock);
15 return e;
16 }
17
18 struct cds_list_head *pdeq_pop_r(struct pdeq *d)
19 {
20 struct cds_list_head *e;
21
22 spin_lock(&d->rlock);
23 e = deq_pop_r(&d->rdeq);
24 if (e == NULL) {
25 spin_unlock(&d->rlock);
26 spin_lock(&d->llock);
27 spin_lock(&d->rlock);
28 e = deq_pop_r(&d->rdeq);
29 if (e == NULL) {
30 e = deq_pop_r(&d->ldeq);
31 cds_list_splice(&d->ldeq.chain, &d->rdeq.chain);
32 CDS_INIT_LIST_HEAD(&d->ldeq.chain);
33 }
34 spin_unlock(&d->llock);
35 }
36 spin_unlock(&d->rlock);
37 return e;
38 }
39
40 void pdeq_push_l(struct cds_list_head *e, struct pdeq *d)
41 {
42 int i;
43
44 spin_lock(&d->llock);
45 deq_push_l(e, &d->ldeq);
46 spin_unlock(&d->llock);
47 }
48
49 void pdeq_push_r(struct cds_list_head *e, struct pdeq *d)
50 {
51 int i;
52
53 spin_lock(&d->rlock);
54 deq_push_r(e, &d->rdeq);
55 spin_unlock(&d->rlock);
56 }

Figure 5.12: Compound Parallel Double-Ended Queue Implementation
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non-blocking synchronization, such as the compare-and-swap-based dequeue algorithm
of Michael [Mic03].4

In fact, as noted by Dice et al. [DLM+10], an unsynchronized single-threaded
double-ended queue significantly outperforms any of the parallel implementations they
studied. Therefore, the key point is that there can be significant overhead enqueuing to
or dequeuing from a shared queue, regardless of implementation. This should come as
no surprise given the material in Chapter 2, given the strict FIFO nature of these queues.

Furthermore, these strict FIFO queues are strictly FIFO only with respect to lin-
earization points [HW90]5 that are not visible to the caller, in fact, in these examples,
the linearization points are buried in the lock-based critical sections. These queues
are not strictly FIFO with respect to (say) the times at which the individual operations
started [HKLP12]. This indicates that the strict FIFO property is not all that valuable in
concurrent programs, and in fact, Kirsch et al. present less-strict queues that provide
improved performance and scalability [KLP12].6 All that said, if you are pushing all
the data used by your concurrent program through a single queue, you really need to
rethink your overall design.

5.1.3 Partitioning Example Discussion
The optimal solution to the dining philosophers problem given in the answer to the
Quick Quiz in Section 5.1.1 is an excellent example of “horizontal parallelism” or “data
parallelism”. The synchronization overhead in this case is nearly (or even exactly)
zero. In contrast, the double-ended queue implementations are examples of “vertical
parallelism” or “pipelining”, given that data moves from one thread to another. The
tighter coordination required for pipelining in turn requires larger units of work to obtain
a given level of efficiency.

Quick Quiz 5.9: The tandem double-ended queue runs about twice as fast as the
hashed double-ended queue, even when I increase the size of the hash table to an
insanely large number. Why is that?

Quick Quiz 5.10: Is there a significantly better way of handling concurrency for
double-ended queues?

These two examples show just how powerful partitioning can be in devising parallel
algorithms. Section 5.3.5 looks briefly at a third example, matrix multiply. However, all
three of these examples beg for more and better design criteria for parallel programs, a
topic taken up in the next section.

5.2 Design Criteria
One way to obtain the best performance and scalability is to simply hack away until
you converge on the best possible parallel program. Unfortunately, if your program is
other than microscopically tiny, the space of possible parallel programs is so huge that

4 This paper is interesting in that it showed that special double-compare-and-swap (DCAS) instructions are
not needed for lock-free implementations of double-ended queues. Instead, the common compare-and-swap
(e.g., x86 cmpxchg) suffices.

5 In short, a linearization point is a single point within a given function where that function can be said
to have taken effect. In this lock-based implementation, the linearization points can be said to be anywhere
within the critical section that does the work.

6 Nir Shavit produced relaxed stacks for roughly the same reasons [Sha11]. This situation leads some to
believe that the linearization points are useful to theorists rather than developers, and leads others to wonder
to what extent the designers of such data structures and algorithms were considering the needs of their users.

91



convergence is not guaranteed in the lifetime of the universe. Besides, what exactly is
the “best possible parallel program”? After all, Section 1.2 called out no fewer than
three parallel-programming goals of performance, productivity, and generality, and
the best possible performance will likely come at a cost in terms of productivity and
generality. We clearly need to be able to make higher-level choices at design time in
order to arrive at an acceptably good parallel program before that program becomes
obsolete.

However, more detailed design criteria are required to actually produce a real-world
design, a task taken up in this section. This being the real world, these criteria often
conflict to a greater or lesser degree, requiring that the designer carefully balance the
resulting tradeoffs.

As such, these criteria may be thought of as the “forces” acting on the design, with
particularly good tradeoffs between these forces being called “design patterns” [Ale79,
GHJV95].

The design criteria for attaining the three parallel-programming goals are speedup,
contention, overhead, read-to-write ratio, and complexity:

Speedup: As noted in Section 1.2, increased performance is the major reason to go to
all of the time and trouble required to parallelize it. Speedup is defined to be the
ratio of the time required to run a sequential version of the program to the time
required to run a parallel version.

Contention: If more CPUs are applied to a parallel program than can be kept busy
by that program, the excess CPUs are prevented from doing useful work by
contention. This may be lock contention, memory contention, or a host of other
performance killers.

Work-to-Synchronization Ratio: A uniprocessor, single-threaded, non-preemptible,
and non-interruptible7 version of a given parallel program would not need any
synchronization primitives. Therefore, any time consumed by these primitives
(including communication cache misses as well as message latency, locking
primitives, atomic instructions, and memory barriers) is overhead that does not
contribute directly to the useful work that the program is intended to accomplish.
Note that the important measure is the relationship between the synchroniza-
tion overhead and the overhead of the code in the critical section, with larger
critical sections able to tolerate greater synchronization overhead. The work-to-
synchronization ratio is related to the notion of synchronization efficiency.

Read-to-Write Ratio: A data structure that is rarely updated may often be replicated
rather than partitioned, and furthermore may be protected with asymmetric syn-
chronization primitives that reduce readers’ synchronization overhead at the
expense of that of writers, thereby reducing overall synchronization overhead.
Corresponding optimizations are possible for frequently updated data structures,
as discussed in Chapter 4.

Complexity: A parallel program is more complex than an equivalent sequential pro-
gram because the parallel program has a much larger state space than does the
sequential program, although these larger state spaces can in some cases be easily
understood given sufficient regularity and structure. A parallel programmer must

7 Either by masking interrupts or by being oblivious to them.
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consider synchronization primitives, messaging, locking design, critical-section
identification, and deadlock in the context of this larger state space.

This greater complexity often translates to higher development and maintenance
costs. Therefore, budgetary constraints can limit the number and types of modifi-
cations made to an existing program, since a given degree of speedup is worth
only so much time and trouble. Worse yet, added complexity can actually reduce
performance and scalability.

Therefore, beyond a certain point, there may be potential sequential optimizations
that are cheaper and more effective than parallelization. As noted in Section 1.2.1,
parallelization is but one performance optimization of many, and is furthermore
an optimization that applies most readily to CPU-based bottlenecks.

These criteria will act together to enforce a maximum speedup. The first three criteria are
deeply interrelated, so the remainder of this section analyzes these interrelationships.8

Note that these criteria may also appear as part of the requirements specification.
For example, speedup may act as a relative desideratum (“the faster, the better”) or as
an absolute requirement of the workload (“the system must support at least 1,000,000
web hits per second”). Classic design pattern languages describe relative desiderata as
forces and absolute requirements as context.

An understanding of the relationships between these design criteria can be very
helpful when identifying appropriate design tradeoffs for a parallel program.

1. The less time a program spends in critical sections, the greater the potential
speedup. This is a consequence of Amdahl’s Law [Amd67] and of the fact that
only one CPU may execute within a given critical section at a given time.

More specifically, the fraction of time that the program spends in a given exclusive
critical section must be much less than the reciprocal of the number of CPUs for
the actual speedup to approach the number of CPUs. For example, a program
running on 10 CPUs must spend much less than one tenth of its time in the
most-restrictive critical section if it is to scale at all well.

2. Contention effects will consume the excess CPU and/or wallclock time should
the actual speedup be less than the number of available CPUs. The larger the
gap between the number of CPUs and the actual speedup, the less efficiently the
CPUs will be used. Similarly, the greater the desired efficiency, the smaller the
achievable speedup.

3. If the available synchronization primitives have high overhead compared to the
critical sections that they guard, the best way to improve speedup is to reduce
the number of times that the primitives are invoked (perhaps by batching critical
sections, using data ownership, using asymmetric primitives (see Section 8), or
by moving toward a more coarse-grained design such as code locking).

4. If the critical sections have high overhead compared to the primitives guarding
them, the best way to improve speedup is to increase parallelism by moving to
reader/writer locking, data locking, asymmetric, or data ownership.

8 A real-world parallel system will be subject to many additional design criteria, such as data-structure
layout, memory size, memory-hierarchy latencies, bandwidth limitations, and I/O issues.
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Figure 5.13: Design Patterns and Lock Granularity

5. If the critical sections have high overhead compared to the primitives guarding
them and the data structure being guarded is read much more often than modi-
fied, the best way to increase parallelism is to move to reader/writer locking or
asymmetric primitives.

6. Many changes that improve SMP performance, for example, reducing lock con-
tention, also improve real-time latencies [McK05d].

Quick Quiz 5.11: Don’t all these problems with critical sections mean that we
should just always use non-blocking synchronization [Her90], which don’t have critical
sections?

5.3 Synchronization Granularity
Figure 5.13 gives a pictorial view of different levels of synchronization granularity, each
of which is described in one of the following sections. These sections focus primarily
on locking, but similar granularity issues arise with all forms of synchronization.

5.3.1 Sequential Program
If the program runs fast enough on a single processor, and has no interactions with
other processes, threads, or interrupt handlers, you should remove the synchronization
primitives and spare yourself their overhead and complexity. Some years back, there
were those who would argue that Moore’s Law would eventually force all programs
into this category. However, as can be seen in Figure 5.14, the exponential increase in
single-threaded performance halted in about 2003. Therefore, increasing performance
will increasingly require parallelism.9 The debate as to whether this new trend will

9 This plot shows clock frequencies for newer CPUs theoretically capable of retiring one or more
instructions per clock, and MIPS for older CPUs requiring multiple clocks to execute even the simplest
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result in single chips with thousands of CPUs will not be settled soon, but given that
Paul is typing this sentence on a dual-core laptop, the age of SMP does seem to be upon
us. It is also important to note that Ethernet bandwidth is continuing to grow, as shown
in Figure 5.15. This growth will motivate multithreaded servers in order to handle the
communications load.
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Figure 5.14: MIPS/Clock-Frequency Trend for Intel CPUs
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Figure 5.15: Ethernet Bandwidth vs. Intel x86 CPU Performance

Please note that this does not mean that you should code each and every program in

instruction. The reason for taking this approach is that the newer CPUs’ ability to retire multiple instructions
per clock is typically limited by memory-system performance.
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a multi-threaded manner. Again, if a program runs quickly enough on a single processor,
spare yourself the overhead and complexity of SMP synchronization primitives. The
simplicity of the hash-table lookup code in Figure 5.16 underscores this point.10 A key
point is that speedups due to parallelism are normally limited to the number of CPUs.
In contrast, speedups due to sequential optimizations, for example, careful choice of
data structure, can be arbitrarily large.

1 struct hash_table
2 {
3 long nbuckets;
4 struct node **buckets;
5 };
6
7 typedef struct node {
8 unsigned long key;
9 struct node *next;
10 } node_t;
11
12 int hash_search(struct hash_table *h, long key)
13 {
14 struct node *cur;
15
16 cur = h->buckets[key % h->nbuckets];
17 while (cur != NULL) {
18 if (cur->key >= key) {
19 return (cur->key == key);
20 }
21 cur = cur->next;
22 }
23 return 0;
24 }

Figure 5.16: Sequential-Program Hash Table Search

On the other hand, if you are not in this happy situation, read on!

5.3.2 Code Locking
Code locking is quite simple due to the fact that is uses only global locks.11 It is
especially easy to retrofit an existing program to use code locking in order to run it on a
multiprocessor. If the program has only a single shared resource, code locking will even
give optimal performance. However, many of the larger and more complex programs
require much of the execution to occur in critical sections, which in turn causes code
locking to sharply limits their scalability.

Therefore, you should use code locking on programs that spend only a small fraction
of their execution time in critical sections or from which only modest scaling is required.
In these cases, code locking will provide a relatively simple program that is very similar
to its sequential counterpart, as can be seen in Figure 5.17. However, note that the
simple return of the comparison in hash_search() in Figure 5.16 has now become
three statements due to the need to release the lock before returning.

Unfortunately, code locking is particularly prone to “lock contention”, where mul-
tiple CPUs need to acquire the lock concurrently. SMP programmers who have taken
care of groups of small children (or groups of older people who are acting like children)

10 The examples in this section are taken from Hart et al. [HMB06], adapted for clarity by gathering related
code from multiple files.

11 If your program instead has locks in data structures, or, in the case of Java, uses classes with synchronized
instances, you are instead using “data locking”, described in Section 5.3.3.
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1 spinlock_t hash_lock;
2
3 struct hash_table
4 {
5 long nbuckets;
6 struct node **buckets;
7 };
8
9 typedef struct node {
10 unsigned long key;
11 struct node *next;
12 } node_t;
13
14 int hash_search(struct hash_table *h, long key)
15 {
16 struct node *cur;
17 int retval;
18
19 spin_lock(&hash_lock);
20 cur = h->buckets[key % h->nbuckets];
21 while (cur != NULL) {
22 if (cur->key >= key) {
23 retval = (cur->key == key);
24 spin_unlock(&hash_lock);
25 return retval;
26 }
27 cur = cur->next;
28 }
29 spin_unlock(&hash_lock);
30 return 0;
31 }

Figure 5.17: Code-Locking Hash Table Search

will immediately recognize the danger of having only one of something, as illustrated in
Figure 5.18.

One solution to this problem, named “data locking”, is described in the next section.

5.3.3 Data Locking
Many data structures may be partitioned, with each partition of the data structure having
its own lock. Then the critical sections for each part of the data structure can execute
in parallel, although only one instance of the critical section for a given part could be
executing at a given time. You should use data locking when contention must be reduced,
and where synchronization overhead is not limiting speedups. Data locking reduces
contention by distributing the instances of the overly-large critical section across multiple
data structures, for example, maintaining per-hash-bucket critical sections in a hash
table, as shown in Figure 5.19. The increased scalability again results in a slight increase
in complexity in the form of an additional data structure, the struct bucket.

In contrast with the contentious situation shown in Figure 5.18, data locking helps
promote harmony, as illustrated by Figure 5.20 — and in parallel programs, this almost
always translates into increased performance and scalability. For this reason, data
locking was heavily used by Sequent in both its DYNIX and DYNIX/ptx operating
systems [BK85, Inm85, Gar90, Dov90, MD92, MG92, MS93].

However, as those who have taken care of small children can again attest, even
providing enough to go around is no guarantee of tranquillity. The analogous situation
can arise in SMP programs. For example, the Linux kernel maintains a cache of files
and directories (called “dcache”). Each entry in this cache has its own lock, but the
entries corresponding to the root directory and its direct descendants are much more
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Figure 5.18: Lock Contention

likely to be traversed than are more obscure entries. This can result in many CPUs
contending for the locks of these popular entries, resulting in a situation not unlike that
shown in Figure 5.21.

In many cases, algorithms can be designed to reduce the instance of data skew, and
in some cases eliminate it entirely (as appears to be possible with the Linux kernel’s
dcache [MSS04]). Data locking is often used for partitionable data structures such as
hash tables, as well as in situations where multiple entities are each represented by an
instance of a given data structure. The task list in version 2.6.17 of the Linux kernel is
an example of the latter, each task structure having its own proc_lock.

A key challenge with data locking on dynamically allocated structures is ensuring
that the structure remains in existence while the lock is being acquired. The code in
Figure 5.19 finesses this challenge by placing the locks in the statically allocated hash
buckets, which are never freed. However, this trick would not work if the hash table
were resizeable, so that the locks were now dynamically allocated. In this case, there
would need to be some means to prevent the hash bucket from being freed during the
time that its lock was being acquired.

Quick Quiz 5.12: What are some ways of preventing a structure from being freed
while its lock is being acquired?

5.3.4 Data Ownership

Data ownership partitions a given data structure over the threads or CPUs, so that
each thread/CPU accesses its subset of the data structure without any synchronization
overhead whatsoever. However, if one thread wishes to access some other thread’s data,
the first thread is unable to do so directly. Instead, the first thread must communicate
with the second thread, so that the second thread performs the operation on behalf of
the first, or, alternatively, migrates the data to the first thread.

Data ownership might seem arcane, but it is used very frequently:
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1 struct hash_table
2 {
3 long nbuckets;
4 struct bucket **buckets;
5 };
6
7 struct bucket {
8 spinlock_t bucket_lock;
9 node_t *list_head;
10 };
11
12 typedef struct node {
13 unsigned long key;
14 struct node *next;
15 } node_t;
16
17 int hash_search(struct hash_table *h, long key)
18 {
19 struct bucket *bp;
20 struct node *cur;
21 int retval;
22
23 bp = h->buckets[key % h->nbuckets];
24 spin_lock(&bp->bucket_lock);
25 cur = bp->list_head;
26 while (cur != NULL) {
27 if (cur->key >= key) {
28 retval = (cur->key == key);
29 spin_unlock(&bp->bucket_lock);
30 return retval;
31 }
32 cur = cur->next;
33 }
34 spin_unlock(&bp->bucket_lock);
35 return 0;
36 }

Figure 5.19: Data-Locking Hash Table Search
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Figure 5.20: Data Locking

1. Any variables accessible by only one CPU or thread (such as auto variables in
C and C++) are owned by that CPU or process.

2. An instance of a user interface owns the corresponding user’s context. It is
very common for applications interacting with parallel database engines to be
written as if they were entirely sequential programs. Such applications own the
user interface and his current action. Explicit parallelism is thus confined to the
database engine itself.

3. Parametric simulations are often trivially parallelized by granting each thread
ownership of a particular region of the parameter space. There are also computing
frameworks designed for this type of problem [UoC08].

If there is significant sharing, communication between the threads or CPUs can
result in significant complexity and overhead. Furthermore, if the most-heavily used data
happens to be that owned by a single CPU, that CPU will be a “hot spot”, sometimes
with results resembling that shown in Figure 5.21. However, in situations where no
sharing is required, data ownership achieves ideal performance, and with code that can
be as simple as the sequential-program case shown in Figure 5.16. Such situations
are often referred to as “embarrassingly parallel”, and, in the best case, resemble the
situation previously shown in Figure 5.20.

Another important instance of data ownership occurs when the data is read-only, in
which case, all threads can “own” it via replication.

Data ownership will be presented in more detail in Chapter 7.
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Figure 5.21: Data Locking and Skew

5.3.5 Locking Granularity and Performance

This section looks at locking granularity and performance from a mathematical synchronization-
efficiency viewpoint. Readers who are uninspired by mathematics might choose to skip
this section.

The approach is to use a crude queueing model for the efficiency of synchronization
mechanism that operate on a single shared global variable, based on an M/M/1 queue.
M/M/1 queuing models are based on an exponentially distributed “inter-arrival rate”
λ and an exponentially distributed “service rate” µ . The inter-arrival rate λ can be
thought of as the average number of synchronization operations per second that the
system would process if the synchronization were free, in other words, λ is an inverse
measure of the overhead of each non-synchronization unit of work. For example, if each
unit of work was a transaction, and if each transaction took one millisecond to process,
excluding synchronization overhead, then λ would be 1,000 transactions per second.

The service rate µ is defined similarly, but for the average number of synchronization
operations per second that the system would process if the overhead of each transac-
tion was zero, and ignoring the fact that CPUs must wait on each other to complete
their synchronization operations, in other words, µ can be roughly thought of as the
synchronization overhead in absence of contention. For example, suppose that each
synchronization operation involves an atomic increment instruction, and that a computer
system is able to do an atomic increment every 25 nanoseconds on each CPU to a private
variable.12 The value of µ is therefore about 40,000,000 atomic increments per second.

Of course, the value of λ increases with increasing numbers of CPUs, as each CPU
is capable of processing transactions independently (again, ignoring synchronization):

12 Of course, if there are 8 CPUs all incrementing the same shared variable, then each CPU must wait at
least 175 nanoseconds for each of the other CPUs to do its increment before consuming an additional 25
nanoseconds doing its own increment. In actual fact, the wait will be longer due to the need to move the
variable from one CPU to another.
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λ = nλ0 (5.1)

where n is the number of CPUs and λ0 is the transaction-processing capability of a
single CPU. Note that the expected time for a single CPU to execute a single transaction
is 1/λ0.

Because the CPUs have to “wait in line” behind each other to get their chance to
increment the single shared variable, we can use the M/M/1 queueing-model expression
for the expected total waiting time:

T =
1

µ−λ
(5.2)

Substituting the above value of λ :

T =
1

µ−nλ0
(5.3)

Now, the efficiency is just the ratio of the time required to process a transaction
in absence of synchronization (1/λ0) to the time required including synchronization
(T +1/λ0):

e =
1/λ0

T +1/λ0
(5.4)

Substituting the above value for T and simplifying:

e =
µ

λ0
−n

µ

λ0
− (n−1)

(5.5)

But the value of µ/λ0 is just the ratio of the time required to process the transaction
(absent synchronization overhead) to that of the synchronization overhead itself (absent
contention). If we call this ratio f , we have:

e =
f −n

f − (n−1)
(5.6)

Figure 5.22 plots the synchronization efficiency e as a function of the number of
CPUs/threads n for a few values of the overhead ratio f . For example, again using the
25-nanosecond atomic increment, the f = 10 line corresponds to each CPU attempting
an atomic increment every 250 nanoseconds, and the f = 100 line corresponds to each
CPU attempting an atomic increment every 2.5 microseconds, which in turn corresponds
to several thousand instructions. Given that each trace drops off sharply with increasing
numbers of CPUs or threads, we can conclude that synchronization mechanisms based
on atomic manipulation of a single global shared variable will not scale well if used
heavily on current commodity hardware. This is a mathematical depiction of the forces
leading to the parallel counting algorithms that were discussed in Chapter 4.

The concept of efficiency is useful even in cases having little or no formal synchro-
nization. Consider for example a matrix multiply, in which the columns of one matrix
are multiplied (via “dot product”) by the rows of another, resulting in an entry in a
third matrix. Because none of these operations conflict, it is possible to partition the
columns of the first matrix among a group of threads, with each thread computing the
corresponding columns of the result matrix. The threads can therefore operate entirely
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independently, with no synchronization overhead whatsoever, as is done in matmul.c.
One might therefore expect a parallel matrix multiply to have a perfect efficiency of 1.0.

However, Figure 5.23 tells a different story, especially for a 64-by-64 matrix multiply,
which never gets above an efficiency of about 0.7, even when running single-threaded.
The 512-by-512 matrix multiply’s efficiency is measurably less than 1.0 on as few as 10
threads, and even the 1024-by-1024 matrix multiply deviates noticeably from perfection
at a few tens of threads. Nevertheless, this figure clearly demonstrates the performance
and scalability benefits of batching: If you must incur synchronization overhead, you
may as well get your money’s worth.

Quick Quiz 5.13: How can a single-threaded 64-by-64 matrix multiple possibly
have an efficiency of less than 1.0? Shouldn’t all of the traces in Figure 5.23 have
efficiency of exactly 1.0 when running on only one thread?

Given these inefficiencies, it is worthwhile to look into more-scalable approaches
such as the data locking described in Section 5.3.3 or the parallel-fastpath approach
discussed in the next section.

Quick Quiz 5.14: How are data-parallel techniques going to help with matrix
multiply? It is already data parallel!!!

5.4 Parallel Fastpath
Fine-grained (and therefore usually higher-performance) designs are typically more
complex than are coarser-grained designs. In many cases, most of the overhead is
incurred by a small fraction of the code [Knu73]. So why not focus effort on that small
fraction?

This is the idea behind the parallel-fastpath design pattern, to aggressively parallelize
the common-case code path without incurring the complexity that would be required to
aggressively parallelize the entire algorithm. You must understand not only the specific
algorithm you wish to parallelize, but also the workload that the algorithm will be
subjected to. Great creativity and design effort is often required to construct a parallel
fastpath.

Parallel fastpath combines different patterns (one for the fastpath, one elsewhere)
and is therefore a template pattern. The following instances of parallel fastpath occur
often enough to warrant their own patterns, as depicted in Figure 5.24:

1. Reader/Writer Locking (described below in Section 5.4.1).

2. Read-copy update (RCU), which may be used as a high-performance replacement
for reader/writer locking, is introduced in Section 8.3, and will not be discussed
further in this chapter.

3. Hierarchical Locking ([McK96a]), which is touched upon in Section 5.4.2.

4. Resource Allocator Caches ([McK96a, MS93]). See Section 5.4.3 for more detail.

5.4.1 Reader/Writer Locking
If synchronization overhead is negligible (for example, if the program uses coarse-
grained parallelism with large critical sections), and if only a small fraction of the
critical sections modify data, then allowing multiple readers to proceed in parallel can
greatly increase scalability. Writers exclude both readers and each other. There are
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Figure 5.24: Parallel-Fastpath Design Patterns

many implementations of reader-writer locking, including the POSIX implementation
described in Section 3.2.4. Figure 5.25 shows how the hash search might be implemented
using reader-writer locking.

Reader/writer locking is a simple instance of asymmetric locking. Snaman [ST87]
describes a more ornate six-mode asymmetric locking design used in several clus-
tered systems. Locking in general and reader-writer locking in particular is described
extensively in Chapter 6.

5.4.2 Hierarchical Locking
The idea behind hierarchical locking is to have a coarse-grained lock that is held only
long enough to work out which fine-grained lock to acquire. Figure 5.26 shows how our
hash-table search might be adapted to do hierarchical locking, but also shows the great
weakness of this approach: we have paid the overhead of acquiring a second lock, but
we only hold it for a short time. In this case, the simpler data-locking approach would
be simpler and likely perform better.

Quick Quiz 5.15: In what situation would hierarchical locking work well?

5.4.3 Resource Allocator Caches
This section presents a simplified schematic of a parallel fixed-block-size memory
allocator. More detailed descriptions may be found in the literature [MG92, MS93,
BA01, MSK01] or in the Linux kernel [Tor03c].

5.4.3.1 Parallel Resource Allocation Problem

The basic problem facing a parallel memory allocator is the tension between the need to
provide extremely fast memory allocation and freeing in the common case and the need
to efficiently distribute memory in face of unfavorable allocation and freeing patterns.
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1 rwlock_t hash_lock;
2
3 struct hash_table
4 {
5 long nbuckets;
6 struct node **buckets;
7 };
8
9 typedef struct node {
10 unsigned long key;
11 struct node *next;
12 } node_t;
13
14 int hash_search(struct hash_table *h, long key)
15 {
16 struct node *cur;
17 int retval;
18
19 read_lock(&hash_lock);
20 cur = h->buckets[key % h->nbuckets];
21 while (cur != NULL) {
22 if (cur->key >= key) {
23 retval = (cur->key == key);
24 read_unlock(&hash_lock);
25 return retval;
26 }
27 cur = cur->next;
28 }
29 read_unlock(&hash_lock);
30 return 0;
31 }

Figure 5.25: Reader-Writer-Locking Hash Table Search

To see this tension, consider a straightforward application of data ownership to this
problem — simply carve up memory so that each CPU owns its share. For example,
suppose that a system with two CPUs has two gigabytes of memory (such as the one that
I am typing on right now). We could simply assign each CPU one gigabyte of memory,
and allow each CPU to access its own private chunk of memory, without the need for
locking and its complexities and overheads. Unfortunately, this simple scheme breaks
down if an algorithm happens to have CPU 0 allocate all of the memory and CPU 1 the
free it, as would happen in a simple producer-consumer workload.

The other extreme, code locking, suffers from excessive lock contention and over-
head [MS93].

5.4.3.2 Parallel Fastpath for Resource Allocation

The commonly used solution uses parallel fastpath with each CPU owning a modest
cache of blocks, and with a large code-locked shared pool for additional blocks. To
prevent any given CPU from monopolizing the memory blocks, we place a limit on the
number of blocks that can be in each CPU’s cache. In a two-CPU system, the flow of
memory blocks will be as shown in Figure 5.27: when a given CPU is trying to free a
block when its pool is full, it sends blocks to the global pool, and, similarly, when that
CPU is trying to allocate a block when its pool is empty, it retrieves blocks from the
global pool.
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1 struct hash_table
2 {
3 long nbuckets;
4 struct bucket **buckets;
5 };
6
7 struct bucket {
8 spinlock_t bucket_lock;
9 node_t *list_head;
10 };
11
12 typedef struct node {
13 spinlock_t node_lock;
14 unsigned long key;
15 struct node *next;
16 } node_t;
17
18 int hash_search(struct hash_table *h, long key)
19 {
20 struct bucket *bp;
21 struct node *cur;
22 int retval;
23
24 bp = h->buckets[key % h->nbuckets];
25 spin_lock(&bp->bucket_lock);
26 cur = bp->list_head;
27 while (cur != NULL) {
28 if (cur->key >= key) {
29 spin_lock(&cur->node_lock);
30 spin_unlock(&bp->bucket_lock);
31 retval = (cur->key == key);
32 spin_unlock(&cur->node_lock);
33 return retval;
34 }
35 cur = cur->next;
36 }
37 spin_unlock(&bp->bucket_lock);
38 return 0;
39 }

Figure 5.26: Hierarchical-Locking Hash Table Search
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Figure 5.27: Allocator Cache Schematic

5.4.3.3 Data Structures

The actual data structures for a “toy” implementation of allocator caches are shown
in Figure 5.28. The “Global Pool” of Figure 5.27 is implemented by globalmem of
type struct globalmempool, and the two CPU pools by the per-CPU variable
percpumem of type percpumempool. Both of these data structures have arrays
of pointers to blocks in their pool fields, which are filled from index zero upwards.
Thus, if globalmem.pool[3] is NULL, then the remainder of the array from index
4 up must also be NULL. The cur fields contain the index of the highest-numbered
full element of the pool array, or -1 if all elements are empty. All elements from
globalmem.pool[0] through globalmem.pool[globalmem.cur] must be
full, and all the rest must be empty.13

1 #define TARGET_POOL_SIZE 3
2 #define GLOBAL_POOL_SIZE 40
3
4 struct globalmempool {
5 spinlock_t mutex;
6 int cur;
7 struct memblock *pool[GLOBAL_POOL_SIZE];
8 } globalmem;
9
10 struct percpumempool {
11 int cur;
12 struct memblock *pool[2 * TARGET_POOL_SIZE];
13 };
14
15 DEFINE_PER_THREAD(struct percpumempool, percpumem);

Figure 5.28: Allocator-Cache Data Structures

13 Both pool sizes (TARGET_POOL_SIZE and GLOBAL_POOL_SIZE) are unrealistically small, but this
small size makes it easier to single-step the program in order to get a feel for its operation.
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The operation of the pool data structures is illustrated by Figure 5.29, with the six
boxes representing the array of pointers making up the pool field, and the number
preceding them representing the cur field. The shaded boxes represent non-NULL
pointers, while the empty boxes represent NULL pointers. An important, though po-
tentially confusing, invariant of this data structure is that the cur field is always one
smaller than the number of non-NULL pointers.

−1(Empty)

0

1

2

3

4

5

Figure 5.29: Allocator Pool Schematic

5.4.3.4 Allocation Function

The allocation function memblock_alloc() may be seen in Figure 5.30. Line 7
picks up the current thread’s per-thread pool, and line 8 check to see if it is empty.

If so, lines 9-16 attempt to refill it from the global pool under the spinlock acquired
on line 9 and released on line 16. Lines 10-14 move blocks from the global to the
per-thread pool until either the local pool reaches its target size (half full) or the global
pool is exhausted, and line 15 sets the per-thread pool’s count to the proper value.

In either case, line 18 checks for the per-thread pool still being empty, and if not,
lines 19-21 remove a block and return it. Otherwise, line 23 tells the sad tale of memory
exhaustion.

5.4.3.5 Free Function

Figure 5.31 shows the memory-block free function. Line 6 gets a pointer to this thread’s
pool, and line 7 checks to see if this per-thread pool is full.

If so, lines 8-15 empty half of the per-thread pool into the global pool, with lines 8
and 14 acquiring and releasing the spinlock. Lines 9-12 implement the loop moving
blocks from the local to the global pool, and line 13 sets the per-thread pool’s count to
the proper value.

In either case, line 16 then places the newly freed block into the per-thread pool.
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1 struct memblock *memblock_alloc(void)
2 {
3 int i;
4 struct memblock *p;
5 struct percpumempool *pcpp;
6
7 pcpp = &__get_thread_var(percpumem);
8 if (pcpp->cur < 0) {
9 spin_lock(&globalmem.mutex);
10 for (i = 0; i < TARGET_POOL_SIZE &&
11 globalmem.cur >= 0; i++) {
12 pcpp->pool[i] = globalmem.pool[globalmem.cur];
13 globalmem.pool[globalmem.cur--] = NULL;
14 }
15 pcpp->cur = i - 1;
16 spin_unlock(&globalmem.mutex);
17 }
18 if (pcpp->cur >= 0) {
19 p = pcpp->pool[pcpp->cur];
20 pcpp->pool[pcpp->cur--] = NULL;
21 return p;
22 }
23 return NULL;
24 }

Figure 5.30: Allocator-Cache Allocator Function

1 void memblock_free(struct memblock *p)
2 {
3 int i;
4 struct percpumempool *pcpp;
5
6 pcpp = &__get_thread_var(percpumem);
7 if (pcpp->cur >= 2 * TARGET_POOL_SIZE - 1) {
8 spin_lock(&globalmem.mutex);
9 for (i = pcpp->cur; i >= TARGET_POOL_SIZE; i--) {
10 globalmem.pool[++globalmem.cur] = pcpp->pool[i];
11 pcpp->pool[i] = NULL;
12 }
13 pcpp->cur = i;
14 spin_unlock(&globalmem.mutex);
15 }
16 pcpp->pool[++pcpp->cur] = p;
17 }

Figure 5.31: Allocator-Cache Free Function
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5.4.3.6 Performance

Rough performance results14 are shown in Figure 5.32, running on a dual-core Intel
x86 running at 1GHz (4300 bogomips per CPU) with at most six blocks allowed in
each CPU’s cache. In this micro-benchmark, each thread repeatedly allocates a group
of blocks and then frees all the blocks in that group, with the number of blocks in the
group being the “allocation run length” displayed on the x-axis. The y-axis shows the
number of successful allocation/free pairs per microsecond — failed allocations are not
counted. The “X”s are from a two-thread run, while the “+”s are from a single-threaded
run.
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Figure 5.32: Allocator Cache Performance

Note that run lengths up to six scale linearly and give excellent performance, while
run lengths greater than six show poor performance and almost always also show nega-
tive scaling. It is therefore quite important to size TARGET_POOL_SIZE sufficiently
large, which fortunately is usually quite easy to do in actual practice [MSK01], espe-
cially given today’s large memories. For example, in most systems, it is quite reasonable
to set TARGET_POOL_SIZE to 100, in which case allocations and frees are guaranteed
to be confined to per-thread pools at least 99% of the time.

As can be seen from the figure, the situations where the common-case data-ownership
applies (run lengths up to six) provide greatly improved performance compared to the
cases where locks must be acquired. Avoiding synchronization in the common case will
be a recurring theme through this book.

Quick Quiz 5.16: In Figure 5.32, there is a pattern of performance rising with
increasing run length in groups of three samples, for example, for run lengths 10, 11,
and 12. Why?

Quick Quiz 5.17: Allocation failures were observed in the two-thread tests at run

14 This data was not collected in a statistically meaningful way, and therefore should be viewed with great
skepticism and suspicion. Good data-collection and -reduction practice is discussed in Chapter 10. That said,
repeated runs gave similar results, and these results match more careful evaluations of similar algorithms.
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lengths of 19 and greater. Given the global-pool size of 40 and the per-thread target
pool size s of three, number of thread n equal to two, and assuming that the per-thread
pools are initially empty with none of the memory in use, what is the smallest allocation
run length m at which failures can occur? (Recall that each thread repeatedly allocates
m block of memory, and then frees the m blocks of memory.) Alternatively, given n
threads each with pool size s, and where each thread repeatedly first allocates m blocks
of memory and then frees those m blocks, how large must the global pool size be?

5.4.3.7 Real-World Design

The toy parallel resource allocator was quite simple, but real-world designs expand on
this approach in a number of ways.

First, real-world allocators are required to handle a wide range of allocation sizes,
as opposed to the single size shown in this toy example. One popular way to do this is
to offer a fixed set of sizes, spaced so as to balance external and internal fragmentation,
such as in the late-1980s BSD memory allocator [MK88]. Doing this would mean that
the “globalmem” variable would need to be replicated on a per-size basis, and that the
associated lock would similarly be replicated, resulting in data locking rather than the
toy program’s code locking.

Second, production-quality systems must be able to repurpose memory, meaning
that they must be able to coalesce blocks into larger structures, such as pages [MS93].
This coalescing will also need to be protected by a lock, which again could be replicated
on a per-size basis.

Third, coalesced memory must be returned to the underlying memory system, and
pages of memory must also be allocated from the underlying memory system. The
locking required at this level will depend on that of the underlying memory system, but
could well be code locking. Code locking can often be tolerated at this level, because
this level is so infrequently reached in well-designed systems [MSK01].

Despite this real-world design’s greater complexity, the underlying idea is the same
— repeated application of parallel fastpath, as shown in Table 5.1.

Level Locking Purpose
Per-thread pool Data ownership High-speed allocation
Global block pool Data locking Distributing blocks

among threads
Coalescing Data locking Combining blocks into

pages
System memory Code locking Memory from/to system

Table 5.1: Schematic of Real-World Parallel Allocator

5.5 Beyond Partitioning
This chapter has discussed how data partitioning can be used to design simple linearly
scalable parallel programs. Section 5.3.4 hinted at the possibilities of data replication,
which will be used to great effect in Section 8.3.

The main goal of applying partitioning and replication is to achieve linear speedups,
in other words, to ensure that the total amount of work required does not increase
significantly as the number of CPUs or threads increases. A problem that can be
solved via partitioning and/or replication, resulting in linear speedups, is embarrassingly
parallel. But can we do better?
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1 int maze_solve(maze *mp, cell sc, cell ec)
2 {
3 cell c = sc;
4 cell n;
5 int vi = 0;
6
7 maze_try_visit_cell(mp, c, c, &n, 1);
8 for (;;) {
9 while (!maze_find_any_next_cell(mp, c, &n)) {
10 if (++vi >= mp->vi)
11 return 0;
12 c = mp->visited[vi].c;
13 }
14 do {
15 if (n == ec) {
16 return 1;
17 }
18 c = n;
19 } while (maze_find_any_next_cell(mp, c, &n));
20 c = mp->visited[vi].c;
21 }
22 }

Figure 5.33: SEQ Pseudocode

To answer this question, let us examine the solution of labyrinths and mazes. Of
course, labyrinths and mazes have been objects of fascination for millenia [Wik12],
so it should come as no surprise that they are generated and solved using computers,
including biological computers [Ada11], GPGPUs [Eri08], and even discrete hard-
ware [KFC11]. Parallel solution of mazes is sometimes used as a class project in
universities [ETH11, Uni10] and as a vehicle to demonstrate the benefits of parallel-
programming frameworks [Fos10].

Common advice is to use a parallel work-queue algorithm (PWQ) [ETH11, Fos10].
This section evaluates this advice by comparing PWQ against a sequential algorithm
(SEQ) and also against an alternative parallel algorithm, in all cases solving randomly
generated square mazes. Section 5.5.1 discusses PWQ, Section 5.5.2 discusses an
alternative parallel algorithm, Section 5.5.3 analyzes its anomalous performance, Sec-
tion 5.5.4 derives an improved sequential algorithm from the alternative parallel algo-
rithm, Section 5.5.5 makes further performance comparisons, and finally Section 5.5.6
presents future directions and concluding remarks.

5.5.1 Work-Queue Parallel Maze Solver
PWQ is based on SEQ, which is shown in Figure 5.33 (maze_seq.c). The maze
is represented by a 2D array of cells and a linear-array-based work queue named
->visited.

Line 7 visits the initial cell, and each iteration of the loop spanning lines 8-
21 traverses passages headed by one cell. The loop spanning lines 9-13 scans the
->visited[] array for a visited cell with an unvisited neighbor, and the loop span-
ning lines 14-19 traverses one fork of the submaze headed by that neighbor. Line 20
initializes for the next pass through the outer loop.

The pseudocode for maze_try_visit_cell() is shown on lines 1-12 of Fig-
ure 5.34. Line 4 checks to see if cells c and n are adjacent and connected, while line 5
checks to see if cell n has not yet been visited. The celladdr() function returns the
address of the specified cell. If either check fails, line 6 returns failure. Line 7 indicates
the next cell, line 8 records this cell in the next slot of the ->visited[] array, line 9
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1 int maze_try_visit_cell(struct maze *mp, cell c, cell t,
2 cell *n, int d)
3 {
4 if (!maze_cells_connected(mp, c, t) ||
5 (*celladdr(mp, t) & VISITED))
6 return 0;
7 *n = t;
8 mp->visited[mp->vi] = t;
9 mp->vi++;
10 *celladdr(mp, t) |= VISITED | d;
11 return 1;
12 }
13
14 int maze_find_any_next_cell(struct maze *mp, cell c,
15 cell *n)
16 {
17 int d = (*celladdr(mp, c) & DISTANCE) + 1;
18
19 if (maze_try_visit_cell(mp, c, prevcol(c), n, d))
20 return 1;
21 if (maze_try_visit_cell(mp, c, nextcol(c), n, d))
22 return 1;
23 if (maze_try_visit_cell(mp, c, prevrow(c), n, d))
24 return 1;
25 if (maze_try_visit_cell(mp, c, nextrow(c), n, d))
26 return 1;
27 return 0;
28 }

Figure 5.34: SEQ Helper Pseudocode
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Figure 5.35: Cell-Number Solution Tracking

indicates that this slot is now full, and line 10 marks this cell as visited and also records
the distance from the maze start. Line 11 then returns success.

The pseudocode for maze_find_any_next_cell() is shown on lines 14-
28 of the figure (maze.c). Line 17 picks up the current cell’s distance plus 1, while
lines 19, 21, 23, and 25 check the cell in each direction, and lines 20, 22, 24, and 26 return
true if the corresponding cell is a candidate next cell. The prevcol(), nextcol(),
prevrow(), and nextrow() each do the specified array-index-conversion operation.
If none of the cells is a candidate, line 27 returns false.

The path is recorded in the maze by counting the number of cells from the starting
point, as shown in Figure 5.35, where the starting cell is in the upper left and the
ending cell is in the lower right. Starting at the ending cell and following consecutively
decreasing cell numbers traverses the solution.

The parallel work-queue solver is a straightforward parallelization of the algorithm
shown in Figures 5.33 and 5.34. Line 10 of Figure 5.33 must use fetch-and-add, and
the local variable vi must be shared among the various threads. Lines 5 and 10 of
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Figure 5.34 must be combined into a CAS loop, with CAS failure indicating a loop
in the maze. Lines 8-9 of this figure must use fetch-and-add to arbitrate concurrent
attempts to record cells in the ->visited[] array.

This approach does provide significant speedups on a dual-CPU Lenovo™W500
running at 2.53GHz, as shown in Figure 5.36, which shows the cumulative distribution
functions (CDFs) for the solution times of the two algorithms, based on the solution of
500 different square 500-by-500 randomly generated mazes. The substantial overlap of
the projection of the CDFs onto the x-axis will be addressed in Section 5.5.3.

Interestingly enough, the sequential solution-path tracking works unchanged for
the parallel algorithm. However, this uncovers a significant weakness in the parallel
algorithm: At most one thread may be making progress along the solution path at any
given time. This weakness is addressed in the next section.

5.5.2 Alternative Parallel Maze Solver
Youthful maze solvers are often urged to start at both ends, and this advice has been
repeated more recently in the context of automated maze solving [Uni10]. This advice
amounts to partitioning, which has been a powerful parallelization strategy in the
context of parallel programming for both operating-system kernels [BK85, Inm85] and
applications [Pat10]. This section applies this strategy, using two child threads that start
at opposite ends of the solution path, and takes a brief look at the performance and
scalability consequences.

The partitioned parallel algorithm (PART), shown in Figure 5.37 (maze_part.c),
is similar to SEQ, but has a few important differences. First, each child thread has
its own visited array, passed in by the parent as shown on line 1, which must be
initialized to all [-1,-1]. Line 7 stores a pointer to this array into the per-thread variable
myvisited to allow access by helper functions, and similarly stores a pointer to the
local visit index. Second, the parent visits the first cell on each child’s behalf, which the
child retrieves on line 8. Third, the maze is solved as soon as one child locates a cell that
has been visited by the other child. When maze_try_visit_cell() detects this, it
sets a ->done field in the maze structure. Fourth, each child must therefore periodically
check the ->done field, as shown on lines 13, 18, and 23. The ACCESS_ONCE()
primitive must disable any compiler optimizations that might combine consecutive loads
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1 int maze_solve_child(maze *mp, cell *visited, cell sc)
2 {
3 cell c;
4 cell n;
5 int vi = 0;
6
7 myvisited = visited; myvi = &vi;
8 c = visited[vi];
9 do {
10 while (!maze_find_any_next_cell(mp, c, &n)) {
11 if (visited[++vi].row < 0)
12 return 0;
13 if (ACCESS_ONCE(mp->done))
14 return 1;
15 c = visited[vi];
16 }
17 do {
18 if (ACCESS_ONCE(mp->done))
19 return 1;
20 c = n;
21 } while (maze_find_any_next_cell(mp, c, &n));
22 c = visited[vi];
23 } while (!ACCESS_ONCE(mp->done));
24 return 1;
25 }

Figure 5.37: Partitioned Parallel Solver Pseudocode

or that might reload the value. A C++1x volatile relaxed load suffices [Bec11]. Finally,
the maze_find_any_next_cell() function must use compare-and-swap to mark
a cell as visited, however no constraints on ordering are required beyond those provided
by thread creation and join.

The pseudocode for maze_find_any_next_cell() is identical to that shown
in Figure 5.34, but the pseudocode for maze_try_visit_cell() differs, and is
shown in Figure 5.38. Lines 8-9 check to see if the cells are connected, returning failure
if not. The loop spanning lines 11-18 attempts to mark the new cell visited. Line 13
checks to see if it has already been visited, in which case line 16 returns failure, but only
after line 14 checks to see if we have encountered the other thread, in which case line 15
indicates that the solution has been located. Line 19 updates to the new cell, lines 20
and 21 update this thread’s visited array, and line 22 returns success.

Performance testing revealed a surprising anomaly, shown in Figure 5.39. The
median solution time for PART (17 milliseconds) is more than four times faster than
that of SEQ (79 milliseconds), despite running on only two threads. The next section
analyzes this anomaly.

5.5.3 Performance Comparison I
The first reaction to a performance anomaly is to check for bugs. Although the algorithms
were in fact finding valid solutions, the plot of CDFs in Figure 5.39 assumes independent
data points. This is not the case: The performance tests randomly generate a maze, and
then run all solvers on that maze. It therefore makes sense to plot the CDF of the ratios
of solution times for each generated maze, as shown in Figure 5.40, greatly reducing
the CDFs’ overlap. This plot reveals that for some mazes, PART is more than forty
times faster than SEQ. In contrast, PWQ is never more than about two times faster than
SEQ. A forty-times speedup on two threads demands explanation. After all, this is
not merely embarrassingly parallel, where partitionability means that adding threads
does not increase the overall computational cost. It is instead humiliatingly parallel:
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1 int maze_try_visit_cell(struct maze *mp, int c, int t,
2 int *n, int d)
3 {
4 cell_t t;
5 cell_t *tp;
6 int vi;
7
8 if (!maze_cells_connected(mp, c, t))
9 return 0;
10 tp = celladdr(mp, t);
11 do {
12 t = ACCESS_ONCE(*tp);
13 if (t & VISITED) {
14 if ((t & TID) != mytid)
15 mp->done = 1;
16 return 0;
17 }
18 } while (!CAS(tp, t, t | VISITED | myid | d));
19 *n = t;
20 vi = (*myvi)++;
21 myvisited[vi] = t;
22 return 1;
23 }

Figure 5.38: Partitioned Parallel Helper Pseudocode
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Figure 5.39: CDF of Solution Times For SEQ, PWQ, and PART

Adding threads significantly reduces the overall computational cost, resulting in large
algorithmic superlinear speedups.

Further investigation showed that PART sometimes visited fewer than 2% of the
maze’s cells, while SEQ and PWQ never visited fewer than about 9%. The reason for
this difference is shown by Figure 5.41. If the thread traversing the solution from the
upper left reaches the circle, the other thread cannot reach the upper-right portion of
the maze. Similarly, if the other thread reaches the square, the first thread cannot reach
the lower-left portion of the maze. Therefore, PART will likely visit a small fraction of
the non-solution-path cells. In short, the superlinear speedups are due to threads getting
in each others’ way. This is a sharp contrast with decades of experience with parallel
programming, where workers have struggled to keep threads out of each others’ way.

Figure 5.42 confirms a strong correlation between cells visited and solution time
for all three methods. The slope of PART’s scatterplot is smaller than that of SEQ,
indicating that PART’s pair of threads visits a given fraction of the maze faster than can

117



 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.1  1  10  100
P

ro
ba

bi
lit

y
CDF of Speedup Relative to SEQ

SEQ/PWQ SEQ/PART

Figure 5.40: CDF of SEQ/PWQ and SEQ/PART Solution-Time Ratios

Figure 5.41: Reason for Small Visit Percentages

SEQ’s single thread. PART’s scatterplot is also weighted toward small visit percentages,
confirming that PART does less total work, hence the observed humiliating parallelism.

The fraction of cells visited by PWQ is similar to that of SEQ. In addition, PWQ’s
solution time is greater than that of PART, even for equal visit fractions. The reason for
this is shown in Figure 5.43, which has a red circle on each cell with more than two
neighbors. Each such cell can result in contention in PWQ, because one thread can enter
but two threads can exit, which hurts performance, as noted earlier in this chapter. In
contrast, PART can incur such contention but once, namely when the solution is located.
Of course, SEQ never contends.

Although PART’s speedup is impressive, we should not neglect sequential optimiza-
tions. Figure 5.44 shows that SEQ, when compiled with -O3, is about twice as fast as
unoptimized PWQ, approaching the performance of unoptimized PART. Compiling all
three algorithms with -O3 gives results similar to (albeit faster than) those shown in
Figure 5.40, except that PWQ provides almost no speedup compared to SEQ, in keeping
with Amdahl’s Law [Amd67]. However, if the goal is to double performance compared
to unoptimized SEQ, as opposed to achieving optimality, compiler optimizations are
quite attractive.

Cache alignment and padding often improves performance by reducing false sharing.
However, for these maze-solution algorithms, aligning and padding the maze-cell array
degrades performance by up to 42% for 1000x1000 mazes. Cache locality is more
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Figure 5.43: PWQ Potential Contention Points

important than avoiding false sharing, especially for large mazes. For smaller 20-by-
20 or 50-by-50 mazes, aligning and padding can produce up to a 40% performance
improvement for PART, but for these small sizes, SEQ performs better anyway because
there is insufficient time for PART to make up for the overhead of thread creation and
destruction.

In short, the partitioned parallel maze solver is an interesting example of an algo-
rithmic superlinear speedup. If “algorithmic superlinear speedup” causes cognitive
dissonance, please proceed to the next section.

5.5.4 Alternative Sequential Maze Solver

The presence of algorithmic superlinear speedups suggests simulating parallelism via
co-routines, for example, manually switching context between threads on each pass
through the main do-while loop in Figure 5.37. This context switching is straightforward
because the context consists only of the variables c and vi: Of the numerous ways to
achieve the effect, this is a good tradeoff between context-switch overhead and visit
percentage. As can be seen in Figure 5.45, this coroutine algorithm (COPART) is quite
effective, with the performance on one thread being within about 30% of PART on two
threads (maze_2seq.c).
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Figure 5.44: Effect of Compiler Optimization (-O3)
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Figure 5.45: Partitioned Coroutines

5.5.5 Performance Comparison II

Figures 5.46 and 5.47 show the effects of varying maze size, comparing both PWQ
and PART running on two threads against either SEQ or COPART, respectively, with
90%-confidence error bars. PART shows superlinear scalability against SEQ and modest
scalability against COPART for 100-by-100 and larger mazes. PART exceeds theoretical
energy-efficiency breakeven against COPART at roughly the 200-by-200 maze size,
given that power consumption rises as roughly the square of the frequency for high
frequencies [Mud00], so that 1.4x scaling on two threads consumes the same energy as
a single thread at equal solution speeds. In contrast, PWQ shows poor scalability against
both SEQ and COPART unless unoptimized: Figures 5.46 and 5.47 were generated
using -O3.

Figure 5.48 shows the performance of PWQ and PART relative to COPART. For
PART runs with more than two threads, the additional threads were started evenly
spaced along the diagonal connecting the starting and ending cells. Simplified link-state
routing [BG87] was used to detect early termination on PART runs with more than
two threads (the solution is flagged when a thread is connected to both beginning and
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Figure 5.47: Varying Maze Size vs. COPART

end). PWQ performs quite poorly, but PART hits breakeven at two threads and again
at five threads, achieving modest speedups beyond five threads. Theoretical energy
efficiency breakeven is within the 90% confidence interval for seven and eight threads.
The reasons for the peak at two threads are (1) the lower complexity of termination
detection in the two-thread case and (2) the fact that there is a lower probability of the
third and subsequent threads making useful forward progress: Only the first two threads
are guaranteed to start on the solution line. This disappointing performance compared
to results in Figure 5.47 is due to the less-tightly integrated hardware available in the
larger and older Xeon®system running at 2.66GHz.

5.5.6 Future Directions and Conclusions

Much future work remains. First, this section applied only one technique used by
human maze solvers. Others include following walls to exclude portions of the maze
and choosing internal starting points based on the locations of previously traversed
paths. Second, different choices of starting and ending points might favor different
algorithms. Third, although placement of the PART algorithm’s first two threads is
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Figure 5.48: Mean Speedup vs. Number of Threads, 1000x1000 Maze

straightforward, there are any number of placement schemes for the remaining threads.
Optimal placement might well depend on the starting and ending points. Fourth, study
of unsolvable mazes and cyclic mazes is likely to produce interesting results. Fifth, the
lightweight C++11 atomic operations might improve performance. Sixth, it would be
interesting to compare the speedups for three-dimensional mazes (or of even higher-order
mazes). Finally, for mazes, humiliating parallelism indicated a more-efficient sequential
implementation using coroutines. Do humiliatingly parallel algorithms always lead to
more-efficient sequential implementations, or are there inherently humiliatingly parallel
algorithms for which coroutine context-switch overhead overwhelms the speedups?

This section demonstrated and analyzed parallelization of maze-solution algorithms.
A conventional work-queue-based algorithm did well only when compiler optimizations
were disabled, suggesting that some prior results obtained using high-level/overhead
languages will be invalidated by advances in optimization.

This section gave a clear example where approaching parallelism as a first-class
optimization technique rather than as a derivative of a sequential algorithm paves
the way for an improved sequential algorithm. High-level design-time application of
parallelism is likely to be a fruitful field of study. This section took the problem of
solving mazes from mildly scalable to humiliatingly parallel and back again. It is hoped
that this experience will motivate work on parallelism as a first-class design-time whole-
application optimization technique, rather than as a grossly suboptimal after-the-fact
micro-optimization to be retrofitted into existing programs.

5.6 Partitioning, Parallelism, and Optimization
Most important, although this chapter has demonstrated that although applying paral-
lelism at the design level gives excellent results, this final section shows that this is not
enough. For search problems such as maze solution, this section has shown that search
strategy is even more important than parallel design. Yes, for this particular type of
maze, intelligently applying parallelism identified a superior search strategy, but this
sort of luck is no substitute for a clear focus on search strategy itself.

As noted back in Section 1.2, parallelism is but one potential optimization of many.
A successful design needs to focus on the most important optimization. Much though I
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might wish to claim otherwise, that optimization might or might not be parallelism.
However, for the many cases where parallelism is the right optimization, the next

section covers that synchronization workhorse, locking.
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Chapter 6

Locking

The role of villain in much of the past few decades’ concurrency research literature is
played by locking, which stands accused of promoting deadlocks, convoying, starvation,
unfairness, data races, and all manner of other concurrency sins. Interestingly enough,
the role of workhorse in production-quality shared-memory parallel software is played
by, you guessed it, locking.

There are a number of reasons behind this dichotomy:

1. Many of locking’s sins have pragmatic design solutions that work well in most
cases, for example:

(a) Use of lock hierarchies to avoid deadlock.

(b) Deadlock-detection tools, for example, the Linux kernel’s lockdep facil-
ity [Cor06a].

(c) Locking-friendly data structures, such as arrays, hash tables, and radix trees,
which will be covered in Chapter 9.

2. Some of locking’s sins are problems only at high levels of contention, levels
reached only by poorly designed programs.

3. Some of locking’s sins are avoided by using other synchronization mechanisms
in concert with locking. These other mechanisms include reference counters,
statistical counters, simple non-blocking data structures, and RCU.

4. Until quite recently, almost all large shared-memory parallel programs were
developed in secret, so that it was difficult for most researchers to learn of these
pragmatic solutions.

5. Locking works extremely well for some software artifacts and extremely poorly
for others. Developers who have worked on artifacts for which locking works
well can be expected to have a much more positive opinion of locking than those
who have worked on artifacts for which locking works poorly, as will be discussed
in Section 6.5.

6. All good stories need a villain, and locking has a long and honorable history
serving as a research-paper whipping boy.
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Figure 6.1: Locking: Villain or Slob?

Quick Quiz 6.1: Just how can serving as a whipping boy be considered to be in any
way honorable???

This chapter will give an overview of a number of ways to avoid locking’s more
serious sins.

6.1 Staying Alive
Given that locking stands accused of deadlock and starvation, one important concern
for shared-memory parallel developers is simply staying alive. The following sections
therefore cover deadlock, livelock, starvation, unfairness, and inefficiency.

6.1.1 Deadlock
Deadlock occurs when each of a group of threads is holding at least one lock while at
the same time waiting on a lock held by a member of that same group.

Without some sort of external intervention, deadlock is forever. No thread can
acquire the lock it is waiting on until that lock is released by the thread holding it, but
the thread holding it cannot release it until the holding thread acquires the lock that it is
waiting on.

We can create a directed-graph representation of a deadlock scenario with nodes for
threads and locks, as shown in Figure 6.3. An arrow from a lock to a thread indicates
that the thread holds the lock, for example, Thread B holds Locks 2 and 4. An arrow
from a thread to a lock indicates that the thread is waiting on the lock, for example,
Thread B is waiting on Lock 3.

A deadlock scenario will always contain at least one deadlock cycle. In Figure 6.3,
this cycle is Thread B, Lock 3, Thread C, Lock 4, and back to Thread B.

Quick Quiz 6.2: But the definition of deadlock only said that each thread was
holding at least one lock and waiting on another lock that was held by some thread.
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Figure 6.2: Locking: Workhorse or Hero?

Lock 1

Thread A Lock 2

Thread BLock 3

Thread C Lock 4

Figure 6.3: Deadlock Cycle

How do you know that there is a cycle?
Although there are some software environments such as database systems that can

repair an existing deadlock, this approach requires either that one of the threads be
killed or that a lock be forcibly stolen from one of the threads. This killing and forcible
stealing can be appropriate for transactions, but is often problematic for kernel and
application-level use of locking: dealing with the resulting partially updated structures
can be extremely complex, hazardous, and error-prone.

Kernels and applications therefore work to avoid deadlocks rather than to recover
from them. There are a number of deadlock-avoidance strategies, including locking
hierarchies (Section 6.1.1.1), local locking hierarchies (Section 6.1.1.2), layered locking
hierarchies (Section 6.1.1.3), strategies for dealing with APIs containing pointers to
locks (Section 6.1.1.4), conditional locking (Section 6.1.1.5), acquiring all needed locks
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first (Section 6.1.1.6), single-lock-at-a-time designs (Section 6.1.1.7), and strategies for
signal/interrupt handlers (Section 6.1.1.8). Although there is no deadlock-avoidance
strategy that works perfectly for all situations, there is a good selection of deadlock-
avoidance tools to choose from.

6.1.1.1 Locking Hierarchies

Locking hierarchies order the locks and prohibit acquiring locks out of order. In
Figure 6.3, we might order the locks numerically, so that a thread was forbidden from
acquiring a given lock if it already held a lock with the same or a higher number.
Thread B has violated this hierarchy because it is attempting to acquire Lock 3 while
holding Lock 4, which permitted the deadlock to occur.

Again, to apply a locking hierarchy, order the locks and prohibit out-of-order
lock acquisition. In large program, it is wise to use tools to enforce your locking
hierarchy [Cor06a].

6.1.1.2 Local Locking Hierarchies

However, the global nature of locking hierarchies make them difficult to apply to library
functions. After all, the program using a given library function has not even been written
yet, so how can the poor library-function implementor possibly hope to adhere to the
yet-to-be-written program’s locking hierarchy?

One special case that is fortunately the common case is when the library function
does not invoke any of the caller’s code. In this case, the caller’s locks will never be
acquired while holding any of the library’s locks, so that there cannot be a deadlock
cycle containing locks from both the library and the caller.

Quick Quiz 6.3: Are there any exceptions to this rule, so that there really could be
a deadlock cycle containing locks from both the library and the caller, even given that
the library code never invokes any of the caller’s functions?

But suppose that a library function does invoke the caller’s code. For example,
the qsort() function invokes a caller-provided comparison function. A concurrent
implementation of qsort() likely uses locking, which might result in deadlock in
the perhaps-unlikely case where the comparison function is a complicated function
involving also locking. How can the library function avoid deadlock?

The golden rule in this case is “release all locks before invoking unknown code.”
To follow this rule, the qsort() function must release all locks before invoking the
comparison function.

Quick Quiz 6.4: But if qsort() releases all its locks before invoking the compar-
ison function, how can it protect against races with other qsort() threads?

To see the benefits of local locking hierarchies, compare Figures 6.4 and 6.5. In
both figures, application functions foo() and bar() invoke qsort() while holding
locks A and B, respectively. Because this is a parallel implementation of qsort(),
it acquires lock C. Function foo() passes function cmp() to qsort(), and cmp()
acquires lock B. Function bar() passes a simple integer-comparison function (not
shown) to qsort(), and this simple function does not acquire any locks.

Now, if qsort() holds Lock C while calling cmp() in violation of the golden
release-all-locks rule above, as shown in Figure 6.4, deadlock can occur. To see this,
suppose that one thread invokes foo() while a second thread concurrently invokes
bar(). The first thread will acquire lock A and the second thread will acquire lock B.
If the first thread’s call to qsort() acquires lock C, then it will be unable to acquire
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Figure 6.4: Without Local Locking Hierarchy for qsort()
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Figure 6.5: Local Locking Hierarchy for qsort()

lock B when it calls cmp(). But the first thread holds lock C, so the second thread’s call
to qsort() will be unable to acquire it, and thus unable to release lock B, resulting in
deadlock.

In contrast, if qsort() releases lock C before invoking the comparison function
(which is unknown code from qsort()’s perspective, then deadlock is avoided as
shown in Figure 6.5.

If each module releases all locks before invoking unknown code, then deadlock is
avoided if each module separately avoids deadlock. This rule therefore greatly simplifies
deadlock analysis and greatly improves modularity.
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Figure 6.6: Layered Locking Hierarchy for qsort()

6.1.1.3 Layered Locking Hierarchies

Unfortunately, it might not be possible for qsort() to release all of its locks before
invoking the comparison function. In this case, we cannot construct a local locking
hierarchy by releasing all locks before invoking unknown code. However, we can
instead construct a layered locking hierarchy, as shown in Figure 6.6. Here, the cmp()
function uses a new lock D that is acquired after all of locks A, B, and C, avoiding
deadlock. We therefore have three layers to the global deadlock hierarchy, the first
containing locks A and B, the second containing lock C, and the third containing lock D.

Please note that it is not typically possible to mechanically change cmp() to use
the new Lock D. Quite the opposite: It is often necessary to make profound design-level
modifications. Nevertheless, the effort required for such modifications is normally a
small price to pay in order to avoid deadlock.

For another example where releasing all locks before invoking unknown code is
impractical, imagine an iterator over a linked list, as shown in Figure 6.7 (locked_
list.c). The list_start() function acquires a lock on the list and returns the
first element (if there is one), and list_next() either returns a pointer to the next
element in the list or releases the lock and returns NULL if the end of the list has been
reached.

Figure 6.8 shows how this list iterator may be used. Lines 1-4 define the list_
ints element containing a single integer, and lines 6-17 show how to iterate over the
list. Line 11 locks the list and fetches a pointer to the first element, line 13 provides a
pointer to our enclosing list_ints structure, line 14 prints the corresponding integer,
and line 15 moves to the next element. This is quite simple, and hides all of the locking.
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1 struct locked_list {
2 spinlock_t s;
3 struct list_head h;
4 };
5
6 struct list_head *list_start(struct locked_list *lp)
7 {
8 spin_lock(&lp->s);
9 return list_next(lp, &lp->h);
10 }
11
12 struct list_head *list_next(struct locked_list *lp,
13 struct list_head *np)
14 {
15 struct list_head *ret;
16
17 ret = np->next;
18 if (ret == &lp->h) {
19 spin_unlock(&lp->s);
20 ret = NULL;
21 }
22 return ret;
23 }

Figure 6.7: Concurrent List Iterator

1 struct list_ints {
2 struct list_head n;
3 int a;
4 };
5
6 void list_print(struct locked_list *lp)
7 {
8 struct list_head *np;
9 struct list_ints *ip;
10
11 np = list_start(lp);
12 while (np != NULL) {
13 ip = list_entry(np, struct list_ints, n);
14 printf("\t%d\n", ip->a);
15 np = list_next(lp, np);
16 }
17 }

Figure 6.8: Concurrent List Iterator Usage
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1 spin_lock(&lock2);
2 layer_2_processing(pkt);
3 nextlayer = layer_1(pkt);
4 spin_lock(&nextlayer->lock1);
5 layer_1_processing(pkt);
6 spin_unlock(&lock2);
7 spin_unlock(&nextlayer->lock1);

Figure 6.9: Protocol Layering and Deadlock

That is, the locking remains hidden as long as the code processing each list element
does not itself acquire a lock that is held across some other call to list_start() or
list_next(), which results in deadlock. We can avoid the deadlock by layering the
locking hierarchy to take the list-iterator locking into account.

This layered approach can be extended to an arbitrarily large number of layers, but
each added layer increases the complexity of the locking design. Such increases in
complexity are particularly inconvenient for some types of object-oriented designs, in
which control passes back and forth among a large group of objects in an undisciplined
manner.1 This mismatch between the habits of object-oriented design and the need to
avoid deadlock is an important reason why parallel programming is perceived by some
to be so difficult.

Some alternatives to highly layered locking hierarchies are covered in Chapter 8.

6.1.1.4 Locking Hierarchies and Pointers to Locks

Althought there are some exceptions, an external API containing a pointer to a lock
is very often a misdesigned API. Handing an internal lock to some other software
component is after all the antithesis of information hiding, which is in turn a key design
principle.

Quick Quiz 6.5: Name one common exception where it is perfectly reasonable to
pass a pointer to a lock into a function.

One exception is functions that hand off some entity, where the caller’s lock must
be held until the handoff is complete, but where the lock must be released before the
function returns. One example of such a function is the POSIX pthread_cond_
wait() function, where passing an pointer to a pthread_mutex_t prevents hangs
due to lost wakeups.

Quick Quiz 6.6: Doesn’t the fact that pthread_cond_wait() first releases the
mutex and then re-acquires it eliminate the possibility of deadlock?

In short, if you find yourself exporting an API with a pointer to a lock as an argument
or the return value, do youself a favor and carefully reconsider your API design. It
might well be the right thing to do, but experience indicates that this is unlikely.

6.1.1.5 Conditional Locking

But suppose that there is no reasonable locking hierarchy. This can happen in real life,
for example, in layered network protocol stacks where packets flow in both directions.
In the networking case, it might be necessary to hold the locks from both layers when
passing a packet from one layer to another. Given that packets travel both up and down
the protocol stack, this is an excellent recipe for deadlock, as illustrated in Figure 6.9.

1 One name for this is “object-oriented spaghetti code.”
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1 retry:
2 spin_lock(&lock2);
3 layer_2_processing(pkt);
4 nextlayer = layer_1(pkt);
5 if (!spin_trylock(&nextlayer->lock1)) {
6 spin_unlock(&lock2);
7 spin_lock(&nextlayer->lock1);
8 spin_lock((&lock2);
9 if (layer_1(pkt) != nextlayer) {
10 spin_unlock(&nextlayer->lock1);
11 spin_unlock((&lock2);
12 goto retry;
13 }
14 }
15 layer_1_processing(pkt);
16 spin_unlock(&lock2);
17 spin_unlock(&nextlayer->lock1);

Figure 6.10: Avoiding Deadlock Via Conditional Locking

Here, a packet moving down the stack towards the wire must acquire the next layer’s
lock out of order. Given that packets moving up the stack away from the wire are
acquiring the locks in order, the lock acquisition in line 4 of the figure can result in
deadlock.

One way to avoid deadlocks in this case is to impose a locking hierarchy, but when
it is necessary to acquire a lock out of order, acquire it conditionally, as shown in
Figure 6.10. Instead of unconditionally acquiring the layer-1 lock, line 5 conditionally
acquires the lock using the spin_trylock() primitive. This primitive acquires the
lock immediately if the lock is available (returning non-zero), and otherwise returns
zero without acquiring the lock.

If spin_trylock() was successful, line 15 does the needed layer-1 processing.
Otherwise, line 6 releases the lock, and lines 7 and 8 acquire them in the correct order.
Unfortunately, there might be multiple networking devices on the system (e.g., Ethernet
and WiFi), so that the layer_1() function must make a routing decision. This
decision might change at any time, especially if the system is mobile.2 Therefore, line 9
must recheck the decision, and if it has changed, must release the locks and start over.

Quick Quiz 6.7: Can the transformation from Figure 6.9 to Figure 6.10 be applied
universally?

Quick Quiz 6.8: But the complexity in Figure 6.10 is well worthwhile given that it
avoids deadlock, right?

6.1.1.6 Acquire Needed Locks First

In an important special case of conditional locking all needed locks are acquired before
any processing is carried out. In this case, processing need not be idempotent: if it turns
out to be impossible to acquire a given lock without first releasing one that was already
acquired, just release all the locks and try again. Only once all needed locks are held
will any processing be carried out.

However, this procedure can result in livelock, which will be discussed in Sec-
tion 6.1.2.

Quick Quiz 6.9: When using the “acquire needed locks first” approach described
in Section 6.1.1.6, how can livelock be avoided?

2 And, in contrast to the 1900s, mobility is the common case.
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A related approach, two-phase locking [BHG87], has seen long production use in
database systems. Many such systems rely on the ability to abort transactions, although
this can be simplified by avoiding making any changes to shared data until all needed
locks are acquired. Livelock and deadlock are issues in such systems, but practical
solutions may be found in any of a number of database textbooks.

6.1.1.7 Single-Lock-at-a-Time Designs

In some cases, it is possible to avoid nesting locks, thus avoiding deadlock. For example,
if a problem is perfectly partitionable, a single lock may be assigned to each partition.
Then a thread working on a given partition need only acquire the one corresponding
lock. Because no thread ever holds more than one lock at a time, deadlock is impossible.

However, there must be some mechanism to ensure that the needed data structures
remain in existence during the time that neither lock is held. One such mechanism is
discussed in Section 6.4 and several others are presented in Chapter 8.

6.1.1.8 Signal/Interrupt Handlers

Deadlocks involving signal handlers are often quickly dismissed by noting that it is
not legal to invoke pthread_mutex_lock() from within a signal handler [Ope97].
However, it is possible (though almost always unwise) to hand-craft locking primitives
that can be invoked from signal handlers. Besides which, almost all operating-system
kernels permit locks to be acquired from within interrupt handlers, which are the kernel
analog to signal handlers.

The trick is to block signals (or disable interrupts, as the case may be) when acquiring
any lock that might be acquired within an interrupt handler. Furthermore, if holding
such a lock, it is illegal to attempt to acquire any lock that is ever acquired outside of a
signal handler without blocking signals.

Quick Quiz 6.10: Why is it illegal to acquire a Lock A that is acquired outside of a
signal handler without blocking signals while holding a Lock B that is acquired within a
signal handler?

If a lock is acquired by the handlers for several signals, then each and every one of
these signals must be blocked whenever that lock is acquired, even when that lock is
acquired within a signal handler.

Quick Quiz 6.11: How can you legally block signals within a signal handler?
Unfortunately, blocking and unblocking signals can be expensive in some operating

systems, notably including Linux, so performance concerns often mean that locks
acquired in signal handlers are only acquired in signal handlers, and that lockless
synchronization mechanisms are used to communicate between application code and
signal handlers.

Or that signal handlers are avoided completely except for handling fatal errors.
Quick Quiz 6.12: If acquiring locks in signal handlers is such a bad idea, why even

discuss ways of making it safe?

6.1.1.9 Discussion

There are a large number of deadlock-avoidance strategies available to the shared-
memory parallel programmer, but there are sequential programs for which none of them
is a good fit. This is one of the reasons that expert programmers have more than one
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1 void thread1(void)
2 {
3 retry:
4 spin_lock(&lock1);
5 do_one_thing();
6 if (!spin_trylock(&lock2)) {
7 spin_unlock(&lock1);
8 goto retry;
9 }
10 do_another_thing();
11 spin_unlock(&lock2);
12 spin_unlock(&lock1);
13 }
14
15 void thread2(void)
16 {
17 retry:
18 spin_lock(&lock2);
19 do_a_third_thing();
20 if (!spin_trylock(&lock1)) {
21 spin_unlock(&lock2);
22 goto retry;
23 }
24 do_a_fourth_thing();
25 spin_unlock(&lock1);
26 spin_unlock(&lock2);
27 }

Figure 6.11: Abusing Conditional Locking

tool in their toolbox: locking is a powerful concurrency tool, but there are jobs better
addressed with other tools.

Quick Quiz 6.13: Given an object-oriented application that passes control freely
among a group of objects such that there is no straightforward locking hierarchy,3

layered or otherwise, how can this application be parallelized?
Nevertheless, the strategies described in this section have proven quite useful in

many settings.

6.1.2 Livelock and Starvation
Although conditional locking can be an effective deadlock-avoidance mechanism, it
can be abused. Consider for example the beautifully symmetric example shown in
Figure 6.11. This example’s beauty hides an ugly livelock. To see this, consider the
following sequence of events:

1. Thread 1 acquires lock1 on line 4, then invokes do_one_thing().

2. Thread 2 acquires lock2 on line 18, then invokes do_a_third_thing().

3. Thread 1 attempts to acquire lock2 on line 6, but fails because Thread 2 holds
it.

4. Thread 2 attempts to acquire lock1 on line 20, but fails because Thread 1 holds
it.

5. Thread 1 releases lock1 on line 7, then jumps to retry at line 3.

6. Thread 2 releases lock2 on line 21, and jumps to retry at line 17.

3 Also known as “object-oriented spaghetti code.”
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1 void thread1(void)
2 {
3 unsigned int wait = 1;
4 retry:
5 spin_lock(&lock1);
6 do_one_thing();
7 if (!spin_trylock(&lock2)) {
8 spin_unlock(&lock1);
9 sleep(wait);
10 wait = wait << 1;
11 goto retry;
12 }
13 do_another_thing();
14 spin_unlock(&lock2);
15 spin_unlock(&lock1);
16 }
17
18 void thread2(void)
19 {
20 unsigned int wait = 1;
21 retry:
22 spin_lock(&lock2);
23 do_a_third_thing();
24 if (!spin_trylock(&lock1)) {
25 spin_unlock(&lock2);
26 sleep(wait);
27 wait = wait << 1;
28 goto retry;
29 }
30 do_a_fourth_thing();
31 spin_unlock(&lock1);
32 spin_unlock(&lock2);
33 }

Figure 6.12: Conditional Locking and Exponential Backoff

7. The livelock dance repeats from the beginning.

Quick Quiz 6.14: How can the livelock shown in Figure 6.11 be avoided?
Starvation is very similar to livelock. Put another way, livelock is an extreme form

of starvation where a group of threads starve, rather than just one of them.4

Livelock and starvation are serious issues in software transactional memory imple-
mentations, and so the concept of contention manager has been introduced to encapsu-
late these issues. In the case of locking, simple exponential backoff can often address
livelock and starvationh. The idea is to introduce exponentially increasing delays before
each retry, as shown in Figure 6.12.

Quick Quiz 6.15: What problems can you spot in the code in Figure 6.12?
However, for better results, the backoff should be bounded, and even better high-

contention results have been obtained via queued locking [And90], which is discussed
more in Section 6.3.2. Of course, best of all is to use a good parallel design so that lock
contention remains low.

6.1.3 Unfairness

Unfairness can be thought of as a less-severe form of starvation, where a subset of
threads contending for a given lock are granted the lion’s share of the acquisitions. This

4 Try not to get too hung up on the exact definitions of terms like livelock, starvation, and unfairness.
Anything that causes a group of threads to fail to make adequate forward progress is a problem that needs to
be fixed, regardless of what name you choose for it.
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can happen on machines with shared caches or NUMA characteristics, for example, as
shown in Figure 6.13. If CPU 0 releases a lock that all the other CPUs are attempting to
acquire, the interconnect shared between CPUs 0 and 1 means that CPU 1 will have an
advantage over CPUs 2-7. Therefore CPU 1 will likely acquire the lock. If CPU 1 hold
the lock long enough for CPU 0 to be requesting the lock by the time CPU 1 releases it
and vice versa, the lock can shuttle between CPUs 0 and 1, bypassing CPUs 2-7.

Quick Quiz 6.16: Wouldn’t it be better just to use a good parallel design so that
lock contention was low enough to avoid unfairness?

6.1.4 Inefficiency

Locks are implemented using atomic instructions and memory barriers, and often involve
cache misses. As we saw in Chapter 2, these instructions are quite expensive, roughly
two orders of magnitude greater overhead than simple instructions. This can be a serious
problem for locking: If you protect a single instruction with a lock, you will increase the
overhead by a factor of one hundred. Even assuming perfect scalability, one hundred
CPUs would be required to keep up with a single CPU executing the same code without
locking.

This situation underscores the synchronization-granularity tradeoff discussed in
Section 5.3, especially Figure 5.22: Too coarse a granularity will limit scalability, while
too fine a granularity will result in excessive synchronization overhead.

That said, once a lock is held, the data protected by that lock can be accessed by
the lock holder without interference. Acquiring a lock might be expensive, but once
held, the CPU’s caches are an effective performance booster, at least for large critical
sections.

Quick Quiz 6.17: How might the lock holder be interfered with?
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6.2 Types of Locks
There are a surprising number of types of locks, more than this short chapter can
possibly do justice to. The following sections discuss exclusive locks (Section 6.2.1),
reader-writer locks (Section 6.2.2), multi-role locks (Section 6.2.3), and scoped locking
(Section 6.2.4).

6.2.1 Exclusive Locks
Exclusive locks are what they say they are: only one thread may hold the lock at a time.
The holder of such a lock thus has exclusive access to all data protected by that lock,
hence the name.

Of course, this all assumes that this lock is held across all accesses to data purportedly
protected by the lock. Although there are some tools that can help, the ultimate
responsibility for ensuring that the lock is acquired in all necessary code paths rests with
the developer.

Quick Quiz 6.18: Does it ever make sense to have an exclusive lock acquisition
immediately followed by a release of that same lock, that is, an empty critical section?

6.2.2 Reader-Writer Locks
Reader-writer locks [CHP71] permit any number of readers to hold the lock concurrently
on the one hand or a single writer to hold the lock on the other. In theory, then, reader-
writer locks should allow excellent scalability for data that is read often and written
rarely. In practice, the scalability will depend on the reader-writer lock implementation.

The classic reader-writer lock implementation involves a set of counters and flags
that are manipulated atomically. This type of implementation suffers from the same
problem as does exclusive locking for short critical sections: The overhead of acquiring
and releasing the lock is about two orders of magnitude greater than the overhead of
a simple instruction. Of course, if the critical section is long enough, the overhead of
acquiring and releasing the lock becomes negligible. However, because only one thread
at a time can be manipulating the lock, the required critical-section size increases with
the number of CPUs.

It is possible to design a reader-writer lock that is much more favorable to readers
through use of per-thread exclusive locks [HW92]. To read, a thread acquires only its
own lock. To write, a thread acquires all locks. In the absence of writers, each reader
incurs only atomic-instruction and memory-barrier overhead, with no cache misses,
which is quite good for a locking primitive. Unfortunately, writers must incur cache
misses as well as atomic-instruction and memory-barrier overhead—multiplied by the
number of threads.

In short, reader-writer locks can be quite useful in a number of situations, but each
type of implementation does have its drawbacks. The canonical use case for reader-
writer locking involves very long read-side critical sections, preferably measured in
hundreds of microseconds or even milliseconds.

6.2.3 Beyond Reader-Writer Locks
Reader-writer locks and exclusive locks differ in their admission policy: exclusive
locks allow at most one holder, while reader-writer locks permit an arbitrary number
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Null (Not Held)
Concurrent Read X
Concurrent Write X X X
Protected Read X X X
Protected Write X X X X
Exclusive X X X X X

Table 6.1: VAX/VMS Distributed Lock Manager Policy

of read-holders (but only one write-holder). There is a very large number of possible
admission policies, one of which is that of the VAX/VMS distributed lock manager
(DLM) [ST87], which is shown in Table 6.1. Blank cells indicate compatible modes,
while cells containing “X” indicate incompatible modes.

The VAX/VMS DLM uses six modes. For purposes of comparison, exclusive locks
use two modes (not held and held), while reader-writer locks use three modes (not held,
read held, and write held).

The first mode is null, or not held. This mode is compatible with all other modes,
which is to be expected: If a thread is not holding a lock, it should not prevent any other
thread from acquiring that lock.

The second mode is concurrent read, which is compatible with every other mode ex-
cept for exclusive. The concurrent-read mode might be used to accumulate approximate
statistics on a data structure, while permitting updates to proceed concurrently.

The third mode is concurrent write, which is compatible with null, concurrent read,
and concurrent write. The concurrent-write mode might be used to update approximate
statistics, while still permitting reads and concurrent updates to proceed concurrently.

The fourth mode is protected read, which is compatible with null, concurrent read,
and protected read. The protected-read mode might be used to obtain a consistent
snapshot of the data structure, while permitting reads but not updates to proceed concur-
rently.

The fifth mode is protected write, which is compatible with null and concurrent
read. The protected-write mode might be used to carry out updates to a data structure
that could interfere with protected readers but which could be tolerated by concurrent
readers.

The sixth and final mode is exclusive, which is compatible only with null. The
exclusive mode is used when it is necessary to exclude all other accesses.

It is interesting to note that exclusive locks and reader-writer locks can be emulated
by the VAX/VMS DLM. Exclusive locks would use only the null and exclusive modes,
while reader-writer locks might use the null, protected-read, and protected-write modes.

Quick Quiz 6.19: Is there any other way for the VAX/VMS DLM to emulate a
reader-writer lock?

Although the VAX/VMS DLM policy has seen widespread production use for dis-
tributed databases, it does not appear to be used much in shared-memory applications.
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One possible reason for this is that the greater communication overheads of distributed
databases can hide the greater overhead of the VAX/VMS DLM’s more-complex admis-
sion policy.

Nevertheless, the VAX/VMS DLM is an interesting illustration of just how flexible
the concepts behind locking can be. It also serves as a very simple introduction to the
locking schemes used by modern DBMSes, which can have more than thirty locking
modes, compared to VAX/VMS’s six.

6.2.4 Scoped Locking

The locking primitives discussed thus far require explicit acquisition and release prim-
itives, for example, spin_lock() and spin_unlock(), respectively. Another
approach is to use the object-oriented “resource allocation is initialization” (RAII)
pattern [ES90].5 This pattern is often applied to auto variables in languages like C++,
where the corresponding constructor is invoked upon entry to the object’s scope, and
the corresponding destructor is invoked upon exit from that scope. This can be applied
to locking by having the constructor acquire the lock and the destructor free it.

This approach can be quite useful, in fact in 1990 I was convinced that it was the
only type of locking that was needed.6 One very nice property of RAII locking is that
you don’t need to carefully release the lock on each and every code path that exits that
scope, a property that can eliminate a troublesome set of bugs.

However, RAII locking also has a dark side. RAII makes it quite difficult to
encapsulate lock acquisition and release, for example, in iterators. In many iterator
implementations, you would like to acquire the lock in the interator’s “start” function
and release it in the iterator’s “stop” function. RAII locking instead requires that the
lock acquisition and release take place in the same level of scoping, making such
encapsulation difficult or even impossible.

RAII locking also prohibits overlapping critical sections, due to the fact that scopes
must nest. This prohibition makes it difficult or impossible to express a number of
useful constructs, for example, locking trees that mediate between multiple concurrent
attempts to assert an event. Of an arbitrarily large group of concurrent attempts, only
one need succeed, and the best strategy for the remaining attempts is for them to fail as
quickly and painlessly as possible. Otherwise, lock contention becomes pathological on
large systems (where “large” is many hundreds of CPUs).

Example data structures (taken from the Linux kernel’s implementation of RCU) are
shown in Figure 6.14. Here, each CPU is assigned a leaf rcu_node structure, and each
rcu_node structure has a pointer to its parent (named, oddly enough, ->parent), up
to the root rcu_node structure, which has a NULL ->parent pointer. The number
of child rcu_node structures per parent can vary, but is typically 32 or 64. Each
rcu_node structure also contains a lock named ->fqslock.

The general approach is a tournament, where a given CPU conditionally acquires
its leaf rcu_node structure’s ->fqslock, and, if successful, attempt to acquire that
of the parent, then release that of the child. In addition, at each level, the CPU checks
a global gp_flags variable, and if this variable indicates that some other CPU has
asserted the event, the first CPU drops out of the competition. This acquire-then-release
sequence continues until either the gp_flags variable indicates that someone else

5 Though more clearly expressed at http://www.stroustrup.com/bs_faq2.html#finally.
6 My later work with parallelism at Sequent Computer Systems very quickly disabused me of this

misguided notion.
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Figure 6.14: Locking Hierarchy

won the tournament, one of the attempts to acquire an ->fqslock fails, or the root
rcu_node structure’s ->fqslock as been acquired.

Simplified code to implement this is shown in Figure 6.15. The purpose of this
function is to mediate between CPUs who have concurrently detected a need to invoke
the do_force_quiescent_state() function. At any given time, it only makes
sense for one instance of do_force_quiescent_state() to be active, so if there
are multiple concurrent callers, we need at most one of them to actually invoke do_
force_quiescent_state(), and we need the rest to (as quickly and painlessly
as possible) give up and leave.

To this end, each pass through the loop spanning lines 7-15 attempts to advance
up one level in the rcu_node hierarcy. If the gp_flags variable is already set
(line 8) or if the attempt to acquire the current rcu_node structure’s ->fqslock
is unsuccessful (line 9), then local variable ret is set to 1. If line 10 sees that local
variable rnp_old is non-NULL, meaning that we hold rnp_old’s ->fqs_lock,
line 11 releases this lock (but only after the attempt has been made to acquire the parent
rcu_node structure’s ->fqslock). If line 12 sees that either line 8 or 9 saw a reason
to give up, line 13 returns to the caller. Otherwise, we must have acquired the current
rcu_node structure’s ->fqslock, so line 14 saves a pointer to this structure in local
variable rnp_old in preparation for the next pass through the loop.

If control reaches line 16, we won the tournament, and now holds the root rcu_
node structure’s ->fqslock. If line 16 still sees that the global variable gp_flags
is zero, line 17 sets gp_flags to one, line 18 invokes do_force_quiescent_
state(), and line 19 resets gp_flags back to zero. Either way, line 21 releases the
root rcu_node structure’s ->fqslock.

Quick Quiz 6.20: The code in Figure 6.15 is ridiculously complicated! Why not
conditionally acquire a single global lock?

Quick Quiz 6.21: Wait a minute! If we “win” the tournament on line 16 of Fig-
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1 void force_quiescent_state(struct rcu_node *rnp_leaf)
2 {
3 int ret;
4 struct rcu_node *rnp = rnp_leaf;
5 struct rcu_node *rnp_old = NULL;
6
7 for (; rnp != NULL; rnp = rnp->parent) {
8 ret = (ACCESS_ONCE(gp_flags)) ||
9 !raw_spin_trylock(&rnp->fqslock);
10 if (rnp_old != NULL)
11 raw_spin_unlock(&rnp_old->fqslock);
12 if (ret)
13 return;
14 rnp_old = rnp;
15 }
16 if (ACCESS_ONCE(gp_flags)) {
17 gp_flags = 1;
18 do_force_quiescent_state();
19 gp_flags = 0;
20 }
21 raw_spin_unlock(&rnp_old->fqslock);
22 }

Figure 6.15: Conditional Locking to Reduce Contention

ure 6.15, we get to do all the work of do_force_quiescent_state(). Exactly
how is that a win, really?

This function illustrates the not-uncommon pattern of hierarchical locking. This
pattern is quite difficult to implement using RAII locking, just like the interator encapsu-
lation noted earlier, and so the lock/unlock primitives will be needed for the foreseeable
future.

6.3 Locking Implementation Issues
Developers are almost always best-served by using whatever locking primitives are
provided by the system, for example, the POSIX pthread mutex locks [Ope97, But97].
Nevertheless, studying sample implementations can be helpful, as can considering the
challenges posed by extreme workloads and environments.

6.3.1 Sample Exclusive-Locking Implementation Based on Atomic
Exchange

This section reviews the implementation shown in Figure 6.16. The data structure for
this lock is just an int, as shown on line 1, but could be any integral type. The initial
value of this lock is zero, meaning “unlocked”, as shown on line 2.

Quick Quiz 6.22: Why not rely on the C language’s default initialization of zero
instead of using the explicit initializer shown on line 2 of Figure 6.16?

Lock acquisition is carried out by the xchg_lock() function shown on lines 4-9.
This function uses a nested loop, with the outer loop repeatedly atomically exchanging
the value of the lock with the value one (meaning “locked”). If the old value was already
the value one (in other words, someone else already holds the lock), then the inner loop
(lines 7-8) spins until the lock is available, at which point the outer loop makes another
attempt to acquire the lock.

Quick Quiz 6.23: Why bother with the inner loop on lines 7-8 of Figure 6.16? Why
not simply repeatedly do the atomic exchange operation on line 6?
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1 typedef int xchglock_t;
2 #define DEFINE_XCHG_LOCK(n) xchglock_t n = 0
3
4 void xchg_lock(xchglock_t *xp)
5 {
6 while (xchg(xp, 1) == 1) {
7 while (*xp == 1)
8 continue;
9 }
10 }
11
12 void xchg_unlock(xchglock_t *xp)
13 {
14 (void)xchg(xp, 0);
15 }

Figure 6.16: Sample Lock Based on Atomic Exchange

Lock release is carried out by the xchg_unlock() function shown on lines 12-15.
Line 14 atomically exchanges the value zero (“unlocked”) into the lock, thus marking it
as having been released.

Quick Quiz 6.24: Why not simply store zero into the lock word on line 14 of
Figure 6.16?

This lock is a simple example of a test-and-set lock [SR84], but very similar mecha-
nisms have been used extensively as pure spinlocks in production.

6.3.2 Other Exclusive-Locking Implementations

There are a great many other possible implementations of locking based on atomic
instructions, many of which are reviewed by Mellor-Crummey and Scott [MCS91].
These implementations represent different points in a multi-dimensional design trade-
off [McK96b]. For example, the atomic-exchange-based test-and-set lock presented in
the previous section works well when contention is low and has the advantage of small
memory footprint. It avoids giving the lock to threads that cannot use it, but as a result
can suffer from unfairness or even starvation at high contention levels.

In contrast, ticket lock [MCS91], which is used in the Linux kernel, avoids unfairness
at high contention levels, but as a consequence of its first-in-first-out discipline can
grant the lock to a thread that is currently unable to use it, for example, due to being
preempted, interrupted, or otherwise out of action. However, it is important to avoid
getting too worried about the possibility of preemption and interruption, given that this
preemption and interruption might just as well happen just after the lock was acquired.7

All locking implementations where waiters spin on a single memory location,
including both test-and-set locks and ticket locks, suffer from performance problems at
high contention levels. The problem is that the thread releasing the lock must update the
value of the corresponding memory location. At low contention, this is not a problem:
The corresponding cache line is very likely still local to and writeable by the thread
holding the lock. In contrast, at high levels of contention, each thread attempting to
acquire the lock will have a read-only copy of the cache line, and the lock holder will
need to invalidate all such copies before it can carry out the update that releases the lock.
In general, the more CPUs and threads there are, the greater the overhead incurred when

7 Besides, the best way of handling high lock contention is to avoid it in the first place! However, there
are some situation where high lock contention is the lesser of the available evils, and in any case, studying
schemes that deal with high levels of contention is good mental exercise.
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releasing the lock under conditions of high contention.
This negative scalability has motivated a number of different queued-lock implemen-

tations [And90, GT90, MCS91, WKS94, Cra94, MLH94, TS93], which assign different
queue elements to each of the threads attempting to acquire the lock, thus reducing the
lock’s memory contention.

More recent queued-lock implementations also take the system’s architecture into
account, preferentially granting locks locally, while also taking steps to avoid starva-
tion [SSVM02, RH03, RH02, JMRR02, MCM02]. Many of these can be thought of as
analogous to the elevator algorithms traditionally used in scheduling disk I/O.

Unfortunately, the same scheduling logic that improves the efficiency of queued
locks at high contention also increases their overhead at low contention. Beng-hong Lim
and Anant Agarwal therefore combined a simple test-and-set lock with a queued lock,
using the test-and-set lock at low levels of contention and switching to the queued lock at
high levels of contention [LA94], thus getting low overhead at low levels of contention
and getting fairness and high throughput at high levels of contention. Browning et
al. took a similar approach, but avoided the use of a separate flag, so that the test-and-
set fast path uses the same sequence of instructions that would be used in a simple
test-and-set lock [BMMM05]. This approach has been used in production.

Another issue that arises at high levels of contention is when the lock holder is
delayed, especially when the delay is due to preemption, which can result in priority
inversion, where a low-priority thread holds a lock, but is preempted by a medium
priority CPU-bound thread, which results in a high-priority process blocking while
attempting to acquire the lock. The result is that the CPU-bound medium-priority
process is preventing the high-priority process from running. One solution is priority
inheritance [LR80], which has been widely used for real-time computing [SRL90,
Cor06b], despite some lingering controversy over this practice [Yod04, Loc02].

Another way to avoid priority inversion is to prevent preemption while a lock is
held. Because preventing preemption while locks are held also improves throughput,
most proprietary UNIX kernels offer some form of scheduler-conscious synchronization
mechanism [KWS97], largely due to the efforts of a certain sizable database vendor.
These mechanisms usually take the form of a hint that preemption would be imappro-
priate. These hints frequently take the form of a bit set in a particular machine register,
which enables extremely low per-lock-acquisition overhead for these mechanisms. In
contrast, Linux avoids these hints, instead getting similar results from a mechanism
called futexes [FRK02, Mol06, Ros06, Dre11].

Interestingly enough, atomic instructions are not strictly needed to implement
locks [Dij65, Lam74]. An excellent exposition of the issues surrounding locking imple-
mentations based on simple loads and stores may be found in Herlihy’s and Shavit’s
textbook [HS08]. The main point echoed here is that such implementations currently
have little practical application, although a careful study of them can be both entertaining
and enlightening. Nevertheless, with one exception described below, such study is left
as an exercise for the reader.

Gamsa et al. [GKAS99, Section 5.3] describe a token-based mechanism in which a
token circulates among the CPUs. When the token reaches a given CPU, it has exclusive
access to anything protected by that token. There are any number of schemes that may
be used to implement the token-based mechanism, for example:

1. Maintain a per-CPU flag, which is initially zero for all but one CPU. When a
CPU’s flag is non-zero, it holds the token. When it finishes with the token, it

144



1 int delete(int key)
2 {
3 int b;
4 struct element *p;
5
6 b = hashfunction(key);
7 p = hashtable[b];
8 if (p == NULL || p->key != key)
9 return 0;
10 spin_lock(&p->lock);
11 hashtable[b] = NULL;
12 spin_unlock(&p->lock);
13 kfree(p);
14 return 1;
15 }

Figure 6.17: Per-Element Locking Without Existence Guarantees

zeroes its flag and sets the flag of the next CPU to one (or to any other non-zero
value).

2. Maintain a per-CPU counter, which is initially set to the corresponding CPU’s
number, which we assume to range from zero to N−1, where N is the number
of CPUs in the system. When a CPU’s counter is greater than that of the next
CPU (taking counter wrap into account), the first CPU holds the token. When it
is finished with the token, it sets the next CPU’s counter to a value one greater
than its own counter.

Quick Quiz 6.25: How can you tell if one counter is greater than another, while
accounting for counter wrap?

Quick Quiz 6.26: Which is better, the counter approach or the flag approach?
This lock is unusual in that a given CPU cannot necessarily acquire it immediately,

even if no other CPU is using it at the moment. Instead, the CPU must wait until the
token comes around to it. This is useful in cases where CPUs need periodic access
to the critical section, but can tolerate variances in token-circulation rate. Gamsa et
al. [GKAS99] used it to implement a variant of read-copy update (see Section 8.3), but
it could also be used to protect periodic per-CPU operations such as flushing per-CPU
caches used by memory allocators [MS93], garbage-collecting per-CPU data structures,
or flushing per-CPU data to shared storage (or to mass storage, for that matter).

As increasing numbers of people gain familiarity with parallel hardware and paral-
lelize increasing amounts of code, we can expect more special-purpose locking primi-
tives to appear. Nevertheless, you should carefully consider this important safety tip:
Use the standard synchronization primitives whenever humanly possible. The big ad-
vantage of the standard synchronization primitives over roll-your-own efforts is that the
standard primitives are typically much less bug-prone.8

6.4 Lock-Based Existence Guarantees
A key challenge in parallel programming is to provide existence guarantees [GKAS99],
so that attempts to access a given object can rely on that object being in existence
throughout a given access attempt. In some cases, existence guarantees are implicit:

8 And yes, I have done at least my share of roll-your-own synchronization primitives. However, you will
notice that my hair is much greyer than it was before I started doing that sort of work. Coincidence? Maybe.
But are you really willing to risk your own hair turning prematurely grey?
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1 int delete(int key)
2 {
3 int b;
4 struct element *p;
5 spinlock_t *sp;
6
7 b = hashfunction(key);
8 sp = &locktable[b];
9 spin_lock(sp);
10 p = hashtable[b];
11 if (p == NULL || p->key != key) {
12 spin_unlock(sp);
13 return 0;
14 }
15 hashtable[b] = NULL;
16 spin_unlock(sp);
17 kfree(p);
18 return 1;
19 }

Figure 6.18: Per-Element Locking With Lock-Based Existence Guarantees

1. Global variables and static local variables in the base module will exist as long as
the application is running.

2. Global variables and static local variables in a loaded module will exist as long as
that module remains loaded.

3. A module will remain loaded as long as at least one of its functions has an active
instance.

4. A given function instance’s on-stack variables will exist until that instance returns.

5. If you are executing within a given function or have been called (directly or
indirectly) from that function, then the given function has an active instance.

These implicit existence guarantees are straightforward, though bugs involving
implicit existence guarantees really can happen.

Quick Quiz 6.27: How can relying on implicit existence guarantees result in a bug?

But the more interesting—and troublesome—guarantee involves heap memory: A
dynamically allocated data structure will exist until it is freed. The problem to be solved
is to synchronize the freeing of the structure with concurrent accesses to that same
structure. One way to do this is with explicit guarantees, such as locking. If a given
structure may only be freed while holding a given lock, then holding that lock guarantees
that structure’s existence.

But this guarantee depends on the existence of the lock itself. One straightforward
way to guarantee the lock’s existence is to place the lock in a global variable, but global
locking has the disadvantage of limiting scalability. One way of providing scalability
that improves as the size of the data structure increases is to place a lock in each element
of the structure. Unfortunately, putting the lock that is to protect a data element in the
data element itself is subject to subtle race conditions, as shown in Figure 6.17.

Quick Quiz 6.28: What if the element we need to delete is not the first element of
the list on line 8 of Figure 6.17?

Quick Quiz 6.29: What race condition can occur in Figure 6.17?
One way to fix this example is to use a hashed set of global locks, so that each

hash bucket has its own lock, as shown in Figure 6.18. This approach allows acquiring
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the proper lock (on line 9) before gaining a pointer to the data element (on line 10).
Although this approach works quite well for elements contained in a single partitionable
data structure such as the hash table shown in the figure, it can be problematic if a
given data element can be a member of multiple hash tables or given more-complex
data structures such as trees or graphs. These problems can be solved, in fact, such
solutions form the basis of lock-based software transactional memory implementa-
tions [ST95, DSS06]. However, Chapter 8 describes simpler—and faster—ways of
providing existence guarantees.

6.5 Locking: Hero or Villain?
As is often the case in real life, locking can be either hero or villain, depending on
how it is used and on the problem at hand. In my experience, those writing whole
applications are happy with locking, those writing parallel libraries are less happy, and
those parallelizing existing sequential libraries are extremely unhappy. The following
sections discuss some reasons for these differences in viewpoints.

6.5.1 Locking For Applications: Hero!
When writing an entire application (or entire kernel), developers have full control of the
design, including the synchronization design. Assuming that the design makes good
use of partitioning, as discussed in Chapter 5, locking can be an extremely effective
synchronization mechanism, as demonstrated by the heavy use of locking in production-
quality parallel software.

Nevertheless, although such software usually bases most of its synchronization
design on locking, such software also almost always makes use of other synchroniza-
tion mechanisms, including special counting algorithms (Chapter 4), data ownership
(Chapter 7), reference counting (Section 8.1), sequence locking (Section 8.2), and
read-copy update (Section 8.3). In addition, practitioners use tools for deadlock detec-
tion [Cor06a], lock acquisition/release balancing [Cor04], cache-miss analysis [The11],
hardware-counter-based profiling [EGMdB11, The12], and many more besides.

Given careful design, use of a good combination of synchronization mechanisms,
and good tooling, locking works quite well for applications and kernels.

6.5.2 Locking For Parallel Libraries: Just Another Tool
Unlike applications and kernels, the designer of a library cannot know the locking
design of the code that the library will be interacting with. In fact, that code might not
be written for years to come. Library designers therefore have less control and must
exercise more care when laying out their synchronization design.

Deadlock is of course of particular concern, and the techniques discussed in Sec-
tion 6.1.1 need to be applied. One popular deadlock-avoidance strategy is therefore
to ensure that the library’s locks are independent subtrees of the enclosing program’s
locking hierarchy. However, this can be harder than it looks.

One complication was discussed in Section 6.1.1.2, namely when library functions
call into application code, with qsort()’s comparison-function argument being a case
in point. Another complication is the interaction with signal handlers. If an application
signal handler is invoked from a signal received within the library function, deadlock
can ensue just as surely as if the library function had called the signal handler directly.
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A final complication occurs for those library functions that can be used between a
fork()/exec() pair, for example, due to use of the system() function. In this
case, if your library function was holding a lock at the time of the fork(), then the
child process will begin life with that lock held. Because the thread that will release the
lock is running in the parent but not the child, if the child calls your library function,
deadlock will ensue.

The following strategies may be used to avoid deadlock problems in these cases:

1. Don’t use either callbacks or signals.

2. Don’t acquire locks from within callbacks or signal handlers.

3. Let the caller control synchronization.

4. Parameterize the library API to delegate locking to caller.

5. Explicitly avoid callback deadlocks.

6. Explicitly avoid signal-handler deadlocks.

Each of these strategies is discussed in on of the following sections.

6.5.2.1 Use Neither Callbacks Nor Signals

If a library function avoids callbacks and the application as a whole avoids signals,
then any locks acquired by that library function will be leaves of the locking-hierarchy
tree. This arrangement avoids deadlock, as discussed in Section 6.1.1.1. Although
this strategy works extremely well where it applies, there are some applications that
must use signal handlers, and there are some library functions (such as the qsort()
function discussed in Section 6.1.1.2) that require callbacks.

The strategy described in the next section can often be used in these cases.

6.5.2.2 Avoid Locking in Callbacks and Signal Handlers

If neither callbacks nor signal handlers acquire locks, then they cannot be involved
in deadlock cycles, which allows straightforward locking hierarchies to once again
consider library functions to be leaves on the locking-hierarchy tree. This strategy
works very well for most uses of qsort, whose callbacks usually simply compare the
two values passed in to them. This strategy also works wonderfully for many signal
handlers, especially given that acquiring locks from within signal handlers is generally
frowned upon [Gro01],9 but can fail if the application needs to manipulate complex data
structures from a signal handler.

Here are some ways to avoid acquiring locks in signal handlers even if complex data
structures must be manipulated:

1. Use simple data structures based on non-blocking synchronization, as will be
discussed in Section 13.3.1.

9 But the standard’s words do not stop clever coders from creating their own home-brew locking primitives
from atomic operations.
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2. If the data structures are too complex for reasonable use of non-blocking syn-
chronization, create a queue that allows non-blocking enqueue operations. In
the signal handler, instead of manipulating the complex data structure, add an
element to the queue describing the required change. A separate thread can then
remove elements from the queue and carry out the required changes using normal
locking. There are a number of readily available implementations of concurrent
queues [KLP12, Des09, MS96].

This strategy should be enforced with occasional manual or (preferably) automated
inspections of callbacks and signal handlers. When carrying out these inspections, be
wary of clever coders who might have (unwisely) created home-brew locks from atomic
operations.

6.5.2.3 Caller Controls Synchronization

Let the caller control synchronization. This works extremely well when the library
functions are operating on independent caller-visible instances of a data structure, each
of which may be synchronized separately. For example, if the library functions operate
on a search tree, and if the application needs a large number of independent search trees,
then the application can associate a lock with each tree. The application then acquires
and releases locks as needed, so that the library need not be aware of parallelism at all.
Instead, the application controls the parallelism, so that locking can work very well, as
was discussed in Section 6.5.1.

However, this strategy fails if the library implements a data structure that requires
internal concurrency, for example, a hash table or a parallel sort. In this case, the library
absolutely must control its own synchronization.

6.5.2.4 Parameterize Library Synchronization

The idea here is to add arguments to the library’s API to specify which locks to acquire,
how to acquire and release them, or both. This strategy allows the application to take on
the global task of avoiding deadlock by specifying which locks to acquire (by passing in
pointers to the locks in question) and how to acquire them (by passing in pointers to lock
acquisition and release functions), but also allows a given library function to control its
own concurrency by deciding where the locks should be acquired and released.

In particular, this strategy allows the lock acquisition and release functions to block
signals as needed without the library code needing to be concerned with of which signals
need to be blocked by which locks. The separation of concerns used by this strategy can
be quite effective, but in some cases the strategies laid out in the following sections can
work better.

That said, passing explicit pointers to locks to external APIs must be very carefully
considered, as discussed in Section 6.1.1.4. Although this practice is sometimes the
right thing to do, you should do yourself a favor by looking into alternative designs first.

6.5.2.5 Explicitly Avoid Callback Deadlocks

The basic rule behind this strategy was discussed in Section 6.1.1.2: “Release all locks
before invoking unknown code.” This is usually the best approach because it allows
the application to ignore the library’s locking hierarchy: the library remains a leaf or
isolated subtree of the application’s overall locking hierarchy.
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In cases where it is not possible to release all locks before invoking unknown code,
the layered locking hierarchies described in Section 6.1.1.3 can work well. For example,
if the unknown code is a signal handler, this implies that the library function block
signals across all lock acquisitions, which can be complex and slow. Therefore, in
cases where signal handlers (probably unwisely) acquire locks, the strategies in the next
section may prove helpful.

6.5.2.6 Explicitly Avoid Signal-Handler Deadlocks

Signal-handler deadlocks can be explicitly avoided as follows:

1. If the application invokes the library function from within a signal handler, then
that signal must be blocked every time that the library function is invoked from
outside of a signal handler.

2. If the application invokes the library function while holding a lock acquired within
a given signal handler, then that signal must be blocked every time that the library
function is called outside of a signal handler.

These rules can be enforced by using tools similar to the Linux kernel’s lockdep
lock dependency checker [Cor06a]. One of the great strengths of lockdep is that it is
not fooled by human intuition [Ros11].

6.5.2.7 Library Functions Used Between fork() and exec()

As noted earlier, if a thread executing a library function is holding a lock at the time
that some other thread invokes fork(), the fact that the parent’s memory is copied to
create the child means that this lock will be born held in the child’s context. The thread
that will release this lock is running in the parent, but not in the child, which means that
the child’s copy of this lock will never be released. Therefore, any attempt on the part
of the child to invoke that same library function will result in deadlock.

One approach to this problem would be to have the library function check to see if
the owner of the lock is still running, and if not, “breaking” the lock by re-initializing
and then acquiring it. However, this approach has a couple of vulnerabilities:

1. The data structures protected by that lock are likely to be in some intermedi-
ate state, so that naively breaking the lock might result in arbitrary memory
corruption.

2. If the child creates additional threads, two threads might break the lock concur-
rently, with the result that both threads believe they own the lock. This could
again result in arbitrary memory corruption.

The atfork() function is provided to help deal with these situations. The idea is
to register a triplet of functions, one to be called by the parent before the fork(), one
to be called by the parent after the fork(), and one to be called by the child after the
fork(). Appropriate cleanups can then be carried out at these three points.

Be warned, however, that coding of atfork() handlers is quite subtle in general.
The cases where atfork() works best are cases where the data structure in question
can simply be re-initialized by the child.
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6.5.2.8 Parallel Libraries: Discussion

Regardless of the strategy used, the description of the library’s API must include a clear
description of that strategy and how the caller should interact with that strategy. In short,
constructing parallel libraries using locking is possible, but not as easy as constructing a
parallel application.

6.5.3 Locking For Parallelizing Sequential Libraries: Villain!

With the advent of readily available low-cost multicore systems, a common task is
parallelizing an existing library that was designed with only single-threaded use in mind.
This all-to-common disregard for parallelism can result in a library API that is severely
flawed from a parallel-programming viewpoint. Candidate flaws include:

1. Implicit prohibition of partitioning.

2. Callback functions requiring locking.

3. Object-oriented spaghetti code.

These flaws and the consequences for locking are discussed in the following sections.

6.5.3.1 Partitioning Prohibited

Suppose that you were writing a single-threaded hash-table implementation. It is easy
and fast to maintain an exact count of the total number of items in the hash table, and
also easy and fast to return this exact count on each addition and deletion operation. So
why not?

One reason is that exact counters do not perform or scale well on multicore systems,
as was seen in Chapter 4. As a result, the parallelized implementation of the hash table
will not perform or scale well.

So what can be done about this? One approach is to return an approximate count,
using one of the algorithms from Chapter 4. Another approach is to drop the element
count altogether.

Either way, it will be necessary to inspect uses of the hash table to see why the
addition and deletion operations need the exact count. Here are a few possibilities:

1. Determining when to resize the hash table. In this case, an approximate count
should work quite well. It might also be useful to trigger the resizing operation
from the length of the longest chain, which can be computed and maintained in a
nicely partitioned per-chain manner.

2. Producing an estimate of the time required to traverse the entire hash table. An
approximate count works well in this case, also.

3. For diagnostic purposes, for example, to check for items being lost when trans-
ferring them to and from the hash table. This clearly requires an exact count.
However, given that this usage is diagnostic in nature, it might suffice to maintain
the lengths of the hash chains, then to infrequently sum them up while locking
out addition and deletion operations.
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It turns out that there is now a strong theoretical basis for some of the constraints
that performance and scalability place on a parallel library’s APIs [AGH+11, McK11b].
Anyone designing a parallel library needs to pay close attention to those constraints.

Although it is all too easy to blame locking for what are really problems due to a
concurrency-unfriendly API, doing so is not helpful. On the other hand, one has little
choice but to sympathize with the hapless developer who made this choice in (say)
1985. It would have been a rare and courageous developer to anticipate the need for
parallelism at that time, and it would have required an even more rare combination of
brilliance and luck to actually arrive at a good parallel-friendly API.

Times change, and code must change with them. That said, there might be a huge
number of users of a popular library, in which case an incompatible change to the API
would be quite foolish. Adding a parallel-friendly API to complement the existing
heavily used sequential-only API is probably the best course of action in this situation.

Nevertheless, human nature being what it is, we can expect our hapless developer
to be more likely to complain about locking than about his or her own poor (though
understandable) API design choices.

6.5.3.2 Deadlock-Prone Callbacks

Sections 6.1.1.2, 6.1.1.3, and 6.5.2 described how undisciplined use of callbacks can
result in locking woes. These sections also described how to design your library function
to avoid these problems, but it is unrealistic to expect a 1990s programmer with no
experience in parallel programming to have followed such a design. Therefore, someone
attempting to parallelize an existing callback-heavy single-threaded library will likely
have many opportunities to curse locking’s villainy.

If there are a very large number of uses of a callback-heavy library, it may be wise to
again add a parallel-friendly API to the library in order to allow existing users to convert
their code incrementally. Alternatively, some advocate use of transactional memory in
these cases. While the jury is still out on transactional memory, Section 15.2 discusses
its strengths and weaknesses. It is important to note that hardware transactional memory
(discussed in Section 15.3) cannot help here unless the hardware transactional memory
implementation provides forward-progress guarantees, which few do. Other alternatives
that appear to be quite practical (if less heavily hyped) include the methods discussed in
Sections 6.1.1.5, and 6.1.1.6, as well as those that will be discussed in Chapters 7 and 8.

6.5.3.3 Object-Oriented Spaghetti Code

Object-oriented programming went mainstream sometime in the 1980s or 1990s, and
as a result there is a huge amount of object-oriented code in production, much of it
single-threaded. Although object orientation can be a valuable software technique,
undisciplined use of objects can easily result in object-oriented spaghetti code. In object-
oriented spaghetti code, control flits from object to object in an essentially random
manner, making the code hard to understand and even harder, and perhaps impossible,
to accommodate a locking hierarchy.

Although many might argue that such code should be cleaned up in any case, such
things are much easier to say than to do. If you are tasked with parallelizing such a beast,
you can reduce the number of opportunities to curse locking by using the techniques
described in Sections 6.1.1.5, and 6.1.1.6, as well as those that will be discussed in
Chapters 7 and 8. This situation appears to be the use case that inspired transactional
memory, so it might be worth a try as well.
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But there is one question well worth asking in these situations: Should the code
remain sequential? For example, perhaps parallelism should be introduced at the process
level rather than the thread level. In general, if a task is proving extremely hard, it
is worth some time spent thinking about not only alternative ways to accomplish that
particular task, but also alternative tasks that might better solve the problem at hand.

6.6 Summary
Locking is perhaps the most widely used and most generally useful synchronization
tool. However, it works best when designed into an application or library from the
beginning. Given the large quantity of pre-existing single-threaded code that might
need to one day run in parallel, locking should therefore not be the only tool in your
parallel-programming toolbox. The next few chapters will discuss other tools, and how
they can best be used in concert with locking and with each other.
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Chapter 7

Data Ownership

One of the simplest ways to avoid the synchronization overhead that comes with locking
is to parcel the data out among the threads (or, in the case of kernels, CPUs) so that a
given piece of data is accessed and modified by only one of the threads. This approach
is used extremely heavily, in fact, it is one usage pattern that even novices use almost
instinctively. In fact, it is used so heavily that this chapter will not introduce any new
examples, but will instead recycle examples from previous chapters.

Quick Quiz 7.1: What form of data ownership is extremely difficult to avoid when
creating shared-memory parallel programs (for example, using pthreads) in C or C++?

There are a number of approaches to data ownership. Section 7.1 presents the
logical extreme in data ownership, where each thread has its own private address space.
Section 7.2 looks at the opposite extreme, where the data is shared, but different threads
own different access rights to the data. Section 7.3 describes function shipping, which
is a way of allowing other threads to have indirect access to data owned by a particular
thread. Section 7.4 describes how designated threads can be assigned ownership of a
specified function and the related data. Section 7.5 discusses improving performance
by transforming algorithms with shared data to instead use data ownership. Finally,
Section 7.6 lists a few software environments that feature data ownership as a first-class
citizen.

7.1 Multiple Processes

Section 3.1 introduced the following example:

1 compute_it 1 > compute_it.1.out &
2 compute_it 2 > compute_it.2.out &
3 wait
4 cat compute_it.1.out
5 cat compute_it.2.out

This example runs two instances of the compute_it program in parallel, as
separate processes that do not share memory. Therefore, all data in a given process
is owned by that process, so that almost the entirety of data in the above example
is owned. This approach almost entirely eliminates synchronization overhead. The
resulting combination of extreme simplicity and optimal performance is obviously quite
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attractive.
Quick Quiz 7.2: What synchronization remains in the example shown in Sec-

tion 7.1?
Quick Quiz 7.3: Is there any shared data in the example shown in Section 7.1?
This same pattern can be written in C as well as in sh, as illustrated by Figures 3.2

and 3.3.
The next section discusses use of data ownership in shared-memory parallel pro-

grams.

7.2 Partial Data Ownership and pthreads
Chapter 4 makes heavy use of data ownership, but adds a twist. Threads are not allowed
to modify data owned by other threads, but they are permitted to read it. In short, the
use of shared memory allows more nuanced notions of ownership and access rights.

For example, consider the per-thread statistical counter implementation shown in
Figure 4.9 on page 51. Here, inc_count() updates only the corresponding thread’s
instance of counter, while read_count() accesses, but does not modify, all
threads’ instances of counter.

Quick Quiz 7.4: Does it ever make sense to have partial data ownership where each
thread reads only its own instance of a per-thread variable, but writes to other threads’
instances?

Pure data ownership is also both common and useful, for example, the per-thread
memory-allocator caches discussed in Section 5.4.3 starting on page 105. In this
algorithm, each thread’s cache is completely private to that thread.

7.3 Function Shipping
The previous section described a weak form of data ownership where threads reached
out to other threads’ data. This can be thought of as bringing the data to the functions
that need it. An alternative approach is to send the functions to the data.

Such an approach is illustrated in Section 4.4.3 beginning on page 68, in particular
the flush_local_count_sig() and flush_local_count() functions in
Figure 4.24 on page 70.

The flush_local_count_sig() function is a signal handler that acts as the
shipped function. The pthread_kill() function in flush_local_count()
sends the signal—shipping the function—and then waits until the shipped function
executes. This shipped function has the not-unusual added complication of needing to
interact with any concurrently executing add_count() or sub_count() functions
(see Figure 4.25 on page 71 and Figure 4.26 on page 72).

Quick Quiz 7.5: What mechanisms other than POSIX signals may be used to ship
functions?

7.4 Designated Thread
The earlier sections describe ways of allowing each thread to keep its own copy or its
own portion of the data. In contrast, this section describes a functional-decomposition
approach, where a special designated thread owns the rights to the data that is required
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to do its job. The eventually consistent counter implementation described in Sec-
tion 4.2.3 provides an example. This implementation has a designated thread that runs
the eventual() function shown on lines 15-32 of Figure 4.8. This eventual()
thread periodically pulls the per-thread counts into the global counter, so that accesses
to the global counter will, as the name says, eventually converge on the actual value.

Quick Quiz 7.6: But none of the data in the eventual() function shown on
lines 15-32 of Figure 4.8 is actually owned by the eventual() thread! In just what
way is this data ownership???

7.5 Privatization
One way of improving the performance and scalability of a shared-memory parallel
program is to transform it so as to convert shared data to private data that is owned by a
particular thread.

An excellent example of this is shown in the answer to one of the Quick Quizzes in
Section 5.1.1, which uses privatization to produce a solution to the Dining Philosophers
problem with much better performance and scalability than that of the standard textbook
solution. The original problem has five philosophers sitting around the table with one
fork between each adjacent pair of philosophers, which permits at most two philosophers
to eat concurrently.

We can trivially privatize this problem by providing an additional five forks, so
that each philosopher has his or her own private pair of forks. This allows all five
philosophers to eat concurrently, and also offers a considerable reduction in the spread
of certain types of disease.

In other cases, privatization imposes costs. For example, consider the simple
limit counter shown in Figure 4.12 on page 56. This is an example of an algorithm
where threads can read each others’ data, but are only permitted to update their own
data. A quick review of the algorithm shows that the only cross-thread accesses are
in the summation loop in read_count(). If this loop is eliminated, we move to
the more-efficient pure data ownership, but at the cost of a less-accurate result from
read_count().

Quick Quiz 7.7: Is it possible to obtain greater accuracy while still maintaining full
privacy of the per-thread data?

In short, privatization is a powerful tool in the parallel programmer’s toolbox, but it
must nevertheless be used with care. Just like every other synchronization primitive, it
has the potential to increase complexity while decreasing performance and scalability.

7.6 Other Uses of Data Ownership
Data ownership works best when the data can be partitioned so that there is little or no
need for cross thread access or update. Fortunately, this situation is reasonably common,
and in a wide variety of parallel-programming environments.

Examples of data ownership include:

1. All message-passing environments, such as MPI [MPI08] and BOINC [UoC08].

2. Map-reduce [Jac08].

3. Client-server systems, including RPC, web services, and pretty much any system
with a back-end database server.
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4. Shared-nothing database systems.

5. Fork-join systems with separate per-process address spaces.

6. Process-based parallelism, such as the Erlang language.

Data ownership is perhaps the most underappreciated synchronization mechanism
in existence. When used properly, it delivers unrivaled simplicity, performance, and
scalability. Perhaps its simplicity costs it the respect that it deserves. Hopefully a greater
appreciation for the subtlety and power of data ownership will lead to greater level of
respect, to say nothing of leading to greater performance and scalability coupled with
reduced complexity.

158



Chapter 8

Deferred Processing

The strategy of deferring work goes back before the dawn of recorded history. It has
occasionally been derided as procrastination or even as sheer laziness. However, in
the last few decades workers have recognized this strategy’s value in simplifying and
streamlining parallel algorithms [KL80, Mas92]. Believe it or not, “laziness” in parallel
programming often outperforms and scales better than does industriousness! General
approaches to such work deferral tactics include reference counting, sequence locking,
and RCU.

8.1 Reference Counting
Reference counting tracks the number of references to a given object in order to prevent
that object from being prematurely freed. Although this is a conceptually simple
technique, many devils hide in the details. After all, if the object was not subject
to premature disposal, there would be no need for the reference counter in the first
place. But if the object can be disposed of, what prevents disposal during the reference-
acquisition process itself?

There are a number of possible answers to this question, including:

1. A lock residing outside of the object must be held while manipulating the reference
count.

2. The object is created with a non-zero reference count, and new references may be
acquired only when the current value of the reference counter is non-zero. If a
thread does not have a reference to a given object, it may obtain one with the help
of another thread that already has a reference.

3. An existence guarantee is provided for the object, preventing it from being freed
while some other entity might be attempting to acquire a reference. Existence
guarantees are often provided by automatic garbage collectors, and, as will be
seen in Section 8.3, by RCU.

4. A type-safety guarantee is provided for the object. An additional identity check
must be performed once the reference is acquired. Type-safety guarantees can
be provided by special-purpose memory allocators, for example, by the SLAB_
DESTROY_BY_RCU feature within the Linux kernel, as will be seen in Sec-
tion 8.3.
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Release Synchronization
Acquisition Reference
Synchronization Locking Counting RCU
Locking - CAM CA
Reference A AM A
Counting
RCU CA MCA CA

Table 8.1: Reference Counting and Synchronization Mechanisms

Of course, any mechanism that provides existence guarantees by definition also
provides type-safety guarantees. This section will therefore group the last two answers
together under the rubric of RCU, leaving us with three general categories of reference-
acquisition protection: Reference counting, sequence locking, and RCU.

Quick Quiz 8.1: Why not implement reference-acquisition using a simple compare-
and-swap operation that only acquires a reference if the reference counter is non-zero?

Given that the key reference-counting issue is synchronization between acquisition of
a reference and freeing of the object, we have nine possible combinations of mechanisms,
as shown in Table 8.1. This table divides reference-counting mechanisms into the
following broad categories:

1. Simple counting with neither atomic operations, memory barriers, nor alignment
constraints (“-”).

2. Atomic counting without memory barriers (“A”).

3. Atomic counting, with memory barriers required only on release (“AM”).

4. Atomic counting with a check combined with the atomic acquisition operation,
and with memory barriers required only on release (“CAM”).

5. Atomic counting with a check combined with the atomic acquisition operation
(“CA”).

6. Atomic counting with a check combined with the atomic acquisition operation,
and with memory barriers also required on acquisition (“MCA”).

However, because all Linux-kernel atomic operations that return a value are defined
to contain memory barriers, all release operations contain memory barriers, and all
checked acquisition operations also contain memory barriers. Therefore, cases “CA”
and “MCA” are equivalent to “CAM”, so that there are sections below for only the first
four cases: “-”, “A”, “AM”, and “CAM”. The Linux primitives that support reference
counting are presented in Section 8.1.3. Later sections cite optimizations that can
improve performance if reference acquisition and release is very frequent, and the
reference count need be checked for zero only very rarely.

8.1.1 Implementation of Reference-Counting Categories
Simple counting protected by locking (“-”) is described in Section 8.1.1.1, atomic count-
ing with no memory barriers (“A”) is described in Section 8.1.1.2 atomic counting with
acquisition memory barrier (“AM”) is described in Section 8.1.1.3, and atomic counting
with check and release memory barrier (“CAM”) is described in Section 8.1.1.4.
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8.1.1.1 Simple Counting

Simple counting, with neither atomic operations nor memory barriers, can be used when
the reference-counter acquisition and release are both protected by the same lock. In
this case, it should be clear that the reference count itself may be manipulated non-
atomically, because the lock provides any necessary exclusion, memory barriers, atomic
instructions, and disabling of compiler optimizations. This is the method of choice when
the lock is required to protect other operations in addition to the reference count, but
where a reference to the object must be held after the lock is released. Figure 8.1 shows
a simple API that might be used to implement simple non-atomic reference counting –
although simple reference counting is almost always open-coded instead.

1 struct sref {
2 int refcount;
3 };
4
5 void sref_init(struct sref *sref)
6 {
7 sref->refcount = 1;
8 }
9
10 void sref_get(struct sref *sref)
11 {
12 sref->refcount++;
13 }
14
15 int sref_put(struct sref *sref,
16 void (*release)(struct sref *sref))
17 {
18 WARN_ON(release == NULL);
19 WARN_ON(release == (void (*)(struct sref *))kfree);
20
21 if (--sref->refcount == 0) {
22 release(sref);
23 return 1;
24 }
25 return 0;
26 }

Figure 8.1: Simple Reference-Count API

8.1.1.2 Atomic Counting

Simple atomic counting may be used in cases where any CPU acquiring a reference
must already hold a reference. This style is used when a single CPU creates an object for
its own private use, but must allow other CPU, tasks, timer handlers, or I/O completion
handlers that it later spawns to also access this object. Any CPU that hands the object
off must first acquire a new reference on behalf of the recipient object. In the Linux
kernel, the kref primitives are used to implement this style of reference counting, as
shown in Figure 8.2.

Atomic counting is required because locking is not used to protect all reference-
count operations, which means that it is possible for two different CPUs to concurrently
manipulate the reference count. If normal increment and decrement were used, a pair
of CPUs might both fetch the reference count concurrently, perhaps both obtaining the
value “3”. If both of them increment their value, they will both obtain “4”, and both will
store this value back into the counter. Since the new value of the counter should instead
be “5”, one of the two increments has been lost. Therefore, atomic operations must be
used both for counter increments and for counter decrements.
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If releases are guarded by locking or RCU, memory barriers are not required, but
for different reasons. In the case of locking, the locks provide any needed memory
barriers (and disabling of compiler optimizations), and the locks also prevent a pair of
releases from running concurrently. In the case of RCU, cleanup must be deferred until
all currently executing RCU read-side critical sections have completed, and any needed
memory barriers or disabling of compiler optimizations will be provided by the RCU
infrastructure. Therefore, if two CPUs release the final two references concurrently,
the actual cleanup will be deferred until both CPUs exit their RCU read-side critical
sections.

Quick Quiz 8.2: Why isn’t it necessary to guard against cases where one CPU
acquires a reference just after another CPU releases the last reference?

1 struct kref {
2 atomic_t refcount;
3 };
4
5 void kref_init(struct kref *kref)
6 {
7 atomic_set(&kref->refcount, 1);
8 }
9
10 void kref_get(struct kref *kref)
11 {
12 WARN_ON(!atomic_read(&kref->refcount));
13 atomic_inc(&kref->refcount);
14 }
15
16 static inline int
17 kref_sub(struct kref *kref, unsigned int count,
18 void (*release)(struct kref *kref))
19 {
20 WARN_ON(release == NULL);
21
22 if (atomic_sub_and_test((int) count,
23 &kref->refcount)) {
24 release(kref);
25 return 1;
26 }
27 return 0;
28 }

Figure 8.2: Linux Kernel kref API

The kref structure itself, consisting of a single atomic data item, is shown in
lines 1-3 of Figure 8.2. The kref_init() function on lines 5-8 initializes the counter
to the value “1”. Note that the atomic_set() primitive is a simple assignment, the
name stems from the data type of atomic_t rather than from the operation. The
kref_init() function must be invoked during object creation, before the object has
been made available to any other CPU.

The kref_get() function on lines 10-14 unconditionally atomically increments
the counter. The atomic_inc() primitive does not necessarily explicitly disable
compiler optimizations on all platforms, but the fact that the kref primitives are
in a separate module and that the Linux kernel build process does no cross-module
optimizations has the same effect.

The kref_put() function on lines 16-28 atomically decrements the counter, and
if the result is zero, line 24 invokes the specified release() function and line 24
returns, informing the caller that release() was invoked. Otherwise, kref_put()
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returns zero, informing the caller that release() was not called.
Quick Quiz 8.3: Suppose that just after the atomic_dec_and_test() on

line 22 of Figure 8.2 is invoked, that some other CPU invokes kref_get(). Doesn’t
this result in that other CPU now having an illegal reference to a released object?

Quick Quiz 8.4: Suppose that kref_sub() returns zero, indicating that the
release() function was not invoked. Under what conditions can the caller rely on
the continued existence of the enclosing object?

8.1.1.3 Atomic Counting With Release Memory Barrier

This style of reference is used in the Linux kernel’s networking layer to track the
destination caches that are used in packet routing. The actual implementation is quite
a bit more involved; this section focuses on the aspects of struct dst_entry
reference-count handling that matches this use case, shown in Figure 8.3.

1 static inline
2 struct dst_entry * dst_clone(struct dst_entry * dst)
3 {
4 if (dst)
5 atomic_inc(&dst->__refcnt);
6 return dst;
7 }
8
9 static inline
10 void dst_release(struct dst_entry * dst)
11 {
12 if (dst) {
13 WARN_ON(atomic_read(&dst->__refcnt) < 1);
14 smp_mb__before_atomic_dec();
15 atomic_dec(&dst->__refcnt);
16 }
17 }

Figure 8.3: Linux Kernel dst_clone API

The dst_clone() primitive may be used if the caller already has a reference
to the specified dst_entry, in which case it obtains another reference that may be
handed off to some other entity within the kernel. Because a reference is already held by
the caller, dst_clone() need not execute any memory barriers. The act of handing
the dst_entry to some other entity might or might not require a memory barrier, but
if such a memory barrier is required, it will be embedded in the mechanism used to hand
the dst_entry off.

The dst_release() primitive may be invoked from any environment, and the
caller might well reference elements of the dst_entry structure immediately prior to
the call to dst_release(). The dst_release() primitive therefore contains a
memory barrier on line 14 preventing both the compiler and the CPU from misordering
accesses.

Please note that the programmer making use of dst_clone() and dst_release()
need not be aware of the memory barriers, only of the rules for using these two primi-
tives.

8.1.1.4 Atomic Counting With Check and Release Memory Barrier

Consider a situation where the caller must be able to acquire a new reference to an
object to which it does not already hold a reference. The fact that initial reference-
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count acquisition can now run concurrently with reference-count release adds further
complications. Suppose that a reference-count release finds that the new value of the
reference count is zero, signalling that it is now safe to clean up the reference-counted
object. We clearly cannot allow a reference-count acquisition to start after such clean-up
has commenced, so the acquisition must include a check for a zero reference count.
This check must be part of the atomic increment operation, as shown below.

Quick Quiz 8.5: Why can’t the check for a zero reference count be made in a
simple “if” statement with an atomic increment in its “then” clause?

The Linux kernel’s fget() and fput() primitives use this style of reference
counting. Simplified versions of these functions are shown in Figure 8.4.

1 struct file *fget(unsigned int fd)
2 {
3 struct file *file;
4 struct files_struct *files = current->files;
5
6 rcu_read_lock();
7 file = fcheck_files(files, fd);
8 if (file) {
9 if (!atomic_inc_not_zero(&file->f_count)) {
10 rcu_read_unlock();
11 return NULL;
12 }
13 }
14 rcu_read_unlock();
15 return file;
16 }
17
18 struct file *
19 fcheck_files(struct files_struct *files, unsigned int fd)
20 {
21 struct file * file = NULL;
22 struct fdtable *fdt = rcu_dereference((files)->fdt);
23
24 if (fd < fdt->max_fds)
25 file = rcu_dereference(fdt->fd[fd]);
26 return file;
27 }
28
29 void fput(struct file *file)
30 {
31 if (atomic_dec_and_test(&file->f_count))
32 call_rcu(&file->f_u.fu_rcuhead, file_free_rcu);
33 }
34
35 static void file_free_rcu(struct rcu_head *head)
36 {
37 struct file *f;
38
39 f = container_of(head, struct file, f_u.fu_rcuhead);
40 kmem_cache_free(filp_cachep, f);
41 }

Figure 8.4: Linux Kernel fget/fput API

Line 4 of fget() fetches the pointer to the current process’s file-descriptor ta-
ble, which might well be shared with other processes. Line 6 invokes rcu_read_
lock(), which enters an RCU read-side critical section. The callback function from
any subsequent call_rcu() primitive will be deferred until a matching rcu_read_
unlock() is reached (line 10 or 14 in this example). Line 7 looks up the file structure
corresponding to the file descriptor specified by the fd argument, as will be described
later. If there is an open file corresponding to the specified file descriptor, then line 9
attempts to atomically acquire a reference count. If it fails to do so, lines 10-11 exit the
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RCU read-side critical section and report failure. Otherwise, if the attempt is successful,
lines 14-15 exit the read-side critical section and return a pointer to the file structure.

The fcheck_files() primitive is a helper function for fget(). It uses the
rcu_dereference() primitive to safely fetch an RCU-protected pointer for later
dereferencing (this emits a memory barrier on CPUs such as DEC Alpha in which data
dependencies do not enforce memory ordering). Line 22 uses rcu_dereference()
to fetch a pointer to this task’s current file-descriptor table, and line 24 checks to see
if the specified file descriptor is in range. If so, line 25 fetches the pointer to the file
structure, again using the rcu_dereference() primitive. Line 26 then returns a
pointer to the file structure or NULL in case of failure.

The fput() primitive releases a reference to a file structure. Line 31 atomically
decrements the reference count, and, if the result was zero, line 32 invokes the call_
rcu() primitives in order to free up the file structure (via the file_free_rcu()
function specified in call_rcu()’s second argument), but only after all currently-
executing RCU read-side critical sections complete. The time period required for all
currently-executing RCU read-side critical sections to complete is termed a “grace
period”. Note that the atomic_dec_and_test() primitive contains a memory
barrier. This memory barrier is not necessary in this example, since the structure cannot
be destroyed until the RCU read-side critical section completes, but in Linux, all atomic
operations that return a result must by definition contain memory barriers.

Once the grace period completes, the file_free_rcu() function obtains a
pointer to the file structure on line 39, and frees it on line 40.

This approach is also used by Linux’s virtual-memory system, see get_page_
unless_zero() and put_page_testzero() for page structures as well as
try_to_unuse() and mmput() for memory-map structures.

8.1.2 Hazard Pointers

All of the reference-counting mechanisms discussed in the previous section require some
other mechanism to prevent the data element from being deleted while the reference
count is being acquired. This other mechanism might be a pre-existing reference held
on that data element, locking, RCU, or atomic operations, but all of them either degrade
performance and scalability or restrict use cases.

One way of avoiding these problems is to implement the reference counters inside
out, that is, rather than incrementing an integer stored in the data element, instead store
a pointer to that data element in per-CPU (or per-thread) lists. Each element of these
lists is called a hazard pointer [Mic04]. The value of a given data element’s “virtual
reference counter” can then be obtained by counting the number of hazard pointers
referencing that element. Therefore, if that element has been rendered inaccessible to
readers, and there are no longer any hazard pointers referencing it, that element may
safely be freed.

Of course, this means that hazard-pointer acquisition must be carried out quite care-
fully in order to avoid destructive races with concurrent deletion. One implementation
is shown in Figure 8.5, which shows hp_store() on lines 1-13 and hp_erase()
on lines 15-20. The smp_mb() primitive will be described in detail in Section 13.2,
but may be ignored for the purposes of this brief overview.

The hp_store() function records a hazard pointer at hp for the data element
whose pointer is referenced by p, while checking for concurrent modifications. If a
concurrent modification occurred, hp_store() refuses to record a hazard pointer,
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1 int hp_store(void **p, void **hp)
2 {
3 void *tmp;
4
5 tmp = ACCESS_ONCE(*p);
6 ACCESS_ONCE(*hp) = tmp;
7 smp_mb();
8 if (tmp != ACCESS_ONCE(*p) ||
9 tmp == HAZPTR_POISON) {

10 ACCESS_ONCE(*hp) = NULL;
11 return 0;
12 }
13 return 1;
14 }
15
16 void hp_erase(void **hp)
17 {
18 smp_mb();
19 ACCESS_ONCE(*hp) = NULL;
20 hp_free(hp);
21 }

Figure 8.5: Hazard-Pointer Storage and Erasure

and returns zero to indicate that the caller must restart its traversal from the beginning.
Otherwise, hp_store() returns one to indicate that it successfully recorded a hazard
pointer for the data element.

Quick Quiz 8.6: Why does hp_store() in Figure 8.5 take a double indirection
to the data element? Why not void * instead of void **?

Quick Quiz 8.7: Why does hp_store()’s caller need to restart its traversal from
the beginning in case of failure? Isn’t that inefficient for large data structures?

Quick Quiz 8.8: Given that papers on hazard pointers use the bottom bits of each
pointer to mark deleted elements, what is up with HAZPTR_POISON?

Because algorithms using hazard pointers might be restarted at any step of their
traversal through the data structure, such algorithms must typically take care to avoid
making any changes to the data structure until after they have acquired all relevant
hazard pointers.

Quick Quiz 8.9: But don’t these restrictions on hazard pointers also apply to other
forms of reference counting?

In exchange for these restrictions, hazard pointers offer excellent performance and
scalability for readers. Performance comparisons with other mechanisms may be found
in Chapter 9 and in other publications [HMBW07, McK13, Mic04].

8.1.3 Linux Primitives Supporting Reference Counting
The Linux-kernel primitives used in the above examples are summarized in the following
list.

• atomic_t Type definition for 32-bit quantity to be manipulated atomically.

• void atomic_dec(atomic_t *var); Atomically decrements the refer-
enced variable without necessarily issuing a memory barrier or disabling compiler
optimizations.

• int atomic_dec_and_test(atomic_t *var);Atomically decrements
the referenced variable, returning true if the result is zero. Issues a memory
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barrier and disables compiler optimizations that might otherwise move memory
references across this primitive.

• void atomic_inc(atomic_t *var); Atomically increments the refer-
enced variable without necessarily issuing a memory barrier or disabling compiler
optimizations.

• int atomic_inc_not_zero(atomic_t *var);Atomically increments
the referenced variable, but only if the value is non-zero, and returning true if the
increment occurred. Issues a memory barrier and disables compiler optimizations
that might otherwise move memory references across this primitive.

• int atomic_read(atomic_t *var); Returns the integer value of the
referenced variable. This is not an atomic operation, and it neither issues memory
barriers nor disables compiler optimizations.

• void atomic_set(atomic_t *var, int val); Sets the value of the
referenced atomic variable to “val”. This is not an atomic operation, and it neither
issues memory barriers nor disables compiler optimizations.

• void call_rcu(struct rcu_head *head, void (*func)(struct rcu_
head *head)); Invokes func(head) some time after all currently exe-
cuting RCU read-side critical sections complete, however, the call_rcu()
primitive returns immediately. Note that head is normally a field within an
RCU-protected data structure, and that func is normally a function that frees up
this data structure. The time interval between the invocation of call_rcu()
and the invocation of func is termed a “grace period”. Any interval of time
containing a grace period is itself a grace period.

• type *container_of(p, type, f); Given a pointer “p” to a field “f”
within a structure of the specified type, return a pointer to the structure.

• void rcu_read_lock(void); Marks the beginning of an RCU read-side
critical section.

• void rcu_read_unlock(void); Marks the end of an RCU read-side crit-
ical section. RCU read-side critical sections may be nested.

• void smp_mb__before_atomic_dec(void); Issues a memory barrier
and disables code-motion compiler optimizations only if the platform’s atomic_
dec() primitive does not already do so.

• struct rcu_head A data structure used by the RCU infrastructure to track
objects awaiting a grace period. This is normally included as a field within an
RCU-protected data structure.

8.1.4 Counter Optimizations
In some cases where increments and decrements are common, but checks for zero are
rare, it makes sense to maintain per-CPU or per-task counters, as was discussed in
Chapter 4. See Appendix D.1 for an example of this technique applied to RCU. This ap-
proach eliminates the need for atomic instructions or memory barriers on the increment
and decrement primitives, but still requires that code-motion compiler optimizations
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Figure 8.6: Reader And Uncooperative Sequence Lock

be disabled. In addition, the primitives such as synchronize_srcu() that check
for the aggregate reference count reaching zero can be quite slow. This underscores the
fact that these techniques are designed for situations where the references are frequently
acquired and released, but where it is rarely necessary to check for a zero reference
count.

However, it is usually the case that use of reference counts requires writing (often
atomically) to a data structure that is otherwise read only. In this case, reference counts
are imposing expensive cache misses on readers.

Quick Quiz 8.10: But hazard pointers don’t write to the data structure!
It is therefore worthwhile to look into synchronization mechanisms that do not

require readers to do writes at all. One such synchronization mechanism, sequence
locks, is covered in the next section.

8.2 Sequence Locks
Sequence locks are used in the Linux kernel for read-mostly data that must be seen in
a consistent state by readers. However, unlike reader-writer locking, readers do not
exclude writers. Instead, like hazard pointers, sequence locks force readers to retry an
operation if they detect activity from a concurrent writer. As can be seen from Figure 8.6,
it is important to design code using sequence locks so that readers very rarely need to
retry.

Quick Quiz 8.11: Why isn’t this sequence-lock discussion in Chapter 6, you know,
the one on locking?

1 do {
2 seq = read_seqbegin(&test_seqlock);
3 /* read-side access. */
4 } while (read_seqretry(&test_seqlock, seq));

Figure 8.7: Sequence-Locking Reader
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The key component of sequence locking is the sequence number, which has an
even value in the absence of writers and an odd value if there is an update in progress.
Readers can then snapshot the value before and after each access. If either snapshot
has an odd value, or if the two snapshots differ, there has been a concurrent update,
and the reader must discard the results of the access and then retry it. Readers use the
read_seqbegin() and read_seqretry() functions, as shown in Figure 8.7,
when accessing data protected by a sequence lock. Writers must increment the value
before and after each update, and only one writer is permitted at a given time. Writers
use the write_seqlock() and write_sequnlock() functions, as shown in
Figure 8.8, when updating data protected by a sequence lock.

Sequence-lock-protected data can have an arbitrarily large number of concurrent
readers, but only one writer at a time. Sequence locking is used in the Linux kernel to
protect calibration quantities used for timekeeping. It is also used in pathname traversal
to detect concurrent rename operations.

Quick Quiz 8.12: Can you use sequence locks as the only synchronization mech-
anism protecting a linked list supporting concurrent addition, deletion, and search?

A simple implementation of sequence locks is shown in Figure 8.9 (seqlock.h).
The seqlock_t data structure is shown on lines 1-4, and contains the sequence
number along with a lock to serialize writers. Lines 6-10 show seqlock_init(),
which, as the name indicates, initializes a seqlock_t.

Lines 12-22 show read_seqbegin(), which begins a sequence-lock read-side
critical section. Line 17 takes a snapshot of the sequence counter, and line 18 orders
this snapshot operation before the caller’s critical section. Line 19 checks to see if the
snapshot is odd, indicating that there is a concurrent writer, and, if so, line 20 jumps
back to the beginning. Otherwise, line 21 returns the value of the snapshot, which the
caller will pass to a later call to read_seqretry().

Quick Quiz 8.13: Why bother with the check on line 19 of read_seqbegin()
in Figure 8.9? Given that a new writer could begin at any time, why not simply
incorporate the check into line 31 of read_seqretry()?

Lines 24-32 show read_seqretry(), which returns true if there were no writers
present since the time of the corresponding call to read_seqbegin(). Line 29
orders the caller’s prior critical section before line 30’s fetch of the new snapshot of the
sequence counter. Finally, line 30 checks that the sequence counter has not changed, in
other words, that there has been no writer, and returns true if so.

Quick Quiz 8.14: Why is the smp_mb() on line 29 of Figure 8.9 needed?
Quick Quiz 8.15: What prevents sequence-locking updaters from starving readers?

Lines 34-39 show write_seqlock(), which simply acquires the lock, incre-
ments the sequence number, and executes a memory barrier to ensure that this in-
crement is ordered before the caller’s critical section. Lines 41-46 show write_
sequnlock(), which executes a memory barrier to ensure that the caller’s critical
section is ordered before the increment of the sequence number on line 44, then releases

1 write_seqlock(&test_seqlock);
2 /* Update */
3 write_sequnlock(&test_seqlock);

Figure 8.8: Sequence-Locking Writer
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1 typedef struct {
2 unsigned long seq;
3 spinlock_t lock;
4 } seqlock_t;
5
6 static void seqlock_init(seqlock_t *slp)
7 {
8 slp->seq = 0;
9 spin_lock_init(&slp->lock);
10 }
11
12 static unsigned long read_seqbegin(seqlock_t *slp)
13 {
14 unsigned long s;
15
16 repeat:
17 s = ACCESS_ONCE(slp->seq);
18 smp_mb();
19 if (unlikely(s & 1))
20 goto repeat;
21 return s;
22 }
23
24 static int read_seqretry(seqlock_t *slp,
25 unsigned long oldseq)
26 {
27 unsigned long s;
28
29 smp_mb();
30 s = ACCESS_ONCE(slp->seq);
31 return s != oldseq;
32 }
33
34 static void write_seqlock(seqlock_t *slp)
35 {
36 spin_lock(&slp->lock);
37 ++slp->seq;
38 smp_mb();
39 }
40
41 static void write_sequnlock(seqlock_t *slp)
42 {
43 smp_mb();
44 ++slp->seq;
45 spin_unlock(&slp->lock);
46 }

Figure 8.9: Sequence-Locking Implementation
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the lock.
Quick Quiz 8.16: What if something else serializes writers, so that the lock is not

needed?
Quick Quiz 8.17: Why isn’t seq on line 2 of Figure 8.9 unsigned rather than

unsigned long? After all, if unsigned is good enough for the Linux kernel,
shouldn’t it be good enough for everyone?

Both the read-side and write-side critical sections of a sequence lock can be thought
of as transactions, and sequence locking therefore can be thought of as a limited form
of transactional memory, which will be discussed in Section 15.2. The limitations of
sequence locking are: (1) Sequence locking restricts updates and (2) sequence locking
does not permit traversal of pointers to objects that might be freed by updaters. These
limitations are of course overcome by transactional memory, but can also be overcome
by combining other synchronization primitives with sequence locking.

Sequence locks allow writers to defer readers, but not vice versa. This can result
in unfairness and even starvation in writer-heavy workloads. On the other hand, in the
absence of writers, sequence-lock readers are reasonably fast and scale linearly. It is only
human to want the best of both worlds: fast readers without the possibility of read-side
failure, let alone starvation. In addition, it would also be nice to overcome sequence
locking’s limitations with pointers. The following section presents a synchronization
mechanism with exactly these proporties.

8.3 Read-Copy Update (RCU)

This section covers RCU from a number of different perspectives. Section 8.3.1 provides
the classic introduction to RCU, Section 8.3.2 covers fundamental RCU concepts,
Section 8.3.3 introduces some common uses of RCU, Section 8.3.4 presents the Linux-
kernel API, Section 8.3.5 covers a sequence of “toy” implementations of user-level
RCU, and finally Section 8.3.6 provides some RCU exercises.

8.3.1 Introduction to RCU

Suppose that you are writing a parallel real-time program that needs to access data
that is subject to gradual change, perhaps due to changes in temperature, humidity, and
barometric pressure. The real-time response constraints on this program are so severe
that it is not permissible to spin or block, thus ruling out locking, nor is it permissible
to use a retry loop, thus ruling out sequence locks. Fortunately, the temperature and
pressure are normally controlled, so that a default hard-coded set of data is usually
sufficient.

However, the temperature, humidity, and pressure occasionally deviate too far from
the defaults, and in such situations it is necessary to provide data that replaces the
defaults. Because the temperature, humidity, and pressure change gradually, providing
the updated values is not a matter of urgency, though it must happen within a few
minutes. The program is to use a global pointer imaginatively named gptr that is
normally NULL, which indicates that the default values are to be used. Otherwise, gptr
points to a structure providing values imaginatively named a, b, and c that are to be
used in the real-time calculations.

How can we safely provide updated values when needed without impeding real-time
readers?
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Figure 8.10: Insertion With Concurrent Readers

A classic approach is shown in Figure 8.10. The first row shows the default state,
with gptr equal to NULL. In the second row, we have allocated a structure which is
uninitialized, as indicated by the question marks. In the third row, we have initialized
the structure. Next, we assign gptr to reference this new element.1 On modern general-
purpose systems, this assignment is atomic in the sense that concurrent readers will
see either a NULL pointer or a pointer to the new structure p, but not some mash-up
containing bits from both values. Each reader is therefore guaranteed to either get the
default value of NULL or to get the newly installed non-default values, but either way
each reader will see a consistent result. Even better, readers need not use any expensive
synchronization primitives, so this approach is quite suitable for real-time use.2

But sooner or later, it will be necessary to remove data that is being referenced by
concurrent readers. Let us move to a more complex example where we are removing
an element from a linked list, as shown in Figure 8.11. This list initially contains
elements A, B, and C, and we need to remove element B. First, we use list_del() to
carry out the removal,3 at which point all new readers will see element B as having been

1 On many computer systems, simple assignment is insufficient due to interference from both the compiler
and the CPU. These issues will be covered in Section 8.3.2.

2 Again, on many computer systems, additional work is required to prevent interference from the compiler,
and, on DEC Alpha systems, the CPU as well. This will be covered in Section 8.3.2.

3 And yet again, this approximates reality, which will be expanded on in Section 8.3.2.
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Figure 8.11: Deletion From Linked List With Concurrent Readers

deleted from the list. However, there might be old readers still referencing this element.
Once all these old readers have finished, we can safely free element B, resulting in the
situation shown at the bottom of the figure.

But how can we tell when the readers are finished?
It is tempting to consider a reference-counting scheme, but Figure 4.3 in Chapter 4

shows that this can also result in long delays, just as can the locking and sequence-
locking approaches that we already rejected.

Let’s consider the logical extreme where the readers do absolutely nothing to
announce their presence. This approach clearly allows optimal performance for readers
(after all, free is a very good price), but leaves open the question of how the updater can
possibly determine when all the old readers are done. We clearly need some additional
constraints if we are to provide a reasonable answer to this question.

One constraint that fits well with some types of real-time operating systems (as
well as some operating-system kernels) is to consider the case where threads are not
subject to preemption. In such non-preemptible environments, each thread runs until it
explicitly and voluntarily blocks. This means that an infinite loop without blocking will
render a CPU useless for any other purpose from the start of the infinite loop onwards.4

Non-preemptibility also requires that threads be prohibited from blocking while holding
spinlocks. Without this prohibition, all CPUs might be consumed by threads spinning
attempting to acquire a spinlock held by a blocked thread. The spinning threads will not

4 In contrast, an infinite loop in a preemptible environment might be preempted. This infinite loop might
still waste considerable CPU time, but the CPU in question would nevertheless be able to do other work.
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Figure 8.12: Waiting for Pre-Existing Readers

relinquish their CPUs until they acquire the lock, but the thread holding the lock cannot
possibly release it until one of the spinning threads relinquishes a CPU. This is a classic
deadlock situation.

Let us impose this same constraint on reader threads traversing the linked list:
such threads are not allowed to block until after completing their traversal. Returning
to the second row of Figure 8.11, where the updater has just completed executing
list_del(), imagine that CPU 0 executes a context switch. Because readers are
not permitted to block while traversing the linked list, we are guaranteed that all prior
readers that might have been running on CPU 0 will have completed. Extending this
line of reasoning to the other CPUs, once each CPU has been observed executing a
context switch, we are guaranteed that all prior readers have completed, and that there
are no longer any reader threads referencing element B. The updater can then safely
free element B, resulting in the state shown at the bottom of Figure 8.11.

A schematic of this approach is shown in Figure 8.12, with time advancing from the
top of the figure to the bottom.

Although production-quality implementations of this approach can be quite complex,
a toy implementatoin is exceedingly simple:

1 for_each_online_cpu(cpu)
2 run_on(cpu);

The for_each_online_cpu() primitive iterates over all CPUs, and the run_
on() function causes the current thread to execute on the specified CPU, which forces
the destination CPU to execute a context switch. Therefore, once the for_each_
online_cpu() has completed, each CPU has executed a context switch, which in
turn guarantees that all pre-existing reader threads have completed.

Please note that this approach is not production quality. Correct handling of a
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number of corner cases and the need for a number of powerful optimizations mean that
production-quality implementations have significant additional complexity. In addition,
RCU implementations for preemptible environments require that readers actually do
something. However, this simple non-preemptible approach is conceptually complete,
and forms a good initial basis for understanding the RCU fundamentals covered in the
following section.

8.3.2 RCU Fundamentals
Authors: Paul E. McKenney and Jonathan Walpole

Read-copy update (RCU) is a synchronization mechanism that was added to the
Linux kernel in October of 2002. RCU achieves scalability improvements by allow-
ing reads to occur concurrently with updates. In contrast with conventional locking
primitives that ensure mutual exclusion among concurrent threads regardless of whether
they be readers or updaters, or with reader-writer locks that allow concurrent reads but
not in the presence of updates, RCU supports concurrency between a single updater
and multiple readers. RCU ensures that reads are coherent by maintaining multiple
versions of objects and ensuring that they are not freed up until all pre-existing read-side
critical sections complete. RCU defines and uses efficient and scalable mechanisms for
publishing and reading new versions of an object, and also for deferring the collection
of old versions. These mechanisms distribute the work among read and update paths
in such a way as to make read paths extremely fast. In some cases (non-preemptible
kernels), RCU’s read-side primitives have zero overhead.

Quick Quiz 8.18: But doesn’t Section 8.2’s seqlock also permit readers and updaters
to get work done concurrently?

This leads to the question “what exactly is RCU?”, and perhaps also to the question
“how can RCU possibly work?” (or, not infrequently, the assertion that RCU cannot
possibly work). This document addresses these questions from a fundamental viewpoint;
later installments look at them from usage and from API viewpoints. This last installment
also includes a list of references.

RCU is made up of three fundamental mechanisms, the first being used for insertion,
the second being used for deletion, and the third being used to allow readers to tolerate
concurrent insertions and deletions. Section 8.3.2.1 describes the publish-subscribe
mechanism used for insertion, Section 8.3.2.2 describes how waiting for pre-existing
RCU readers enabled deletion, and Section 8.3.2.3 discusses how maintaining multiple
versions of recently updated objects permits concurrent insertions and deletions. Finally,
Section 8.3.2.4 summarizes RCU fundamentals.

8.3.2.1 Publish-Subscribe Mechanism

One key attribute of RCU is the ability to safely scan data, even though that data is
being modified concurrently. To provide this ability for concurrent insertion, RCU uses
what can be thought of as a publish-subscribe mechanism. For example, consider an
initially NULL global pointer gp that is to be modified to point to a newly allocated and
initialized data structure. The code fragment shown in Figure 8.13 (with the addition of
appropriate locking) might be used for this purpose.

Unfortunately, there is nothing forcing the compiler and CPU to execute the last four
assignment statements in order. If the assignment to gp happens before the initialization
of p fields, then concurrent readers could see the uninitialized values. Memory barriers
are required to keep things ordered, but memory barriers are notoriously difficult to use.
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1 struct foo {
2 int a;
3 int b;
4 int c;
5 };
6 struct foo *gp = NULL;
7
8 /* . . . */
9
10 p = kmalloc(sizeof(*p), GFP_KERNEL);
11 p->a = 1;
12 p->b = 2;
13 p->c = 3;
14 gp = p;

Figure 8.13: Data Structure Publication (Unsafe)

We therefore encapsulate them into a primitive rcu_assign_pointer() that has
publication semantics. The last four lines would then be as follows:

1 p->a = 1;
2 p->b = 2;
3 p->c = 3;
4 rcu_assign_pointer(gp, p);

The rcu_assign_pointer() would publish the new structure, forcing both
the compiler and the CPU to execute the assignment to gp after the assignments to the
fields referenced by p.

However, it is not sufficient to only enforce ordering at the updater, as the reader must
enforce proper ordering as well. Consider for example the following code fragment:

1 p = gp;
2 if (p != NULL) {
3 do_something_with(p->a, p->b, p->c);
4 }

Although this code fragment might well seem immune to misordering, unfortunately,
the DEC Alpha CPU [McK05a, McK05b] and value-speculation compiler optimizations
can, believe it or not, cause the values of p->a, p->b, and p->c to be fetched before
the value of p. This is perhaps easiest to see in the case of value-speculation compiler
optimizations, where the compiler guesses the value of p fetches p->a, p->b, and
p->c then fetches the actual value of p in order to check whether its guess was correct.
This sort of optimization is quite aggressive, perhaps insanely so, but does actually
occur in the context of profile-driven optimization.

Clearly, we need to prevent this sort of skullduggery on the part of both the compiler
and the CPU. The rcu_dereference() primitive uses whatever memory-barrier
instructions and compiler directives are required for this purpose:5

1 rcu_read_lock();
2 p = rcu_dereference(gp);
3 if (p != NULL) {
4 do_something_with(p->a, p->b, p->c);
5 }
6 rcu_read_unlock();

5 In the Linux kernel, rcu_dereference() is implemented via a volatile cast, and, on DEC Alpha,
a memory barrier instruction. In the C11 and C++11 standards, memory_order_consume is intended
to provide longer-term support for rcu_dereference(), but no compilers implement this natively yet.
(They instead strengthen memory_order_consume to memory_order_acquire, thus emitting a
needless memory-barrier instruction on weakly ordered systems.)
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Figure 8.14: Linux Circular Linked List
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Figure 8.15: Linux Linked List Abbreviated

1 struct foo {
2 struct list_head *list;
3 int a;
4 int b;
5 int c;
6 };
7 LIST_HEAD(head);
8
9 /* . . . */
10
11 p = kmalloc(sizeof(*p), GFP_KERNEL);
12 p->a = 1;
13 p->b = 2;
14 p->c = 3;
15 list_add_rcu(&p->list, &head);

Figure 8.16: RCU Data Structure Publication

The rcu_dereference() primitive can thus be thought of as subscribing to a
given value of the specified pointer, guaranteeing that subsequent dereference opera-
tions will see any initialization that occurred before the corresponding rcu_assign_
pointer() operation that published that pointer. The rcu_read_lock() and
rcu_read_unlock() calls are absolutely required: they define the extent of the
RCU read-side critical section. Their purpose is explained in Section 8.3.2.2, however,
they never spin or block, nor do they prevent the list_add_rcu() from executing
concurrently. In fact, in non-CONFIG_PREEMPT kernels, they generate absolutely no
code.

Although rcu_assign_pointer() and rcu_dereference() can in the-
ory be used to construct any conceivable RCU-protected data structure, in practice it is
often better to use higher-level constructs. Therefore, the rcu_assign_pointer()
and rcu_dereference() primitives have been embedded in special RCU vari-
ants of Linux’s list-manipulation API. Linux has two variants of doubly linked list,
the circular struct list_head and the linear struct hlist_head/struct
hlist_node pair. The former is laid out as shown in Figure 8.14, where the green
boxes represent the list header and the blue boxes represent the elements in the list. This
notation is cumbersome, and will therefore be abbreviated as shown in Figure 8.15.

Adapting the pointer-publish example for the linked list results in the code shown in
Figure 8.16.

Line 15 must be protected by some synchronization mechanism (most commonly
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Figure 8.17: Linux Linear Linked List

1 struct foo {
2 struct hlist_node *list;
3 int a;
4 int b;
5 int c;
6 };
7 HLIST_HEAD(head);
8
9 /* . . . */
10
11 p = kmalloc(sizeof(*p), GFP_KERNEL);
12 p->a = 1;
13 p->b = 2;
14 p->c = 3;
15 hlist_add_head_rcu(&p->list, &head);

Figure 8.18: RCU hlist Publication

some sort of lock) to prevent multiple list_add() instances from executing concur-
rently. However, such synchronization does not prevent this list_add() instance
from executing concurrently with RCU readers.

Subscribing to an RCU-protected list is straightforward:

1 rcu_read_lock();
2 list_for_each_entry_rcu(p, head, list) {
3 do_something_with(p->a, p->b, p->c);
4 }
5 rcu_read_unlock();

The list_add_rcu() primitive publishes an entry into the specified list, guar-
anteeing that the corresponding list_for_each_entry_rcu() invocation will
properly subscribe to this same entry.

Quick Quiz 8.19: What prevents the list_for_each_entry_rcu() from
getting a segfault if it happens to execute at exactly the same time as the list_add_rcu()?

Linux’s other doubly linked list, the hlist, is a linear list, which means that it needs
only one pointer for the header rather than the two required for the circular list, as
shown in Figure 8.17. Thus, use of hlist can halve the memory consumption for the
hash-bucket arrays of large hash tables. As before, this notation is cumbersome, so
hlists will be abbreviated in the same way lists are, as shown in Figure 8.15.

Publishing a new element to an RCU-protected hlist is quite similar to doing so for
the circular list, as shown in Figure 8.18.

As before, line 15 must be protected by some sort of synchronization mechanism,
for example, a lock.

Subscribing to an RCU-protected hlist is also similar to the circular list:
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Category Publish Retract Subscribe
Pointers rcu_assign_pointer() rcu_assign_pointer(..., NULL) rcu_dereference()

Lists
list_add_rcu()
list_add_tail_rcu()
list_replace_rcu()

list_del_rcu() list_for_each_entry_rcu()

Hlists

hlist_add_after_rcu()
hlist_add_before_rcu()
hlist_add_head_rcu()
hlist_replace_rcu()

hlist_del_rcu() hlist_for_each_entry_rcu()

Table 8.2: RCU Publish and Subscribe Primitives

1 rcu_read_lock();
2 hlist_for_each_entry_rcu(p, q, head, list) {
3 do_something_with(p->a, p->b, p->c);
4 }
5 rcu_read_unlock();

Quick Quiz 8.20: Why do we need to pass two pointers into hlist_for_each_entry_rcu()
when only one is needed for list_for_each_entry_rcu()?

The set of RCU publish and subscribe primitives are shown in Table 8.2, along with
additional primitives to “unpublish”, or retract.

Note that the list_replace_rcu(), list_del_rcu(), hlist_replace_
rcu(), and hlist_del_rcu() APIs add a complication. When is it safe to free
up the data element that was replaced or removed? In particular, how can we possibly
know when all the readers have released their references to that data element?

These questions are addressed in the following section.

8.3.2.2 Wait For Pre-Existing RCU Readers to Complete

In its most basic form, RCU is a way of waiting for things to finish. Of course, there
are a great many other ways of waiting for things to finish, including reference counts,
reader-writer locks, events, and so on. The great advantage of RCU is that it can wait
for each of (say) 20,000 different things without having to explicitly track each and
every one of them, and without having to worry about the performance degradation,
scalability limitations, complex deadlock scenarios, and memory-leak hazards that are
inherent in schemes using explicit tracking.

In RCU’s case, the things waited on are called “RCU read-side critical sections”.
An RCU read-side critical section starts with an rcu_read_lock() primitive, and
ends with a corresponding rcu_read_unlock() primitive. RCU read-side critical
sections can be nested, and may contain pretty much any code, as long as that code does
not explicitly block or sleep (although a special form of RCU called SRCU [McK06b]
does permit general sleeping in SRCU read-side critical sections). If you abide by these
conventions, you can use RCU to wait for any desired piece of code to complete.

RCU accomplishes this feat by indirectly determining when these other things have
finished [McK07g, McK07a], as is described in detail in Appendix D.

In particular, as shown in Figure 8.19, RCU is a way of waiting for pre-existing RCU
read-side critical sections to completely finish, including memory operations executed
by those critical sections. However, note that RCU read-side critical sections that begin
after the beginning of a given grace period can and will extend beyond the end of that
grace period.

The following pseudocode shows the basic form of algorithms that use RCU to wait
for readers:
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Figure 8.19: Readers and RCU Grace Period

1 struct foo {
2 struct list_head *list;
3 int a;
4 int b;
5 int c;
6 };
7 LIST_HEAD(head);
8
9 /* . . . */
10
11 p = search(head, key);
12 if (p == NULL) {
13 /* Take appropriate action, unlock, & return. */
14 }
15 q = kmalloc(sizeof(*p), GFP_KERNEL);
16 *q = *p;
17 q->b = 2;
18 q->c = 3;
19 list_replace_rcu(&p->list, &q->list);
20 synchronize_rcu();
21 kfree(p);

Figure 8.20: Canonical RCU Replacement Example

1. Make a change, for example, replace an element in a linked list.

2. Wait for all pre-existing RCU read-side critical sections to completely finish (for
example, by using the synchronize_rcu() primitive). The key observation
here is that subsequent RCU read-side critical sections have no way to gain a
reference to the newly removed element.

3. Clean up, for example, free the element that was replaced above.

The code fragment shown in Figure 8.20, adapted from those in Section 8.3.2.1,
demonstrates this process, with field a being the search key.

Lines 19, 20, and 21 implement the three steps called out above. Lines 16-19 gives
RCU (“read-copy update”) its name: while permitting concurrent reads, line 16 copies
and lines 17-19 do an update.

As discussed in Section 8.3.1, the synchronize_rcu() primitive can be quite
simple (see Section 8.3.5 for additional “toy” RCU implementations). However,
production-quality implementations must deal with difficult corner cases and also incor-
porate powerful optimizations, both of which result in significant complexity. Although
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Figure 8.21: RCU Deletion From Linked List

it is good to know that there is a simple conceptual implementation of synchronize_
rcu(), other questions remain. For example, what exactly do RCU readers see when
traversing a concurrently updated list? This question is addressed in the following
section.

8.3.2.3 Maintain Multiple Versions of Recently Updated Objects

This section demonstrates how RCU maintains multiple versions of lists to accommodate
synchronization-free readers. Two examples are presented showing how an element
that might be referenced by a given reader must remain intact while that reader remains
in its RCU read-side critical section. The first example demonstrates deletion of a list
element, and the second example demonstrates replacement of an element.

Example 1: Maintaining Multiple Versions During Deletion We can now revisit
the deletion example from Section 8.3.1, but now with the benefit of a firm understanding
of the fundamental concepts underlying RCU. To begin this new version of the deletion
example, we will modify lines 11-21 in Figure 8.20 to read as follows:

1 p = search(head, key);
2 if (p != NULL) {
3 list_del_rcu(&p->list);
4 synchronize_rcu();
5 kfree(p);
6 }

This code will update the list as shown in Figure 8.21. The triples in each element
represent the values of fields a, b, and c, respectively. The red-shaded elements indicate
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that RCU readers might be holding references to them. Please note that we have omitted
the backwards pointers and the link from the tail of the list to the head for clarity.

After the list_del_rcu() on line 3 has completed, the 5,6,7 element has
been removed from the list, as shown in the second row of Figure 8.21. Since readers do
not synchronize directly with updaters, readers might be concurrently scanning this list.
These concurrent readers might or might not see the newly removed element, depending
on timing. However, readers that were delayed (e.g., due to interrupts, ECC memory
errors, or, in CONFIG_PREEMPT_RT kernels, preemption) just after fetching a pointer
to the newly removed element might see the old version of the list for quite some time
after the removal. Therefore, we now have two versions of the list, one with element
5,6,7 and one without. The 5,6,7 element is shaded yellow, indicating that old
readers might still be referencing it, but that new readers cannot obtain a reference to it.

Please note that readers are not permitted to maintain references to element 5,6,7
after exiting from their RCU read-side critical sections. Therefore, once the synchronize_
rcu() on line 4 completes, so that all pre-existing readers are guaranteed to have
completed, there can be no more readers referencing this element, as indicated by its
green shading on the third row of Figure 8.21. We are thus back to a single version of
the list.

At this point, the 5,6,7 element may safely be freed, as shown on the final row
of Figure 8.21. At this point, we have completed the deletion of element 5,6,7. The
following section covers replacement.

Example 2: Maintaining Multiple Versions During Replacement To start the re-
placement example, here are the last few lines of the example shown in Figure 8.20:

1 q = kmalloc(sizeof(*p), GFP_KERNEL);
2 *q = *p;
3 q->b = 2;
4 q->c = 3;
5 list_replace_rcu(&p->list, &q->list);
6 synchronize_rcu();
7 kfree(p);

The initial state of the list, including the pointer p, is the same as for the deletion
example, as shown on the first row of Figure 8.22.

As before, the triples in each element represent the values of fields a, b, and c,
respectively. The red-shaded elements might be referenced by readers, and because
readers do not synchronize directly with updaters, readers might run concurrently with
this entire replacement process. Please note that we again omit the backwards pointers
and the link from the tail of the list to the head for clarity.

The following text describes how to replace the 5,6,7 element with 5,2,3 in
such a way that any given reader sees one of these two values.

Line 1 kmalloc()s a replacement element, as follows, resulting in the state as
shown in the second row of Figure 8.22. At this point, no reader can hold a reference to
the newly allocated element (as indicated by its green shading), and it is uninitialized
(as indicated by the question marks).

Line 2 copies the old element to the new one, resulting in the state as shown in the
third row of Figure 8.22. The newly allocated element still cannot be referenced by
readers, but it is now initialized.

Line 3 updates q->b to the value “2”, and line 4 updates q->c to the value “3”, as
shown on the fourth row of Figure 8.22.

Now, line 5 does the replacement, so that the new element is finally visible to
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Figure 8.22: RCU Replacement in Linked List
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readers, and hence is shaded red, as shown on the fifth row of Figure 8.22. At this point,
as shown below, we have two versions of the list. Pre-existing readers might see the
5,6,7 element (which is therefore now shaded yellow), but new readers will instead
see the 5,2,3 element. But any given reader is guaranteed to see some well-defined
list.

After the synchronize_rcu() on line 6 returns, a grace period will have
elapsed, and so all reads that started before the list_replace_rcu() will have
completed. In particular, any readers that might have been holding references to the
5,6,7 element are guaranteed to have exited their RCU read-side critical sections, and
are thus prohibited from continuing to hold a reference. Therefore, there can no longer
be any readers holding references to the old element, as indicated its green shading in
the sixth row of Figure 8.22. As far as the readers are concerned, we are back to having
a single version of the list, but with the new element in place of the old.

After the kfree() on line 7 completes, the list will appear as shown on the final
row of Figure 8.22.

Despite the fact that RCU was named after the replacement case, the vast majority
of RCU usage within the Linux kernel relies on the simple deletion case shown in
Section 8.3.2.3.

Discussion These examples assumed that a mutex was held across the entire update
operation, which would mean that there could be at most two versions of the list active
at a given time.

Quick Quiz 8.21: How would you modify the deletion example to permit more
than two versions of the list to be active?

Quick Quiz 8.22: How many RCU versions of a given list can be active at any
given time?

This sequence of events shows how RCU updates use multiple versions to safely
carry out changes in presence of concurrent readers. Of course, some algorithms cannot
gracefully handle multiple versions. There are techniques for adapting such algorithms
to RCU [McK04], but these are beyond the scope of this section.

8.3.2.4 Summary of RCU Fundamentals

This section has described the three fundamental components of RCU-based algorithms:

1. a publish-subscribe mechanism for adding new data,

2. a way of waiting for pre-existing RCU readers to finish, and

3. a discipline of maintaining multiple versions to permit change without harming
or unduly delaying concurrent RCU readers.

Quick Quiz 8.23: How can RCU updaters possibly delay RCU readers, given
that the rcu_read_lock() and rcu_read_unlock() primitives neither spin
nor block?

These three RCU components allow data to be updated in face of concurrent readers,
and can be combined in different ways to implement a surprising variety of different
types of RCU-based algorithms, some of which are described in the following section.
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Mechanism RCU Replaces Section
Reader-writer locking Section 8.3.3.1
Restricted reference-counting mechanism Section 8.3.3.2
Bulk reference-counting mechanism Section 8.3.3.3
Poor man’s garbage collector Section 8.3.3.4
Existence Guarantees Section 8.3.3.5
Type-Safe Memory Section 8.3.3.6
Wait for things to finish Section 8.3.3.7

Table 8.3: RCU Usage

8.3.3 RCU Usage
This section answers the question "what is RCU?" from the viewpoint of the uses to
which RCU can be put. Because RCU is most frequently used to replace some existing
mechanism, we look at it primarily in terms of its relationship to such mechanisms, as
listed in Table 8.3. Following the sections listed in this table, Section 8.3.3.8 provides a
summary.

8.3.3.1 RCU is a Reader-Writer Lock Replacement

Perhaps the most common use of RCU within the Linux kernel is as a replacement for
reader-writer locking in read-intensive situations. Nevertheless, this use of RCU was
not immediately apparent to me at the outset, in fact, I chose to implement something
similar to brlock before implementing a general-purpose RCU implementation back
in the early 1990s. Each and every one of the uses I envisioned for the proto-brlock
primitive was instead implemented using RCU. In fact, it was more than three years
before the proto-brlock primitive saw its first use. Boy, did I feel foolish!

The key similarity between RCU and reader-writer locking is that both have read-
side critical sections that can execute in parallel. In fact, in some cases, it is possible to
mechanically substitute RCU API members for the corresponding reader-writer lock
API members. But first, why bother?

Advantages of RCU include performance, deadlock immunity, and realtime latency.
There are, of course, limitations to RCU, including the fact that readers and updaters run
concurrently, that low-priority RCU readers can block high-priority threads waiting for a
grace period to elapse, and that grace-period latencies can extend for many milliseconds.
These advantages and limitations are discussed in the following sections.

Performance The read-side performance advantages of RCU over reader-writer lock-
ing are shown in Figure 8.23.

Quick Quiz 8.24: WTF? How the heck do you expect me to believe that RCU
has a 100-femtosecond overhead when the clock period at 3GHz is more than 300
picoseconds?

Note that reader-writer locking is orders of magnitude slower than RCU on a single
CPU, and is almost two additional orders of magnitude slower on 16 CPUs. In contrast,
RCU scales quite well. In both cases, the error bars span a single standard deviation in
either direction.

A more moderate view may be obtained from a CONFIG_PREEMPT kernel, though
RCU still beats reader-writer locking by between one and three orders of magnitude,
as shown in Figure 8.24. Note the high variability of reader-writer locking at larger
numbers of CPUs. The error bars span a single standard deviation in either direction.
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Figure 8.23: Performance Advantage of RCU Over Reader-Writer Locking

Of course, the low performance of reader-writer locking in Figure 8.24 is exaggerated
by the unrealistic zero-length critical sections. The performance advantages of RCU
become less significant as the overhead of the critical section increases, as shown in
Figure 8.25 for a 16-CPU system, in which the y-axis represents the sum of the overhead
of the read-side primitives and that of the critical section.

Quick Quiz 8.25: Why does both the variability and overhead of rwlock decrease
as the critical-section overhead increases?

However, this observation must be tempered by the fact that a number of system
calls (and thus any RCU read-side critical sections that they contain) can complete
within a few microseconds.

In addition, as is discussed in the next section, RCU read-side primitives are almost
entirely deadlock-immune.

Deadlock Immunity Although RCU offers significant performance advantages for
read-mostly workloads, one of the primary reasons for creating RCU in the first place
was in fact its immunity to read-side deadlocks. This immunity stems from the fact that
RCU read-side primitives do not block, spin, or even do backwards branches, so that
their execution time is deterministic. It is therefore impossible for them to participate in
a deadlock cycle.

Quick Quiz 8.26: Is there an exception to this deadlock immunity, and if so, what
sequence of events could lead to deadlock?

An interesting consequence of RCU’s read-side deadlock immunity is that it is
possible to unconditionally upgrade an RCU reader to an RCU updater. Attempting
to do such an upgrade with reader-writer locking results in deadlock. A sample code
fragment that does an RCU read-to-update upgrade follows:
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Figure 8.24: Performance Advantage of Preemptible RCU Over Reader-Writer Locking

1 rcu_read_lock();
2 list_for_each_entry_rcu(p, &head, list_field) {
3 do_something_with(p);
4 if (need_update(p)) {
5 spin_lock(my_lock);
6 do_update(p);
7 spin_unlock(&my_lock);
8 }
9 }

10 rcu_read_unlock();

Note that do_update() is executed under the protection of the lock and under
RCU read-side protection.

Another interesting consequence of RCU’s deadlock immunity is its immunity to a
large class of priority inversion problems. For example, low-priority RCU readers cannot
prevent a high-priority RCU updater from acquiring the update-side lock. Similarly, a
low-priority RCU updater cannot prevent high-priority RCU readers from entering an
RCU read-side critical section.

Realtime Latency Because RCU read-side primitives neither spin nor block, they
offer excellent realtime latencies. In addition, as noted earlier, this means that they are
immune to priority inversion involving the RCU read-side primitives and locks.

However, RCU is susceptible to more subtle priority-inversion scenarios, for exam-
ple, a high-priority process blocked waiting for an RCU grace period to elapse can be
blocked by low-priority RCU readers in -rt kernels. This can be solved by using RCU
priority boosting [McK07d, GMTW08].

RCU Readers and Updaters Run Concurrently Because RCU readers never spin
nor block, and because updaters are not subject to any sort of rollback or abort semantics,
RCU readers and updaters must necessarily run concurrently. This means that RCU
readers might access stale data, and might even see inconsistencies, either of which can
render conversion from reader-writer locking to RCU non-trivial.
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Figure 8.25: Comparison of RCU to Reader-Writer Locking as Function of Critical-
Section Duration
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Figure 8.26: Response Time of RCU vs. Reader-Writer Locking

However, in a surprisingly large number of situations, inconsistencies and stale data
are not problems. The classic example is the networking routing table. Because routing
updates can take considerable time to reach a given system (seconds or even minutes),
the system will have been sending packets the wrong way for quite some time when
the update arrives. It is usually not a problem to continue sending updates the wrong
way for a few additional milliseconds. Furthermore, because RCU updaters can make
changes without waiting for RCU readers to finish, the RCU readers might well see the
change more quickly than would batch-fair reader-writer-locking readers, as shown in
Figure 8.26.

Once the update is received, the rwlock writer cannot proceed until the last reader
completes, and subsequent readers cannot proceed until the writer completes. However,
these subsequent readers are guaranteed to see the new value, as indicated by the green
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background. In contrast, RCU readers and updaters do not block each other, which
permits the RCU readers to see the updated values sooner. Of course, because their
execution overlaps that of the RCU updater, all of the RCU readers might well see
updated values, including the three readers that started before the update. Nevertheless
only the RCU readers with green backgrounds are guaranteed to see the updated values,
again, as indicated by the green background.

Reader-writer locking and RCU simply provide different guarantees. With reader-
writer locking, any reader that begins after the writer begins is guaranteed to see new
values, and any reader that attempts to begin while the writer is spinning might or
might not see new values, depending on the reader/writer preference of the rwlock
implementation in question. In contrast, with RCU, any reader that begins after the
updater completes is guaranteed to see new values, and any reader that completes after
the updater begins might or might not see new values, depending on timing.

The key point here is that, although reader-writer locking does indeed guarantee
consistency within the confines of the computer system, there are situations where this
consistency comes at the price of increased inconsistency with the outside world. In
other words, reader-writer locking obtains internal consistency at the price of silently
stale data with respect to the outside world.

Nevertheless, there are situations where inconsistency and stale data within the
confines of the system cannot be tolerated. Fortunately, there are a number of approaches
that avoid inconsistency and stale data [McK04, ACMS03], and some methods based
on reference counting are discussed in Section 8.1.

Low-Priority RCU Readers Can Block High-Priority Reclaimers In Realtime
RCU [GMTW08] (see Section D.4), SRCU [McK06b] (see Section D.1), or QRCU [McK07f]
(see Section 11.6), each of which is described in the final installment of this series, a
preempted reader will prevent a grace period from completing, even if a high-priority
task is blocked waiting for that grace period to complete. Realtime RCU can avoid this
problem by substituting call_rcu() for synchronize_rcu() or by using RCU
priority boosting [McK07d, GMTW08], which is still in experimental status as of early
2008. It might become necessary to augment SRCU and QRCU with priority boosting,
but not before a clear real-world need is demonstrated.

RCU Grace Periods Extend for Many Milliseconds With the exception of QRCU
and several of the “toy” RCU implementations described in Section 8.3.5, RCU grace
periods extend for multiple milliseconds. Although there are a number of techniques to
render such long delays harmless, including use of the asynchronous interfaces where
available (call_rcu() and call_rcu_bh()), this situation is a major reason for
the rule of thumb that RCU be used in read-mostly situations.

Comparison of Reader-Writer Locking and RCU Code In the best case, the con-
version from reader-writer locking to RCU is quite simple, as shown in Figures 8.27,
8.28, and 8.29, all taken from Wikipedia [MPA+06].

More-elaborate cases of replacing reader-writer locking with RCU are beyond the
scope of this document.
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1 struct el { 1 struct el {
2 struct list_head lp; 2 struct list_head lp;
3 long key; 3 long key;
4 spinlock_t mutex; 4 spinlock_t mutex;
5 int data; 5 int data;
6 /* Other data fields */ 6 /* Other data fields */
7 }; 7 };
8 DEFINE_RWLOCK(listmutex); 8 DEFINE_SPINLOCK(listmutex);
9 LIST_HEAD(head); 9 LIST_HEAD(head);

Figure 8.27: Converting Reader-Writer Locking to RCU: Data

1 int search(long key, int *result) 1 int search(long key, int *result)
2 { 2 {
3 struct el *p; 3 struct el *p;
4 4
5 read_lock(&listmutex); 5 rcu_read_lock();
6 list_for_each_entry(p, &head, lp) { 6 list_for_each_entry_rcu(p, &head, lp) {
7 if (p->key == key) { 7 if (p->key == key) {
8 *result = p->data; 8 *result = p->data;
9 read_unlock(&listmutex); 9 rcu_read_unlock();

10 return 1; 10 return 1;
11 } 11 }
12 } 12 }
13 read_unlock(&listmutex); 13 rcu_read_unlock();
14 return 0; 14 return 0;
15 } 15 }

Figure 8.28: Converting Reader-Writer Locking to RCU: Search

1 int delete(long key) 1 int delete(long key)
2 { 2 {
3 struct el *p; 3 struct el *p;
4 4
5 write_lock(&listmutex); 5 spin_lock(&listmutex);
6 list_for_each_entry(p, &head, lp) { 6 list_for_each_entry(p, &head, lp) {
7 if (p->key == key) { 7 if (p->key == key) {
8 list_del(&p->lp); 8 list_del_rcu(&p->lp);
9 write_unlock(&listmutex); 9 spin_unlock(&listmutex);

10 synchronize_rcu();
10 kfree(p); 11 kfree(p);
11 return 1; 12 return 1;
12 } 13 }
13 } 14 }
14 write_unlock(&listmutex); 15 spin_unlock(&listmutex);
15 return 0; 16 return 0;
16 } 17 }

Figure 8.29: Converting Reader-Writer Locking to RCU: Deletion
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Figure 8.30: Performance of RCU vs. Reference Counting

8.3.3.2 RCU is a Restricted Reference-Counting Mechanism

Because grace periods are not allowed to complete while there is an RCU read-side
critical section in progress, the RCU read-side primitives may be used as a restricted
reference-counting mechanism. For example, consider the following code fragment:

1 rcu_read_lock(); /* acquire reference. */
2 p = rcu_dereference(head);
3 /* do something with p. */
4 rcu_read_unlock(); /* release reference. */

The rcu_read_lock() primitive can be thought of as acquiring a reference
to p, because a grace period starting after the rcu_dereference() assigns to p
cannot possibly end until after we reach the matching rcu_read_unlock(). This
reference-counting scheme is restricted in that we are not allowed to block in RCU
read-side critical sections, nor are we permitted to hand off an RCU read-side critical
section from one task to another.

Regardless of these restrictions, the following code can safely delete p:

1 spin_lock(&mylock);
2 p = head;
3 rcu_assign_pointer(head, NULL);
4 spin_unlock(&mylock);
5 /* Wait for all references to be released. */
6 synchronize_rcu();
7 kfree(p);

The assignment to head prevents any future references to p from being acquired,
and the synchronize_rcu() waits for any previously acquired references to be
released.

Quick Quiz 8.27: But wait! This is exactly the same code that might be used when
thinking of RCU as a replacement for reader-writer locking! What gives?

Of course, RCU can also be combined with traditional reference counting, as has
been discussed on LKML and as summarized in Section 8.1.
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Figure 8.31: Response Time of RCU vs. Reference Counting

But why bother? Again, part of the answer is performance, as shown in Figure 8.30,
again showing data taken on a 16-CPU 3GHz Intel x86 system.

Quick Quiz 8.28: Why the dip in refcnt overhead near 6 CPUs?
And, as with reader-writer locking, the performance advantages of RCU are most

pronounced for short-duration critical sections, as shown Figure 8.31 for a 16-CPU
system. In addition, as with reader-writer locking, many system calls (and thus any
RCU read-side critical sections that they contain) complete in a few microseconds.

However, the restrictions that go with RCU can be quite onerous. For example, in
many cases, the prohibition against sleeping while in an RCU read-side critical section
would defeat the entire purpose. The next section looks at ways of addressing this
problem, while also reducing the complexity of traditional reference counting, at least
in some cases.

8.3.3.3 RCU is a Bulk Reference-Counting Mechanism

As noted in the preceding section, traditional reference counters are usually associated
with a specific data structure, or perhaps a specific group of data structures. However,
maintaining a single global reference counter for a large variety of data structures
typically results in bouncing the cache line containing the reference count. Such cache-
line bouncing can severely degrade performance.

In contrast, RCU’s light-weight read-side primitives permit extremely frequent read-
side usage with negligible performance degradation, permitting RCU to be used as a
"bulk reference-counting" mechanism with little or no performance penalty. Situations
where a reference must be held by a single task across a section of code that blocks
may be accommodated with Sleepable RCU (SRCU) [McK06b]. This fails to cover
the not-uncommon situation where a reference is "passed" from one task to another,
for example, when a reference is acquired when starting an I/O and released in the
corresponding completion interrupt handler. (In principle, this could be handled by the
SRCU implementation, but in practice, it is not yet clear whether this is a good tradeoff.)
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Of course, SRCU brings restrictions of its own, namely that the return value from
srcu_read_lock() be passed into the corresponding srcu_read_unlock(),
and that no SRCU primitives be invoked from hardware irq handlers or from NMI/SMI
handlers. The jury is still out as to how much of a problem is presented by these
restrictions, and as to how they can best be handled.

8.3.3.4 RCU is a Poor Man’s Garbage Collector

A not-uncommon exclamation made by people first learning about RCU is "RCU is sort
of like a garbage collector!". This exclamation has a large grain of truth, but it can also
be misleading.

Perhaps the best way to think of the relationship between RCU and automatic
garbage collectors (GCs) is that RCU resembles a GC in that the timing of collection is
automatically determined, but that RCU differs from a GC in that: (1) the programmer
must manually indicate when a given data structure is eligible to be collected, and (2) the
programmer must manually mark the RCU read-side critical sections where references
might legitimately be held.

Despite these differences, the resemblance does go quite deep, and has appeared in
at least one theoretical analysis of RCU. Furthermore, the first RCU-like mechanism I
am aware of used a garbage collector to handle the grace periods. Nevertheless, a better
way of thinking of RCU is described in the following section.

8.3.3.5 RCU is a Way of Providing Existence Guarantees

Gamsa et al. [GKAS99] discuss existence guarantees and describe how a mechanism
resembling RCU can be used to provide these existence guarantees (see section 5 on page
7 of the PDF), and Section 6.4 discusses how to guarantee existence via locking, along
with the ensuing disadvantages of doing so. The effect is that if any RCU-protected
data element is accessed within an RCU read-side critical section, that data element is
guaranteed to remain in existence for the duration of that RCU read-side critical section.

Figure 8.32 demonstrates how RCU-based existence guarantees can enable per-
element locking via a function that deletes an element from a hash table. Line 6
computes a hash function, and line 7 enters an RCU read-side critical section. If line 9
finds that the corresponding bucket of the hash table is empty or that the element present
is not the one we wish to delete, then line 10 exits the RCU read-side critical section
and line 11 indicates failure.

Quick Quiz 8.29: What if the element we need to delete is not the first element of
the list on line 9 of Figure 8.32?

Otherwise, line 13 acquires the update-side spinlock, and line 14 then checks that
the element is still the one that we want. If so, line 15 leaves the RCU read-side critical
section, line 16 removes it from the table, line 17 releases the lock, line 18 waits for
all pre-existing RCU read-side critical sections to complete, line 19 frees the newly
removed element, and line 20 indicates success. If the element is no longer the one we
want, line 22 releases the lock, line 23 leaves the RCU read-side critical section, and
line 24 indicates failure to delete the specified key.

Quick Quiz 8.30: Why is it OK to exit the RCU read-side critical section on line 15
of Figure 8.32 before releasing the lock on line 17?

Quick Quiz 8.31: Why not exit the RCU read-side critical section on line 23 of
Figure 8.32 before releasing the lock on line 22?
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1 int delete(int key)
2 {
3 struct element *p;
4 int b;
5
6 b = hashfunction(key);
7 rcu_read_lock();
8 p = rcu_dereference(hashtable[b]);
9 if (p == NULL || p->key != key) {
10 rcu_read_unlock();
11 return 0;
12 }
13 spin_lock(&p->lock);
14 if (hashtable[b] == p && p->key == key) {
15 rcu_read_unlock();
16 rcu_assign_pointer(hashtable[b], NULL);
17 spin_unlock(&p->lock);
18 synchronize_rcu();
19 kfree(p);
20 return 1;
21 }
22 spin_unlock(&p->lock);
23 rcu_read_unlock();
24 return 0;
25 }

Figure 8.32: Existence Guarantees Enable Per-Element Locking

Alert readers will recognize this as only a slight variation on the original "RCU
is a way of waiting for things to finish" theme, which is addressed in Section 8.3.3.7.
They might also note the deadlock-immunity advantages over the lock-based existence
guarantees discussed in Section 6.4.

8.3.3.6 RCU is a Way of Providing Type-Safe Memory

A number of lockless algorithms do not require that a given data element keep the same
identity through a given RCU read-side critical section referencing it—but only if that
data element retains the same type. In other words, these lockless algorithms can tolerate
a given data element being freed and reallocated as the same type of structure while they
are referencing it, but must prohibit a change in type. This guarantee, called “type-safe
memory” in academic literature [GC96], is weaker than the existence guarantees in the
previous section, and is therefore quite a bit harder to work with. Type-safe memory
algorithms in the Linux kernel make use of slab caches, specially marking these caches
with SLAB_DESTROY_BY_RCU so that RCU is used when returning a freed-up slab
to system memory. This use of RCU guarantees that any in-use element of such a slab
will remain in that slab, thus retaining its type, for the duration of any pre-existing RCU
read-side critical sections.

Quick Quiz 8.32: But what if there is an arbitrarily long series of RCU read-side
critical sections in multiple threads, so that at any point in time there is at least one
thread in the system executing in an RCU read-side critical section? Wouldn’t that
prevent any data from a SLAB_DESTROY_BY_RCU slab ever being returned to the
system, possibly resulting in OOM events?

These algorithms typically use a validation step that checks to make sure that the
newly referenced data structure really is the one that was requested [LS86, Section 2.5].
These validation checks require that portions of the data structure remain untouched by
the free-reallocate process. Such validation checks are usually very hard to get right,
and can hide subtle and difficult bugs.
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Therefore, although type-safety-based lockless algorithms can be extremely helpful
in a very few difficult situations, you should instead use existence guarantees where
possible. Simpler is after all almost always better!

8.3.3.7 RCU is a Way of Waiting for Things to Finish

As noted in Section 8.3.2 an important component of RCU is a way of waiting for RCU
readers to finish. One of RCU’s great strengths is that it allows you to wait for each
of thousands of different things to finish without having to explicitly track each and
every one of them, and without having to worry about the performance degradation,
scalability limitations, complex deadlock scenarios, and memory-leak hazards that are
inherent in schemes that use explicit tracking.

In this section, we will show how synchronize_sched()’s read-side counter-
parts (which include anything that disables preemption, along with hardware operations
and primitives that disable irq) permit you to implement interactions with non-maskable
interrupt (NMI) handlers that would be quite difficult if using locking. This approach
has been called "Pure RCU" [McK04], and it is used in a number of places in the Linux
kernel.

The basic form of such "Pure RCU" designs is as follows:

1. Make a change, for example, to the way that the OS reacts to an NMI.

2. Wait for all pre-existing read-side critical sections to completely finish (for ex-
ample, by using the synchronize_sched() primitive). The key observation
here is that subsequent RCU read-side critical sections are guaranteed to see
whatever change was made.

3. Clean up, for example, return status indicating that the change was successfully
made.

The remainder of this section presents example code adapted from the Linux ker-
nel. In this example, the timer_stop function uses synchronize_sched() to
ensure that all in-flight NMI notifications have completed before freeing the associated
resources. A simplified version of this code is shown Figure 8.33.

Lines 1-4 define a profile_buffer structure, containing a size and an indefinite
array of entries. Line 5 defines a pointer to a profile buffer, which is presumably
initialized elsewhere to point to a dynamically allocated region of memory.

Lines 7-16 define the nmi_profile() function, which is called from within an
NMI handler. As such, it cannot be preempted, nor can it be interrupted by a normal irq
handler, however, it is still subject to delays due to cache misses, ECC errors, and cycle
stealing by other hardware threads within the same core. Line 9 gets a local pointer
to the profile buffer using the rcu_dereference() primitive to ensure memory
ordering on DEC Alpha, and lines 11 and 12 exit from this function if there is no profile
buffer currently allocated, while lines 13 and 14 exit from this function if the pcvalue
argument is out of range. Otherwise, line 15 increments the profile-buffer entry indexed
by the pcvalue argument. Note that storing the size with the buffer guarantees that
the range check matches the buffer, even if a large buffer is suddenly replaced by a
smaller one.

Lines 18-27 define the nmi_stop() function, where the caller is responsible for
mutual exclusion (for example, holding the correct lock). Line 20 fetches a pointer to
the profile buffer, and lines 22 and 23 exit the function if there is no buffer. Otherwise,
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1 struct profile_buffer {
2 long size;
3 atomic_t entry[0];
4 };
5 static struct profile_buffer *buf = NULL;
6
7 void nmi_profile(unsigned long pcvalue)
8 {
9 struct profile_buffer *p = rcu_dereference(buf);
10
11 if (p == NULL)
12 return;
13 if (pcvalue >= p->size)
14 return;
15 atomic_inc(&p->entry[pcvalue]);
16 }
17
18 void nmi_stop(void)
19 {
20 struct profile_buffer *p = buf;
21
22 if (p == NULL)
23 return;
24 rcu_assign_pointer(buf, NULL);
25 synchronize_sched();
26 kfree(p);
27 }

Figure 8.33: Using RCU to Wait for NMIs to Finish

line 24 NULLs out the profile-buffer pointer (using the rcu_assign_pointer()
primitive to maintain memory ordering on weakly ordered machines), and line 25 waits
for an RCU Sched grace period to elapse, in particular, waiting for all non-preemptible
regions of code, including NMI handlers, to complete. Once execution continues at
line 26, we are guaranteed that any instance of nmi_profile() that obtained a
pointer to the old buffer has returned. It is therefore safe to free the buffer, in this case
using the kfree() primitive.

Quick Quiz 8.33: Suppose that the nmi_profile() function was preemptible.
What would need to change to make this example work correctly?

In short, RCU makes it easy to dynamically switch among profile buffers (you just
try doing this efficiently with atomic operations, or at all with locking!). However, RCU
is normally used at a higher level of abstraction, as was shown in the previous sections.

8.3.3.8 RCU Usage Summary

At its core, RCU is nothing more nor less than an API that provides:

1. a publish-subscribe mechanism for adding new data,

2. a way of waiting for pre-existing RCU readers to finish, and

3. a discipline of maintaining multiple versions to permit change without harming
or unduly delaying concurrent RCU readers.

That said, it is possible to build higher-level constructs on top of RCU, including
the reader-writer-locking, reference-counting, and existence-guarantee constructs listed
in the earlier sections. Furthermore, I have no doubt that the Linux community will
continue to find interesting new uses for RCU, as well as for any of a number of other
synchronization primitives.
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Read−Mostly, Stale &
Inconsistent Data OK
(RCU Works Great!!!)

(RCU Works Well)
Read−Mostly, Need Consistent Data

Read−Write, Need Consistent Data

Update−Mostly, Need Consistent Data

(RCU Might Be OK...)

(1) Provide Existence Guarantees For Update−Friendly Mechanisms
(2) Provide Wait−Free Read−Side Primitives for Real−Time Use)

(RCU is Very Unlikely to be the Right Tool For The Job, But it Can:

Figure 8.34: RCU Areas of Applicability

In the meantime, Figure 8.34 shows some rough rules of thumb on where RCU is
most helpful.

As shown in the blue box, RCU works best if you have read-mostly data where stale
and inconsistent data is permissible (but see below for more information on stale and
inconsistent data). The canonical example of this case in the Linux kernel is routing
tables. Because it may have taken many seconds or even minutes for the routing updates
to propagate across Internet, the system has been sending packets the wrong way for
quite some time. Having some small probability of continuing to send some of them the
wrong way for a few more milliseconds is almost never a problem.

If you have a read-mostly workload where consistent data is required, RCU works
well, as shown by the green box. One example of this case is the Linux kernel’s mapping
from user-level System-V semaphore IDs to the corresponding in-kernel data structures.
Semaphores tend to be used far more frequently than they are created and destroyed, so
this mapping is read-mostly. However, it would be erroneous to perform a semaphore
operation on a semaphore that has already been deleted. This need for consistency
is handled by using the lock in the in-kernel semaphore data structure, along with a
“deleted” flag that is set when deleting a semaphore. If a user ID maps to an in-kernel
data structure with the “deleted” flag set, the data structure is ignored, so that the user
ID is flagged as invalid.

Although this requires that the readers acquire a lock for the data structure repre-
senting the semaphore itself, it allows them to dispense with locking for the mapping
data structure. The readers therefore locklessly traverse the tree used to map from ID to
data structure, which in turn greatly improves performance, scalability, and real-time
response.

As indicated by the yellow box, RCU can also be useful for read-write workloads
where consistent data is required, although usually in conjunction with a number of
other synchronization primitives. For example, the dentry cache in recent Linux kernels
uses RCU in conjunction with sequence locks, per-CPU locks, and per-data-structure
locks to allow lockless traversal of pathnames in the common case. Although RCU can
be very beneficial in this read-write case, such use is often more complex than that of
the read-mostly cases.

Finally, as indicated by the red box, update-mostly workloads requiring consistent
data are rarely good places to use RCU, though there are some exceptions [DMS+12].
In addition, as noted in Section 8.3.3.6, within the Linux kernel, the SLAB_DESTROY_
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BY_RCU slab-allocator flag provides type-safe memory to RCU readers, which can
greatly simplify non-blocking synchronization and other lockless algorithms.

In short, RCU is an API that includes a publish-subscribe mechanism for adding
new data, a way of waiting for pre-existing RCU readers to finish, and a discipline of
maintaining multiple versions to allow updates to avoid harming or unduly delaying
concurrent RCU readers. This RCU API is best suited for read-mostly situations,
especially if stale and inconsistent data can be tolerated by the application.

8.3.4 RCU Linux-Kernel API
This section looks at RCU from the viewpoint of its Linux-kernel API. Section 8.3.4.1
presents RCU’s wait-to-finish APIs, and Section 8.3.4.2 presents RCU’s publish-
subscribe and version-maintenance APIs. Finally, Section 8.3.4.4 presents concluding
remarks.

8.3.4.1 RCU has a Family of Wait-to-Finish APIs

The most straightforward answer to “what is RCU” is that RCU is an API used in the
Linux kernel, as summarized by Tables 8.4 and 8.5, which shows the wait-for-RCU-
readers portions of the non-sleepable and sleepable APIs, respectively, and by Table 8.6,
which shows the publish/subscribe portions of the API.

If you are new to RCU, you might consider focusing on just one of the columns
in Table 8.4, each of which summarizes one member of the Linux kernel’s RCU API
family. For example, if you are primarily interested in understanding how RCU is
used in the Linux kernel, “RCU Classic” would be the place to start, as it is used most
frequently. On the other hand, if you want to understand RCU for its own sake, “SRCU”
has the simplest API. You can always come back for the other columns later.

If you are already familiar with RCU, these tables can serve as a useful reference.
Quick Quiz 8.34: Why do some of the cells in Table 8.4 have exclamation marks

(“!”)?
The “RCU Classic” column corresponds to the original RCU implementation, in

which RCU read-side critical sections are delimited by rcu_read_lock() and rcu_
read_unlock(), which may be nested. The corresponding synchronous update-
side primitives, synchronize_rcu(), along with its synonym synchronize_
net(), wait for any currently executing RCU read-side critical sections to complete.
The length of this wait is known as a “grace period”. The asynchronous update-side
primitive, call_rcu(), invokes a specified function with a specified argument after
a subsequent grace period. For example, call_rcu(p,f); will result in the “RCU
callback” f(p) being invoked after a subsequent grace period. There are situations,
such as when unloading a Linux-kernel module that uses call_rcu(), when it is
necessary to wait for all outstanding RCU callbacks to complete [McK07e]. The
rcu_barrier() primitive does this job. Note that the more recent hierarchical
RCU [McK08a] implementation described in Sections D.2 and D.3 also adheres to
“RCU Classic” semantics.

Finally, RCU may be used to provide type-safe memory [GC96], as described in
Section 8.3.3.6. In the context of RCU, type-safe memory guarantees that a given data
element will not change type during any RCU read-side critical section that accesses
it. To make use of RCU-based type-safe memory, pass SLAB_DESTROY_BY_RCU
to kmem_cache_create(). It is important to note that SLAB_DESTROY_BY_
RCU will in no way prevent kmem_cache_alloc() from immediately reallocating
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Attribute RCU Classic RCU BH RCU Sched Realtime RCU
Purpose Original Prevent DDoS attacks Wait for preempt-disable

regions, hardirqs, &
NMIs

Realtime response

Availability 2.5.43 2.6.9 2.6.12 2.6.26
Read-side primitives rcu_read_lock() !

rcu_read_
unlock() !

rcu_read_lock_bh()
rcu_read_unlock_
bh()

preempt_disable()
preempt_enable()
(and friends)

rcu_read_lock()
rcu_read_unlock()

Update-side primitives (syn-
chronous)

synchronize_rcu()
synchronize_net()

synchronize_
sched()

synchronize_rcu()
synchronize_net()

Update-side primitives
(asynchronous/callback)

call_rcu() ! call_rcu_bh() call_rcu_sched() call_rcu()

Update-side primitives (wait
for callbacks)

rcu_barrier() rcu_barrier_bh() rcu_barrier_
sched()

rcu_barrier()

Type-safe memory SLAB_DESTROY_BY_
RCU

SLAB_DESTROY_BY_
RCU

Read side constraints No blocking No irq enabling No blocking Only preemption and lock
acquisition

Read side overhead Preempt disable/enable
(free on non-PREEMPT)

BH disable/enable Preempt disable/enable
(free on non-PREEMPT)

Simple instructions, irq
disable/enable

Asynchronous update-side
overhead

sub-microsecond sub-microsecond sub-microsecond

Grace-period latency 10s of milliseconds 10s of milliseconds 10s of milliseconds 10s of milliseconds
Non-PREEMPT_RT imple-
mentation

RCU Classic RCU BH RCU Classic Preemptible RCU

PREEMPT_RT implementa-
tion

Preemptible RCU Realtime RCU Forced Schedule on all
CPUs

Realtime RCU

Table 8.4: RCU Wait-to-Finish APIs

Attribute SRCU QRCU
Purpose Sleeping readers Sleeping readers and fast grace periods
Availability 2.6.19
Read-side primitives srcu_read_lock()

srcu_read_unlock()
qrcu_read_lock()
qrcu_read_unlock()

Update-side primitives (syn-
chronous)

synchronize_srcu() synchronize_qrcu()

Update-side primitives
(asynchronous/callback)

N/A N/A

Update-side primitives (wait
for callbacks)

N/A N/A

Type-safe memory
Read side constraints No synchronize_srcu() No synchronize_qrcu()
Read side overhead Simple instructions, preempt dis-

able/enable
Atomic increment and decrement of
shared variable

Asynchronous update-side
overhead

N/A N/A

Grace-period latency 10s of milliseconds 10s of nanoseconds in absence of read-
ers

Non-PREEMPT_RT imple-
mentation

SRCU N/A

PREEMPT_RT implementa-
tion

SRCU N/A

Table 8.5: Sleepable RCU Wait-to-Finish APIs
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memory that was just now freed via kmem_cache_free()! In fact, the SLAB_
DESTROY_BY_RCU-protected data structure just returned by rcu_dereference
might be freed and reallocated an arbitrarily large number of times, even when under
the protection of rcu_read_lock(). Instead, SLAB_DESTROY_BY_RCU operates
by preventing kmem_cache_free() from returning a completely freed-up slab of
data structures to the system until after an RCU grace period elapses. In short, although
the data element might be freed and reallocated arbitrarily often, at least its type will
remain the same.

Quick Quiz 8.35: How do you prevent a huge number of RCU read-side critical
sections from indefinitely blocking a synchronize_rcu() invocation?

Quick Quiz 8.36: The synchronize_rcu() API waits for all pre-existing
interrupt handlers to complete, right?

In the “RCU BH” column, rcu_read_lock_bh() and rcu_read_unlock_
bh() delimit RCU read-side critical sections, and call_rcu_bh() invokes the
specified function and argument after a subsequent grace period. Note that RCU BH
does not have a synchronous synchronize_rcu_bh() interface, though one could
easily be added if required.

Quick Quiz 8.37: What happens if you mix and match? For example, suppose
you use rcu_read_lock() and rcu_read_unlock() to delimit RCU read-side
critical sections, but then use call_rcu_bh() to post an RCU callback?

Quick Quiz 8.38: Hardware interrupt handlers can be thought of as being under the
protection of an implicit rcu_read_lock_bh(), right?

In the “RCU Sched” column, anything that disables preemption acts as an RCU
read-side critical section, and synchronize_sched() waits for the corresponding
RCU grace period. This RCU API family was added in the 2.6.12 kernel, which split the
old synchronize_kernel() API into the current synchronize_rcu() (for
RCU Classic) and synchronize_sched() (for RCU Sched). Note that RCU Sched
did not originally have an asynchronous call_rcu_sched() interface, but one was
added in 2.6.26. In accordance with the quasi-minimalist philosophy of the Linux
community, APIs are added on an as-needed basis.

Quick Quiz 8.39: What happens if you mix and match RCU Classic and RCU
Sched?

Quick Quiz 8.40: In general, you cannot rely on synchronize_sched() to
wait for all pre-existing interrupt handlers, right?

The “Realtime RCU” column has the same API as does RCU Classic, the only differ-
ence being that RCU read-side critical sections may be preempted and may block while
acquiring spinlocks. The design of Realtime RCU is described elsewhere [McK07a].

Quick Quiz 8.41: Why do both SRCU and QRCU lack asynchronous call_
srcu() or call_qrcu() interfaces?

The “SRCU” column in Table 8.5 displays a specialized RCU API that permits
general sleeping in RCU read-side critical sections (see Appendix D.1 for more details).
Of course, use of synchronize_srcu() in an SRCU read-side critical section
can result in self-deadlock, so should be avoided. SRCU differs from earlier RCU
implementations in that the caller allocates an srcu_struct for each distinct SRCU
usage. This approach prevents SRCU read-side critical sections from blocking unrelated
synchronize_srcu() invocations. In addition, in this variant of RCU, srcu_
read_lock() returns a value that must be passed into the corresponding srcu_
read_unlock().

The “QRCU” column presents an RCU implementation with the same API structure
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as SRCU, but optimized for extremely low-latency grace periods in absence of readers,
as described elsewhere [McK07f]. As with SRCU, use of synchronize_qrcu()
in a QRCU read-side critical section can result in self-deadlock, so should be avoided.
Although QRCU has not yet been accepted into the Linux kernel, it is worth mentioning
given that it is the only kernel-level RCU implementation that can boast deep sub-
microsecond grace-period latencies.

Quick Quiz 8.42: Under what conditions can synchronize_srcu() be safely
used within an SRCU read-side critical section?

The Linux kernel currently has a surprising number of RCU APIs and implementa-
tions. There is some hope of reducing this number, evidenced by the fact that a given
build of the Linux kernel currently has at most three implementations behind four APIs
(given that RCU Classic and Realtime RCU share the same API). However, careful
inspection and analysis will be required, just as would be required in order to eliminate
one of the many locking APIs.

The various RCU APIs are distinguished by the forward-progress guarantees that
their RCU read-side critical sections must provide, and also by their scope, as follows:

1. RCU BH: read-side critical sections must guarantee forward progress against
everything except for NMI and irq handlers, but not including softirq handlers.
RCU BH is global in scope.

2. RCU Sched: read-side critical sections must guarantee forward progress against
everything except for NMI and irq handlers, including softirq handlers. RCU
Sched is global in scope.

3. RCU (both classic and real-time): read-side critical sections must guarantee
forward progress against everything except for NMI handlers, irq handlers, softirq
handlers, and (in the real-time case) higher-priority real-time tasks. RCU is global
in scope.

4. SRCU and QRCU: read-side critical sections need not guarantee forward progress
unless some other task is waiting for the corresponding grace period to complete,
in which case these read-side critical sections should complete in no more than a
few seconds (and preferably much more quickly).6 SRCU’s and QRCU’s scope
is defined by the use of the corresponding srcu_struct or qrcu_struct,
respectively.

In other words, SRCU and QRCU compensate for their extremely weak forward-
progress guarantees by permitting the developer to restrict their scope.

8.3.4.2 RCU has Publish-Subscribe and Version-Maintenance APIs

Fortunately, the RCU publish-subscribe and version-maintenance primitives shown
in the following table apply to all of the variants of RCU discussed above. This
commonality can in some cases allow more code to be shared, which certainly reduces
the API proliferation that would otherwise occur. The original purpose of the RCU
publish-subscribe APIs was to bury memory barriers into these APIs, so that Linux
kernel programmers could use RCU without needing to become expert on the memory-
ordering models of each of the 20+ CPU families that Linux supports [Spr01].

6 Thanks to James Bottomley for urging me to this formulation, as opposed to simply saying that there are
no forward-progress guarantees.
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Category Primitives Availability Overhead
List traversal list_for_each_entry_

rcu()
2.5.59 Simple instructions

(memory barrier on
Alpha)

List update list_add_rcu() 2.5.44 Memory barrier
list_add_tail_rcu() 2.5.44 Memory barrier
list_del_rcu() 2.5.44 Simple instructions
list_replace_rcu() 2.6.9 Memory barrier
list_splice_init_rcu() 2.6.21 Grace-period latency

Hlist traversal hlist_for_each_entry_
rcu()

2.6.8 Simple instructions
(memory barrier on
Alpha)

hlist_add_after_rcu() 2.6.14 Memory barrier
hlist_add_before_rcu() 2.6.14 Memory barrier
hlist_add_head_rcu() 2.5.64 Memory barrier
hlist_del_rcu() 2.5.64 Simple instructions
hlist_replace_rcu() 2.6.15 Memory barrier

Pointer traversal rcu_dereference() 2.6.9 Simple instructions
(memory barrier on
Alpha)

Pointer update rcu_assign_pointer() 2.6.10 Memory barrier

Table 8.6: RCU Publish-Subscribe and Version Maintenance APIs

The first pair of categories operate on Linux struct list_head lists, which
are circular, doubly-linked lists. The list_for_each_entry_rcu() primitive
traverses an RCU-protected list in a type-safe manner, while also enforcing memory
ordering for situations where a new list element is inserted into the list concurrently with
traversal. On non-Alpha platforms, this primitive incurs little or no performance penalty
compared to list_for_each_entry(). The list_add_rcu(), list_add_
tail_rcu(), and list_replace_rcu() primitives are analogous to their non-
RCU counterparts, but incur the overhead of an additional memory barrier on weakly-
ordered machines. The list_del_rcu() primitive is also analogous to its non-RCU
counterpart, but oddly enough is very slightly faster due to the fact that it poisons only
the prev pointer rather than both the prev and next pointers as list_del() must
do. Finally, the list_splice_init_rcu() primitive is similar to its non-RCU
counterpart, but incurs a full grace-period latency. The purpose of this grace period
is to allow RCU readers to finish their traversal of the source list before completely
disconnecting it from the list header – failure to do this could prevent such readers from
ever terminating their traversal.

Quick Quiz 8.43: Why doesn’t list_del_rcu() poison both the next and
prev pointers?

The second pair of categories operate on Linux’s struct hlist_head, which is
a linear linked list. One advantage of struct hlist_head over struct list_
head is that the former requires only a single-pointer list header, which can save signif-
icant memory in large hash tables. The struct hlist_head primitives in the table
relate to their non-RCU counterparts in much the same way as do the struct list_
head primitives.
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Figure 8.35: RCU API Usage Constraints

The final pair of categories operate directly on pointers, and are useful for creating
RCU-protected non-list data structures, such as RCU-protected arrays and trees. The
rcu_assign_pointer() primitive ensures that any prior initialization remains
ordered before the assignment to the pointer on weakly ordered machines. Similarly,
the rcu_dereference() primitive ensures that subsequent code dereferencing
the pointer will see the effects of initialization code prior to the corresponding rcu_
assign_pointer() on Alpha CPUs. On non-Alpha CPUs, rcu_dereference()
documents which pointer dereferences are protected by RCU.

Quick Quiz 8.44: Normally, any pointer subject to rcu_dereference() must
always be updated using rcu_assign_pointer(). What is an exception to this
rule?

Quick Quiz 8.45: Are there any downsides to the fact that these traversal and update
primitives can be used with any of the RCU API family members?

8.3.4.3 Where Can RCU’s APIs Be Used?

Figure 8.35 shows which APIs may be used in which in-kernel environments. The
RCU read-side primitives may be used in any environment, including NMI, the RCU
mutation and asynchronous grace-period primitives may be used in any environment
other than NMI, and, finally, the RCU synchronous grace-period primitives may be used
only in process context. The RCU list-traversal primitives include list_for_each_
entry_rcu(), hlist_for_each_entry_rcu(), etc. Similarly, the RCU list-
mutation primitives include list_add_rcu(), hlist_del_rcu(), etc.

Note that primitives from other families of RCU may be substituted, for example,
srcu_read_lock() may be used in any context in which rcu_read_lock()
may be used.

8.3.4.4 So, What is RCU Really?

At its core, RCU is nothing more nor less than an API that supports publication and
subscription for insertions, waiting for all RCU readers to complete, and maintenance
of multiple versions. That said, it is possible to build higher-level constructs on top of
RCU, including the reader-writer-locking, reference-counting, and existence-guarantee

203



constructs listed in the companion article. Furthermore, I have no doubt that the Linux
community will continue to find interesting new uses for RCU, just as they do for any
of a number of synchronization primitives throughout the kernel.

Of course, a more-complete view of RCU would also include all of the things you
can do with these APIs.

However, for many people, a complete view of RCU must include sample RCU
implementations. The next section therefore presents a series of “toy” RCU implemen-
tations of increasing complexity and capability.

8.3.5 “Toy” RCU Implementations
The toy RCU implementations in this section are designed not for high performance,
practicality, or any kind of production use,7 but rather for clarity. Nevertheless, you will
need a thorough understanding of Chapters 1, 2, 3, 5, and 8 for even these toy RCU
implementations to be easily understandable.

This section provides a series of RCU implementations in order of increasing
sophistication, from the viewpoint of solving the existence-guarantee problem. Sec-
tion 8.3.5.1 presents a rudimentary RCU implementation based on simple locking, while
Section 8.3.5.3 through 8.3.5.9 present a series of simple RCU implementations based
on locking, reference counters, and free-running counters. Finally, Section 8.3.5.10
provides a summary and a list of desirable RCU properties.

8.3.5.1 Lock-Based RCU

Perhaps the simplest RCU implementation leverages locking, as shown in Figure 8.36
(rcu_lock.h and rcu_lock.c). In this implementation, rcu_read_lock()
acquires a global spinlock, rcu_read_unlock() releases it, and synchronize_
rcu() acquires it then immediately releases it.

Because synchronize_rcu() does not return until it has acquired (and released)
the lock, it cannot return until all prior RCU read-side critical sections have completed,
thus faithfully implementing RCU semantics. Of course, only one RCU reader may
be in its read-side critical section at a time, which almost entirely defeats the purpose
of RCU. In addition, the lock operations in rcu_read_lock() and rcu_read_
unlock() are extremely heavyweight, with read-side overhead ranging from about

7 However, production-quality user-level RCU implementations are available [Des09].

1 static void rcu_read_lock(void)
2 {
3 spin_lock(&rcu_gp_lock);
4 }
5
6 static void rcu_read_unlock(void)
7 {
8 spin_unlock(&rcu_gp_lock);
9 }
10
11 void synchronize_rcu(void)
12 {
13 spin_lock(&rcu_gp_lock);
14 spin_unlock(&rcu_gp_lock);
15 }

Figure 8.36: Lock-Based RCU Implementation
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100 nanoseconds on a single Power5 CPU up to more than 17 microseconds on a
64-CPU system. Worse yet, these same lock operations permit rcu_read_lock()
to participate in deadlock cycles. Furthermore, in absence of recursive locks, RCU
read-side critical sections cannot be nested, and, finally, although concurrent RCU
updates could in principle be satisfied by a common grace period, this implementation
serializes grace periods, preventing grace-period sharing.

Quick Quiz 8.46: Why wouldn’t any deadlock in the RCU implementation in
Figure 8.36 also be a deadlock in any other RCU implementation?

Quick Quiz 8.47: Why not simply use reader-writer locks in the RCU implementa-
tion in Figure 8.36 in order to allow RCU readers to proceed in parallel?

It is hard to imagine this implementation being useful in a production setting, though
it does have the virtue of being implementable in almost any user-level application.
Furthermore, similar implementations having one lock per CPU or using reader-writer
locks have been used in production in the 2.4 Linux kernel.

A modified version of this one-lock-per-CPU approach, but instead using one lock
per thread, is described in the next section.

8.3.5.2 Per-Thread Lock-Based RCU

Figure 8.37 (rcu_lock_percpu.h and rcu_lock_percpu.c) shows an imple-
mentation based on one lock per thread. The rcu_read_lock() and rcu_read_
unlock() functions acquire and release, respectively, the current thread’s lock. The
synchronize_rcu() function acquires and releases each thread’s lock in turn.
Therefore, all RCU read-side critical sections running when synchronize_rcu()
starts must have completed before synchronize_rcu() can return.

This implementation does have the virtue of permitting concurrent RCU readers, and
does avoid the deadlock condition that can arise with a single global lock. Furthermore,
the read-side overhead, though high at roughly 140 nanoseconds, remains at about 140
nanoseconds regardless of the number of CPUs. However, the update-side overhead
ranges from about 600 nanoseconds on a single Power5 CPU up to more than 100
microseconds on 64 CPUs.

Quick Quiz 8.48: Wouldn’t it be cleaner to acquire all the locks, and then release
them all in the loop from lines 15-18 of Figure 8.37? After all, with this change, there
would be a point in time when there were no readers, simplifying things greatly.

Quick Quiz 8.49: Is the implementation shown in Figure 8.37 free from deadlocks?
Why or why not?

Quick Quiz 8.50: Isn’t one advantage of the RCU algorithm shown in Figure 8.37
that it uses only primitives that are widely available, for example, in POSIX pthreads?

This approach could be useful in some situations, given that a similar approach was
used in the Linux 2.4 kernel [MM00].

The counter-based RCU implementation described next overcomes some of the
shortcomings of the lock-based implementation.

8.3.5.3 Simple Counter-Based RCU

A slightly more sophisticated RCU implementation is shown in Figure 8.38 (rcu_
rcg.h and rcu_rcg.c). This implementation makes use of a global reference
counter rcu_refcnt defined on line 1. The rcu_read_lock() primitive atomi-
cally increments this counter, then executes a memory barrier to ensure that the RCU
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1 static void rcu_read_lock(void)
2 {
3 spin_lock(&__get_thread_var(rcu_gp_lock));
4 }
5
6 static void rcu_read_unlock(void)
7 {
8 spin_unlock(&__get_thread_var(rcu_gp_lock));
9 }
10
11 void synchronize_rcu(void)
12 {
13 int t;
14
15 for_each_running_thread(t) {
16 spin_lock(&per_thread(rcu_gp_lock, t));
17 spin_unlock(&per_thread(rcu_gp_lock, t));
18 }
19 }

Figure 8.37: Per-Thread Lock-Based RCU Implementation

1 atomic_t rcu_refcnt;
2
3 static void rcu_read_lock(void)
4 {
5 atomic_inc(&rcu_refcnt);
6 smp_mb();
7 }
8
9 static void rcu_read_unlock(void)
10 {
11 smp_mb();
12 atomic_dec(&rcu_refcnt);
13 }
14
15 void synchronize_rcu(void)
16 {
17 smp_mb();
18 while (atomic_read(&rcu_refcnt) != 0) {
19 poll(NULL, 0, 10);
20 }
21 smp_mb();
22 }

Figure 8.38: RCU Implementation Using Single Global Reference Counter
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read-side critical section is ordered after the atomic increment. Similarly, rcu_read_
unlock() executes a memory barrier to confine the RCU read-side critical section,
then atomically decrements the counter. The synchronize_rcu() primitive spins
waiting for the reference counter to reach zero, surrounded by memory barriers. The
poll() on line 19 merely provides pure delay, and from a pure RCU-semantics point
of view could be omitted. Again, once synchronize_rcu() returns, all prior RCU
read-side critical sections are guaranteed to have completed.

In happy contrast to the lock-based implementation shown in Section 8.3.5.1, this
implementation allows parallel execution of RCU read-side critical sections. In happy
contrast to the per-thread lock-based implementation shown in Section 8.3.5.2, it also
allows them to be nested. In addition, the rcu_read_lock() primitive cannot
possibly participate in deadlock cycles, as it never spins nor blocks.

Quick Quiz 8.51: But what if you hold a lock across a call to synchronize_
rcu(), and then acquire that same lock within an RCU read-side critical section?

However, this implementations still has some serious shortcomings. First, the
atomic operations in rcu_read_lock() and rcu_read_unlock() are still quite
heavyweight, with read-side overhead ranging from about 100 nanoseconds on a single
Power5 CPU up to almost 40 microseconds on a 64-CPU system. This means that
the RCU read-side critical sections have to be extremely long in order to get any real
read-side parallelism. On the other hand, in the absence of readers, grace periods elapse
in about 40 nanoseconds, many orders of magnitude faster than production-quality
implementations in the Linux kernel.

Quick Quiz 8.52: How can the grace period possibly elapse in 40 nanoseconds
when synchronize_rcu() contains a 10-millisecond delay?

Second, if there are many concurrent rcu_read_lock() and rcu_read_
unlock() operations, there will be extreme memory contention on rcu_refcnt,
resulting in expensive cache misses. Both of these first two shortcomings largely defeat
a major purpose of RCU, namely to provide low-overhead read-side synchronization
primitives.

Finally, a large number of RCU readers with long read-side critical sections could
prevent synchronize_rcu() from ever completing, as the global counter might
never reach zero. This could result in starvation of RCU updates, which is of course
unacceptable in production settings.

Quick Quiz 8.53: Why not simply make rcu_read_lock() wait when a con-
current synchronize_rcu() has been waiting too long in the RCU implementation
in Figure 8.38? Wouldn’t that prevent synchronize_rcu() from starving?

Therefore, it is still hard to imagine this implementation being useful in a production
setting, though it has a bit more potential than the lock-based mechanism, for example,
as an RCU implementation suitable for a high-stress debugging environment. The next
section describes a variation on the reference-counting scheme that is more favorable to
writers.

8.3.5.4 Starvation-Free Counter-Based RCU

Figure 8.40 (rcu_rcgp.h) shows the read-side primitives of an RCU implementation
that uses a pair of reference counters (rcu_refcnt[]), along with a global index
that selects one counter out of the pair (rcu_idx), a per-thread nesting counter rcu_
nesting, a per-thread snapshot of the global index (rcu_read_idx), and a global
lock (rcu_gp_lock), which are themselves shown in Figure 8.39.
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1 DEFINE_SPINLOCK(rcu_gp_lock);
2 atomic_t rcu_refcnt[2];
3 atomic_t rcu_idx;
4 DEFINE_PER_THREAD(int, rcu_nesting);
5 DEFINE_PER_THREAD(int, rcu_read_idx);

Figure 8.39: RCU Global Reference-Count Pair Data

1 static void rcu_read_lock(void)
2 {
3 int i;
4 int n;
5
6 n = __get_thread_var(rcu_nesting);
7 if (n == 0) {
8 i = atomic_read(&rcu_idx);
9 __get_thread_var(rcu_read_idx) = i;
10 atomic_inc(&rcu_refcnt[i]);
11 }
12 __get_thread_var(rcu_nesting) = n + 1;
13 smp_mb();
14 }
15
16 static void rcu_read_unlock(void)
17 {
18 int i;
19 int n;
20
21 smp_mb();
22 n = __get_thread_var(rcu_nesting);
23 if (n == 1) {
24 i = __get_thread_var(rcu_read_idx);
25 atomic_dec(&rcu_refcnt[i]);
26 }
27 __get_thread_var(rcu_nesting) = n - 1;
28 }

Figure 8.40: RCU Read-Side Using Global Reference-Count Pair
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1 void synchronize_rcu(void)
2 {
3 int i;
4
5 smp_mb();
6 spin_lock(&rcu_gp_lock);
7 i = atomic_read(&rcu_idx);
8 atomic_set(&rcu_idx, !i);
9 smp_mb();
10 while (atomic_read(&rcu_refcnt[i]) != 0) {
11 poll(NULL, 0, 10);
12 }
13 smp_mb();
14 atomic_set(&rcu_idx, i);
15 smp_mb();
16 while (atomic_read(&rcu_refcnt[!i]) != 0) {
17 poll(NULL, 0, 10);
18 }
19 spin_unlock(&rcu_gp_lock);
20 smp_mb();
21 }

Figure 8.41: RCU Update Using Global Reference-Count Pair

The rcu_read_lock() primitive atomically increments the member of the rcu_
refcnt[] pair indexed by rcu_idx, and keeps a snapshot of this index in the
per-thread variable rcu_read_idx. The rcu_read_unlock() primitive then
atomically decrements whichever counter of the pair that the corresponding rcu_
read_lock() incremented. However, because only one value of rcu_idx is re-
membered per thread, additional measures must be taken to permit nesting. These
additional measures use the per-thread rcu_nesting variable to track nesting.

To make all this work, line 6 of rcu_read_lock() in Figure 8.40 picks up
the current thread’s instance of rcu_nesting, and if line 7 finds that this is the
outermost rcu_read_lock(), then lines 8-10 pick up the current value of rcu_
idx, save it in this thread’s instance of rcu_read_idx, and atomically increment the
selected element of rcu_refcnt. Regardless of the value of rcu_nesting, line 12
increments it. Line 13 executes a memory barrier to ensure that the RCU read-side
critical section does not bleed out before the rcu_read_lock() code.

Similarly, the rcu_read_unlock() function executes a memory barrier at
line 21 to ensure that the RCU read-side critical section does not bleed out after the rcu_
read_unlock() code. Line 22 picks up this thread’s instance of rcu_nesting,
and if line 23 finds that this is the outermost rcu_read_unlock(), then lines 24 and
25 pick up this thread’s instance of rcu_read_idx (saved by the outermost rcu_
read_lock()) and atomically decrements the selected element of rcu_refcnt.
Regardless of the nesting level, line 27 decrements this thread’s instance of rcu_
nesting.

Figure 8.41 (rcu_rcpg.c) shows the corresponding synchronize_rcu()
implementation. Lines 6 and 19 acquire and release rcu_gp_lock in order to prevent
more than one concurrent instance of synchronize_rcu(). Lines 7-8 pick up the
value of rcu_idx and complement it, respectively, so that subsequent instances of
rcu_read_lock() will use a different element of rcu_idx that did preceding
instances. Lines 10-12 then wait for the prior element of rcu_idx to reach zero, with
the memory barrier on line 9 ensuring that the check of rcu_idx is not reordered to
precede the complementing of rcu_idx. Lines 13-18 repeat this process, and line 20
ensures that any subsequent reclamation operations are not reordered to precede the
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1 DEFINE_SPINLOCK(rcu_gp_lock);
2 DEFINE_PER_THREAD(int [2], rcu_refcnt);
3 atomic_t rcu_idx;
4 DEFINE_PER_THREAD(int, rcu_nesting);
5 DEFINE_PER_THREAD(int, rcu_read_idx);

Figure 8.42: RCU Per-Thread Reference-Count Pair Data

checking of rcu_refcnt.
Quick Quiz 8.54: Why the memory barrier on line 5 of synchronize_rcu()

in Figure 8.41 given that there is a spin-lock acquisition immediately after?
Quick Quiz 8.55: Why is the counter flipped twice in Figure 8.41? Shouldn’t a

single flip-and-wait cycle be sufficient?
This implementation avoids the update-starvation issues that could occur in the

single-counter implementation shown in Figure 8.38.
There are still some serious shortcomings. First, the atomic operations in rcu_

read_lock() and rcu_read_unlock() are still quite heavyweight. In fact, they
are more complex than those of the single-counter variant shown in Figure 8.38, with
the read-side primitives consuming about 150 nanoseconds on a single Power5 CPU
and almost 40 microseconds on a 64-CPU system. The updates-side synchronize_
rcu() primitive is more costly as well, ranging from about 200 nanoseconds on a
single Power5 CPU to more than 40 microseconds on a 64-CPU system. This means
that the RCU read-side critical sections have to be extremely long in order to get any
real read-side parallelism.

Second, if there are many concurrent rcu_read_lock() and rcu_read_
unlock() operations, there will be extreme memory contention on the rcu_refcnt
elements, resulting in expensive cache misses. This further extends the RCU read-side
critical-section duration required to provide parallel read-side access. These first two
shortcomings defeat the purpose of RCU in most situations.

Third, the need to flip rcu_idx twice imposes substantial overhead on updates,
especially if there are large numbers of threads.

Finally, despite the fact that concurrent RCU updates could in principle be satisfied
by a common grace period, this implementation serializes grace periods, preventing
grace-period sharing.

Quick Quiz 8.56: Given that atomic increment and decrement are so expensive,
why not just use non-atomic increment on line 10 and a non-atomic decrement on line 25
of Figure 8.40?

Despite these shortcomings, one could imagine this variant of RCU being used on
small tightly coupled multiprocessors, perhaps as a memory-conserving implementation
that maintains API compatibility with more complex implementations. However, it
would not not likely scale well beyond a few CPUs.

The next section describes yet another variation on the reference-counting scheme
that provides greatly improved read-side performance and scalability.

8.3.5.5 Scalable Counter-Based RCU

Figure 8.43 (rcu_rcpl.h) shows the read-side primitives of an RCU implementation
that uses per-thread pairs of reference counters. This implementation is quite similar
to that shown in Figure 8.40, the only difference being that rcu_refcnt is now a
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rcu_rcpl.h


1 static void rcu_read_lock(void)
2 {
3 int i;
4 int n;
5
6 n = __get_thread_var(rcu_nesting);
7 if (n == 0) {
8 i = atomic_read(&rcu_idx);
9 __get_thread_var(rcu_read_idx) = i;
10 __get_thread_var(rcu_refcnt)[i]++;
11 }
12 __get_thread_var(rcu_nesting) = n + 1;
13 smp_mb();
14 }
15
16 static void rcu_read_unlock(void)
17 {
18 int i;
19 int n;
20
21 smp_mb();
22 n = __get_thread_var(rcu_nesting);
23 if (n == 1) {
24 i = __get_thread_var(rcu_read_idx);
25 __get_thread_var(rcu_refcnt)[i]--;
26 }
27 __get_thread_var(rcu_nesting) = n - 1;
28 }

Figure 8.43: RCU Read-Side Using Per-Thread Reference-Count Pair

per-thread variable (as shown in Figure 8.42), so the rcu_read_lock() and rcu_
read_unlock() primitives no longer perform atomic operations.

Quick Quiz 8.57: Come off it! We can see the atomic_read() primitive in
rcu_read_lock()!!! So why are you trying to pretend that rcu_read_lock()
contains no atomic operations???

Figure 8.44 (rcu_rcpl.c) shows the implementation of synchronize_rcu(),
along with a helper function named flip_counter_and_wait(). The synchronize_
rcu() function resembles that shown in Figure 8.41, except that the repeated counter
flip is replaced by a pair of calls on lines 22 and 23 to the new helper function.

The new flip_counter_and_wait() function updates the rcu_idx vari-
able on line 5, executes a memory barrier on line 6, then lines 7-11 spin on each thread’s
prior rcu_refcnt element, waiting for it to go to zero. Once all such elements have
gone to zero, it executes another memory barrier on line 12 and returns.

This RCU implementation imposes important new requirements on its software
environment, namely, (1) that it be possible to declare per-thread variables, (2) that
these per-thread variables be accessible from other threads, and (3) that it is possible to
enumerate all threads. These requirements can be met in almost all software environ-
ments, but often result in fixed upper bounds on the number of threads. More-complex
implementations might avoid such bounds, for example, by using expandable hash
tables. Such implementations might dynamically track threads, for example, by adding
them on their first call to rcu_read_lock().

Quick Quiz 8.58: Great, if we have N threads, we can have 2N ten-millisecond
waits (one set per flip_counter_and_wait() invocation, and even that assumes
that we wait only once for each thread. Don’t we need the grace period to complete
much more quickly?

This implementation still has several shortcomings. First, the need to flip rcu_idx
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1 static void flip_counter_and_wait(int i)
2 {
3 int t;
4
5 atomic_set(&rcu_idx, !i);
6 smp_mb();
7 for_each_thread(t) {
8 while (per_thread(rcu_refcnt, t)[i] != 0) {
9 poll(NULL, 0, 10);
10 }
11 }
12 smp_mb();
13 }
14
15 void synchronize_rcu(void)
16 {
17 int i;
18
19 smp_mb();
20 spin_lock(&rcu_gp_lock);
21 i = atomic_read(&rcu_idx);
22 flip_counter_and_wait(i);
23 flip_counter_and_wait(!i);
24 spin_unlock(&rcu_gp_lock);
25 smp_mb();
26 }

Figure 8.44: RCU Update Using Per-Thread Reference-Count Pair

twice imposes substantial overhead on updates, especially if there are large numbers of
threads.

Second, synchronize_rcu() must now examine a number of variables that
increases linearly with the number of threads, imposing substantial overhead on applica-
tions with large numbers of threads.

Third, as before, although concurrent RCU updates could in principle be satisfied
by a common grace period, this implementation serializes grace periods, preventing
grace-period sharing.

Finally, as noted in the text, the need for per-thread variables and for enumerating
threads may be problematic in some software environments.

That said, the read-side primitives scale very nicely, requiring about 115 nanoseconds
regardless of whether running on a single-CPU or a 64-CPU Power5 system. As noted
above, the synchronize_rcu() primitive does not scale, ranging in overhead from
almost a microsecond on a single Power5 CPU up to almost 200 microseconds on a
64-CPU system. This implementation could conceivably form the basis for a production-
quality user-level RCU implementation.

The next section describes an algorithm permitting more efficient concurrent RCU
updates.

8.3.5.6 Scalable Counter-Based RCU With Shared Grace Periods

Figure 8.46 (rcu_rcpls.h) shows the read-side primitives for an RCU implementa-
tion using per-thread reference count pairs, as before, but permitting updates to share
grace periods. The main difference from the earlier implementation shown in Fig-
ure 8.43 is that rcu_idx is now a long that counts freely, so that line 8 of Figure 8.46
must mask off the low-order bit. We also switched from using atomic_read() and
atomic_set() to using ACCESS_ONCE(). The data is also quite similar, as shown
in Figure 8.45, with rcu_idx now being a long instead of an atomic_t.
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rcu_rcpls.h


1 DEFINE_SPINLOCK(rcu_gp_lock);
2 DEFINE_PER_THREAD(int [2], rcu_refcnt);
3 long rcu_idx;
4 DEFINE_PER_THREAD(int, rcu_nesting);
5 DEFINE_PER_THREAD(int, rcu_read_idx);

Figure 8.45: RCU Read-Side Using Per-Thread Reference-Count Pair and Shared
Update Data

1 static void rcu_read_lock(void)
2 {
3 int i;
4 int n;
5
6 n = __get_thread_var(rcu_nesting);
7 if (n == 0) {
8 i = ACCESS_ONCE(rcu_idx) & 0x1;
9 __get_thread_var(rcu_read_idx) = i;
10 __get_thread_var(rcu_refcnt)[i]++;
11 }
12 __get_thread_var(rcu_nesting) = n + 1;
13 smp_mb();
14 }
15
16 static void rcu_read_unlock(void)
17 {
18 int i;
19 int n;
20
21 smp_mb();
22 n = __get_thread_var(rcu_nesting);
23 if (n == 1) {
24 i = __get_thread_var(rcu_read_idx);
25 __get_thread_var(rcu_refcnt)[i]--;
26 }
27 __get_thread_var(rcu_nesting) = n - 1;
28 }

Figure 8.46: RCU Read-Side Using Per-Thread Reference-Count Pair and Shared
Update
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1 static void flip_counter_and_wait(int ctr)
2 {
3 int i;
4 int t;
5
6 ACCESS_ONCE(rcu_idx) = ctr + 1;
7 i = ctr & 0x1;
8 smp_mb();
9 for_each_thread(t) {
10 while (per_thread(rcu_refcnt, t)[i] != 0) {
11 poll(NULL, 0, 10);
12 }
13 }
14 smp_mb();
15 }
16
17 void synchronize_rcu(void)
18 {
19 int ctr;
20 int oldctr;
21
22 smp_mb();
23 oldctr = ACCESS_ONCE(rcu_idx);
24 smp_mb();
25 spin_lock(&rcu_gp_lock);
26 ctr = ACCESS_ONCE(rcu_idx);
27 if (ctr - oldctr >= 3) {
28 spin_unlock(&rcu_gp_lock);
29 smp_mb();
30 return;
31 }
32 flip_counter_and_wait(ctr);
33 if (ctr - oldctr < 2)
34 flip_counter_and_wait(ctr + 1);
35 spin_unlock(&rcu_gp_lock);
36 smp_mb();
37 }

Figure 8.47: RCU Shared Update Using Per-Thread Reference-Count Pair

214



Figure 8.47 (rcu_rcpls.c) shows the implementation of synchronize_rcu()
and its helper function flip_counter_and_wait(). These are similar to those in
Figure 8.44. The differences in flip_counter_and_wait() include:

1. Line 6 uses ACCESS_ONCE() instead of atomic_set(), and increments
rather than complementing.

2. A new line 7 masks the counter down to its bottom bit.

The changes to synchronize_rcu() are more pervasive:

1. There is a new oldctr local variable that captures the pre-lock-acquisition value
of rcu_idx on line 23.

2. Line 26 uses ACCESS_ONCE() instead of atomic_read().

3. Lines 27-30 check to see if at least three counter flips were performed by other
threads while the lock was being acquired, and, if so, releases the lock, does
a memory barrier, and returns. In this case, there were two full waits for the
counters to go to zero, so those other threads already did all the required work.

4. At lines 33-34, flip_counter_and_wait() is only invoked a second time
if there were fewer than two counter flips while the lock was being acquired. On
the other hand, if there were two counter flips, some other thread did one full wait
for all the counters to go to zero, so only one more is required.

With this approach, if an arbitrarily large number of threads invoke synchronize_
rcu() concurrently, with one CPU for each thread, there will be a total of only three
waits for counters to go to zero.

Despite the improvements, this implementation of RCU still has a few shortcomings.
First, as before, the need to flip rcu_idx twice imposes substantial overhead on
updates, especially if there are large numbers of threads.

Second, each updater still acquires rcu_gp_lock, even if there is no work to be
done. This can result in a severe scalability limitation if there are large numbers of
concurrent updates. Section D.4 shows one way to avoid this in a production-quality
real-time implementation of RCU for the Linux kernel.

Third, this implementation requires per-thread variables and the ability to enumerate
threads, which again can be problematic in some software environments.

Finally, on 32-bit machines, a given update thread might be preempted long enough
for the rcu_idx counter to overflow. This could cause such a thread to force an
unnecessary pair of counter flips. However, even if each grace period took only one
microsecond, the offending thread would need to be preempted for more than an hour,
in which case an extra pair of counter flips is likely the least of your worries.

As with the implementation described in Section 8.3.5.3, the read-side primitives
scale extremely well, incurring roughly 115 nanoseconds of overhead regardless of the
number of CPUs. The synchronize_rcu() primitives is still expensive, ranging
from about one microsecond up to about 16 microseconds. This is nevertheless much
cheaper than the roughly 200 microseconds incurred by the implementation in Sec-
tion 8.3.5.5. So, despite its shortcomings, one could imagine this RCU implementation
being used in production in real-life applications.

Quick Quiz 8.59: All of these toy RCU implementations have either atomic op-
erations in rcu_read_lock() and rcu_read_unlock(), or synchronize_
rcu() overhead that increases linearly with the number of threads. Under what
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rcu_rcpls.c


1 DEFINE_SPINLOCK(rcu_gp_lock);
2 long rcu_gp_ctr = 0;
3 DEFINE_PER_THREAD(long, rcu_reader_gp);
4 DEFINE_PER_THREAD(long, rcu_reader_gp_snap);

Figure 8.48: Data for Free-Running Counter Using RCU

1 static void rcu_read_lock(void)
2 {
3 __get_thread_var(rcu_reader_gp) = rcu_gp_ctr + 1;
4 smp_mb();
5 }
6
7 static void rcu_read_unlock(void)
8 {
9 smp_mb();
10 __get_thread_var(rcu_reader_gp) = rcu_gp_ctr;
11 }
12
13 void synchronize_rcu(void)
14 {
15 int t;
16
17 smp_mb();
18 spin_lock(&rcu_gp_lock);
19 rcu_gp_ctr += 2;
20 smp_mb();
21 for_each_thread(t) {
22 while ((per_thread(rcu_reader_gp, t) & 0x1) &&
23 ((per_thread(rcu_reader_gp, t) -
24 rcu_gp_ctr) < 0)) {
25 poll(NULL, 0, 10);
26 }
27 }
28 spin_unlock(&rcu_gp_lock);
29 smp_mb();
30 }

Figure 8.49: Free-Running Counter Using RCU

circumstances could an RCU implementation enjoy light-weight implementations for
all three of these primitives, all having deterministic (O(1)) overheads and latencies?

Referring back to Figure 8.46, we see that there is one global-variable access and
no fewer than four accesses to thread-local variables. Given the relatively high cost
of thread-local accesses on systems implementing POSIX threads, it is tempting to
collapse the three thread-local variables into a single structure, permitting rcu_read_
lock() and rcu_read_unlock() to access their thread-local data with a single
thread-local-storage access. However, an even better approach would be to reduce the
number of thread-local accesses to one, as is done in the next section.

8.3.5.7 RCU Based on Free-Running Counter

Figure 8.49 (rcu.h and rcu.c) show an RCU implementation based on a single
global free-running counter that takes on only even-numbered values, with data shown in
Figure 8.48. The resulting rcu_read_lock() implementation is extremely straight-
forward. Line 3 simply adds one to the global free-running rcu_gp_ctr variable
and stores the resulting odd-numbered value into the rcu_reader_gp per-thread
variable. Line 4 executes a memory barrier to prevent the content of the subsequent
RCU read-side critical section from “leaking out”.
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The rcu_read_unlock() implementation is similar. Line 9 executes a memory
barrier, again to prevent the prior RCU read-side critical section from “leaking out”.
Line 10 then copies the rcu_gp_ctr global variable to the rcu_reader_gp per-
thread variable, leaving this per-thread variable with an even-numbered value so that a
concurrent instance of synchronize_rcu() will know to ignore it.

Quick Quiz 8.60: If any even value is sufficient to tell synchronize_rcu() to
ignore a given task, why doesn’t line 10 of Figure 8.49 simply assign zero to rcu_
reader_gp?

Thus, synchronize_rcu() could wait for all of the per-thread rcu_reader_
gp variables to take on even-numbered values. However, it is possible to do much better
than that because synchronize_rcu() need only wait on pre-existing RCU read-
side critical sections. Line 17 executes a memory barrier to prevent prior manipulations
of RCU-protected data structures from being reordered (by either the CPU or the
compiler) to follow the increment on line 17. Line 18 acquires the rcu_gp_lock
(and line 28 releases it) in order to prevent multiple synchronize_rcu() instances
from running concurrently. Line 19 then increments the global rcu_gp_ctr variable
by two, so that all pre-existing RCU read-side critical sections will have corresponding
per-thread rcu_reader_gp variables with values less than that of rcu_gp_ctr,
modulo the machine’s word size. Recall also that threads with even-numbered values
of rcu_reader_gp are not in an RCU read-side critical section, so that lines 21-27
scan the rcu_reader_gp values until they all are either even (line 22) or are greater
than the global rcu_gp_ctr (lines 23-24). Line 25 blocks for a short period of time
to wait for a pre-existing RCU read-side critical section, but this can be replaced with a
spin-loop if grace-period latency is of the essence. Finally, the memory barrier at line 29
ensures that any subsequent destruction will not be reordered into the preceding loop.

Quick Quiz 8.61: Why are the memory barriers on lines 17 and 29 of Figure 8.49
needed? Aren’t the memory barriers inherent in the locking primitives on lines 18 and
28 sufficient?

This approach achieves much better read-side performance, incurring roughly
63 nanoseconds of overhead regardless of the number of Power5 CPUs. Updates
incur more overhead, ranging from about 500 nanoseconds on a single Power5 CPU to
more than 100 microseconds on 64 such CPUs.

Quick Quiz 8.62: Couldn’t the update-side optimization described in Section 8.3.5.6
be applied to the implementation shown in Figure 8.49?

This implementation suffers from some serious shortcomings in addition to the high
update-side overhead noted earlier. First, it is no longer permissible to nest RCU read-
side critical sections, a topic that is taken up in the next section. Second, if a reader is
preempted at line 3 of Figure 8.49 after fetching from rcu_gp_ctr but before storing
to rcu_reader_gp, and if the rcu_gp_ctr counter then runs through more than
half but less than all of its possible values, then synchronize_rcu() will ignore
the subsequent RCU read-side critical section. Third and finally, this implementation
requires that the enclosing software environment be able to enumerate threads and
maintain per-thread variables.

Quick Quiz 8.63: Is the possibility of readers being preempted in line 3 of Fig-
ure 8.49 a real problem, in other words, is there a real sequence of events that could
lead to failure? If not, why not? If so, what is the sequence of events, and how can the
failure be addressed?
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1 DEFINE_SPINLOCK(rcu_gp_lock);
2 #define RCU_GP_CTR_SHIFT 7
3 #define RCU_GP_CTR_BOTTOM_BIT (1 << RCU_GP_CTR_SHIFT)
4 #define RCU_GP_CTR_NEST_MASK (RCU_GP_CTR_BOTTOM_BIT - 1)
5 long rcu_gp_ctr = 0;
6 DEFINE_PER_THREAD(long, rcu_reader_gp);

Figure 8.50: Data for Nestable RCU Using a Free-Running Counter

8.3.5.8 Nestable RCU Based on Free-Running Counter

Figure 8.51 (rcu_nest.h and rcu_nest.c) show an RCU implementation based
on a single global free-running counter, but that permits nesting of RCU read-side
critical sections. This nestability is accomplished by reserving the low-order bits of the
global rcu_gp_ctr to count nesting, using the definitions shown in Figure 8.50. This
is a generalization of the scheme in Section 8.3.5.7, which can be thought of as having a
single low-order bit reserved for counting nesting depth. Two C-preprocessor macros are
used to arrange this, RCU_GP_CTR_NEST_MASK and RCU_GP_CTR_BOTTOM_BIT.
These are related: RCU_GP_CTR_NEST_MASK=RCU_GP_CTR_BOTTOM_BIT-1.
The RCU_GP_CTR_BOTTOM_BIT macro contains a single bit that is positioned just
above the bits reserved for counting nesting, and the RCU_GP_CTR_NEST_MASK has
all one bits covering the region of rcu_gp_ctr used to count nesting. Obviously,
these two C-preprocessor macros must reserve enough of the low-order bits of the
counter to permit the maximum required nesting of RCU read-side critical sections, and
this implementation reserves seven bits, for a maximum RCU read-side critical-section
nesting depth of 127, which should be well in excess of that needed by most applications.

The resulting rcu_read_lock() implementation is still reasonably straightfor-
ward. Line 6 places a pointer to this thread’s instance of rcu_reader_gp into the
local variable rrgp, minimizing the number of expensive calls to the pthreads thread-
local-state API. Line 7 records the current value of rcu_reader_gp into another
local variable tmp, and line 8 checks to see if the low-order bits are zero, which would
indicate that this is the outermost rcu_read_lock(). If so, line 9 places the global
rcu_gp_ctr into tmp because the current value previously fetched by line 7 is likely
to be obsolete. In either case, line 10 increments the nesting depth, which you will recall
is stored in the seven low-order bits of the counter. Line 11 stores the updated counter
back into this thread’s instance of rcu_reader_gp, and, finally, line 12 executes a
memory barrier to prevent the RCU read-side critical section from bleeding out into the
code preceding the call to rcu_read_lock().

In other words, this implementation of rcu_read_lock() picks up a copy of the
global rcu_gp_ctr unless the current invocation of rcu_read_lock() is nested
within an RCU read-side critical section, in which case it instead fetches the contents of
the current thread’s instance of rcu_reader_gp. Either way, it increments whatever
value it fetched in order to record an additional nesting level, and stores the result in the
current thread’s instance of rcu_reader_gp.

Interestingly enough, the implementation of rcu_read_unlock() is identical
to that shown in Section 8.3.5.7. Line 19 executes a memory barrier in order to prevent
the RCU read-side critical section from bleeding out into code following the call
to rcu_read_unlock(), and line 20 decrements this thread’s instance of rcu_
reader_gp, which has the effect of decrementing the nesting count contained in
rcu_reader_gp’s low-order bits. Debugging versions of this primitive would check
(before decrementing!) that these low-order bits were non-zero.
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1 static void rcu_read_lock(void)
2 {
3 long tmp;
4 long *rrgp;
5
6 rrgp = &__get_thread_var(rcu_reader_gp);
7 tmp = *rrgp;
8 if ((tmp & RCU_GP_CTR_NEST_MASK) == 0)
9 tmp = rcu_gp_ctr;
10 tmp++;
11 *rrgp = tmp;
12 smp_mb();
13 }
14
15 static void rcu_read_unlock(void)
16 {
17 long tmp;
18
19 smp_mb();
20 __get_thread_var(rcu_reader_gp)--;
21 }
22
23 void synchronize_rcu(void)
24 {
25 int t;
26
27 smp_mb();
28 spin_lock(&rcu_gp_lock);
29 rcu_gp_ctr += RCU_GP_CTR_BOTTOM_BIT;
30 smp_mb();
31 for_each_thread(t) {
32 while (rcu_gp_ongoing(t) &&
33 ((per_thread(rcu_reader_gp, t) -
34 rcu_gp_ctr) < 0)) {
35 poll(NULL, 0, 10);
36 }
37 }
38 spin_unlock(&rcu_gp_lock);
39 smp_mb();
40 }

Figure 8.51: Nestable RCU Using a Free-Running Counter
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1 DEFINE_SPINLOCK(rcu_gp_lock);
2 long rcu_gp_ctr = 0;
3 DEFINE_PER_THREAD(long, rcu_reader_qs_gp);

Figure 8.52: Data for Quiescent-State-Based RCU

The implementation of synchronize_rcu() is quite similar to that shown in
Section 8.3.5.7. There are two differences. The first is that line 29 adds RCU_GP_
CTR_BOTTOM_BIT to the global rcu_gp_ctr instead of adding the constant “2”,
and the second is that the comparison on line 32 has been abstracted out to a separate
function, where it checks the bit indicated by RCU_GP_CTR_BOTTOM_BIT instead
of unconditionally checking the low-order bit.

This approach achieves read-side performance almost equal to that shown in Sec-
tion 8.3.5.7, incurring roughly 65 nanoseconds of overhead regardless of the number of
Power5 CPUs. Updates again incur more overhead, ranging from about 600 nanoseconds
on a single Power5 CPU to more than 100 microseconds on 64 such CPUs.

Quick Quiz 8.64: Why not simply maintain a separate per-thread nesting-level
variable, as was done in previous section, rather than having all this complicated bit
manipulation?

This implementation suffers from the same shortcomings as does that of Sec-
tion 8.3.5.7, except that nesting of RCU read-side critical sections is now permitted. In
addition, on 32-bit systems, this approach shortens the time required to overflow the
global rcu_gp_ctr variable. The following section shows one way to greatly increase
the time required for overflow to occur, while greatly reducing read-side overhead.

Quick Quiz 8.65: Given the algorithm shown in Figure 8.51, how could you double
the time required to overflow the global rcu_gp_ctr?

Quick Quiz 8.66: Again, given the algorithm shown in Figure 8.51, is counter
overflow fatal? Why or why not? If it is fatal, what can be done to fix it?

8.3.5.9 RCU Based on Quiescent States

Figure 8.53 (rcu_qs.h) shows the read-side primitives used to construct a user-level
implementation of RCU based on quiescent states, with the data shown in Figure 8.52.
As can be seen from lines 1-7 in the figure, the rcu_read_lock() and rcu_
read_unlock() primitives do nothing, and can in fact be expected to be inlined and
optimized away, as they are in server builds of the Linux kernel. This is due to the
fact that quiescent-state-based RCU implementations approximate the extents of RCU
read-side critical sections using the aforementioned quiescent states, which contains
calls to rcu_quiescent_state(), shown from lines 9-15 in the figure. Threads
entering extended quiescent states (for example, when blocking) may instead use the
thread_offline() and thread_online() APIs to mark the beginning and the
end, respectively, of such an extended quiescent state. As such, thread_online() is
analogous to rcu_read_lock() and thread_offline() is analogous to rcu_
read_unlock(). These two functions are shown on lines 17-28 in the figure. In
either case, it is illegal for a quiescent state to appear within an RCU read-side critical
section.

In rcu_quiescent_state(), line 11 executes a memory barrier to prevent any
code prior to the quiescent state from being reordered into the quiescent state. Lines 12-
13 pick up a copy of the global rcu_gp_ctr, using ACCESS_ONCE() to ensure that
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1 static void rcu_read_lock(void)
2 {
3 }
4
5 static void rcu_read_unlock(void)
6 {
7 }
8
9 rcu_quiescent_state(void)
10 {
11 smp_mb();
12 __get_thread_var(rcu_reader_qs_gp) =
13 ACCESS_ONCE(rcu_gp_ctr) + 1;
14 smp_mb();
15 }
16
17 static void rcu_thread_offline(void)
18 {
19 smp_mb();
20 __get_thread_var(rcu_reader_qs_gp) =
21 ACCESS_ONCE(rcu_gp_ctr);
22 smp_mb();
23 }
24
25 static void rcu_thread_online(void)
26 {
27 rcu_quiescent_state();
28 }

Figure 8.53: Quiescent-State-Based RCU Read Side

the compiler does not employ any optimizations that would result in rcu_gp_ctr
being fetched more than once, and then adds one to the value fetched and stores it
into the per-thread rcu_reader_qs_gp variable, so that any concurrent instance of
synchronize_rcu() will see an odd-numbered value, thus becoming aware that a
new RCU read-side critical section has started. Instances of synchronize_rcu()
that are waiting on older RCU read-side critical sections will thus know to ignore this
new one. Finally, line 14 executes a memory barrier.

Quick Quiz 8.67: Doesn’t the additional memory barrier shown on line 14 of
Figure 8.53, greatly increase the overhead of rcu_quiescent_state?

Some applications might use RCU only occasionally, but use it very heavily when
they do use it. Such applications might choose to use rcu_thread_online()
when starting to use RCU and rcu_thread_offline() when no longer using
RCU. The time between a call to rcu_thread_offline() and a subsequent call to
rcu_thread_online() is an extended quiescent state, so that RCU will not expect
explicit quiescent states to be registered during this time.

The rcu_thread_offline() function simply sets the per-thread rcu_reader_
qs_gp variable to the current value of rcu_gp_ctr, which has an even-numbered
value. Any concurrent instances of synchronize_rcu() will thus know to ignore
this thread.

Quick Quiz 8.68: Why are the two memory barriers on lines 19 and 22 of Fig-
ure 8.53 needed?

The rcu_thread_online() function simply invokes rcu_quiescent_state(),
thus marking the end of the extended quiescent state.

Figure 8.54 (rcu_qs.c) shows the implementation of synchronize_rcu(),
which is quite similar to that of the preceding sections.

This implementation has blazingly fast read-side primitives, with an rcu_read_
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1 void synchronize_rcu(void)
2 {
3 int t;
4
5 smp_mb();
6 spin_lock(&rcu_gp_lock);
7 rcu_gp_ctr += 2;
8 smp_mb();
9 for_each_thread(t) {
10 while (rcu_gp_ongoing(t) &&
11 ((per_thread(rcu_reader_qs_gp, t) -
12 rcu_gp_ctr) < 0)) {
13 poll(NULL, 0, 10);
14 }
15 }
16 spin_unlock(&rcu_gp_lock);
17 smp_mb();
18 }

Figure 8.54: RCU Update Side Using Quiescent States

lock()-rcu_read_unlock() round trip incurring an overhead of roughly 50 pi-
coseconds. The synchronize_rcu() overhead ranges from about 600 nanoseconds
on a single-CPU Power5 system up to more than 100 microseconds on a 64-CPU system.

Quick Quiz 8.69: To be sure, the clock frequencies of ca-2008 Power systems were
quite high, but even a 5GHz clock frequency is insufficient to allow loops to be executed
in 50 picoseconds! What is going on here?

However, this implementation requires that each thread either invoke rcu_quiescent_
state() periodically or to invoke rcu_thread_offline() for extended quies-
cent states. The need to invoke these functions periodically can make this implementa-
tion difficult to use in some situations, such as for certain types of library functions.

Quick Quiz 8.70: Why would the fact that the code is in a library make any
difference for how easy it is to use the RCU implementation shown in Figures 8.53 and
8.54?

Quick Quiz 8.71: But what if you hold a lock across a call to synchronize_
rcu(), and then acquire that same lock within an RCU read-side critical section? This
should be a deadlock, but how can a primitive that generates absolutely no code possibly
participate in a deadlock cycle?

In addition, this implementation does not permit concurrent calls to synchronize_
rcu() to share grace periods. That said, one could easily imagine a production-quality
RCU implementation based on this version of RCU.

8.3.5.10 Summary of Toy RCU Implementations

If you made it this far, congratulations! You should now have a much clearer under-
standing not only of RCU itself, but also of the requirements of enclosing software
environments and applications. Those wishing an even deeper understanding are in-
vited to read Appendix D, which presents some RCU implementations that have seen
extensive use in production.

The preceding sections listed some desirable properties of the various RCU primi-
tives. The following list is provided for easy reference for those wishing to create a new
RCU implementation.

1. There must be read-side primitives (such as rcu_read_lock() and rcu_
read_unlock()) and grace-period primitives (such as synchronize_rcu()
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and call_rcu()), such that any RCU read-side critical section in existence at
the start of a grace period has completed by the end of the grace period.

2. RCU read-side primitives should have minimal overhead. In particular, expensive
operations such as cache misses, atomic instructions, memory barriers, and
branches should be avoided.

3. RCU read-side primitives should have O(1) computational complexity to enable
real-time use. (This implies that readers run concurrently with updaters.)

4. RCU read-side primitives should be usable in all contexts (in the Linux kernel,
they are permitted everywhere except in the idle loop). An important special
case is that RCU read-side primitives be usable within an RCU read-side critical
section, in other words, that it be possible to nest RCU read-side critical sections.

5. RCU read-side primitives should be unconditional, with no failure returns. This
property is extremely important, as failure checking increases complexity and
complicates testing and validation.

6. Any operation other than a quiescent state (and thus a grace period) should be
permitted in an RCU read-side critical section. In particular, non-idempotent
operations such as I/O should be permitted.

7. It should be possible to update an RCU-protected data structure while executing
within an RCU read-side critical section.

8. Both RCU read-side and update-side primitives should be independent of memory
allocator design and implementation, in other words, the same RCU implementa-
tion should be able to protect a given data structure regardless of how the data
elements are allocated and freed.

9. RCU grace periods should not be blocked by threads that halt outside of RCU read-
side critical sections. (But note that most quiescent-state-based implementations
violate this desideratum.)

Quick Quiz 8.72: Given that grace periods are prohibited within RCU read-side
critical sections, how can an RCU data structure possibly be updated while in an RCU
read-side critical section?

8.3.6 RCU Exercises

This section is organized as a series of Quick Quizzes that invite you to apply RCU
to a number of examples earlier in this book. The answer to each Quick Quiz gives
some hints, and also contains a pointer to a later section where the solution is explained at
length. The rcu_read_lock(), rcu_read_unlock(), rcu_dereference(),
rcu_assign_pointer(), and synchronize_rcu() primitives should suffice
for most of these exercises.

Quick Quiz 8.73: The statistical-counter implementation shown in Figure 4.9
(count_end.c) used a global lock to guard the summation in read_count(),
which resulted in poor performance and negative scalability. How could you use RCU
to provide read_count() with excellent performance and good scalability. (Keep in
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mind that read_count()’s scalability will necessarily be limited by its need to scan
all threads’ counters.)

Quick Quiz 8.74: Section 4.5 showed a fanciful pair of code fragments that dealt
with counting I/O accesses to removable devices. These code fragments suffered from
high overhead on the fastpath (starting an I/O) due to the need to acquire a reader-writer
lock. How would you use RCU to provide excellent performance and scalability? (Keep
in mind that the performance of the common-case first code fragment that does I/O
accesses is much more important than that of the device-removal code fragment.)

8.4 What About Updates?
The deferred-processing techniques called out in this chapter are most directly applicable
to read-mostly situations, which begs the question “But what about updates?” After all,
increasing the performance and scalability of readers is all well and good, but it is only
natural to also want great performance and scalability for writers.

We have already seen one situation featuring high performance and scalability
for writers, namely the counting algorithms surveyed in Chapter 4. These algorithms
featured partially partitioned data structures so that updates can can operate locally,
while the more-expensive reads must sum across the entire data structure. Silas Boyd-
Wickhizer has generalized this notion to produce OpLog, which he has applied to Linux-
kernel pathname lookup, VM reverse mappings, and the stat() system call [BW14].

Another approach, called “Disruptor,” is designed for applications that process
high-volume streams of input data. The approach is to rely on single-producer-single-
consumer FIFO queues, minimizing the need for synchronization [Sut13]. For Java
applications, Disruptor also has the virtue of minimizing use of the garbage collector.

And of course, where feasible, fully partitioned or “sharded” systems provide
excellent performance and scalability, as noted in Chapter 5.

The next chapter will look at updates in the context of several types of data struc-
tures.
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Chapter 9

Data Structures

Efficient access to data is critically important, so that discussions of algorithms include
time complexity of the related data structures [CLRS01]. However, for parallel programs,
measures of time complexity must also include concurrency effects. These effects can
be overwhelmingly large, as shown in Chapter 2, which means that concurrent data
structure designs must focus as much on concurrency as they do on sequential time
complexity.

Section 9.1 presents a motivating application that will be used to evaluate the data
structures presented in this chapter.

As discussed in Chapter 5, an excellent way to achieve high scalability is partitioning.
This points the way to partitionable data structures, a topic taken up by Section 9.2.
Chapter 8 described how deferring some actions can greatly improve both performance
and scalability. Section 8.3 in particular showed how to tap the awesome power of
procrastination in pursuit of performance and scalability, a topic taken up by Section 9.3.

Not all data structures are partitionable. Section 9.4 looks at a mildly non-partitionable
example data structure. This section shows how to split it into read-mostly and parti-
tionable portions, enabling a fast and scalable implementation.

Because this chapter cannot delve into the details of every concurrent data structure
that has ever been used Section 9.5 provides a brief survey of the most common and
important ones. Although the best performance and scalability results design rather than
after-the-fact micro-optimization, it is nevertheless the case that micro-optimization has
an important place in achieving the absolute best possible performance and scalability.
This topic is therefore taken up in Section 9.6.

Finally, Section 9.7 presents a summary of this chapter.

9.1 Motivating Application

We will use the Schrödinger’s Zoo application to evaluate performance [McK13].
Schrödinger has a zoo containing a large number of animals, and he would like to
track them using an in-memory database with each animal in the zoo represented by a
data item in this database. Each animal has a unique name that is used as a key, with a
variety of data tracked for each animal.

Births, captures, and purchases result in insertions, while deaths, releases, and sales
result in deletions. Because Schrödinger’s zoo contains a large quantity of short-lived
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animals, including mice and insects, the database must be able to support a high update
rate.

Those interested in Schrödinger’s animals can query them, however, Schrödinger
has noted extremely high rates of queries for his cat, so much so that he suspects that
his mice might be using the database to check up on their nemesis. This means that
Schödinger’s application must be able to support a high rate of queries to a single data
element.

Please keep this application in mind as various data structures are presented.

9.2 Partitionable Data Structures

There are a huge number of data structures in use today, so much so that there are
multiple textbooks covering them. This small section focuses on a single data structure,
namely the hash table. This focused approach allows a much deeper investigation of
how concurrency interacts with data structures, and also focuses on a data structure that
is heavily used in practice. Section 9.2.1 overviews of the design, and Section 9.2.2
presents the implementation. Finally, Section 9.2.3 discusses the resulting performance
and scalability.

9.2.1 Hash-Table Design

Chapter 5 emphasized the need to apply partitioning in order to attain respectable
performance and scalability, so partitionability must be a first-class criterion when
selecting data structures. This criterion is well satisfied by that workhorse of parallelism,
the hash table. Hash tables are conceptually simple, consisting of an array of hash
buckets. A hash function maps from a given element’s key to the hash bucket that this
element will be stored in. Each hash bucket therefore heads up a linked list of elements,
called a hash chain. When properly configured, these hash chains will be quite short,
permitting a hash table to access the element with a given key extremely efficiently.

Quick Quiz 9.1: But there are many types of hash tables, of which the chained hash
tables described here are but one type. Why the focus on chained hash tables?

In addition, each bucket can be given its own lock, so that elements in different
buckets of the hash table may be added, deleted, and looked up completely independently.
A large hash table containing a large number of elements therefore offers excellent
scalability.

9.2.2 Hash-Table Implementation

Figure 9.1 (hash_bkt.c) shows a set of data structures used in a simple fixed-sized
hash table using chaining and per-hash-bucket locking, and Figure 9.2 diagrams how
they fit together. The hashtab structure (lines 11-14 in Figure 9.1) contains four
ht_bucket structures (lines 6-9 in Figure 9.1), with the ->bt_nbuckets field
controlling the number of buckets. Each such bucket contains a list header ->htb_
head and a lock ->htb_lock. The list headers chain ht_elem structures (lines 1-4
in Figure 9.1) through their ->hte_next fields, and each ht_elem structure also
caches the corresponding element’s hash value in the ->hte_hash field. The ht_
elem structure would be included in the larger structure being placed in the hash table,
and this larger structure might contain a complex key.
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1 struct ht_elem {
2 struct cds_list_head hte_next;
3 unsigned long hte_hash;
4 };
5
6 struct ht_bucket {
7 struct cds_list_head htb_head;
8 spinlock_t htb_lock;
9 };

10
11 struct hashtab {
12 unsigned long ht_nbuckets;
13 struct ht_bucket ht_bkt[0];
14 };

Figure 9.1: Hash-Table Data Structures

struct hashtab
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−>ht_bkt[1]

−>htb_head
−>htb_lock

−>ht_bkt[0]
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−>hte_next
−>hte_hash

−>hte_next
−>hte_hash

−>hte_next
−>hte_hash

struct ht_elem struct ht_elem

struct ht_elem

Figure 9.2: Hash-Table Data-Structure Diagram

The diagram shown in Figure 9.2 has bucket 0 with two elements and bucket 2 with
one.

Figure 9.3 shows mapping and locking functions. Lines 1 and 2 show the macro
HASH2BKT(), which maps from a hash value to the corresponding ht_bucket
structure. This macro uses a simple modulus: if more aggressive hashing is required, the
caller needs to implement it when mapping from key to hash value. The remaining two
functions acquire and release the ->htb_lock corresponding to the specified hash
value.

Figure 9.4 shows hashtab_lookup(), which returns a pointer to the element
with the specified hash and key if it exists, or NULL otherwise. This function takes both
a hash value and a pointer to the key because this allows users of this function to use
arbitrary keys and arbitrary hash functions, with the key-comparison function passed
in via cmp(), in a manner similar to qsort(). Line 11 maps from the hash value
to a pointer to the corresponding hash bucket. Each pass through the loop spanning
line 12-19 examines one element of the bucket’s hash chain. Line 15 checks to see if the
hash values match, and if not, line 16 proceeds to the next element. Line 17 checks to
see if the actual key matches, and if so, line 18 returns a pointer to the matching element.
If no element matches, line 20 returns NULL.

Quick Quiz 9.2: But isn’t the double comparison on lines 15-18 in Figure 9.4
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1 #define HASH2BKT(htp, h) \
2 (&(htp)->ht_bkt[h % (htp)->ht_nbuckets])
3
4 static void hashtab_lock(struct hashtab *htp,
5 unsigned long hash)
6 {
7 spin_lock(&HASH2BKT(htp, hash)->htb_lock);
8 }
9

10 static void hashtab_unlock(struct hashtab *htp,
11 unsigned long hash)
12 {
13 spin_unlock(&HASH2BKT(htp, hash)->htb_lock);
14 }

Figure 9.3: Hash-Table Mapping and Locking

1 struct ht_elem *
2 hashtab_lookup(struct hashtab *htp,
3 unsigned long hash,
4 void *key,
5 int (*cmp)(struct ht_elem *htep,
6 void *key))
7 {
8 struct ht_bucket *htb;
9 struct ht_elem *htep;

10
11 htb = HASH2BKT(htp, hash);
12 cds_list_for_each_entry(htep,
13 &htb->htb_head,
14 hte_next) {
15 if (htep->hte_hash != hash)
16 continue;
17 if (cmp(htep, key))
18 return htep;
19 }
20 return NULL;
21 }

Figure 9.4: Hash-Table Lookup

inefficient in the case where the key fits into an unsigned long?
Figure 9.5 shows the hashtab_add() and hashtab_del() functions that add

and delete elements from the hash table, respectively.
The hashtab_add() function simply sets the element’s hash value on line 6, then

adds it to the corresponding bucket on lines 7 and 8. The hashtab_del() function
simply removes the specified element from whatever hash chain it is on, courtesy of the
doubly linked nature of the hash-chain lists. Before calling either of these two functions,
the caller is required to ensure that no other thread is accessing or modifying this same
bucket, for example, by invoking hashtab_lock() beforehand.

Figure 9.6 shows hashtab_alloc() and hashtab_free(), which do hash-
table allocation and freeing, respectively. Allocation begins on lines 7-9 with allocation
of the underlying memory. If line 10 detects that memory has been exhausted, line 11
returns NULL to the caller. Otherwise, line 12 initializes the number of buckets, and
the loop spanning lines 13-16 initializes the buckets themselves, including the chain
list header on line 14 and the lock on line 15. Finally, line 17 returns a pointer to
the newly allocated hash table. The hashtab_free() function on lines 20-23 is
straightforward.
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1 void
2 hashtab_add(struct hashtab *htp,
3 unsigned long hash,
4 struct ht_elem *htep)
5 {
6 htep->hte_hash = hash;
7 cds_list_add(&htep->hte_next,
8 &HASH2BKT(htp, hash)->htb_head);
9 }

10
11 void hashtab_del(struct ht_elem *htep)
12 {
13 cds_list_del_init(&htep->hte_next);
14 }

Figure 9.5: Hash-Table Modification

1 struct hashtab *
2 hashtab_alloc(unsigned long nbuckets)
3 {
4 struct hashtab *htp;
5 int i;
6
7 htp = malloc(sizeof(*htp) +
8 nbuckets *
9 sizeof(struct ht_bucket));

10 if (htp == NULL)
11 return NULL;
12 htp->ht_nbuckets = nbuckets;
13 for (i = 0; i < nbuckets; i++) {
14 CDS_INIT_LIST_HEAD(&htp->ht_bkt[i].htb_head);
15 spin_lock_init(&htp->ht_bkt[i].htb_lock);
16 }
17 return htp;
18 }
19
20 void hashtab_free(struct hashtab *htp)
21 {
22 free(htp);
23 }

Figure 9.6: Hash-Table Allocation and Free

9.2.3 Hash-Table Performance

The performance results for an eight-CPU 2GHz Intel®Xeon®system using a bucket-
locked hash table with 1024 buckets are shown in Figure 9.7. The performance does
scale nearly linearly, but is not much more than half of the ideal performance level, even
at only eight CPUs. Part of this shortfall is due to the fact that the lock acquisitions and
releases incur no cache misses on a single CPU, but do incur misses on two or more
CPUs.

And things only get worse with larger number of CPUs, as can be seen in Figure 9.8.
We do not need an additional line to show ideal performance: The performance for
nine CPUs and beyond is worse than abysmal. This clearly underscores the dangers of
extrapolating performance from a modest number of CPUs.

Of course, one possible reason for the collapse in performance might be that more
hash buckets are needed. After all, we did not pad each hash bucket to a full cache
line, so there are a number of hash buckets per cache line. It is possible that the
resulting cache-thrashing comes into play at nine CPUs. This is of course easy to test
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Figure 9.7: Read-Only Hash-Table Performance For Schrödinger’s Zoo

by increasing the number of hash buckets.

Quick Quiz 9.3: Instead of simply increasing the number of hash buckets, wouldn’t
it be better to cache-align the existing hash buckets?

However, as can be seen in Figure 9.9, although increasing the number of buckets
does increase performance somewhat, scalability is still abysmal. In particular, we still
see a sharp dropoff at nine CPUs and beyond. Furthermore, going from 8192 buckets to
16,384 buckets produced almost no increase in performance. Clearly something else is
going on.

The problem is that this is a multi-socket system, with CPUs 0-7 and 32-39 mapped
to the first socket as shown in Table 9.1. Test runs confined to the first eight CPUs
therefore perform quite well, but tests that involve socket 0’s CPUs 0-7 as well as
socket 1’s CPU 8 incur the overhead of passing data across socket boundaries. This can
severely degrade performance, as was discussed in Section 2.2.1.

Quick Quiz 9.4: Given the negative scalability of the Schrödinger’s Zoo application
across sockets, why not just run multiple copies of the application, with each copy
having a subset of the animals and confined to run on a single socket?

One key property of the Schrödinger’s-zoo runs discussed thus far is that they are
all read-only. This makes the performance degradation due to lock-acquisition-induced
cache misses all the more painful. Even though we are not updating the underlying hash
table itself, we are still paying the price for writing to memory. Of course, if the hash
table was never going to be updated, we could dispense entirely with mutual exclusion.
This approach is quite straightforward and is left as an exercise for the reader.

The next section examines optimizations that can be carried out in read-mostly cases
where updates are rare, but could happen at any time.
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Figure 9.8: Read-Only Hash-Table Performance For Schrödinger’s Zoo, 60 CPUs

Socket Core
0 0 1 2 3 4 5 6 7

32 33 34 35 36 37 38 39
1 8 9 10 11 12 13 14 15

40 41 42 43 44 45 46 47
2 16 17 18 19 20 21 22 23

48 49 50 51 52 53 54 55
3 24 25 26 27 28 29 30 31

56 47 58 59 60 61 62 63

Table 9.1: NUMA Topology of System Under Test

9.3 Read-Mostly Data Structures
Although partitioned data structures can offer excellent scalability, NUMA effects can
result in severe degradations of both performance and scalability. In addition, the
need for readers to exclude writers can degrade performance in read-mostly situations.
However, we can achieve both performance and scalability by using RCU, which
was introduced in Section 8.3. Similar results can be achieved using hazard pointers
(hazptr.c) [Mic04], which will be included in the performance results shown in this
section [McK13].

9.3.1 RCU-Protected Hash Table Implementation
For an RCU-protected hash table with per-bucket locking, updaters use locking ex-
actly as described in Section 9.2, but readers use RCU. The data structures remain as
shown in Figure 9.1, and the HASH2BKT(), hashtab_lock(), and hashtab_
unlock() functions remain as shown in Figure 9.3. However, readers use the
lighter-weight concurrency-control embodied by hashtab_lock_lookup() and
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Figure 9.9: Read-Only Hash-Table Performance For Schrödinger’s Zoo, Varying Buck-
ets

1 static void hashtab_lock_lookup(struct hashtab *htp,
2 unsigned long hash)
3 {
4 rcu_read_lock();
5 }
6
7 static void hashtab_unlock_lookup(struct hashtab *htp,
8 unsigned long hash)
9 {

10 rcu_read_unlock();
11 }

Figure 9.10: RCU-Protected Hash-Table Read-Side Concurrency Control

hashtab_unlock_lookup() shown in Figure 9.10.
Figure 9.11 shows hashtab_lookup() for the RCU-protected per-bucket-locked

hash table. This is identical to that in Figure 9.4 except that cds_list_for_each_
entry() is replaced by cds_list_for_each_entry_rcu(). Both of these
primitives sequence down the hash chain referenced by htb->htb_head but cds_
list_for_each_entry_rcu() also correctly enforces memory ordering in case
of concurrent insertion. This is an important difference between these two hash-table
implementations: Unlike the pure per-bucket-locked implementation, the RCU protected
implementation allows lookups to run concurrently with insertions and deletions, and
RCU-aware primitives like cds_list_for_each_entry_rcu() are required to
correctly handle this added concurrency. Note also that hashtab_lookup()’s caller
must be within an RCU read-side critical section, for example, the caller must invoke
hashtab_lock_lookup() before invoking hashtab_lookup() (and of course
invoke hashtab_unlock_lookup() some time afterwards).

Quick Quiz 9.5: But if elements in a hash table can be deleted concurrently with
lookups, doesn’t that mean that a lookup could return a reference to a data element that
was deleted immediately after it was looked up?
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1 struct ht_elem
2 *hashtab_lookup(struct hashtab *htp,
3 unsigned long hash,
4 void *key,
5 int (*cmp)(struct ht_elem *htep,
6 void *key))
7 {
8 struct ht_bucket *htb;
9 struct ht_elem *htep;

10
11 htb = HASH2BKT(htp, hash);
12 cds_list_for_each_entry_rcu(htep,
13 &htb->htb_head,
14 hte_next) {
15 if (htep->hte_hash != hash)
16 continue;
17 if (cmp(htep, key))
18 return htep;
19 }
20 return NULL;
21 }

Figure 9.11: RCU-Protected Hash-Table Lookup

1 void
2 hashtab_add(struct hashtab *htp,
3 unsigned long hash,
4 struct ht_elem *htep)
5 {
6 htep->hte_hash = hash;
7 cds_list_add_rcu(&htep->hte_next,
8 &HASH2BKT(htp, hash)->htb_head);
9 }

10
11 void hashtab_del(struct ht_elem *htep)
12 {
13 cds_list_del_rcu(&htep->hte_next);
14 }

Figure 9.12: RCU-Protected Hash-Table Modification

Figure 9.12 shows hashtab_add() and hashtab_del(), both of which are
quite similar to their counterparts in the non-RCU hash table shown in Figure 9.5. The
hashtab_add() function uses cds_list_add_rcu() instead of cds_list_
add() in order to ensure proper ordering when an element is added to the hash
table at the same time that it is being looked up. The hashtab_del() function
uses cds_list_del_rcu() instead of cds_list_del_init() to allow for the
case where an element is looked up just before it is deleted. Unlike cds_list_
del_init(), cds_list_del_rcu() leaves the forward pointer intact, so that
hashtab_lookup() can traverse to the newly deleted element’s successor.

Of course, after invoking hashtab_del(), the caller must wait for an RCU grace
period (e.g., by invoking synchronize_rcu()) before freeing or otherwise reusing
the memory for the newly deleted element.

9.3.2 RCU-Protected Hash Table Performance

Figure 9.13 shows the read-only performance of RCU-protected and hazard-pointer-
protected hash tables against the previous section’s per-bucket-locked implementation.
As you can see, both RCU and hazard pointers achieve near-ideal performance and

233



 1000

 10000

 100000

 1e+06

 1  10  100

To
ta

l L
oo

ku
ps

 p
er

 M
ill

is
ec

on
d

Number of CPUs/Threads

global

bucket

RCU,hazptr
ideal

Figure 9.13: Read-Only RCU-Protected Hash-Table Performance For Schrödinger’s
Zoo

scalability despite the larger numbers of threads and the NUMA effects. Results from a
globally locked implementation are also shown, and as expected the results are even
worse than those of the per-bucket-locked implementation. RCU does slightly better
than hazard pointers, but the difference is not readily visible in this log-scale plot.

Figure 9.14 shows the same data on a linear scale. This drops the global-locking
trace into the x-axis, but allows the relative performance of RCU and hazard pointers to
be more readily discerned. Both show a change in slope at 32 CPUs, and this is due to
hardware multithreading. At 32 and fewer CPUs, each thread has a core to itself. In this
regime, RCU does better than does hazard pointers because hazard pointers’s read-side
memory barriers result in dead time within the core. In short, RCU is better able to
utilize a core from a single hardware thread than is hazard pointers.

This situation changes above 32 CPUs. Because RCU is using more than half of
each core’s resources from a single hardware thread, RCU gains relatively litte benefit
from the second hardware thread in each core. The slope of hazard pointers’s trace also
decreases at 32 CPUs, but less dramatically, because the second hardware thread is able
to fill in the time that the first hardware thread is stalled due to memory-barrier latency.
As we will see in later sections, hazard pointers’s second-hardware-thread advantage
depends on the workload.

As noted earlier, Schrödinger is surprised by the popularity of his cat [Sch35], but
recognizes the need to reflect this popularity in his design. Figure 9.15 shows the results
of 60-CPU runs, varying the number of CPUs that are doing nothing but looking up the
cat. Both RCU and hazard pointers respond well to this challenge, but bucket locking
scales negatively, eventually performing even worse than global locking. This should
not be a surprise because if all CPUs are doing nothing but looking up the cat, the lock
corresponding to the cat’s bucket is for all intents and purposes a global lock.

This cat-only benchmark illustrates one potential problem with fully partitioned
sharding approaches. Only the CPUs associated with the cat’s partition is able to access
the cat, limiting the cat-only throughput. Of course, a great many applications have
good load-spreading properties, and for these applications sharding works quite well.
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Figure 9.14: Read-Only RCU-Protected Hash-Table Performance For Schrödinger’s
Zoo, Linear Scale

However, sharding does not handle “hot spots” very well, with the hot spot exemplified
by Schrödinger’s cat being but one case in point.

Of course, if we were only ever going to read the data, we would not need any
concurrency control to begin with. Figure 9.16 therefore shows the effect of updates.
At the extreme left-hand side of this graph, all 60 CPUs are doing lookups, while to
the right all 60 CPUs are doing updates. For all four implementations, the number of
lookups per millisecond decreases as the number of updating CPUs increases, of course
reaching zero lookups per millisecond when all 60 CPUs are updating. RCU does
well relative to hazard pointers due to the fact that hazard pointers’s read-side memory
barriers incur greater overhead in the presence of updates. It therefore seems likely
that modern hardware heavily optimizes memory-barrier execution, greatly reducing
memory-barrier overhead in the read-only case.

Where Figure 9.16 showed the effect of increasing update rates on lookups, Fig-
ure 9.17 shows the effect of increasing update rates on the updates themselves. Hazard
pointers and RCU start off with a significant advantage because, unlike bucket locking,
readers do not exclude updaters. However, as the number of updating CPUs increases,
update-side overhead starts to make its presence known, first for RCU and then for
hazard pointers. Of course, all three of these implementations fare much better than
does global locking.

Of course, it is quite possible that the differences in lookup performance is affected
by the differences in update rates. One way to check this is to artificially throttle the
update rates of per-bucket locking and hazard pointers to match that of RCU. Doing so
does not significantly improve the lookup performace of per-bucket locking, nor does
it close the gap between hazard pointers and RCU. However, removing hazard point-
ers’s read-side memory barriers (thus resulting in an unsafe implementation of hazard
pointers) does nearly close the gap between hazard pointers and RCU. Although this
unsafe hazard-pointer implementation will usually be reliable enough for benchmarking
purposes, it is absolutely not recommended for production use.

Quick Quiz 9.6: The dangers of extrapolating from eight CPUs to 60 CPUs was
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Figure 9.15: Read-Side Cat-Only RCU-Protected Hash-Table Performance For
Schrödinger’s Zoo at 60 CPUs

made quite clear in Section 9.2.3. But why should extrapolating up from 60 CPUs be
any safer?

9.3.3 RCU-Protected Hash Table Discussion

One consequence of the RCU and hazard-pointer implementations is that a pair of
concurrent readers might disagree on the state of the cat. For example, one of the readers
might have fetched the pointer to the cat’s data structure just before it was removed,
while another reader might have fetched this same pointer just afterwards. The first
reader would then believe that the cat was alive, while the second reader would believe
that the cat was dead.

Of course, this situation is completely fitting for Schrödinger’s cat, but it turns out
that it is quite reasonable for normal non-quantum cats as well.

The reason for this is that it is impossible to determine exactly when an animal is
born or dies.

To see this, let’s suppose that we detect a cat’s death by heartbeat. This raise the
question of exactly how long we should wait after the last heartbeat before declaring
death. It is clearly ridiculous to wait only one millisecond, because then a healthy
living cat would have to be declared dead—and then resurrected—more than once every
second. It is equally ridiculous to wait a full month, because by that time the poor cat’s
death would have made itself very clearly known via olfactory means.

Because an animal’s heart can stop for some seconds and then start up again, there
is a tradeoff between timely recognition of death and probability of false alarms. It is
quite possible that a pair of veterinarians might disagree on the time to wait between the
last heartbeat and the declaration of death. For example, one veterinarian might declare
death thirty seconds after the last heartbeat, while another might insist on waiting a full
minute. In this case, the two veterinarians would disagree on the state of the cat for the
second period of thirty seconds following the last heartbeat, as fancifully depicted in
Figure 9.18.
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Figure 9.16: Read-Side RCU-Protected Hash-Table Performance For Schrödinger’s Zoo
at 60 CPUs

Of course, Heisenberg taught us to live with this sort of uncertainty [Hei27], which
is a good thing because computing hardware and software acts similarly. For example,
how do you know that a piece of computing hardware has failed? Often because it does
not respond in a timely fashion. Just like the cat’s heartbeat, this results in a window of
uncertainty as to whether or not the hardware has failed.

Furthermore, most computing systems are intended to interact with the outside world.
Consistency with the outside world is therefore of paramount importance. However,
as we saw in Figure 8.26 on page 188, increased internal consistency can come at the
expense of external consistency. Techniques such as RCU and hazard pointers give up
some degree of internal consistency to attain improved external consistency.

In short, internal consistency is not a natural part of all problem domains, and often
incurs great expense in terms of performance, scalability, external consistency, or all of
the above.

9.4 Non-Partitionable Data Structures
Fixed-size hash tables are perfectly partitionable, but resizable hash tables pose parti-
tioning challenges when growing or shrinking, as fancifully depicted in Figure 9.19.
However, it turns out that it is possible to construct high-performance scalable RCU-
protected hash tables, as described in the following sections.

9.4.1 Resizable Hash Table Design

In happy contrast to the situation in the early 2000s, there are now no fewer than three
different types of scalable RCU-protected hash tables. The first (and simplest) was
developed for the Linux kernel by Herbert Xu [Xu10], and is described in the following
sections. The other two are covered briefly in Section 9.4.4.

The key insight behind the first hash-table implementation is that each data element
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Figure 9.18: Even Veterinarians Disagree!

can have two sets of list pointers, with one set currently being used by RCU readers (as
well as by non-RCU updaters) and the other being used to construct a new resized hash
table. This approach allows lookups, insertions, and deletions to all run concurrently
with a resize operation (as well as with each other).

The resize operation proceeds as shown in Figures 9.20-9.23, with the initial two-
bucket state shown in Figure 9.20 and with time advancing from figure to figure. The
initial state uses the zero-index links to chain the elements into hash buckets. A four-
bucket array is allocated, and the one-index links are used to chain the elements into
these four new hash buckets. This results in state (b) shown in Figure 9.21, with readers
still using the original two-bucket array.

The new four-bucket array is exposed to readers and then a grace-period operation
waits for all readers, resulting in state (c), shown in Figure 9.22. In this state, all readers
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Figure 9.19: Partitioning Problems
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Figure 9.20: Growing a Double-List Hash Table, State (a)

are using the new four-bucket array, which means that the old two-bucket array may
now be freed, resulting in state (d), shown in Figure 9.23.

This design leads to a relatively straightforward implementation, which is the subject
of the next section.

9.4.2 Resizable Hash Table Implementation
Resizing is accomplished by the classic approach of inserting a level of indirection, in
this case, the ht structure shown on lines 12-25 of Figure 9.24. The hashtab structure
shown on lines 27-30 contains only a pointer to the current ht structure along with a
spinlock that is used to serialize concurrent attempts to resize the hash table. If we were
to use a traditional lock- or atomic-operation-based implementation, this hashtab
structure could become a severe bottleneck from both performance and scalability
viewpoints. However, because resize operations should be relatively infrequent, we
should be able to make good use of RCU.

The ht structure represents a specific size of the hash table, as specified by the
->ht_nbuckets field on line 13. The size is stored in the same structure containing
the array of buckets (->ht_bkt[] on line 24) in order to avoid mismatches between
the size and the array. The ->ht_resize_cur field on line 14 is equal to -1 unless a
resize operation is in progress, in which case it indicates the index of the bucket whose
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Figure 9.21: Growing a Double-List Hash Table, State (b)
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Figure 9.22: Growing a Double-List Hash Table, State (c)

elements are being inserted into the new hash table, which is referenced by the ->ht_
new field on line 15. If there is no resize operation in progress, ->ht_new is NULL.
Thus, a resize operation proceeds by allocating a new ht structure and referencing it via
the ->ht_new pointer, then advancing ->ht_resize_cur through the old table’s
buckets. When all the elements have been added to the new table, the new table is linked
into the hashtab structure’s ->ht_cur field. Once all old readers have completed,
the old hash table’s ht structure may be freed.

The ->ht_idx field on line 16 indicates which of the two sets of list pointers are
being used by this instantiation of the hash table, and is used to index the ->hte_
next[] array in the ht_bucket structure on line 3.

The ->ht_hash_private, ->ht_cmp(), ->ht_gethash(), and ->ht_
getkey() fields on lines 17-23 collectively define the per-element key and the
hash function. The ->ht_hash_private allows the hash function to be per-
turbed [McK90a, McK90b, McK91], which can be used to avoid denial-of-service
attacks based on statistical estimation of the parameters used in the hash function. The
->ht_cmp() function compares a specified key with that of the specified element,
the ->ht_gethash() calculates the specified key’s hash, and ->ht_getkey()
extracts the key from the enclosing data element.

The ht_bucket structure is the same as before, and the ht_elem structure differs
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Figure 9.23: Growing a Double-List Hash Table, State (d)

1 struct ht_elem {
2 struct rcu_head rh;
3 struct cds_list_head hte_next[2];
4 unsigned long hte_hash;
5 };
6
7 struct ht_bucket {
8 struct cds_list_head htb_head;
9 spinlock_t htb_lock;

10 };
11
12 struct ht {
13 long ht_nbuckets;
14 long ht_resize_cur;
15 struct ht *ht_new;
16 int ht_idx;
17 void *ht_hash_private;
18 int (*ht_cmp)(void *hash_private,
19 struct ht_elem *htep,
20 void *key);
21 long (*ht_gethash)(void *hash_private,
22 void *key);
23 void *(*ht_getkey)(struct ht_elem *htep);
24 struct ht_bucket ht_bkt[0];
25 };
26
27 struct hashtab {
28 struct ht *ht_cur;
29 spinlock_t ht_lock;
30 };

Figure 9.24: Resizable Hash-Table Data Structures

from that of previous implementations only in providing a two-element array of list
pointer sets in place of the prior single set of list pointers.

In a fixed-sized hash table, bucket selection is quite straightforward: Simply trans-
form the hash value to the corresponding bucket index. In contrast, when resizing, it is
also necessary to determine which of the old and new sets of buckets to select from. If
the bucket that would be selected from the old table has already been distributed into
the new table, then the bucket should be selected from the new table. Conversely, if the
bucket that would be selected from the old table has not yet been distributed, then the
bucket should be selected from the old table.

Bucket selection is shown in Figure 9.25, which shows ht_get_bucket_single()
on lines 1-8 and ht_get_bucket() on lines 10-24. The ht_get_bucket_
single() function returns a reference to the bucket corresponding to the specified
key in the specified hash table, without making any allowances for resizing. It also
stores the hash value corresponding to the key into the location referenced by parameter
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1 static struct ht_bucket *
2 ht_get_bucket_single(struct ht *htp,
3 void *key, long *b)
4 {
5 *b = htp->ht_gethash(htp->ht_hash_private,
6 key) % htp->ht_nbuckets;
7 return &htp->ht_bkt[*b];
8 }
9

10 static struct ht_bucket *
11 ht_get_bucket(struct ht **htp, void *key,
12 long *b, int *i)
13 {
14 struct ht_bucket *htbp;
15
16 htbp = ht_get_bucket_single(*htp, key, b);
17 if (*b <= (*htp)->ht_resize_cur) {
18 *htp = (*htp)->ht_new;
19 htbp = ht_get_bucket_single(*htp, key, b);
20 }
21 if (i)
22 *i = (*htp)->ht_idx;
23 return htbp;
24 }

Figure 9.25: Resizable Hash-Table Bucket Selection

b on lines 5 and 6. Line 7 then returns a reference to the corresponding bucket.
The ht_get_bucket() function handles hash-table selection, invoking ht_

get_bucket_single() on line 16 to select the bucket corresponding to the hash in
the current hash table, storing the hash value through parameter b. If line 17 determines
that the table is being resized and that line 16’s bucket has already been distributed
across the new hash table, then line 18 selects the new hash table and line 19 selects
the bucket corresponding to the hash in the new hash table, again storing the hash value
through parameter b.

Quick Quiz 9.7: The code in Figure 9.25 computes the hash twice! Why this blatant
inefficiency?

If line 21 finds that parameter i is non-NULL, then line 22 stores the pointer-set
index for the selected hash table. Finally, line 23 returns a reference to the selected hash
bucket.

Quick Quiz 9.8: How does the code in Figure 9.25 protect against the resizing
process progressing past the selected bucket?

This implementation of ht_get_bucket_single() and ht_get_bucket()
will permit lookups and modifications to run concurrently with a resize operation.

Read-side concurrency control is provided by RCU as was shown in Figure 9.10, but
the update-side concurrency-control functions hashtab_lock_mod() and hashtab_
unlock_mod() must now deal with the possibility of a concurrent resize operation
as shown in Figure 9.26.

The hashtab_lock_mod() spans lines 1-19 in the figure. Line 9 enters an RCU
read-side critical section to prevent the data structures from being freed during the
traversal, line 10 acquires a reference to the current hash table, and then line 11 obtains a
reference to the bucket in this hash table corresponding to the key. Line 12 acquires that
bucket’s lock, which will prevent any concurrent resizing operation from distributing
that bucket, though of course it will have no effect if the resizing operation has already
distributed this bucket. Line 13 then checks to see if a concurrent resize operation has
already distributed this bucket across the new hash table, and if not, line 14 returns with
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1 void hashtab_lock_mod(struct hashtab *htp_master,
2 void *key)
3 {
4 long b;
5 struct ht *htp;
6 struct ht_bucket *htbp;
7 struct ht_bucket *htbp_new;
8
9 rcu_read_lock();

10 htp = rcu_dereference(htp_master->ht_cur);
11 htbp = ht_get_bucket_single(htp, key, &b);
12 spin_lock(&htbp->htb_lock);
13 if (b > htp->ht_resize_cur)
14 return;
15 htp = htp->ht_new;
16 htbp_new = ht_get_bucket_single(htp, key, &b);
17 spin_lock(&htbp_new->htb_lock);
18 spin_unlock(&htbp->htb_lock);
19 }
20
21 void hashtab_unlock_mod(struct hashtab *htp_master,
22 void *key)
23 {
24 long b;
25 struct ht *htp;
26 struct ht_bucket *htbp;
27
28 htp = rcu_dereference(htp_master->ht_cur);
29 htbp = ht_get_bucket(&htp, key, &b, NULL);
30 spin_unlock(&htbp->htb_lock);
31 rcu_read_unlock();
32 }

Figure 9.26: Resizable Hash-Table Update-Side Concurrency Control

the selected hash bucket’s lock held (and also within an RCU read-side critical section).
Otherwise, a concurrent resize operation has already distributed this bucket, so

line 15 proceeds to the new hash table and line 16 selects the bucket corresponding to
the key. Finally, line 17 acquires the bucket’s lock and line 18 releases the lock for the
old hash table’s bucket. Once again, hashtab_lock_mod() exits within an RCU
read-side critical section.

Quick Quiz 9.9: The code in Figures 9.25 and 9.26 compute the hash and execute
the bucket-selection logic twice for updates! Why this blatant inefficiency?

The hashtab_unlock_mod() function releases the lock acquired by hashtab_
lock_mod(). Line 28 picks up the current hash table, and then line 29 invokes
ht_get_bucket() in order to gain a reference to the bucket that corresponds to the
key—and of course this bucket might well in a new hash table. Line 30 releases the
bucket’s lock and finally line 31 exits the RCU read-side critical section.

Quick Quiz 9.10: Suppose that one thread is inserting an element into the new
hash table during a resize operation. What prevents this insertion to be lost due to a
subsequent resize operation completing before the insertion does?

Now that we have bucket selection and concurrency control in place, we are ready to
search and update our resizable hash table. The hashtab_lookup(), hashtab_
add(), and hashtab_del() functions shown in Figure 9.27.

The hashtab_lookup() function on lines 1-21 of the figure does hash lookups.
Line 11 fetches the current hash table and line 12 obtains a reference to the bucket
corresponding to the specified key. This bucket will be located in a new resized hash
table when a resize operation has progressed past the bucket in the old hash table that
contained the desired data element. Note that line 12 also passes back the index that
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1 struct ht_elem *
2 hashtab_lookup(struct hashtab *htp_master,
3 void *key)
4 {
5 long b;
6 int i;
7 struct ht *htp;
8 struct ht_elem *htep;
9 struct ht_bucket *htbp;

10
11 htp = rcu_dereference(htp_master->ht_cur);
12 htbp = ht_get_bucket(&htp, key, &b, &i);
13 cds_list_for_each_entry_rcu(htep,
14 &htbp->htb_head,
15 hte_next[i]) {
16 if (htp->ht_cmp(htp->ht_hash_private,
17 htep, key))
18 return htep;
19 }
20 return NULL;
21 }
22
23 void
24 hashtab_add(struct hashtab *htp_master,
25 struct ht_elem *htep)
26 {
27 long b;
28 int i;
29 struct ht *htp;
30 struct ht_bucket *htbp;
31
32 htp = rcu_dereference(htp_master->ht_cur);
33 htbp = ht_get_bucket(&htp, htp->ht_getkey(htep),
34 &b, &i);
35 cds_list_add_rcu(&htep->hte_next[i],
36 &htbp->htb_head);
37 }
38
39 void
40 hashtab_del(struct hashtab *htp_master,
41 struct ht_elem *htep)
42 {
43 long b;
44 int i;
45 struct ht *htp;
46 struct ht_bucket *htbp;
47
48 htp = rcu_dereference(htp_master->ht_cur);
49 htbp = ht_get_bucket(&htp, htp->ht_getkey(htep),
50 &b, &i);
51 cds_list_del_rcu(&htep->hte_next[i]);
52 }

Figure 9.27: Resizable Hash-Table Access Functions

will be used to select the correct set of pointers from the pair in each element. The loop
spanning lines 13-19 searches the bucket, so that if line 16 detects a match, line 18
returns a pointer to the enclosing data element. Otherwise, if there is no match, line 20
returns NULL to indicate failure.

Quick Quiz 9.11: In the hashtab_lookup() function in Figure 9.27, the code
carefully finds the right bucket in the new hash table if the element to be looked up
has already been distributed by a concurrent resize operation. This seems wasteful for
RCU-protected lookups. Why not just stick with the old hash table in this case?

The hashtab_add() function on lines 23-37 of the figure adds new data el-
ements to the hash table. Lines 32-34 obtain a pointer to the hash bucket corre-
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sponding to the key (and provide the index), as before, and line 35 adds the new
element to the table. The caller is required to handle concurrency, for example, by
invoking hashtab_lock_mod() before the call to hashtab_add() and invok-
ing hashtab_unlock_mod() afterwards. These two concurrency-control functions
will correctly synchronize with a concurrent resize operation: If the resize operation has
already progressed beyond the bucket that this data element would have been added to,
then the element is added to the new table.

The hashtab_del() function on lines 39-52 of the figure removes an existing
element from the hash table. Lines 48-50 provide the bucket and index as before, and
line 51 removes the specified element. As with hashtab_add(), the caller is respon-
sible for concurrency control and this concurrency control suffices for synchronizing
with a concurrent resize operation.

Quick Quiz 9.12: The hashtab_del() function in Figure 9.27 does not always
remove the element from the old hash table. Doesn’t this mean that readers might access
this newly removed element after it has been freed?

The actual resizing itself is carried out by hashtab_resize, shown in Fig-
ure 9.28 on page 246. Line 17 conditionally acquires the top-level ->ht_lock, and
if this acquisition fails, line 18 returns -EBUSY to indicate that a resize is already in
progress. Otherwise, line 19 picks up a reference to the current hash table, and lines 21-
24 allocate a new hash table of the desired size. If a new set of hash/key functions have
been specified, these are used for the new table, otherwise those of the old table are
preserved. If line 25 detects memory-allocation failure, line 26 releases ->htlock
and line 27 returns a failure indication.

Line 29 starts the bucket-distribution process by installing a reference to the new
table into the ->ht_new field of the old table. Line 30 ensures that all readers who are
not aware of the new table complete before the resize operation continues. Line 31 picks
up the current table’s index and stores its inverse to the new hash table, thus ensuring
that the two hash tables avoid overwriting each other’s linked lists.

Each pass through the loop spanning lines 33-44 distributes the contents of one of
the old hash table’s buckets into the new hash table. Line 34 picks up a reference to the
old table’s current bucket, line 35 acquires that bucket’s spinlock, and line 36 updates
->ht_resize_cur to indicate that this bucket is being distributed.

Quick Quiz 9.13: In the hashtab_resize() function in Figure 9.27, what
guarantees that the update to ->ht_new on line 29 will be seen as happening before
the update to ->ht_resize_cur on line 36 from the perspective of hashtab_
lookup(), hashtab_add(), and hashtab_del()?

Each pass through the loop spanning lines 37-42 adds one data element from the
current old-table bucket to the corresponding new-table bucket, holding the new-table
bucket’s lock during the add operation. Finally, line 43 releases the old-table bucket
lock.

Execution reaches line 45 once all old-table buckets have been distributed across
the new table. Line 45 installs the newly created table as the current one, and line 46
waits for all old readers (who might still be referencing the old table) to complete. Then
line 47 releases the resize-serialization lock, line 48 frees the old hash table, and finally
line 48 returns success.
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1 int hashtab_resize(struct hashtab *htp_master,
2 unsigned long nbuckets, void *hash_private,
3 int (*cmp)(void *hash_private, struct ht_elem *htep, void *key),
4 long (*gethash)(void *hash_private, void *key),
5 void *(*getkey)(struct ht_elem *htep))
6 {
7 struct ht *htp;
8 struct ht *htp_new;
9 int i;

10 int idx;
11 struct ht_elem *htep;
12 struct ht_bucket *htbp;
13 struct ht_bucket *htbp_new;
14 unsigned long hash;
15 long b;
16
17 if (!spin_trylock(&htp_master->ht_lock))
18 return -EBUSY;
19 htp = htp_master->ht_cur;
20 htp_new = ht_alloc(nbuckets,
21 hash_private ? hash_private : htp->ht_hash_private,
22 cmp ? cmp : htp->ht_cmp,
23 gethash ? gethash : htp->ht_gethash,
24 getkey ? getkey : htp->ht_getkey);
25 if (htp_new == NULL) {
26 spin_unlock(&htp_master->ht_lock);
27 return -ENOMEM;
28 }
29 htp->ht_new = htp_new;
30 synchronize_rcu();
31 idx = htp->ht_idx;
32 htp_new->ht_idx = !idx;
33 for (i = 0; i < htp->ht_nbuckets; i++) {
34 htbp = &htp->ht_bkt[i];
35 spin_lock(&htbp->htb_lock);
36 htp->ht_resize_cur = i;
37 cds_list_for_each_entry(htep, &htbp->htb_head, hte_next[idx]) {
38 htbp_new = ht_get_bucket_single(htp_new, htp_new->ht_getkey(htep), &b);
39 spin_lock(&htbp_new->htb_lock);
40 cds_list_add_rcu(&htep->hte_next[!idx], &htbp_new->htb_head);
41 spin_unlock(&htbp_new->htb_lock);
42 }
43 spin_unlock(&htbp->htb_lock);
44 }
45 rcu_assign_pointer(htp_master->ht_cur, htp_new);
46 synchronize_rcu();
47 spin_unlock(&htp_master->ht_lock);
48 free(htp);
49 return 0;
50 }

Figure 9.28: Resizable Hash-Table Resizing

9.4.3 Resizable Hash Table Discussion

Figure 9.29 compares resizing hash tables to their fixed-sized counterparts for 2048,
16,384, and 131,072 elements in the hash table. The figure shows three traces for each
element count, one for a fixed-size 1024-bucket hash table, another for a fixed-size
2048-bucket hash table, and a third for a resizable hash table that shifts back and forth
between 1024 and 2048 buckets, with a one-millisecond pause between each resize
operation.

The uppermost three traces are for the 2048-element hash table. The upper trace
corresponds to the 2048-bucket fixed-size hash table, the middle trace to the 1024-
bucket fixed-size hash table, and the lower trace to the resizable hash table. In this case,
the short hash chains cause normal lookup overhead to be so low that the overhead

246



 100

 1000

 10000

 100000

 1e+06

 1e+07

 1  10  100

Lo
ok

up
s 

pe
r M

ill
is

ec
on

d

Number of CPUs/Threads

2048

16,384

131,072

Figure 9.29: Overhead of Resizing Hash Tables

of resizing dominates. Nevertheless, the larger fixed-size hash table has a significant
performance advantage, so that resizing can be quite beneficial, at least given sufficient
time between resizing operations: One millisecond is clearly too short a time.

The middle three traces are for the 16,384-element hash table. Again, the upper
trace corresponds to the 2048-bucket fixed-size hash table, but the middle trace now
corresponds to the resizable hash table and the lower trace to the 1024-bucket fixed-size
hash table. However, the performance difference between the resizable and the 1024-
bucket hash table is quite small. One consequence of the eight-fold increase in number
of elements (and thus also in hash-chain length) is that incessant resizing is now no
worse than maintaining a too-small hash table.

The lower three traces are for the 131,072-element hash table. The upper trace
corresponds to the 2048-bucket fixed-size hash table, the middle trace to the resizable
hash table, and the lower trace to the 1024-bucket fixed-size hash table. In this case,
longer hash chains result in higher lookup overhead, so that this lookup overhead
dominates that of resizing the hash table. However, the performance of all three
approaches at the 131,072-element level is more than an order of magnitude worse
than that at the 2048-element level, suggesting that the best strategy would be a single
64-fold increase in hash-table size.

The key point from this data is that the RCU-protected resizable hash table performs
and scales almost as well as does its fixed-size counterpart. The performance during
an actual resize operation of course suffers somewhat due to the cache misses causes
by the updates to each element’s pointers, and this effect is most pronounced when the
hash-tables bucket lists are short. This indicates that hash tables should be resized by
substantial amounts, and that hysteresis should be be applied to prevent performance
degradation due to too-frequent resize operations. In memory-rich environments, hash-
table sizes should furthermore be increased much more aggressively than they are
decreased.

Another key point is that although the hashtab structure is non-partitionable, it
is also read-mostly, which suggests the use of RCU. Given that the performance and
scalability of this resizable hash table is very nearly that of RCU-protected fixed-sized
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hash tables, we must conclude that this approach was quite successful.
Finally, it is important to note that insertions, deletions, and lookups can proceed

concurrently with a resize operation. This concurrency is critically important when
resizing large hash tables, especially for applications that must meet severe response-
time constraints.

Of course, the ht_elem structure’s pair of pointer sets does impose some memory
overhead, which is taken up in the next section.

9.4.4 Other Resizable Hash Tables

One shortcoming of the resizable hash table described earlier in this section is memory
consumption. Each data element has two pairs of linked-list pointers rather than just
one. Is it possible to create an RCU-protected resizable hash table that makes do with
just one pair?

It turns out that the answer is “yes.” Josh Triplett et al. [TMW11] produced a
relativistic hash table that incrementally splits and combines corresponding hash chains
so that readers always see valid hash chains at all points during the resizing operation.
This incremental splitting and combining relies on the fact that it is harmless for a reader
to see a data element that should be in some other hash chain: When this happens, the
reader will simply ignore the extraneous data element due to key mismatches.

The process of shrinking a relativistic hash table by a factor of two is shown in
Figure 9.30, in this case shrinking a two-bucket hash table into a one-bucket hash table,
otherwise known as a linear list. This process works by coalescing pairs of buckets
in the old larger hash table into single buckets in the new smaller hash table. For this
process to work correctly, we clearly need to constrain the hash functions for the two
tables. One such constraint is to use the same underlying hash function for both tables,
but to throw out the low-order bit when shrinking from large to small. For example,
the old two-bucket hash table would use the two top bits of the value, while the new
one-bucket hash table could use the top bit of the value. In this way, a given pair of
adjacent even and odd buckets in the old large hash table can be coalesced into a single
bucket in the new small hash table, while still having a single hash value cover all of the
elements in that single bucket.

The initial state is shown at the top of the figure, with time advancing from top to
bottom, starting with initial state (a). The shrinking process begins by allocating the new
smaller array of buckets, and having each bucket of this new smaller array reference the
first element of one of the buckets of the corresponding pair in the old large hash table,
resulting in state (b).

Then the two hash chains are linked together, resulting in state (c). In this state,
readers looking up an even-numbered element see no change, and readers looking up
elements 1 and 3 likewise see no change. However, readers looking up some other odd
number will also traverse elements 0 and 2. This is harmless because any odd number
will compare not-equal to these two elements. There is some performance loss, but on
the other hand, this is exactly the same performance loss that will be experienced once
the new small hash table is fully in place.

Next, the new small hash table is made accessible to readers, resulting in state (d).
Note that older readers might still be traversing the old large hash table, so in this state
both hash tables are in use.

The next step is to wait for all pre-existing readers to complete, resulting in state (e).
In this state, all readers are using the new small hash table, so that the old large hash
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Figure 9.30: Shrinking a Relativistic Hash Table

table’s buckets may be freed, resulting in the final state (f).
Growing a relativistic hash table reverses the shrinking process, but requires more

grace-period steps, as shown in Figure 9.31. The initial state (a) is at the top of this
figure, with time advancing from top to bottom.

We start by allocating the new large two-bucket hash table, resulting in state (b).
Note that each of these new buckets references the first element destined for that bucket.
These new buckets are published to readers, resulting in state (c). After a grace-period
operation, all readers are using the new large hash table, resulting in state (d). In this
state, only those readers traversing the even-values hash bucket traverse element 0,
which is therefore now colored white.

At this point, the old small hash buckets may be freed, although many implemen-
tations use these old buckets to track progress “unzipping” the list of items into their
respective new buckets. The last even-numbered element in the first consecutive run
of such elements now has its pointer-to-next updated to reference the following even-
numbered element. After a subsequent grace-period operation, the result is state (e).
The vertical arrow indicates the next element to be unzipped, and element 1 is now
colored black to indicate that only those readers traversing the odd-values hash bucket
may reach it.

Next, the last odd-numbered element in the first consecutive run of such elements
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Figure 9.31: Growing a Relativistic Hash Table

now has its pointer-to-next updated to reference the following odd-numbered element.
After a subsequent grace-period operation, the result is state (f). A final unzipping
operation (including a grace-period operation) results in the final state (g).

In short, the relativistic hash table reduces the number of per-element list pointers
at the expense of additional grace periods incurred during resizing. These additional
grace periods are usually not a problem because insertions, deletions, and lookups may
proceed concurrently with a resize operation.

It turns out that it is possible to reduce the per-element memory overhead from a pair
of pointers to a single pointer, while still retaining O(1) deletions. This is accomplished
by augmenting split-order list [SS06] with RCU protection [Des09, MDJ13a]. The data
elements in the hash table are arranged into a single sorted linked list, with each hash
bucket referencing the first element in that bucket. Elements are deleted by setting
low-order bits in their pointer-to-next fields, and these elements are removed from the
list by later traversals that encounter them.

This RCU-protected split-order list is complex, but offers lock-free progress guaran-
tees for all insertion, deletion, and lookup operations. Such guarantees can be important
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in real-time applications. An implementation is available from recent versions of the
userspace RCU library [Des09].

9.5 Other Data Structures

The preceding sections have focused on data structures that enhance concurrency due
to partitionability (Section 9.2), efficient handling of read-mostly access patterns (Sec-
tion 9.3), or application of read-mostly techniques to avoid non-partitionability (Sec-
tion 9.4). This section gives a brief review of other data structures.

One of the hash table’s greatest advantages for parallel use is that it is fully parti-
tionable, at least while not being resized. One way of preserving the partitionability and
the size independence is to use a radix tree, which is also called a trie. Tries partition
the search key, using each successive key partition to traverse the next level of the
trie. As such, a trie can be thought of as a set of nested hash tables, thus providing
the required partitionability. One disadvantage of tries is that a sparse key space can
result in inefficient use of memory. There are a number of compression techniques that
may be used to work around this disadvantage, including hashing the key value to a
smaller keyspace before the traversal [ON06]. Radix trees are heavily used in practice,
including in the Linux kernel [Pig06].

One important special case of both a hash table and a trie is what is perhaps the
oldest of data structures, the array and its multi-dimensional counterpart, the matrix.
The fully partitionable nature of matrices is exploited heavily in concurrent numerical
algorithms.

Self-balancing trees are heavily used in sequential code, with AVL trees and red-
black trees being perhaps the most well-known examples [CLRS01]. Early attempts to
parallelize AVL trees were complex and not necessarily all that efficient [Ell80], how-
ever, more recent work on red-black trees provides better performance and scalability
by using RCU for readers and hashed arrays of locks1 to protect reads and updates,
respectively [HW11, HW13]. It turns out that red-black trees rebalance aggressively,
which works well for sequential programs, but not necessarily so well for parallel use.
Recent work has therefore made use of RCU-protected “bonsai trees” that rebalance less
aggressively [CKZ12], trading off optimal tree depth to gain more efficient concurrent
updates.

Concurrent skip lists lend themselves well to RCU readers, and in fact represents an
early academic use of a technique resembling RCU [Pug90].

Concurrent double-ended queues were discussed in Section 5.1.2, and concur-
rent stacks and queues have a long history [Tre86], though not normally the most
impressive performance or scalability. They are nevertheless a common feature of
concurrent libraries [MDJ13b]. Researchers have recently proposed relaxing the
ordering constraints of stacks and queues [Sha11], with some work indicating that
relaxed-ordered queues actually have better ordering properties than do strict FIFO
queues [HKLP12, KLP12, HHK+13].

It seems likely that continued work with concurrent data structures will produce
novel algorithms with surprising properties.

1 In the guise of swissTM [DFGG11], which is a variant of software transactional memory in which the
developer flags non-shared accesses.
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9.6 Micro-Optimization
The data structures shown in this section were coded straightforwardly, with no adap-
tation to the underlying system’s cache hierarchy. In addition, many of the imple-
mentations used pointers to functions for key-to-hash conversions and other frequent
operations. Although this approach provides simplicity and portability, in many cases it
does give up some performance.

The following sections touch on specialization, memory conservation, and hardware
considerations. Please do not mistakes these short sections for a definitive treatise on
this subject. Whole books have been written on optimizing to a specific CPU, let alone
to the set of CPU families in common use today.

9.6.1 Specialization
The resizable hash table presented in Section 9.4 used an opaque type for the key. This
allows great flexibility, permitting any sort of key to be used, but it also incurs significant
overhead due to the calls via of pointers to functions. Now, modern hardware uses
sophisticated branch-prediction techniques to minimize this overhead, but on the other
hand, real-world software is often larger than can be accommodated even by today’s
large hardware branch-prediction tables. This is especially the case for calls via pointers,
in which case the branch prediction hardware must record a pointer in addition to
branch-taken/branch-not-taken information.

This overhead can be eliminated by specializing a hash-table implementation to
a given key type and hash function. Doing so eliminates the ->ht_cmp(), ->ht_
gethash(), and ->ht_getkey() function pointers in the ht structure shown in
Figure 9.24 on page 241. It also eliminates the corresponding calls through these point-
ers, which could allow the compiler to inline the resulting fixed functions, eliminating
not only the overhead of the call instruction, but the argument marshalling as well.

In addition, the resizable hash table is designed to fit an API that segregates bucket
selection from concurrency control. Although this allows a single torture test to exercise
all the hash-table implementations in this chapter, it also means that many operations
must compute the hash and interact with possible resize operations twice rather than just
once. In a performance-conscious environment, the hashtab_lock_mod() function
would also return a reference to the bucket selected, eliminating the subsequent call to
ht_get_bucket().

Quick Quiz 9.14: Couldn’t the hashtorture.h code be modified to accommo-
date a version of hashtab_lock_mod() that subsumes the ht_get_bucket()
functionality?

Quick Quiz 9.15: How much do these specializations really save? Are the really
worth it?

All that aside, one of the great benefits of modern hardware compared to that
available when I first started learning to program back in the early 1970s is that much
less specialization is required. This allows much greater productivity than was possible
back in the days of four-kilobyte address spaces.

9.6.2 Bits and Bytes
The hash tables discussed in this chapter made almost no attempt to conserve memory.
For example, the ->ht_idx field in the ht structure in Figure 9.24 on page 241 always
has a value of either zero or one, yet takes up a full 32 bits of memory. It could be
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eliminated, for example, by stealing a bit from the ->ht_resize_key field. This
works because the ->ht_resize_key field is large enough to address every byte
of memory and the ht_bucket structure is more than one byte long, so that the
->ht_resize_key field must have several bits to spare.

This sort of bit-packing trick is frequently used in data structures that are highly
replicated, as is the page structure in the Linux kernel. However, the resizable hash
table’s ht structure is not all that highly replicated. It is instead the ht_bucket
structures we should focus on. There are two major opportunities for shrinking the
ht_bucket structure: (1) Placing the ->htb_lock field in a low-order bit of one of
the ->htb_head pointers and (2) Reducing the number of pointers required.

The first opportunity might make use of bit-spinlocks in the Linux kernel, which
are provided by the include/linux/bit_spinlock.h header file. These are
used in space-critical data structures in the Linux kernel, but are not without their
disadvantages:

1. They are significantly slower than the traditional spinlock primitives.

2. They cannot participate in the lockdep deadlock detection tooling in the Linux
kernel [Cor06a].

3. They do not record lock ownership, further complicating debugging.

4. They do not participate in priority boosting in -rt kernels, which means that
preemption must be disabled when holding bit spinlocks, which can degrade
real-time latency.

Despite these disadvantages, bit-spinlocks are extremely useful when memory is at
a premium.

One aspect of the second opportunity was covered in Section 9.4.4, which presented
resizable hash tables that require only one set of bucket-list pointers in place of the pair
of sets required by the resizable hash table presented in Section 9.4. Another approach
would be to use singly linked bucket lists in place of the doubly linked lists used in this
chapter. One downside of this approach is that deletion would then require additional
overhead, either by marking the outgoing pointer for later removal or by searching the
bucket list for the element being deleted.

In short, there is a tradeoff between minimal memory overhead on the one hand,
and performance and simplicity on the other. Fortunately, the relatively large memories
available on modern systems have allowed us to prioritize performance and simplicity
over memory overhead. However, even with today’s large-memory systems2 it is
sometime necessary to take extreme measures to reduce memory overhead.

9.6.3 Hardware Considerations
Modern computers typically move data between CPUs and main memory in fixed-sized
blocks that range in size from 32 bytes to 256 bytes. These blocks are called cache
lines, and are extremely important to high performance and scalability, as was discussed
in Section 2.2. One timeworn way to kill both performance and scalability is to place
incompatible variables into the same cacheline. For example, suppose that a resizable
hash table data element had the ht_elem structure in the same cacheline as a counter
that was incremented quite frequently. The frequent incrementing would cause the

2 Smartphones with gigabytes of memory, anyone?

253



struct hash_elem {
struct ht_elem e;
long __attribute__ ((aligned(64))) counter;
};

Figure 9.32: Alignment for 64-Byte Cache Lines

cacheline to be present at the CPU doing the incrementing, but nowhere else. If other
CPUs attempted to traverse the hash bucket list containing that element, they would
incur expensive cache misses, degrading both performance and scalability.

One way to solve this problem on systems with 64-byte cache line is shown in
Figure 9.32. Here a gcc aligned attribute is used to force the ->counter and the
ht_elem structure into separate cache lines. This would allow CPUs to traverse the
hash bucket list at full speed despite the frequent incrementing.

Of course, this raises the question “How did we know that cache lines are 64
bytes in size?” On a Linux system, this information may be obtained from the
/sys/devices/system/cpu/cpu*/cache/ directories, and it is even possi-
ble to make the installation process rebuild the application to accommodate the system’s
hardware structure. However, this would be more difficult if you wanted your applica-
tion to also run on non-Linux systems. Furthermore, even if you were content to run
only on Linux, such a self-modifying installation poses validation challenges.

Fortunately, there are some rules of thumb that work reasonably well in practice,
which were gathered into a 1995 paper [GKPS95].3 The first group of rules involve
rearranging structures to accommodate cache geometry:

1. Separate read-mostly data from data that is frequently updated. For example,
place read-mostly data at the beginning of the structure and frequently updated
data at the end. Where possible, place data that is rarely accessed in between.

2. If the structure has groups of fields such that each group is updated by an indepen-
dent code path, separate these groups from each other. Again, it can make sense
to place data that is rarely accessed between the groups. In some cases, it might
also make sense to place each such group into a separate structure referenced by
the original structure.

3. Where possible, associate update-mostly data with a CPU, thread, or task. We
saw several very effective examples of this rule of thumb in the counter imple-
mentations in Chapter 4.

4. In fact, where possible, you should partition your data on a per-CPU, per-thread,
or per-task basis, as was discussed in Chapter 7.

There has recently been some work towards automated trace-based rearrangement
of structure fields [GDZE10]. This work might well ease one of the more painstaking
tasks required to get excellent performance and scalability from multithreaded software.

An additional set of rules of thumb deal with locks:

1. Given a heavily contended lock protecting data that is frequently modified, take
one of the following approaches:

3 A number of these rules are paraphrased and expanded on here with permission from Orran Krieger.
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(a) Place the lock in a different cacheline than the data that it protects.

(b) Use a lock that is adapted for high contention, such as a queued lock.

(c) Redesign to reduce lock contention. (This approach is best, but can require
quite a bit of work.)

2. Place uncontended locks into the same cache line as the data that they protect.
This approach means that the cache miss that brought the lock to the current CPU
also brought its data.

3. Protect read-mostly data with RCU, or, if RCU cannot be used and the critical
sections are of very long duration, reader-writer locks.

Of course, these are rules of thumb rather than absolute rules. Some experimentation
is required to work out which are most applicable to your particular situation.

9.7 Summary
This chapter has focused primarily on hash tables, including resizable hash tables, which
are not fully partitionable. Section 9.5 gave a quick overview of a few non-hash-table
data structures. Nevertheless, this exposition of hash tables is an excellent introduction
to the many issues surrounding high-performance scalable data access.
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Chapter 10

Validation

I have had a few parallel programs work the first time, but that is only because I have
written a large number parallel programs over the past two decades. And I have had far
more parallel programs that fooled me into thinking that they were working correctly
the first time than actually were working the first time.

I have therefore had great need of validation for my parallel programs. The basic
trick behind parallel validation, as with other software validation, is to realize that the
computer knows what is wrong. It is therefore your job to force it to tell you. This
chapter can therefore be thought of as a short course in machine interrogation.1

A longer course may be found in many recent books on validation, as well as at least
one rather old but quite worthwhile one [Mye79]. Validation is an extremely important
topic that cuts across all forms of software, and is therefore worth intensive study in
its own right. However, this book is primarily about concurrency, so this chapter will
necessarily do little more than scratch the surface of this critically important topic.

Section 10.1 introduces the philosophy of debugging. Section 10.2 discusses tracing,
Section 10.3 discusses assertions, and Section 10.4 discusses static analysis. Section 10.5
describes some unconventional approaches to code review that can be helpful when
the fabled 10,000 eyes happen not to be looking at your code. Section 10.6 gives an
overview of the use of probability for validating parallel software. Because performance
and scalability are first-class requirements for parallel programming, Section 10.7 which
covers these topics. Finally, Section 10.8 gives a fanciful summary and a short list of
statistical traps to avoid.

10.1 Introduction

Section 10.1.1 discusses the sources of bugs, and Section 10.1.2 overviews the mindset
required when validating software. Section 10.1.3 discusses when you should start
validation, and Section 10.1.4 describes the surprisingly effective open-source regimen
of code review and community testing.

1 But you can leave the thumbscrews and waterboards at home. This chapter covers much more so-
phisticated and effective methods, especially given that most computer systems neither feel pain nor fear
drowning.

257



10.1.1 Where Do Bugs Come From?

Bugs come from developers. The basic problem is that the human brain did not evolve
with computer software in mind. Instead, the human brain evolved in concert with
other human brains and with animal brains. Because of this history, the following three
characteristics of computers often come as a shock to human intuition:

1. Computers typically lack common sense, despite decades of research sacrificed at
the altar of artificial intelligence.

2. Computers generally fail to understand user intent, or more formally, computers
generally lack a theory of mind.

3. Computers usually cannot do anything useful with a fragmentary plan, instead
requiring that each and every detail of each and every possible scenario be spelled
out in full.

The first two points should be uncontroversial, as they are illustrated by any number
of failed products, perhaps most famously Clippy and Microsoft Bob. By attempting
to relate to users as people, these two products raised common-sense and theory-of-
mind expectations that they proved incapable of meeting. Perhaps the set of software
assistants that have recently started appearing on smartphones will fare better. That said,
the developers working on them by all accounts still develop the old way: the assistants
might well benefit end users, but not so much their own developers.

The human species’s love of fragmentary plans deserves more explanation, especially
given that it is a classic two-edged sword. This love of fragmentary plans is apparently
due to the assumption that the person carrying out the plan will have (1) common sense
and (2) a good understanding of the intent behind the plan. This latter assumption is
especially likely to hold in the common case where the person doing the planning and
the person carrying out the plan are one and the same: In this case, the plan will be
revised almost subconsciously as obstacles arise. Therefore, the love of fragmentary
plans has served human beings well, in part because it is better to take random actions
that have a high probability of locating food than to starve to death while attempting to
plan the unplannable. However, the past usefulness of fragmentary plans in everyday
life is no guarantee of their future usefulness in stored-program computers.

Furthermore, the need to follow fragmentary plans has had important effects on the
human psyche, due to the fact that throughout much of human history, life was often
difficult and dangerous. It should come as no surprise that executing a fragmentary
plan that has a high probability of a violent encounter with sharp teeth and claws
requires almost insane levels of optimism—a level of optimism that actually is present
in most human beings. These insane levels of optimism extend to self-assessments
of programming ability, as evidenced by the effectiveness of (and the controversy
over) interviewing techniques involving coding trivial programs [Bra07]. In fact, the
clinical term for a human being who lacks insane levels of optimism is “clinically
depressed.” Such people usually have extreme difficulty functioning in their daily lives,
underscoring the perhaps counter-intuitive importance of insane levels of optimism to
a normal, healthy life. If you are not insanely optimistic, you are less likely to start a
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difficult but worthwhile project.2

Quick Quiz 10.1: When in computing is the willingness to follow a fragmentary
plan critically important?

An important special case is the project that, while valuable, is not valuable enough
to justify the time required to implement it. This special case is quite common, and
one early symptom is the unwillingness of the decision-makers to invest enough to
actually implement the project. A natural reaction is for the developers to produce an
unrealistically optimistic estimate in order to be permitted to start the project. If the
organization (be it open source or proprietary) is strong enough, it might survive the
resulting schedule slips and budget overruns, so that the project might see the light of
day. However, if the organization is not strong enough and if the decision-makers fail
to cancel the project as soon as it becomes clear that the estimates are garbage, then
the project might well kill the organization. This might result in another organization
picking up the project and either completing it, cancelling it, or being killed by it. A
given project might well succeed only after killing several organizations. One can only
hope that the organization that eventually makes a success of a serial-organization-killer
project manages maintains a suitable level of humility, lest it be killed by the next
project.

Important though insane levels of optimism might be, they are a key source of bugs
(and perhaps failure of organizations). The question is therefore “How to maintain the
optimism required to start a large project while at the same time injecting enough reality
to keep the bugs down to a dull roar?” The next section examines this conundrum.

10.1.2 Required Mindset
When carrying out any validation effort, you should keep the following defintions in
mind:

1. The only bug-free programs are trivial programs.

2. A reliable program has no known bugs.

From these definitions, it logically follows that any reliable non-trivial program
contains at least one bug that you do not know about. Therefore, any validation effort
undertaken on a non-trivial program that fails to find any bugs is itself a failure. A good
validation is therefore an exercise in destruction. This means that if you are the type of
person who enjoys breaking things, validation is just the right type of job for you.

Quick Quiz 10.2: Suppose that you are writing a script that processes the output of
the time command, which looks as follows:

real 0m0.132s
user 0m0.040s
sys 0m0.008s

The script is required to check its input for errors, and to give appropriate diagnostics
if fed erroneous time output. What test inputs should you provide to this program to
test it for use with time output generated by single-threaded programs?

But perhaps you are a super-programmer whose code is always perfect the first time
every time. If so, congratulations! Feel free to skip this chapter, but I do hope that you

2 There are some famous exceptions to this rule of thumb. One set of exceptions is people who take on
difficult or risky projects in order to make at least a temporary escape from their depression. Another set is
people who have nothing to lose: the project is literally a matter of life or death.
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Figure 10.1: Validation and the Geneva Convention

will forgive my skepticism. You see, I have met far more people who claimed to be
able to write perfect code the first time than I have people who were actually capable
of carrying out this feat, which is not too surprising given the previous discussion of
optimism and over-confidence. And even if you really are a super-programmer, you just
might find yourself debugging lesser mortals’ work.

One approach for the rest of us is to alternate between our normal state of insane
optimism (Sure, I can program that!) and severe pessimism (It seems to work, but I just
know that there have to be more bugs hiding in there somewhere!). It helps if you enjoy
breaking things. If you don’t, or if your joy in breaking things is limited to breaking
other people’s things, find someone who does love breaking your code and get them to
help you test it.

Another helpful frame of mind is to hate other people finding bugs in your code.
This hatred can help motivate you to torture your code beyond reason in order to increase
the probability that you find the bugs rather than someone else.

One final frame of mind is to consider the possibility that someone’s life depends on
your code being correct. This can also motivate you to torture your code into revealing
the whereabouts of its bugs.

This wide variety of frames of mind opens the door to the possibility of multiple
people with different frames of mind contributing to the project, with varying levels of
optimism. This can work well, if properly organized.

Some people might see vigorous validation as a form of torture, as depicted in
Figure 10.1.3 Such people might do well to remind themselves that, Tux cartoons aside,
they are really torturing an inanimate object, as shown in Figure 10.2. In addition, rest
assured that those who fail to torture their code are doomed to be tortured by it.

However, this leaves open the question of exactly when during the project lifetime
validation should start, a topic taken up by the next section.

3 More cynical people might question whether these people are instead merely afraid that validation will
find bugs that they will then be expected to fix.
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Figure 10.2: Rationalizing Validation

10.1.3 When Should Validation Start?

Validation should start at the same time that the project starts.
To see this, consider that tracking down a bug is much harder in a large program

than in a small one. Therefore, to minimize the time and effort required to track down
bugs, you should test small units of code. Although you won’t find all the bugs this way,
you will find a substantial fraction, and it will be much easier to find and fix the ones
you do find. Testing at this level can also alert you to larger flaws in your overall design,
minimizing the time you waste writing code that is quite literally broken by design.

But why wait until you have code before validating your design?4 Hopefully reading
Chapters 2 and 3 provided you with the information required to avoid some regrettably
common design flaws, but discussing your design with a colleague or even simply
writing it down can help flush out additional flaws.

However, it is all too often the case that waiting to start validation until you have a
design is waiting too long. Mightn’t your natural level of optimism caused you to start
the design before you fully understood the requirements? The answer to this question
will almost always be “yes”. One good way to avoid flawed requirements is to get to
know your users. To really serve them well, you will have to live among them.

Quick Quiz 10.3: You are asking me to do all this validation BS before I even start
coding??? That sounds like a great way to never get started!!!

First-of-a-kind projects require different approaches to validation, for example, rapid
prototyping. Here, the main goal of the first few prototypes is to learn how the project
should be implemented, not so much to create a correct implementation on the first try.
However, it is important to keep in mind that you should not omit validation, but rather
take a radically different approach to it.

Now that we have established that you should start validation when you start the
project, the following sections cover a number of validation techniques and methods
that have proven their worth.

4 The old saying “First we must code, then we have incentive to think” notwithstanding.
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10.1.4 The Open Source Way
The open-source programming methodology has proven quite effective, and includes a
regimen of intense code review and testing.

I can personally attest to the effectiveness of the open-source community’s intense
code review. One of the first patches I prepared for the Linux kernel involved a
distributed filesystem where a user on one node writes to a given file at a location
that a user on another node has mapped into memory. In this case, it is necessary
to invalidate the affected pages from the mapping in order to allow the filesystem to
maintain coherence during the write operation. I coded up a first attempt at a patch, and,
in keeping with the open-source maxim “post early, post often”, I posted the patch. I
then considered how I was going to test it.

But before I could even decide on an overall test strategy, I got a reply to my posting
pointing out a few bugs. I fixed the bugs and reposted the patch, and returned to thinking
out my test strategy. However, before I had a chance to write any test code, I received a
reply to my reposted patch, pointing out more bugs. This process repeated itself many
times, and I am not sure that I ever got a chance to actually test the patch.

This experience brought home the truth of the open-source saying: Given enough
eyeballs, all bugs are shallow [Ray99].

However, when you post some code or a given patch, it is worth asking a few
questions:

1. How many of those eyeballs are actually going to look at your code?

2. How many will be experienced and clever enough to actually find your bugs?

3. Exactly when are they going to look?

I was lucky: There was someone out there who wanted the functionality provided by
my patch, who had long experience with distributed filesystems, and who looked at my
patch almost immediately. If no one had looked at my patch, there would have been no
review, and therefore no finding of bugs. If the people looking at my patch had lacked
experience with distributed filesystems, it is unlikely that they would have found all the
bugs. Had they waited months or even years to look, I likely would have forgotten how
the patch was supposed to work, making it much more difficult to fix them.

However, we must not forget the second tenet of the open-source development,
namely intensive testing. For example, a great many people test the Linux kernel. Some
test patches as they are submitted, perhaps even yours. Others test the -next tree, which
is helpful, but there is likely to be several weeks or even months delay between the time
that you write the patch and the time that it appears in the -next tree, by which time the
patch will not be quite as fresh in your mind. Still others test maintainer trees, which
often have a similar time delay.

Quite a few people don’t test code until it is committed to mainline, or the master
source tree (Linus’s tree in the case of the Linux kernel). If your maintainer won’t
accept your patch until it has been tested, this presents you with a deadlock situation:
your patch won’t be accepted until it is tested, but it won’t be tested until it is accepted.
Nevertheless, people who test mainline code are still relatively aggressive, given that
many people and organizations do not test code until it has been pulled into a Linux
distro.

And even if someone does test your patch, there is no guarantee that they will be
running the hardware and software configuration and workload required to locate your
bugs.
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Therefore, even when writing code for an open-source project, you need to be
prepared to develop and run your own test suite. Test development is an underappreciated
and very valuable skill, so be sure to take full advantage of any existing test suites
available to you. Important as test development is, we will leave further discussion of to
books dedicated to that topic. The following sections therefore discuss locating bugs in
your code given that you already have a good test suite.

10.2 Tracing
When all else fails, add a printk()! Or a printf(), if you are working with
user-mode C-language applications.

The rationale is simple: If you cannot figure out how execution reached a given point
in the code, sprinkle print statements earlier in the code to work out what happened. You
can get a similar effect, and with more convenience and flexibility, by using a debugger
such as gdb (for user applications) or kgdb (for debugging Linux kernels). Much more
sophisticated tools exist, with some of the more recent offering the ability to rewind
backwards in time from the point of failure.

These brute-force testing tools are all valuable, especially now that typical systems
have more than 64K of memory and CPUs running faster than 4MHz. Much has been
written about these tools, so this chapter will add little more.

However, these tools all have a serious shortcoming when the job at hand is to
convince a the fastpath of a high-performance parallel algorithm to tell you what is
going wrong, namely, they often have excessive overheads. There are special tracing
technologies for this purpose, which typically leverage data ownership techniques
(see Chapter 7) to minimize the overhead of runtime data collection. One example
within the Linux kernel is “trace events” [Ros10b, Ros10c, Ros10d, Ros10a]. Another
example that handles userspace (but has not been accepted into the Linux kernel) is
LTTng [DD09]. Each of these uses per-CPU buffers to allow data to be collected
with extremely low overhead. Even so, enabling tracing can sometimes change timing
enough to hide bugs, resulting in heisenbugs, which are discussed in Section 10.6 and
especially Section 10.6.4.

Even if you avoid heisenbugs, other pitfalls await you. For example, although the
machine really does know all, what it knows is almost always way more than your head
can hold. For this reason, high-quality test suites normally come with sophisticated
scripts to analyze the voluminous output. But beware—scripts won’t necessarily notice
surprising things. My rcutorture scripts are a case in point: Early versions of those
scripts were quite satisfied with a test run in which RCU grace periods stalled indefinitely.
This of course resulted in the scripts being modified to detect RCU grace-period stalls,
but this does not change the fact that the scripts will only detects problems that I think
to make them detect. The scripts are useful, but they are no substitute for occasional
manual scans of the rcutorture output.

Another problem with tracing and especially with printk() calls is that their
overhead is often too much for production use. In some such cases, assertions can be
helpful.

10.3 Assertions
Assertions are usually implemented in the following manner:
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1 if (something_bad_is_happening())
2 complain();

This pattern is often encapsulated into C-preprocessor macros or language intrinsics,
for example, in the Linux kernel, this might be represented as WARN_ON(something_
bad_is_happening()). Of course, if something_bad_is_happening()
quite frequently, the resulting output might obscure reports of other problems, in which
case WARN_ON_ONCE(something_bad_is_happening()) might be more ap-
propriate.

Quick Quiz 10.4: How can you implement WARN_ON_ONCE()?
In parallel code, one especially bad something that might happen is that a function

expecting to be called under a particular lock might be called without that lock being
held. Such functions sometimes have header comments stating something like “The
caller must hold foo_lock when calling this function”, but such a comment does
no good unless someone actually reads it. An executable statement like lock_is_
held(&foo_lock) carries far more force.

The Linux kernel’s lockdep facility [Cor06a, Ros11] takes this a step farther, report-
ing potential deadlocks as well as allowing functions to verify that the proper locks are
held. Of course, this additional functionality incurs significant overhead, so that lockdep
is not necessarily appropriate for production use.

So what can be done in cases where checking is necessary, but where the overhead
of runtime checking cannot be tolerated? One approach is static analysis, which is
discussed in the next section.

10.4 Static Analysis
Static analysis is a validation technique were one program takes a second program as
input, reporting errors and vulnerabilities located in this second program. Interestingly
enough, almost all programs are subjected to static analysis by their compilers or
interpreters. These tools are of course far from perfect, but their ability to locate errors
has improved immensely over the past few decades, in part because they now have much
more than 64K bytes of memory in which to carry out their analysis.

The original UNIX lint tool [Joh77] was quite useful, though much of its func-
tionality has since been incorporated into C compilers. There are nevertheless lint-like
tools under development and in use to this day.

The sparse static analyzer [Cor04] looks for higher-level issues in the Linux kernel,
including:

1. Misuse of pointers to use-space structures.

2. Assignments from too-long constants.

3. Empty switch statements.

4. Mismatched lock acquisition and release primitives.

5. Misuse of per-CPU primitives.

6. Use of RCU primitives on non-RCU pointers and vice versa.

Although it is likely that compilers will continue to increase their static-analysis
capabilities, the sparse static analyzer demonstrates the benefits of static analysis outside
of the compiler, particularly for finding application-specific bugs.
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10.5 Code Review
Various code-review activities are special cases of static analysis, but with human beings
doing the analysis. This section covers inspection, walkthroughs, and self-inspection.

10.5.1 Inspection
Traditionally, formal code inspections take place in face-to-face meetings with formally
defined roles: moderator, developer, and one or two other participants. The developer
reads through the code, explaining what it is doing and why it works. The one or two
other participants ask questions and raise issues, while the moderator’s job is to resolve
any conflicts and to take notes. This process can be extremely effective at locating bugs,
particularly if all of the participants are familiar with the code at hand.

However, this face-to-face formal procedure does not necessarily work well in
the global Linux kernel community, although it might work well via an IRC session.
Instead, individuals review code separately and provide comments via email or IRC.
The note-taking is provided by email archives or IRC logs, and moderators volunteer
their services as appropriate. Give or take the occasional flamewar, this process also
works reasonably well, particularly if all of the participants are familiar with the code at
hand.5

It is quite likely that the Linux kernel community’s review process is ripe for
improvement:

1. There is sometimes a shortage of people with the time and expertise required to
carry out an effective review.

2. Even though all review discussions are archived, they are often “lost” in the sense
that insights are forgotten and people often fail to look up the discussions. This
can result in re-insertion of the same old bugs.

3. It is sometimes difficult to resolve flamewars when they do break out, especially
when the combatants have disjoint goals, experience, and vocabulary.

When reviewing, therefore, it is worthwhile to review relevant documentation in
commit logs, bug reports, and LWN articles.

10.5.2 Walkthroughs
A traditional code walkthrough is similar to a formal inspection, except that the group
“plays computer” with the code, driven by specific test cases. A typical walkthrough team
has a moderator, a secretary (who records bugs found), a testing expert (who generates
the test cases) and perhaps one to two others. These can be extremely effective, albeit
also extremely time-consuming.

It has been some decades since I have participated in a formal walkthrough, and
I suspect that a present-day walkthrough would use single-stepping debuggers. One
could imagine a particularly sadistic procedure as follows:

1. The tester presents the test case.

5 That said, one advantage of the Linux kernel community approach over traditional formal inspections is
the greater probability of contributions from people not familiar with the code, who therefore might not be
blinded by the invalid assumptions harbored by those familiar with the code.
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2. The moderator starts the code under a debugger, using the specified test case as
input.

3. Before each statement is executed, the developer is required to predict the outcome
of the statement and explain why this outcome is correct.

4. If the outcome differs from that predicted by the developer, this is taken as
evidence of a potential bug.

5. In parallel code, a “concurrency shark” asks what code might execute concurrently
with this code, and why such concurrency is harmless.

Sadistic, certainly. Effective? Maybe. If the participants have a good understanding
of the requirements, software tools, data structures, and algorithms, then walkthroughs
can be extremely effective. If not, walkthroughs are often a waste of time.

10.5.3 Self-Inspection
Although developers are usually not all that effective at inspecting their own code,
there are a number of situations where there is no reasonable alternative. For example,
the developer might be the only person authorized to look at the code, other qualified
developers might all be too busy, or the code in question might be sufficiently bizarre
that the developer is unable to convince anyone else to take it seriously until after
demonstrating a prototype. In these cases, the following procedure can be quite helpful,
especially for complex parallel code:

1. Write design document with requirements, diagrams for data structures, and
rationale for design choices.

2. Consult with experts, update the design document as needed.

3. Write the code in pen on paper, correct errors as you go. Resist the temptation to
refer to pre-existing nearly identical code sequences, instead, copy them.

4. If there were errors, copy the code in pen on fresh paper, correcting errors as you
go. Repeat until the last two copies are identical.

5. Produce proofs of correctness for any non-obvious code.

6. Where possible, test the code fragments from the bottom up.

7. When all the code is integrated, do full-up functional and stress testing.

8. Once the code passes all tests, write code-level documentation, perhaps as an
extension to the design document discussed above.

When I faithfully follow this procedure for new RCU code, there are normally only a
few bugs left at the end. With a few prominent (and embarrassing) exceptions [McK11a],
I usually manage to locate these bugs before others do. That said, this is getting more
difficult over time as the number and variety of Linux-kernel users increases.

Quick Quiz 10.5: Why would anyone bother copying existing code in pen on
paper??? Doesn’t that just increase the probability of transcription errors?

Quick Quiz 10.6: This procedure is ridiculously over-engineered! How can you
expect to get a reasonable amount of software written doing it this way???
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The above procedure works well for new code, but what if you need to inspect code
that you have already written? You can of course apply the above procedure for old
code in the special case where you wrote one to throw away [FPB79], but the following
approach can also be helpful in less desperate circumstances:

1. Using your favorite documentation tool (LATEX, HTML, OpenOffice, or straight
ASCII), describe the high-level design of the code in question. Use lots of
diagrams to illustrate the data structures and how these structures are updated.

2. Make a copy of the code, stripping away all comments.

3. Document what the code does statement by statement.

4. Fix bugs as you find them.

This works because describing the code in detail is an excellent way to spot
bugs [Mye79]. Although this second procedure is also a good way to get your head
around someone else’s code, in many cases, the first step suffices.

Although review and inspection by others is probably more efficient and effective,
the above procedures can be quite helpful in cases where for whatever reason it is not
feasible to involve others.

At this point, you might be wondering how to write parallel code without having to
do all this boring paperwork. Here are some time-tested ways of accomplishing this:

1. Write a sequential program that scales through use of available parallel library
functions.

2. Write sequential plug-ins for a parallel framework, such as map-reduce, BOINC,
or a web-application server.

3. Do such a good job of parallel design that the problem is fully partitioned, then
just implement sequential program(s) that run in parallel without communication.

4. Stick to one of the application areas (such as linear algebra) where tools can
automatically decompose and parallelize the problem.

5. Make extremely disciplined use of parallel-programming primitives, so that the
resulting code is easily seen to be correct. But beware: It is always tempting to
break the rules “just a little bit” to gain better performance or scalability. Breaking
the rules often results in general breakage. That is, unless you carefully do the
paperwork described in this section.

But the sad fact is that even if you do the paperwork or use one of the above ways to
more-or-less safely avoid paperwork, there will be bugs. If nothing else, more users and
a greater variety of users will expose more bugs more quickly, especially if those users
are doing things that the original developers did not consider. The next section describes
how to handle the probabilistic bugs that occur all too commonly when validating
parallel software.
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Figure 10.3: Passed on Merits? Or Dumb Luck?

10.6 Probability and Heisenbugs
So your parallel program fails. Sometimes.

But you used techniques from the earlier sections to locate the problem and now
have a fix in place! Congratulations!!!

Now the question is just how much testing is required in order to be certain that you
actually fixed the bug, as opposed to just reducing the probability of it occurring on
the one hand, having fixed only one of several related bugs on the other and, or made
some ineffectual unrelated change on yet a third hand. In short, what is the answer to
the eternal question posed by Figure 10.3?

Unfortunately, the honest answer is that an infinite amount of testing is required to
attain absolute certainty.

Quick Quiz 10.7: Suppose that you had a very large number of systems at your
disposal. For example, at current cloud prices, you can purchase a huge amount of
CPU time at a reasonably low cost. Why not use this approach to get close enough to
certainty for all practical purposes?

But suppose that we are willing to give up absolute certainty in favor of high
probability. Then we can bring powerful statistical tools to bear on this problem.
However, this section will focus on simple statistical tools. These tools are extremely
helpful, please note that reading this section not a substitute for taking a good set of
statistics classes.6

For our start with simple statistical tools, we need to decide whether we are doing
discrete or continuous testing. Discrete testing features well-defined individual test runs.
For example, a boot-up test of a Linux kernel patch is an example of a discrete test. You
boot the kernel, and it either comes up or it does not. Although you might spend an hour
boot-testing your kernel, the number of times you attempted to boot the kernel and the
number of times the boot-up succeeded would often be of more interest than the length

6 Which I most highly recommend. The few statistics courses I have taken have provided value way out of
proportion to the time I spent studying for them.
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of time you spent testing. Functional tests tend to be discrete.
On the other hand, if my patch involved RCU, I would probably run rcutorture,

which is a kernel module that, strangely enough, tests RCU. Unlike booting the kernel,
where the appearance of a login prompt signals the successful end of a discrete test,
rcutorture will happily continue torturing RCU until either the kernel crashes or until
you tell it to stop. The duration of the rcutorture test is therefore (usually) of more
interest than the number of times you started and stopped it. Therefore, rcutorture is an
example of a continuous test, a category that includes many stress tests.

The statistics governing discrete and continuous tests differ somewhat. However,
the statistics for discrete tests is simpler and more familiar than that for continuous tests,
and furthermore the statistics for discrete tests can often be pressed into service (with
some loss of accuracy) for continuous tests. We therefore start with discrete tests.

10.6.1 Statistics for Discrete Testing
Suppose that the bug had a 10% chance of occurring in a given run and that we do five
runs. How do we compute that probability of at least one run failing? One way is as
follows:

1. Compute the probability of a given run succeeding, which is 90%.

2. Compute the probability of all five runs succeeding, which is 0.9 raised to the
fifth power, or about 59%.

3. There are only two possibilities: either all five runs succeed, or at least one fails.
Therefore, the probability of at least one failure is 59% taken away from 100%,
or 41%.

However, many people find it easier to work with a formula than a series of steps,
although if you prefer the above series of steps, have at it! For those who like formulas,
call the probability of a single failure f . The probability of a single success is then 1− f
and the probability that all of n tests will succeed is then:

Sn = (1− f )n (10.1)

The probability of failure is 1−Sn, or:

Fn = 1− (1− f )n (10.2)

Quick Quiz 10.8: Say what??? When I plug the earlier example of five tests each
with a 10% failure rate into the formula, I get 59,050% and that just doesn’t make
sense!!!

So suppose that a given test has been failing 10% of the time. How many times do
you have to run the test to be 99% sure that your supposed fix has actually improved
matters?

Another way to ask this question is “how many times would we need to run the test
to cause the probability of failure to rise above 99%?” After all, if we were to run the
test enough times that the probability of seeing at least one failure becomes 99%, if
there are no failures, there is only 1% probability of this being due to dumb luck. And if
we plug f = 0.1 into Equation 10.2 and vary n, we find that 43 runs gives us a 98.92%
chance of at least one test failing given the original 10% per-test failure rate, while 44
runs gives us a 99.03% chance of at least one test failing. So if we run the test on our fix
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Figure 10.4: Number of Tests Required for 99 Percent Confidence Given Failure Rate

44 times and see no failures, there is a 99% probability that our fix was actually a real
improvement.

But repeatedly plugging numbers into Equation 10.2 can get tedious, so let’s solve
for n:

Fn = 1− (1− f )n (10.3)
1−Fn = (1− f )n (10.4)

log(1−Fn) = n log(1− f ) (10.5)

Finally the number of tests required is given by:

n =
log(1−Fn)

log(1− f )
(10.6)

Plugging f = 0.1 and Fn = 0.99 into Equation 10.6 gives 43.7, meaning that we need
44 consecutive successful test runs to be 99% certain that our fix was a real improvement.
This matches the number obtained by the previous method, which is reassuring.

Quick Quiz 10.9: In Equation 10.6, are the logarithms base-10, base-2, or base-e?

Figure 10.4 shows a plot of this function. Not surprisingly, the less frequently each
test run fails, the more test runs are required to be 99% confident that the bug has been
fixed. If the bug caused the test to fail only 1% of the time, then a mind-boggling 458
test runs are required. As the failure probability decreases, the number of test runs
required increases, going to infinity as the failure probability goes to zero.

The moral of this story is that when you have found a rarely occurring bug, your
testing job will be much easier if you can come up with a carefully targeted test with a
much higher failure rate. For example, if your targeted test raised the failure rate from
1% to 30%, then the number of runs required for 99% confidence would drop from 458
test runs to a mere thirteen test runs.
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But these thirteen test runs would only give you 99% confidence that your fix had
produced “some improvement”. Suppose you instead want to have 99% confidence that
your fix reduced the failure rate by an order of magnitude. How many failure-free test
runs are required?

An order of magnitude improvement from a 30% failure rate would be a 3% failure
rate. Plugging these numbers into Equation 10.6 yields:

n =
log(1−0.99)
log(1−0.03)

= 151.2 (10.7)

So our order of magnitude improvement requires roughly an order of magnitude
more testing. Certainty is impossible, and high probabilities are quite expensive. Clearly
making tests run more quickly and making failures more probable are essential skills
in the development of highly reliable software. These skills will be covered in Sec-
tion 10.6.4.

10.6.2 Abusing Statistics for Discrete Testing

But suppose that you have a continuous test that fails about three times every ten hours,
and that you fix the bug that you believe was causing the failure. How long do you have
to run this test without failure to be 99% certain that you reduced the probability of
failure?

Without doing excessive violence to statistics, we could simply redefine a one-hour
run to be a discrete test that has a 30% probability of failure. Then the results of in the
previous section tell us that if the test runs for 13 hours without failure, there is a 99%
probability that our fix actually improved the program’s reliability.

A dogmatic statistician might not approve of this approach, but the sad fact is that
the errors introduced by this sort of abuse of statistical methodology are usually quite
small compared to the errors inherent in your measurements of your program’s failure
rates. Nevertheless, the next section describes a slightly less dodgy approach.

10.6.3 Statistics for Continuous Testing

This section contains more aggressive mathematics. If you are not in the mood for
mathematical aggression, feel free to use the results of the previous section or to skip
ahead to Section 10.6.3.2, possibly noting Equation 10.30 on page 274 for future
reference.

10.6.3.1 Derivation of Poisson Distribution

As the number of tests n increases and the probability of per-test failure f decreases,
it makes sense to move the mathematics to the continuous domain. It is convenient to
define λ as n f : as we increase n and decrease f , λ will remain fixed. Intuitively, λ is
the expected number of failures per unit time.

What then is the probability of all n tests succeeding? This is given by:

(1− f )n (10.8)

But because λ is equal to n f , we can solve for f and obtain f = λ

n . Substituting this
into the previous equation yields:
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(
1− λ

n

)n

(10.9)

Readers who are both alert and mathematically inclined will recognize this as
approaching e−λ as n increases without limit. In other words, if we expect λ failures
from a test of a given duration, the probability F0 of zero failures from the test is given
by:

F0 = e−λ (10.10)

The next step is to compute the probability of all but one of n tests succeeding,
which is:

n!
1!(n−1)!

f (1− f )n−1 (10.11)

The ratio of factorials accounts for the different permutations of test results. The f
is the chance of the single failure, and the (1− f )n−1 is the chance that the rest of the
tests succeed. The n! in the numerator allows for all permutations of n tests, while the
two factors in the denominator allow for the indistinguishability of the one failure on
the one hand and the n−1 successes on the other.

Cancelling the factorials and multiplying top and bottom by 1− f yields:

n f
1− f

(1− f )n (10.12)

But because f is assumed to be arbitrarily small, 1− f is arbitrarily close to the
value one, allowing us to dispense with the denominator:

n f (1− f )n (10.13)

Substituting f = λ

n as before yields:

λ (1− λ

n
)n (10.14)

For large n, as before, the latter term is approximated by e−λ , so that the probability
of a single failure in a test from which λ failures were expected is given by:

F1 = λe−λ (10.15)

The third step is to compute the probability of all but two of the n tests succeeding,
which is:

n!
2!(n−2)!

f 2(1− f )n−2 (10.16)

Cancelling the factorials and multiplying top and bottom by (1− f )2 yields:

n(n−1) f 2

2(1− f )2 (1− f )n (10.17)

Once again, because f is assumed to be arbitrarily small, (1− f )2 is arbitrarily close
to the value one, once again allowing us to dispense with this portion of the denominator:
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n(n−1) f 2

2
(1− f )n (10.18)

Substituting f = λ

n once again yields:

n(n−1)λ 2

2n2 (1− λ

n
)n (10.19)

Because n is assumed large, n−1 is arbitrarily close to n, allowing the n(n−1) in
the numerator to be cancelled with the n2 in the denominator. And again, the final term
is approximated by e−λ , yielding the probability of two failures from a test from which
λ failures were expected:

F2 =
λ 2

2
e−λ (10.20)

We are now ready to try a more general result. Assume that there are m failures,
where m is extremely small compared to n. Then we have:

n!
m!(n−m)!

f m(1− f )n−m (10.21)

Cancelling the factorials and multiplying top and bottom by (1− f )m yields:

n(n−1) . . .(n−m+2)(n−m+1) f m

m!(1− f )m (1− f )n (10.22)

And you guessed it, because f is arbitrarily small, (1− f )m is arbitrarily close to
the value one and may therefore be dropped:

n(n−1) . . .(n−m+2)(n−m+1) f m

m!
(1− f )n (10.23)

Substituting f = λ

n one more time:

n(n−1) . . .(n−m+2)(n−m+1)λ m

m!nm (1− λ

n
)n (10.24)

Because m is small compared to n, we can cancel all but the last of the factors in the
numerator with the nm in the denominator, resulting in:

λ m

m!
(1− λ

n
)n (10.25)

As always, for large n, the last term is approximated by e−λ , yielding the probability
of m failures from a test from which λ failures were expected:

Fm =
λ m

m!
e−λ (10.26)

This is the celebrated Poisson distribution. A more rigorous derivation may be found
in any advanced probability textbook, for example, Feller’s classic “An Introduction to
Probability Theory and Its Applications” [Fel50].
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10.6.3.2 Use of Poisson Distribution

Let’s try reworking the example from Section 10.6.2 using the Poisson distribution.
Recall that this example involved a test with a 30% failure rate per hour, and that the
question was how long the test would need to run on a alleged fix to be 99% certain that
the fix actually reduced the failure rate. Solving this requires setting e−λ to 0.01 and
solving for λ , resulting in:

λ =− log0.01 = 4.6 (10.27)

Because we get 0.3 failures per hour, the number of hours required is 4.6/0.3= 14.3,
which is within 10% of the 13 hours calculated using the method in Section 10.6.2.
Given that you normally won’t know your failure rate to within 10%, this indicates
that the method in Section 10.6.2 is a good and sufficient substitute for the Poisson
distribution in a great many situations.

More generally, if we have n failures per unit time, and we want to be P% certain
that a fix reduced the failure rate, we can use the following formula:

T =−1
n

log
100−P

100
(10.28)

Quick Quiz 10.10: Suppose that a bug causes a test failure three times per hour on
average. How long must the test run error-free to provide 99.9% confidence that the fix
significantly reduced the probability of failure?

As before, the less frequently the bug occurs and the greater the required level of
confidence, the longer the required error-free test run.

Suppose that a given test fails about once every hour, but after a bug fix, a 24-hour
test run fails only twice. What is the probability of this being due to random chance, in
other words, what is the probability that the fix had no statistical effect? This probability
may be calculated by summing Equation 10.26 as follows:

F0 +F1 + . . .+Fm−1 +Fm =
m

∑
i=0

λ i

i!
e−λ (10.29)

This is the Poisson cumulative distribution function, which can be written more
compactly as:

Fi≤m =
m

∑
i=0

λ i

i!
e−λ (10.30)

Here m is the number of errors in the long test run (in this case, two) and λ is
expected number of errors in the long test run (in this case, 24). Plugging m = 2 and
λ = 24 into this expression gives the probability of two or fewer failures as about
1.2×10−8, indicating that the odds are extremely good that the fix had a statistically
significant effect.7

Quick Quiz 10.11: Doing the summation of all the factorials and exponentials is a
real pain. Isn’t there an easier way?

Quick Quiz 10.12: But wait!!! Given that there has to be some number of fail-
ures (including the possibility of zero failures), shouldn’t the summation shown in
Equation 10.30 approach the value 1 as m goes to infinity?

7 Of course, this result in no way excuses you from finding and fixing the bug(s) resulting in the remaining
two failures!
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The Poisson distribution is a powerful tool for analyzing test results, but the fact is
that in this last example there were still two remaining test failures in a 24-hour test
run. Such a low failure rate results in very long test runs. The next section discusses
counter-intuitive ways of improving this situation.

10.6.4 Hunting Heisenbugs
This line of thought also helps explain heisenbugs: adding tracing and assertions can
easily reduce the probability of a bug appearing. And this is why extremely lightweight
tracing and assertion mechanism are so critically important.

The name “heisenbug” stems from the Heisenberg Uncertainty Principle from
quantum physics, which states that it is impossible to exactly quantify a given particle’s
position and velocity at any given point in time [Hei27]. Any attempt to more accurately
measure that particle’s position will result in increased uncertainty of its velocity. A
similar effect occurs for heisenbugs: attempts to track down the heisenbug causes it to
radically change its symptoms or even disappear completely.

If the field of physics inspired the name of this problem, it is only logical that we
should look to the field of physics for the solution. Fortunately, particle physics is up to
the task: Why not create an anti-heisenbug to annihilate the heisenbug?

This section describes a number of ways to do just that:

1. Add delay to race-prone regions.

2. Increase workload intensity.

3. Test suspicious subsystems in isolation.

4. Simulate unusual events.

Although producing an anti-heisenbug for a given heisenbug is more an art than a
science, the following sections give some tips on generating the corresponding species
of anti-heisenbug.

10.6.4.1 Add Delay

Consider the count-lossy code in Section 4.1. Adding printf() statements will likely
greatly reduce or even eliminate the lost counts. However, converting the load-add-store
sequence to a load-add-delay-store sequence will greatly increase the incidence of lost
counts (try it!). Once you spot a bug involving a race condition, it is frequently possible
to create an anti-heisenbug by adding delay in this manner.

Of course, this begs the question of how to find the race condition in the first place.
This is a bit of a dark art, but there are a number of things you can do to find them.

On approach is to recognize that race conditions often end up corrupting some
of the data involved in the race. It is therefore good practice to double-check the
synchronization of any corrupted data. Even if you cannot immediately recognize
the race condition, adding delay before and after accesses to the corrupted data might
change the failure rate. By adding and removing the delays in an organized fashion (e.g.,
binary search), you might learn more about the workings of the race condition.

Quick Quiz 10.13: How is this approach supposed to help if the corruption affected
some unrelated pointer, which then caused the corruption???

Another important approach is to vary the software and hardware configuration
and look for statistically significant differences in failure rate. You can then look more
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intensively at the code implicated by the software or hardware configuration changes
that make the greatest difference in failure rate. It might be helpful to test that code in
isolation, for example.

One important aspect of software configuration is the history of changes, which
is why git bisect is so useful. Bisection of the change history can provide very
valuable clues as to the nature of the heisenbug.

Quick Quiz 10.14: But I did the bisection, and ended up with a huge commit. What
do I do now?

However you locate the suspicious section of code, you can then introduce delays to
attempt to increase the probability of failure. As we have seen, increasing the probability
of failure makes it much easier to gain high confidence in the corresponding fix.

However, it is sometimes quite difficult to track down the problem using normal
debugging techniques. The following sections present some other alternatives.

10.6.4.2 Increase Workload Intensity

It is often the case that a given test suite places relatively low stress on a given subsystem,
so that a small change in timing can cause a heisenbug to disappear. One way to create
an anti-heisenbug for this case is to increase the workload intensity, which has a good
chance of increasing the probability of the bug appearing. If the probability is increased
sufficiently, it may be possible to add lightweight diagnostics such as tracing without
causing the bug to vanish.

How can you increase the workload intensity? This depends on the program, but
here are some things to try:

1. Add more CPUs.

2. If the program uses networking, add more network adapters and more or faster
remote systems.

3. If the program is doing heavy I/O when the problem occurs, either (1) add more
storage devices, (2) use faster storage devices, for example, substitute SSDs for
disks, or (3) use a RAM-based filesystem to substitute main memory for mass
storage.

4. Change the size of the problem, for example, if doing a parallel matrix multiply,
change the size of the matrix. Larger problems may introduce more complexity,
but smaller problems often increase the level of contention. If you aren’t sure
whether you should go large or go small, just try both.

However, it is often the case that the bug is in a specific subsystem, and the structure
of the program limits the amount of stress that can be applied to that subsystem. The
next section addresses this situation.

10.6.4.3 Isolate Suspicious Subsystems

If the program is structured such that it is difficult or impossible to apply much stress
to a subsystem that is under suspicion, a useful anti-heisenbug is a stress test that tests
that subsystem in isolation. The Linux kernel’s rcutorture module takes exactly this
approach with RCU: By applying more stress to RCU than is feasible in a production
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environment, the probability that any RCU bugs will be found during rcutorture testing
rather than during production use is increased.8

In fact, when creating a parallel program, it is wise to stress-test the components
separately. Creating such component-level stress tests can seem like a waste of time, but
a little bit of component-level testing can save a huge amount of system-level debugging.

10.6.4.4 Simulate Unusual Events

Heisenbugs are sometimes due to unusual events, such as memory-allocation failure,
conditional-lock-acquisition failure, CPU-hotplug operations, timeouts, packet losses,
and so on. One way to construct an anti-heisenbug for this class of heisenbug is to
introduce spurious failures.

For example, instead of invoking malloc() directly, invoke a wrapper function
that uses a random number to decide whether to return NULL unconditionally on the
one hand, or to actually invoke malloc() and return the resulting pointer on the
other. Inducing spurious failures is an excellent way to bake robustness into sequential
programs as well as parallel programs.

Quick Quiz 10.15: Why don’t existing conditional-locking primitives provide this
spurious-failure functionality?

Thus far, we have focused solely on bugs in the parallel program’s functional-
ity. However, because performance is a first-class requirement for a parallel program
(otherwise, why not write a sequential program?), the next section looks into finding
performance bugs.

10.7 Performance Estimation
Parallel programs usually have performance and scalability requirements, after all, if
performance is not an issue, why not use a sequential program? Ultimate performance
and linear scalability might not be necessary, but there is little use for a parallel program
that runs slower than its optimal sequential counterpart. And there really are cases where
every microsecond matters and every nanosecond is needed. Therefore, for parallel
programs, insufficient performance is just as much a bug as is incorrectness.

Quick Quiz 10.16: That is ridiculous!!! After all, isn’t getting the correct answer
later than one would like has better than getting an incorrect answer???

Quick Quiz 10.17: But if you are going to put in all the hard work of parallelizing an
application, why not do it right? Why settle for anything less than optimal performance
and linear scalability?

Validating a parallel program must therfore include validating its performance. But
validating performance means having a workload to run and performance criteria with
which to evaluate the program at hand. These needs are often met by performance
benchmarks, which are discussed in the next section.

10.7.1 Benchmarking
The old saying goes “There are lies, damn lies, statistics, and benchmarks.” However,
benchmarks are heavily used, so it is not helpful to be too dismissive of them.

Benchmarks span the range from ad hoc test jigs to international standards, but
regardless of their level of formality, benchmarks serve three major purposes:

8 Though sadly not increased to probability one.
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1. Providing a fair framework for comparing competing implementations.

2. Focusing competitive energy on improving implementations in ways that matter
to users.

3. Serving as example uses of the implementations being benchmarked.

4. Serving as a marketing tool to highlight your software’s strong points against
your competitors’ offerings.

Of course, the only completely fair framework is the intended application itself. So
why would anyone who cared about fairness in benchmarking bother creating imperfect
benchmarks rather than simply using the application itself as the benchmark?

Running the actual application is in fact the best approach where it is practical.
Unfortunately, it is often impractical for the following reasons:

1. The application might be proprietary, and you might not have the right to run the
intended application.

2. The application might require more hardware that you have access to.

3. The application might use data that you cannot legally access, for example, due
to privacy regulations.

In these cases, creating a benchmark that approximates the application can help
overcome these obstacles. A carefully constructed benchmark can help promote perfor-
mance, scalability, energy efficiency, and much else besides.

10.7.2 Profiling
In many cases, a fairly small portion of your software is responsible for the majority of
the performance and scalability shortfall. However, developers are notoriously unable
to identify the actual bottlenecks by hand. For example, in the case of a kernel buffer
allocator, all attention focused on a search of a dense array which turned out to represent
only a few percent of the allocator’s execution time. An execution profile collected via
a logic analyzer focused attention on the cache misses that were actually responsible for
the majority of the problem [MS93].

There are a number of tools including gprof and perf that can help you to focus
your attention where it will do the most good.

10.7.3 Differential Profiling
Scalability problems will not necessarily be apparent unless you are running on very
large systems. However, it is sometimes possible to detect impending scalability
problems even when running on much smaller systems. One technique for doing
this is called differential profiling.

The idea is to run your workload under two different sets of conditions. For example,
you might run it on two CPUs, then run it again on four CPUs. You might instead vary
the load placed on the system, the number of network adapters, the number of mass-
storage devices, and so on. You then collect profiles of the two runs, and mathematically
combine corresponding profile measurements. For example, if your main concern is
scalability, you might take the ratio of corresponding measurements, and then sort the
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ratios into descending numerical order. The prime scalability suspects will then be
sorted to the top of the list /citeMcKenney95a,McKenney99b.

Some tools such as perf have built-in differential-profiling support.

10.7.4 Microbenchmarking
Microbenchmarking can be useful when deciding which algorithms or data structures
are worth incorporating into a larger body of software for deeper evaluation.

One common approach to microbenchmarking is to measure the time, run some
number of iterations of the code under test, then measure the time again. The difference
between the two times divided by the number of iterations gives the measured time
required to execute the code under test.

Unfortunately, this approach to measurement allows any number of errors to creep
in, including:

1. The measurement will include some of the overhead of the time measurement.
This source of error can be reduced to an arbitrarily small value by increasing the
number of iterations.

2. The first few iterations of the test might incur cache misses or (worse yet) page
faults that might inflate the measured value. This source of error can also be
reduced by increasing the number of iterations, or it can often be eliminated
entirely by running a few warm-up iterations before starting the measurement
period.

3. Some types of interference, for example, random memory errors, are so rare that
they can be dealt with by running a number of sets of interations of the test. If the
level of interference was statistically significant, any performance outliers could
be rejected statistically.

4. Any iteration of the test might be interfered with by other activity on the system.
Sources of interference include other applications, system utilities and daemons,
device interrupts, firmware interrupts (including system management interrupts,
or SMIs), virtualization, memory errors, and much else besides. Assuming that
these sources of interference occur randomly, their effect can be minimized by
reducing the number of iterations.

The first and third sources of interference provide conflicting advice, which is one
sign that we are living in the real world. The remainder of this section looks at ways of
resolving this conflict.

Quick Quiz 10.18: But what about other sources of error, for example, due to
interactions between caches and memory layout?

The following sections discuss ways of dealing with these measurement errors, with
Section 10.7.5 covering isolation techniques that may be used to prevent some forms of
interference, and with Section 10.7.6 covering methods for detecting interference so as
to reject measurement data that might have been corrupted by that interference.

10.7.5 Isolation
The Linux kernel provides a number of ways to isolate a group of CPUs from outside
interference.
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First, let’s look at interference by other processes, threads, and tasks. The POSIX
sched_setaffinity() system call may be used to move most tasks off of a
given set of CPUs and to confine your tests to that same group. The Linux-specific
user-level taskset command may be used for the same purpose, though both sched_
setaffinity() and taskset require elevated permissions. Linux-specific control
groups (cgroups) may be used for this same purpose. This approach can be quite
effective at reducing interference, and is sufficient in many cases. However, it does have
limitations, for example, it cannot do anything about the per-CPU kernel threads that
are often used for housekeeping tasks.

One way to avoid interference from per-CPU kernel threads is to run your test at a
high real-time priority, for example, by using the POSIX sched_setscheduler()
system call. However, note that if you do this, you are implicitly taking on responsibility
for avoiding infinite loops, because otherwise your test will prevent part of the kernel
from functioning.9

These approaches can greatly reduce, and perhaps even eliminate, interference
from processes, threads, and tasks. However, it does nothing to prevent interference
from device interrupts, at least in the absence of threaded interrupts. Linux allows
some control of threaded interrupts via the /proc/irq directory, which contains
numerical directories, one per interrupt vector. Each numerical directory contains
smp_affinity and smp_affinity_list. Given sufficient permissions, you
can write a value to these files to restrict interrupts to the specified set of CPUs. For
example, “sudo echo 3 > /proc/irq/23/smp_affinity” would confine
interrupts on vector 23 to CPUs 0 and 1. The same results may be obtained via
“sudo echo 0-1 > /proc/irq/23/smp_affinity_list”. You can use
“cat /proc/interrupts” to obtain a list of the interrupt vectors on your system, how
many are handled by each CPU, and what devices use each interrupt vector.

Running a similar command for all interrupt vectors on your system would confine
interrupts to CPUs 0 and 1, leaving the remaining CPUs free of interference. Or mostly
free of interference, anyway. It turns out that the scheduling-clock interrupt fires on
each CPU that is running in user mode.10 In addition you must take care to ensure that
the set of CPUs that you confine the interrupts to is capable of handling the load.

But this only handles processes and interrupts running in the same operating-system
instance as the test. Suppose that you are running the test in a guest OS that is itself
running on a hypervisor, for example, Linux running KVM? Although you can in theory
apply the same techniques at the hypervisor level that you can at the guest-OS level, it
is quite common for hypervisor-level operations to be restricted to authorized personnel.
In addition, none of these techniques work against firmware-level interference.

Quick Quiz 10.19: Wouldn’t the techniques suggested to isolate the code under
test also affect that code’s performance, particularly if it is running within a larger
application?

If you find yourself in this painful situation, instead of preventing the interference,
you might need to detect the interference as described in the next section.

9 This is an example of the Spiderman Principle: “With great power comes great responsibility.”
10 Frederic Weisbecker is working on an adaptive-ticks project that will allow the scheduling-clock interrupt

to be shut off on any CPU that has only one runnable task, but as of early 2013, this is unfortunately still work
in progress.
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1 #include <sys/time.h>
2 #include <sys/resource.h>
3
4 /* Return 0 if test results should be rejected. */
5 int runtest(void)
6 {
7 struct rusage ru1;
8 struct rusage ru2;
9
10 if (getrusage(RUSAGE_SELF, &ru1) != 0) {
11 perror("getrusage");
12 abort();
13 }
14 /* run test here. */
15 if (getrusage(RUSAGE_SELF, &ru2 != 0) {
16 perror("getrusage");
17 abort();
18 }
19 return (ru1.ru_nvcsw == ru2.ru_nvcsw &&
20 ru1.runivcsw == ru2.runivcsw);
21 }

Figure 10.5: Using getrusage() to Detect Context Switches

10.7.6 Detecting Interference

If you cannot prevent interference, perhaps you can detect the interference after the
fact and reject the test runs that were affected by that interference. Section 10.7.6.1 de-
scribes methods of rejection involving additional measurements, while Section 10.7.6.2
describes statistics-based rejection.

10.7.6.1 Detecting Interference Via Measurement

Many systems, including Linux, provide means for determining after the fact whether
some forms of interference have occurred. For example, if your test encountered
process-based interference, a a context switch must have occurred during the test. On
Linux-based systems, this context switch will be visible in /proc/<PID>/sched in
the nr_switches field. Similarly, interrupt-based interference can be detected via
the /proc/interrupts file.

Opening and reading files is not the way to low overhead, and it is possible to get
the count of context switches for a given thread by using the getrusage() system
call, as shown in Figure 10.5. This same system call can be used to detect minor page
faults (ru_minflt) and major page faults (ru_majflt).

Unfortunately, detecting memory errors and firmware interference is quite system-
specific, as is the detection of interference due to virtualization. Although avoidance is
better than detection, and detection is better than statistics, there are times when one
must avail oneself of statistics, a topic addressed in the next section.

10.7.6.2 Detecting Interference Via Statistics

Any statistical analysis will be based on assumptions about the data, and performance
microbenchmarks often support the following assumptions:

1. Smaller measurements are more likely to be accurate than larger measurements.

2. The measurement uncertainty of good data is known.
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3. A reasonable fraction of the test runs will result in good data.

The fact that smaller measurements are more likely to be accurate than larger
measurements suggests that sorting the measurements in increasing order is likely to be
productive.11 The fact that the measurement uncertainty is known allows us to accept
measurements within this uncertainty of each other: If the effects of interference are
large compared to this uncertainty, this will ease rejection of bad data. Finally, the fact
that some fraction (for example, one third) can be assumed to be good allows us to
blindly accept the first portion of the sorted list, and this data can then be used to gain
an estimate of the natural variation of the measured data, over and above the assumed
measurement error.

The approach is to take the specified number of leading elements from the beginning
of the sorted list, and use these to estimate a typical inter-element delta, which in turn
may be multiplied by the number of elements in the list to obtain an upper bound on
permissible values. The algorithm then repeatedly considers the next element of the list.
If it is falls below the upper bound, and if the distance between the next element and the
previous element is not too much greater than the average inter-element distance for the
portion of the list accepted thus far, then the next element is accepted and the process
repeats. Otherwise, the remainder of the list is rejected.

Figure 10.6 shows a simple sh/awk script implementing this notion. Input consists
of an x-value followed by an arbitrarily long list of y-values, and output consists of one
line for each input line, with fields as follows:

1. The x-value.

2. The average of the selected data.

3. The minimum of the selected data.

4. The maximum of the selected data.

5. The number of selected data items.

6. The number of input data items.

This script takes three optional arguments as follows:

• --divisor: Number of segments to divide the list into, for example, a divisor
of four means that the first quarter of the data elements will be assumed to be
good. This defaults to three.

• --relerr: Relative measurement error. The script assumes that values that
differ by less than this error are for all intents and purposes equal. This defaults
to 0.01, which is equivalent to 1%.

• --trendbreak: Ratio of inter-element spacing constituting a break in the trend
of the data. Fr example, if the average spacing in the data accepted so far is 1.5,
then if the trend-break ratio is 2.0, then if the next data value differs from the last
one by more than 3.0, this constitutes a break in the trend. (Unless of course, the
relative error is greater than 3.0, in which case the “break” will be ignored.)

11 To paraphrase the old saying, “Sort first and ask questions later.”
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Lines 1-3 of Figure 10.6 set the default values for the parameters, and lines 4-21
parse any command-line overriding of these parameters. The awk invocation on lines 23
and 24 sets the values of the divisor, relerr, and trendbreak variables to their
sh counterparts. In the usual awk manner, lines 25-52 are executed on each input line.
The loop spanning lines 24 and 26 copies the input y-values to the d array, which line 27
sorts into increasing order. Line 28 computes the number of y-values that are to be
trusted absolutely by applying divisor and rounding up.

Lines 29-33 compute the maxdelta value used as a lower bound on the upper
bound of y-values. To this end, lines 29 and 30 multiply the difference in values over
the trusted region of data by the divisor, which projects the difference in values
across the trusted region across the entire set of y-values. However, this value might
well be much smaller than the relative error, so line 31 computes the absolute error
(d[i] * relerr) and adds that to the difference delta across the trusted portion
of the data. Lines 32 and 33 then compute the maximum of these two values.

Each pass through the loop spanning lines 34-43 attempts to add another data value
to the set of good data. Lines 35-39 compute the trend-break delta, with line 36 disabling
this limit if we don’t yet have enough values to compute a trend, and with lines 38 and 39
multiplying trendbreak by the average difference between pairs of data values in
the good set. If line 40 determines that the candidate data value would exceed the lower
bound on the upper bound (maxdelta) and line 41 determines that the difference
between the candidate data value and its predecessor exceeds the trend-break difference
(maxdiff), then line 42 exits the loop: We have the full good set of data.

Lines 44-52 then compute and print the statistics for the data set.
Quick Quiz 10.20: This approach is just plain weird! Why not use means and

standard deviations, like we were taught in our statistics classes?
Quick Quiz 10.21: But what if all the y-values in the trusted group of data are

exactly zero? Won’t that cause the script to reject any non-zero value?
Although statistical interference detection can be quite useful, it should be used only

as a last resort. It is far better to avoid interference in the first place (Section 10.7.5), or,
failing that, detecting interference via measurement (Section 10.7.6.1).

10.8 Summary
Althoguh validation never will be an exact science, much can be gained by taking
an organized approach to it, as an organized approach will help you choose the right
validation tools for your job, avoiding situations like the one fancifully depicted in
Figure 10.7.

A key choice is that of statistics. Although the methods described in this chapter
work very well most of the time, they do have their limitations. These limitations
are inherent because we are attempting to do something that is in general impossible,
courtesy of the Halting Problem [Tur37, Pul00]. Fortunately for us, there are a huge
number of special cases in which we can not only work out whether a given program
will halt, but also establish estimates for how long it will run before halting, as discussed
in Section 10.7. Furthermore, in cases where a given program might or might not work
correctly, we can often establish estimates for what fraction of the time it will work
correctly, as discussed in Section 10.6.

Nevertheless, unthinking reliance on these estimates is brave to the point of fool-
hardiness. After all, we are summarizing a huge mass of complexity in code and data
structures down to a single solitary number. Even though we can get away with such
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bravery a surprisingly large fraction of the time, it is only reasonable to expect that the
code and data being abstracted away will occasionally cause severe problems.

One possible problem is variability, where repeated runs might give wildly different
results. This is often dealt with by maintaining a standard deviation as well as a mean,
but the fact is that attempting to summarize the behavior of a large and complex program
with two numbers is almost as brave as summarizing its behavior with only one number.
In computer programming, the surprising thing is that use of the mean or the mean and
standard deviation are often sufficient, but there are no guarantees.

One cause of variation is confounding factors. For example, the CPU time consumed
by a linked-list search will depend on the length of the list. Averaging together runs
with wildly different list lengths will probably not be useful, and adding a standard
deviation to the mean will not be much better. The right thing to do would be control for
list length, either by holding the length constant or to measure CPU time as a function
of list length.

Of course, this advice assumes that you are aware of the confounding factors, and
Murphy says that you probably will not be. I have been involved in projects that had
confounding factors as diverse as air conditioners (which drew considerable power at
startup, thus causing the voltage supplied to the computer to momentarily drop too low,
sometimes resulting in failure), cache state (resulting in odd variations in performance),
I/O errors (including disk errors, packet loss, and duplicate Ethernet MAC addresses),
and even porpoises (which could not resist playing with an array of transponders, which,
in the absence of porpoises, could be used for high-precision acoustic positioning and
navigation).

In short, validation always will require some measure of the behavior of the system.
Because this measure must be a severe summarization of the system, it can be misleading.
So as the saying goes, “Be careful. It is a real world out there.”

But suppose you are working on the Linux kernel, which as of 2013 has about a
billion instances throughout the world? In that case, a bug that would be encountered
once every million years will be encountered almost three times per day across the
installed base. A test with a 50% chance of encountering this bug in a one-hour run
would need to increase that bug’s probability of occurrence by more than nine orders
of magnitude, which poses a severe challenge to today’s testing methodologies. One
important tool that can sometimes be applied with good effect to such situations is
formal validation, the subject of the next chapter.
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1 divisor=3
2 relerr=0.01
3 trendbreak=10
4 while test $# -gt 0
5 do
6 case "$1" in
7 --divisor)
8 shift
9 divisor=$1
10 ;;
11 --relerr)
12 shift
13 relerr=$1
14 ;;
15 --trendbreak)
16 shift
17 trendbreak=$1
18 ;;
19 esac
20 shift
21 done
22
23 awk -v divisor=$divisor -v relerr=$relerr \
24 -v trendbreak=$trendbreak ’{
25 for (i = 2; i <= NF; i++)
26 d[i - 1] = $i;
27 asort(d);
28 i = int((NF + divisor - 1) / divisor);
29 delta = d[i] - d[1];
30 maxdelta = delta * divisor;
31 maxdelta1 = delta + d[i] * relerr;
32 if (maxdelta1 > maxdelta)
33 maxdelta = maxdelta1;
34 for (j = i + 1; j < NF; j++) {
35 if (j <= 2)
36 maxdiff = d[NF - 1] - d[1];
37 else
38 maxdiff = trendbreak * \
39 (d[j - 1] - d[1]) / (j - 2);
40 if (d[j] - d[1] > maxdelta && \
41 d[j] - d[j - 1] > maxdiff)
42 break;
43 }
44 n = sum = 0;
45 for (k = 1; k < j; k++) {
46 sum += d[k];
47 n++;
48 }
49 min = d[1];
50 max = d[j - 1];
51 avg = sum / n;
52 print $1, avg, min, max, n, NF - 1;
53 }’

Figure 10.6: Statistical Elimination of Interference
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Figure 10.7: Choose Validation Methods Wisely
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Chapter 11

Formal Verification

Parallel algorithms can be hard to write, and even harder to debug. Testing, though
essential, is insufficient, as fatal race conditions can have extremely low probabilities
of occurrence. Proofs of correctness can be valuable, but in the end are just as prone
to human error as is the original algorithm. In addition, a proof of correctness cannot
be expected to find errors in your assumptions, shortcomings in the requirements,
misunderstandings of the underlying software or hardware primitives, or errors that you
did not think to construct a proof for. This means that formal methods can never replace
testing, however, formal methods are nevertheless a valuable addition to your validation
toolbox.

It would be very helpful to have a tool that could somehow locate all race conditions.
A number of such tools exist, for example, the language Promela and its compiler
Spin, which are described in this chapter. Section 11.1 provide an introduction to
Promela and Spin, Section 11.2 demonstrates use of Promela and Spin to find a race
in a non-atomic increment example, Section 11.3 uses Promela and Spin to validate a
similar atomic-increment example, Section 11.4 gives an overview of using Promela
and Spin, Section 11.5 demonstrates a Promela model of a spinlock, Section 11.6
applies Promela and spin to validate a simple RCU implementation, Section 11.7 applies
Promela to validate an interface between preemptible RCU and the dyntick-idle energy-
conservation feature in the Linux kernel, Section 11.8 presents a simpler interface that
does not require formal verification, Section 11.9 descripes the PPCMEM tool that
understands ARM and Power memory ordering, and finally Section 11.10 sums up use
of formal-verification tools for verifying parallel algorithms.

11.1 What are Promela and Spin?
Promela is a language designed to help verify protocols, but which can also be used to
verify small parallel algorithms. You recode your algorithm and correctness constraints
in the C-like language Promela, and then use Spin to translate it into a C program that
you can compile and run. The resulting program conducts a full state-space search of
your algorithm, either verifying or finding counter-examples for assertions that you can
include in your Promela program.

This full-state search can extremely powerful, but can also be a two-edged sword. If
your algorithm is too complex or your Promela implementation is careless, there might
be more states than fit in memory. Furthermore, even given sufficient memory, the
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1 #define NUMPROCS 2
2
3 byte counter = 0;
4 byte progress[NUMPROCS];
5
6 proctype incrementer(byte me)
7 {
8 int temp;
9
10 temp = counter;
11 counter = temp + 1;
12 progress[me] = 1;
13 }
14
15 init {
16 int i = 0;
17 int sum = 0;
18
19 atomic {
20 i = 0;
21 do
22 :: i < NUMPROCS ->
23 progress[i] = 0;
24 run incrementer(i);
25 i++
26 :: i >= NUMPROCS -> break
27 od;
28 }
29 atomic {
30 i = 0;
31 sum = 0;
32 do
33 :: i < NUMPROCS ->
34 sum = sum + progress[i];
35 i++
36 :: i >= NUMPROCS -> break
37 od;
38 assert(sum < NUMPROCS || counter == NUMPROCS)
39 }
40 }

Figure 11.1: Promela Code for Non-Atomic Increment

state-space search might well run for longer than the expected lifetime of the universe.
Therefore, use this tool for compact but complex parallel algorithms. Attempts to
naively apply it to even moderate-scale algorithms (let alone the full Linux kernel) will
end badly.

Promela and Spin may be downloaded from http://spinroot.com/spin/
whatispin.html.

The above site also gives links to Gerard Holzmann’s excellent book [Hol03] on
Promela and Spin, as well as searchable online references starting at: http://www.
spinroot.com/spin/Man/index.html.

The remainder of this article describes how to use Promela to debug parallel algo-
rithms, starting with simple examples and progressing to more complex uses.

11.2 Promela Example: Non-Atomic Increment
Figure 11.1 demonstrates the textbook race condition resulting from non-atomic incre-
ment. Line 1 defines the number of processes to run (we will vary this to see the effect
on state space), line 3 defines the counter, and line 4 is used to implement the assertion
that appears on lines 29-39.
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pan: assertion violated ((sum<2)||(counter==2)) (at depth 20)
pan: wrote increment.spin.trail
(Spin Version 4.2.5 -- 2 April 2005)
Warning: Search not completed

+ Partial Order Reduction

Full statespace search for:
never claim - (none specified)
assertion violations +
cycle checks - (disabled by -DSAFETY)
invalid end states +

State-vector 40 byte, depth reached 22, errors: 1
45 states, stored
13 states, matched
58 transitions (= stored+matched)
51 atomic steps

hash conflicts: 0 (resolved)

2.622 memory usage (Mbyte)

Figure 11.2: Non-Atomic Increment spin Output

Lines 6-13 define a process that increments the counter non-atomically. The argu-
ment me is the process number, set by the initialization block later in the code. Because
simple Promela statements are each assumed atomic, we must break the increment into
the two statements on lines 10-11. The assignment on line 12 marks the process’s com-
pletion. Because the Spin system will fully search the state space, including all possible
sequences of states, there is no need for the loop that would be used for conventional
testing.

Lines 15-40 are the initialization block, which is executed first. Lines 19-28 actually
do the initialization, while lines 29-39 perform the assertion. Both are atomic blocks in
order to avoid unnecessarily increasing the state space: because they are not part of the
algorithm proper, we loose no verification coverage by making them atomic.

The do-od construct on lines 21-27 implements a Promela loop, which can be thought
of as a C for (;;) loop containing a switch statement that allows expressions in
case labels. The condition blocks (prefixed by ::) are scanned non-deterministically,
though in this case only one of the conditions can possibly hold at a given time. The
first block of the do-od from lines 22-25 initializes the i-th incrementer’s progress cell,
runs the i-th incrementer’s process, and then increments the variable i. The second
block of the do-od on line 26 exits the loop once these processes have been started.

The atomic block on lines 29-39 also contains a similar do-od loop that sums up the
progress counters. The assert() statement on line 38 verifies that if all processes
have been completed, then all counts have been correctly recorded.

You can build and run this program as follows:

spin -a increment.spin # Translate the model to C
cc -DSAFETY -o pan pan.c # Compile the model
./pan # Run the model

This will produce output as shown in Figure 11.2. The first line tells us that our
assertion was violated (as expected given the non-atomic increment!). The second line
that a trail file was written describing how the assertion was violated. The “Warning”
line reiterates that all was not well with our model. The second paragraph describes the
type of state-search being carried out, in this case for assertion violations and invalid
end states. The third paragraph gives state-size statistics: this small model had only 45
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states. The final line shows memory usage.
The trail file may be rendered human-readable as follows:

spin -t -p increment.spin

Starting :init: with pid 0
1: proc 0 (:init:) line 20 "increment.spin" (state 1) [i = 0]
2: proc 0 (:init:) line 22 "increment.spin" (state 2) [((i<2))]
2: proc 0 (:init:) line 23 "increment.spin" (state 3) [progress[i] = 0]

Starting incrementer with pid 1
3: proc 0 (:init:) line 24 "increment.spin" (state 4) [(run incrementer(i))]
3: proc 0 (:init:) line 25 "increment.spin" (state 5) [i = (i+1)]
4: proc 0 (:init:) line 22 "increment.spin" (state 2) [((i<2))]
4: proc 0 (:init:) line 23 "increment.spin" (state 3) [progress[i] = 0]

Starting incrementer with pid 2
5: proc 0 (:init:) line 24 "increment.spin" (state 4) [(run incrementer(i))]
5: proc 0 (:init:) line 25 "increment.spin" (state 5) [i = (i+1)]
6: proc 0 (:init:) line 26 "increment.spin" (state 6) [((i>=2))]
7: proc 0 (:init:) line 21 "increment.spin" (state 10) [break]
8: proc 2 (incrementer) line 10 "increment.spin" (state 1) [temp = counter]
9: proc 1 (incrementer) line 10 "increment.spin" (state 1) [temp = counter]

10: proc 2 (incrementer) line 11 "increment.spin" (state 2) [counter = (temp+1)]
11: proc 2 (incrementer) line 12 "increment.spin" (state 3) [progress[me] = 1]
12: proc 2 terminates
13: proc 1 (incrementer) line 11 "increment.spin" (state 2) [counter = (temp+1)]
14: proc 1 (incrementer) line 12 "increment.spin" (state 3) [progress[me] = 1]
15: proc 1 terminates
16: proc 0 (:init:) line 30 "increment.spin" (state 12) [i = 0]
16: proc 0 (:init:) line 31 "increment.spin" (state 13) [sum = 0]
17: proc 0 (:init:) line 33 "increment.spin" (state 14) [((i<2))]
17: proc 0 (:init:) line 34 "increment.spin" (state 15) [sum = (sum+progress[i])]
17: proc 0 (:init:) line 35 "increment.spin" (state 16) [i = (i+1)]
18: proc 0 (:init:) line 33 "increment.spin" (state 14) [((i<2))]
18: proc 0 (:init:) line 34 "increment.spin" (state 15) [sum = (sum+progress[i])]
18: proc 0 (:init:) line 35 "increment.spin" (state 16) [i = (i+1)]
19: proc 0 (:init:) line 36 "increment.spin" (state 17) [((i>=2))]
20: proc 0 (:init:) line 32 "increment.spin" (state 21) [break]
spin: line 38 "increment.spin", Error: assertion violated
spin: text of failed assertion: assert(((sum<2)||(counter==2)))
21: proc 0 (:init:) line 38 "increment.spin" (state 22)

[assert(((sum<2)||(counter==2)))]
spin: trail ends after 21 steps
#processes: 1

counter = 1
progress[0] = 1
progress[1] = 1

21: proc 0 (:init:) line 40 "increment.spin" (state 24) <valid end state>
3 processes created

Figure 11.3: Non-Atomic Increment Error Trail

This gives the output shown in Figure 11.3. As can be seen, the first portion of the
init block created both incrementer processes, both of which first fetched the counter,
then both incremented and stored it, losing a count. The assertion then triggered, after
which the global state is displayed.

11.3 Promela Example: Atomic Increment

It is easy to fix this example by placing the body of the incrementer processes in an
atomic blocks as shown in Figure 11.4. One could also have simply replaced the pair
of statements with counter = counter + 1, because Promela statements are
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1 proctype incrementer(byte me)
2 {
3 int temp;
4
5 atomic {
6 temp = counter;
7 counter = temp + 1;
8 }
9 progress[me] = 1;
10 }

Figure 11.4: Promela Code for Atomic Increment

(Spin Version 4.2.5 -- 2 April 2005)
+ Partial Order Reduction

Full statespace search for:
never claim - (none specified)
assertion violations +
cycle checks - (disabled by -DSAFETY)
invalid end states +

State-vector 40 byte, depth reached 20, errors: 0
52 states, stored
21 states, matched
73 transitions (= stored+matched)
66 atomic steps

hash conflicts: 0 (resolved)

2.622 memory usage (Mbyte)

unreached in proctype incrementer
(0 of 5 states)

unreached in proctype :init:
(0 of 24 states)

Figure 11.5: Atomic Increment spin Output
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# incrementers # states megabytes
1 11 2.6
2 52 2.6
3 372 2.6
4 3,496 2.7
5 40,221 5.0
6 545,720 40.5
7 8,521,450 652.7

Table 11.1: Memory Usage of Increment Model

atomic. Either way, running this modified model gives us an error-free traversal of the
state space, as shown in Figure 11.5.

11.3.1 Combinatorial Explosion
Table 11.1 shows the number of states and memory consumed as a function of number
of incrementers modeled (by redefining NUMPROCS):

Running unnecessarily large models is thus subtly discouraged, although 652MB is
well within the limits of modern desktop and laptop machines.

With this example under our belt, let’s take a closer look at the commands used to
analyze Promela models and then look at more elaborate examples.

11.4 How to Use Promela
Given a source file qrcu.spin, one can use the following commands:

• spin -a qrcu.spin Create a file pan.c that fully searches the state machine.

• cc -DSAFETY -o pan pan.c Compile the generated state-machine search.
The -DSAFETY generates optimizations that are appropriate if you have only
assertions (and perhaps never statements). If you have liveness, fairness, or
forward-progress checks, you may need to compile without -DSAFETY. If you
leave off -DSAFETY when you could have used it, the program will let you know.

The optimizations produced by -DSAFETY greatly speed things up, so you should
use it when you can. An example situation where you cannot use -DSAFETY is
when checking for livelocks (AKA “non-progress cycles”) via -DNP.

• ./pan This actually searches the state space. The number of states can reach into
the tens of millions with very small state machines, so you will need a machine
with large memory. For example, qrcu.spin with 3 readers and 2 updaters required
2.7GB of memory.

If you aren’t sure whether your machine has enough memory, run top in one
window and ./pan in another. Keep the focus on the ./pan window so that
you can quickly kill execution if need be. As soon as CPU time drops much below
100%, kill ./pan. If you have removed focus from the window running ./pan,
you may wait a long time for the windowing system to grab enough memory to
do anything for you.
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Don’t forget to capture the output, especially if you are working on a remote
machine,

If your model includes forward-progress checks, you will likely need to enable
“weak fairness” via the -f command-line argument to ./pan. If your forward-
progress checks involve accept labels, you will also need the -a argument.

• spin -t -p qrcu.spin Given trail file output by a run that encountered
an error, output the sequence of steps leading to that error. The -g flag will also
include the values of changed global variables, and the -l flag will also include
the values of changed local variables.

11.4.1 Promela Peculiarities

Although all computer languages have underlying similarities, Promela will provide
some surprises to people used to coding in C, C++, or Java.

1. In C, “;” terminates statements. In Promela it separates them. Fortunately, more
recent versions of Spin have become much more forgiving of “extra” semicolons.

2. Promela’s looping construct, the do statement, takes conditions. This do state-
ment closely resembles a looping if-then-else statement.

3. In C’s switch statement, if there is no matching case, the whole statement is
skipped. In Promela’s equivalent, confusingly called if, if there is no matching
guard expression, you get an error without a recognizable corresponding error
message. So, if the error output indicates an innocent line of code, check to see if
you left out a condition from an if or do statement.

4. When creating stress tests in C, one usually races suspect operations against each
other repeatedly. In Promela, one instead sets up a single race, because Promela
will search out all the possible outcomes from that single race. Sometimes you do
need to loop in Promela, for example, if multiple operations overlap, but doing so
greatly increases the size of your state space.

5. In C, the easiest thing to do is to maintain a loop counter to track progress
and terminate the loop. In Promela, loop counters must be avoided like the
plague because they cause the state space to explode. On the other hand, there
is no penalty for infinite loops in Promela as long as the none of the variables
monotonically increase or decrease – Promela will figure out how many passes
through the loop really matter, and automatically prune execution beyond that
point.

6. In C torture-test code, it is often wise to keep per-task control variables. They are
cheap to read, and greatly aid in debugging the test code. In Promela, per-task
control variables should be used only when there is no other alternative. To see
this, consider a 5-task verification with one bit each to indicate completion. This
gives 32 states. In contrast, a simple counter would have only six states, more
than a five-fold reduction. That factor of five might not seem like a problem, at
least not until you are struggling with a verification program possessing more
than 150 million states consuming more than 10GB of memory!
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1 i = 0;
2 sum = 0;
3 do
4 :: i < N_QRCU_READERS ->
5 sum = sum + (readerstart[i] == 1 &&
6 readerprogress[i] == 1);
7 i++
8 :: i >= N_QRCU_READERS ->
9 assert(sum == 0);
10 break
11 od

Figure 11.6: Complex Promela Assertion

7. One of the most challenging things both in C torture-test code and in Promela is
formulating good assertions. Promela also allows never claims that act sort of
like an assertion replicated between every line of code.

8. Dividing and conquering is extremely helpful in Promela in keeping the state
space under control. Splitting a large model into two roughly equal halves will
result in the state space of each half being roughly the square root of the whole.
For example, a million-state combined model might reduce to a pair of thousand-
state models. Not only will Promela handle the two smaller models much more
quickly with much less memory, but the two smaller algorithms are easier for
people to understand.

11.4.2 Promela Coding Tricks
Promela was designed to analyze protocols, so using it on parallel programs is a bit
abusive. The following tricks can help you to abuse Promela safely:

1. Memory reordering. Suppose you have a pair of statements copying globals x
and y to locals r1 and r2, where ordering matters (e.g., unprotected by locks), but
where you have no memory barriers. This can be modeled in Promela as follows:

1 if
2 :: 1 -> r1 = x;
3 r2 = y
4 :: 1 -> r2 = y;
5 r1 = x
6 fi

The two branches of the if statement will be selected nondeterministically, since
they both are available. Because the full state space is searched, both choices will
eventually be made in all cases.

Of course, this trick will cause your state space to explode if used too heavily. In
addition, it requires you to anticipate possible reorderings.

2. State reduction. If you have complex assertions, evaluate them under atomic.
After all, they are not part of the algorithm. One example of a complex assertion
(to be discussed in more detail later) is as shown in Figure 11.6.

There is no reason to evaluate this assertion non-atomically, since it is not actually
part of the algorithm. Because each statement contributes to state, we can reduce
the number of useless states by enclosing it in an atomic block as shown in
Figure 11.7

294



1 atomic {
2 i = 0;
3 sum = 0;
4 do
5 :: i < N_QRCU_READERS ->
6 sum = sum + (readerstart[i] == 1 &&
7 readerprogress[i] == 1);
8 i++
9 :: i >= N_QRCU_READERS ->
10 assert(sum == 0);
11 break
12 od
13 }

Figure 11.7: Atomic Block for Complex Promela Assertion

1 #define spin_lock(mutex) \
2 do \
3 :: 1 -> atomic { \
4 if \
5 :: mutex == 0 -> \
6 mutex = 1; \
7 break \
8 :: else -> skip \
9 fi \
10 } \
11 od
12
13 #define spin_unlock(mutex) \
14 mutex = 0

Figure 11.8: Promela Code for Spinlock

3. Promela does not provide functions. You must instead use C preprocessor macros.
However, you must use them carefully in order to avoid combinatorial explosion.

Now we are ready for more complex examples.

11.5 Promela Example: Locking
Since locks are generally useful, spin_lock() and spin_unlock() macros are
provided in lock.h, which may be included from multiple Promela models, as shown
in Figure 11.8. The spin_lock() macro contains an infinite do-od loop spanning
lines 2-11, courtesy of the single guard expression of “1” on line 3. The body of this
loop is a single atomic block that contains an if-fi statement. The if-fi construct is similar
to the do-od construct, except that it takes a single pass rather than looping. If the lock
is not held on line 5, then line 6 acquires it and line 7 breaks out of the enclosing do-od
loop (and also exits the atomic block). On the other hand, if the lock is already held on
line 8, we do nothing (skip), and fall out of the if-fi and the atomic block so as to take
another pass through the outer loop, repeating until the lock is available.

The spin_unlock() macro simply marks the lock as no longer held.
Note that memory barriers are not needed because Promela assumes full ordering.

In any given Promela state, all processes agree on both the current state and the order
of state changes that caused us to arrive at the current state. This is analogous to the
“sequentially consistent” memory model used by a few computer systems (such as MIPS
and PA-RISC). As noted earlier, and as will be seen in a later example, weak memory
ordering must be explicitly coded.
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1 #include "lock.h"
2
3 #define N_LOCKERS 3
4
5 bit mutex = 0;
6 bit havelock[N_LOCKERS];
7 int sum;
8
9 proctype locker(byte me)
10 {
11 do
12 :: 1 ->
13 spin_lock(mutex);
14 havelock[me] = 1;
15 havelock[me] = 0;
16 spin_unlock(mutex)
17 od
18 }
19
20 init {
21 int i = 0;
22 int j;
23
24 end: do
25 :: i < N_LOCKERS ->
26 havelock[i] = 0;
27 run locker(i);
28 i++
29 :: i >= N_LOCKERS ->
30 sum = 0;
31 j = 0;
32 atomic {
33 do
34 :: j < N_LOCKERS ->
35 sum = sum + havelock[j];
36 j = j + 1
37 :: j >= N_LOCKERS ->
38 break
39 od
40 }
41 assert(sum <= 1);
42 break
43 od
44 }

Figure 11.9: Promela Code to Test Spinlocks
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These macros are tested by the Promela code shown in Figure 11.9. This code is
similar to that used to test the increments, with the number of locking processes defined
by the N_LOCKERS macro definition on line 3. The mutex itself is defined on line 5, an
array to track the lock owner on line 6, and line 7 is used by assertion code to verify that
only one process holds the lock.

The locker process is on lines 9-18, and simply loops forever acquiring the lock on
line 13, claiming it on line 14, unclaiming it on line 15, and releasing it on line 16.

The init block on lines 20-44 initializes the current locker’s havelock array entry on
line 26, starts the current locker on line 27, and advances to the next locker on line 28.
Once all locker processes are spawned, the do-od loop moves to line 29, which checks
the assertion. Lines 30 and 31 initialize the control variables, lines 32-40 atomically
sum the havelock array entries, line 41 is the assertion, and line 42 exits the loop.

We can run this model by placing the above two code fragments into files named
lock.h and lock.spin, respectively, and then running the following commands:

spin -a lock.spin
cc -DSAFETY -o pan pan.c
./pan

(Spin Version 4.2.5 -- 2 April 2005)
+ Partial Order Reduction

Full statespace search for:
never claim - (none specified)
assertion violations +
cycle checks - (disabled by -DSAFETY)
invalid end states +

State-vector 40 byte, depth reached 357, errors: 0
564 states, stored
929 states, matched

1493 transitions (= stored+matched)
368 atomic steps

hash conflicts: 0 (resolved)

2.622 memory usage (Mbyte)

unreached in proctype locker
line 18, state 20, "-end-"
(1 of 20 states)

unreached in proctype :init:
(0 of 22 states)

Figure 11.10: Output for Spinlock Test

The output will look something like that shown in Figure 11.10. As expected, this
run has no assertion failures (“errors: 0”).

Quick Quiz 11.1: Why is there an unreached statement in locker? After all, isn’t
this a full state-space search?

Quick Quiz 11.2: What are some Promela code-style issues with this example?

11.6 Promela Example: QRCU
This final example demonstrates a real-world use of Promela on Oleg Nesterov’s
QRCU [Nes06a, Nes06b], but modified to speed up the synchronize_qrcu()
fastpath.

But first, what is QRCU?
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QRCU is a variant of SRCU [McK06b] that trades somewhat higher read overhead
(atomic increment and decrement on a global variable) for extremely low grace-period
latencies. If there are no readers, the grace period will be detected in less than a
microsecond, compared to the multi-millisecond grace-period latencies of most other
RCU implementations.

1. There is a qrcu_struct that defines a QRCU domain. Like SRCU (and unlike
other variants of RCU) QRCU’s action is not global, but instead focused on the
specified qrcu_struct.

2. There are qrcu_read_lock() and qrcu_read_unlock() primitives that
delimit QRCU read-side critical sections. The corresponding qrcu_struct
must be passed into these primitives, and the return value from rcu_read_
lock() must be passed to rcu_read_unlock().

For example:

idx = qrcu_read_lock(&my_qrcu_struct);
/* read-side critical section. */
qrcu_read_unlock(&my_qrcu_struct, idx);

3. There is a synchronize_qrcu() primitive that blocks until all pre-existing
QRCU read-side critical sections complete, but, like SRCU’s synchronize_
srcu(), QRCU’s synchronize_qrcu() need wait only for those read-side
critical sections that are using the same qrcu_struct.

For example, synchronize_qrcu(&your_qrcu_struct)would not need
to wait on the earlier QRCU read-side critical section. In contrast, synchronize_
qrcu(&my_qrcu_struct) would need to wait, since it shares the same
qrcu_struct.

A Linux-kernel patch for QRCU has been produced [McK07b], but has not yet been
included in the Linux kernel as of April 2008.

1 #include "lock.h"
2
3 #define N_QRCU_READERS 2
4 #define N_QRCU_UPDATERS 2
5
6 bit idx = 0;
7 byte ctr[2];
8 byte readerprogress[N_QRCU_READERS];
9 bit mutex = 0;

Figure 11.11: QRCU Global Variables

Returning to the Promela code for QRCU, the global variables are as shown in
Figure 11.11. This example uses locking, hence including lock.h. Both the number of
readers and writers can be varied using the two #define statements, giving us not one
but two ways to create combinatorial explosion. The idx variable controls which of the
two elements of the ctr array will be used by readers, and the readerprogress
variable allows to assertion to determine when all the readers are finished (since a QRCU
update cannot be permitted to complete until all pre-existing readers have completed
their QRCU read-side critical sections). The readerprogress array elements have values
as follows, indicating the state of the corresponding reader:
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1. 0: not yet started.

2. 1: within QRCU read-side critical section.

3. 2: finished with QRCU read-side critical section.

Finally, the mutex variable is used to serialize updaters’ slowpaths.

1 proctype qrcu_reader(byte me)
2 {
3 int myidx;
4
5 do
6 :: 1 ->
7 myidx = idx;
8 atomic {
9 if
10 :: ctr[myidx] > 0 ->
11 ctr[myidx]++;
12 break
13 :: else -> skip
14 fi
15 }
16 od;
17 readerprogress[me] = 1;
18 readerprogress[me] = 2;
19 atomic { ctr[myidx]-- }
20 }

Figure 11.12: QRCU Reader Process

QRCU readers are modeled by the qrcu_reader() process shown in Fig-
ure 11.12. A do-od loop spans lines 5-16, with a single guard of “1” on line 6 that
makes it an infinite loop. Line 7 captures the current value of the global index, and lines
8-15 atomically increment it (and break from the infinite loop) if its value was non-zero
(atomic_inc_not_zero()). Line 17 marks entry into the RCU read-side critical
section, and line 18 marks exit from this critical section, both lines for the benefit of the
assert() statement that we shall encounter later. Line 19 atomically decrements the
same counter that we incremented, thereby exiting the RCU read-side critical section.

1 #define sum_unordered \
2 atomic { \
3 do \
4 :: 1 -> \
5 sum = ctr[0]; \
6 i = 1; \
7 break \
8 :: 1 -> \
9 sum = ctr[1]; \
10 i = 0; \
11 break \
12 od; \
13 } \
14 sum = sum + ctr[i]

Figure 11.13: QRCU Unordered Summation

The C-preprocessor macro shown in Figure 11.13 sums the pair of counters so as
to emulate weak memory ordering. Lines 2-13 fetch one of the counters, and line 14
fetches the other of the pair and sums them. The atomic block consists of a single do-od
statement. This do-od statement (spanning lines 3-12) is unusual in that it contains
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two unconditional branches with guards on lines 4 and 8, which causes Promela to
non-deterministically choose one of the two (but again, the full state-space search causes
Promela to eventually make all possible choices in each applicable situation). The
first branch fetches the zero-th counter and sets i to 1 (so that line 14 will fetch the
first counter), while the second branch does the opposite, fetching the first counter and
setting i to 0 (so that line 14 will fetch the second counter).

Quick Quiz 11.3: Is there a more straightforward way to code the do-od statement?

With the sum_unordered macro in place, we can now proceed to the update-
side process shown in Figure. The update-side process repeats indefinitely, with the
corresponding do-od loop ranging over lines 7-57. Each pass through the loop first
snapshots the global readerprogress array into the local readerstart array on
lines 12-21. This snapshot will be used for the assertion on line 53. Line 23 invokes
sum_unordered, and then lines 24-27 re-invoke sum_unordered if the fastpath
is potentially usable.

Lines 28-40 execute the slowpath code if need be, with lines 30 and 38 acquiring and
releasing the update-side lock, lines 31-33 flipping the index, and lines 34-37 waiting
for all pre-existing readers to complete.

Lines 44-56 then compare the current values in the readerprogress array to
those collected in the readerstart array, forcing an assertion failure should any
readers that started before this update still be in progress.

Quick Quiz 11.4: Why are there atomic blocks at lines 12-21 and lines 44-56, when
the operations within those atomic blocks have no atomic implementation on any current
production microprocessor?

Quick Quiz 11.5: Is the re-summing of the counters on lines 24-27 really necessary?

All that remains is the initialization block shown in Figure 11.15. This block simply
initializes the counter pair on lines 5-6, spawns the reader processes on lines 7-14, and
spawns the updater processes on lines 15-21. This is all done within an atomic block to
reduce state space.

11.6.1 Running the QRCU Example

To run the QRCU example, combine the code fragments in the previous section into
a single file named qrcu.spin, and place the definitions for spin_lock() and
spin_unlock() into a file named lock.h. Then use the following commands to
build and run the QRCU model:

spin -a qrcu.spin
cc -DSAFETY -o pan pan.c
./pan

The resulting output shows that this model passes all of the cases shown in Table 11.2.
Now, it would be nice to run the case with three readers and three updaters, however,
simple extrapolation indicates that this will require on the order of a terabyte of memory
best case. So, what to do? Here are some possible approaches:

1. See whether a smaller number of readers and updaters suffice to prove the general
case.

2. Manually construct a proof of correctness.

300

qrcu.spin
lock.h


1 proctype qrcu_updater(byte me)
2 {
3 int i;
4 byte readerstart[N_QRCU_READERS];
5 int sum;
6
7 do
8 :: 1 ->
9
10 /* Snapshot reader state. */
11
12 atomic {
13 i = 0;
14 do
15 :: i < N_QRCU_READERS ->
16 readerstart[i] = readerprogress[i];
17 i++
18 :: i >= N_QRCU_READERS ->
19 break
20 od
21 }
22
23 sum_unordered;
24 if
25 :: sum <= 1 -> sum_unordered
26 :: else -> skip
27 fi;
28 if
29 :: sum > 1 ->
30 spin_lock(mutex);
31 atomic { ctr[!idx]++ }
32 idx = !idx;
33 atomic { ctr[!idx]-- }
34 do
35 :: ctr[!idx] > 0 -> skip
36 :: ctr[!idx] == 0 -> break
37 od;
38 spin_unlock(mutex);
39 :: else -> skip
40 fi;
41
42 /* Verify reader progress. */
43
44 atomic {
45 i = 0;
46 sum = 0;
47 do
48 :: i < N_QRCU_READERS ->
49 sum = sum + (readerstart[i] == 1 &&
50 readerprogress[i] == 1);
51 i++
52 :: i >= N_QRCU_READERS ->
53 assert(sum == 0);
54 break
55 od
56 }
57 od
58 }

Figure 11.14: QRCU Updater Process
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1 init {
2 int i;
3
4 atomic {
5 ctr[idx] = 1;
6 ctr[!idx] = 0;
7 i = 0;
8 do
9 :: i < N_QRCU_READERS ->
10 readerprogress[i] = 0;
11 run qrcu_reader(i);
12 i++
13 :: i >= N_QRCU_READERS -> break
14 od;
15 i = 0;
16 do
17 :: i < N_QRCU_UPDATERS ->
18 run qrcu_updater(i);
19 i++
20 :: i >= N_QRCU_UPDATERS -> break
21 od
22 }
23 }

Figure 11.15: QRCU Initialization Process

updaters readers # states MB
1 1 376 2.6
1 2 6,177 2.9
1 3 82,127 7.5
2 1 29,399 4.5
2 2 1,071,180 75.4
2 3 33,866,700 2,715.2
3 1 258,605 22.3
3 2 169,533,000 14,979.9

Table 11.2: Memory Usage of QRCU Model
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3. Use a more capable tool.

4. Divide and conquer.

The following sections discuss each of these approaches.

11.6.2 How Many Readers and Updaters Are Really Needed?
One approach is to look carefully at the Promela code for qrcu_updater() and
notice that the only global state change is happening under the lock. Therefore, only
one updater at a time can possibly be modifying state visible to either readers or other
updaters. This means that any sequences of state changes can be carried out serially by
a single updater due to the fact that Promela does a full state-space search. Therefore, at
most two updaters are required: one to change state and a second to become confused.

The situation with the readers is less clear-cut, as each reader does only a single
read-side critical section then terminates. It is possible to argue that the useful number
of readers is limited, due to the fact that the fastpath must see at most a zero and a one
in the counters. This is a fruitful avenue of investigation, in fact, it leads to the full proof
of correctness described in the next section.

11.6.3 Alternative Approach: Proof of Correctness
An informal proof [McK07b] follows:

1. For synchronize_qrcu() to exit too early, then by definition there must
have been at least one reader present during synchronize_qrcu()’s full
execution.

2. The counter corresponding to this reader will have been at least 1 during this time
interval.

3. The synchronize_qrcu() code forces at least one of the counters to be at
least 1 at all times.

4. Therefore, at any given point in time, either one of the counters will be at least 2,
or both of the counters will be at least one.

5. However, the synchronize_qrcu() fastpath code can read only one of the
counters at a given time. It is therefore possible for the fastpath code to fetch the
first counter while zero, but to race with a counter flip so that the second counter
is seen as one.

6. There can be at most one reader persisting through such a race condition, as
otherwise the sum would be two or greater, which would cause the updater to
take the slowpath.

7. But if the race occurs on the fastpath’s first read of the counters, and then again
on its second read, there have to have been two counter flips.

8. Because a given updater flips the counter only once, and because the update-side
lock prevents a pair of updaters from concurrently flipping the counters, the
only way that the fastpath code can race with a flip twice is if the first updater
completes.
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9. But the first updater will not complete until after all pre-existing readers have
completed.

10. Therefore, if the fastpath races with a counter flip twice in succession, all pre-
existing readers must have completed, so that it is safe to take the fastpath.

Of course, not all parallel algorithms have such simple proofs. In such cases, it may
be necessary to enlist more capable tools.

11.6.4 Alternative Approach: More Capable Tools
Although Promela and Spin are quite useful, much more capable tools are available,
particularly for verifying hardware. This means that if it is possible to translate your
algorithm to the hardware-design VHDL language, as it often will be for low-level
parallel algorithms, then it is possible to apply these tools to your code (for example,
this was done for the first realtime RCU algorithm). However, such tools can be quite
expensive.

Although the advent of commodity multiprocessing might eventually result in pow-
erful free-software model-checkers featuring fancy state-space-reduction capabilities,
this does not help much in the here and now.

As an aside, there are Spin features that support approximate searches that require
fixed amounts of memory, however, I have never been able to bring myself to trust
approximations when verifying parallel algorithms.

Another approach might be to divide and conquer.

11.6.5 Alternative Approach: Divide and Conquer
It is often possible to break down a larger parallel algorithm into smaller pieces, which
can then be proven separately. For example, a 10-billion-state model might be broken
into a pair of 100,000-state models. Taking this approach not only makes it easier for
tools such as Promela to verify your algorithms, it can also make your algorithms easier
to understand.

11.7 Promela Parable: dynticks and Preemptible RCU
In early 2008, a preemptible variant of RCU was accepted into mainline Linux in
support of real-time workloads, a variant similar to the RCU implementations in the
-rt patchset [Mol05] since August 2005. Preemptible RCU is needed for real-time
workloads because older RCU implementations disable preemption across RCU read-
side critical sections, resulting in excessive real-time latencies.

However, one disadvantage of the older -rt implementation (described in Ap-
pendix D.4) was that each grace period requires work to be done on each CPU, even if
that CPU is in a low-power “dynticks-idle” state, and thus incapable of executing RCU
read-side critical sections. The idea behind the dynticks-idle state is that idle CPUs
should be physically powered down in order to conserve energy. In short, preemptible
RCU can disable a valuable energy-conservation feature of recent Linux kernels. Al-
though Josh Triplett and Paul McKenney had discussed some approaches for allowing
CPUs to remain in low-power state throughout an RCU grace period (thus preserving
the Linux kernel’s ability to conserve energy), matters did not come to a head until
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Steve Rostedt integrated a new dyntick implementation with preemptible RCU in the -rt
patchset.

This combination caused one of Steve’s systems to hang on boot, so in October, Paul
coded up a dynticks-friendly modification to preemptible RCU’s grace-period process-
ing. Steve coded up rcu_irq_enter() and rcu_irq_exit() interfaces called
from the irq_enter() and irq_exit() interrupt entry/exit functions. These
rcu_irq_enter() and rcu_irq_exit() functions are needed to allow RCU to
reliably handle situations where a dynticks-idle CPUs is momentarily powered up for
an interrupt handler containing RCU read-side critical sections. With these changes in
place, Steve’s system booted reliably, but Paul continued inspecting the code periodically
on the assumption that we could not possibly have gotten the code right on the first try.

Paul reviewed the code repeatedly from October 2007 to February 2008, and almost
always found at least one bug. In one case, Paul even coded and tested a fix before
realizing that the bug was illusory, and in fact in all cases, the “bug” turned out to be
illusory.

Near the end of February, Paul grew tired of this game. He therefore decided to
enlist the aid of Promela and spin [Hol03], as described in Section 11. The following
presents a series of seven increasingly realistic Promela models, the last of which passes,
consuming about 40GB of main memory for the state space.

More important, Promela and Spin did find a very subtle bug for me!
Quick Quiz 11.6: Yeah, that’s just great! Now, just what am I supposed to do if I

don’t happen to have a machine with 40GB of main memory???
Still better would be to come up with a simpler and faster algorithm that has a

smaller state space. Even better would be an algorithm so simple that its correctness
was obvious to the casual observer!

Section 11.7.1 gives an overview of preemptible RCU’s dynticks interface, Sec-
tion 11.7.2, and Section 11.7.3 lists lessons (re)learned during this effort.

11.7.1 Introduction to Preemptible RCU and dynticks
The per-CPU dynticks_progress_counter variable is central to the interface
between dynticks and preemptible RCU. This variable has an even value whenever the
corresponding CPU is in dynticks-idle mode, and an odd value otherwise. A CPU exits
dynticks-idle mode for the following three reasons:

1. to start running a task,

2. when entering the outermost of a possibly nested set of interrupt handlers, and

3. when entering an NMI handler.

Preemptible RCU’s grace-period machinery samples the value of the dynticks_
progress_counter variable in order to determine when a dynticks-idle CPU may
safely be ignored.

The following three sections give an overview of the task interface, the interrupt/NMI
interface, and the use of the dynticks_progress_counter variable by the grace-
period machinery.

11.7.1.1 Task Interface

When a given CPU enters dynticks-idle mode because it has no more tasks to run, it
invokes rcu_enter_nohz():
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1 static inline void rcu_enter_nohz(void)
2 {
3 mb();
4 __get_cpu_var(dynticks_progress_counter)++;
5 WARN_ON(__get_cpu_var(dynticks_progress_counter) &
6 0x1);
7 }

This function simply increments dynticks_progress_counter and checks
that the result is even, but first executing a memory barrier to ensure that any other
CPU that sees the new value of dynticks_progress_counter will also see the
completion of any prior RCU read-side critical sections.

Similarly, when a CPU that is in dynticks-idle mode prepares to start executing a
newly runnable task, it invokes rcu_exit_nohz:

1 static inline void rcu_exit_nohz(void)
2 {
3 __get_cpu_var(dynticks_progress_counter)++;
4 mb();
5 WARN_ON(!(__get_cpu_var(dynticks_progress_counter) &
6 0x1));
7 }

This function again increments dynticks_progress_counter, but follows it
with a memory barrier to ensure that if any other CPU sees the result of any subsequent
RCU read-side critical section, then that other CPU will also see the incremented value
of dynticks_progress_counter. Finally, rcu_exit_nohz() checks that
the result of the increment is an odd value.

The rcu_enter_nohz() and rcu_exit_nohz functions handle the case
where a CPU enters and exits dynticks-idle mode due to task execution, but does
not handle interrupts, which are covered in the following section.

11.7.1.2 Interrupt Interface

The rcu_irq_enter() and rcu_irq_exit() functions handle interrupt/NMI
entry and exit, respectively. Of course, nested interrupts must also be properly accounted
for. The possibility of nested interrupts is handled by a second per-CPU variable, rcu_
update_flag, which is incremented upon entry to an interrupt or NMI handler (in
rcu_irq_enter()) and is decremented upon exit (in rcu_irq_exit()). In
addition, the pre-existing in_interrupt() primitive is used to distinguish between
an outermost or a nested interrupt/NMI.

Interrupt entry is handled by the rcu_irq_enter shown below:

1 void rcu_irq_enter(void)
2 {
3 int cpu = smp_processor_id();
4
5 if (per_cpu(rcu_update_flag, cpu))
6 per_cpu(rcu_update_flag, cpu)++;
7 if (!in_interrupt() &&
8 (per_cpu(dynticks_progress_counter,
9 cpu) & 0x1) == 0) {
10 per_cpu(dynticks_progress_counter, cpu)++;
11 smp_mb();
12 per_cpu(rcu_update_flag, cpu)++;
13 }
14 }

Line 3 fetches the current CPU’s number, while lines 5 and 6 increment the rcu_
update_flag nesting counter if it is already non-zero. Lines 7-9 check to see
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whether we are the outermost level of interrupt, and, if so, whether dynticks_
progress_counter needs to be incremented. If so, line 10 increments dynticks_
progress_counter, line 11 executes a memory barrier, and line 12 increments
rcu_update_flag. As with rcu_exit_nohz(), the memory barrier ensures
that any other CPU that sees the effects of an RCU read-side critical section in the
interrupt handler (following the rcu_irq_enter() invocation) will also see the
increment of dynticks_progress_counter.

Quick Quiz 11.7: Why not simply increment rcu_update_flag, and then only
increment dynticks_progress_counter if the old value of rcu_update_
flag was zero???

Quick Quiz 11.8: But if line 7 finds that we are the outermost interrupt, wouldn’t
we always need to increment dynticks_progress_counter?

Interrupt exit is handled similarly by rcu_irq_exit():

1 void rcu_irq_exit(void)
2 {
3 int cpu = smp_processor_id();
4
5 if (per_cpu(rcu_update_flag, cpu)) {
6 if (--per_cpu(rcu_update_flag, cpu))
7 return;
8 WARN_ON(in_interrupt());
9 smp_mb();
10 per_cpu(dynticks_progress_counter, cpu)++;
11 WARN_ON(per_cpu(dynticks_progress_counter,
12 cpu) & 0x1);
13 }
14 }

Line 3 fetches the current CPU’s number, as before. Line 5 checks to see if the
rcu_update_flag is non-zero, returning immediately (via falling off the end of
the function) if not. Otherwise, lines 6 through 12 come into play. Line 6 decrements
rcu_update_flag, returning if the result is not zero. Line 8 verifies that we are
indeed leaving the outermost level of nested interrupts, line 9 executes a memory barrier,
line 10 increments dynticks_progress_counter, and lines 11 and 12 verify that
this variable is now even. As with rcu_enter_nohz(), the memory barrier ensures
that any other CPU that sees the increment of dynticks_progress_counter
will also see the effects of an RCU read-side critical section in the interrupt handler
(preceding the rcu_irq_exit() invocation).

These two sections have described how the dynticks_progress_counter
variable is maintained during entry to and exit from dynticks-idle mode, both by tasks
and by interrupts and NMIs. The following section describes how this variable is used
by preemptible RCU’s grace-period machinery.

11.7.1.3 Grace-Period Interface

Of the four preemptible RCU grace-period states shown in Figure D.63 on page 549
in Appendix D.4, only the rcu_try_flip_waitack_state() and rcu_try_
flip_waitmb_state() states need to wait for other CPUs to respond.

Of course, if a given CPU is in dynticks-idle state, we shouldn’t wait for it. Therefore,
just before entering one of these two states, the preceding state takes a snapshot of each
CPU’s dynticks_progress_counter variable, placing the snapshot in another
per-CPU variable, rcu_dyntick_snapshot. This is accomplished by invoking
dyntick_save_progress_counter, shown below:
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1 static void dyntick_save_progress_counter(int cpu)
2 {
3 per_cpu(rcu_dyntick_snapshot, cpu) =
4 per_cpu(dynticks_progress_counter, cpu);
5 }

The rcu_try_flip_waitack_state() state invokes rcu_try_flip_waitack_
needed(), shown below:

1 static inline int
2 rcu_try_flip_waitack_needed(int cpu)
3 {
4 long curr;
5 long snap;
6
7 curr = per_cpu(dynticks_progress_counter, cpu);
8 snap = per_cpu(rcu_dyntick_snapshot, cpu);
9 smp_mb();
10 if ((curr == snap) && ((curr & 0x1) == 0))
11 return 0;
12 if ((curr - snap) > 2 || (snap & 0x1) == 0)
13 return 0;
14 return 1;
15 }

Lines 7 and 8 pick up current and snapshot versions of dynticks_progress_
counter, respectively. The memory barrier on line ensures that the counter checks in
the later rcu_try_flip_waitzero_state follow the fetches of these counters.
Lines 10 and 11 return zero (meaning no communication with the specified CPU is
required) if that CPU has remained in dynticks-idle state since the time that the snapshot
was taken. Similarly, lines 12 and 13 return zero if that CPU was initially in dynticks-
idle state or if it has completely passed through a dynticks-idle state. In both these cases,
there is no way that that CPU could have retained the old value of the grace-period
counter. If neither of these conditions hold, line 14 returns one, meaning that the CPU
needs to explicitly respond.

For its part, the rcu_try_flip_waitmb_state state invokes rcu_try_
flip_waitmb_needed(), shown below:

1 static inline int
2 rcu_try_flip_waitmb_needed(int cpu)
3 {
4 long curr;
5 long snap;
6
7 curr = per_cpu(dynticks_progress_counter, cpu);
8 snap = per_cpu(rcu_dyntick_snapshot, cpu);
9 smp_mb();
10 if ((curr == snap) && ((curr & 0x1) == 0))
11 return 0;
12 if (curr != snap)
13 return 0;
14 return 1;
15 }

This is quite similar to rcu_try_flip_waitack_needed, the difference be-
ing in lines 12 and 13, because any transition either to or from dynticks-idle state
executes the memory barrier needed by the rcu_try_flip_waitmb_state()
state.

We now have seen all the code involved in the interface between RCU and the
dynticks-idle state. The next section builds up the Promela model used to verify this
code.

Quick Quiz 11.9: Can you spot any bugs in any of the code in this section?
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11.7.2 Validating Preemptible RCU and dynticks
This section develops a Promela model for the interface between dynticks and RCU
step by step, with each of the following sections illustrating one step, starting with the
process-level code, adding assertions, interrupts, and finally NMIs.

11.7.2.1 Basic Model

This section translates the process-level dynticks entry/exit code and the grace-period
processing into Promela [Hol03]. We start with rcu_exit_nohz() and rcu_
enter_nohz() from the 2.6.25-rc4 kernel, placing these in a single Promela process
that models exiting and entering dynticks-idle mode in a loop as follows:

1 proctype dyntick_nohz()
2 {
3 byte tmp;
4 byte i = 0;
5
6 do
7 :: i >= MAX_DYNTICK_LOOP_NOHZ -> break;
8 :: i < MAX_DYNTICK_LOOP_NOHZ ->
9 tmp = dynticks_progress_counter;
10 atomic {
11 dynticks_progress_counter = tmp + 1;
12 assert((dynticks_progress_counter & 1) == 1);
13 }
14 tmp = dynticks_progress_counter;
15 atomic {
16 dynticks_progress_counter = tmp + 1;
17 assert((dynticks_progress_counter & 1) == 0);
18 }
19 i++;
20 od;
21 }

Lines 6 and 20 define a loop. Line 7 exits the loop once the loop counter i has
exceeded the limit MAX_DYNTICK_LOOP_NOHZ. Line 8 tells the loop construct
to execute lines 9-19 for each pass through the loop. Because the conditionals on
lines 7 and 8 are exclusive of each other, the normal Promela random selection of
true conditions is disabled. Lines 9 and 11 model rcu_exit_nohz()’s non-atomic
increment of dynticks_progress_counter, while line 12 models the WARN_
ON(). The atomic construct simply reduces the Promela state space, given that
the WARN_ON() is not strictly speaking part of the algorithm. Lines 14-18 similarly
models the increment and WARN_ON() for rcu_enter_nohz(). Finally, line 19
increments the loop counter.

Each pass through the loop therefore models a CPU exiting dynticks-idle mode (for
example, starting to execute a task), then re-entering dynticks-idle mode (for example,
that same task blocking).

Quick Quiz 11.10: Why isn’t the memory barrier in rcu_exit_nohz() and
rcu_enter_nohz() modeled in Promela?

Quick Quiz 11.11: Isn’t it a bit strange to model rcu_exit_nohz() followed
by rcu_enter_nohz()? Wouldn’t it be more natural to instead model entry before
exit?

The next step is to model the interface to RCU’s grace-period processing. For this,
we need to model dyntick_save_progress_counter(), rcu_try_flip_
waitack_needed(), rcu_try_flip_waitmb_needed(), as well as portions
of rcu_try_flip_waitack() and rcu_try_flip_waitmb(), all from the
2.6.25-rc4 kernel. The following grace_period() Promela process models these
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functions as they would be invoked during a single pass through preemptible RCU’s
grace-period processing.

1 proctype grace_period()
2 {
3 byte curr;
4 byte snap;
5
6 atomic {
7 printf("MDLN = %d\n", MAX_DYNTICK_LOOP_NOHZ);
8 snap = dynticks_progress_counter;
9 }
10 do
11 :: 1 ->
12 atomic {
13 curr = dynticks_progress_counter;
14 if
15 :: (curr == snap) && ((curr & 1) == 0) ->
16 break;
17 :: (curr - snap) > 2 || (snap & 1) == 0 ->
18 break;
19 :: 1 -> skip;
20 fi;
21 }
22 od;
23 snap = dynticks_progress_counter;
24 do
25 :: 1 ->
26 atomic {
27 curr = dynticks_progress_counter;
28 if
29 :: (curr == snap) && ((curr & 1) == 0) ->
30 break;
31 :: (curr != snap) ->
32 break;
33 :: 1 -> skip;
34 fi;
35 }
36 od;
37 }

Lines 6-9 print out the loop limit (but only into the .trail file in case of error) and mod-
els a line of code from rcu_try_flip_idle() and its call to dyntick_save_
progress_counter(), which takes a snapshot of the current CPU’s dynticks_
progress_counter variable. These two lines are executed atomically to reduce
state space.

Lines 10-22 model the relevant code in rcu_try_flip_waitack() and its call
to rcu_try_flip_waitack_needed(). This loop is modeling the grace-period
state machine waiting for a counter-flip acknowledgement from each CPU, but only that
part that interacts with dynticks-idle CPUs.

Line 23 models a line from rcu_try_flip_waitzero() and its call to dyntick_
save_progress_counter(), again taking a snapshot of the CPU’s dynticks_
progress_counter variable.

Finally, lines 24-36 model the relevant code in rcu_try_flip_waitack()
and its call to rcu_try_flip_waitack_needed(). This loop is modeling the
grace-period state-machine waiting for each CPU to execute a memory barrier, but again
only that part that interacts with dynticks-idle CPUs.

Quick Quiz 11.12: Wait a minute! In the Linux kernel, both dynticks_progress_
counter and rcu_dyntick_snapshot are per-CPU variables. So why are they
instead being modeled as single global variables?

The resulting model (dyntickRCU-base.spin), when run with the runspin.
sh script, generates 691 states and passes without errors, which is not at all surprising
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given that it completely lacks the assertions that could find failures. The next section
therefore adds safety assertions.

11.7.2.2 Validating Safety

A safe RCU implementation must never permit a grace period to complete before the
completion of any RCU readers that started before the start of the grace period. This is
modeled by a gp_state variable that can take on three states as follows:

1 #define GP_IDLE 0
2 #define GP_WAITING 1
3 #define GP_DONE 2
4 byte gp_state = GP_DONE;

The grace_period() process sets this variable as it progresses through the
grace-period phases, as shown below:

1 proctype grace_period()
2 {
3 byte curr;
4 byte snap;
5
6 gp_state = GP_IDLE;
7 atomic {
8 printf("MDLN = %d\n", MAX_DYNTICK_LOOP_NOHZ);
9 snap = dynticks_progress_counter;
10 gp_state = GP_WAITING;
11 }
12 do
13 :: 1 ->
14 atomic {
15 curr = dynticks_progress_counter;
16 if
17 :: (curr == snap) && ((curr & 1) == 0) ->
18 break;
19 :: (curr - snap) > 2 || (snap & 1) == 0 ->
20 break;
21 :: 1 -> skip;
22 fi;
23 }
24 od;
25 gp_state = GP_DONE;
26 gp_state = GP_IDLE;
27 atomic {
28 snap = dynticks_progress_counter;
29 gp_state = GP_WAITING;
30 }
31 do
32 :: 1 ->
33 atomic {
34 curr = dynticks_progress_counter;
35 if
36 :: (curr == snap) && ((curr & 1) == 0) ->
37 break;
38 :: (curr != snap) ->
39 break;
40 :: 1 -> skip;
41 fi;
42 }
43 od;
44 gp_state = GP_DONE;
45 }

Lines 6, 10, 25, 26, 29, and 44 update this variable (combining atomically with
algorithmic operations where feasible) to allow the dyntick_nohz() process to
verify the basic RCU safety property. The form of this verification is to assert that the
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value of the gp_state variable cannot jump from GP_IDLE to GP_DONE during a
time period over which RCU readers could plausibly persist.

Quick Quiz 11.13: Given there are a pair of back-to-back changes to gp_state
on lines 25 and 26, how can we be sure that line 25’s changes won’t be lost?

The dyntick_nohz() Promela process implements this verification as shown
below:

1 proctype dyntick_nohz()
2 {
3 byte tmp;
4 byte i = 0;
5 bit old_gp_idle;
6
7 do
8 :: i >= MAX_DYNTICK_LOOP_NOHZ -> break;
9 :: i < MAX_DYNTICK_LOOP_NOHZ ->
10 tmp = dynticks_progress_counter;
11 atomic {
12 dynticks_progress_counter = tmp + 1;
13 old_gp_idle = (gp_state == GP_IDLE);
14 assert((dynticks_progress_counter & 1) == 1);
15 }
16 atomic {
17 tmp = dynticks_progress_counter;
18 assert(!old_gp_idle ||
19 gp_state != GP_DONE);
20 }
21 atomic {
22 dynticks_progress_counter = tmp + 1;
23 assert((dynticks_progress_counter & 1) == 0);
24 }
25 i++;
26 od;
27 }

Line 13 sets a new old_gp_idle flag if the value of the gp_state variable is
GP_IDLE at the beginning of task execution, and the assertion at lines 18 and 19 fire
if the gp_state variable has advanced to GP_DONE during task execution, which
would be illegal given that a single RCU read-side critical section could span the entire
intervening time period.

The resulting model (dyntickRCU-base-s.spin), when run with the runspin.
sh script, generates 964 states and passes without errors, which is reassuring. That said,
although safety is critically important, it is also quite important to avoid indefinitely
stalling grace periods. The next section therefore covers verifying liveness.

11.7.2.3 Validating Liveness

Although liveness can be difficult to prove, there is a simple trick that applies here.
The first step is to make dyntick_nohz() indicate that it is done via a dyntick_
nohz_done variable, as shown on line 27 of the following:

1 proctype dyntick_nohz()
2 {
3 byte tmp;
4 byte i = 0;
5 bit old_gp_idle;
6
7 do
8 :: i >= MAX_DYNTICK_LOOP_NOHZ -> break;
9 :: i < MAX_DYNTICK_LOOP_NOHZ ->
10 tmp = dynticks_progress_counter;
11 atomic {
12 dynticks_progress_counter = tmp + 1;
13 old_gp_idle = (gp_state == GP_IDLE);
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14 assert((dynticks_progress_counter & 1) == 1);
15 }
16 atomic {
17 tmp = dynticks_progress_counter;
18 assert(!old_gp_idle ||
19 gp_state != GP_DONE);
20 }
21 atomic {
22 dynticks_progress_counter = tmp + 1;
23 assert((dynticks_progress_counter & 1) == 0);
24 }
25 i++;
26 od;
27 dyntick_nohz_done = 1;
28 }

With this variable in place, we can add assertions to grace_period() to check
for unnecessary blockage as follows:

1 proctype grace_period()
2 {
3 byte curr;
4 byte snap;
5 bit shouldexit;
6
7 gp_state = GP_IDLE;
8 atomic {
9 printf("MDLN = %d\n", MAX_DYNTICK_LOOP_NOHZ);
10 shouldexit = 0;
11 snap = dynticks_progress_counter;
12 gp_state = GP_WAITING;
13 }
14 do
15 :: 1 ->
16 atomic {
17 assert(!shouldexit);
18 shouldexit = dyntick_nohz_done;
19 curr = dynticks_progress_counter;
20 if
21 :: (curr == snap) && ((curr & 1) == 0) ->
22 break;
23 :: (curr - snap) > 2 || (snap & 1) == 0 ->
24 break;
25 :: else -> skip;
26 fi;
27 }
28 od;
29 gp_state = GP_DONE;
30 gp_state = GP_IDLE;
31 atomic {
32 shouldexit = 0;
33 snap = dynticks_progress_counter;
34 gp_state = GP_WAITING;
35 }
36 do
37 :: 1 ->
38 atomic {
39 assert(!shouldexit);
40 shouldexit = dyntick_nohz_done;
41 curr = dynticks_progress_counter;
42 if
43 :: (curr == snap) && ((curr & 1) == 0) ->
44 break;
45 :: (curr != snap) ->
46 break;
47 :: else -> skip;
48 fi;
49 }
50 od;
51 gp_state = GP_DONE;
52 }

We have added the shouldexit variable on line 5, which we initialize to zero on
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line 10. Line 17 asserts that shouldexit is not set, while line 18 sets shouldexit
to the dyntick_nohz_done variable maintained by dyntick_nohz(). This
assertion will therefore trigger if we attempt to take more than one pass through the
wait-for-counter-flip-acknowledgement loop after dyntick_nohz() has completed
execution. After all, if dyntick_nohz() is done, then there cannot be any more
state changes to force us out of the loop, so going through twice in this state means an
infinite loop, which in turn means no end to the grace period.

Lines 32, 39, and 40 operate in a similar manner for the second (memory-barrier)
loop.

However, running this model (dyntickRCU-base-sl-busted.spin) re-
sults in failure, as line 23 is checking that the wrong variable is even. Upon failure,
spin writes out a “trail” file (dyntickRCU-base-sl-busted.spin.trail)
file, which records the sequence of states that lead to the failure. Use the spin -t -p
-g -l dyntickRCU-base-sl-busted.spin command to cause spin to re-
trace this sequence of state, printing the statements executed and the values of variables
(dyntickRCU-base-sl-busted.spin.trail.txt). Note that the line num-
bers do not match the listing above due to the fact that spin takes both functions in a sin-
gle file. However, the line numbers do match the full model (dyntickRCU-base-sl-busted.
spin).

We see that the dyntick_nohz() process completed at step 34 (search for “34:”),
but that the grace_period() process nonetheless failed to exit the loop. The value
of curr is 6 (see step 35) and that the value of snap is 5 (see step 17). Therefore
the first condition on line 21 above does not hold because curr != snap, and the
second condition on line 23 does not hold either because snap is odd and because
curr is only one greater than snap.

So one of these two conditions has to be incorrect. Referring to the comment block
in rcu_try_flip_waitack_needed() for the first condition:

If the CPU remained in dynticks mode for the entire time and didn’t take
any interrupts, NMIs, SMIs, or whatever, then it cannot be in the middle
of an rcu_read_lock(), so the next rcu_read_lock() it executes
must use the new value of the counter. So we can safely pretend that this
CPU already acknowledged the counter.

The first condition does match this, because if curr == snap and if curr is
even, then the corresponding CPU has been in dynticks-idle mode the entire time, as
required. So let’s look at the comment block for the second condition:

If the CPU passed through or entered a dynticks idle phase with no active
irq handlers, then, as above, we can safely pretend that this CPU already
acknowledged the counter.

The first part of the condition is correct, because if curr and snap differ by two,
there will be at least one even number in between, corresponding to having passed
completely through a dynticks-idle phase. However, the second part of the condition
corresponds to having started in dynticks-idle mode, not having finished in this mode.
We therefore need to be testing curr rather than snap for being an even number.

The corrected C code is as follows:

1 static inline int
2 rcu_try_flip_waitack_needed(int cpu)
3 {
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4 long curr;
5 long snap;
6
7 curr = per_cpu(dynticks_progress_counter, cpu);
8 snap = per_cpu(rcu_dyntick_snapshot, cpu);
9 smp_mb();
10 if ((curr == snap) && ((curr & 0x1) == 0))
11 return 0;
12 if ((curr - snap) > 2 || (curr & 0x1) == 0)
13 return 0;
14 return 1;
15 }

Lines 10-13 can now be combined and simplified, resulting in the following. A
similar simplification can be applied to rcu_try_flip_waitmb_needed.

1 static inline int
2 rcu_try_flip_waitack_needed(int cpu)
3 {
4 long curr;
5 long snap;
6
7 curr = per_cpu(dynticks_progress_counter, cpu);
8 snap = per_cpu(rcu_dyntick_snapshot, cpu);
9 smp_mb();
10 if ((curr - snap) >= 2 || (curr & 0x1) == 0)
11 return 0;
12 return 1;
13 }

Making the corresponding correction in the model (dyntickRCU-base-sl.
spin) results in a correct verification with 661 states that passes without errors. How-
ever, it is worth noting that the first version of the liveness verification failed to catch
this bug, due to a bug in the liveness verification itself. This liveness-verification bug
was located by inserting an infinite loop in the grace_period() process, and noting
that the liveness-verification code failed to detect this problem!

We have now successfully verified both safety and liveness conditions, but only for
processes running and blocking. We also need to handle interrupts, a task taken up in
the next section.

11.7.2.4 Interrupts

There are a couple of ways to model interrupts in Promela:

1. using C-preprocessor tricks to insert the interrupt handler between each and every
statement of the dynticks_nohz() process, or

2. modeling the interrupt handler with a separate process.

A bit of thought indicated that the second approach would have a smaller state
space, though it requires that the interrupt handler somehow run atomically with respect
to the dynticks_nohz() process, but not with respect to the grace_period()
process.

Fortunately, it turns out that Promela permits you to branch out of atomic statements.
This trick allows us to have the interrupt handler set a flag, and recode dynticks_
nohz() to atomically check this flag and execute only when the flag is not set. This
can be accomplished with a C-preprocessor macro that takes a label and a Promela
statement as follows:
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1 #define EXECUTE_MAINLINE(label, stmt) \
2 label: skip; \
3 atomic { \
4 if \
5 :: in_dyntick_irq -> goto label; \
6 :: else -> stmt; \
7 fi; \
8 } \

One might use this macro as follows:

EXECUTE_MAINLINE(stmt1,
tmp = dynticks_progress_counter)

Line 2 of the macro creates the specified statement label. Lines 3-8 are an atomic
block that tests the in_dyntick_irq variable, and if this variable is set (indicating
that the interrupt handler is active), branches out of the atomic block back to the label.
Otherwise, line 6 executes the specified statement. The overall effect is that mainline
execution stalls any time an interrupt is active, as required.

11.7.2.5 Validating Interrupt Handlers

The first step is to convert dyntick_nohz() to EXECUTE_MAINLINE() form, as
follows:

1 proctype dyntick_nohz()
2 {
3 byte tmp;
4 byte i = 0;
5 bit old_gp_idle;
6
7 do
8 :: i >= MAX_DYNTICK_LOOP_NOHZ -> break;
9 :: i < MAX_DYNTICK_LOOP_NOHZ ->
10 EXECUTE_MAINLINE(stmt1,
11 tmp = dynticks_progress_counter)
12 EXECUTE_MAINLINE(stmt2,
13 dynticks_progress_counter = tmp + 1;
14 old_gp_idle = (gp_state == GP_IDLE);
15 assert((dynticks_progress_counter & 1) == 1))
16 EXECUTE_MAINLINE(stmt3,
17 tmp = dynticks_progress_counter;
18 assert(!old_gp_idle ||
19 gp_state != GP_DONE))
20 EXECUTE_MAINLINE(stmt4,
21 dynticks_progress_counter = tmp + 1;
22 assert((dynticks_progress_counter & 1) == 0))
23 i++;
24 od;
25 dyntick_nohz_done = 1;
26 }

It is important to note that when a group of statements is passed to EXECUTE_
MAINLINE(), as in lines 11-14, all statements in that group execute atomically.

Quick Quiz 11.14: But what would you do if you needed the statements in a single
EXECUTE_MAINLINE() group to execute non-atomically?

Quick Quiz 11.15: But what if the dynticks_nohz() process had “if” or “do”
statements with conditions, where the statement bodies of these constructs needed to
execute non-atomically?

The next step is to write a dyntick_irq() process to model an interrupt handler:

1 proctype dyntick_irq()
2 {
3 byte tmp;
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4 byte i = 0;
5 bit old_gp_idle;
6
7 do
8 :: i >= MAX_DYNTICK_LOOP_IRQ -> break;
9 :: i < MAX_DYNTICK_LOOP_IRQ ->
10 in_dyntick_irq = 1;
11 if
12 :: rcu_update_flag > 0 ->
13 tmp = rcu_update_flag;
14 rcu_update_flag = tmp + 1;
15 :: else -> skip;
16 fi;
17 if
18 :: !in_interrupt &&
19 (dynticks_progress_counter & 1) == 0 ->
20 tmp = dynticks_progress_counter;
21 dynticks_progress_counter = tmp + 1;
22 tmp = rcu_update_flag;
23 rcu_update_flag = tmp + 1;
24 :: else -> skip;
25 fi;
26 tmp = in_interrupt;
27 in_interrupt = tmp + 1;
28 old_gp_idle = (gp_state == GP_IDLE);
29 assert(!old_gp_idle || gp_state != GP_DONE);
30 tmp = in_interrupt;
31 in_interrupt = tmp - 1;
32 if
33 :: rcu_update_flag != 0 ->
34 tmp = rcu_update_flag;
35 rcu_update_flag = tmp - 1;
36 if
37 :: rcu_update_flag == 0 ->
38 tmp = dynticks_progress_counter;
39 dynticks_progress_counter = tmp + 1;
40 :: else -> skip;
41 fi;
42 :: else -> skip;
43 fi;
44 atomic {
45 in_dyntick_irq = 0;
46 i++;
47 }
48 od;
49 dyntick_irq_done = 1;
50 }

The loop from line 7-48 models up to MAX_DYNTICK_LOOP_IRQ interrupts, with
lines 8 and 9 forming the loop condition and line 45 incrementing the control variable.
Line 10 tells dyntick_nohz() that an interrupt handler is running, and line 45
tells dyntick_nohz() that this handler has completed. Line 49 is used for liveness
verification, much as is the corresponding line of dyntick_nohz().

Quick Quiz 11.16: Why are lines 45 and 46 (the in_dyntick_irq = 0; and
the i++;) executed atomically?

Lines 11-25 model rcu_irq_enter(), and lines 26 and 27 model the relevant
snippet of __irq_enter(). Lines 28 and 29 verifies safety in much the same
manner as do the corresponding lines of dynticks_nohz(). Lines 30 and 31 model
the relevant snippet of __irq_exit(), and finally lines 32-43 model rcu_irq_
exit().

Quick Quiz 11.17: What property of interrupts is this dynticks_irq() process
unable to model?

The grace_period process then becomes as follows:

1 proctype grace_period()
2 {
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3 byte curr;
4 byte snap;
5 bit shouldexit;
6
7 gp_state = GP_IDLE;
8 atomic {
9 printf("MDLN = %d\n", MAX_DYNTICK_LOOP_NOHZ);
10 printf("MDLI = %d\n", MAX_DYNTICK_LOOP_IRQ);
11 shouldexit = 0;
12 snap = dynticks_progress_counter;
13 gp_state = GP_WAITING;
14 }
15 do
16 :: 1 ->
17 atomic {
18 assert(!shouldexit);
19 shouldexit = dyntick_nohz_done && dyntick_irq_done;
20 curr = dynticks_progress_counter;
21 if
22 :: (curr - snap) >= 2 || (curr & 1) == 0 ->
23 break;
24 :: else -> skip;
25 fi;
26 }
27 od;
28 gp_state = GP_DONE;
29 gp_state = GP_IDLE;
30 atomic {
31 shouldexit = 0;
32 snap = dynticks_progress_counter;
33 gp_state = GP_WAITING;
34 }
35 do
36 :: 1 ->
37 atomic {
38 assert(!shouldexit);
39 shouldexit = dyntick_nohz_done && dyntick_irq_done;
40 curr = dynticks_progress_counter;
41 if
42 :: (curr != snap) || ((curr & 1) == 0) ->
43 break;
44 :: else -> skip;
45 fi;
46 }
47 od;
48 gp_state = GP_DONE;
49 }

The implementation of grace_period() is very similar to the earlier one. The
only changes are the addition of line 10 to add the new interrupt-count parameter,
changes to lines 19 and 39 to add the new dyntick_irq_done variable to the
liveness checks, and of course the optimizations on lines 22 and 42.

This model (dyntickRCU-irqnn-ssl.spin) results in a correct verification
with roughly half a million states, passing without errors. However, this version of the
model does not handle nested interrupts. This topic is taken up in the nest section.

11.7.2.6 Validating Nested Interrupt Handlers

Nested interrupt handlers may be modeled by splitting the body of the loop in dyntick_
irq() as follows:

1 proctype dyntick_irq()
2 {
3 byte tmp;
4 byte i = 0;
5 byte j = 0;
6 bit old_gp_idle;
7 bit outermost;
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8
9 do
10 :: i >= MAX_DYNTICK_LOOP_IRQ &&
11 j >= MAX_DYNTICK_LOOP_IRQ -> break;
12 :: i < MAX_DYNTICK_LOOP_IRQ ->
13 atomic {
14 outermost = (in_dyntick_irq == 0);
15 in_dyntick_irq = 1;
16 }
17 if
18 :: rcu_update_flag > 0 ->
19 tmp = rcu_update_flag;
20 rcu_update_flag = tmp + 1;
21 :: else -> skip;
22 fi;
23 if
24 :: !in_interrupt &&
25 (dynticks_progress_counter & 1) == 0 ->
26 tmp = dynticks_progress_counter;
27 dynticks_progress_counter = tmp + 1;
28 tmp = rcu_update_flag;
29 rcu_update_flag = tmp + 1;
30 :: else -> skip;
31 fi;
32 tmp = in_interrupt;
33 in_interrupt = tmp + 1;
34 atomic {
35 if
36 :: outermost ->
37 old_gp_idle = (gp_state == GP_IDLE);
38 :: else -> skip;
39 fi;
40 }
41 i++;
42 :: j < i ->
43 atomic {
44 if
45 :: j + 1 == i ->
46 assert(!old_gp_idle ||
47 gp_state != GP_DONE);
48 :: else -> skip;
49 fi;
50 }
51 tmp = in_interrupt;
52 in_interrupt = tmp - 1;
53 if
54 :: rcu_update_flag != 0 ->
55 tmp = rcu_update_flag;
56 rcu_update_flag = tmp - 1;
57 if
58 :: rcu_update_flag == 0 ->
59 tmp = dynticks_progress_counter;
60 dynticks_progress_counter = tmp + 1;
61 :: else -> skip;
62 fi;
63 :: else -> skip;
64 fi;
65 atomic {
66 j++;
67 in_dyntick_irq = (i != j);
68 }
69 od;
70 dyntick_irq_done = 1;
71 }

This is similar to the earlier dynticks_irq() process. It adds a second counter
variable j on line 5, so that i counts entries to interrupt handlers and j counts exits. The
outermost variable on line 7 helps determine when the gp_state variable needs to
be sampled for the safety checks. The loop-exit check on lines 10 and 11 is updated to
require that the specified number of interrupt handlers are exited as well as entered, and
the increment of i is moved to line 41, which is the end of the interrupt-entry model.
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Lines 13-16 set the outermost variable to indicate whether this is the outermost of a
set of nested interrupts and to set the in_dyntick_irq variable that is used by the
dyntick_nohz() process. Lines 34-40 capture the state of the gp_state variable,
but only when in the outermost interrupt handler.

Line 42 has the do-loop conditional for interrupt-exit modeling: as long as we
have exited fewer interrupts than we have entered, it is legal to exit another interrupt.
Lines 43-50 check the safety criterion, but only if we are exiting from the outermost
interrupt level. Finally, lines 65-68 increment the interrupt-exit count j and, if this is
the outermost interrupt level, clears in_dyntick_irq.

This model (dyntickRCU-irq-ssl.spin) results in a correct verification with
a bit more than half a million states, passing without errors. However, this version of
the model does not handle NMIs, which are taken up in the nest section.

11.7.2.7 Validating NMI Handlers

We take the same general approach for NMIs as we do for interrupts, keeping in mind
that NMIs do not nest. This results in a dyntick_nmi() process as follows:

1 proctype dyntick_nmi()
2 {
3 byte tmp;
4 byte i = 0;
5 bit old_gp_idle;
6
7 do
8 :: i >= MAX_DYNTICK_LOOP_NMI -> break;
9 :: i < MAX_DYNTICK_LOOP_NMI ->
10 in_dyntick_nmi = 1;
11 if
12 :: rcu_update_flag > 0 ->
13 tmp = rcu_update_flag;
14 rcu_update_flag = tmp + 1;
15 :: else -> skip;
16 fi;
17 if
18 :: !in_interrupt &&
19 (dynticks_progress_counter & 1) == 0 ->
20 tmp = dynticks_progress_counter;
21 dynticks_progress_counter = tmp + 1;
22 tmp = rcu_update_flag;
23 rcu_update_flag = tmp + 1;
24 :: else -> skip;
25 fi;
26 tmp = in_interrupt;
27 in_interrupt = tmp + 1;
28 old_gp_idle = (gp_state == GP_IDLE);
29 assert(!old_gp_idle || gp_state != GP_DONE);
30 tmp = in_interrupt;
31 in_interrupt = tmp - 1;
32 if
33 :: rcu_update_flag != 0 ->
34 tmp = rcu_update_flag;
35 rcu_update_flag = tmp - 1;
36 if
37 :: rcu_update_flag == 0 ->
38 tmp = dynticks_progress_counter;
39 dynticks_progress_counter = tmp + 1;
40 :: else -> skip;
41 fi;
42 :: else -> skip;
43 fi;
44 atomic {
45 i++;
46 in_dyntick_nmi = 0;
47 }
48 od;

320

dyntickRCU-irq-ssl.spin


49 dyntick_nmi_done = 1;
50 }

Of course, the fact that we have NMIs requires adjustments in the other components.
For example, the EXECUTE_MAINLINE() macro now needs to pay attention to the
NMI handler (in_dyntick_nmi) as well as the interrupt handler (in_dyntick_
irq) by checking the dyntick_nmi_done variable as follows:

1 #define EXECUTE_MAINLINE(label, stmt) \
2 label: skip; \
3 atomic { \
4 if \
5 :: in_dyntick_irq || \
6 in_dyntick_nmi -> goto label; \
7 :: else -> stmt; \
8 fi; \
9 } \

We will also need to introduce an EXECUTE_IRQ() macro that checks in_
dyntick_nmi in order to allow dyntick_irq() to exclude dyntick_nmi():

1 #define EXECUTE_IRQ(label, stmt) \
2 label: skip; \
3 atomic { \
4 if \
5 :: in_dyntick_nmi -> goto label; \
6 :: else -> stmt; \
7 fi; \
8 } \

It is further necessary to convert dyntick_irq() to EXECUTE_IRQ() as fol-
lows:

1 proctype dyntick_irq()
2 {
3 byte tmp;
4 byte i = 0;
5 byte j = 0;
6 bit old_gp_idle;
7 bit outermost;
8
9 do
10 :: i >= MAX_DYNTICK_LOOP_IRQ &&
11 j >= MAX_DYNTICK_LOOP_IRQ -> break;
12 :: i < MAX_DYNTICK_LOOP_IRQ ->
13 atomic {
14 outermost = (in_dyntick_irq == 0);
15 in_dyntick_irq = 1;
16 }
17 stmt1: skip;
18 atomic {
19 if
20 :: in_dyntick_nmi -> goto stmt1;
21 :: !in_dyntick_nmi && rcu_update_flag ->
22 goto stmt1_then;
23 :: else -> goto stmt1_else;
24 fi;
25 }
26 stmt1_then: skip;
27 EXECUTE_IRQ(stmt1_1, tmp = rcu_update_flag)
28 EXECUTE_IRQ(stmt1_2, rcu_update_flag = tmp + 1)
29 stmt1_else: skip;
30 stmt2: skip; atomic {
31 if
32 :: in_dyntick_nmi -> goto stmt2;
33 :: !in_dyntick_nmi &&
34 !in_interrupt &&
35 (dynticks_progress_counter & 1) == 0 ->
36 goto stmt2_then;
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37 :: else -> goto stmt2_else;
38 fi;
39 }
40 stmt2_then: skip;
41 EXECUTE_IRQ(stmt2_1, tmp = dynticks_progress_counter)
42 EXECUTE_IRQ(stmt2_2,
43 dynticks_progress_counter = tmp + 1)
44 EXECUTE_IRQ(stmt2_3, tmp = rcu_update_flag)
45 EXECUTE_IRQ(stmt2_4, rcu_update_flag = tmp + 1)
46 stmt2_else: skip;
47 EXECUTE_IRQ(stmt3, tmp = in_interrupt)
48 EXECUTE_IRQ(stmt4, in_interrupt = tmp + 1)
49 stmt5: skip;
50 atomic {
51 if
52 :: in_dyntick_nmi -> goto stmt4;
53 :: !in_dyntick_nmi && outermost ->
54 old_gp_idle = (gp_state == GP_IDLE);
55 :: else -> skip;
56 fi;
57 }
58 i++;
59 :: j < i ->
60 stmt6: skip;
61 atomic {
62 if
63 :: in_dyntick_nmi -> goto stmt6;
64 :: !in_dyntick_nmi && j + 1 == i ->
65 assert(!old_gp_idle ||
66 gp_state != GP_DONE);
67 :: else -> skip;
68 fi;
69 }
70 EXECUTE_IRQ(stmt7, tmp = in_interrupt);
71 EXECUTE_IRQ(stmt8, in_interrupt = tmp - 1);
72
73 stmt9: skip;
74 atomic {
75 if
76 :: in_dyntick_nmi -> goto stmt9;
77 :: !in_dyntick_nmi && rcu_update_flag != 0 ->
78 goto stmt9_then;
79 :: else -> goto stmt9_else;
80 fi;
81 }
82 stmt9_then: skip;
83 EXECUTE_IRQ(stmt9_1, tmp = rcu_update_flag)
84 EXECUTE_IRQ(stmt9_2, rcu_update_flag = tmp - 1)
85 stmt9_3: skip;
86 atomic {
87 if
88 :: in_dyntick_nmi -> goto stmt9_3;
89 :: !in_dyntick_nmi && rcu_update_flag == 0 ->
90 goto stmt9_3_then;
91 :: else -> goto stmt9_3_else;
92 fi;
93 }
94 stmt9_3_then: skip;
95 EXECUTE_IRQ(stmt9_3_1,
96 tmp = dynticks_progress_counter)
97 EXECUTE_IRQ(stmt9_3_2,
98 dynticks_progress_counter = tmp + 1)
99 stmt9_3_else:

100 stmt9_else: skip;
101 atomic {
102 j++;
103 in_dyntick_irq = (i != j);
104 }
105 od;
106 dyntick_irq_done = 1;
107 }

Note that we have open-coded the “if” statements (for example, lines 17-29). In
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addition, statements that process strictly local state (such as line 58) need not exclude
dyntick_nmi().

Finally, grace_period() requires only a few changes:

1 proctype grace_period()
2 {
3 byte curr;
4 byte snap;
5 bit shouldexit;
6
7 gp_state = GP_IDLE;
8 atomic {
9 printf("MDLN = %d\n", MAX_DYNTICK_LOOP_NOHZ);
10 printf("MDLI = %d\n", MAX_DYNTICK_LOOP_IRQ);
11 printf("MDLN = %d\n", MAX_DYNTICK_LOOP_NMI);
12 shouldexit = 0;
13 snap = dynticks_progress_counter;
14 gp_state = GP_WAITING;
15 }
16 do
17 :: 1 ->
18 atomic {
19 assert(!shouldexit);
20 shouldexit = dyntick_nohz_done &&
21 dyntick_irq_done &&
22 dyntick_nmi_done;
23 curr = dynticks_progress_counter;
24 if
25 :: (curr - snap) >= 2 || (curr & 1) == 0 ->
26 break;
27 :: else -> skip;
28 fi;
29 }
30 od;
31 gp_state = GP_DONE;
32 gp_state = GP_IDLE;
33 atomic {
34 shouldexit = 0;
35 snap = dynticks_progress_counter;
36 gp_state = GP_WAITING;
37 }
38 do
39 :: 1 ->
40 atomic {
41 assert(!shouldexit);
42 shouldexit = dyntick_nohz_done &&
43 dyntick_irq_done &&
44 dyntick_nmi_done;
45 curr = dynticks_progress_counter;
46 if
47 :: (curr != snap) || ((curr & 1) == 0) ->
48 break;
49 :: else -> skip;
50 fi;
51 }
52 od;
53 gp_state = GP_DONE;
54 }

We have added the printf() for the new MAX_DYNTICK_LOOP_NMI parameter
on line 11 and added dyntick_nmi_done to the shouldexit assignments on
lines 22 and 44.

The model (dyntickRCU-irq-nmi-ssl.spin) results in a correct verifica-
tion with several hundred million states, passing without errors.

Quick Quiz 11.18: Does Paul always write his code in this painfully incremental
manner?
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static inline void rcu_enter_nohz(void)
{

+ mb();
__get_cpu_var(dynticks_progress_counter)++;

- mb();
}

static inline void rcu_exit_nohz(void)
{

- mb();
__get_cpu_var(dynticks_progress_counter)++;

+ mb();
}

Figure 11.16: Memory-Barrier Fix Patch

- if ((curr - snap) > 2 || (snap & 0x1) == 0)
+ if ((curr - snap) > 2 || (curr & 0x1) == 0)

Figure 11.17: Variable-Name-Typo Fix Patch

11.7.3 Lessons (Re)Learned
This effort provided some lessons (re)learned:

1. Promela and spin can verify interrupt/NMI-handler interactions.

2. Documenting code can help locate bugs. In this case, the documentation effort
located a misplaced memory barrier in rcu_enter_nohz() and rcu_exit_
nohz(), as shown by the patch in Figure 11.16.

3. Validate your code early, often, and up to the point of destruction. This effort
located one subtle bug in rcu_try_flip_waitack_needed() that would
have been quite difficult to test or debug, as shown by the patch in Figure 11.17.

4. Always verify your verification code. The usual way to do this is to insert a
deliberate bug and verify that the verification code catches it. Of course, if the
verification code fails to catch this bug, you may also need to verify the bug itself,
and so on, recursing infinitely. However, if you find yourself in this position,
getting a good night’s sleep can be an extremely effective debugging technique.

5. Use of atomic instructions can simplify verification. Unfortunately, use of the
cmpxchg atomic instruction would also slow down the critical irq fastpath, so
they are not appropriate in this case.

6. The need for complex formal verification often indicates a need to re-think
your design. In fact the design verified in this section turns out to have a much
simpler solution, which is presented in the next section.

11.8 Simplicity Avoids Formal Verification
The complexity of the dynticks interface for preemptible RCU is primarily due to the
fact that both irqs and NMIs use the same code path and the same state variables. This
leads to the notion of providing separate code paths and variables for irqs and NMIs,
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1 struct rcu_dynticks {
2 int dynticks_nesting;
3 int dynticks;
4 int dynticks_nmi;
5 };
6
7 struct rcu_data {
8 ...
9 int dynticks_snap;
10 int dynticks_nmi_snap;
11 ...
12 };

Figure 11.18: Variables for Simple Dynticks Interface

as has been done for hierarchical RCU [McK08a] as indirectly suggested by Manfred
Spraul [Spr08b].

11.8.1 State Variables for Simplified Dynticks Interface
Figure 11.18 shows the new per-CPU state variables. These variables are grouped into
structs to allow multiple independent RCU implementations (e.g., rcu and rcu_bh)
to conveniently and efficiently share dynticks state. In what follows, they can be thought
of as independent per-CPU variables.

The dynticks_nesting, dynticks, and dynticks_snap variables are for
the irq code paths, and the dynticks_nmi and dynticks_nmi_snap variables
are for the NMI code paths, although the NMI code path will also reference (but not
modify) the dynticks_nesting variable. These variables are used as follows:

• dynticks_nesting: This counts the number of reasons that the correspond-
ing CPU should be monitored for RCU read-side critical sections. If the CPU is
in dynticks-idle mode, then this counts the irq nesting level, otherwise it is one
greater than the irq nesting level.

• dynticks: This counter’s value is even if the corresponding CPU is in dynticks-
idle mode and there are no irq handlers currently running on that CPU, otherwise
the counter’s value is odd. In other words, if this counter’s value is odd, then the
corresponding CPU might be in an RCU read-side critical section.

• dynticks_nmi: This counter’s value is odd if the corresponding CPU is in an
NMI handler, but only if the NMI arrived while this CPU was in dyntick-idle
mode with no irq handlers running. Otherwise, the counter’s value will be even.

• dynticks_snap: This will be a snapshot of the dynticks counter, but only
if the current RCU grace period has extended for too long a duration.

• dynticks_nmi_snap: This will be a snapshot of the dynticks_nmi counter,
but again only if the current RCU grace period has extended for too long a dura-
tion.

If both dynticks and dynticks_nmi have taken on an even value during a
given time interval, then the corresponding CPU has passed through a quiescent state
during that interval.

Quick Quiz 11.19: But what happens if an NMI handler starts running before an
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1 void rcu_enter_nohz(void)
2 {
3 unsigned long flags;
4 struct rcu_dynticks *rdtp;
5
6 smp_mb();
7 local_irq_save(flags);
8 rdtp = &__get_cpu_var(rcu_dynticks);
9 rdtp->dynticks++;
10 rdtp->dynticks_nesting--;
11 WARN_ON(rdtp->dynticks & 0x1);
12 local_irq_restore(flags);
13 }
14
15 void rcu_exit_nohz(void)
16 {
17 unsigned long flags;
18 struct rcu_dynticks *rdtp;
19
20 local_irq_save(flags);
21 rdtp = &__get_cpu_var(rcu_dynticks);
22 rdtp->dynticks++;
23 rdtp->dynticks_nesting++;
24 WARN_ON(!(rdtp->dynticks & 0x1));
25 local_irq_restore(flags);
26 smp_mb();
27 }

Figure 11.19: Entering and Exiting Dynticks-Idle Mode

irq handler completes, and if that NMI handler continues running until a second irq
handler starts?

11.8.2 Entering and Leaving Dynticks-Idle Mode

Figure 11.19 shows the rcu_enter_nohz() and rcu_exit_nohz(), which en-
ter and exit dynticks-idle mode, also known as “nohz” mode. These two functions are
invoked from process context.

Line 6 ensures that any prior memory accesses (which might include accesses from
RCU read-side critical sections) are seen by other CPUs before those marking entry to
dynticks-idle mode. Lines 7 and 12 disable and reenable irqs. Line 8 acquires a pointer to
the current CPU’s rcu_dynticks structure, and line 9 increments the current CPU’s
dynticks counter, which should now be even, given that we are entering dynticks-idle
mode in process context. Finally, line 10 decrements dynticks_nesting, which
should now be zero.

The rcu_exit_nohz() function is quite similar, but increments dynticks_
nesting rather than decrementing it and checks for the opposite dynticks polarity.

11.8.3 NMIs From Dynticks-Idle Mode

Figure 11.20 show the rcu_nmi_enter() and rcu_nmi_exit() functions, which
inform RCU of NMI entry and exit, respectively, from dynticks-idle mode. However, if
the NMI arrives during an irq handler, then RCU will already be on the lookout for RCU
read-side critical sections from this CPU, so lines 6 and 7 of rcu_nmi_enter and
lines 18 and 19 of rcu_nmi_exit silently return if dynticks is odd. Otherwise, the
two functions increment dynticks_nmi, with rcu_nmi_enter() leaving it with
an odd value and rcu_nmi_exit() leaving it with an even value. Both functions
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1 void rcu_nmi_enter(void)
2 {
3 struct rcu_dynticks *rdtp;
4
5 rdtp = &__get_cpu_var(rcu_dynticks);
6 if (rdtp->dynticks & 0x1)
7 return;
8 rdtp->dynticks_nmi++;
9 WARN_ON(!(rdtp->dynticks_nmi & 0x1));

10 smp_mb();
11 }
12
13 void rcu_nmi_exit(void)
14 {
15 struct rcu_dynticks *rdtp;
16
17 rdtp = &__get_cpu_var(rcu_dynticks);
18 if (rdtp->dynticks & 0x1)
19 return;
20 smp_mb();
21 rdtp->dynticks_nmi++;
22 WARN_ON(rdtp->dynticks_nmi & 0x1);
23 }

Figure 11.20: NMIs From Dynticks-Idle Mode

execute memory barriers between this increment and possible RCU read-side critical
sections on lines 11 and 21, respectively.

11.8.4 Interrupts From Dynticks-Idle Mode
Figure 11.21 shows rcu_irq_enter() and rcu_irq_exit(), which inform
RCU of entry to and exit from, respectively, irq context. Line 6 of rcu_irq_enter()
increments dynticks_nesting, and if this variable was already non-zero, line 7
silently returns. Otherwise, line 8 increments dynticks, which will then have an odd
value, consistent with the fact that this CPU can now execute RCU read-side critical
sections. Line 10 therefore executes a memory barrier to ensure that the increment of
dynticks is seen before any RCU read-side critical sections that the subsequent irq
handler might execute.

Line 18 of rcu_irq_exit decrements dynticks_nesting, and if the result
is non-zero, line 19 silently returns. Otherwise, line 20 executes a memory barrier
to ensure that the increment of dynticks on line 21 is seen after any RCU read-
side critical sections that the prior irq handler might have executed. Line 22 verifies
that dynticks is now even, consistent with the fact that no RCU read-side critical
sections may appear in dynticks-idle mode. Lines 23-25 check to see if the prior irq
handlers enqueued any RCU callbacks, forcing this CPU out of dynticks-idle mode via
an reschedule IPI if so.

11.8.5 Checking For Dynticks Quiescent States
Figure 11.22 shows dyntick_save_progress_counter(), which takes a snap-
shot of the specified CPU’s dynticks and dynticks_nmi counters. Lines 8 and 9
snapshot these two variables to locals, line 10 executes a memory barrier to pair with the
memory barriers in the functions in Figures 11.19, 11.20, and 11.21. Lines 11 and 12
record the snapshots for later calls to rcu_implicit_dynticks_qs, and lines 13
and 14 checks to see if the CPU is in dynticks-idle mode with neither irqs nor NMIs
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1 void rcu_irq_enter(void)
2 {
3 struct rcu_dynticks *rdtp;
4
5 rdtp = &__get_cpu_var(rcu_dynticks);
6 if (rdtp->dynticks_nesting++)
7 return;
8 rdtp->dynticks++;
9 WARN_ON(!(rdtp->dynticks & 0x1));
10 smp_mb();
11 }
12
13 void rcu_irq_exit(void)
14 {
15 struct rcu_dynticks *rdtp;
16
17 rdtp = &__get_cpu_var(rcu_dynticks);
18 if (--rdtp->dynticks_nesting)
19 return;
20 smp_mb();
21 rdtp->dynticks++;
22 WARN_ON(rdtp->dynticks & 0x1);
23 if (__get_cpu_var(rcu_data).nxtlist ||
24 __get_cpu_var(rcu_bh_data).nxtlist)
25 set_need_resched();
26 }

Figure 11.21: Interrupts From Dynticks-Idle Mode

1 static int
2 dyntick_save_progress_counter(struct rcu_data *rdp)
3 {
4 int ret;
5 int snap;
6 int snap_nmi;
7
8 snap = rdp->dynticks->dynticks;
9 snap_nmi = rdp->dynticks->dynticks_nmi;

10 smp_mb();
11 rdp->dynticks_snap = snap;
12 rdp->dynticks_nmi_snap = snap_nmi;
13 ret = ((snap & 0x1) == 0) &&
14 ((snap_nmi & 0x1) == 0);
15 if (ret)
16 rdp->dynticks_fqs++;
17 return ret;
18 }

Figure 11.22: Saving Dyntick Progress Counters
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1 static int
2 rcu_implicit_dynticks_qs(struct rcu_data *rdp)
3 {
4 long curr;
5 long curr_nmi;
6 long snap;
7 long snap_nmi;
8
9 curr = rdp->dynticks->dynticks;

10 snap = rdp->dynticks_snap;
11 curr_nmi = rdp->dynticks->dynticks_nmi;
12 snap_nmi = rdp->dynticks_nmi_snap;
13 smp_mb();
14 if ((curr != snap || (curr & 0x1) == 0) &&
15 (curr_nmi != snap_nmi ||
16 (curr_nmi & 0x1) == 0)) {
17 rdp->dynticks_fqs++;
18 return 1;
19 }
20 return rcu_implicit_offline_qs(rdp);
21 }

Figure 11.23: Checking Dyntick Progress Counters

in progress (in other words, both snapshots have even values), hence in an extended
quiescent state. If so, lines 15 and 16 count this event, and line 17 returns true if the
CPU was in a quiescent state.

Figure 11.23 shows dyntick_save_progress_counter, which is called to
check whether a CPU has entered dyntick-idle mode subsequent to a call to dynticks_
save_progress_counter(). Lines 9 and 11 take new snapshots of the corre-
sponding CPU’s dynticks and dynticks_nmi variables, while lines 10 and 12
retrieve the snapshots saved earlier by dynticks_save_progress_counter().
Line 13 then executes a memory barrier to pair with the memory barriers in the func-
tions in Figures 11.19, 11.20, and 11.21. Lines 14-16 then check to see if the CPU is
either currently in a quiescent state (curr and curr_nmi having even values) or has
passed through a quiescent state since the last call to dynticks_save_progress_
counter() (the values of dynticks and dynticks_nmi having changed). If
these checks confirm that the CPU has passed through a dyntick-idle quiescent state,
then line 17 counts that fact and line 18 returns an indication of this fact. Either way,
line 20 checks for race conditions that can result in RCU waiting for a CPU that is
offline.

Quick Quiz 11.20: This is still pretty complicated. Why not just have a cpumask_
t that has a bit set for each CPU that is in dyntick-idle mode, clearing the bit when
entering an irq or NMI handler, and setting it upon exit?

11.8.6 Discussion

A slight shift in viewpoint resulted in a substantial simplification of the dynticks interface
for RCU. The key change leading to this simplification was minimizing of sharing
between irq and NMI contexts. The only sharing in this simplified interface is references
from NMI context to irq variables (the dynticks variable). This type of sharing is
benign, because the NMI functions never update this variable, so that its value remains
constant through the lifetime of the NMI handler. This limitation of sharing allows the
individual functions to be understood one at a time, in happy contrast to the situation
described in Section 11.7, where an NMI might change shared state at any point during
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1 PPC SB+lwsync-RMW-lwsync+isync-simple
2 ""
3 {
4 0:r2=x; 0:r3=2; 0:r4=y; 0:r10=0; 0:r11=0; 0:r12=z;
5 1:r2=y; 1:r4=x;
6 }
7 P0 | P1 ;
8 li r1,1 | li r1,1 ;
9 stw r1,0(r2) | stw r1,0(r2) ;

10 lwsync | sync ;
11 | lwz r3,0(r4) ;
12 lwarx r11,r10,r12 | ;
13 stwcx. r11,r10,r12 | ;
14 bne Fail1 | ;
15 isync | ;
16 lwz r3,0(r4) | ;
17 Fail1: | ;
18
19 exists
20 (0:r3=0 /\ 1:r3=0)

Figure 11.24: CPPMEM Litmus Test

execution of the irq functions.
Verification can be a good thing, but simplicity is even better.

11.9 Formal Verification and Memory Ordering
Section 11.6 showed how to convince Promela to account for weak memory ordering.
Although this approach can work well, it requires that the developer fully understand
the system’s memory model. Unfortunately, few (if and) developers fully understand
the complex memory models of modern CPUs.

Therefore, another approach is to use a tool that already understands this memory
ordering, such as the PPCMEM tool produced by Peter Sewell and Susmit Sarkar at the
University of Cambridge, Luc Maranget, Francesco Zappa Nardelli, and Pankaj Pawan
at INRIA, and Jade Alglave at Oxford University, in cooperation with Derek Williams
of IBM [AMP+11]. This group formalized the memory models of Power, ARM, x86, as
well as that of the C/C++11 standard [Bec11], and produced the CPPMEM tool based
on the Power and ARM formalizations.

Quick Quiz 11.21: But x86 has strong memory ordering! Why would you need to
formalize its memory model?

The PPCMEM tool takes litmus tests as input. A sample litmus test is presented
in Section 11.9.1. Section 11.9.2 relates this litmus test to the equivalent C-language
program, and Section 11.9.3 describes how to apply CPPMEM to this litmus test.

11.9.1 Anatomy of a Litmus Test
An example PowerPC litmus test for CPPMEM is shown in Figure 11.24. The ARM
interface works exactly the same way, but with ARM instructions substituted for the
Power instructions and with the initial “PPC” replaced by “ARM”. You can select the
ARM interface by clicking on “Change to ARM Model” at the web page called out
above.

In the example, line 1 identifies the type of system (“ARM” or “PPC”) and contains
the title for the model. Line 2 provides a place for an alternative name for the test, which
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you will usually want to leave blank as shown in the above example. Comments can be
inserted between lines 2 and 3 using the OCaml (or Pascal) syntax of (* *).

Lines 3-6 give initial values for all registers; each is of the form P:R=V, where P
is the process identifier, R is the register identifier, and V is the value. For example,
process 0’s register r3 initially contains the value 2. If the value is a variable (x, y, or z
in the example) then the register is initialized to the address of the variable. It is also
possible to initialize the contents of variables, for example, x=1 initializes the value
of x to 1. Uninitialized variables default to the value zero, so that in the example, x, y,
and z are all initially zero.

Line 7 provides identifiers for the two processes, so that the 0:r3=2 on line 4 could
instead have been written P0:r3=2. Line 7 is required, and the identifiers must be of
the form Pn, where n is the column number, starting from zero for the left-most column.
This may seem unnecessarily strict, but it does prevent considerable confusion in actual
use.

Quick Quiz 11.22: Why does line 8 of Figure 11.24 initialize the registers? Why
not instead initialize them on lines 4 and 5?

Lines 8-17 are the lines of code for each process. A given process can have empty
lines, as is the case for P0’s line 11 and P1’s lines 12-17. Labels and branches are
permitted, as demonstrated by the branch on line 14 to the label on line 17. That said,
too-free use of branches will expand the state space. Use of loops is a particularly good
way to explode your state space.

Lines 19-20 show the assertion, which in this case indicates that we are interested
in whether P0’s and P1’s r3 registers can both contain zero after both threads complete
execution. This assertion is important because there are a number of use cases that
would fail miserably if both P0 and P1 saw zero in their respective r3 registers.

This should give you enough information to construct simple litmus tests. Some
additional documentation is available, though much of this additional documentation is
intended for a different research tool that runs tests on actual hardware. Perhaps more
importantly, a large number of pre-existing litmus tests are available with the online
tool (available via the “Select ARM Test” and “Select POWER Test” buttons). It is
quite likely that one of these pre-existing litmus tests will answer your Power or ARM
memory-ordering question.

11.9.2 What Does This Litmus Test Mean?

P0’s lines 8 and 9 are equivalent to the C statement x=1 because line 4 defines P0’s
register r2 to be the address of x. P0’s lines 12 and 13 are the mnemonics for load-
linked (“load register exclusive” in ARM parlance and “load reserve” in Power parlance)
and store-conditional (“store register exclusive” in ARM parlance), respectively. When
these are used together, they form an atomic instruction sequence, roughly similar to
the compare-and-swap sequences exemplified by the x86 colock;cmpxchg instruction.
Moving to a higher level of abstraction, the sequence from lines 10-15 is equivalent
to the Linux kernel’s atomic_add_return(&z, 0). Finally, line 16 is roughly
equivalent to the C statement r3=y.

P1’s lines 8 and 9 are equivalent to the C statement y=1, line 10 is a memory barrier,
equivalent to the Linux kernel statement smp_mb(), and line 11 is equivalent to the C
statement r3=x.

Quick Quiz 11.23: But whatever happened to line 17 of Figure 11.24, the one that
is the Fail: label?
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1 void P0(void)
2 {
3 int r3;
4
5 x = 1; /* Lines 8 and 9 */
6 atomic_add_return(&z, 0); /* Lines 10-15 */
7 r3 = y; /* Line 16 */
8 }
9

10 void P1(void)
11 {
12 int r3;
13
14 y = 1; /* Lines 8-9 */
15 smp_mb(); /* Line 10 */
16 r3 = x; /* Line 11 */
17 }

Figure 11.25: Meaning of CPPMEM Litmus Test

./ppcmem -model lwsync_read_block \
-model coherence_points filename.litmus

...
States 6
0:r3=0; 1:r3=0;
0:r3=0; 1:r3=1;
0:r3=1; 1:r3=0;
0:r3=1; 1:r3=1;
0:r3=2; 1:r3=0;
0:r3=2; 1:r3=1;
Ok
Condition exists (0:r3=0 /\ 1:r3=0)
Hash=e2240ce2072a2610c034ccd4fc964e77
Observation SB+lwsync-RMW-lwsync+isync Sometimes 1

Figure 11.26: CPPMEM Detects an Error

Putting all this together, the C-language equivalent to the entire litmus test is as
shown in Figure 11.25. The key point is that if atomic_add_return() acts as a
full memory barrier (as the Linux kernel requires it to), then it should be impossible for
P0()’s and P1()’s r3 variables to both be zero after execution completes.

The next section describes how to run this litmus test.

11.9.3 Running a Litmus Test
Although litmus tests may be run interactively via http://www.cl.cam.ac.uk/
~pes20/ppcmem/, which can help build an understanding of the memory model.
However, this approach requires that the user manually carry out the full state-space
search. Because it is very difficult to be sure that you have checked every possible
sequence of events, a separate tool is provided for this purpose [McK11c].

Because the litmus test shown in Figure 11.24 contains read-modify-write instruc-
tions, we must add -model arguments to the command line. If the litmus test is stored
in filename.litmus, this will result in the output shown in Figure 11.26, where
the ... stands for voluminous making-progress output. The list of states includes
0:r3=0; 1:r3=0;, indicating once again that the old PowerPC implementation of
atomic_add_return() does not act as a full barrier. The “Sometimes” on the last
line confirms this: the assertion triggers for some executions, but not all of the time.

The fix to this Linux-kernel bug is to replace P0’s isync with sync, which results
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./ppcmem -model lwsync_read_block \
-model coherence_points filename.litmus

...
States 5
0:r3=0; 1:r3=1;
0:r3=1; 1:r3=0;
0:r3=1; 1:r3=1;
0:r3=2; 1:r3=0;
0:r3=2; 1:r3=1;
No (allowed not found)
Condition exists (0:r3=0 /\ 1:r3=0)
Hash=77dd723cda9981248ea4459fcdf6097d
Observation SB+lwsync-RMW-lwsync+sync Never 0 5

Figure 11.27: CPPMEM on Repaired Litmus Test

in the output shown in Figure 11.27. As you can see, 0:r3=0; 1:r3=0; does not
appear in the list of states, and the last line calls out “Never”. Therefore, the model
predicts that the offending execution sequence cannot happen.

Quick Quiz 11.24: Does the ARM Linux kernel have a similar bug?

11.9.4 CPPMEM Discussion
These tools promise to be of great help to people working on low-level parallel primitives
that run on ARM and on Power. These tools do have some intrinsic limitations:

1. These tools are research prototypes, and as such are unsupported.

2. These tools do not constitute official statements by IBM or ARM on their re-
spective CPU architectures. For example, both corporations reserve the right to
report a bug at any time against any version of any of these tools. These tools are
therefore not a substitute for careful stress testing on real hardware. Moreover,
both the tools and the model that they are based on are under active development
and might change at any time. On the other hand, this model was developed in
consultation with the relevant hardware experts, so there is good reason to be
confident that it is a robust representation of the architectures.

3. These tools currently handle a subset of the instruction set. This subset has
been sufficient for my purposes, but your mileage may vary. In particular, the
tool handles only word-sized accesses (32 bits), and the words accessed must
be properly aligned. In addition, the tool does not handle some of the weaker
variants of the ARM memory-barrier instructions.

4. The tools are restricted to small loop-free code fragments running on small
numbers of threads. Larger examples result in state-space explosion, just as with
similar tools such as Promela and spin.

5. The full state-space search does not give any indication of how each offending
state was reached. That said, once you realize that the state is in fact reachable, it
is usually not too hard to find that state using the interactive tool.

6. The tools will detect only those problems for which you code an assertion. This
weakness is common to all formal methods, and is yet another reason why testing
remains important. In the immortal words of Donald Knuth, “Beware of bugs in
the above code; I have only proved it correct, not tried it.”
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That said, one strength of these tools is that they are designed to model the full range
of behaviors allowed by the architectures, including behaviors that are legal, but which
current hardware implementations do not yet inflict on unwary software developers.
Therefore, an algorithm that is vetted by these tools likely has some additional safety
margin when running on real hardware. Furthermore, testing on real hardware can only
find bugs; such testing is inherently incapable of proving a given usage correct. To
appreciate this, consider that the researchers routinely ran in excess of 100 billion test
runs on real hardware to validate their model. In one case, behavior that is allowed
by the architecture did not occur, despite 176 billion runs [AMP+11]. In contrast, the
full-state-space search allows the tool to prove code fragments correct.

It is worth repeating that formal methods and tools are no substitute for testing. The
fact is that producing large reliable concurrent software artifacts, the Linux kernel for
example, is quite difficult. Developers must therefore be prepared to apply every tool at
their disposal towards this goal. The tools presented in this paper are able to locate bugs
that are quite difficult to produce (let alone track down) via testing. On the other hand,
testing can be applied to far larger bodies of software than the tools presented in this
paper are ever likely to handle. As always, use the right tools for the job!

Of course, it is always best to avoid the need to work at this level by designing
your parallel code to be easily partitioned and then using higher-level primitives (such
as locks, sequence counters, atomic operations, and RCU) to get your job done more
straightforwardly. And even if you absolutely must use low-level memory barriers and
read-modify-write instructions to get your job done, the more conservative your use of
these sharp instruments, the easier your life is likely to be.

11.10 Summary
Promela and CPPMEM are very powerful tools for validating small parallel algorithms,
but they should not be the only tools in your toolbox. The QRCU experience is a case
in point: given the Promela validation, the proof of correctness, and several rcutorture
runs, I now feel reasonably confident in the QRCU algorithm and its implementation.
But I would certainly not feel so confident given only one of the three!

Nevertheless, if your code is so complex that you find yourself relying too heavily
on validation tools, you should carefully rethink your design. For example, a complex
implementation of the dynticks interface for preemptible RCU that was presented in
Section 11.7 turned out to have a much simpler alternative implementation, as discussed
in Section 11.8. All else being equal, a simpler implementation is much better than a
mechanical proof for a complex implementation!

334



Chapter 12

Putting It All Together

This chapter gives a few hints on handling some concurrent-programming puzzles,
starting with counter conundrums in Section 12.1, continuing with some RCU rescues
in Section 12.2, and finishing off with some hashing hassles in Section 12.3.

12.1 Counter Conundrums
This section outlines possible solutions to some counter conundrums.

12.1.1 Counting Updates
Suppose that Schödinger (see Section 9.1) wants to count the number of updates for
each animal, and that these updates are synchronized using a per-data-element lock.
How can this counting best be done?

Of course, any number of counting algorithms from Chapter 4 might be considered,
but the optimal approach is much simpler in this case. Just place a counter in each data
element, and increment it under the protection of that element’s lock!

12.1.2 Counting Lookups
Suppose that Schödinger also wants to count the number of lookups for each animal,
where lookups are protected by RCU. How can this counting best be done?

One approach would be to protect a lookup counter with the per-element lock, as
discussed in Section 12.1.1. Unfortunately, this would require all lookups to acquire
this lock, which would be a severe bottleneck on large systems.

Another approach is to “just say no” to counting, following the example of the
noatime mount option. If this approach is feasible, it is clearly the best: After all,
nothing is faster than doing nothing. If the lookup count cannot be dispensed with, read
on!

Any of the counters from Chapter 4 could be pressed into service, with the statistical
counters described in Section 4.2 being perhaps the most common choice. However,
this results in a large memory footprint: The number of counters required is the number
of data elements multiplied by the number of threads.

If this memory overhead is excessive, then one approach is to keep per-socket
counters rather than per-CPU counters, with an eye to the hash-table performance
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results depicted in Figure 9.8. This will require that the counter increments be atomic
operations, especially for user-mode execution where a given thread could migrate to
another CPU at any time.

If some elements are looked up very frequently, there are a number of approaches
that batch updates by maintaining a per-thread log, where multiple log entries for a given
element can be merged. After a given log entry has a sufficiently large increment or
after sufficient time has passed, the log entries may be applied to the corresponding data
elements. Silas Boyd-Wickizer has done some work formalizing this notion [BW14].

12.2 RCU Rescues

This section shows how to apply RCU to some examples discussed earlier in this book.
In some cases, RCU provides simpler code, in other cases better performance and
scalability, and in still other cases, both.

12.2.1 RCU and Per-Thread-Variable-Based Statistical Counters

Section 4.2.4 described an implementation of statistical counters that provided excellent
performance, roughly that of simple increment (as in the C ++ operator), and linear
scalability — but only for incrementing via inc_count(). Unfortunately, threads
needing to read out the value via read_count() were required to acquire a global
lock, and thus incurred high overhead and suffered poor scalability. The code for the
lock-based implementation is shown in Figure 4.9 on Page 51.

Quick Quiz 12.1: Why on earth did we need that global lock in the first place?

12.2.1.1 Design

The hope is to use RCU rather than final_mutex to protect the thread traversal in
read_count() in order to obtain excellent performance and scalability from read_
count(), rather than just from inc_count(). However, we do not want to give
up any accuracy in the computed sum. In particular, when a given thread exits, we
absolutely cannot lose the exiting thread’s count, nor can we double-count it. Such
an error could result in inaccuracies equal to the full precision of the result, in other
words, such an error would make the result completely useless. And in fact, one of the
purposes of final_mutex is to ensure that threads do not come and go in the middle
of read_count() execution.

Quick Quiz 12.2: Just what is the accuracy of read_count(), anyway?
Therefore, if we are to dispense with final_mutex, we will need to come up with

some other method for ensuring consistency. One approach is to place the total count
for all previously exited threads and the array of pointers to the per-thread counters into
a single structure. Such a structure, once made available to read_count(), is held
constant, ensuring that read_count() sees consistent data.

12.2.1.2 Implementation

Lines 1-4 of Figure 12.1 show the countarray structure, which contains a ->total
field for the count from previously exited threads, and a counterp[] array of pointers
to the per-thread counter for each currently running thread. This structure allows a
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1 struct countarray {
2 unsigned long total;
3 unsigned long *counterp[NR_THREADS];
4 };
5
6 long __thread counter = 0;
7 struct countarray *countarrayp = NULL;
8 DEFINE_SPINLOCK(final_mutex);
9
10 void inc_count(void)
11 {
12 counter++;
13 }
14
15 long read_count(void)
16 {
17 struct countarray *cap;
18 unsigned long sum;
19 int t;
20
21 rcu_read_lock();
22 cap = rcu_dereference(countarrayp);
23 sum = cap->total;
24 for_each_thread(t)
25 if (cap->counterp[t] != NULL)
26 sum += *cap->counterp[t];
27 rcu_read_unlock();
28 return sum;
29 }
30
31 void count_init(void)
32 {
33 countarrayp = malloc(sizeof(*countarrayp));
34 if (countarrayp == NULL) {
35 fprintf(stderr, "Out of memory\n");
36 exit(-1);
37 }
38 memset(countarrayp, ’\0’, sizeof(*countarrayp));
39 }
40
41 void count_register_thread(void)
42 {
43 int idx = smp_thread_id();
44
45 spin_lock(&final_mutex);
46 countarrayp->counterp[idx] = &counter;
47 spin_unlock(&final_mutex);
48 }
49
50 void count_unregister_thread(int nthreadsexpected)
51 {
52 struct countarray *cap;
53 struct countarray *capold;
54 int idx = smp_thread_id();
55
56 cap = malloc(sizeof(*countarrayp));
57 if (cap == NULL) {
58 fprintf(stderr, "Out of memory\n");
59 exit(-1);
60 }
61 spin_lock(&final_mutex);
62 *cap = *countarrayp;
63 cap->total += counter;
64 cap->counterp[idx] = NULL;
65 capold = countarrayp;
66 rcu_assign_pointer(countarrayp, cap);
67 spin_unlock(&final_mutex);
68 synchronize_rcu();
69 free(capold);
70 }

Figure 12.1: RCU and Per-Thread Statistical Counters
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given execution of read_count() to see a total that is consistent with the indicated
set of running threads.

Lines 6-8 contain the definition of the per-thread counter variable, the global
pointer countarrayp referencing the current countarray structure, and the final_
mutex spinlock.

Lines 10-13 show inc_count(), which is unchanged from Figure 4.9.
Lines 15-29 show read_count(), which has changed significantly. Lines 21

and 27 substitute rcu_read_lock() and rcu_read_unlock() for acquisition
and release of final_mutex. Line 22 uses rcu_dereference() to snapshot
the current countarray structure into local variable cap. Proper use of RCU will
guarantee that this countarray structure will remain with us through at least the
end of the current RCU read-side critical section at line 27. Line 23 initializes sum to
cap->total, which is the sum of the counts of threads that have previously exited.
Lines 24-26 add up the per-thread counters corresponding to currently running threads,
and, finally, line 28 returns the sum.

The initial value for countarrayp is provided by count_init() on lines 31-
39. This function runs before the first thread is created, and its job is to allocate and
zero the initial structure, and then assign it to countarrayp.

Lines 41-48 show the count_register_thread() function, which is invoked
by each newly created thread. Line 43 picks up the current thread’s index, line 45
acquires final_mutex, line 46 installs a pointer to this thread’s counter, and
line 47 releases final_mutex.

Quick Quiz 12.3: Hey!!! Line 45 of Figure 12.1 modifies a value in a pre-existing
countarray structure! Didn’t you say that this structure, once made available to
read_count(), remained constant???

Lines 50-70 shows count_unregister_thread(), which is invoked by each
thread just before it exits. Lines 56-60 allocate a new countarray structure, line 61
acquires final_mutex and line 67 releases it. Line 62 copies the contents of
the current countarray into the newly allocated version, line 63 adds the exiting
thread’s counter to new structure’s total, and line 64 NULLs the exiting thread’s
counterp[] array element. Line 65 then retains a pointer to the current (soon to be
old) countarray structure, and line 66 uses rcu_assign_pointer() to install
the new version of the countarray structure. Line 68 waits for a grace period to
elapse, so that any threads that might be concurrently executing in read_count, and
thus might have references to the old countarray structure, will be allowed to exit
their RCU read-side critical sections, thus dropping any such references. Line 69 can
then safely free the old countarray structure.

12.2.1.3 Discussion

Quick Quiz 12.4: Wow! Figure 12.1 contains 69 lines of code, compared to only 42 in
Figure 4.9. Is this extra complexity really worth it?

Use of RCU enables exiting threads to wait until other threads are guaranteed
to be done using the exiting threads’ __thread variables. This allows the read_
count() function to dispense with locking, thereby providing excellent performance
and scalability for both the inc_count() and read_count() functions. However,
this performance and scalability come at the cost of some increase in code complexity.
It is hoped that compiler and library writers employ user-level RCU [Des09] to provide
safe cross-thread access to __thread variables, greatly reducing the complexity seen
by users of __thread variables.
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1 struct foo {
2 int length;
3 char *a;
4 };

Figure 12.2: RCU-Protected Variable-Length Array

12.2.2 RCU and Counters for Removable I/O Devices

Section 4.5 showed a fanciful pair of code fragments for dealing with counting I/O
accesses to removable devices. These code fragments suffered from high overhead on
the fastpath (starting an I/O) due to the need to acquire a reader-writer lock.

This section shows how RCU may be used to avoid this overhead.
The code for performing an I/O is quite similar to the original, with an RCU read-

side critical section be substituted for the reader-writer lock read-side critical section in
the original:

1 rcu_read_lock();
2 if (removing) {
3 rcu_read_unlock();
4 cancel_io();
5 } else {
6 add_count(1);
7 rcu_read_unlock();
8 do_io();
9 sub_count(1);

10 }

The RCU read-side primitives have minimal overhead, thus speeding up the fastpath,
as desired.

The updated code fragment removing a device is as follows:

1 spin_lock(&mylock);
2 removing = 1;
3 sub_count(mybias);
4 spin_unlock(&mylock);
5 synchronize_rcu();
6 while (read_count() != 0) {
7 poll(NULL, 0, 1);
8 }
9 remove_device();

Here we replace the reader-writer lock with an exclusive spinlock and add a
synchronize_rcu() to wait for all of the RCU read-side critical sections to com-
plete. Because of the synchronize_rcu(), once we reach line 6, we know that all
remaining I/Os have been accounted for.

Of course, the overhead of synchronize_rcu() can be large, but given that
device removal is quite rare, this is usually a good tradeoff.

12.2.3 Array and Length

Suppose we have an RCU-protected variable-length array, as shown in Figure 12.2. The
length of the array ->a[] can change dynamically, and at any given time, its length is
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1 struct foo_a {
2 int length;
3 char a[0];
4 };
5
6 struct foo {
7 struct foo_a *fa;
8 };

Figure 12.3: Improved RCU-Protected Variable-Length Array

given by the field ->length. Of course, this introduces the following race condition:

1. The array is initially 16 characters long, and thus ->length is equal to 16.

2. CPU 0 loads the value of ->length, obtaining the value 16.

3. CPU 1 shrinks the array to be of length 8, and assigns a pointer to a new 8-
character block of memory into ->a[].

4. CPU 0 picks up the new pointer from ->a[], and stores a new value into element
12. Because the array has only 8 characters, this results in a SEGV or (worse yet)
memory corruption.

How can we prevent this?
One approach is to make careful use of memory barriers, which are covered in

Section 13.2. This works, but incurs read-side overhead and, perhaps worse, requires
use of explicit memory barriers.

A better approach is to put the value and the array into the same structure, as shown
in Figure 12.3. Allocating a new array (foo_a structure) then automatically provides
a new place for the array length. This means that if any CPU picks up a reference to
->fa, it is guaranteed that the ->length will match the ->a[] length [ACMS03].

1. The array is initially 16 characters long, and thus ->length is equal to 16.

2. CPU 0 loads the value of ->fa, obtaining a pointer to the structure containing
the value 16 and the 16-byte array.

3. CPU 0 loads the value of ->fa->length, obtaining the value 16.

4. CPU 1 shrinks the array to be of length 8, and assigns a pointer to a new foo_a
structure containing an 8-character block of memory into ->a[].

5. CPU 0 picks up the new pointer from ->a[], and stores a new value into element
12. But because CPU 0 is still referencing the old foo_a structure that contains
the 16-byte array, all is well.

Of course, in both cases, CPU 1 must wait for a grace period before freeing the old
array.

A more general version of this approach is presented in the next section.
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1 struct animal {
2 char name[40];
3 double age;
4 double meas_1;
5 double meas_2;
6 double meas_3;
7 char photo[0]; /* large bitmap. */
8 };

Figure 12.4: Uncorrelated Measurement Fields

1 struct measurement {
2 double meas_1;
3 double meas_2;
4 double meas_3;
5 };
6
7 struct animal {
8 char name[40];
9 double age;

10 struct measurement *mp;
11 char photo[0]; /* large bitmap. */
12 };

Figure 12.5: Correlated Measurement Fields

12.2.4 Correlated Fields

Suppose that each of Schödinger’s animals is represented by the data element shown
in Figure 12.4. The meas_1, meas_2, and meas_3 fields are a set of correlated
measurements that are updated periodically. It is critically important that readers see
these three values from a single measurement update: If a reader sees an old value
of meas_1 but new values of meas_2 and meas_3, that reader will become fatally
confused. How can we guarantee that readers will see coordinated sets of these three
values?

One approach would be to allocate a new animal structure, copy the old structure
into the new structure, update the new structure’s meas_1, meas_2, and meas_3
fields, and then replace the old structure with a new one by updating the pointer. This
does guarantee that all readers see coordinated sets of measurement values, but it
requires copying a large structure due to the ->photo[] field. This copying might
incur unacceptably large overhead.

Another approach is to insert a level of indirection, as shown in Figure 12.5. When
a new measurement is taken, a new measurement structure is allocated, filled in
with the measurements, and the animal structure’s ->mp field is updated to point to
this new measurement structure using rcu_assign_pointer(). After a grace
period elapses, the old measurement structure can be freed.

Quick Quiz 12.5: But cant’t the approach shown in Figure 12.5 result in extra cache
misses, in turn resulting in additional read-side overhead?

This approach enables readers to see correlated values for selected fields with
minimal read-side overhead.
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12.3 Hashing Hassles
This section looks at some issues that can arise when dealing with hash tables. Please
note that these issues also apply to many other search structures.

12.3.1 Correlated Data Elements
This situation is analogous to that in Section 12.2.4: We have a hash table where we
need correlated views of two or more of the elements. These elements are updated
together, and we do not want so see an old version of the first element along with new
versions of the other elements.

One approach is to use sequence locks (see Section 8.2), so that updates to the
correlated elements are carried out under the protection of write_seqlock(), while
reads are carried out within a read_seqbegin() / read_seqretry() loop. Note
that sequence locks are not a replacement for RCU protection: Sequence locks protect
against concurrent modifications, but RCU is still needed to protect against concurrent
deletions.

This approach works quite well when the number of correlated elements is small,
the time to read these elements is short, and the update rate is low. Otherwise, updates
might happen so quickly that readers might never complete. One way to avoid this
reader-starvation problem is to have the readers use the update-side primitives if there
have been too many retries, but this can degrade both performance and scalability.

If the element groupings are well-defined and persistent, such as a group of animals
in the same enclosure or a parent-child relationship, then one approach is to add pointers
to the data elements to link together the members of a given group. Readers can then
traverse these pointers to access all the data elements in the same group as the first one
located.

Other approaches using version numbering are left as exercises for the interested
reader.

12.3.2 Update-Friendly Hash-Table Traversal
Suppose that a statistical scan of all elements in a hash table is required. For example,
Schrödinger might wish to compute the average length-to-weight ratio over all of his
animals.1 Suppose further that Schrödinger is willing to ignore slight errors due to
animals being added to and removed from the hash table while this statistical scan is
being carried out. What should Schrödinger do to control concurrency?

One approach is to enclose the statistical scan in an RCU read-side critical section.
This permits updates to proceed concurrently without unduly impeding the scan. In
particular, the scan does not block the updates and vice versa, which allows scan of hash
tables containing very large numbers of elements to be supported gracefully, even in the
face of very high update rates.

Quick Quiz 12.6: But how does this scan work while a resizable hash table is being
resized? In that case, neither the old nor the new hash table is guaranteed to contain all
the elements in the hash table!

1 Why would such a quantity be useful? Beats me! But group statistics in general are often useful.
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Chapter 13

Advanced Synchronization

13.1 Avoiding Locks
Although locking is the workhorse of parallelism in production, in many situations
performance, scalability, and real-time response can all be greatly improved though use
of lockless techniques. A particularly impressive example of such a lockless technique
are the statistical counters describe in Section 4.2, which avoids not only locks, but
also atomic operations, memory barriers, and even cache misses for counter increments.
Other examples we have covered include:

1. The fastpaths through a number of other counting algorithms in Chapter 4.

2. The fastpath through resource allocator caches in Section 5.4.3.

3. The maze solver in Section 5.5.

4. The data-ownership techniques described in Section 7.

5. The reference-counting and RCU techinques described in Chapter 8.

6. The lookup code paths described in Chapter 9.

7. Many of the techniques described in Chapter 12.

In short, lockless techniques are quite useful and are heavily used.
However, it is best if lockless techniques are hidden behind a well-defined API,

such as the inc_count(), memblock_alloc(), rcu_read_lock(), and so
on. The reason for this is that undisciplined use of lockless techniques is a good way to
create difficult bugs.

A key component of many lockless techniques is the memory barrier, which is
described in the following section.

13.2 Memory Barriers
Author: David Howells and Paul McKenney.

Causality and sequencing are deeply intuitive, and hackers often tend to have a much
stronger grasp of these concepts than does the general population. These intuitions can
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be extremely powerful tools when writing, analyzing, and debugging both sequential
code and parallel code that makes use of standard mutual-exclusion mechanisms, such
as locking and RCU.

Unfortunately, these intuitions break down completely in face of code that makes
direct use of explicit memory barriers for data structures in shared memory (driver
writers making use of MMIO registers can place greater trust in their intuition, but more
on this @@@ later). The following sections show exactly where this intuition breaks
down, and then puts forward a mental model of memory barriers that can help you avoid
these pitfalls.

Section 13.2.1 gives a brief overview of memory ordering and memory barriers.
Once this background is in place, the next step is to get you to admit that your intuition
has a problem. This painful task is taken up by Section 13.2.2, which shows an intuitively
correct code fragment that fails miserably on real hardware, and by Section 13.2.3,
which presents some code demonstrating that scalar variables can take on multiple
values simultaneously. Once your intuition has made it through the grieving process,
Section 13.2.4 provides the basic rules that memory barriers follow, rules that we will
build upon.

@@@ roadmap...

13.2.1 Memory Ordering and Memory Barriers
But why are memory barriers needed in the first place? Can’t CPUs keep track of
ordering on their own? Isn’t that why we have computers in the first place, to keep track
of things?

Many people do indeed expect their computers to keep track of things, but many also
insist that they keep track of things quickly. One difficulty that modern computer-system
vendors face is that the main memory cannot keep up with the CPU – modern CPUs can
execute hundreds of instructions in time required to fetch a single variable from memory.
CPUs therefore sport increasingly large caches, as shown in Figure 13.1. Variables that
are heavily used by a given CPU will tend to remain in that CPU’s cache, allowing
high-speed access to the corresponding data.

CPU 0 CPU 1

CacheCache

Memory

Interconnect

Figure 13.1: Modern Computer System Cache Structure

Unfortunately, when a CPU accesses data that is not yet in its cache will result in an
expensive “cache miss”, requiring the data to be fetched from main memory. Doubly
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unfortunately, running typical code results in a significant number of cache misses. To
limit the resulting performance degradation, CPUs have been designed to execute other
instructions and memory references while waiting for a cache miss to fetch data from
memory. This clearly causes instructions and memory references to execute out of
order, which could cause serious confusion, as illustrated in Figure 13.2. Compilers and
synchronization primitives (such as locking and RCU) are responsible for maintaining
the illusion of ordering through use of “memory barriers” (for example, smp_mb() in
the Linux kernel). These memory barriers can be explicit instructions, as they are on
ARM, POWER, Itanium, and Alpha, or they can be implied by other instructions, as
they are on x86.

Figure 13.2: CPUs Can Do Things Out of Order

Since the standard synchronization primitives preserve the illusion of ordering, your
path of least resistance is to stop reading this section and simply use these primitives.

However, if you need to implement the synchronization primitives themselves, or if
you are simply interested in understanding how memory ordering and memory barriers
work, read on!

The next sections present counter-intuitive scenarios that you might encounter when
using explicit memory barriers.

13.2.2 If B Follows A, and C Follows B, Why Doesn’t C Follow A?
Memory ordering and memory barriers can be extremely counter-intuitive. For example,
consider the functions shown in Figure 13.3 executing in parallel where variables A, B,
and C are initially zero:

Intuitively, thread0() assigns to B after it assigns to A, thread1() waits until
thread0() has assigned to B before assigning to C, and thread2() waits until
thread1() has assigned to C before referencing A. Therefore, again intuitively, the
assertion on line 21 cannot possibly fire.

This line of reasoning, intuitively obvious though it may be, is completely and
utterly incorrect. Please note that this is not a theoretical assertion: actually running this
code on real-world weakly-ordered hardware (a 1.5GHz 16-CPU POWER 5 system)
resulted in the assertion firing 16 times out of 10 million runs. Clearly, anyone who
produces code with explicit memory barriers should do some extreme testing – although
a proof of correctness might be helpful, the strongly counter-intuitive nature of the
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1 thread0(void)
2 {
3 A = 1;
4 smp_wmb();
5 B = 1;
6 }
7
8 thread1(void)
9 {
10 while (B != 1)
11 continue;
12 barrier();
13 C = 1;
14 }
15
16 thread2(void)
17 {
18 while (C != 1)
19 continue;
20 smp_mb();
21 assert(A != 0);
22 }

Figure 13.3: Parallel Hardware is Non-Causal

behavior of memory barriers should in turn strongly limit one’s trust in such proofs. The
requirement for extreme testing should not be taken lightly, given that a number of dirty
hardware-dependent tricks were used to greatly increase the probability of failure in
this run.

Quick Quiz 13.1: How on earth could the assertion on line 21 of the code in
Figure 13.3 on page 346 possibly fail?

Quick Quiz 13.2: Great... So how do I fix it?
So what should you do? Your best strategy, if possible, is to use existing primitives

that incorporate any needed memory barriers, so that you can simply ignore the rest of
this chapter.

Of course, if you are implementing synchronization primitives, you don’t have this
luxury. The following discussion of memory ordering and memory barriers is for you.

13.2.3 Variables Can Have More Than One Value
It is natural to think of a variable as taking on a well-defined sequence of values in a
well-defined, global order. Unfortunately, it is time to say “goodbye” to this sort of
comforting fiction.

To see this, consider the program fragment shown in Figure 13.4. This code fragment
is executed in parallel by several CPUs. Line 1 sets a shared variable to the current
CPU’s ID, line 2 initializes several variables from a gettb() function that delivers the
value of fine-grained hardware “timebase” counter that is synchronized among all CPUs
(not available from all CPU architectures, unfortunately!), and the loop from lines 3-8
records the length of time that the variable retains the value that this CPU assigned to it.
Of course, one of the CPUs will “win”, and would thus never exit the loop if not for the
check on lines 7-8.

Quick Quiz 13.3: What assumption is the code fragment in Figure 13.4 making
that might not be valid on real hardware?

Upon exit from the loop, firsttb will hold a timestamp taken shortly after the
assignment and lasttb will hold a timestamp taken before the last sampling of the
shared variable that still retained the assigned value, or a value equal to firsttb if
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1 state.variable = mycpu;
2 lasttb = oldtb = firsttb = gettb();
3 while (state.variable == mycpu) {
4 lasttb = oldtb;
5 oldtb = gettb();
6 if (lasttb - firsttb > 1000)
7 break;
8 }

Figure 13.4: Software Logic Analyzer

the shared variable had changed before entry into the loop. This allows us to plot each
CPU’s view of the value of state.variable over a 532-nanosecond time period,
as shown in Figure 13.5. This data was collected on 1.5GHz POWER5 system with
8 cores, each containing a pair of hardware threads. CPUs 1, 2, 3, and 4 recorded the
values, while CPU 0 controlled the test. The timebase counter period was about 5.32ns,
sufficiently fine-grained to allow observations of intermediate cache states.
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CPU 2
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Figure 13.5: A Variable With Multiple Simultaneous Values

Each horizontal bar represents the observations of a given CPU over time, with
the black regions to the left indicating the time before the corresponding CPU’s first
measurement. During the first 5ns, only CPU 3 has an opinion about the value of the
variable. During the next 10ns, CPUs 2 and 3 disagree on the value of the variable,
but thereafter agree that the value is “2”, which is in fact the final agreed-upon value.
However, CPU 1 believes that the value is “1” for almost 300ns, and CPU 4 believes
that the value is “4” for almost 500ns.

Quick Quiz 13.4: How could CPUs possibly have different views of the value of a
single variable at the same time?

Quick Quiz 13.5: Why do CPUs 2 and 3 come to agreement so quickly, when it
takes so long for CPUs 1 and 4 to come to the party?

We have entered a regime where we must bid a fond farewell to comfortable
intuitions about values of variables and the passage of time. This is the regime where
memory barriers are needed.

13.2.4 What Can You Trust?
You most definitely cannot trust your intuition.

What can you trust?
It turns out that there are a few reasonably simple rules that allow you to make good

use of memory barriers. This section derives those rules, for those who wish to get to
the bottom of the memory-barrier story, at least from the viewpoint of portable code.
If you just want to be told what the rules are rather than suffering through the actual
derivation, please feel free to skip to Section 13.2.6.
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The exact semantics of memory barriers vary wildly from one CPU to another, so
portable code must rely only on the least-common-denominator semantics of memory
barriers.

Fortunately, all CPUs impose the following rules:

1. All accesses by a given CPU will appear to that CPU to have occurred in program
order.

2. All CPUs’ accesses to a single variable will be consistent with some global
ordering of stores to that variable.

3. Memory barriers will operate in a pair-wise fashion.

4. Operations will be provided from which exclusive locking primitives may be
constructed.

Therefore, if you need to use memory barriers in portable code, you can rely on all
of these properties.1 Each of these properties is described in the following sections.

13.2.4.1 Self-References Are Ordered

A given CPU will see its own accesses as occurring in “program order”, as if the CPU
was executing only one instruction at a time with no reordering or speculation. For older
CPUs, this restriction is necessary for binary compatibility, and only secondarily for
the sanity of us software types. There have been a few CPUs that violate this rule to a
limited extent, but in those cases, the compiler has been responsible for ensuring that
ordering is explicitly enforced as needed.

Either way, from the programmer’s viewpoint, the CPU sees its own accesses in
program order.

13.2.4.2 Single-Variable Memory Consistency

Because current commercially available computer systems provide cache coherence,
if a group of CPUs all do concurrent non-atomic stores to a single variable, the series
of values seen by all CPUs will be consistent with at least one global ordering. For
example, in the series of accesses shown in Figure 13.5, CPU 1 sees the sequence
{1,2}, CPU 2 sees the sequence {2}, CPU 3 sees the sequence {3,2}, and CPU 4
sees the sequence {4,2}. This is consistent with the global sequence {3,1,4,2},
but also with all five of the other sequences of these four numbers that end in “2”. Thus,
there will be agreement on the sequence of values taken on by a single variable, but
there might be ambiguity.

In contrast, had the CPUs used atomic operations (such as the Linux kernel’s
atomic_inc_return() primitive) rather than simple stores of unique values, their
observations would be guaranteed to determine a single globally consistent sequence
of values. One of the atomic_inc_return() invocations would happen first, and
would change the value from 0 to 1, the second from 1 to 2, and so on. The CPUs could
compare notes afterwards and come to agreement on the exact ordering of the sequence
of atomic_inc_return() invocations. This does not work for the non-atomic
stores described earlier because the non-atomic stores do not return any indication of
the earlier value, hence the possibility of ambiguity.

1 Or, better yet, you can avoid explicit use of memory barriers entirely. But that would be the subject of
other sections.
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Please note well that this section applies only when all CPUs’ accesses are to one
single variable. In this single-variable case, cache coherence guarantees the global
ordering, at least assuming that some of the more aggressive compiler optimizations
are disabled via the Linux kernel’s ACCESS_ONCE() directive or C++11’s relaxed
atomics [Bec11]. In contrast, if there are multiple variables, memory barriers are
required for the CPUs to consistently agree on the order for current commercially
available computer systems.

13.2.4.3 Pair-Wise Memory Barriers

Pair-wise memory barriers provide conditional ordering semantics. For example, in
the following set of operations, CPU 1’s access to A does not unconditionally precede
its access to B from the viewpoint of an external logic analyzer (see Appendix C for
examples). However, if CPU 2’s access to B sees the result of CPU 1’s access to
B, then CPU 2’s access to A is guaranteed to see the result of CPU 1’s access to A.
Although some CPUs’ memory barriers do in fact provide stronger, unconditional
ordering guarantees, portable code may rely only on this weaker if-then conditional
ordering guarantee.

CPU 1 CPU 2
access(A); access(B);
smp_mb(); smp_mb();
access(B); access(A);

Quick Quiz 13.6: But if the memory barriers do not unconditionally force ordering,
how the heck can a device driver reliably execute sequences of loads and stores to
MMIO registers?

Of course, accesses must be either loads or stores, and these do have different
properties. Table 13.1 shows all possible combinations of loads and stores from a pair
of CPUs. Of course, to enforce conditional ordering, there must be a memory barrier
between each CPU’s pair of operations.

13.2.4.4 Pair-Wise Memory Barriers: Portable Combinations

The following pairings from Table 13.1, enumerate all the combinations of memory-
barrier pairings that portable software may depend on.

Pairing 1. In this pairing, one CPU executes a pair of loads separated by a memory bar-
rier, while a second CPU executes a pair of stores also separated by a memory barrier, as

follows (both A and B are initially equal to zero):

CPU 1 CPU 2
A=1; Y=B;
smp_mb(); smp_mb();
B=1; X=A;

After both CPUs have completed executing these code sequences, if Y==1, then we

must also have X==1. In this case, the fact that Y==1 means that CPU 2’s load prior to
its memory barrier has seen the store following CPU 1’s memory barrier. Due to the
pairwise nature of memory barriers, CPU 2’s load following its memory barrier must
therefore see the store that precedes CPU 1’s memory barrier, so that X==1.

On the other hand, if Y==0, the memory-barrier condition does not hold, and so in
this case, X could be either 0 or 1.
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CPU 1 CPU 2 Description
0 load(A) load(B) load(B) load(A) Ears to ears.
1 load(A) load(B) load(B) store(A) Only one store.
2 load(A) load(B) store(B) load(A) Only one store.
3 load(A) load(B) store(B) store(A) Pairing 1.
4 load(A) store(B) load(B) load(A) Only one store.
5 load(A) store(B) load(B) store(A) Pairing 2.
6 load(A) store(B) store(B) load(A) Mouth to mouth, ear to ear.
7 load(A) store(B) store(B) store(A) Pairing 3.
8 store(A) load(B) load(B) load(A) Only one store.
9 store(A) load(B) load(B) store(A) Mouth to mouth, ear to ear.
A store(A) load(B) store(B) load(A) Ears to mouths.
B store(A) load(B) store(B) store(A) Stores “pass in the night”.
C store(A) store(B) load(B) load(A) Pairing 1.
D store(A) store(B) load(B) store(A) Pairing 3.
E store(A) store(B) store(B) load(A) Stores “pass in the night”.
F store(A) store(B) store(B) store(A) Stores “pass in the night”.

Table 13.1: Memory-Barrier Combinations

Pairing 2. In this pairing, each CPU executes a load followed by a memory barrier fol-

lowed by a store, as follows (both A and B are initially equal to zero):

CPU 1 CPU 2
X=A; Y=B;
smp_mb(); smp_mb();
B=1; A=1;

After both CPUs have completed executing these code sequences, if X==1, then we

must also have Y==0. In this case, the fact that X==1 means that CPU 1’s load prior to
its memory barrier has seen the store following CPU 2’s memory barrier. Due to the
pairwise nature of memory barriers, CPU 1’s store following its memory barrier must
therefore see the results of CPU 2’s load preceding its memory barrier, so that Y==0.

On the other hand, if X==0, the memory-barrier condition does not hold, and so in
this case, Y could be either 0 or 1.

The two CPUs’ code sequences are symmetric, so if Y==1 after both CPUs have
finished executing these code sequences, then we must have X==0.

Pairing 3. In this pairing, one CPU executes a load followed by a memory barrier
followed by a store, while the other CPU executes a pair of stores separated by a memory

barrier, as follows (both A and B are initially equal to zero):

CPU 1 CPU 2
X=A; B=2;
smp_mb(); smp_mb();
B=1; A=1;

After both CPUs have completed executing these code sequences, if X==1, then we

must also have B==1. In this case, the fact that X==1 means that CPU 1’s load prior to
its memory barrier has seen the store following CPU 2’s memory barrier. Due to the
pairwise nature of memory barriers, CPU 1’s store following its memory barrier must
therefore see the results of CPU 2’s store preceding its memory barrier. This means that
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CPU 1’s store to B will overwrite CPU 2’s store to B, resulting in B==1.
On the other hand, if X==0, the memory-barrier condition does not hold, and so in

this case, B could be either 1 or 2.

13.2.4.5 Pair-Wise Memory Barriers: Semi-Portable Combinations

The following pairings from Table 13.1 can be used on modern hardware, but might
fail on some systems that were produced in the 1900s. However, these can safely be
used on all mainstream hardware introduced since the year 2000. So if you think that
memory barriers are difficult to deal with, please keep in mind that they used to be a lot
harder on some systems!

Ears to Mouths. Since the stores cannot see the results of the loads (again, ignoring
MMIO registers for the moment), it is not always possible to determine whether the
memory-barrier condition has been met. However, 21st-century hardware would guar-
antee that at least one of the loads saw the value stored by the corresponding store (or
some later value for that same variable).

Quick Quiz 13.7: How do we know that modern hardware guarantees that at least
one of the loads will see the value stored by the other thread in the ears-to-mouths
scenario?

Stores “Pass in the Night”. In the following example, after both CPUs have fin-
ished executing their code sequences, it is quite tempting to conclude that the result
{A==1,B==2} cannot happen.

CPU 1 CPU 2
A=1; B=2;
smp_mb(); smp_mb();
B=1; A=2;

Unfortunately, although this conclusion is correct on 21st-century systems, it does
not necessarily hold on all antique 20th-century systems. Suppose that the cache line
containing A is initially owned by CPU 2, and that containing B is initially owned by
CPU 1. Then, in systems that have invalidation queues and store buffers, it is possible
for the first assignments to “pass in the night”, so that the second assignments actually
happen first. This strange effect is explained in Appendix C.

This same effect can happen in any memory-barrier pairing where each CPU’s
memory barrier is preceded by a store, including the “ears to mouths” pairing.

However, 21st-century hardware does accommodate these ordering intuitions, and
do permit this combination to be used safely.

13.2.4.6 Pair-Wise Memory Barriers: Dubious Combinations

In the following combinations from Table 13.1, the memory barriers have very limited
use in portable code, even on 21st-century hardware. However, “limited use” is different
than “no use”, so let’s see what can be done! Avid readers will want to write toy
programs that rely on each of these combinations in order to fully understand how this
works.
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Ears to Ears. Since loads do not change the state of memory (ignoring MMIO
registers for the moment), it is not possible for one of the loads to see the results of the
other load. However, if we know that CPU 2’s load from B returned a newer value than
CPU 1’s load from B, the we also know that CPU 2’s load from A returned either the
same value as CPU 1’s load from A or some later value.

Mouth to Mouth, Ear to Ear. One of the variables is only loaded from, and the other
is only stored to. Because (once again, ignoring MMIO registers) it is not possible
for one load to see the results of the other, it is not possible to detect the conditional
ordering provided by the memory barrier.

However, it is possible to determine which store happened last, but this requires an
additional load from B. If this additional load from B is executed after both CPUs 1
and 2 complete, and if it turns out that CPU 2’s store to B happened last, then we know
that CPU 2’s load from A returned either the same value as CPU 1’s load from A or
some later value.

Only One Store. Because there is only one store, only one of the variables permits
one CPU to see the results of the other CPU’s access. Therefore, there is no way to
detect the conditional ordering provided by the memory barriers.

At least not straightforwardly. But suppose that in combination 1 from Table 13.1,
CPU 1’s load from A returns the value that CPU 2 stored to A. Then we know that
CPU 1’s load from B returned either the same value as CPU 2’s load from A or some
later value.

Quick Quiz 13.8: How can the other “Only one store” entries in Table 13.1 be
used?

13.2.4.7 Semantics Sufficient to Implement Locking

Suppose we have an exclusive lock (spinlock_t in the Linux kernel, pthread_
mutex_t in pthreads code) that guards a number of variables (in other words, these
variables are not accessed except from the lock’s critical sections). The following
properties must then hold true:

1. A given CPU or thread must see all of its own loads and stores as if they had
occurred in program order.

2. The lock acquisitions and releases must appear to have executed in a single global
order.2

3. Suppose a given variable has not yet been stored to in a critical section that is
currently executing. Then any load from a given variable performed in that critical
section must see the last store to that variable from the last previous critical section
that stored to it.

The difference between the last two properties is a bit subtle: the second requires
that the lock acquisitions and releases occur in a well-defined order, while the third
requires that the critical sections not “bleed out” far enough to cause difficulties for
other critical section.

2 Of course, this order might be different from one run to the next. On any given run, however, all CPUs
and threads must have a consistent view of the order of critical sections for a given exclusive lock.
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Why are these properties necessary?
Suppose the first property did not hold. Then the assertion in the following code

might well fail!

a = 1;
b = 1 + a;
assert(b == 2);

Quick Quiz 13.9: How could the assertion b==2 on page 353 possibly fail?
Suppose that the second property did not hold. Then the following code might leak

memory!

spin_lock(&mylock);
if (p == NULL)

p = kmalloc(sizeof(*p), GFP_KERNEL);
spin_unlock(&mylock);

Quick Quiz 13.10: How could the code on page 353 possibly leak memory?
Suppose that the third property did not hold. Then the counter shown in the following

code might well count backwards. This third property is crucial, as it cannot be strictly
with pairwise memory barriers.

spin_lock(&mylock);
ctr = ctr + 1;
spin_unlock(&mylock);

Quick Quiz 13.11: How could the code on page 353 possibly count backwards?
If you are convinced that these rules are necessary, let’s look at how they interact

with a typical locking implementation.

13.2.5 Review of Locking Implementations

Naive pseudocode for simple lock and unlock operations are shown below. Note that the
atomic_xchg() primitive implies a memory barrier both before and after the atomic
exchange operation, which eliminates the need for an explicit memory barrier in spin_
lock(). Note also that, despite the names, atomic_read() and atomic_set()
do not execute any atomic instructions, instead, it merely executes a simple load and
store, respectively. This pseudocode follows a number of Linux implementations for
the unlock operation, which is a simple non-atomic store following a memory barrier.
These minimal implementations must possess all the locking properties laid out in
Section 13.2.4.

1 void spin_lock(spinlock_t *lck)
2 {
3 while (atomic_xchg(&lck->a, 1) != 0)
4 while (atomic_read(&lck->a) != 0)
5 continue;
6 }
7
8 void spin_unlock(spinlock_t lck)
9 {

10 smp_mb();
11 atomic_set(&lck->a, 0);
12 }

The spin_lock() primitive cannot proceed until the preceding spin_unlock()
primitive completes. If CPU 1 is releasing a lock that CPU 2 is attempting to acquire,
the sequence of operations might be as follows:
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CPU 1 CPU 2
(critical section) atomic_xchg(&lck->a, 1)->1
smp_mb(); lck->a->1
lck->a=0; lck->a->1

lck->a->0
(implicit smp_mb()1)
atomic_xchg(&lck->a, 1)->0
(implicit smp_mb()2)
(critical section)

In this particular case, pairwise memory barriers suffice to keep the two criti-
cal sections in place. CPU 2’s atomic_xchg(&lck->a, 1) has seen CPU 1’s
lck->a=0, so therefore everything in CPU 2’s following critical section must see
everything that CPU 1’s preceding critical section did. Conversely, CPU 1’s critical
section cannot see anything that CPU 2’s critical section will do.

@@@

13.2.6 A Few Simple Rules
@@@

Probably the easiest way to understand memory barriers is to understand a few
simple rules:

1. Each CPU sees its own accesses in order.

2. If a single shared variable is loaded and stored by multiple CPUs, then the series
of values seen by a given CPU will be consistent with the series seen by the other
CPUs, and there will be at least one sequence consisting of all values stored to
that variable with which each CPUs series will be consistent.3

3. If one CPU does ordered stores to variables A and B,4, and if a second CPU does
ordered loads from B and A,5, then if the second CPU’s load from B gives the
value stored by the first CPU, then the second CPU’s load from A must give the
value stored by the first CPU.

4. If one CPU does a load from A ordered before a store to B, and if a second CPU
does a load from B ordered before a store from A, and if the second CPU’s load
from B gives the value stored by the first CPU, then the first CPU’s load from A
must not give the value stored by the second CPU.

5. If one CPU does a load from A ordered before a store to B, and if a second CPU
does a store to B ordered before a store to A, and if the first CPU’s load from A
gives the value stored by the second CPU, then the first CPU’s store to B must
happen after the second CPU’s store to B, hence the value stored by the first CPU
persists.6

So what exactly @@@

13.2.7 Abstract Memory Access Model
Consider the abstract model of the system shown in Figure 13.6.

3 A given CPU’s series may of course be incomplete, for example, if a given CPU never loaded or stored
the shared variable, then it can have no opinion about that variable’s value.

4 For example, by executing the store to A, a memory barrier, and then the store to B.
5 For example, by executing the load from B, a memory barrier, and then the load from A.
6 Or, for the more competitively oriented, the first CPU’s store to B “wins”.
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CPU 1 Memory CPU 2

Device

Figure 13.6: Abstract Memory Access Model

Each CPU executes a program that generates memory access operations. In the
abstract CPU, memory operation ordering is very relaxed, and a CPU may actually
perform the memory operations in any order it likes, provided program causality appears
to be maintained. Similarly, the compiler may also arrange the instructions it emits in
any order it likes, provided it doesn’t affect the apparent operation of the program.

So in the above diagram, the effects of the memory operations performed by a CPU
are perceived by the rest of the system as the operations cross the interface between the
CPU and rest of the system (the dotted lines).

For example, consider the following sequence of events given the initial values {A
= 1, B = 2}:

CPU 1 CPU 2
A = 3; x = A;
B = 4; y = B;

The set of accesses as seen by the memory system in the middle can be arranged in
24 different combinations, with loads denoted by “ld” and stores denoted by “st”:

st A=3, st B=4, x=ld A→3, y=ld B→4
st A=3, st B=4, y=ld B→4, x=ld A→3
st A=3, x=ld A→3, st B=4, y=ld B→4
st A=3, x=ld A→3, y=ld B→2, st B=4
st A=3, y=ld B→2, st B=4, x=ld A→3
st A=3, y=ld B→2, x=ld A→3, st B=4
st B=4, st A=3, x=ld A→3, y=ld B→4
st B=4, ...
...

and can thus result in four different combinations of values:
x == 1, y == 2
x == 1, y == 4
x == 3, y == 2
x == 3, y == 4

Furthermore, the stores committed by a CPU to the memory system may not be
perceived by the loads made by another CPU in the same order as the stores were
committed.

As a further example, consider this sequence of events given the initial values {A =
1, B = 2, C = 3, P = &A, Q = &C}:

CPU 1 CPU 2
B = 4; Q = P;
P = &B D = *Q;
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There is an obvious data dependency here, as the value loaded into D depends on
the address retrieved from P by CPU 2. At the end of the sequence, any of the following
results are possible:

(Q == &A) and (D == 1)
(Q == &B) and (D == 2)
(Q == &B) and (D == 4)

Note that CPU 2 will never try and load C into D because the CPU will load P into
Q before issuing the load of *Q.

13.2.8 Device Operations
Some devices present their control interfaces as collections of memory locations, but
the order in which the control registers are accessed is very important. For instance,
imagine an Ethernet card with a set of internal registers that are accessed through an
address port register (A) and a data port register (D). To read internal register 5, the
following code might then be used:

*A = 5;
x = *D;

but this might show up as either of the following two sequences:

STORE *A = 5, x = LOAD *D
x = LOAD *D, STORE *A = 5

the second of which will almost certainly result in a malfunction, since it set the
address after attempting to read the register.

13.2.9 Guarantees
There are some minimal guarantees that may be expected of a CPU:

1. On any given CPU, dependent memory accesses will be issued in order, with
respect to itself. This means that for:

Q = P; D = *Q;

the CPU will issue the following memory operations:

Q = LOAD P, D = LOAD *Q

and always in that order.

2. Overlapping loads and stores within a particular CPU will appear to be ordered
within that CPU. This means that for:

a = *X; *X = b;

the CPU will only issue the following sequence of memory operations:
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a = LOAD *X, STORE *X = b

And for:

*X = c; d = *X;

the CPU will only issue:

STORE *X = c, d = LOAD *X

(Loads and stores overlap if they are targetted at overlapping pieces of memory).

3. A series of stores to a single variable will appear to all CPUs to have occurred in
a single order, though this order might not be predictable from the code, and in
fact the order might vary from one run to another.

And there are a number of things that must or must not be assumed:

1. It must not be assumed that independent loads and stores will be issued in the
order given. This means that for:

X = *A; Y = *B; *D = Z;

we may get any of the following sequences:

X = LOAD *A, Y = LOAD *B, STORE *D = Z
X = LOAD *A, STORE *D = Z, Y = LOAD *B
Y = LOAD *B, X = LOAD *A, STORE *D = Z
Y = LOAD *B, STORE *D = Z, X = LOAD *A
STORE *D = Z, X = LOAD *A, Y = LOAD *B
STORE *D = Z, Y = LOAD *B, X = LOAD *A

2. It must be assumed that overlapping memory accesses may be merged or discarded.
This means that for:

X = *A; Y = *(A + 4);

we may get any one of the following sequences:

X = LOAD *A; Y = LOAD *(A + 4);
Y = LOAD *(A + 4); X = LOAD *A;
{X, Y} = LOAD {*A, *(A + 4) };

And for:

*A = X; Y = *A;

we may get any of:

STORE *A = X; STORE *(A + 4) = Y;
STORE *(A + 4) = Y; STORE *A = X;
STORE {*A, *(A + 4) } = {X, Y};
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Finally, for:

*A = X; *A = Y;

we may get either of:

STORE *A = X; STORE *A = Y;
STORE *A = Y;

13.2.10 What Are Memory Barriers?

As can be seen above, independent memory operations are effectively performed in
random order, but this can be a problem for CPU-CPU interaction and for I/O. What is
required is some way of intervening to instruct the compiler and the CPU to restrict the
order.

Memory barriers are such interventions. They impose a perceived partial ordering
over the memory operations on either side of the barrier.

Such enforcement is important because the CPUs and other devices in a system
can use a variety of tricks to improve performance - including reordering, deferral and
combination of memory operations; speculative loads; speculative branch prediction and
various types of caching. Memory barriers are used to override or suppress these tricks,
allowing the code to sanely control the interaction of multiple CPUs and/or devices.

13.2.10.1 Explicit Memory Barriers

Memory barriers come in four basic varieties:

1. Write (or store) memory barriers,

2. Data dependency barriers,

3. Read (or load) memory barriers, and

4. General memory barriers.

Each variety is described below.

Write Memory Barriers A write memory barrier gives a guarantee that all the
STORE operations specified before the barrier will appear to happen before all the
STORE operations specified after the barrier with respect to the other components of
the system.

A write barrier is a partial ordering on stores only; it is not required to have any
effect on loads.

A CPU can be viewed as committing a sequence of store operations to the memory
system as time progresses. All stores before a write barrier will occur in the sequence
before all the stores after the write barrier.

† Note that write barriers should normally be paired with read or data dependency
barriers; see the "SMP barrier pairing" subsection.
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Data Dependency Barriers A data dependency barrier is a weaker form of read
barrier. In the case where two loads are performed such that the second depends on the
result of the first (e.g., the first load retrieves the address to which the second load will
be directed), a data dependency barrier would be required to make sure that the target of
the second load is updated before the address obtained by the first load is accessed.

A data dependency barrier is a partial ordering on interdependent loads only; it is
not required to have any effect on stores, independent loads or overlapping loads.

As mentioned for write memory barriers, the other CPUs in the system can be
viewed as committing sequences of stores to the memory system that the CPU being
considered can then perceive. A data dependency barrier issued by the CPU under
consideration guarantees that for any load preceding it, if that load touches one of a
sequence of stores from another CPU, then by the time the barrier completes, the effects
of all the stores prior to that touched by the load will be perceptible to any loads issued
after the data dependency barrier.

See the "Examples of memory barrier sequences" subsection for diagrams showing
the ordering constraints.

† Note that the first load really has to have a data dependency and not a control
dependency. If the address for the second load is dependent on the first load, but the
dependency is through a conditional rather than actually loading the address itself, then
it’s a control dependency and a full read barrier or better is required. See the "Control
dependencies" subsection for more information.

† Note that data dependency barriers should normally be paired with write barriers;
see the "SMP barrier pairing" subsection.

Read Memory Barriers A read barrier is a data dependency barrier plus a guarantee
that all the LOAD operations specified before the barrier will appear to happen before
all the LOAD operations specified after the barrier with respect to the other components
of the system.

A read barrier is a partial ordering on loads only; it is not required to have any effect
on stores.

Read memory barriers imply data dependency barriers, and so can substitute for
them.

† Note that read barriers should normally be paired with write barriers; see the "SMP
barrier pairing" subsection.

General Memory Barriers A general memory barrier gives a guarantee that all the
LOAD and STORE operations specified before the barrier will appear to happen before
all the LOAD and STORE operations specified after the barrier with respect to the other
components of the system.

A general memory barrier is a partial ordering over both loads and stores.
General memory barriers imply both read and write memory barriers, and so can

substitute for either.

13.2.10.2 Implicit Memory Barriers

There are a couple of types of implicit memory barriers, so called because they are
embedded into locking primitives:

1. LOCK operations and
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2. UNLOCK operations.

LOCK Operations A lock operation acts as a one-way permeable barrier. It guaran-
tees that all memory operations after the LOCK operation will appear to happen after
the LOCK operation with respect to the other components of the system.

Memory operations that occur before a LOCK operation may appear to happen after
it completes.

A LOCK operation should almost always be paired with an UNLOCK operation.

UNLOCK Operations Unlock operations also act as a one-way permeable barrier.
It guarantees that all memory operations before the UNLOCK operation will appear
to happen before the UNLOCK operation with respect to the other components of the
system.

Memory operations that occur after an UNLOCK operation may appear to happen
before it completes.

LOCK and UNLOCK operations are guaranteed to appear with respect to each other
strictly in the order specified.

The use of LOCK and UNLOCK operations generally precludes the need for other
sorts of memory barrier (but note the exceptions mentioned in the subsection "MMIO
write barrier").

Quick Quiz 13.12: What effect does the following sequence have on the order of
stores to variables “a” and “b”?
a = 1;
b = 1;
<write barrier>

13.2.10.3 What May Not Be Assumed About Memory Barriers?

There are certain things that memory barriers cannot guarantee outside of the confines
of a given architecture:

1. There is no guarantee that any of the memory accesses specified before a memory
barrier will be complete by the completion of a memory barrier instruction; the
barrier can be considered to draw a line in that CPU’s access queue that accesses
of the appropriate type may not cross.

2. There is no guarantee that issuing a memory barrier on one CPU will have any
direct effect on another CPU or any other hardware in the system. The indirect
effect will be the order in which the second CPU sees the effects of the first CPU’s
accesses occur, but see the next point.

3. There is no guarantee that a CPU will see the correct order of effects from a
second CPU’s accesses, even if the second CPU uses a memory barrier, unless
the first CPU also uses a matching memory barrier (see the subsection on "SMP
Barrier Pairing").

4. There is no guarantee that some intervening piece of off-the-CPU hardware7 will
not reorder the memory accesses. CPU cache coherency mechanisms should

7 This is of concern primarily in operating-system kernels. For more information on hardware opera-
tions and memory ordering, see the files pci.txt, DMA-API-HOWTO.txt, and DMA-API.txt in the
Documentation directory in the Linux source tree [Tor03c].
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propagate the indirect effects of a memory barrier between CPUs, but might not
do so in order.

13.2.10.4 Data Dependency Barriers

The usage requirements of data dependency barriers are a little subtle, and it’s not
always obvious that they’re needed. To illustrate, consider the following sequence of
events, with initial values {A = 1, B = 2, C = 3, P = &A, Q = &C}:

CPU 1 CPU 2
B = 4;
<write barrier>
P = &B;

Q = P;
D = *Q;

There’s a clear data dependency here, and it would seem intuitively obvious that by
the end of the sequence, Q must be either &A or &B, and that:

(Q == &A) implies (D == 1)
(Q == &B) implies (D == 4)

Counter-intuitive though it might be, it is quite possible that CPU 2’s perception of
P might be updated before its perception of B, thus leading to the following situation:

(Q == &B) and (D == 2) ????

Whilst this may seem like a failure of coherency or causality maintenance, it isn’t,
and this behaviour can be observed on certain real CPUs (such as the DEC Alpha).

To deal with this, a data dependency barrier must be inserted between the address
load and the data load (again with initial values of {A = 1, B = 2, C = 3, P
= &A, Q = &C}):

CPU 1 CPU 2
B = 4;
<write barrier>
P = &B;

Q = P;
<data dependency barrier>
D = *Q;

This enforces the occurrence of one of the two implications, and prevents the third
possibility from arising.

Note that this extremely counterintuitive situation arises most easily on machines
with split caches, so that, for example, one cache bank processes even-numbered cache
lines and the other bank processes odd-numbered cache lines. The pointer P might
be stored in an odd-numbered cache line, and the variable B might be stored in an
even-numbered cache line. Then, if the even-numbered bank of the reading CPU’s cache
is extremely busy while the odd-numbered bank is idle, one can see the new value of
the pointer P (which is &B), but the old value of the variable B (which is 1).

Another example of where data dependency barriers might by required is where a
number is read from memory and then used to calculate the index for an array access
with initial values {M[0] = 1, M[1] = 2, M[3] = 3, P = 0, Q = 3}:
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CPU 1 CPU 2
M[1] = 4;
<write barrier>
P = 1;

Q = P;
<data dependency barrier>
D = M[Q];

The data dependency barrier is very important to the Linux kernel’s RCU system, for
example, see rcu_dereference() in include/linux/rcupdate.h. This
permits the current target of an RCU’d pointer to be replaced with a new modified target,
without the replacement target appearing to be incompletely initialised.

See also the subsection on @@@"Cache Coherency" for a more thorough example.

13.2.10.5 Control Dependencies

A control dependency requires a full read memory barrier, not simply a data dependency
barrier to make it work correctly. Consider the following bit of code:

1 q = &a;
2 if (p)
3 q = &b;
4 <data dependency barrier>
5 x = *q;

This will not have the desired effect because there is no actual data dependency, but
rather a control dependency that the CPU may short-circuit by attempting to predict the
outcome in advance. In such a case what’s actually required is:

1 q = &a;
2 if (p)
3 q = &b;
4 <read barrier>
5 x = *q;

13.2.10.6 SMP Barrier Pairing

When dealing with CPU-CPU interactions, certain types of memory barrier should
always be paired. A lack of appropriate pairing is almost certainly an error.

A write barrier should always be paired with a data dependency barrier or read
barrier, though a general barrier would also be viable. Similarly a read barrier or a data
dependency barrier should always be paired with at least an write barrier, though, again,
a general barrier is viable:

CPU 1 CPU 2
A = 1;
<write barrier>
B = 2;

X = B;
<read barrier>
Y = A;

Or:
CPU 1 CPU 2
A = 1;
<write barrier>
B = &A;

X = B;
<data dependency barrier>
Y = *X;
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One way or another, the read barrier must always be present, even though it might
be of a weaker type.8

Note that the stores before the write barrier would normally be expected to match
the loads after the read barrier or data dependency barrier, and vice versa:

x = a;
y = b;

c = 3;
d = 4;

v = ca = 1;
b = 2;

CPU 2CPU 1

<write barrier>
w = d
<read barrier>

13.2.10.7 Examples of Memory Barrier Pairings

Firstly, write barriers act as a partial orderings on store operations. Consider the
following sequence of events:

STORE A = 1
STORE B = 2
STORE C = 3
<write barrier>
STORE D = 4
STORE E = 5

This sequence of events is committed to the memory coherence system in an order
that the rest of the system might perceive as the unordered set of {A=1,B=2,C=3} all
occurring before the unordered set of {D=4,E=5}, as shown in Figure 13.7.
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Sequence in which stores are committed to the
memory system by CPU 1

At this point the write barrier
requires all stores prior to the
barrier to be committed before
further stores may be take place.

Events perceptible
to rest of system

Figure 13.7: Write Barrier Ordering Semantics

Secondly, data dependency barriers act as a partial orderings on data-dependent
loads. Consider the following sequence of events with initial values {B = 7, X =
9, Y = 8, C = &Y}:

CPU 1 CPU 2
A = 1;
B = 2;
<write barrier>
C = &B; LOAD X
D = 4; LOAD C (gets &B)

LOAD *C (reads B)

8 By “weaker”, we mean "makes fewer ordering guarantees". A weaker barrier is usually also lower-
overhead than is a stronger barrier.
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Without intervention, CPU 2 may perceive the events on CPU 1 in some effectively
random order, despite the write barrier issued by CPU 1, as shown in Figure 13.8.

����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����

���
���
���
���
���
���

���
���
���
���
���
���

wwwwwwwwwwwwwwww

CPU 2

CPU 1

Y−>8

C−>&Y

C−>&B

B−>7

X−>9

B−>2

B=2

A=1

C=&B

D=4

The load of X holds
up the maintenance
of coherence of B

Apparently incorrect
perception of B (!)

Sequence of update
of perception on
CPU 2

Figure 13.8: Data Dependency Barrier Omitted

In the above example, CPU 2 perceives that B is 7, despite the load of *C (which
would be B) coming after the LOAD of C.

If, however, a data dependency barrier were to be placed between the load of C and
the load of *C (i.e.: B) on CPU 2, again with initial values of {B = 7, X = 9, Y
= 8, C = &Y}:

CPU 1 CPU 2
A = 1;
B = 2;
<write barrier>
C = &B; LOAD X
D = 4; LOAD C (gets &B)

<data dependency barrier>
LOAD *C (reads B)

then ordering will be as intuitively expected, as shown in Figure 13.9.

And thirdly, a read barrier acts as a partial order on loads. Consider the following
sequence of events, with initial values {A = 0, B = 9}:

CPU 1 CPU 2
A = 1;
<write barrier>
B = 2;

LOAD B
LOAD A

Without intervention, CPU 2 may then choose to perceive the events on CPU 1 in
some effectively random order, despite the write barrier issued by CPU 1, as shown in
Figure 13.10.

If, however, a read barrier were to be placed between the load of B and the load of A
on CPU 2, again with initial values of {A = 0, B = 9}:
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Figure 13.9: Data Dependency Barrier Supplied
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Figure 13.10: Read Barrier Needed

CPU 1 CPU 2
A = 1;
<write barrier>
B = 2;

LOAD B
<read barrier>
LOAD A

then the partial ordering imposed by CPU 1’s write barrier will be perceived correctly
by CPU 2, as shown in Figure 13.11.

To illustrate this more completely, consider what could happen if the code contained
a load of A either side of the read barrier, once again with the same initial values of {A
= 0, B = 9}:

CPU 1 CPU 2
A = 1;
<write barrier>
B = 2;

LOAD B
LOAD A (1st)
<read barrier>
LOAD A (2nd)
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Figure 13.11: Read Barrier Supplied

Even though the two loads of A both occur after the load of B, they may both come
up with different values, as shown in Figure 13.12.
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Figure 13.12: Read Barrier Supplied, Double Load

Of course, it may well be that CPU 1’s update to A becomes perceptible to CPU 2
before the read barrier completes, as shown in Figure 13.13.

The guarantee is that the second load will always come up with A == 1 if the load
of B came up with B == 2. No such guarantee exists for the first load of A; that may
come up with either A == 0 or A == 1.

13.2.10.8 Read Memory Barriers vs. Load Speculation

Many CPUs speculate with loads: that is, they see that they will need to load an item
from memory, and they find a time where they’re not using the bus for any other loads,
and then do the load in advance — even though they haven’t actually got to that point
in the instruction execution flow yet. Later on, this potentially permits the actual load
instruction to complete immediately because the CPU already has the value on hand.

It may turn out that the CPU didn’t actually need the value (perhaps because a
branch circumvented the load) in which case it can discard the value or just cache it for
later use. For example, consider the following:
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Figure 13.13: Read Barrier Supplied, Take Two

CPU 1 CPU 2
LOAD B
DIVIDE
DIVIDE
LOAD A

On some CPUs, divide instructions can take a long time to complete, which means
that CPU 2’s bus might go idle during that time. CPU 2 might therefore speculatively
load A before the divides complete. In the (hopefully) unlikely event of an exception
from one of the dividees, this speculative load will have been wasted, but in the (again,
hopefully) common case, overlapping the load with the divides will permit the load to
complete more quickly, as illustrated by Figure 13.14.
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Figure 13.14: Speculative Load

Placing a read barrier or a data dependency barrier just before the second load:
CPU 1 CPU 2

LOAD B
DIVIDE
DIVIDE
<read barrier>
LOAD A

will force any value speculatively obtained to be reconsidered to an extent dependent
on the type of barrier used. If there was no change made to the speculated memory
location, then the speculated value will just be used, as shown in Figure 13.15. On
the other hand, if there was an update or invalidation to A from some other CPU, then
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the speculation will be cancelled and the value of A will be reloaded, as shown in
Figure 13.16.
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Figure 13.15: Speculative Load and Barrier
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Figure 13.16: Speculative Load Cancelled by Barrier

13.2.11 Locking Constraints
As noted earlier, locking primitives contain implicit memory barriers. These implicit
memory barriers provide the following guarantees:

1. LOCK operation guarantee:

• Memory operations issued after the LOCK will be completed after the
LOCK operation has completed.

• Memory operations issued before the LOCK may be completed after the
LOCK operation has completed.

2. UNLOCK operation guarantee:

• Memory operations issued before the UNLOCK will be completed before
the UNLOCK operation has completed.

• Memory operations issued after the UNLOCK may be completed before the
UNLOCK operation has completed.
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3. LOCK vs LOCK guarantee:

• All LOCK operations issued before another LOCK operation will be com-
pleted before that LOCK operation.

4. LOCK vs UNLOCK guarantee:

• All LOCK operations issued before an UNLOCK operation will be com-
pleted before the UNLOCK operation.

• All UNLOCK operations issued before a LOCK operation will be completed
before the LOCK operation.

5. Failed conditional LOCK guarantee:

• Certain variants of the LOCK operation may fail, either due to being unable
to get the lock immediately, or due to receiving an unblocked signal or
exception whilst asleep waiting for the lock to become available. Failed
locks do not imply any sort of barrier.

13.2.12 Memory-Barrier Examples

13.2.12.1 Locking Examples

LOCK Followed by UNLOCK: A LOCK followed by an UNLOCK may not be
assumed to be a full memory barrier because it is possible for an access preceding the
LOCK to happen after the LOCK, and an access following the UNLOCK to happen
before the UNLOCK, and the two accesses can themselves then cross. For example, the
following:

1 *A = a;
2 LOCK
3 UNLOCK
4 *B = b;

might well execute in the following order:

2 LOCK
4 *B = b;
1 *A = a;
3 UNLOCK

Again, always remember that both LOCK and UNLOCK are permitted to let pre-
ceding operations “bleed in” to the critical section.

Quick Quiz 13.13: What sequence of LOCK-UNLOCK operations would act as a
full memory barrier?

Quick Quiz 13.14: What (if any) CPUs have memory-barrier instructions from
which these semi-permeable locking primitives might be constructed?

LOCK-Based Critical Sections: Although a LOCK-UNLOCK pair does not act as
a full memory barrier, these operations do affect memory ordering.

Consider the following code:
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1 *A = a;
2 *B = b;
3 LOCK
4 *C = c;
5 *D = d;
6 UNLOCK
7 *E = e;
8 *F = f;

This could legitimately execute in the following order, where pairs of operations on
the same line indicate that the CPU executed those operations concurrently:

3 LOCK
1 *A = a; *F = f;
7 *E = e;
4 *C = c; *D = d;
2 *B = b;
6 UNLOCK

# Ordering: legitimate or not?
1 *A; *B; LOCK; *C; *D; UNLOCK; *E; *F;
2 *A; {*B; LOCK;} *C; *D; UNLOCK; *E; *F;
3 {*F; *A;} *B; LOCK; *C; *D; UNLOCK; *E;
4 *A; *B; {LOCK; *C;} *D; {UNLOCK; *E;} *F;
5 *B; LOCK; *C; *D; *A; UNLOCK; *E; *F;
6 *A; *B; *C; LOCK; *D; UNLOCK; *E; *F;
7 *A; *B; LOCK; *C; UNLOCK; *D; *E; *F;
8 {*B; *A; LOCK;} {*D; *C;} {UNLOCK; *F; *E;}
9 *B; LOCK; *C; *D; UNLOCK; {*F; *A;} *E;

Table 13.2: Lock-Based Critical Sections

Quick Quiz 13.15: Given that operations grouped in curly braces are executed con-
currently, which of the rows of Table 13.2 are legitimate reorderings of the assignments
to variables “A” through “F” and the LOCK/UNLOCK operations? (The order in the
code is A, B, LOCK, C, D, UNLOCK, E, F.) Why or why not?

Ordering with Multiple Locks: Code containing multiple locks still sees ordering
constraints from those locks, but one must be careful to keep track of which lock is
which. For example, consider the code shown in Table 13.3, which uses a pair of locks
named “M” and “Q”.

CPU 1 CPU 2
A = a; E = e;
LOCK M; LOCK Q;
B = b; F = f;
C = c; G = g;

UNLOCK M; UNLOCK Q;
D = d; H = h;

Table 13.3: Ordering With Multiple Locks

In this example, there are no guarantees as to what order the assignments to vari-
ables “A” through “H” will appear in, other than the constraints imposed by the locks
themselves, as described in the previous section.

Quick Quiz 13.16: What are the constraints for Table 13.3?

Ordering with Multiple CPUs on One Lock: Suppose, instead of the two different
locks as shown in Table 13.3, both CPUs acquire the same lock, as shown in Table 13.4?
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CPU 1 CPU 2
A = a; E = e;
LOCK M; LOCK M;
B = b; F = f;
C = c; G = g;

UNLOCK M; UNLOCK M;
D = d; H = h;

Table 13.4: Ordering With Multiple CPUs on One Lock

In this case, either CPU 1 acquires M before CPU 2 does, or vice versa. In the first
case, the assignments to A, B, and C must precede those to F, G, and H. On the other
hand, if CPU 2 acquires the lock first, then the assignments to E, F, and G must precede
those to B, C, and D.

13.2.13 The Effects of the CPU Cache

The perceived ordering of memory operations is affected by the caches that lie between
the CPUs and memory, as well as by the cache coherence protocol that maintains
memory consistency and ordering. From a software viewpoint, these caches are for
all intents and purposes part of memory. Memory barriers can be thought of as acting
on the vertical dotted line in Figure 13.17, ensuring that the CPU presents its values
to memory in the proper order, as well as ensuring that it sees changes made by other
CPUs in the proper order.

Cache
CPU

Queue
Access
Memory

Core
CPU Device

Memory

Mechanism
Coherency

Cache

Cache
CPU

Queue
Access
Memory

Core
CPU

MemoryCPU

Figure 13.17: Memory Architecture

Although the caches can “hide” a given CPU’s memory accesses from the rest of
the system, the cache-coherence protocol ensures that all other CPUs see any effects of
these hidden accesses, migrating and invalidating cachelines as required. Furthermore,
the CPU core may execute instructions in any order, restricted only by the requirement
that program causality and memory ordering appear to be maintained. Some of these
instructions may generate memory accesses that must be queued in the CPU’s memory
access queue, but execution may nonetheless continue until the CPU either fills up its
internal resources or until it must wait for some queued memory access to complete.

371



13.2.13.1 Cache Coherency

Although cache-coherence protocols guarantee that a given CPU sees its own accesses
in order, and that all CPUs agree on the order of modifications to a single variable
contained within a single cache line, there is no guarantee that modifications to different
variables will be seen in the same order by all CPUs — although some computer systems
do make some such guarantees, portable software cannot rely on them.

Cache D

CPU 2

Cache C

Cache B

CPU 1

Cache A

System
Memory

Figure 13.18: Split Caches

To see why reordering can occur, consider the two-CPU system shown in Fig-
ure 13.18, in which each CPU has a split cache. This system has the following proper-
ties:

1. An odd-numbered cache line may be in cache A, cache C, in memory, or some
combination of the above.

2. An even-numbered cache line may be in cache B, cache D, in memory, or some
combination of the above.

3. While the CPU core is interrogating one of its caches,9 its other cache is not
necessarily quiescent. This other cache may instead be responding to an invalida-
tion request, writing back a dirty cache line, processing elements in the CPU’s
memory-access queue, and so on.

4. Each cache has queues of operations that need to be applied to that cache in order
to maintain the required coherence and ordering properties.

5. These queues are not necessarily flushed by loads from or stores to cache lines
affected by entries in those queues.

In short, if cache A is busy, but cache B is idle, then CPU 1’s stores to odd-numbered
cache lines may be delayed compared to CPU 2’s stores to even-numbered cache lines.
In not-so-extreme cases, CPU 2 may see CPU 1’s operations out of order.

Much more detail on memory ordering in hardware and software may be found in
Appendix C.

9 But note that in “superscalar” systems, the CPU might well be accessing both halves of its cache at once,
and might in fact be performing multiple concurrent accesses to each of the halves.
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13.2.14 Where Are Memory Barriers Needed?

Memory barriers are only required where there’s a possibility of interaction between two
CPUs or between a CPU and a device. If it can be guaranteed that there won’t be any
such interaction in any particular piece of code, then memory barriers are unnecessary
in that piece of code.

Note that these are the minimum guarantees. Different architectures may give more
substantial guarantees, as discussed in Appendix C, but they may not be relied upon
outside of code specifically designed to run only on the corresponding architecture.

However, primitives that implement atomic operations, such as locking primitives
and atomic data-structure manipulation and traversal primitives, will normally include
any needed memory barriers in their definitions. However, there are some exceptions,
such as atomic_inc() in the Linux kernel, so be sure to review the documentation,
and, if possible, the actual implementations, for your software environment.

One final word of advice: use of raw memory-barrier primitives should be a last
resort. It is almost always better to use an existing primitive that takes care of memory
barriers.

13.3 Non-Blocking Synchronization

The term non-blocking synchronization (NBS) describes six classes of linearizable algo-
rithms with differing forward-progress guarantees. These forward-progress guarantees
are orthogonal to those that form the basis of real-time programming:

1. Real-time forward-progress guarantees usually have some definite time associated
with them, for example, “scheduling latency must be less than 100 microseconds.”
In contrast, NBS only that progress will be made in finite time, with no definite
bound.

2. Real-time forward-progress guarantees are sometimes probabilistic, as in the
soft-real-time guarantee that “at least 99.9% of the time, scheduling latency must
be less than 100 microseconds.” In contrast, NBS’s forward-progress guarantees
have traditionally been unconditional.

3. Real-time forward-progress guarantees are often conditioned on environmental
constraints, for example, only being honored for the highest-priority tasks, when
each CPU spends at least a certain fraction of its time idle, or when I/O rates are
below some specified maximum. In contrast, NBS’s forward-progress guarantees
are usually unconditional.10

4. Real-time forward-progress guarantees usually apply only in the absence of
software bugs. In contrast, most NBS guarantees apply even in the face of
fail-stop bugs.11

5. NBS forward-progress guarantee classes imply linearizability. In contrast, real-
time forward progress guarantees are often independent of ordering constraints
such as linearizability.

10 As we will see below, some recent NBS work relaxes this guarantee.
11 Again, some recent NBS work relaxes this guarantee.
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Despite these differences, a number of NBS algorithms are extremely useful in
real-time programs.

There are currently six levels in the NBS hierarchy [ACHS13], which are roughly
as follows:

1. Wait-free synchronization: Every thread will make progress in finite time [Her93].

2. Lock-free synchronization: At least one thread will make progress in finite
time [Her93].

3. Obstruction-free synchronization: Every thread will make progress in finite time
in the absence of contention [HLM03].

4. Clash-free synchronization: At least one thread will make progress in finite time
in the absence of contention [ACHS13].

5. Starvation-free synchronization: Every thread will make progress in finite time in
the absence of failures [ACHS13].

6. Deadlock-free synchronization: At least one thread will make progress in finite
time in the absence of failures [ACHS13].

NBS classes 1 and 2 were first formulated in the early 1990s, class 3 was first
fomrulated in the early 2000s, and class 4 was first formulated in 2013. The final two
classes have seen informal use for a great many decades, but were reformulated in 2013.

In theory, any parallel algorithm can be cast into wait-free form, but there are a
relatively small subset of NBS algorithms that are in common use. A few of these are
listed in the following section.

13.3.1 Simple NBS
Perhaps the simplest NBS algorithm is atomic update of an integer counter using
fetch-and-add (atomic_add_return()) primitives.

Another simple NBS algorithm implements a set of integers in an array. Here
the array index indicates a value that might be a member of the set and the array
element indicates whether or not that value actually is a set member. The linearizability
criterion for NBS algorithms requires that reads from and updates to the array either use
atomic instructions or be accompanied by memory barriers, but in the not-uncommon
case where linearizability is not important, simple volatile loads and stores suffice, for
example, using ACCESS_ONCE().

An NBS set may also be implemented using a bitmap, where each value that might
be a member of the set corresponds to one bit. Reads and updates must normally
be carried out via atomic bit-manipulation instructions, although compare-and-swap
(cmpxchg() or CAS) instructions can also be used.

The statistical counters algorithm discussed in Section 4.2 can be considered wait-
free, but only but using a cute definitional trick in which the sum is considered approxi-
mate rather than exact.12 Given sufficiently wide error bounds that are a function of the
length of time that the read_count() function takes to sum the counters, it is not
possible to prove that any non-linearizable behavior occurred. This definitely (if a bit
artificially) classifies the statistical-counters algorithm as wait-free. This algorithm is
probably the most heavily used NBS algorithm in the Linux kernel.

12 Citation needed. I hear of this trick verbally from Mark Moir.
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1 static inline bool
2 ___cds_wfcq_append(struct cds_wfcq_head *head,
3 struct cds_wfcq_tail *tail,
4 struct cds_wfcq_node *new_head,
5 struct cds_wfcq_node *new_tail)
6 {
7 struct cds_wfcq_node *old_tail;
8
9 old_tail = uatomic_xchg(&tail->p, new_tail);

10 CMM_STORE_SHARED(old_tail->next, new_head);
11 return old_tail != &head->node;
12 }
13
14 static inline bool
15 _cds_wfcq_enqueue(struct cds_wfcq_head *head,
16 struct cds_wfcq_tail *tail,
17 struct cds_wfcq_node *new_tail)
18 {
19 return ___cds_wfcq_append(head, tail,
20 new_tail, new_tail);
21 }

Figure 13.19: NBS Enqueue Algorithm

Another common NBS algorithm is the atomic queue where elements are enqueued
using an atomic exchange instruction [MS98b], followed by a store into the ->next
pointer of the new element’s predecessor, as shown in Figure 13.19, which shows the
userspace-RCU library implementation [Des09]. Line 9 updates the tail pointer to
reference the new element while returning a reference to its predecessor, which is stored
in local variable old_tail. Line 10 then updates the predecessor’s ->next pointer
to reference the newly added element, and finally line 11 returns an indication as to
whether or not the queue was initially empty.

Although mutual exclusion is required to dequeue a single element (so that dequeue
is blocking), it is possible to carry out a non-blocking removal of the entire contents
of the queue. What is not possible is to dequeue any given element in a non-blocking
manner: The enqueuer might have failed between lines 9 and 10 of the figure, so that
the element in question is only partially enqueued. This results in a half-NBS algorithm
where enqueues are NBS but dequeues are blocking. This algorithm is nevertheless
used in practice, in part because most production software is not required to tolerate
arbitrary fail-stop errors.

13.3.2 NBS Discussion

It is possible to create fully non-blocking queues [MS96], however, such queues are
much more complex than the half-NBS algorithm outlined above. The lesson here is to
carefully consider what your requirements really are. Relaxing irrelevant requirements
can often result in great improvements in both simplicity and performance.

Recent research points to another important way to relax requirements. It turns
out that systems providing fair scheduling can enjoy most of the benefits of wait-
free synchronization even when running algorithms that provide only non-blocking
synchronization, both in theory [ACHS13] and in practice [AB13]. Because a great
many schedulers used in production do in fact provide fairness, the more-complex
algorithms providing wait-free synchronization usually provide no practical advantages
over their simpler and often faster non-blocking-synchronization counterparts.

Interestingly enough, fair scheduling is but one beneficial constraint that is often
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respected in practice. Other sets of constraints can permit blocking algorithms to
achieve deterministic real-time response. For example, given fair locks that are granted
to requesters in FIFO order at a given priority level, a method of avoiding priority
inversion (such as priority inheritance [TS95, WTS96] or priority ceiling), a bounded
number of threads, bounded critical sections, bounded load, and avoidance of fail-stop
bugs, lock-based applications can provide deterministic response times [Bra11]. This
approach of course blurs the distinction between blocking and wait-free synchronization,
which is all to the good. Hopefully theoeretical frameworks continue to grow, further
increasing their ability to describe how software is actually constructed in practice.

376



Chapter 14

Ease of Use

“Creating a perfect API is like committing the perfect crime. There are at least fifty
things that can go wrong, and if you are a genius, you might be able to anticipate
twenty-five of them.”

14.1 Rusty Scale for API Design
This section is adapted from portions of Rusty Russell’s 2003 Ottawa Linux Symposium
keynote address [Rus03, Slides 39–57]. Rusty’s key point is that the goal should not
be merely to make an API easy to use, but rather to make the API hard to misuse.
To that end, Rusty proposed his “Rusty Scale” in decreasing order of this important
hard-to-misuse property.

The following list attempts to generalize the Rusty Scale beyond the Linux kernel:

1. It is impossible to get wrong. Although this is the standard to which all API
designers should strive, only the mythical dwim()1 command manages to come
close.

2. The compiler or linker won’t let you get it wrong.

3. The compiler or linker will warn you if you get it wrong.

4. The simplest use is the correct one.

5. The name tells you how to use it.

6. Do it right or it will always break at runtime.

7. Follow common convention and you will get it right. The malloc() library
function is a good example. Although it is easy to get memory allocation wrong,
a great many projects do manage to get it right, at least most of the time. Using
malloc() in conjunction with Valgrind [The11] moves malloc() almost up
to the “do it right or it will always break at runtime” point on the scale.

8. Read the documentation and you will get it right.

9. Read the implementation and you will get it right.
1 The dwim() function is an acronym that expands to “do what I mean”.
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10. Read the right mailing-list archive and you will get it right.

11. Read the right mailing-list archive and you will get it wrong.

12. Read the implementation and you will get it wrong. The original non-CONFIG_
PREEMPT implementation of rcu_read_lock() [McK07a] is an infamous
example of this point on the scale.

13. Read the documentation and you will get it wrong. For example, the DEC Alpha
wmb instruction’s documentation [SW95] fooled a number of developers into
thinking that that this instruction had much stronger memory-order semantics
than it actually does. Later documentation clarified this point [Com01], moving
the wmb instruction up to the “read the documentation and you will get it right”
point on the scale.

14. Follow common convention and you will get it wrong. The printf() statement
is an example of this point on the scale because developers almost always fail to
check printf()’s error return.

15. Do it right and it will break at runtime.

16. The name tells you how not to use it.

17. The obvious use is wrong. The Linux kernel smp_mb() function is an exam-
ple of this point on the scale. Many developers assume that this function has
much stronger ordering semantics than it possesses. Section 13.2 contains the
information needed to avoid this mistake, as does the Linux-kernel source tree’s
Documentation directory.

18. The compiler or linker will warn you if you get it right.

19. The compiler or linker won’t let you get it right.

20. It is impossible to get right. The gets() function is a famous example of
this point on the scale. In fact, gets() can perhaps best be described as an
unconditional buffer-overflow security hole.

14.2 Shaving the Mandelbrot Set
The set of useful programs resembles the Mandelbrot set (shown in Figure 14.1) in
that it does not have a clear-cut smooth boundary — if it did, the halting problem
would be solvable. But we need APIs that real people can use, not ones that require a
Ph.D. dissertation be completed for each and every potential use. So, we “shave the
Mandelbrot set”,2 restricting the use of the API to an easily described subset of the full
set of potential uses.

Such shaving may seem counterproductive. After all, if an algorithm works, why
shouldn’t it be used?

To see why at least some shaving is absolutely necessary, consider a locking design
that avoids deadlock, but in perhaps the worst possible way. This design uses a circular
doubly linked list, which contains one element for each thread in the system along with

2 Due to Josh Triplett.
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Figure 14.1: Mandelbrot Set (Courtesy of Wikipedia)

a header element. When a new thread is spawned, the parent thread must insert a new
element into this list, which requires some sort of synchronization.

One way to protect the list is to use a global lock. However, this might be a bottleneck
if threads were being created and deleted frequently.3 Another approach would be to
use a hash table and to lock the individual hash buckets, but this can perform poorly
when scanning the list in order.

A third approach is to lock the individual list elements, and to require the locks for
both the predecessor and successor to be held during the insertion. Since both locks
must be acquired, we need to decide which order to acquire them in. Two conventional
approaches would be to acquire the locks in address order, or to acquire them in the
order that they appear in the list, so that the header is always acquired first when it is
one of the two elements being locked. However, both of these methods require special
checks and branches.

The to-be-shaven solution is to unconditionally acquire the locks in list order. But
what about deadlock?

Deadlock cannot occur.
To see this, number the elements in the list starting with zero for the header up to

N for the last element in the list (the one preceding the header, given that the list is
circular). Similarly, number the threads from zero to N−1. If each thread attempts to
lock some consecutive pair of elements, at least one of the threads is guaranteed to be
able to acquire both locks.

Why?
Because there are not enough threads to reach all the way around the list. Suppose

thread 0 acquires element 0’s lock. To be blocked, some other thread must have already
acquired element 1’s lock, so let us assume that thread 1 has done so. Similarly, for
thread 1 to be blocked, some other thread must have acquired element 2’s lock, and so
on, up through thread N−1, who acquires element N−1’s lock. For thread N−1 to be
blocked, some other thread must have acquired element N’s lock. But there are no more
threads, and so thread N−1 cannot be blocked. Therefore, deadlock cannot occur.

3 Those of you with strong operating-system backgrounds, please suspend disbelief. If you are unable to
suspend disbelief, send us a better example.
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So why should we prohibit use of this delightful little algorithm?
The fact is that if you really want to use it, we cannot stop you. We can, however,

recommend against such code being included in any project that we care about.
But, before you use this algorithm, please think through the following Quick Quiz.
Quick Quiz 14.1: Can a similar algorithm be used when deleting elements?
The fact is that this algorithm is extremely specialized (it only works on certain

sized lists), and also quite fragile. Any bug that accidentally failed to add a node to the
list could result in deadlock. In fact, simply adding the node a bit too late could result in
deadlock.

In addition, the other algorithms described above are “good and sufficient”. For
example, simply acquiring the locks in address order is fairly simple and quick, while
allowing the use of lists of any size. Just be careful of the special cases presented by
empty lists and lists containing only one element!

Quick Quiz 14.2: Yetch! What ever possessed someone to come up with an
algorithm that deserves to be shaved as much as this one does???

In summary, we do not use algorithms simply because they happen to work. We
instead restrict ourselves to algorithms that are useful enough to make it worthwhile
learning about them. The more difficult and complex the algorithm, the more generally
useful it must be in order for the pain of learning it and fixing its bugs to be worthwhile.

Quick Quiz 14.3: Give an exception to this rule.
Exceptions aside, we must continue to shave the software “Mandelbrot set” so that

our programs remain maintainable, as shown in Figure 14.2.

Figure 14.2: Shaving the Mandelbrot Set
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Chapter 15

Conflicting Visions of the Future

This chapter presents some conflicting visions of the future of parallel programming.
It is not clear which of these will come to pass, in fact, it is not clear that any of them
will. They are nevertheless important because each vision has its devoted adherents, and
if enough people believe in something fervently enough, you will need to deal with at
least the shadow of that thing’s existence in the form of its influence on the thoughts,
words, and deeds of its adherents. Besides which, it is entirely possible that one or more
of these visions will actually come to pass. But most are bogus. Tell which is which and
you’ll be rich [Spi77]!

Therefore, the following sections give an overview of transactional memory, hard-
ware transactional memory, and parallel functional programming. But first, a cautionary
tale on prognostication taken from the early 2000s.

15.1 The Future of CPU Technology Ain’t What it Used
to Be

Years past always seem so simple and innocent when viewed through the lens of many
years of experience. And the early 2000s were for the most part innocent of the
impending failure of Moore’s Law to continue delivering the then-traditional increases
in CPU clock frequency. Oh, there were the occasional warnings about the limits of
technology, but such warnings had be sounded for decades. With that in mind, consider
the following scenarios:

1. Uniprocessor Über Alles (Figure 15.1),

2. Multithreaded Mania (Figure 15.2),

3. More of the Same (Figure 15.3), and

4. Crash Dummies Slamming into the Memory Wall (Figure 15.4).

Each of these scenarios are covered in the following sections.

15.1.1 Uniprocessor Über Alles
As was said in 2004 [McK04]:
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Figure 15.1: Uniprocessor Über Alles

Figure 15.2: Multithreaded Mania

In this scenario, the combination of Moore’s-Law increases in CPU clock
rate and continued progress in horizontally scaled computing render SMP
systems irrelevant. This scenario is therefore dubbed “Uniprocessor Über
Alles”, literally, uniprocessors above all else.

These uniprocessor systems would be subject only to instruction overhead,
since memory barriers, cache thrashing, and contention do not affect single-
CPU systems. In this scenario, RCU is useful only for niche applications,
such as interacting with NMIs. It is not clear that an operating system
lacking RCU would see the need to adopt it, although operating systems
that already implement RCU might continue to do so.

However, recent progress with multithreaded CPUs seems to indicate that
this scenario is quite unlikely.
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Figure 15.3: More of the Same

Unlikely indeed! But the larger software community was reluctant to accept the
fact that they would need to embrace parallelism, and so it was some time before this
community concluded that the “free lunch” of Moore’s-Law-induced CPU core-clock
frequency increases was well and truly finished. Never forget: belief is an emotion, not
necessarily the result of a rational technical thought process!

15.1.2 Multithreaded Mania
Also from 2004 [McK04]:

A less-extreme variant of Uniprocessor Über Alles features uniprocessors
with hardware multithreading, and in fact multithreaded CPUs are now
standard for many desktop and laptop computer systems. The most ag-
gressively multithreaded CPUs share all levels of cache hierarchy, thereby
eliminating CPU-to-CPU memory latency, in turn greatly reducing the
performance penalty for traditional synchronization mechanisms. How-
ever, a multithreaded CPU would still incur overhead due to contention
and to pipeline stalls caused by memory barriers. Furthermore, because
all hardware threads share all levels of cache, the cache available to a
given hardware thread is a fraction of what it would be on an equivalent
single-threaded CPU, which can degrade performance for applications with
large cache footprints. There is also some possibility that the restricted
amount of cache available will cause RCU-based algorithms to incur per-
formance penalties due to their grace-period-induced additional memory
consumption. Investigating this possibility is future work.

However, in order to avoid such performance degradation, a number of
multithreaded CPUs and multi-CPU chips partition at least some of the
levels of cache on a per-hardware-thread basis. This increases the amount of
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Figure 15.4: Crash Dummies Slamming into the Memory Wall

cache available to each hardware thread, but re-introduces memory latency
for cachelines that are passed from one hardware thread to another.

And we all know how this story has played out, with multiple multi-threaded cores
on a single die plugged into a single socket. The question then becomes whether or not
future shared-memory systems will always fit into a single socket.

15.1.3 More of the Same
Again from 2004 [McK04]:

The More-of-the-Same scenario assumes that the memory-latency ratios
will remain roughly where they are today.

This scenario actually represents a change, since to have more of the same,
interconnect performance must begin keeping up with the Moore’s-Law
increases in core CPU performance. In this scenario, overhead due to
pipeline stalls, memory latency, and contention remains significant, and
RCU retains the high level of applicability that it enjoys today.

And the change has been the ever-increasing levels of integration that Moore’s Law
is still providing. But longer term, which will it be? More CPUs per die? Or more I/O,
cache, and memory?

Servers seem to be choosing the former, while embedded systems on a chip (SoCs)
continue choosing the latter.

15.1.4 Crash Dummies Slamming into the Memory Wall
And one more quote from 2004 [McK04]:

If the memory-latency trends shown in Figure 15.5 continue, then memory
latency will continue to grow relative to instruction-execution overhead.
Systems such as Linux that have significant use of RCU will find additional
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use of RCU to be profitable, as shown in Figure 15.6 As can be seen in
this figure, if RCU is heavily used, increasing memory-latency ratios give
RCU an increasing advantage over other synchronization mechanisms. In
contrast, systems with minor use of RCU will require increasingly high
degrees of read intensity for use of RCU to pay off, as shown in Figure 15.7.
As can be seen in this figure, if RCU is lightly used, increasing memory-
latency ratios put RCU at an increasing disadvantage compared to other
synchronization mechanisms. Since Linux has been observed with over
1,600 callbacks per grace period under heavy load [SM04], it seems safe to
say that Linux falls into the former category.

On the one hand, this passage failed to anticipate the cache-warmth issues that
RCU can suffer from in workloads with significant update intensity, in part because
it seemed unlikely that RCU would really be used in such cases. In the event, the
SLAB_DESTROY_BY_RCU has been pressed into service in a number of instances
where these cache-warmth issues would otherwise be problematic, as has sequence
locking. On the other hand, this passage also failed to anticipate that RCU would be
used to reduce scheduling latency or for security.

In short, beware of prognostications, including those in the remainder of this chapter.

15.2 Transactional Memory
The idea of using transactions outside of databases goes back many decades [Lom77],
with the key difference between database and non-database transactions being that
non-database transactions drop the “D” in the “ACID” properties defining database
transactions. The idea of supporting memory-based transactions, or “transactional
memory” (TM), in hardware is more recent [HM93], but unfortunately, support for
such transactions in commodity hardware was not immediately forthcoming, despite
other somewhat similar proposals being put forward [SSHT93]. Not long after, Shavit
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and Touitou proposed a software-only implementation of transactional memory (STM)
that was capable of running on commodity hardware, give or take memory-ordering
issues. This proposal languished for many years, perhaps due to the fact that the
research community’s attention was absorbed by non-blocking synchronization (see
Section 13.3).

But by the turn of the century, TM started receiving more attention [MT01, RG01],
and by the middle of the decade, the level of interest can only be termed “incandes-
cent” [Her05, Gro07], despite a few voices of caution [BLM05, MMW07].

The basic idea behind TM is to execute a section of code atomically, so that other
threads see no intermediate state. As such, the semantics of TM could be implemented by
simply replacing each transaction with a recursively acquirable global lock acquisition
and release, albeit with abysmal performance and scalability. Much of the complexity
inherent in TM implementations, whether hardware or software, is efficiently detecting
when concurrent transactions can safely run in parallel. Because this detection is done
dynamically, conflicting transactions can be aborted or “rolled back”, and in some
implementations, this failure mode is visible to the programmer.

Because transaction roll-back is increasingly unlikely as transaction size decreases,
TM might become quite attractive for small memory-based operations, such as linked-
list manipulations used for stacks, queues, hash tables, and search trees. However, it is
currently much more difficult to make the case for large transactions, particularly those
containing non-memory operations such as I/O and process creation. The following
sections look at current challenges to the grand vision of “Transactional Memory
Everywhere” [McK09d]. Section 15.2.1 examines the challenges faced interacting
with the outside world, Section 15.2.2 looks at interactions with process modification
primitives, Section 15.2.3 explores interactions with other synchronization primitives,
and finally Section 15.2.4 closes with some discussion.

15.2.1 Outside World
In the words of Donald Knuth:

Many computer users feel that input and output are not actually part of
“real programming,” they are merely things that (unfortunately) must be
done in order to get information in and out of the machine.

Whether we believe that input and output are “real programming” or not, the fact
is that for most computer systems, interaction with the outside world is a first-class
requirement. This section therefore critiques transactional memory’s ability to so
interact, whether via I/O operations, time delays, or persistent storage.

15.2.1.1 I/O Operations

One can execute I/O operations within a lock-based critical section, and, at least in
principle, from within an RCU read-side critical section. What happens when you
attempt to execute an I/O operation from within a transaction?

The underlying problem is that transactions may be rolled back, for example, due to
conflicts. Roughly speaking, this requires that all operations within any given transaction
be idempotent, so that executing the operation twice has the same effect as executing
it once. Unfortunately, I/O is in general the prototypical non-idempotent operation,
making it difficult to include general I/O operations in transactions. In fact, general I/O
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is not just non-idempotent, it is irrevocable. Once you have pushed the button launching
the nuclear warheads, there is no turning back.

Here are some options for handling of I/O within transactions:

1. Restrict I/O within transactions to buffered I/O with in-memory buffers. These
buffers may then be included in the transaction in the same way that any other
memory location might be included. This seems to be the mechanism of choice,
and it does work well in many common cases of situations such as stream I/O and
mass-storage I/O. However, special handling is required in cases where multiple
record-oriented output streams are merged onto a single file from multiple pro-
cesses, as might be done using the “a+” option to fopen() or the O_APPEND
flag to open(). In addition, as will be seen in the next section, common net-
working operations cannot be handled via buffering.

2. Prohibit I/O within transactions, so that any attempt to execute an I/O operation
aborts the enclosing transaction (and perhaps multiple nested transactions). This
approach seems to be the conventional TM approach for unbuffered I/O, but re-
quires that TM interoperate with other synchronization primitives that do tolerate
I/O.

3. Prohibit I/O within transactions, but enlist the compiler’s aid in enforcing this
prohibition.

4. Permit only one special irrevocable transaction [SMS08] to proceed at any given
time, thus allowing irrevocable transactions to contain I/O operations.1 This works
in general, but severely limits the scalability and performance of I/O operations.
Given that scalability and performance is a first-class goal of parallelism, this
approach’s generality seems a bit self-limiting. Worse yet, use of inevitability
to tolerate I/O operations seems to prohibit use of manual transaction-abort
operations.2 Finally, if there is an irrevocable transaction manipulating a given
data item, any other transaction manipulating that same data item cannot have
non-blocking semantics.

5. Create new hardware and protocols such that I/O operations can be pulled into
the transactional substrate. In the case of input operations, the hardware would
need to correctly predict the result of the operation, and to abort the transaction if
the prediction failed.

I/O operations are a well-known weakness of TM, and it is not clear that the
problem of supporting I/O in transactions has a reasonable general solution, at least if
“reasonable” is to include usable performance and scalability. Nevertheless, continued
time and attention to this problem will likely produce additional progress.

15.2.1.2 RPC Operations

One can execute RPCs within a lock-based critical section, as well as from within an
RCU read-side critical section. What happens when you attempt to execute an RPC
from within a transaction?

If both the RPC request and its response are to be contained within the transaction,
and if some part of the transaction depends on the result returned by the response, then

1 In earlier literature, irrevocable transactions are termed inevitable transactions.
2 This difficulty was pointed out by Michael Factor.
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it is not possible to use the memory-buffer tricks that can be used in the case of buffered
I/O. Any attempt to take this buffering approach would deadlock the transaction, as the
request could not be transmitted until the transaction was guaranteed to succeed, but the
transaction’s success might not be knowable until after the response is received, as is
the case in the following example:

1 begin_trans();
2 rpc_request();
3 i = rpc_response();
4 a[i]++;
5 end_trans();

The transaction’s memory footprint cannot be determined until after the RPC re-
sponse is received, and until the transaction’s memory footprint can be determined, it is
impossible to determine whether the transaction can be allowed to commit. The only
action consistent with transactional semantics is therefore to unconditionally abort the
transaction, which is, to say the least, unhelpful.

Here are some options available to TM:

1. Prohibit RPC within transactions, so that any attempt to execute an RPC opera-
tion aborts the enclosing transaction (and perhaps multiple nested transactions).
Alternatively, enlist the compiler to enforce RPC-free transactions. This approach
does works, but will require TM to interact with other synchronization primitives.

2. Permit only one special irrevocable transaction [SMS08] to proceed at any given
time, thus allowing irrevocable transactions to contain RPC operations. This
works in general, but severely limits the scalability and performance of RPC oper-
ations. Given that scalability and performance is a first-class goal of parallelism,
this approach’s generality seems a bit self-limiting. Furthermore, use of irrevo-
cable transactions to permit RPC operations rules out manual transaction-abort
operations once the RPC operation has started. Finally, if there is an irrevocable
transaction manipulating a given data item, any other transaction manipulating
that same data item cannot have non-blocking semantics.

3. Identify special cases where the success of the transaction may be determined be-
fore the RPC response is received, and automatically convert these to irrevocable
transactions immediately before sending the RPC request. Of course, if several
concurrent transactions attempt RPC calls in this manner, it might be necessary
to roll all but one of them back, with consequent degradation of performance
and scalability. This approach nevertheless might be valuable given long-running
transactions ending with an RPC. This approach still has problems with manual
transaction-abort operations.

4. Identify special cases where the RPC response may be moved out of the trans-
action, and then proceed using techniques similar to those used for buffered
I/O.

5. Extend the transactional substrate to include the RPC server as well as its client.
This is in theory possible, as has been demonstrated by distributed databases.
However, it is unclear whether the requisite performance and scalability require-
ments can be met by distributed-database techniques, given that memory-based
TM cannot hide such latencies behind those of slow disk drives. Of course, given
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the advent of solid-state disks, it is also unclear how much longer databases will
be permitted to hide their latencies behind those of disks drives.

As noted in the prior section, I/O is a known weakness of TM, and RPC is simply
an especially problematic case of I/O.

15.2.1.3 Time Delays

An important special case of interaction with extra-transactional accesses involves
explicit time delays within a transaction. Of course, the idea of a time delay within
a transaction flies in the face of TM’s atomicity property, but one can argue that this
sort of thing is what weak atomicity is all about. Furthermore, correct interaction with
memory-mapped I/O sometimes requires carefully controlled timing, and applications
often use time delays for varied purposes.

So, what can TM do about time delays within transactions?

1. Ignore time delays within transactions. This has an appearance of elegance, but
like too many other “elegant” solutions, fails to survive first contact with legacy
code. Such code, which might well have important time delays in critical sections,
would fail upon being transactionalized.

2. Abort transactions upon encountering a time-delay operation. This is attractive,
but it is unfortunately not always possible to automatically detect a time-delay
operation. Is that tight loop computing something important, or is it instead
waiting for time to elapse?

3. Enlist the compiler to prohibit time delays within transactions.

4. Let the time delays execute normally. Unfortunately, some TM implementations
publish modifications only at commit time, which would in many cases defeat the
purpose of the time delay.

It is not clear that there is a single correct answer. TM implementations featuring
weak atomicity that publish changes immediately within the transaction (rolling these
changes back upon abort) might be reasonably well served by the last alternative. Even
in this case, the code at the other end of the transaction may require a substantial
redesign to tolerate aborted transactions.

15.2.1.4 Persistence

There are many different types of locking primitives. One interesting distinction is
persistence, in other words, whether the lock can exist independently of the address
space of the process using the lock.

Non-persistent locks include pthread_mutex_lock(), pthread_rwlock_
rdlock(), and most kernel-level locking primitives. If the memory locations instanti-
ating a non-persistent lock’s data structures disappear, so does the lock. For typical use
of pthread_mutex_lock(), this means that when the process exits, all of its locks
vanish. This property can be exploited in order to trivialize lock cleanup at program
shutdown time, but makes it more difficult for unrelated applications to share locks, as
such sharing requires the applications to share memory.

Persistent locks help avoid the need to share memory among unrelated applications.
Persistent locking APIs include the flock family, lockf(), System V semaphores, or
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the O_CREAT flag to open(). These persistent APIs can be used to protect large-scale
operations spanning runs of multiple applications, and, in the case of O_CREAT even
surviving operating-system reboot. If need be, locks can span multiple computer systems
via distributed lock managers.

Persistent locks can be used by any application, including applications written using
multiple languages and software environments. In fact, a persistent lock might well be
acquired by an application written in C and released by an application written in Python.

How could a similar persistent functionality be provided for TM?

1. Restrict persistent transactions to special-purpose environments designed to sup-
port them, for example, SQL. This clearly works, given the decades-long history
of database systems, but does not provide the same degree of flexibility provided
by persistent locks.

2. Use snapshot facilities provided by some storage devices and/or filesystems.
Unfortunately, this does not handle network communication, nor does it handle
I/O to devices that do not provide snapshot capabilities, for example, memory
sticks.

3. Build a time machine.

Of course, the fact that it is called transactional memory should give us pause, as
the name itself conflicts with the concept of a persistent transaction. It is nevertheless
worthwhile to consider this possibility as an important test case probing the inherent
limitations of transactional memory.

15.2.2 Process Modification
Processes are not eternal: They are created and destroyed, their memory mappings are
modified, they are linked to dynamic libraries, and they are debugged. These sections
look at how transactional memory can handle an ever-changing execution environment.

15.2.2.1 Multithreaded Transactions

It is perfectly legal to create processes and threads while holding a lock or, for that
matter, from within an RCU read-side critical section. Not only is it legal, but it is quite
simple, as can be seen from the following code fragment:

1 pthread_mutex_lock(...);
2 for (i = 0; i < ncpus; i++)
3 pthread_create(&tid[i], ...);
4 for (i = 0; i < ncpus; i++)
5 pthread_join(tid[i], ...);
6 pthread_mutex_unlock(...);

This pseudo-code fragment uses pthread_create() to spawn one thread per
CPU, then uses pthread_join() to wait for each to complete, all under the pro-
tection of pthread_mutex_lock(). The effect is to execute a lock-based critical
section in parallel, and one could obtain a similar effect using fork() and wait().
Of course, the critical section would need to be quite large to justify the thread-spawning
overhead, but there are many examples of large critical sections in production software.

What might TM do about thread spawning within a transaction?
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1. Declare pthread_create() to be illegal within transactions, resulting in
transaction abort (preferred) or undefined behavior. Alternatively, enlist the
compiler to enforce pthread_create()-free transactions.

2. Permit pthread_create() to be executed within a transaction, but only the
parent thread will be considered to be part of the transaction. This approach seems
to be reasonably compatible with existing and posited TM implementations, but
seems to be a trap for the unwary. This approach raises further questions, such as
how to handle conflicting child-thread accesses.

3. Convert the pthread_create()s to function calls. This approach is also an
attractive nuisance, as it does not handle the not-uncommon cases where the child
threads communicate with one another. In addition, it does not permit parallel
execution of the body of the transaction.

4. Extend the transaction to cover the parent and all child threads. This approach
raises interesting questions about the nature of conflicting accesses, given that
the parent and children are presumably permitted to conflict with each other,
but not with other threads. It also raises interesting questions as to what should
happen if the parent thread does not wait for its children before committing the
transaction. Even more interesting, what happens if the parent conditionally
executes pthread_join() based on the values of variables participating in
the transaction? The answers to these questions are reasonably straightforward in
the case of locking. The answers for TM are left as an exercise for the reader.

Given that parallel execution of transactions is commonplace in the database world,
it is perhaps surprising that current TM proposals do not provide for it. On the other
hand, the example above is a fairly sophisticated use of locking that is not normally
found in simple textbook examples, so perhaps its omission is to be expected. That said,
there are rumors that some TM researchers are investigating fork/join parallelism within
transactions, so perhaps this topic will soon be addressed more thoroughly.

15.2.2.2 The exec() System Call

One can execute an exec() system call while holding a lock, and also from within an
RCU read-side critical section. The exact semantics depends on the type of primitive.

In the case of non-persistent primitives (including pthread_mutex_lock(),
pthread_rwlock_rdlock(), and RCU), if the exec() succeeds, the whole
address space vanishes, along with any locks being held. Of course, if the exec()
fails, the address space still lives, so any associated locks would also still live. A bit
strange perhaps, but reasonably well defined.

On the other hand, persistent primitives (including the flock family, lockf(),
System V semaphores, and the O_CREAT flag to open()) would survive regardless of
whether the exec() succeeded or failed, so that the exec()ed program might well
release them.

Quick Quiz 15.1: What about non-persistent primitives represented by data struc-
tures in mmap() regions of memory? What happens when there is an exec() within
a critical section of such a primitive?

What happens when you attempt to execute an exec() system call from within a
transaction?
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1. Disallow exec() within transactions, so that the enclosing transactions abort
upon encountering the exec(). This is well defined, but clearly requires non-TM
synchronization primitives for use in conjunction with exec().

2. Disallow exec() within transactions, with the compiler enforcing this prohibi-
tion. There is a draft specification for TM in C++ that takes this approach, allowing
functions to be decorated with the transaction_safe and transaction_
unsafe attributes.3 This approach has some advantages over aborting the
transaction at runtime, but again requires non-TM synchronization primitives for
use in conjunction with exec().

3. Treat the transaction in a manner similar to non-persistent Locking primitives, so
that the transaction survives if exec() fails, and silently commits if the exec()
succeeds. The case were some of the variables affected by the transaction reside
in mmap()ed memory (and thus could survive a successful exec() system call)
is left as an exercise for the reader.

4. Abort the transaction (and the exec() system call) if the exec() system call
would have succeeded, but allow the transaction to continue if the exec() system
call would fail. This is in some sense the “correct” approach, but it would require
considerable work for a rather unsatisfying result.

The exec() system call is perhaps the strangest example of an obstacle to universal
TM applicability, as it is not completely clear what approach makes sense, and some
might argue that this is merely a reflection of the perils of interacting with execs in real
life. That said, the two options prohibiting exec() within transactions are perhaps the
most logical of the group.

Similar issues surround the exit() and kill() system calls.

15.2.2.3 Dynamic Linking and Loading

Both lock-based critical sections and RCU read-side critical sections can legitimately
contain code that invokes dynamically linked and loaded functions, including C/C++
shared libraries and Java class libraries. Of course, the code contained in these libraries
is by definition unknowable at compile time. So, what happens if a dynamically loaded
function is invoked within a transaction?

This question has two parts: (a) how do you dynamically link and load a function
within a transaction and (b) what do you do about the unknowable nature of the code
within this function? To be fair, item (b) poses some challenges for locking and
RCU as well, at least in theory. For example, the dynamically linked function might
introduce a deadlock for locking or might (erroneously) introduce a quiescent state into
an RCU read-side critical section. The difference is that while the class of operations
permitted in locking and RCU critical sections is well-understood, there appears to still
be considerable uncertainty in the case of TM. In fact, different implementations of TM
seem to have different restrictions.

So what can TM do about dynamically linked and loaded library functions? Options
for part (a), the actual loading of the code, include the following:

3 Thanks to Mark Moir for pointing me at this spec, and to Michael Wong for having pointed me at an
earlier revision some time back.
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1. Treat the dynamic linking and loading in a manner similar to a page fault, so that
the function is loaded and linked, possibly aborting the transaction in the process.
If the transaction is aborted, the retry will find the function already present, and
the transaction can thus be expected to proceed normally.

2. Disallow dynamic linking and loading of functions from within transactions.

Options for part (b), the inability to detect TM-unfriendly operations in a not-yet-
loaded function, possibilities include the following:

1. Just execute the code: if there are any TM-unfriendly operations in the function,
simply abort the transaction. Unfortunately, this approach makes it impossible for
the compiler to determine whether a given group of transactions may be safely
composed. One way to permit composability regardless is irrevocable transactions,
however, current implementations permit only a single irrevocable transaction to
proceed at any given time, which can severely limit performance and scalability.
Irrevocable transactions also seem to rule out use of manual transaction-abort
operations. Finally, if there is an irrevocable transaction manipulating a given
data item, any other transaction manipulating that same data item cannot have
non-blocking semantics.

2. Decorate the function declarations indicating which functions are TM-friendly.
These decorations can then be enforced by the compiler’s type system. Of
course, for many languages, this requires language extensions to be proposed,
standardized, and implemented, with the corresponding time delays. That said,
the standardization effort is already in progress [ATS09].

3. As above, disallow dynamic linking and loading of functions from within transac-
tions.

I/O operations are of course a known weakness of TM, and dynamic linking and
loading can be thought of as yet another special case of I/O. Nevertheless, the proponents
of TM must either solve this problem, or resign themselves to a world where TM is but
one tool of several in the parallel programmer’s toolbox. (To be fair, a number of TM
proponents have long since resigned themselves to a world containing more than just
TM.)

15.2.2.4 Memory-Mapping Operations

It is perfectly legal to execute memory-mapping operations (including mmap(), shmat(),
and munmap() [Gro01]) within a lock-based critical section, and, at least in principle,
from within an RCU read-side critical section. What happens when you attempt to
execute such an operation from within a transaction? More to the point, what happens if
the memory region being remapped contains some variables participating in the current
thread’s transaction? And what if this memory region contains variables participating in
some other thread’s transaction?

It should not be necessary to consider cases where the TM system’s metadata is
remapped, given that most locking primitives do not define the outcome of remapping
their lock variables.

Here are some memory-mapping options available to TM:
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1. Memory remapping is illegal within a transaction, and will result in all enclosing
transactions being aborted. This does simplify things somewhat, but also requires
that TM interoperate with synchronization primitives that do tolerate remapping
from within their critical sections.

2. Memory remapping is illegal within a transaction, and the compiler is enlisted to
enforce this prohibition.

3. Memory mapping is legal within a transaction, but aborts all other transactions
having variables in the region mapped over.

4. Memory mapping is legal within a transaction, but the mapping operation will
fail if the region being mapped overlaps with the current transaction’s footprint.

5. All memory-mapping operations, whether within or outside a transaction, check
the region being mapped against the memory footprint of all transactions in the
system. If there is overlap, then the memory-mapping operation fails.

6. The effect of memory-mapping operations that overlap the memory footprint of
any transaction in the system is determined by the TM conflict manager, which
might dynamically determine whether to fail the memory-mapping operation or
abort any conflicting transactions.

It is interesting to note that munmap() leaves the relevant region of memory
unmapped, which could have additional interesting implications.4

15.2.2.5 Debugging

The usual debugging operations such as breakpoints work normally within lock-based
critical sections and from RCU read-side critical sections. However, in initial transactional-
memory hardware implementations [DLMN09] an exception within a transaction will
abort that transaction, which in turn means that breakpoints abort all enclosing transac-
tions

So how can transactions be debugged?

1. Use software emulation techniques within transactions containing breakpoints.
Of course, it might be necessary to emulate all transactions any time a breakpoint
is set within the scope of any transaction. If the runtime system is unable to
determine whether or not a given breakpoint is within the scope of a transaction,
then it might be necessary to emulate all transactions just to be on the safe side.
However, this approach might impose significant overhead, which might in turn
obscure the bug being pursued.

2. Use only hardware TM implementations that are capable of handling break-
point exceptions. Unfortunately, as of this writing (September 2008), all such
implementations are strictly research prototypes.

3. Use only software TM implementations, which are (very roughly speaking) more
tolerant of exceptions than are the simpler of the hardware TM implementations.
Of course, software TM tends to have higher overhead than hardware TM, so this
approach may not be acceptable in all situations.

4 This difference between mapping and unmapping was noted by Josh Triplett.
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4. Program more carefully, so as to avoid having bugs in the transactions in the first
place. As soon as you figure out how to do this, please do let everyone know the
secret!

There is some reason to believe that transactional memory will deliver productivity
improvements compared to other synchronization mechanisms, but it does seem quite
possible that these improvements could easily be lost if traditional debugging techniques
cannot be applied to transactions. This seems especially true if transactional memory is
to be used by novices on large transactions. In contrast, macho “top-gun” programmers
might be able to dispense with such debugging aids, especially for small transactions.

Therefore, if transactional memory is to deliver on its productivity promises to
novice programmers, the debugging problem does need to be solved.

15.2.3 Synchronization
If transactional memory someday proves that it can be everything to everyone, it will
not need to interact with any other synchronization mechanism. Until then, it will need
to work with synchronization mechanisms that can do what it cannot, or that work more
naturally in a given situation. The following sections outline the current challenges in
this area.

15.2.3.1 Locking

It is commonplace to acquire locks while holding other locks, which works quite well,
at least as long as the usual well-known software-engineering techniques are employed
to avoid deadlock. It is not unusual to acquire locks from within RCU read-side critical
sections, which eases deadlock concerns because RCU read-side primitives cannot
participated in lock-based deadlock cycles. But happens when you attempt to acquire a
lock from within a transaction?

In theory, the answer is trivial: simply manipulate the data structure representing
the lock as part of the transaction, and everything works out perfectly. In practice, a
number of non-obvious complications [VGS08] can arise, depending on implementation
details of the TM system. These complications can be resolved, but at the cost of a 45%
increase in overhead for locks acquired outside of transactions and a 300% increase in
overhead for locks acquired within transactions. Although these overheads might be
acceptable for transactional programs containing small amounts of locking, they are
often completely unacceptable for production-quality lock-based programs wishing to
use the occasional transaction.

1. Use only locking-friendly TM implementations. Unfortunately, the locking-
unfriendly implementations have some attractive properties, including low over-
head for successful transactions and the ability to accommodate extremely large
transactions.

2. Use TM only “in the small” when introducing TM to lock-based programs,
thereby accommodating the limitations of locking-friendly TM implementations.

3. Set aside locking-based legacy systems entirely, re-implementing everything
in terms of transactions. This approach has no shortage of advocates, but this
requires that all the issues described in this series be resolved. During the time
it takes to resolve these issues, competing synchronization mechanisms will of
course also have the opportunity to improve.
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4. Use TM strictly as an optimization in lock-based systems, as was done by the
TxLinux [RHP+07] group. This approach seems sound, but leaves the locking
design constraints (such as the need to avoid deadlock) firmly in place.

5. Strive to reduce the overhead imposed on locking primitives.

The fact that there could possibly a problem interfacing TM and locking came as a
surprise to many, which underscores the need to try out new mechanisms and primitives
in real-world production software. Fortunately, the advent of open source means that a
huge quantity of such software is now freely available to everyone, including researchers.

15.2.3.2 Reader-Writer Locking

It is commonplace to read-acquire reader-writer locks while holding other locks, which
just works, at least as long as the usual well-known software-engineering techniques
are employed to avoid deadlock. Read-acquiring reader-writer locks from within RCU
read-side critical sections also works, and doing so eases deadlock concerns because
RCU read-side primitives cannot participated in lock-based deadlock cycles. But
what happens when you attempt to read-acquire a reader-writer lock from within a
transaction?

Unfortunately, the straightforward approach to read-acquiring the traditional counter-
based reader-writer lock within a transaction defeats the purpose of the reader-writer
lock. To see this, consider a pair of transactions concurrently attempting to read-acquire
the same reader-writer lock. Because read-acquisition involves modifying the reader-
writer lock’s data structures, a conflict will result, which will roll back one of the two
transactions. This behavior is completely inconsistent with the reader-writer lock’s goal
of allowing concurrent readers.

Here are some options available to TM:

1. Use per-CPU or per-thread reader-writer locking [HW92], which allows a given
CPU (or thread, respectively) to manipulate only local data when read-acquiring
the lock. This would avoid the conflict between the two transactions concurrently
read-acquiring the lock, permitting both to proceed, as intended. Unfortunately,
(1) the write-acquisition overhead of per-CPU/thread locking can be extremely
high, (2) the memory overhead of per-CPU/thread locking can be prohibitive, and
(3) this transformation is available only when you have access to the source code
in question. Other more-recent scalable reader-writer locks [LLO09] might avoid
some or all of these problems.

2. Use TM only “in the small” when introducing TM to lock-based programs,
thereby avoiding read-acquiring reader-writer locks from within transactions.

3. Set aside locking-based legacy systems entirely, re-implementing everything
in terms of transactions. This approach has no shortage of advocates, but this
requires that all the issues described in this series be resolved. During the time
it takes to resolve these issues, competing synchronization mechanisms will of
course also have the opportunity to improve.

4. Use TM strictly as an optimization in lock-based systems, as was done by the
TxLinux [RHP+07] group. This approach seems sound, but leaves the locking
design constraints (such as the need to avoid deadlock) firmly in place. Further-
more, this approach can result in unnecessary transaction rollbacks when multiple
transactions attempt to read-acquire the same lock.
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Of course, there might well be other non-obvious issues surrounding combining TM
with reader-writer locking, as there in fact were with exclusive locking.

15.2.3.3 RCU

Because read-copy update (RCU) finds its main use in the Linux kernel, one might
be forgiven for assuming that there had been no academic work on combining RCU
and TM.5 However, the TxLinux group from the University of Texas at Austin had no
choice [RHP+07]. The fact that they applied TM to the Linux 2.6 kernel, which uses
RCU, forced them to integrate TM and RCU, with TM taking the place of locking for
RCU updates. Unfortunately, although the paper does state that the RCU implementa-
tion’s locks (e.g., rcu_ctrlblk.lock) were converted to transactions, it is silent
about what happened to locks used in RCU-based updates (e.g., dcache_lock).

It is important to note that RCU permits readers and updaters to run concurrently,
further permitting RCU readers to access data that is in the act of being updated. Of
course, this property of RCU, whatever its performance, scalability, and real-time-
response benefits might be, flies in the face of the underlying atomicity properties of
TM.

So how should TM-based updates interact with concurrent RCU readers? Some
possibilities are as follows:

1. RCU readers abort concurrent conflicting TM updates. This is in fact the approach
taken by the TxLinux project. This approach does preserve RCU semantics, and
also preserves RCU’s read-side performance, scalability, and real-time-response
properties, but it does have the unfortunate side-effect of unnecessarily aborting
conflicting updates. In the worst case, a long sequence of RCU readers could
potentially starve all updaters, which could in theory result in system hangs.
In addition, not all TM implementations offer the strong atomicity required to
implement this approach.

2. RCU readers that run concurrently with conflicting TM updates get old (pre-
transaction) values from any conflicting RCU loads. This preserves RCU seman-
tics and performance, and also prevents RCU-update starvation. However, not
all TM implementations can provide timely access to old values of variables that
have been tentatively updated by an in-flight transaction. In particular, log-based
TM implementations that maintain old values in the log (thus making for excellent
TM commit performance) are not likely to be happy with this approach. Perhaps
the rcu_dereference() primitive can be leveraged to permit RCU to access
the old values within a greater range of TM implementations, though performance
might still be an issue. Nevertheless, there are popular TM implementations that
can be easily and efficiently integrated with RCU in this manner [HW11].

3. If an RCU reader executes an access that conflicts with an in-flight transaction,
then that RCU access is delayed until the conflicting transaction either commits
or aborts. This approach preserves RCU semantics, but not RCU’s performance
or real-time response, particularly in presence of long-running transactions. In
addition, not all TM implementations are capable of delaying conflicting ac-
cesses. That said, this approach seems eminently reasonable for hardware TM
implementations that support only small transactions.

5 However, the in-kernel excuse is wearing thin with the advent of user-space RCU [Des09, DMS+12].

398



4. RCU readers are converted to transactions. This approach pretty much guarantees
that RCU is compatible with any TM implementation, but it also imposes TM’s
rollbacks on RCU read-side critical sections, destroying RCU’s real-time response
guarantees, and also degrading RCU’s read-side performance. Furthermore, this
approach is infeasible in cases where any of the RCU read-side critical sections
contains operations that the TM implementation in question is incapable of
handling.

5. Many update-side uses of RCU modify a single pointer to publish a new data
structure. In some these cases, RCU can safely be permitted to see a transactional
pointer update that is subsequently rolled back, as long as the transaction respects
memory ordering and as long as the roll-back process uses call_rcu() to
free up the corresponding structure. Unfortunately, not all TM implementations
respect memory barriers within a transaction. Apparently, the thought is that
because transactions are supposed to be atomic, the ordering of the accesses
within the transaction is not supposed to matter.

6. Prohibit use of TM in RCU updates. This is guaranteed to work, but seems a bit
restrictive.

It seems likely that additional approaches will be uncovered, especially given the
advent of user-level RCU implementations.6

15.2.3.4 Extra-Transactional Accesses

Within a lock-based critical section, it is perfectly legal to manipulate variables that are
concurrently accessed or even modified outside that lock’s critical section, with one
common example being statistical counters. The same thing is possible within RCU
read-side critical sections, and is in fact the common case.

Given mechanisms such as the so-called “dirty reads” that are prevalent in production
database systems, it is not surprising that extra-transactional accesses have received
serious attention from the proponents of TM, with the concepts of weak and strong
atomicity [BLM06] being but one case in point.

Here are some extra-transactional options available to TM:

1. Conflicts due to extra-transactional accesses always abort transactions. This is
strong atomicity.

2. Conflicts due to extra-transactional accesses are ignored, so only conflicts among
transactions can abort transactions. This is weak atomicity.

3. Transactions are permitted to carry out non-transactional operations in special
cases, such as when allocating memory or interacting with lock-based critical
sections.

4. Produce hardware extensions that permit some operations (for example, addition)
to be carried out concurrently on a single variable by multiple transactions.

6 Kudos to the TxLinux group, Maged Michael, and Josh Triplett for coming up with a number of the
above alternatives.
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It appears that transactions were conceived as standing alone, with no interaction
required with any other synchronization mechanism. If so, it is no surprise that much
confusion and complexity arises when combining transactions with non-transactional
accesses. But unless transactions are to be confined to small updates to isolated data
structures, or alternatively to be confined to new programs that do not interact with the
huge body of existing parallel code, then transactions absolutely must be so combined if
they are to have large-scale practical impact in the near term.

15.2.4 Discussion

The obstacles to universal TM adoption lead to the following conclusions:

1. One interesting property of TM is the fact that transactions are subject to rollback
and retry. This property underlies TM’s difficulties with irreversible operations,
including unbuffered I/O, RPCs, memory-mapping operations, time delays, and
the exec() system call. This property also has the unfortunate consequence
of introducing all the complexities inherent in the possibility of failure into
synchronization primitives, often in a developer-visible manner.

2. Another interesting property of TM, noted by Shpeisman et al. [SATG+09], is
that TM intertwines the synchronization with the data it protects. This property
underlies TM’s issues with I/O, memory-mapping operations, extra-transactional
accesses, and debugging breakpoints. In contrast, conventional synchronization
primitives, including locking and RCU, maintain a clear separation between the
synchronization primitives and the data that they protect.

3. One of the stated goals of many workers in the TM area is to ease parallelization
of large sequential programs. As such, individual transactions are commonly
expected to execute serially, which might do much to explain TM’s issues with
multithreaded transactions.

What should TM researchers and developers do about all of this?
One approach is to focus on TM in the small, focusing on situations where hardware

assist potentially provides substantial advantages over other synchronization primitives.
This is in fact the approach Sun took with its Rock research CPU [DLMN09]. Some
TM researchers seem to agree with this approach, while others have much higher hopes
for TM.

Of course, it is quite possible that TM will be able to take on larger problems, and
this section lists a few of the issues that must be resolved if TM is to achieve this lofty
goal.

Of course, everyone involved should treat this as a learning experience. It would
seem that TM researchers have great deal to learn from practitioners who have success-
fully built large software systems using traditional synchronization primitives.

And vice versa.
But for the moment, the current state of STM can best be summarized with a series

of cartoons. First, Figure 15.8 shows the STM vision. As always, the reality is a bit
more nuanced, as fancifully depicted by Figures 15.9, 15.10, and 15.11.

Recent advances in commercially available hardware have opened the door for
variants of HTM, which are addressed in the following section.
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Figure 15.8: The STM Vision

15.3 Hardware Transactional Memory

As of early 2012, hardware transactional memory (HTM) is starting to emerge into
commercially available commodity computer systems. This section makes a first attempt
to find its place in the parallel programmer’s toolbox.

From a conceptual viewpoint, HTM uses processor caches and speculative execution
to make a designated group of statements (a “transaction”) take effect atomically from
the viewpoint of any other transactions running on other processors. This transaction
is initiated by a begin-transaction machine instruction and completed by a commit-
transaction machine instruction. There is typically also an abort-transaction machine
instruction, which squashes the speculation (as if the begin-transaction instruction
and all following instructions had not executed) and commences execution at a failure
handler. The location of the failure handler is typically specified by the begin-transaction
instruction, either as an explicit failure-handler address or via a condition code set by
the instruction itself. Each transaction executes atomically with respect to all other
transactions.

HTM has a number of important benefits, including automatic dynamic partitioning
of data structures, reducing synchronization-primitive cache misses, and supporting a
fair number of practical applications.

However, it always pays to read the fine print, and HTM is no exception. A major
point of this section is determining under what conditions HTM’s benefits outweigh
the complications hidden in its fine print. To this end, Section 15.3.1 describes HTM’s
benefits and Section 15.3.2 describes its weaknesses. This is the same approach used in
earlier papers [MMW07, MMTW10], but focused on HTM rather than TM as a whole.7

7 And I gratefully acknowledge many stimulating discussions with the other authors, Maged Michael, Josh
Triplett, and Jonathan Walpole, as well as with Andi Kleen.
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Figure 15.9: The STM Reality: Conflicts

Section 15.3.3 then describes HTM’s weaknesses with respect to the combination of
synchronization primitives used in the Linux kernel (and in some user-space applica-
tions). Section 15.3.4 looks at where HTM might best fit into the parallel programmer’s
toolbox, and Section 15.3.5 lists some events that might greatly increase HTM’s scope
and appeal. Finally, Section 15.3.6 presents concluding remarks.

15.3.1 HTM Benefits WRT to Locking
The primary benefits of HTM are (1) its avoidance of the cache misses that are often
incurred by other synchronization primitives, (2) its ability to dynamically partition data
structures, and (3) the fact that it has a fair number of practical applications. I break
from TM tradition by not listing ease of use separately for two reasons. First, ease of use
should stem from HTM’s primary benefits, which this paper focuses on. Second, there
has been considerable controversy surrounding attempts to test for raw programming
talent [Bow06, DBA09] and even around the use of small programming exercises in job
interviews [Bra07]. This indicates that we really do not have a grasp on what makes
programming easy or hard. Therefore, this paper focuses on the three benefits listed
above, each in one of the following sections.

15.3.1.1 Avoiding Synchronization Cache Misses

Most synchronization mechanisms are based on data structures that are operated on by
atomic instructions. Because these atomic instructions normally operate by first causing
the relevant cache line to be owned by the CPU that they are running on, a subsequent
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Figure 15.10: The STM Reality: Irrevocable Operations

execution of the same instance of that synchronization primitive on some other CPU
will result in a cache miss. These communications cache misses severely degrade both
the performance and scalability of conventional synchronization mechanisms [ABD+97,
Section 4.2.3].

In contrast, HTM synchronizes by using the CPU’s cache, avoiding the need for a
synchronization data structure and resultant cache misses. HTM’s advantage is greatest
in cases where a lock data structure is placed in a separate cache line, in which case,
converting a given critical section to an HTM transaction can reduce that critical section’s
overhead by a full cache miss. This savings can be quite significant for the common
case of short critical sections, at least for those situations where the elided lock does not
share a cache line with a oft-written variable protected by that lock.

Quick Quiz 15.2: Why would it matter that oft-written variables shared the cache
line with the lock variable?

15.3.1.2 Dynamic Partitioning of Data Structures

A major obstacle to the use of some conventional synchronization mechanisms is the
need to statically partition data structures. There are a number of data structures that are
trivially partitionable, with the most prominent example being hash tables, where each
hash chain constitutes a partition. Allocating a lock for each hash chain then trivially
parallelizes the hash table for operations confined to a given chain.8 Partitioning is
similarly trivial for arrays, radix trees, and a few other data structures.

However, partitioning for many types of trees and graphs is quite difficult, and the
results are often quite complex [Ell80]. Although it is possible to use two-phased locking

8 And it is also easy to extend this scheme to operations accessing multiple hash chains by having such
operations acquire the locks for all relevant chains in hash order.
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Figure 15.11: The STM Reality: Realtime Response

and hashed arrays of locks to partition general data structures, other techniques have
proven preferable [Mil06], as will be discussed in Section 15.3.3. Given its avoidance
of synchronization cache misses, HTM is therefore a very real possibility for large
non-partitionable data structures, at least assuming relatively small updates.

Quick Quiz 15.3: Why are relatively small updates important to HTM performance
and scalability?

15.3.1.3 Practical Value

Some evidence of HTM’s practical value has been demonstrated in a number of hardware
platforms, including Sun Rock [DLMN09] and Azul Vega [Cli09]. It is reasonable to
assume that practical benefits will flow from the more recent IBM Blue Gene/Q, Intel
Haswell TSX, and AMD AFS systems.

Expected practical benefits include:

1. Lock elision for in-memory data access and update [MT01, RG02].

2. Concurrent access and small random updates to large non-partitionable data
structures.

However, HTM also has some very real shortcomings, which will be discussed in
the next section.

15.3.2 HTM Weaknesses WRT Locking
The concept of HTM is quite simple: A group of accesses and updates to memory occur
atomically. However, as is the case with many simple ideas, complications arise when
you apply it to real systems in the real world. These complications are as follows:
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1. Transaction-size limitations.

2. Conflict handling.

3. Aborts and rollbacks.

4. Lack of forward-progress guarantees.

5. Non-idempotent operations.

6. Semantic differences.

Each of these complications is covered in the following sections, followed by a
summary.

15.3.2.1 Transaction-Size Limitations

The transaction-size limitations of current HTM implementations stem from the use of
the processor caches to hold the data affected by the transaction. Although this allows
a given CPU to make the transaction appear atomic to other CPUs by executing the
transaction within the confines of its cache, it also means that any transaction that does
not fit must be aborted. Furthermore, events that change execution context, such as
interrupts, system calls, exceptions, traps, and context switches either must abort any
ongoing transaction on the CPU in question or must further restrict transaction size due
to the cache footprint of the other execution context.

Of course, modern CPUs tend to have large caches, and the data required for many
transactions would fit easily in a one-megabyte cache. Unfortunately, with caches, sheer
size is not all that matters. The problem is that most caches can be thought of hash
tables implemented in hardware. However, hardware caches do not chain their buckets
(which are normally called sets), but rather provide a fixed number of cachelines per set.
The number of elements provided for each set in a given cache is termed that cache’s
associativity.

Although cache associativity varies, the eight-way associativity of the level-0 cache
on the laptop I am typing this on is not unusual. What this means is that if a given
transaction needed to touch nine cache lines, and if all nine cache lines mapped to
the same set, then that transaction cannot possibly complete, never mind how many
megabytes of additional space might be available in that cache. Yes, given randomly
selected data elements in a given data structure, the probability of that transaction being
able to commit is quite high, but there can be no guarantee.

There has been some research work to alleviate this limitation. Fully associative vic-
tim caches would alleviate the associativity constraints, but there are currently stringent
performance and energy-efficiency constraints on the sizes of victim caches. That said,
HTM victim caches for unmodified cache lines can be quite small, as they need to retain
only the address: The data itself can be written to memory or shadowed by other caches,
while the address itself is sufficient to detect a conflicting write [RD12].

Unbounded transactional memory (UTM) schemes [AAKL06, MBM+06] use
DRAM as an extremely large victim cache, but integrating such schemes into a
production-quality cache-coherence mechanism is still an unsolved problem. In addition,
use of DRAM as a victim cache may have unfortunate performance and energy-efficiency
consequences, particularly if the victim cache is to be fully associative. Finally, the
“unbounded” aspect of UTM assumes that all of DRAM could be used as a victim cache,
while in reality the large but still fixed amount of DRAM assigned to a given CPU would
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limit the size of that CPU’s transactions. Other schemes use a combination of hardware
and software transactional memory [KCH+06] and one could imagine using STM as a
fallback mechanism for HTM.

However, to the best of my knowledge, currently available systems do not implement
any of these research ideas, and perhaps for good reason.

15.3.2.2 Conflict Handling

The first complication is the possibility of conflicts. For example, suppose that transac-
tions A and B are defined as follows:

Trasaction A Transaction B

x = 1; y = 2;
y = 3; x = 4;

Suppose that each transaction executes concurrently on its own processor. If trans-
action A stores to x at the same time that transaction B stores to y, neither transaction
can progress. To see this, suppose that transaction A executes its store to y. Then trans-
action A will be interleaved within transaction B, in violation of the requirement that
transactions execute atomically with respect to each other. Allowing transaction B to
execute its store to x similarly violates the atomic-execution requirement. This situation
is termed a conflict, which happens whenever two concurrent transactions access the
same variable where at least one of the accesses is a store. The system is therefore
obligated to abort one or both of the transactions in order to allow execution to progress.
The choice of exactly which transaction to abort is an interesting topic that will very
likely retain the ability to generate Ph.D. dissertations for some time to come, see for
example [ATC+11].9 For the purposes of this section, we can assume that the system
makes a random choice.

Another complication is conflict detection, which is comparatively straightforward,
at least in the simplest case. When a processor is executing a transaction, it marks
every cache line touched by that transaction. If the processor’s cache receives a request
involving a cache line that has been marked as touched by the current transaction,
a potential conflict has occurred. More sophisticated systems might try to order the
current processors’ transaction to precede that of the processor sending the request,
and optimization of this process will likely also retain the ability to generate Ph.D.
dissertations for quite some time. However this section assumes a very simple conflict-
detection strategy.

However, for HTM to work effectively, the probability of conflict must be suitably
low, which in turn requires that the data structures be organized so as to maintain
a sufficiently low probability of conflict. For example, a red-black tree with simple
insertion, deletion, and search operations fits this description, but a red-black tree that
maintains an accurate count of the number of elements in the tree does not.10 For another
example, a red-black tree that enumerates all elements in the tree in a single transaction
will have high conflict probabilities, degrading performance and scalability. As a result,
many serial programs will require some restructuring before HTM can work effectively.
In some cases, practitioners will prefer to take the extra steps (in the red-black-tree case,

9 Liu’s and Spear’s paper entitled “Toxic Transactions” [LS11] is particularly instructive in this regard.
10 The need to update the count would result in additions to and deletions from the tree conflicting with

each other, resulting in strong non-commutativity [AGH+11, McK11b].
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perhaps switching to a partitionable data structure such as a radix tree or a hash table),
and just use locking, particularly during the time before HTM is readily available on all
relevant architectures [Cli09].

Quick Quiz 15.4: How could a red-black tree possibly efficiently enumerate all
elements of the tree regardless of choice of synchronization mechanism???

Furthermore, the fact that conflicts can occur brings failure handling into the picture,
as discussed in the next section.

15.3.2.3 Aborts and Rollbacks

Because any transaction might be aborted at any time, it is important that transactions
contain no statements that cannot be rolled back. This means that transactions cannot
do I/O, system calls, or debugging breakpoints (no single stepping in the debugger
for HTM transactions!!!). Instead, transactions must confine themselves to accessing
normal cached memory. Furthermore, on some systems, interrupts, exceptions, traps,
TLB misses, and other events will also abort transactions. Given the number of bugs that
have resulted from improper handling of error conditions, it is fair to ask what impact
aborts and rollbacks have on ease of use.

Quick Quiz 15.5: But why can’t a debugger emulate single stepping by setting
breakpoints at successive lines of the transaction, relying on the retry to retrace the steps
of the earlier instances of the transaction?

Of course, aborts and rollbacks raise the question of whether HTM can be useful
for hard realtime systems. Do the performance benefits of HTM outweigh the costs
of the aborts and rollbacks, and if so under what conditions? Can transactions use
priority boosting? Or should transactions for high-priority threads instead preferentially
abort those of low-priority threads? If so, how is the hardware efficiently informed
of priorities? The literature on realtime use of HTM is quite sparse, perhaps because
researchers are finding more than enough problems in getting transactions to work well
in non-realtime environments.

Because current HTM implementations might deterministically abort a given trans-
action, software must provide fallback code. This fallback code must use some other
form of synchronization, for example, locking. If the fallback is used frequently, then
all the limitations of locking, including the possibility of deadlock, reappear. One can
of course hope that the fallback isn’t used often, which might allow simpler and less
deadlock-prone locking designs to be used. But this raises the question of how the
system transitions from using the lock-based fallbacks back to transactions.11 One
approach is to use a test-and-test-and-set discipline [MT02], so that everyone holds off
until the lock is released, allowing the system to start from a clean slate in transactional
mode at that point. However, this could result in quite a bit of spinning, which might not
be wise if the lock holder has blocked or been preempted. Another approach is to allow
transactions to proceed in parallel with a thread holding a lock [MT02], but this raises
difficulties in maintaining atomicity, especially if the reason that the thread is holding
the lock is because the corresponding transaction would not fit into cache.

Finally, dealing with the possibility of aborts and rollbacks seems to put an additional
burden on the developer, who must correctly handle all combinations of possible error
conditions.

11 The possibility of an application getting stuck in fallback mode has been termed the “lemming effect”, a
term that Dave Dice has been credited with coining.
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It is clear that users of HTM must put considerable validation effort into testing both
the fallback code paths and transition from fallback code back to transactional code.

15.3.2.4 Lack of Forward-Progress Guarantees

Even though transaction size, conflicts, and aborts/rollbacks can all cause transactions
to abort, one might hope that sufficiently small and short-duration transactions could be
guaranteed to eventually succeed. This would permit a transaction to be unconditionally
retried, in the same way that compare-and-swap (CAS) and load-linked/store-conditional
(LL/SC) operations are unconditionally retried in code that uses these instructions to
implement atomic operation.

Unfortunately, most currently available HTM implementation refuse to make any
sort of forward-progress guarantee, which means that HTM cannot be used to avoid
deadlock on those systems.12 Hopefully future implementations of HTM will provide
some sort of forward-progress guarantees. Until that time, HTM must be used with
extreme caution in real-time applications.13

The one exception to this gloomy picture as of 2013 is upcoming versions of the
IBM mainframe, which provides a separate instruction that may be used to start a special
constrained transaction [JSG12]. As you might guess from the name, such transactions
must live within the following constraints:

1. Each transaction’s data footprint must be contained within four 32-byte blocks of
memory.

2. Each transaction is permitted to execute at most 32 assembler instructions.

3. Transactions are not permitted to have backwards branches (e.g., no loops).

4. Each transaction’s code is limited to 256 bytes of memory.

5. If a portion of a given transaction’s data footprint resides within a given 4K
page, then that 4K page is prohibited from containing any of that transaction’s
instructions.

These constraints are severe, but the nevertheless permit a wide variety of data-
structure updates to be implemented, including stacks, queues, hash tables, and so on.
These operations are guaranteed to eventually complete, and are free of deadlock and
livelock conditions.

It will be interesting to see how hardware support of forward-progress guarantees
evolves over time.

15.3.2.5 Non-Idempotent Operations

Another consequence of aborts and rollbacks is that HTM transactions cannot accommo-
date non-idempotent operations. Current HTM implementations typically enforce this
limitation by requiring that all of the accesses in the transaction be to cacheable memory
(thus prohibiting MMIO accesses) and aborting transactions on interrupts, traps, and
exceptions (thus prohibiting system calls).

12 HTM might well be used to reduce the probability of deadlock, but as long as there is some possibility
of the fallback code being executed, there is some possibility of deadlock.

13 As of mid-2012, there has been surprisingly little work on transactional memory’s real-time characteris-
tics.
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Note that buffered I/O can be accommodated by HTM transactions as long as the
buffer fill/flush operations occur extra-transactionally. The reason that this works is
that adding data to and removing data from the buffer is idempotent: Only the actual
buffer fill/flush operations are non-idempotent. Of course, this buffered-I/O approach
has the effect of including the I/O in the transaction’s footprint, increasing the size of
the transaction and thus increasing the probability of failure.

15.3.2.6 Semantic Differences

Although HTM can in many cases be used as a drop-in replacement for locking (hence
the name transactional lock elision [DHL+08]), there are subtle differences in seman-
tics. A particularly nasty example involving coordinated lock-based critical sections
that results in deadlock or livelock when executed transactionally was given by Blun-
dell [BLM06], but a much simpler example is the empty critical section.

In a lock-based program, an empty critical section will guarantee that all processes
that had previously been holding that lock have now released it. This idiom was used
by the 2.4 Linux kernel’s networking stack to coordinate changes in configuration.
But if this empty critical section is translated to a transaction, the result is a no-op.
The guarantee that all prior critical sections have terminated is lost. In other words,
transactional lock elision preserves the data-protection semantics of locking, but loses
locking’s time-based messaging semantics.

Quick Quiz 15.6: But why would anyone need an empty lock-based critical sec-
tion???

Quick Quiz 15.7: Can’t transactional lock elision trivially handle locking’s time-
based messaging semantics by simply choosing not to elide empty lock-based critical
sections?

Quick Quiz 15.8: Given modern hardware [MOZ09], how can anyone possibly
expect parallel software relying on timing to work?

One important semantic difference between locking and transactions is the priority
boosting that is used to avoid priority inversion in lock-based real-time programs. One
way in which priority inversion can occur is when a low-priority thread holding a lock
is preempted by a medium-priority CPU-bound thread. If there is at least one such
medium-priority thread per CPU, the low-priority thread will never get a chance to run.
If a high-priority thread now attempts to acquire the lock, it will block. It cannot acquire
the lock until the low-priority thread releases it, the low-priority thread cannot release
the lock until it gets a chance to run, and it cannot get a chance to run until one of the
medium-priority threads gives up its CPU. Therefore, the medium-priority threads are
in effect blocking the high-priority process, which is the rationale for the name “priority
inversion.”

One way to avoid priority inversion is priority inheritance, in which a high-priority
thread blocked on a lock temporarily donates its priority to the lock’s holder, which is
also called priority boosting. However, priority boosting can be used for things other
than avoiding priority inversion, as shown in Figure 15.12. Lines 1-12 of this figure
show a low-priority process that must nevertheless run every millisecond or so, while
lines 14-24 of this same figure show a high-priority process that uses priority boosting
to ensure that boostee() runs periodically as needed.

The boostee() function arranges this by always holding one of the two boost_
lock[] locks, so that lines 20-21 of booster() can boost priority as needed.

Quick Quiz 15.9: But the boostee() function in Figure 15.12 alternatively
acquires its locks in reverse order! Won’t this result in deadlock?
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1 void boostee(void)
2 {
3 int i = 0;
4
5 acquire_lock(&boost_lock[i]);
6 for (;;) {
7 acquire_lock(&boost_lock[!i]);
8 release_lock(&boost_lock[i]);
9 i = i ^ 1;
10 do_something();
11 }
12 }
13
14 void booster(void)
15 {
16 int i = 0;
17
18 for (;;) {
19 usleep(1000); /* sleep 1 ms. */
20 acquire_lock(&boost_lock[i]);
21 release_lock(&boost_lock[i]);
22 i = i ^ 1;
23 }
24 }

Figure 15.12: Exploiting Priority Boosting

This arrangement requires that boostee() acquire its first lock on line 5 before
the system becomes busy, but this is easily arranged, even on modern hardware.

Unfortunately, this arrangement can break down in presence of transactional lock
elision. The boostee() function’s overlapping critical sections become one infinite
transaction, which will sooner or later abort, for example, on the first time that the thread
running the boostee() function is preempted. At this point, boostee() will fall
back to locking, but given its low priority and that the quiet initialization period is now
complete (which after all is why boostee() was preempted), this thread might never
again get a chance to run.

And if the boostee() thread is not holding the lock, then the booster()
thread’s empty critical section on lines 20 and 21 of Figure 15.12 will become an
empty transaction that has no effect, so that boostee() never runs. This example
illustrates some of the subtle consequences of transactional memory’s rollback-and-retry
semantics.

Given that experience will likely uncover additional subtle semantic differences,
application of HTM-based lock elision to large programs should be undertaken with
caution.

15.3.2.7 Summary

Although it seems likely that HTM will have compelling use cases, current imple-
mentations have serious transaction-size limitations, conflict-handling complications,
abort-and-rollback issues, and semantic differences that will require careful handling.
HTM’s current situation relative to locking is summarized in Table 15.1. As can be
seen, although the current state of HTM alleviates some serious shortcomings of lock-
ing,14 it does so by introducing a significant number of shortcomings of its own. These

14 In fairness, it is important to emphasize that locking’s shortcomings do have well-known and heavily
used engineering solutions, including deadlock detectors [Cor06a], a wealth of data structures that have been
adapted to locking, and a long history of augmentation, as discussed in Section 15.3.3. In addition, if locking
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Locking Hardware Transactional Memory
Basic Idea Allow only one thread at a time to access

a given set of objects.
Cause a given operation over a set of
objects to execute atomically.

Scope + Handles all operations. + Handles idempotent operations.
− Non-idempotent operations force

fallback (typically to locking).
Composability ⇓ Limited by deadlock. ⇓ Limited by non-idempotent opera-

tions, transaction size, and deadlock
(assuming lock-based fallback code).

Scalability & Per-
formance

− Data must be partitionable to avoid
lock contention.

− Data must be partionable to avoid
conflicts.

⇓ Partioning must typically be fixed at
design time.

+ Dynamic adjustment of partitioning
carried out automatically down to
cacheline boundaries.

− Partitioning required for fallbacks
(less important for rare fallbacks).

⇓ Locking primitives typically result in
expensive cache misses and memory-
barrier instructions.

− Transactions begin/end instructions
typically do not result in cache
misses, but do have memory-
ordering consequences.

+ Contention effects are focused on ac-
quisition and release, so that the crit-
ical section runs at full speed.

− Contention aborts conflicting transac-
tions, even if they have been running
for a long time.

+ Privatization operations are simple,
intuitive, performant, and scalable.

− Privatized data contributes to trans-
action size.

Hardware Support + Commodity hardware suffices. − New hardware required (and is start-
ing to become available).

+ Performance is insensitive to cache-
geometry details.

− Performance depends critically on
cache geometry.

Software Support + APIs exist, large body of code and
experience, debuggers operate natu-
rally.

− APIs emerging, little experience out-
side of DBMS, breakpoints mid-
transaction can be problematic.

Interaction With
Other Mecha-
nisms

+ Long experience of successful inter-
action.

⇓ Just beginning investigation of inter-
action.

Practical Apps + Yes. + Yes.
Wide Applicabil-
ity

+ Yes. − Jury still out, but likely to win signif-
icant use.

Table 15.1: Comparison of Locking and HTM (“+” is Advantage, “-” is Disadvantage,
“⇓” is Strong Disadvantage)
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shortcomings are acknowledged by leaders in the TM community [MS12].15

In addition, this is not the whole story. Locking is not normally used by itself, but is
instead typically augmented by other synchronization mechanisms, including reference
counting, atomic operations, non-blocking data structures, hazard pointers [Mic04,
HLM02], and read-copy update (RCU) [MS98a, MAK+01, HMBW07, McK12b]. The
next section looks at how such augmentation changes the equation.

15.3.3 HTM Weaknesses WRT to Locking When Augmented
Practitioners have long used reference counting, atomic operations, non-blocking data
structures, hazard pointers, and RCU to avoid some of the shortcomings of lock-
ing. For example, deadlock can be avoided in many cases by using reference counts,
hazard pointers, or RCU to protect data structures, particularly for read-only criti-
cal sections [Mic04, HLM02, DMS+12, GMTW08, HMBW07]. These approaches
also reduce the need to partition data structures [McK12a]. RCU further provides
contention-free wait-free read-side primitives [DMS+12]. Adding these considerations
to Table 15.1 results in the updated comparison between augmented locking and HTM
shown in Table 15.2. A summary of the differnces between the two tables is as follows:

1. Use of non-blocking read-side mechanisms alleviates deadlock issues.

2. Read-side mechanisms such as hazard pointers and RCU can operate efficiently
on non-partitionable data.

3. Hazard pointers and RCU do not contend with each other or with updaters,
allowing excellent performance and scalability for read-mostly workloads.

4. Hazard pointers and RCU provide forward-progress guarantees (lock freedom
and wait-freedom, respectively).

5. Privatization operations for hazard pointers and RCU are straightforward.

Of course, it is also possible to augment HTM, as discussed in the next section.

15.3.4 Where Does HTM Best Fit In?
Although it will likely be some time before HTM’s area of applicability can be as crisply
delineated as that shown for RCU in Figure 8.34 on page 197, that is no reason not to
start moving in that direction.

HTM seems best suited to update-heavy workloads involving relatively small
changes to disparate portions of a relatively large in-memory data structures running on
large multiprocessors, as this meets the size restrictions of current HTM implementations
while minimizing the probability of conflicts and attendant aborts and rollbacks. This
scenario is also one that is relatively difficult to handle given current synchronization
primitives.

Use of locking in conjunction with HTM seems likely to overcome HTM’s diffi-
culties with non-idempotent operations, while use of RCU or hazard pointers might

really were as horrible as a quick skim of many academic papers might reasonably lead one to believe, where
did all the large lock-based parallel programs (both FOSS and proprietary) come from, anyway?

15 In addition, in early 2011, I was invited to deliver a critique of some of the assumptions underlying
transactional memory [McK11d]. The audience was surprisingly non-hostile, though perhaps they were taking
it easy on me due to the fact that I was heavily jet-lagged while giving the presentation.
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Locking with RCU or Hazard Pointers Hardware Transactional Memory
Basic Idea Allow only one thread at a time to access a

given set of objects.
Cause a given operation over a set of objects
to execute atomically.

Scope + Handles all operations. + Handles idempotent operations.
− Non-idempotent operations force fall-

back (typically to locking).
Composability + Readers limited only by grace-period-

wait operations.
⇓ Limited by non-idempotent operations,

transaction size, and deadlock.
− Updaters limited by deadlock. Readers

reduce deadlock.
(Assuming lock-based fallback code.)

Scalability & Perfor-
mance

− Data must be partitionable to avoid lock
contention among updaters.

− Data must be partionable to avoid con-
flicts.

+ Partitioning not needed for readers.
⇓ Partioning for updaters must typically be

fixed at design time.
+ Dynamic adjustment of partitioning car-

ried out automatically down to cacheline
boundaries.

+ Partitioning not needed for readers. − Partitioning required for fallbacks (less
important for rare fallbacks).

⇓ Updater locking primitives typically re-
sult in expensive cache misses and
memory-barrier instructions.

− Transactions begin/end instructions typ-
ically do not result in cache misses, but
do have memory-ordering consequences.

+ Update-side contention effects are fo-
cused on acquisition and release, so that
the critical section runs at full speed.

− Contention aborts conflicting transac-
tions, even if they have been running for
a long time.

+ Readers do not contend with updaters or
with each other.

+ Read-side primitives are typically wait-
free with low overhead. (Lock-free for
hazard pointers.)

− Read-only transactions subject to con-
flicts and rollbacks. No forward-progress
guarantees other than those supplied by
fallback code.

+ Privatization operations are simple, intu-
itive, performant, and scalable when data
is visible only to updaters.

− Privatized data contributes to transaction
size.

− Privitization operations are expensive
(though still intuitive and scalable) for
reader-visible data.

Hardware Support + Commodity hardware suffices. − New hardware required (and is starting
to become available).

+ Performance is insensitive to cache-
geometry details.

− Performance depends critically on cache
geometry.

Software Support + APIs exist, large body of code and expe-
rience, debuggers operate naturally.

− APIs emerging, little experience outside
of DBMS, breakpoints mid-transaction
can be problematic.

Interaction With
Other Mechanisms

+ Long experience of successful interac-
tion.

⇓ Just beginning investigation of interac-
tion.

Practical Apps + Yes. + Yes.
Wide Applicability + Yes. − Jury still out, but likely to win significant

use.

Table 15.2: Comparison of Locking (Augmented by RCU or Hazard Pointers) and HTM
(“+” is Advantage, “-” is Disadvantage, “⇓” is Strong Disadvantage)
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alleviate HTM’s transaction-size limitations for read-only operations that traverse large
fractions of the data structure. Current HTM implementations unconditionally abort an
update transaction that conflicts with an RCU or hazard-pointer reader, but perhaps fu-
ture HTM implementations will interoperate more smoothly with these synchronization
mechanisms. In the meantime, the probability of an update conflicting with a large RCU
or hazard-pointer read-side critical section should be much smaller than the probability
of conflicting with the equivalent read-only transaction.16 Nevertheless, it is quite
possible that a steady stream of RCU or hazard-pointer readers might starve updaters
due to a corresponding steady stream of conflicts. This vulnerability could be eliminated
(perhaps at significant hardware cost and complexity) by giving extra-tranactional reads
the pre-transaction copy of the memory location being loaded.

The fact that HTM transactions must have fallbacks might in some cases force static
partitionability of data structures back onto HTM. This limitation might be alleviated
if future HTM implementations provide forward-progress guarantees, which might
eliminate the need for fallback code in some cases, which in turn might allow HTM to
be used efficiently in situations with higher conflict probabilities.

In short, although HTM is likely to have important uses and applications, it is
another tool in the parallel programmer’s toolbox, not a replacement for the toolbox in
its entirety.

15.3.5 Potential Game Changers
Game changers that could greatly increase the need for HTM include the following:

1. Forward-progress guarantees.

2. Transaction-size increases.

3. Improved debugging support.

4. Weak atomicity.

These are expanded upon in the following sections.

15.3.5.1 Forward-Progress Guarantees

As was discussed in Section 15.3.2.4, current HTM implementations lack forward-
progress guarantees, which requires that fallback software be available to handle HTM
failures. Of course, it is easy to demand guarantees, but not always to easy to provide
them. In the case of HTM, obstacles to guarantees can include cache size and asso-
ciativity, TLB size and associativity, transaction duration and interrupt frequency, and
scheduler implementation.

Cache size and associativity was discussed in Section 15.3.2.1, along with some
research intended to work around current limitations. However, we HTM forward-
progress guarantees would come with size limits, large though these limits might
one day be. So why don’t current HTM implementations provide forward-progress
guarantees for small transactions, for example, limited to the associativity of the cache?
One potential reason might be the need to deal with hardware failure. For example, a

16 It is quite ironic that strictly transactional mechanisms are appearing in shared-memory systems at
just about the time that NoSQL databases are relaxing the traditional database-application reliance on strict
transactions.
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failing cache SRAM cell might be handled by deactivating the failing cell, thus reducing
the associativity of the cache and therefore also the maximum size of transactions
that can be guaranteed forward progress. Given that this would simply decrease the
guaranteed transaction size, it seems likely that other reasons are at work. Perhaps
providing forward progress guarantees on production-quality hardware is more difficult
than one might think, an entirely plausible explanation given the difficulty of making
forward-progress guarantees in software. Moving a problem from software to hardware
does not necessarily make it easier to solve.

Given a physically tagged and indexed cache, it is not enough for the transaction to
fit in the cache. Its address translations must also fit in the TLB. Any forward-progress
guarantees must therefore also take TLB size and associativity into account.

Given that interrupts, traps, and exceptions abort transactions in current HTM
implementations, it is necessary that the execution duration of a given transaction be
shorter than the expected interval between interrupts. No matter how little data a given
transaction touches, if it runs too long, it will be aborted. Therefore, any forward-
progress guarantees must be conditioned not only on transaction size, but also on
transaction duration.

Forward-progress guarantees depend critically on the ability to determine which of
several conflicting transactions should be aborted. It is all too easy to imagine an endless
series of transactions, each aborting an earlier transaction only to itself be aborted by a
later transactions, so that none of the transactions actually commit. The complexity of
conflict handling is evidenced by the large number of HTM conflict-resolution policies
that have been proposed [ATC+11, LS11]. Additional complications are introduced
by extra-transactional accesses, as noted by Blundell [BLM06]. It is easy to blame
the extra-transactional accesses for all of these problems, but the folly of this line of
thinking is easily demonstrated by placing each of the extra-transactional accesses into
its own single-access transaction. It is the pattern of accesses that is the issue, not
whether or not they happen to be enclosed in a transaction.

Finally, any forward-progress guarantees for transactions also depend on the sched-
uler, which must let the thread executing the transaction run long enough to successfully
commit.

So there are significant obstacles to HTM vendors offering forward-progress guaran-
tees. However, the impact of any of them doing so would be enormous. It would mean
that HTM transactions would no longer need software fallbacks, which would mean that
HTM could finally deliver on the TM promise of deadlock elimination.

And as of late 2012, the IBM Mainframe announced an HTM implementation that
includes constrained transactions in addition to the usual best-effort HTM implementa-
tion [JSG12]. A constrained transaction starts with the tbeginc instruction instead of
the tbegin instruction that is used for best-effort transactions. Constrained transac-
tions are guaranteed to always complete (eventually), so if a transaction aborts, rather
than branching to a fallback path (as is done for best-effort transactions), the hardware
instead restarts the transaction at the tbeginc instruction.

The Mainframe architects needed to take extreme measures to deliver on this forward-
progress guarantee. If a given constrained transaction repeatedly fails, the CPU might
disable branch prediction, force in-order execution, and even disable pipelining. If
the repeated failures are due to high contention, the CPU might disable speculative
fetches, introduce random delays, and even serialize execution of the conflicting CPUs.
“Interesting” forward-progress scenarios involve as few as two CPUs or as many as one
hundred CPUs. Perhaps these extreme measures provide some insight as to why other
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CPUs have thus far refrained from offering constrained transactions.
As the name implies, constrained transactions are in fact severely constrained:

1. The maximum data footprint is four blocks of memory, where each block can be
no larger than 32 bytes.

2. The maximum code footprint is 256 bytes.

3. If a given 4K page contains a constrained transaction’s code, then that page may
not contain that transaction’s data.

4. The maximum number of assembly instructions that may be executed is 32.

5. Backwards branches are forbidden.

Nevertheless, these constraints support a number of important data structures, in-
cluding linked lists, stacks, queues, and arrays. Constrained HTM therefore seems likely
to become an important tool in the parallel programmer’s toolbox.

15.3.5.2 Transaction-Size Increases

Forward-progress guarantees are important, but as we saw, they will be conditional
guarantees based on transaction size and duration. It is important to note that even
small-sized guarantees will be quite useful. For example, a guarantee of two cache
lines is sufficient for a stack, queue, or dequeue. However, larger data structures require
larger guarantees, for example, traversing a tree in order requires a guarantee equal to
the number of nodes in the tree.

Therefore, increasing the size of the guarantee also increases the usefulness of HTM,
thereby increasing the need for CPUs to either provide it or provide good-and-sufficient
workarounds.

15.3.5.3 Improved Debugging Support

Another inhibitor to transaction size is the need to debug the transactions. The problem
with current mechanisms is that a single-step exception aborts the enclosing transaction.
There are a number of workarounds for this issue, including emulating the processor
(slow!), substituting STM for HTM (slow and slightly different semantics!), playback
techniques using repeated retries to emulate forward progress (strange failure modes!),
and full support of debugging HTM transactions (complex!).

Should one of the HTM vendors produce an HTM system that allows straightforward
use of classical debugging techniques within transactions, including breakpoints, single
stepping, and print statements, this will make HTM much more compelling. Some
transactional-memory researchers are starting to recognize this problem as of 2013,
with at least one proposal involving hardware-assisted debugging facilities [GKP13].
Of course, this proposal depends on readily available hardware gaining such facilities.

15.3.5.4 Weak Atomicity

Given that HTM is likely to face some sort of size limitations for the foreseeable future,
it will be necessary for HTM to interoperate smoothly with other mechanisms. HTM’s
interoperability with read-mostly mechanisms such as hazard pointers and RCU would
be improved if extra-transactional reads did not unconditionally abort transactions with
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conflicting writes—instead, the read could simply be provided with the pre-transaction
value. In this way, hazard pointers and RCU could be used to allow HTM to handle
larger data structures and to reduce conflict probabilities.

This is not necessarily simple, however. The most straightforward way of imple-
menting this requires an additional state in each cache line and on the bus, which is a
non-trivial added expense. The benefit that goes along with this expense is permitting
large-footprint readers without the risk of starving updaters due to continual conflicts.

15.3.6 Conclusions
Although current HTM implementations appear to be poised to deliver real benefits,
they also have significant shortcomings. The most significant shortcomings appear
to be limited transaction sizes, the need for conflict handling, the need for aborts
and rollbacks, the lack of forward-progress guarantees, the inability to handle non-
idempotent operations, and subtle semantic differences from locking.

Some of these shortcomings might be alleviated in future implementations, but it ap-
pears that there will continue to be a strong need to make HTM work well with the many
other types of synchronization mechanisms, as noted earlier [MMW07, MMTW10].

In short, current HTM implementations appear to be welcome and useful additions
to the parallel programmer’s toolbox, and much interesting and challenging work is
required to make use of them. However, they cannot be considered to be a magic wand
with which to wave away all parallel-programming problems.

15.4 Functional Programming for Parallelism
When I took my first-ever functional-programming class in the early 1980s, the pro-
fessor asserted that the side-effect-free functional-programming style was well-suited
to trivial parallelization and analysis. Thirty years later, this assertion remains, but
mainstream production use of parallel functional languages is minimal, a state of affairs
that might well stem from this professor’s additional assertion that programs should
neither maintain state nor do I/O. There is niche use of functional languages such as
Erlang, and multithreaded support has been added to several other functional languages,
but mainstream production usage remains the province of procedural languages such as
C, C++, Java, and FORTRAN (usually augmented with OpenMP or MPI).

This situation naturally leads to the question “If analysis is the goal, why not
transform the procedural language into a functional language before doing the analysis?”
There are of course a number of objections to this approach, of which I list but three:

1. Procedural languages often make heavy use of global variables, which can be
updated independently by different functions, or, worse yet, by multiple threads.
Note that Haskell’s monads were invented to deal with single-threaded global
state, and that multi-threaded access to global state requires additional violence
to the functional model.

2. Multithreaded procedural languages often use synchonization primitives such as
locks, atomic operations, and transactions, which inflict added violence upon the
functional model.

3. Procedural languages can alias function arguments, for example, by passing a
pointer to the same structure via two different arguments to the same invocation
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of a given function. This can result in the function unknowingly updating that
structure via two different (and possibly overlapping) code sequences, which
greatly complicates analysis.

Of course, given the importance of global state, synchronization primitives, and
aliasing, clever functional-programming experts have proposed any number of attempts
to reconcile the function programming model to them, monads being but one case in
point.

Another approach is to compile the parallel procedural program into a functional
program, the use functional-programming tools to analyze the result. But it is possible to
do much better than this, given that any real computation is a large finite-state machine
with finite input that runs for a finite time interval. This means that any real program can
be transformed into an expression, possibly albeit an impractically large one [DHK12].

However, a number of the low-level kernels of parallel algorithms transform into
expressions that are small enough to fit easily into the memories of modern computers.
If such an expression is coupled with an assertion, checking to see if the assertion would
ever fire becomes a satisfiability problem. Even though satisfiability problems are NP-
complete, they can often be solved in much less time than would be required to generate
the full state space. In addition, the solution time appears to be independent of the
underlying memory model, so that algorithms running on weakly ordered systems can
be checked just as quickly as they could on sequentially consistent systems [AKT13].

The general approach is to transform the program into single-static-assignment
(SSA) form, so that each assignment to a variable creates a separate version of that
variable. This applies to assignments from all the active threads, so that the resulting
expression embodies all possible executions of the code in question. The addition of an
assertion entails asking whether any combination of inputs and initial values can result
in the assertion firing, which, as noted above, is exactly the satisfiability problem.

One possible objection is that it does not gracefully handle arbitrary looping con-
structs. However, in many cases, this can be handled by unrolling the loop a finite
number of times. In addition, perhaps some loops will also prove amenable to collapse
via inductive mathods.

Another possible objection is that spinlocks involve arbitrarily long loops, and any
finite unrolling would fail to capture the full behavior of the spinlock. It turns out that
this objection is easily overcome. Instead of modeling a full spinlock, model a trylock
that attempts to obtain the lock, and aborts if it fails to immediately do so. The assertion
must then be crafted so as to avoid firing in cases where a spinlock aborted due to the
lock not being immediately available. Because the logic expression is independent of
time, all possible concurrency behaviors will be captured via this approach.

A final objection is that this technique is unlikely to be able to handle a full-sized
software artifact such as the millions of lines of code making up the Linux kernel. This
is likely the case, but the fact remains that exhaustive validation of each of the much
smaller parallel primitives within the Linux kernel would be quite valuable. And in
fact the researchers spearheading this approach have applied it to non-trivial real-world
code, including the RCU implementation in the Linux kernel (albeit to verify one of the
less-profound properties of RCU).

It remains to be seen how widely applicable this technique is, but it is one of the
more interesting innovations in the field of formal verification. And it might be more
well-received than the traditional advice of writing all programs in functional form.
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Appendix A

Important Questions

The following sections discuss some important questions relating to SMP programming.
Each section also shows how to avoid having to worry about the corresponding question,
which can be extremely important if your goal is to simply get your SMP code working
as quickly and painlessly as possible — which is an excellent goal, by the way!

Although the answers to these questions are often quite a bit less intuitive than they
would be in a single-threaded setting, with a bit of work, they are not that difficult to
understand. If you managed to master recursion, there is nothing in here that should
pose an overwhelming challenge.

A.1 What Does “After” Mean?
“After” is an intuitive, but surprisingly difficult concept. An important non-intuitive issue
is that code can be delayed at any point for any amount of time. Consider a producing
and a consuming thread that communicate using a global struct with a timestamp “t”
and integer fields “a”, “b”, and “c”. The producer loops recording the current time
(in seconds since 1970 in decimal), then updating the values of “a”, “b”, and “c”, as
shown in Figure A.1. The consumer code loops, also recording the current time, but also
copying the producer’s timestamp along with the fields “a”, “b”, and “c”, as shown in
Figure A.2. At the end of the run, the consumer outputs a list of anomalous recordings,
e.g., where time has appeared to go backwards.

Quick Quiz A.1: What SMP coding errors can you see in these examples? See
time.c for full code.

One might intuitively expect that the difference between the producer and consumer
timestamps would be quite small, as it should not take much time for the producer to
record the timestamps or the values. An excerpt of some sample output on a dual-core
1GHz x86 is shown in Table A.1. Here, the “seq” column is the number of times through
the loop, the “time” column is the time of the anomaly in seconds, the “delta” column is
the number of seconds the consumer’s timestamp follows that of the producer (where
a negative value indicates that the consumer has collected its timestamp before the
producer did), and the columns labelled “a”, “b”, and “c” show the amount that these
variables increased since the prior snapshot collected by the consumer.

Why is time going backwards? The number in parentheses is the difference in
microseconds, with a large number exceeding 10 microseconds, and one exceeding even
100 microseconds! Please note that this CPU can potentially execute about more than
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time.c


1 /* WARNING: BUGGY CODE. */
2 void *producer(void *ignored)
3 {
4 int i = 0;
5
6 producer_ready = 1;
7 while (!goflag)
8 sched_yield();
9 while (goflag) {
10 ss.t = dgettimeofday();
11 ss.a = ss.c + 1;
12 ss.b = ss.a + 1;
13 ss.c = ss.b + 1;
14 i++;
15 }
16 printf("producer exiting: %d samples\n", i);
17 producer_done = 1;
18 return (NULL);
19 }

Figure A.1: “After” Producer Function

seq time (seconds) delta a b c
17563: 1152396.251585 (-16.928) 27 27 27
18004: 1152396.252581 (-12.875) 24 24 24
18163: 1152396.252955 (-19.073) 18 18 18
18765: 1152396.254449 (-148.773) 216 216 216
19863: 1152396.256960 (-6.914) 18 18 18
21644: 1152396.260959 (-5.960) 18 18 18
23408: 1152396.264957 (-20.027) 15 15 15

Table A.1: “After” Program Sample Output

100,000 instructions in that time.
One possible reason is given by the following sequence of events:

1. Consumer obtains timestamp (Figure A.2, line 13).

2. Consumer is preempted.

3. An arbitrary amount of time passes.

4. Producer obtains timestamp (Figure A.1, line 10).

5. Consumer starts running again, and picks up the producer’s timestamp (Figure A.2,
line 14).

In this scenario, the producer’s timestamp might be an arbitrary amount of time after
the consumer’s timestamp.

How do you avoid agonizing over the meaning of “after” in your SMP code?
Simply use SMP primitives as designed.
In this example, the easiest fix is to use locking, for example, acquire a lock in the

producer before line 10 in Figure A.1 and in the consumer before line 13 in Figure A.2.
This lock must also be released after line 13 in Figure A.1 and after line 17 in Figure A.2.
These locks cause the code segments in line 10-13 of Figure A.1 and in line 13-17 of
Figure A.2 to exclude each other, in other words, to run atomically with respect to each
other. This is represented in Figure A.3: the locking prevents any of the boxes of code
from overlapping in time, so that the consumer’s timestamp must be collected after the
prior producer’s timestamp. The segments of code in each box in this figure are termed
“critical sections”; only one such critical section may be executing at a given time.
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1 /* WARNING: BUGGY CODE. */
2 void *consumer(void *ignored)
3 {
4 struct snapshot_consumer curssc;
5 int i = 0;
6 int j = 0;
7
8 consumer_ready = 1;
9 while (ss.t == 0.0) {
10 sched_yield();
11 }
12 while (goflag) {
13 curssc.tc = dgettimeofday();
14 curssc.t = ss.t;
15 curssc.a = ss.a;
16 curssc.b = ss.b;
17 curssc.c = ss.c;
18 curssc.sequence = curseq;
19 curssc.iserror = 0;
20 if ((curssc.t > curssc.tc) ||
21 modgreater(ssc[i].a, curssc.a) ||
22 modgreater(ssc[i].b, curssc.b) ||
23 modgreater(ssc[i].c, curssc.c) ||
24 modgreater(curssc.a, ssc[i].a + maxdelta) ||
25 modgreater(curssc.b, ssc[i].b + maxdelta) ||
26 modgreater(curssc.c, ssc[i].c + maxdelta)) {
27 i++;
28 curssc.iserror = 1;
29 } else if (ssc[i].iserror)
30 i++;
31 ssc[i] = curssc;
32 curseq++;
33 if (i + 1 >= NSNAPS)
34 break;
35 }
36 printf("consumer exited, collected %d items of %d\n",
37 i, curseq);
38 if (ssc[0].iserror)
39 printf("0/%d: %.6f %.6f (%.3f) %d %d %d\n",
40 ssc[0].sequence, ssc[j].t, ssc[j].tc,
41 (ssc[j].tc - ssc[j].t) * 1000000,
42 ssc[j].a, ssc[j].b, ssc[j].c);
43 for (j = 0; j <= i; j++)
44 if (ssc[j].iserror)
45 printf("%d: %.6f (%.3f) %d %d %d\n",
46 ssc[j].sequence,
47 ssc[j].t, (ssc[j].tc - ssc[j].t) * 1000000,
48 ssc[j].a - ssc[j - 1].a,
49 ssc[j].b - ssc[j - 1].b,
50 ssc[j].c - ssc[j - 1].c);
51 consumer_done = 1;
52 }

Figure A.2: “After” Consumer Function
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ss.t = dgettimeofday();

ss.b = ss.a + 1;
ss.c = ss.b + 1;

ss.a = ss.c + 1;

curssc.c = ss.c;

curssc.tc = gettimeofday();
curssc.t = ss.t;
curssc.a = ss.a;
curssc.b = ss.b;

ss.t = dgettimeofday();

ss.b = ss.a + 1;
ss.c = ss.b + 1;

ss.a = ss.c + 1;

Time

Producer

Consumer

Producer

Figure A.3: Effect of Locking on Snapshot Collection

This addition of locking results in output as shown in Figure A.2. Here there are no
instances of time going backwards, instead, there are only cases with more than 1,000
counts different between consecutive reads by the consumer.

seq time (seconds) delta a b c
58597: 1156521.556296 (3.815) 1485 1485 1485

403927: 1156523.446636 (2.146) 2583 2583 2583

Table A.2: Locked “After” Program Sample Output

Quick Quiz A.2: How could there be such a large gap between successive consumer
reads? See timelocked.c for full code.

In summary, if you acquire an exclusive lock, you know that anything you do
while holding that lock will appear to happen after anything done by any prior holder
of that lock. No need to worry about which CPU did or did not execute a memory
barrier, no need to worry about the CPU or compiler reordering operations – life is
simple. Of course, the fact that this locking prevents these two pieces of code from
running concurrently might limit the program’s ability to gain increased performance on
multiprocessors, possibly resulting in a “safe but slow” situation. Chapter 5 describes
ways of gaining performance and scalability in many situations.

However, in most cases, if you find yourself worrying about what happens before
or after a given piece of code, you should take this as a hint to make better use of the
standard primitives. Let these primitives do the worrying for you.

A.2 What Time Is It?
A key issue with timekeeping on multicore computer systems is illustrated by Figure A.4.
One problem is that it takes time to read out the time. An instruction might read from a

422

timelocked.c


Uh. When did

you ask?

What time is it?

Figure A.4: What Time Is It?

hardware clock, and might have to go off-core (or worse yet, off-socket) to complete
this read operation. It might also be necessary to do some computation on the value
read out, for example, to convert it to the desired format, to apply network time protocol
(NTP) adjustments, and so on. So does the time eventually returned correspond to the
beginning of the resulting time interval, the end, or somewhere in between?

Worse yet, the thread reading the time might be interrupted or preempted. Further-
more, there will likely be some computation between reading out the time and the actual
use of the time that has been read out. Both of these possibilities further extend the
interval of uncertainty.

One approach is to read the time twice, and take the arithmetic mean of the two
readings, perhaps one on each side of the operation being timestamped. The difference
between the two readings is then a measure of uncertainty of the time at which the
intervening operation occurred.

Of course, in many cases, the exact time is not necessary. For example, when
printing the time for the benefit of a human user, we can rely on slow human reflexes to
render internal hardware and software delays irrelevant. Similarly, if a server need to
timestamp the response to a client, any time between the reception of the request and
the transmission of the response will do equally well.

Scheduling ticks
Tickless operation
Timers
Current time, monotonic operation
The many ways in which time can appear to go backwards
Causality, the only real time in SMP (or distributed) systems
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Appendix B

Synchronization Primitives

All but the simplest parallel programs require synchronization primitives. This appendix
gives a quick overview of a set of primitives based loosely on those in the Linux kernel.

Why Linux? Because it is one of the well-known, largest, and easily obtained bodies
of parallel code available. We believe that reading code is, if anything, more important
to learning than is writing code, so by using examples similar to real code in the Linux
kernel, we are enabling you to use Linux to continue your learning as you progress
beyond the confines of this book.

Why based loosely rather than following the Linux kernel API exactly? First, the
Linux API changes with time, so any attempt to track it exactly would likely end in total
frustration for all involved. Second, many of the members of the Linux kernel API are
specialized for use in a production-quality operating-system kernel. This specialization
introduces complexities that, though absolutely necessary in the Linux kernel itself, are
often more trouble than they are worth in the “toy” programs that we will be using to
demonstrate SMP and realtime design principles and practices. For example, properly
checking for error conditions such as memory exhaustion is a “must” in the Linux
kernel, however, in “toy” programs it is perfectly acceptable to simply abort() the
program, correct the problem, and rerun.

Finally, it should be possible to implement a trivial mapping layer between this API
and most production-level APIs. A pthreads implementation is available (CodeSamples/
api-pthreads/api-pthreads.h), and a Linux-kernel-module API would not
be difficult to create.

Quick Quiz B.1: Give an example of a parallel program that could be written
without synchronization primitives.

The following sections describe commonly used classes of synchronization primi-
tives. @@@ More esoteric primitives will be introduced in later revision.

Section B.1 covers organization/initialization primitives; Section B.2 presents thread
creation, destruction, and control primitives; Section B.3 presents locking primitives;
Section B.4 presents per-thread and per-CPU variable primitives; and Section B.5 gives
an overview of the relative performance of the various primitives.

B.1 Organization and Initialization
@@@ currently include ../api.h, and there is only pthreads. Expand and complete once
the CodeSamples structure settles down.
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B.1.1 smp_init():
You must invoke smp_init() before invoking any other primitives.

B.2 Thread Creation, Destruction, and Control
This API focuses on “threads”, which are a locus of control.1 Each such thread has an
identifier of type thread_id_t, and no two threads running at a given time will have
the same identifier. Threads share everything except for per-thread local state,2 which
includes program counter and stack.

The thread API is shown in Figure B.1, and members are described in the following
sections.

int smp_thread_id(void)
thread_id_t create_thread(void *(*func)(void *), void *arg)
for_each_thread(t)
for_each_running_thread(t)
void *wait_thread(thread_id_t tid)
void wait_all_threads(void)

Figure B.1: Thread API

B.2.1 create_thread()
The create_thread() primitive creates a new thread, starting the new thread’s
execution at the function func specified by create_thread()’s first argument,
and passing it the argument specified by create_thread()’s second argument.
This newly created thread will terminate when it returns from the starting function
specified by func. The create_thread() primitive returns the thread_id_t
corresponding to the newly created child thread.

This primitive will abort the program if more than NR_THREADS threads are created,
counting the one implicitly created by running the program. NR_THREADS is a compile-
time constant that may be modified, though some systems may have an upper bound for
the allowable number of threads.

B.2.2 smp_thread_id()
Because the thread_id_t returned from create_thread() is system-dependent,
the smp_thread_id() primitive returns a thread index corresponding to the thread
making the request. This index is guaranteed to be less than the maximum number of
threads that have been in existence since the program started, and is therefore useful for
bitmasks, array indices, and the like.

B.2.3 for_each_thread()
The for_each_thread() macro loops through all threads that exist, including all
threads that would exist if created. This macro is useful for handling per-thread variables

1 There are many other names for similar software constructs, including “process”, “task”, “fiber”, “event”,
and so on. Similar design principles apply to all of them.

2 How is that for a circular definition?
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as will be seen in Section B.4.

B.2.4 for_each_running_thread()
The for_each_running_thread() macro loops through only those threads that
currently exist. It is the caller’s responsibility to synchronize with thread creation and
deletion if required.

B.2.5 wait_thread()
The wait_thread() primitive waits for completion of the thread specified by the
thread_id_t passed to it. This in no way interferes with the execution of the
specified thread; instead, it merely waits for it. Note that wait_thread() returns the
value that was returned by the corresponding thread.

B.2.6 wait_all_threads()
The wait_all_threads() primitive waits for completion of all currently running
threads. It is the caller’s responsibility to synchronize with thread creation and deletion
if required. However, this primitive is normally used to clean up and the end of a run, so
such synchronization is normally not needed.

B.2.7 Example Usage
Figure B.2 shows an example hello-world-like child thread. As noted earlier, each thread
is allocated its own stack, so each thread has its own private arg argument and myarg
variable. Each child simply prints its argument and its smp_thread_id() before
exiting. Note that the return statement on line 7 terminates the thread, returning a
NULL to whoever invokes wait_thread() on this thread.

1 void *thread_test(void *arg)
2 {
3 int myarg = (int)arg;
4
5 printf("child thread %d: smp_thread_id() = %d\n",
6 myarg, smp_thread_id());
7 return NULL;
8 }

Figure B.2: Example Child Thread

The parent program is shown in Figure B.3. It invokes smp_init() to initialize
the threading system on line 6, parses arguments on lines 7-14, and announces its
presence on line 15. It creates the specified number of child threads on lines 16-17, and
waits for them to complete on line 18. Note that wait_all_threads() discards
the threads return values, as in this case they are all NULL, which is not very interesting.

B.3 Locking
The locking API is shown in Figure B.4, each API element being described in the
following sections.
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1 int main(int argc, char *argv[])
2 {
3 int i;
4 int nkids = 1;
5
6 smp_init();
7 if (argc > 1) {
8 nkids = strtoul(argv[1], NULL, 0);
9 if (nkids > NR_THREADS) {
10 fprintf(stderr, "nkids=%d too big, max=%d\n",
11 nkids, NR_THREADS);
12 usage(argv[0]);
13 }
14 }
15 printf("Parent spawning %d threads.\n", nkids);
16 for (i = 0; i < nkids; i++)
17 create_thread(thread_test, (void *)i);
18 wait_all_threads();
19 printf("All threads completed.\n", nkids);
20 exit(0);
21 }

Figure B.3: Example Parent Thread

void spin_lock_init(spinlock_t *sp);
void spin_lock(spinlock_t *sp);
int spin_trylock(spinlock_t *sp);
void spin_unlock(spinlock_t *sp);

Figure B.4: Locking API

B.3.1 spin_lock_init()

The spin_lock_init() primitive initializes the specified spinlock_t variable,
and must be invoked before this variable is passed to any other spinlock primitive.

B.3.2 spin_lock()

The spin_lock() primitive acquires the specified spinlock, if necessary, waiting
until the spinlock becomes available. In some environments, such as pthreads, this
waiting will involve “spinning”, while in others, such as the Linux kernel, it will involve
blocking.

The key point is that only one thread may hold a spinlock at any given time.

B.3.3 spin_trylock()

The spin_trylock() primitive acquires the specified spinlock, but only if it is
immediately available. It returns true if it was able to acquire the spinlock and false
otherwise.

B.3.4 spin_unlock()

The spin_unlock() primitive releases the specified spinlock, allowing other threads
to acquire it.

@@@ likely need to add reader-writer locking.
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B.3.5 Example Usage

A spinlock named mutex may be used to protect a variable counter as follows:

spin_lock(&mutex);
counter++;
spin_unlock(&mutex);

Quick Quiz B.2: What problems could occur if the variable counter were incre-
mented without the protection of mutex?

However, the spin_lock() and spin_unlock() primitives do have perfor-
mance consequences, as will be seen in Section B.5.

B.4 Per-Thread Variables
Figure B.5 shows the per-thread-variable API. This API provides the per-thread equiva-
lent of global variables. Although this API is, strictly speaking, not necessary, it can
greatly simply coding.

DEFINE_PER_THREAD(type, name)
DECLARE_PER_THREAD(type, name)
per_thread(name, thread)
__get_thread_var(name)
init_per_thread(name, v)

Figure B.5: Per-Thread-Variable API

Quick Quiz B.3: How could you work around the lack of a per-thread-variable API
on systems that do not provide it?

B.4.1 DEFINE_PER_THREAD()

The DEFINE_PER_THREAD() primitive defines a per-thread variable. Unfortunately,
it is not possible to provide an initializer in the way permitted by the Linux kernel’s
DEFINE_PER_THREAD() primitive, but there is an init_per_thread() primi-
tive that permits easy runtime initialization.

B.4.2 DECLARE_PER_THREAD()

The DECLARE_PER_THREAD() primitive is a declaration in the C sense, as opposed
to a definition. Thus, a DECLARE_PER_THREAD() primitive may be used to access a
per-thread variable defined in some other file.

B.4.3 per_thread()

The per_thread() primitive accesses the specified thread’s variable.

B.4.4 __get_thread_var()

The __get_thread_var() primitive accesses the current thread’s variable.
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B.4.5 init_per_thread()
The init_per_thread() primitive sets all threads’ instances of the specified vari-
able to the specified value.

B.4.6 Usage Example
Suppose that we have a counter that is incremented very frequently but read out quite
rarely. As will become clear in Section B.5, it is helpful to implement such a counter
using a per-thread variable. Such a variable can be defined as follows:

DEFINE_PER_THREAD(int, counter);

The counter must be initialized as follows:

init_per_thread(counter, 0);

A thread can increment its instance of this counter as follows:

__get_thread_var(counter)++;

The value of the counter is then the sum of its instances. A snapshot of the value of
the counter can thus be collected as follows:

for_each_thread(i)
sum += per_thread(counter, i);

Again, it is possible to gain a similar effect using other mechanisms, but per-thread
variables combine convenience and high performance.

B.5 Performance
It is instructive to compare the performance of the locked increment shown in Section B.3
to that of per-thread variables (see Section B.4), as well as to conventional increment
(as in “counter++”).

@@@ need parable on cache thrashing.
@@@ more here using performance results from a modest multiprocessor.
@@@ Also work in something about critical-section size? Or put later?
The difference in performance is quite large, to put it mildly. The purpose of this

book is to help you write SMP programs, perhaps with realtime response, while avoiding
such performance pitfalls. The next section starts this process by describing some of the
reasons for this performance shortfall.

430



Appendix C

Why Memory Barriers?

So what possessed CPU designers to cause them to inflict memory barriers on poor
unsuspecting SMP software designers?

In short, because reordering memory references allows much better performance,
and so memory barriers are needed to force ordering in things like synchronization
primitives whose correct operation depends on ordered memory references.

Getting a more detailed answer to this question requires a good understanding of
how CPU caches work, and especially what is required to make caches really work well.
The following sections:

1. present the structure of a cache,

2. describe how cache-coherency protocols ensure that CPUs agree on the value of
each location in memory, and, finally,

3. outline how store buffers and invalidate queues help caches and cache-coherency
protocols achieve high performance.

We will see that memory barriers are a necessary evil that is required to enable good
performance and scalability, an evil that stems from the fact that CPUs are orders of
magnitude faster than are both the interconnects between them and the memory they are
attempting to access.

C.1 Cache Structure
Modern CPUs are much faster than are modern memory systems. A 2006 CPU might
be capable of executing ten instructions per nanosecond, but will require many tens of
nanoseconds to fetch a data item from main memory. This disparity in speed — more
than two orders of magnitude — has resulted in the multi-megabyte caches found on
modern CPUs. These caches are associated with the CPUs as shown in Figure C.1, and
can typically be accessed in a few cycles.1

Data flows among the CPUs’ caches and memory in fixed-length blocks called
“cache lines”, which are normally a power of two in size, ranging from 16 to 256 bytes.

1 It is standard practice to use multiple levels of cache, with a small level-one cache close to the CPU with
single-cycle access time, and a larger level-two cache with a longer access time, perhaps roughly ten clock
cycles. Higher-performance CPUs often have three or even four levels of cache.
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Figure C.1: Modern Computer System Cache Structure

When a given data item is first accessed by a given CPU, it will be absent from that
CPU’s cache, meaning that a “cache miss” (or, more specifically, a “startup” or “warmup”
cache miss) has occurred. The cache miss means that the CPU will have to wait (or be
“stalled”) for hundreds of cycles while the item is fetched from memory. However, the
item will be loaded into that CPU’s cache, so that subsequent accesses will find it in the
cache and therefore run at full speed.

After some time, the CPU’s cache will fill, and subsequent misses will likely need
to eject an item from the cache in order to make room for the newly fetched item. Such
a cache miss is termed a “capacity miss”, because it is caused by the cache’s limited
capacity. However, most caches can be forced to eject an old item to make room for a
new item even when they are not yet full. This is due to the fact that large caches are
implemented as hardware hash tables with fixed-size hash buckets (or “sets”, as CPU
designers call them) and no chaining, as shown in Figure C.2.

This cache has sixteen “sets” and two “ways” for a total of 32 “lines”, each entry
containing a single 256-byte “cache line”, which is a 256-byte-aligned block of memory.
This cache line size is a little on the large size, but makes the hexadecimal arithmetic
much simpler. In hardware parlance, this is a two-way set-associative cache, and is
analogous to a software hash table with sixteen buckets, where each bucket’s hash
chain is limited to at most two elements. The size (32 cache lines in this case) and the
associativity (two in this case) are collectively called the cache’s “geometry”. Since this
cache is implemented in hardware, the hash function is extremely simple: extract four
bits from the memory address.

In Figure C.2, each box corresponds to a cache entry, which can contain a 256-byte
cache line. However, a cache entry can be empty, as indicated by the empty boxes in the
figure. The rest of the boxes are flagged with the memory address of the cache line that
they contain. Since the cache lines must be 256-byte aligned, the low eight bits of each
address are zero, and the choice of hardware hash function means that the next-higher
four bits match the hash line number.

The situation depicted in the figure might arise if the program’s code were located at
address 0x43210E00 through 0x43210EFF, and this program accessed data sequentially
from 0x12345000 through 0x12345EFF. Suppose that the program were now to access
location 0x12345F00. This location hashes to line 0xF, and both ways of this line are
empty, so the corresponding 256-byte line can be accommodated. If the program were

432



0xF
0xE
0xD
0xC
0xB
0xA
0x9
0x8
0x7
0x6
0x5
0x4
0x3
0x2
0x1
0x0

Way 0

0x12345E00
0x12345D00
0x12345C00
0x12345B00
0x12345A00
0x12345900
0x12345800
0x12345700
0x12345600
0x12345500
0x12345400
0x12345300
0x12345200
0x12345100
0x12345000

Way 1

0x43210E00

Figure C.2: CPU Cache Structure

to access location 0x1233000, which hashes to line 0x0, the corresponding 256-byte
cache line can be accommodated in way 1. However, if the program were to access
location 0x1233E00, which hashes to line 0xE, one of the existing lines must be ejected
from the cache to make room for the new cache line. If this ejected line were accessed
later, a cache miss would result. Such a cache miss is termed an “associativity miss”.

Thus far, we have been considering only cases where a CPU reads a data item. What
happens when it does a write? Because it is important that all CPUs agree on the value
of a given data item, before a given CPU writes to that data item, it must first cause it
to be removed, or “invalidated”, from other CPUs’ caches. Once this invalidation has
completed, the CPU may safely modify the data item. If the data item was present in
this CPU’s cache, but was read-only, this process is termed a “write miss”. Once a given
CPU has completed invalidating a given data item from other CPUs’ caches, that CPU
may repeatedly write (and read) that data item.

Later, if one of the other CPUs attempts to access the data item, it will incur a cache
miss, this time because the first CPU invalidated the item in order to write to it. This
type of cache miss is termed a “communication miss”, since it is usually due to several
CPUs using the data items to communicate (for example, a lock is a data item that is
used to communicate among CPUs using a mutual-exclusion algorithm).

Clearly, much care must be taken to ensure that all CPUs maintain a coherent view
of the data. With all this fetching, invalidating, and writing, it is easy to imagine data
being lost or (perhaps worse) different CPUs having conflicting values for the same
data item in their respective caches. These problems are prevented by “cache-coherency
protocols”, described in the next section.

C.2 Cache-Coherence Protocols
Cache-coherency protocols manage cache-line states so as to prevent inconsistent or
lost data. These protocols can be quite complex, with many tens of states,2 but for our

2 See Culler et al. [CSG99] pages 670 and 671 for the nine-state and 26-state diagrams for SGI Origin2000
and Sequent (now IBM) NUMA-Q, respectively. Both diagrams are significantly simpler than real life.
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purposes we need only concern ourselves with the four-state MESI cache-coherence
protocol.

C.2.1 MESI States

MESI stands for “modified”, “exclusive”, “shared”, and “invalid”, the four states a given
cache line can take on using this protocol. Caches using this protocol therefore maintain
a two-bit state “tag” on each cache line in addition to that line’s physical address and
data.

A line in the “modified” state has been subject to a recent memory store from the
corresponding CPU, and the corresponding memory is guaranteed not to appear in any
other CPU’s cache. Cache lines in the “modified” state can thus be said to be “owned”
by the CPU. Because this cache holds the only up-to-date copy of the data, this cache is
ultimately responsible for either writing it back to memory or handing it off to some
other cache, and must do so before reusing this line to hold other data.

The “exclusive” state is very similar to the “modified” state, the single exception
being that the cache line has not yet been modified by the corresponding CPU, which in
turn means that the copy of the cache line’s data that resides in memory is up-to-date.
However, since the CPU can store to this line at any time, without consulting other
CPUs, a line in the “exclusive” state can still be said to be owned by the corresponding
CPU. That said, because the corresponding value in memory is up to date, this cache
can discard this data without writing it back to memory or handing it off to some other
CPU.

A line in the “shared” state might be replicated in at least one other CPU’s cache,
so that this CPU is not permitted to store to the line without first consulting with other
CPUs. As with the “exclusive” state, because the corresponding value in memory is up
to date, this cache can discard this data without writing it back to memory or handing it
off to some other CPU.

A line in the “invalid” state is empty, in other words, it holds no data. When new
data enters the cache, it is placed into a cache line that was in the “invalid” state if
possible. This approach is preferred because replacing a line in any other state could
result in an expensive cache miss should the replaced line be referenced in the future.

Since all CPUs must maintain a coherent view of the data carried in the cache lines,
the cache-coherence protocol provides messages that coordinate the movement of cache
lines through the system.

C.2.2 MESI Protocol Messages

Many of the transitions described in the previous section require communication among
the CPUs. If the CPUs are on a single shared bus, the following messages suffice:

• Read: The “read” message contains the physical address of the cache line to be
read.

• Read Response: The “read response” message contains the data requested by an
earlier “read” message. This “read response” message might be supplied either
by memory or by one of the other caches. For example, if one of the caches has
the desired data in “modified” state, that cache must supply the “read response”
message.
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• Invalidate: The “invalidate” message contains the physical address of the cache
line to be invalidated. All other caches must remove the corresponding data from
their caches and respond.

• Invalidate Acknowledge: A CPU receiving an “invalidate” message must respond
with an “invalidate acknowledge” message after removing the specified data from
its cache.

• Read Invalidate: The “read invalidate” message contains the physical address of
the cache line to be read, while at the same time directing other caches to remove
the data. Hence, it is a combination of a “read” and an “invalidate”, as indicated
by its name. A “read invalidate” message requires both a “read response” and a
set of “invalidate acknowledge” messages in reply.

• Writeback: The “writeback” message contains both the address and the data to be
written back to memory (and perhaps “snooped” into other CPUs’ caches along
the way). This message permits caches to eject lines in the “modified” state as
needed to make room for other data.

Quick Quiz C.1: Where does a writeback message originate from and where does
it go to?

Interestingly enough, a shared-memory multiprocessor system really is a message-
passing computer under the covers. This means that clusters of SMP machines that use
distributed shared memory are using message passing to implement shared memory at
two different levels of the system architecture.

Quick Quiz C.2: What happens if two CPUs attempt to invalidate the same cache
line concurrently?

Quick Quiz C.3: When an “invalidate” message appears in a large multiprocessor,
every CPU must give an “invalidate acknowledge” response. Wouldn’t the resulting
“storm” of “invalidate acknowledge” responses totally saturate the system bus?

Quick Quiz C.4: If SMP machines are really using message passing anyway, why
bother with SMP at all?

C.2.3 MESI State Diagram

A given cache line’s state changes as protocol messages are sent and received, as shown
in Figure C.3.

The transition arcs in this figure are as follows:

• Transition (a): A cache line is written back to memory, but the CPU retains it
in its cache and further retains the right to modify it. This transition requires a
“writeback” message.

• Transition (b): The CPU writes to the cache line that it already had exclusive
access to. This transition does not require any messages to be sent or received.

• Transition (c): The CPU receives a “read invalidate” message for a cache line that
it has modified. The CPU must invalidate its local copy, then respond with both a
“read response” and an “invalidate acknowledge” message, both sending the data
to the requesting CPU and indicating that it no longer has a local copy.
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Figure C.3: MESI Cache-Coherency State Diagram

• Transition (d): The CPU does an atomic read-modify-write operation on a data
item that was not present in its cache. It transmits a “read invalidate”, receiving
the data via a “read response”. The CPU can complete the transition once it has
also received a full set of “invalidate acknowledge” responses.

• Transition (e): The CPU does an atomic read-modify-write operation on a data
item that was previously read-only in its cache. It must transmit “invalidate”
messages, and must wait for a full set of “invalidate acknowledge” responses
before completing the transition.

• Transition (f): Some other CPU reads the cache line, and it is supplied from this
CPU’s cache, which retains a read-only copy, possibly also writing it back to
memory. This transition is initiated by the reception of a “read” message, and this
CPU responds with a “read response” message containing the requested data.

• Transition (g): Some other CPU reads a data item in this cache line, and it is
supplied either from this CPU’s cache or from memory. In either case, this CPU
retains a read-only copy. This transition is initiated by the reception of a “read”
message, and this CPU responds with a “read response” message containing the
requested data.

• Transition (h): This CPU realizes that it will soon need to write to some data item
in this cache line, and thus transmits an “invalidate” message. The CPU cannot
complete the transition until it receives a full set of “invalidate acknowledge”
responses. Alternatively, all other CPUs eject this cache line from their caches
via “writeback” messages (presumably to make room for other cache lines), so
that this CPU is the last CPU caching it.

• Transition (i): Some other CPU does an atomic read-modify-write operation on a
data item in a cache line held only in this CPU’s cache, so this CPU invalidates it
from its cache. This transition is initiated by the reception of a “read invalidate”
message, and this CPU responds with both a “read response” and an “invalidate
acknowledge” message.
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• Transition (j): This CPU does a store to a data item in a cache line that was not
in its cache, and thus transmits a “read invalidate” message. The CPU cannot
complete the transition until it receives the “read response” and a full set of
“invalidate acknowledge” messages. The cache line will presumably transition to
“modified” state via transition (b) as soon as the actual store completes.

• Transition (k): This CPU loads a data item in a cache line that was not in its cache.
The CPU transmits a “read” message, and completes the transition upon receiving
the corresponding “read response”.

• Transition (l): Some other CPU does a store to a data item in this cache line, but
holds this cache line in read-only state due to its being held in other CPUs’ caches
(such as the current CPU’s cache). This transition is initiated by the reception of
an “invalidate” message, and this CPU responds with an “invalidate acknowledge”
message.

Quick Quiz C.5: How does the hardware handle the delayed transitions described
above?

C.2.4 MESI Protocol Example
Let’s now look at this from the perspective of a cache line’s worth of data, initially
residing in memory at address 0, as it travels through the various single-line direct-
mapped caches in a four-CPU system. Table C.1 shows this flow of data, with the
first column showing the sequence of operations, the second the CPU performing the
operation, the third the operation being performed, the next four the state of each CPU’s
cache line (memory address followed by MESI state), and the final two columns whether
the corresponding memory contents are up to date (“V”) or not (“I”).

Initially, the CPU cache lines in which the data would reside are in the “invalid”
state, and the data is valid in memory. When CPU 0 loads the data at address 0, it enters
the “shared” state in CPU 0’s cache, and is still valid in memory. CPU 3 also loads the
data at address 0, so that it is in the “shared” state in both CPUs’ caches, and is still
valid in memory. Next CPU 0 loads some other cache line (at address 8), which forces
the data at address 0 out of its cache via an invalidation, replacing it with the data at
address 8. CPU 2 now does a load from address 0, but this CPU realizes that it will
soon need to store to it, and so it uses a “read invalidate” message in order to gain an
exclusive copy, invalidating it from CPU 3’s cache (though the copy in memory remains
up to date). Next CPU 2 does its anticipated store, changing the state to “modified”.
The copy of the data in memory is now out of date. CPU 1 does an atomic increment,
using a “read invalidate” to snoop the data from CPU 2’s cache and invalidate it, so that
the copy in CPU 1’s cache is in the “modified” state (and the copy in memory remains
out of date). Finally, CPU 1 reads the cache line at address 8, which uses a “writeback”
message to push address 0’s data back out to memory.

Note that we end with data in some of the CPU’s caches.
Quick Quiz C.6: What sequence of operations would put the CPUs’ caches all back

into the “invalid” state?

C.3 Stores Result in Unnecessary Stalls
Although the cache structure shown in Figure C.1 provides good performance for
repeated reads and writes from a given CPU to a given item of data, its performance for
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CPU Cache Memory
Sequence # CPU # Operation 0 1 2 3 0 8

0 Initial State -/I -/I -/I -/I V V
1 0 Load 0/S -/I -/I -/I V V
2 3 Load 0/S -/I -/I 0/S V V
3 0 Invalidation 8/S -/I -/I 0/S V V
4 2 RMW 8/S -/I 0/E -/I V V
5 2 Store 8/S -/I 0/M -/I I V
6 1 Atomic Inc 8/S 0/M -/I -/I I V
7 1 Writeback 8/S 8/S -/I -/I V V

Table C.1: Cache Coherence Example

the first write to a given cache line is quite poor. To see this, consider Figure C.4, which
shows a timeline of a write by CPU 0 to a cacheline held in CPU 1’s cache. Since CPU
0 must wait for the cache line to arrive before it can write to it, CPU 0 must stall for an
extended period of time.3

CPU 0 CPU 1

Write

Acknowledgement

Invalidate

S
ta

ll

Figure C.4: Writes See Unnecessary Stalls

But there is no real reason to force CPU 0 to stall for so long — after all, regardless
of what data happens to be in the cache line that CPU 1 sends it, CPU 0 is going to
unconditionally overwrite it.

C.3.1 Store Buffers

One way to prevent this unnecessary stalling of writes is to add “store buffers” between
each CPU and its cache, as shown in Figure C.5. With the addition of these store buffers,
CPU 0 can simply record its write in its store buffer and continue executing. When the

3 The time required to transfer a cache line from one CPU’s cache to another’s is typically a few orders of
magnitude more than that required to execute a simple register-to-register instruction.
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cache line does finally make its way from CPU 1 to CPU 0, the data will be moved from
the store buffer to the cache line.

Quick Quiz C.7: But if the main purpose of store buffers is to hide acknowledgment
latencies in multiprocessor cache-coherence protocols, why do uniprocessors also have
store buffers?

CPU 0 CPU 1

Buffer
Store

Buffer
Store

CacheCache

Memory

Interconnect

Figure C.5: Caches With Store Buffers

These store buffers are local to a given CPU or, on systems with hardware multi-
threading, local to a given core. Either way, a given CPU is permitted to access only the
store buffer assigned to it. For example, in Figure C.5, CPU 0 cannot access CPU 1’s
store buffer and vice versa. This restriction simplifies the hardware by separating
concerns: The store buffer improves performance for consecutive writes, while the
responsibility for communicating among CPUs (or cores, as the case may be) is fully
shouldered by the cache-coherence protocol. However, even given this restriction, there
are complications that must be addressed, which are covered in the next two sections.

C.3.2 Store Forwarding
To see the first complication, a violation of self-consistency, consider the following code
with variables “a” and “b” both initially zero, and with the cache line containing variable
“a” initially owned by CPU 1 and that containing “b” initially owned by CPU 0:

1 a = 1;
2 b = a + 1;
3 assert(b == 2);

One would not expect the assertion to fail. However, if one were foolish enough to
use the very simple architecture shown in Figure C.5, one would be surprised. Such a
system could potentially see the following sequence of events:

1. CPU 0 starts executing the a = 1.

2. CPU 0 looks “a” up in the cache, and finds that it is missing.
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3. CPU 0 therefore sends a “read invalidate” message in order to get exclusive
ownership of the cache line containing “a”.

4. CPU 0 records the store to “a” in its store buffer.

5. CPU 1 receives the “read invalidate” message, and responds by transmitting the
cache line and removing that cacheline from its cache.

6. CPU 0 starts executing the b = a + 1.

7. CPU 0 receives the cache line from CPU 1, which still has a value of zero for “a”.

8. CPU 0 loads “a” from its cache, finding the value zero.

9. CPU 0 applies the entry from its store buffer to the newly arrived cache line,
setting the value of “a” in its cache to one.

10. CPU 0 adds one to the value zero loaded for “a” above, and stores it into the cache
line containing “b” (which we will assume is already owned by CPU 0).

11. CPU 0 executes assert(b == 2), which fails.

The problem is that we have two copies of “a”, one in the cache and the other in the
store buffer.

This example breaks a very important guarantee, namely that each CPU will always
see its own operations as if they happened in program order. Breaking this guarantee is
violently counter-intuitive to software types, so much so that the hardware guys took
pity and implemented “store forwarding”, where each CPU refers to (or “snoops”) its
store buffer as well as its cache when performing loads, as shown in Figure C.6. In other
words, a given CPU’s stores are directly forwarded to its subsequent loads, without
having to pass through the cache.

CPU 0 CPU 1

Buffer
Store

Buffer
Store

CacheCache

Memory

Interconnect

Figure C.6: Caches With Store Forwarding
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With store forwarding in place, item 8 in the above sequence would have found the
correct value of 1 for “a” in the store buffer, so that the final value of “b” would have
been 2, as one would hope.

C.3.3 Store Buffers and Memory Barriers

To see the second complication, a violation of global memory ordering, consider the
following code sequences with variables “a” and “b” initially zero:

1 void foo(void)
2 {
3 a = 1;
4 b = 1;
5 }
6
7 void bar(void)
8 {
9 while (b == 0) continue;

10 assert(a == 1);
11 }

Suppose CPU 0 executes foo() and CPU 1 executes bar(). Suppose further that
the cache line containing “a” resides only in CPU 1’s cache, and that the cache line
containing “b” is owned by CPU 0. Then the sequence of operations might be as follows:

1. CPU 0 executes a = 1. The cache line is not in CPU 0’s cache, so CPU 0 places
the new value of “a” in its store buffer and transmits a “read invalidate” message.

2. CPU 1 executes while (b == 0) continue, but the cache line containing
“b” is not in its cache. It therefore transmits a “read” message.

3. CPU 0 executes b = 1. It already owns this cache line (in other words, the cache
line is already in either the “modified” or the “exclusive” state), so it stores the
new value of “b” in its cache line.

4. CPU 0 receives the “read” message, and transmits the cache line containing the
now-updated value of “b” to CPU 1, also marking the line as “shared” in its own
cache.

5. CPU 1 receives the cache line containing “b” and installs it in its cache.

6. CPU 1 can now finish executing while (b == 0) continue, and since it
finds that the value of “b” is 1, it proceeds to the next statement.

7. CPU 1 executes the assert(a == 1), and, since CPU 1 is working with the
old value of “a”, this assertion fails.

8. CPU 1 receives the “read invalidate” message, and transmits the cache line
containing “a” to CPU 0 and invalidates this cache line from its own cache. But it
is too late.

9. CPU 0 receives the cache line containing “a” and applies the buffered store just
in time to fall victim to CPU 1’s failed assertion.
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Quick Quiz C.8: In step 1 above, why does CPU 0 need to issue a “read invalidate”
rather than a simple “invalidate”?

The hardware designers cannot help directly here, since the CPUs have no idea
which variables are related, let alone how they might be related. Therefore, the hardware
designers provide memory-barrier instructions to allow the software to tell the CPU
about such relations. The program fragment must be updated to contain the memory
barrier:

1 void foo(void)
2 {
3 a = 1;
4 smp_mb();
5 b = 1;
6 }
7
8 void bar(void)
9 {

10 while (b == 0) continue;
11 assert(a == 1);
12 }

The memory barrier smp_mb() will cause the CPU to flush its store buffer before
applying each subsequent store to its variable’s cache line. The CPU could either simply
stall until the store buffer was empty before proceeding, or it could use the store buffer to
hold subsequent stores until all of the prior entries in the store buffer had been applied.

With this latter approach the sequence of operations might be as follows:

1. CPU 0 executes a = 1. The cache line is not in CPU 0’s cache, so CPU 0 places
the new value of “a” in its store buffer and transmits a “read invalidate” message.

2. CPU 1 executes while (b == 0) continue, but the cache line containing
“b” is not in its cache. It therefore transmits a “read” message.

3. CPU 0 executes smp_mb(), and marks all current store-buffer entries (namely,
the a = 1).

4. CPU 0 executes b = 1. It already owns this cache line (in other words, the cache
line is already in either the “modified” or the “exclusive” state), but there is a
marked entry in the store buffer. Therefore, rather than store the new value of “b”
in the cache line, it instead places it in the store buffer (but in an unmarked entry).

5. CPU 0 receives the “read” message, and transmits the cache line containing the
original value of “b” to CPU 1. It also marks its own copy of this cache line as
“shared”.

6. CPU 1 receives the cache line containing “b” and installs it in its cache.

7. CPU 1 can now load the value of “b”, but since it finds that the value of “b” is
still 0, it repeats the while statement. The new value of “b” is safely hidden in
CPU 0’s store buffer.

8. CPU 1 receives the “read invalidate” message, and transmits the cache line
containing “a” to CPU 0 and invalidates this cache line from its own cache.
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9. CPU 0 receives the cache line containing “a” and applies the buffered store,
placing this line into the “modified” state.

10. Since the store to “a” was the only entry in the store buffer that was marked by
the smp_mb(), CPU 0 can also store the new value of “b” — except for the fact
that the cache line containing “b” is now in “shared” state.

11. CPU 0 therefore sends an “invalidate” message to CPU 1.

12. CPU 1 receives the “invalidate” message, invalidates the cache line containing “b”
from its cache, and sends an “acknowledgement” message to CPU 0.

13. CPU 1 executes while (b == 0) continue, but the cache line containing
“b” is not in its cache. It therefore transmits a “read” message to CPU 0.

14. CPU 0 receives the “acknowledgement” message, and puts the cache line contain-
ing “b” into the “exclusive” state. CPU 0 now stores the new value of “b” into the
cache line.

15. CPU 0 receives the “read” message, and transmits the cache line containing the
new value of “b” to CPU 1. It also marks its own copy of this cache line as
“shared”.

16. CPU 1 receives the cache line containing “b” and installs it in its cache.

17. CPU 1 can now load the value of “b”, and since it finds that the value of “b” is 1,
it exits the while loop and proceeds to the next statement.

18. CPU 1 executes the assert(a == 1), but the cache line containing “a” is no
longer in its cache. Once it gets this cache from CPU 0, it will be working with
the up-to-date value of “a”, and the assertion therefore passes.

As you can see, this process involves no small amount of bookkeeping. Even
something intuitively simple, like “load the value of a” can involve lots of complex steps
in silicon.

C.4 Store Sequences Result in Unnecessary Stalls

Unfortunately, each store buffer must be relatively small, which means that a CPU
executing a modest sequence of stores can fill its store buffer (for example, if all of them
result in cache misses). At that point, the CPU must once again wait for invalidations
to complete in order to drain its store buffer before it can continue executing. This
same situation can arise immediately after a memory barrier, when all subsequent store
instructions must wait for invalidations to complete, regardless of whether or not these
stores result in cache misses.

This situation can be improved by making invalidate acknowledge messages arrive
more quickly. One way of accomplishing this is to use per-CPU queues of invalidate
messages, or “invalidate queues”.
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C.4.1 Invalidate Queues

One reason that invalidate acknowledge messages can take so long is that they must
ensure that the corresponding cache line is actually invalidated, and this invalidation
can be delayed if the cache is busy, for example, if the CPU is intensively loading and
storing data, all of which resides in the cache. In addition, if a large number of invalidate
messages arrive in a short time period, a given CPU might fall behind in processing
them, thus possibly stalling all the other CPUs.

However, the CPU need not actually invalidate the cache line before sending the
acknowledgement. It could instead queue the invalidate message with the understanding
that the message will be processed before the CPU sends any further messages regarding
that cache line.

C.4.2 Invalidate Queues and Invalidate Acknowledge

Figure C.7 shows a system with invalidate queues. A CPU with an invalidate queue may
acknowledge an invalidate message as soon as it is placed in the queue, instead of having
to wait until the corresponding line is actually invalidated. Of course, the CPU must refer
to its invalidate queue when preparing to transmit invalidation messages — if an entry
for the corresponding cache line is in the invalidate queue, the CPU cannot immediately
transmit the invalidate message; it must instead wait until the invalidate-queue entry has
been processed.

CPU 0 CPU 1

Buffer
Store

Buffer
Store

CacheCache

Invalidate
Queue

Memory

Interconnect

Invalidate
Queue

Figure C.7: Caches With Invalidate Queues

Placing an entry into the invalidate queue is essentially a promise by the CPU to
process that entry before transmitting any MESI protocol messages regarding that cache
line. As long as the corresponding data structures are not highly contended, the CPU
will rarely be inconvenienced by such a promise.
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However, the fact that invalidate messages can be buffered in the invalidate queue
provides additional opportunity for memory-misordering, as discussed in the next
section.

C.4.3 Invalidate Queues and Memory Barriers
Let us suppose that CPUs queue invalidation requests, but respond to them immediately.
This approach minimizes the cache-invalidation latency seen by CPUs doing stores, but
can defeat memory barriers, as seen in the following example.

Suppose the values of “a” and “b” are initially zero, that “a” is replicated read-only
(MESI “shared” state), and that “b” is owned by CPU 0 (MESI “exclusive” or “modified”
state). Then suppose that CPU 0 executes foo() while CPU 1 executes function
bar() in the following code fragment:

1 void foo(void)
2 {
3 a = 1;
4 smp_mb();
5 b = 1;
6 }
7
8 void bar(void)
9 {

10 while (b == 0) continue;
11 assert(a == 1);
12 }

Then the sequence of operations might be as follows:

1. CPU 0 executes a = 1. The corresponding cache line is read-only in CPU 0’s
cache, so CPU 0 places the new value of “a” in its store buffer and transmits an
“invalidate” message in order to flush the corresponding cache line from CPU 1’s
cache.

2. CPU 1 executes while (b == 0) continue, but the cache line containing
“b” is not in its cache. It therefore transmits a “read” message.

3. CPU 1 receives CPU 0’s “invalidate” message, queues it, and immediately re-
sponds to it.

4. CPU 0 receives the response from CPU 1, and is therefore free to proceed past
the smp_mb() on line 4 above, moving the value of “a” from its store buffer to
its cache line.

5. CPU 0 executes b = 1. It already owns this cache line (in other words, the cache
line is already in either the “modified” or the “exclusive” state), so it stores the
new value of “b” in its cache line.

6. CPU 0 receives the “read” message, and transmits the cache line containing the
now-updated value of “b” to CPU 1, also marking the line as “shared” in its own
cache.

7. CPU 1 receives the cache line containing “b” and installs it in its cache.
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8. CPU 1 can now finish executing while (b == 0) continue, and since it
finds that the value of “b” is 1, it proceeds to the next statement.

9. CPU 1 executes the assert(a == 1), and, since the old value of “a” is still
in CPU 1’s cache, this assertion fails.

10. Despite the assertion failure, CPU 1 processes the queued “invalidate” message,
and (tardily) invalidates the cache line containing “a” from its own cache.

Quick Quiz C.9: In step 1 of the first scenario in Section C.4.3, why is an “invalidate”
sent instead of a ”read invalidate” message? Doesn’t CPU 0 need the values of the other
variables that share this cache line with “a”?

There is clearly not much point in accelerating invalidation responses if doing
so causes memory barriers to effectively be ignored. However, the memory-barrier
instructions can interact with the invalidate queue, so that when a given CPU executes a
memory barrier, it marks all the entries currently in its invalidate queue, and forces any
subsequent load to wait until all marked entries have been applied to the CPU’s cache.
Therefore, we can add a memory barrier to function bar as follows:

1 void foo(void)
2 {
3 a = 1;
4 smp_mb();
5 b = 1;
6 }
7
8 void bar(void)
9 {

10 while (b == 0) continue;
11 smp_mb();
12 assert(a == 1);
13 }

Quick Quiz C.10: Say what??? Why do we need a memory barrier here, given that
the CPU cannot possibly execute the assert() until after the while loop completes?

With this change, the sequence of operations might be as follows:

1. CPU 0 executes a = 1. The corresponding cache line is read-only in CPU 0’s
cache, so CPU 0 places the new value of “a” in its store buffer and transmits an
“invalidate” message in order to flush the corresponding cache line from CPU 1’s
cache.

2. CPU 1 executes while (b == 0) continue, but the cache line containing
“b” is not in its cache. It therefore transmits a “read” message.

3. CPU 1 receives CPU 0’s “invalidate” message, queues it, and immediately re-
sponds to it.

4. CPU 0 receives the response from CPU 1, and is therefore free to proceed past
the smp_mb() on line 4 above, moving the value of “a” from its store buffer to
its cache line.
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5. CPU 0 executes b = 1. It already owns this cache line (in other words, the cache
line is already in either the “modified” or the “exclusive” state), so it stores the
new value of “b” in its cache line.

6. CPU 0 receives the “read” message, and transmits the cache line containing the
now-updated value of “b” to CPU 1, also marking the line as “shared” in its own
cache.

7. CPU 1 receives the cache line containing “b” and installs it in its cache.

8. CPU 1 can now finish executing while (b == 0) continue, and since it
finds that the value of “b” is 1, it proceeds to the next statement, which is now a
memory barrier.

9. CPU 1 must now stall until it processes all pre-existing messages in its invalidation
queue.

10. CPU 1 now processes the queued “invalidate” message, and invalidates the cache
line containing “a” from its own cache.

11. CPU 1 executes the assert(a == 1), and, since the cache line containing “a”
is no longer in CPU 1’s cache, it transmits a “read” message.

12. CPU 0 responds to this “read” message with the cache line containing the new
value of “a”.

13. CPU 1 receives this cache line, which contains a value of 1 for “a”, so that the
assertion does not trigger.

With much passing of MESI messages, the CPUs arrive at the correct answer. This
section illustrates why CPU designers must be extremely careful with their cache-
coherence optimizations.

C.5 Read and Write Memory Barriers
In the previous section, memory barriers were used to mark entries in both the store
buffer and the invalidate queue. But in our code fragment, foo() had no reason to do
anything with the invalidate queue, and bar() similarly had no reason to do anything
with the store buffer.

Many CPU architectures therefore provide weaker memory-barrier instructions that
do only one or the other of these two. Roughly speaking, a “read memory barrier” marks
only the invalidate queue and a “write memory barrier” marks only the store buffer,
while a full-fledged memory barrier does both.

The effect of this is that a read memory barrier orders only loads on the CPU that
executes it, so that all loads preceding the read memory barrier will appear to have
completed before any load following the read memory barrier. Similarly, a write memory
barrier orders only stores, again on the CPU that executes it, and again so that all stores
preceding the write memory barrier will appear to have completed before any store
following the write memory barrier. A full-fledged memory barrier orders both loads
and stores, but again only on the CPU executing the memory barrier.

If we update foo and bar to use read and write memory barriers, they appear as
follows:
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1 void foo(void)
2 {
3 a = 1;
4 smp_wmb();
5 b = 1;
6 }
7
8 void bar(void)
9 {

10 while (b == 0) continue;
11 smp_rmb();
12 assert(a == 1);
13 }

Some computers have even more flavors of memory barriers, but understanding
these three variants will provide a good introduction to memory barriers in general.

C.6 Example Memory-Barrier Sequences
This section presents some seductive but subtly broken uses of memory barriers. Al-
though many of them will work most of the time, and some will work all the time on
some specific CPUs, these uses must be avoided if the goal is to produce code that
works reliably on all CPUs. To help us better see the subtle breakage, we first need to
focus on an ordering-hostile architecture.

C.6.1 Ordering-Hostile Architecture

A number of ordering-hostile computer systems have been produced over the decades,
but the nature of the hostility has always been extremely subtle, and understanding it
has required detailed knowledge of the specific hardware. Rather than picking on a
specific hardware vendor, and as a presumably attractive alternative to dragging the
reader through detailed technical specifications, let us instead design a mythical but
maximally memory-ordering-hostile computer architecture.4

This hardware must obey the following ordering constraints [McK05a, McK05b]:

1. Each CPU will always perceive its own memory accesses as occurring in program
order.

2. CPUs will reorder a given operation with a store only if the two operations are
referencing different locations.

3. All of a given CPU’s loads preceding a read memory barrier (smp_rmb()) will
be perceived by all CPUs to precede any loads following that read memory barrier.

4. All of a given CPU’s stores preceding a write memory barrier (smp_wmb())
will be perceived by all CPUs to precede any stores following that write memory
barrier.

4 Readers preferring a detailed look at real hardware architectures are encouraged to consult CPU
vendors’ manuals [SW95, Adv02, Int02b, IBM94, LSH02, SPA94, Int04b, Int04a, Int04c], Gharachorloo’s
dissertation [Gha95], Peter Sewell’s work [Sew], or the excellent hardware-oriented primer by Sorin, Hill,
and Wood [SHW11].

448



5. All of a given CPU’s accesses (loads and stores) preceding a full memory barrier
(smp_mb()) will be perceived by all CPUs to precede any accesses following
that memory barrier.

Quick Quiz C.11: Does the guarantee that each CPU sees its own memory accesses
in order also guarantee that each user-level thread will see its own memory accesses in
order? Why or why not?

Imagine a large non-uniform cache architecture (NUCA) system that, in order to
provide fair allocation of interconnect bandwidth to CPUs in a given node, provided
per-CPU queues in each node’s interconnect interface, as shown in Figure C.8. Although
a given CPU’s accesses are ordered as specified by memory barriers executed by that
CPU, however, the relative order of a given pair of CPUs’ accesses could be severely
reordered, as we will see.5
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Figure C.8: Example Ordering-Hostile Architecture

C.6.2 Example 1
Table C.2 shows three code fragments, executed concurrently by CPUs 0, 1, and 2. Each
of “a”, “b”, and “c” are initially zero.

Suppose CPU 0 recently experienced many cache misses, so that its message queue
is full, but that CPU 1 has been running exclusively within the cache, so that its message
queue is empty. Then CPU 0’s assignment to “a” and “b” will appear in Node 0’s cache
immediately (and thus be visible to CPU 1), but will be blocked behind CPU 0’s prior
traffic. In contrast, CPU 1’s assignment to “c” will sail through CPU 1’s previously
empty queue. Therefore, CPU 2 might well see CPU 1’s assignment to “c” before it sees
CPU 0’s assignment to “a”, causing the assertion to fire, despite the memory barriers.

Therefore, portable code cannot rely on this assertion not firing, as both the compiler
and the CPU can reorder the code so as to trip the assertion.

Quick Quiz C.12: Could this code be fixed by inserting a memory barrier between
5 Any real hardware architect or designer will no doubt be objecting strenuously, as they just might be just

a bit upset about the prospect of working out which queue should handle a message involving a cache line
that both CPUs accessed, to say nothing of the many races that this example poses. All I can say is “Give me
a better example”.
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CPU 0 CPU 1 CPU 2
a = 1;
smp_wmb(); while (b == 0);
b = 1; c = 1; z = c;

smp_rmb();
x = a;
assert(z == 0 || x == 1);

Table C.2: Memory Barrier Example 1

CPU 0 CPU 1 CPU 2
a = 1; while (a == 0);

smp_mb(); y = b;
b = 1; smp_rmb();

x = a;
assert(y == 0 || x == 1);

Table C.3: Memory Barrier Example 2

CPU 1’s “while” and assignment to “c”? Why or why not?

C.6.3 Example 2

Table C.3 shows three code fragments, executed concurrently by CPUs 0, 1, and 2. Both
“a” and “b” are initially zero.

Again, suppose CPU 0 recently experienced many cache misses, so that its message
queue is full, but that CPU 1 has been running exclusively within the cache, so that its
message queue is empty. Then CPU 0’s assignment to “a” will appear in Node 0’s cache
immediately (and thus be visible to CPU 1), but will be blocked behind CPU 0’s prior
traffic. In contrast, CPU 1’s assignment to “b” will sail through CPU 1’s previously
empty queue. Therefore, CPU 2 might well see CPU 1’s assignment to “b” before it sees
CPU 0’s assignment to “a”, causing the assertion to fire, despite the memory barriers.

In theory, portable code should not rely on this example code fragment, however, as
before, in practice it actually does work on most mainstream computer systems.

C.6.4 Example 3

Table C.4 shows three code fragments, executed concurrently by CPUs 0, 1, and 2. All
variables are initially zero.

Note that neither CPU 1 nor CPU 2 can proceed to line 5 until they see CPU 0’s
assignment to “b” on line 3. Once CPU 1 and 2 have executed their memory barriers on
line 4, they are both guaranteed to see all assignments by CPU 0 preceding its memory
barrier on line 2. Similarly, CPU 0’s memory barrier on line 8 pairs with those of CPUs 1
and 2 on line 4, so that CPU 0 will not execute the assignment to “e” on line 9 until after
its assignment to “a” is visible to both of the other CPUs. Therefore, CPU 2’s assertion
on line 9 is guaranteed not to fire.

Quick Quiz C.13: Suppose that lines 3-5 for CPUs 1 and 2 in Table C.4 are in an
interrupt handler, and that the CPU 2’s line 9 is run at process level. What changes, if
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CPU 0 CPU 1 CPU 2
1 a = 1;
2 smb_wmb();
3 b = 1; while (b == 0); while (b == 0);
4 smp_mb(); smp_mb();
5 c = 1; d = 1;
6 while (c == 0);
7 while (d == 0);
8 smp_mb();
9 e = 1; assert(e == 0 || a == 1);

Table C.4: Memory Barrier Example 3

any, are required to enable the code to work correctly, in other words, to prevent the
assertion from firing?

Quick Quiz C.14: If CPU 2 executed an assert(e==0||c==1) in the example
in Table C.4, would this assert ever trigger?

The Linux kernel’s synchronize_rcu() primitive uses an algorithm similar to
that shown in this example.

C.7 Memory-Barrier Instructions For Specific CPUs
Each CPU has its own peculiar memory-barrier instructions, which can make portability
a challenge, as indicated by Table C.5. In fact, many software environments, includ-
ing pthreads and Java, simply prohibit direct use of memory barriers, restricting the
programmer to mutual-exclusion primitives that incorporate them to the extent that
they are required. In the table, the first four columns indicate whether a given CPU
allows the four possible combinations of loads and stores to be reordered. The next two
columns indicate whether a given CPU allows loads and stores to be reordered with
atomic instructions.

The seventh column, data-dependent reads reordered, requires some explanation,
which is undertaken in the following section covering Alpha CPUs. The short version
is that Alpha requires memory barriers for readers as well as updaters of linked data
structures. Yes, this does mean that Alpha can in effect fetch the data pointed to before
it fetches the pointer itself, strange but true. Please see: http://www.openvms.
compaq.com/wizard/wiz_2637.html if you think that I am just making this
up. The benefit of this extremely weak memory model is that Alpha can use simpler
cache hardware, which in turn permitted higher clock frequency in Alpha’s heyday.

The last column indicates whether a given CPU has a incoherent instruction cache
and pipeline. Such CPUs require special instructions be executed for self-modifying
code.

Parenthesized CPU names indicate modes that are architecturally allowed, but rarely
used in practice.

The common "just say no" approach to memory barriers can be eminently reasonable
where it applies, but there are environments, such as the Linux kernel, where direct
use of memory barriers is required. Therefore, Linux provides a carefully chosen
least-common-denominator set of memory-barrier primitives, which are as follows:

• smp_mb(): “memory barrier” that orders both loads and stores. This means
that loads and stores preceding the memory barrier will be committed to memory
before any loads and stores following the memory barrier.

451

http://www.openvms.compaq.com/wizard/wiz_2637.html
http://www.openvms.compaq.com/wizard/wiz_2637.html


L
oa

ds
R

eo
rd

er
ed

A
ft

er
L

oa
ds

?

L
oa

ds
R

eo
rd

er
ed

A
ft

er
St

or
es

?

St
or

es
R

eo
rd

er
ed

A
ft

er
St

or
es

?

St
or

es
R

eo
rd

er
ed

A
ft

er
L

oa
ds

?

A
to

m
ic

In
st

ru
ct

io
ns

R
eo

rd
er

ed
W

ith
L

oa
ds

?

A
to

m
ic

In
st

ru
ct

io
ns

R
eo

rd
er

ed
W

ith
St

or
es

?

D
ep

en
de

nt
L

oa
ds

R
eo

rd
er

ed
?

In
co

he
re

nt
In

st
ru

ct
io

n
C

ac
he

/P
ip

el
in

e?
Alpha Y Y Y Y Y Y Y Y
AMD64 Y
ARMv7-A/R Y Y Y Y Y Y Y
IA64 Y Y Y Y Y Y Y
(PA-RISC) Y Y Y Y
PA-RISC CPUs
POWER™ Y Y Y Y Y Y Y
(SPARC RMO) Y Y Y Y Y Y Y
(SPARC PSO) Y Y Y Y
SPARC TSO Y Y
x86 Y Y
(x86 OOStore) Y Y Y Y Y
zSeries® Y Y

Table C.5: Summary of Memory Ordering
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• smp_rmb(): “read memory barrier” that orders only loads.

• smp_wmb(): “write memory barrier” that orders only stores.

• smp_read_barrier_depends() that forces subsequent operations that de-
pend on prior operations to be ordered. This primitive is a no-op on all platforms
except Alpha.

• mmiowb() that forces ordering on MMIO writes that are guarded by global
spinlocks. This primitive is a no-op on all platforms on which the memory
barriers in spinlocks already enforce MMIO ordering. The platforms with a
non-no-op mmiowb() definition include some (but not all) IA64, FRV, MIPS,
and SH systems. This primitive is relatively new, so relatively few drivers take
advantage of it.

The smp_mb(), smp_rmb(), and smp_wmb() primitives also force the compiler to
eschew any optimizations that would have the effect of reordering memory optimizations
across the barriers. The smp_read_barrier_depends() primitive has a similar
effect, but only on Alpha CPUs. See Section 13.2 for more information on use of
these primitives.These primitives generate code only in SMP kernels, however, each
also has a UP version (mb(), rmb(), wmb(), and read_barrier_depends(),
respectively) that generate a memory barrier even in UP kernels. The smp_ versions
should be used in most cases. However, these latter primitives are useful when writing
drivers, because MMIO accesses must remain ordered even in UP kernels. In absence of
memory-barrier instructions, both CPUs and compilers would happily rearrange these
accesses, which at best would make the device act strangely, and could crash your kernel
or, in some cases, even damage your hardware.

So most kernel programmers need not worry about the memory-barrier peculiarities
of each and every CPU, as long as they stick to these interfaces. If you are working
deep in a given CPU’s architecture-specific code, of course, all bets are off.

Furthermore, all of Linux’s locking primitives (spinlocks, reader-writer locks,
semaphores, RCU, ...) include any needed barrier primitives. So if you are work-
ing with code that uses these primitives, you don’t even need to worry about Linux’s
memory-ordering primitives.

That said, deep knowledge of each CPU’s memory-consistency model can be very
helpful when debugging, to say nothing of when writing architecture-specific code or
synchronization primitives.

Besides, they say that a little knowledge is a very dangerous thing. Just imagine
the damage you could do with a lot of knowledge! For those who wish to understand
more about individual CPUs’ memory consistency models, the next sections describes
those of the most popular and prominent CPUs. Although nothing can replace actually
reading a given CPU’s documentation, these sections give a good overview.

C.7.1 Alpha

It may seem strange to say much of anything about a CPU whose end of life has been
announced, but Alpha is interesting because, with the weakest memory ordering model,
it reorders memory operations the most aggressively. It therefore has defined the Linux-
kernel memory-ordering primitives, which must work on all CPUs, including Alpha.
Understanding Alpha is therefore surprisingly important to the Linux kernel hacker.
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1 struct el *insert(long key, long data)
2 {
3 struct el *p;
4 p = kmalloc(sizeof(*p), GFP_ATOMIC);
5 spin_lock(&mutex);
6 p->next = head.next;
7 p->key = key;
8 p->data = data;
9 smp_wmb();
10 head.next = p;
11 spin_unlock(&mutex);
12 }
13
14 struct el *search(long key)
15 {
16 struct el *p;
17 p = head.next;
18 while (p != &head) {
19 /* BUG ON ALPHA!!! */
20 if (p->key == key) {
21 return (p);
22 }
23 p = p->next;
24 };
25 return (NULL);
26 }

Figure C.9: Insert and Lock-Free Search

The difference between Alpha and the other CPUs is illustrated by the code shown
in Figure C.9. This smp_wmb() on line 9 of this figure guarantees that the element
initialization in lines 6-8 is executed before the element is added to the list on line 10,
so that the lock-free search will work correctly. That is, it makes this guarantee on all
CPUs except Alpha.

Alpha has extremely weak memory ordering such that the code on line 20 of
Figure C.9 could see the old garbage values that were present before the initialization
on lines 6-8.

Figure C.10 shows how this can happen on an aggressively parallel machine with par-
titioned caches, so that alternating caches lines are processed by the different partitions
of the caches. Assume that the list header head will be processed by cache bank 0, and
that the new element will be processed by cache bank 1. On Alpha, the smp_wmb()
will guarantee that the cache invalidates performed by lines 6-8 of Figure C.9 will reach
the interconnect before that of line 10 does, but makes absolutely no guarantee about
the order in which the new values will reach the reading CPU’s core. For example, it
is possible that the reading CPU’s cache bank 1 is very busy, but cache bank 0 is idle.
This could result in the cache invalidates for the new element being delayed, so that the
reading CPU gets the new value for the pointer, but sees the old cached values for the
new element. See the Web site called out earlier for more information, or, again, if you
think that I am just making all this up.6

One could place an smp_rmb() primitive between the pointer fetch and derefer-
ence. However, this imposes unneeded overhead on systems (such as i386, IA64, PPC,
and SPARC) that respect data dependencies on the read side. A smp_read_barrier_depends()
primitive has been added to the Linux 2.6 kernel to eliminate overhead on these systems.
This primitive may be used as shown on line 19 of Figure C.11.

It is also possible to implement a software barrier that could be used in place of

6 Of course, the astute reader will have already recognized that Alpha is nowhere near as mean and nasty
as it could be, the (thankfully) mythical architecture in Section C.6.1 being a case in point.
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Figure C.10: Why smp_read_barrier_depends() is Required

smp_wmb(), which would force all reading CPUs to see the writing CPU’s writes
in order. However, this approach was deemed by the Linux community to impose
excessive overhead on extremely weakly ordered CPUs such as Alpha. This software
barrier could be implemented by sending inter-processor interrupts (IPIs) to all other
CPUs. Upon receipt of such an IPI, a CPU would execute a memory-barrier instruction,
implementing a memory-barrier shootdown. Additional logic is required to avoid
deadlocks. Of course, CPUs that respect data dependencies would define such a barrier
to simply be smp_wmb(). Perhaps this decision should be revisited in the future as
Alpha fades off into the sunset.

The Linux memory-barrier primitives took their names from the Alpha instructions,
so smp_mb() is mb, smp_rmb() is rmb, and smp_wmb() is wmb. Alpha is the
only CPU where smp_read_barrier_depends() is an smp_mb() rather than
a no-op.

Quick Quiz C.15: Why is Alpha’s smp_read_barrier_depends() an smp_
mb() rather than smp_rmb()?

For more detail on Alpha, see the reference manual [SW95].

C.7.2 AMD64
AMD64 is compatible with x86, and has updated its documented memory model [Adv07]
to enforce the tighter ordering that actual implementations have provided for some
time. The AMD64 implementation of the Linux smp_mb() primitive is mfence,
smp_rmb() is lfence, and smp_wmb() is sfence. In theory, these might be
relaxed, but any such relaxation must take SSE and 3DNOW instructions into account.

C.7.3 ARMv7-A/R
The ARM family of CPUs is extremely popular in embedded applications, particularly
for power-constrained applications such as cellphones. There have nevertheless been
multiprocessor implementations of ARM for more than five years. Its memory model is
similar to that of Power (see Section C.7.6, but ARM uses a different set of memory-
barrier instructions [ARM10]:
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1 struct el *insert(long key, long data)
2 {
3 struct el *p;
4 p = kmalloc(sizeof(*p), GFP_ATOMIC);
5 spin_lock(&mutex);
6 p->next = head.next;
7 p->key = key;
8 p->data = data;
9 smp_wmb();
10 head.next = p;
11 spin_unlock(&mutex);
12 }
13
14 struct el *search(long key)
15 {
16 struct el *p;
17 p = head.next;
18 while (p != &head) {
19 smp_read_barrier_depends();
20 if (p->key == key) {
21 return (p);
22 }
23 p = p->next;
24 };
25 return (NULL);
26 }

Figure C.11: Safe Insert and Lock-Free Search

1. DMB (data memory barrier) causes the specified type of operations to appear to
have completed before any subsequent operations of the same type. The “type”
of operations can be all operations or can be restricted to only writes (similar to
the Alpha wmb and the POWER eieio instructions). In addition, ARM allows
cache coherence to have one of three scopes: single processor, a subset of the
processors (“inner”) and global (“outer”).

2. DSB (data synchronization barrier) causes the specified type of operations to
actually complete before any subsequent operations (of any type) are executed.
The “type” of operations is the same as that of DMB. The DSB instruction was
called DWB (drain write buffer or data write barrier, your choice) in early versions
of the ARM architecture.

3. ISB (instruction synchronization barrier) flushes the CPU pipeline, so that all
instructions following the ISB are fetched only after the ISB completes. For
example, if you are writing a self-modifying program (such as a JIT), you should
execute an ISB after between generating the code and executing it.

None of these instructions exactly match the semantics of Linux’s rmb() primitive,
which must therefore be implemented as a full DMB. The DMB and DSB instructions
have a recursive definition of accesses ordered before and after the barrier, which has an
effect similar to that of POWER’s cumulativity.

ARM also implements control dependencies, so that if a conditional branch depends
on a load, then any store executed after that conditional branch will be ordered after
the load. However, loads following the conditional branch will not be guaranteed to be
ordered unless there is an ISB instruction between the branch and the load. Consider
the following example:
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Figure C.12: Half Memory Barrier

1 r1 = x;
2 if (r1 == 0)
3 nop();
4 y = 1;
5 r2 = z;
6 ISB();
7 r3 = z;

In this example, load-store control dependency ordering causes the load from x on
line 1 to be ordered before the store to y on line 4. However, ARM does not respect
load-load control dependencies, so that the load on line 1 might well happen after the
load on line 5. On the other hand, the combination of the conditional branch on line 2
and the ISB instruction on line 6 ensures that the load on line 7 happens after the load
on line 1. Note that inserting an additional ISB instruction somewhere between lines 3
and 4 would enforce ordering between lines 1 and 5.

C.7.4 IA64
IA64 offers a weak consistency model, so that in absence of explicit memory-barrier
instructions, IA64 is within its rights to arbitrarily reorder memory references [Int02b].
IA64 has a memory-fence instruction named mf, but also has “half-memory fence”
modifiers to loads, stores, and to some of its atomic instructions [Int02a]. The acq
modifier prevents subsequent memory-reference instructions from being reordered
before the acq, but permits prior memory-reference instructions to be reordered after
the acq, as fancifully illustrated by Figure C.12. Similarly, the rel modifier prevents
prior memory-reference instructions from being reordered after the rel, but allows
subsequent memory-reference instructions to be reordered before the rel.

These half-memory fences are useful for critical sections, since it is safe to push
operations into a critical section, but can be fatal to allow them to bleed out. However,
as one of the only CPUs with this property, IA64 defines Linux’s semantics of memory
ordering associated with lock acquisition and release.

The IA64 mf instruction is used for the smp_rmb(), smp_mb(), and smp_wmb()
primitives in the Linux kernel. Oh, and despite rumors to the contrary, the “mf”
mnemonic really does stand for “memory fence”.
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Finally, IA64 offers a global total order for “release” operations, including the “mf”
instruction. This provides the notion of transitivity, where if a given code fragment sees
a given access as having happened, any later code fragment will also see that earlier
access as having happened. Assuming, that is, that all the code fragments involved
correctly use memory barriers.

C.7.5 PA-RISC
Although the PA-RISC architecture permits full reordering of loads and stores, actual
CPUs run fully ordered [Kan96]. This means that the Linux kernel’s memory-ordering
primitives generate no code, however, they do use the gcc memory attribute to disable
compiler optimizations that would reorder code across the memory barrier.

C.7.6 POWER / PowerPC
The POWER and PowerPC® CPU families have a wide variety of memory-barrier
instructions [IBM94, LSH02]:

1. sync causes all preceding operations to appear to have completed before any
subsequent operations are started. This instruction is therefore quite expensive.

2. lwsync (light-weight sync) orders loads with respect to subsequent loads and
stores, and also orders stores. However, it does not order stores with respect to
subsequent loads. Interestingly enough, the lwsync instruction enforces the
same ordering as does zSeries, and coincidentally, SPARC TSO.

3. eieio (enforce in-order execution of I/O, in case you were wondering) causes
all preceding cacheable stores to appear to have completed before all subsequent
stores. However, stores to cacheable memory are ordered separately from stores
to non-cacheable memory, which means that eieio will not force an MMIO
store to precede a spinlock release.

4. isync forces all preceding instructions to appear to have completed before any
subsequent instructions start execution. This means that the preceding instruc-
tions must have progressed far enough that any traps they might generate have
either happened or are guaranteed not to happen, and that any side-effects of
these instructions (for example, page-table changes) are seen by the subsequent
instructions.

Unfortunately, none of these instructions line up exactly with Linux’s wmb() primi-
tive, which requires all stores to be ordered, but does not require the other high-overhead
actions of the sync instruction. But there is no choice: ppc64 versions of wmb()
and mb() are defined to be the heavyweight sync instruction. However, Linux’s
smp_wmb() instruction is never used for MMIO (since a driver must carefully order
MMIOs in UP as well as SMP kernels, after all), so it is defined to be the lighter
weight eieio instruction. This instruction may well be unique in having a five-vowel
mnemonic. The smp_mb() instruction is also defined to be the sync instruction, but
both smp_rmb() and rmb() are defined to be the lighter-weight lwsync instruction.

Power features “cumulativity”, which can be used to obtain transitivity. When
used properly, any code seeing the results of an earlier code fragment will also see the
accesses that this earlier code fragment itself saw. Much more detail is available from
McKenney and Silvera [MS09].
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Power respects control dependencies in much the same way that ARM does, with the
exception that the Power isync instruction is substituted for the ARM ISB instruction.

Many members of the POWER architecture have incoherent instruction caches,
so that a store to memory will not necessarily be reflected in the instruction cache.
Thankfully, few people write self-modifying code these days, but JITs and compilers
do it all the time. Furthermore, recompiling a recently run program looks just like
self-modifying code from the CPU’s viewpoint. The icbi instruction (instruction
cache block invalidate) invalidates a specified cache line from the instruction cache, and
may be used in these situations.

C.7.7 SPARC RMO, PSO, and TSO
Solaris on SPARC uses TSO (total-store order), as does Linux when built for the “sparc”
32-bit architecture. However, a 64-bit Linux kernel (the “sparc64” architecture) runs
SPARC in RMO (relaxed-memory order) mode [SPA94]. The SPARC architecture also
offers an intermediate PSO (partial store order). Any program that runs in RMO will
also run in either PSO or TSO, and similarly, a program that runs in PSO will also run
in TSO. Moving a shared-memory parallel program in the other direction may require
careful insertion of memory barriers, although, as noted earlier, programs that make
standard use of synchronization primitives need not worry about memory barriers.

SPARC has a very flexible memory-barrier instruction [SPA94] that permits fine-
grained control of ordering:

• StoreStore: order preceding stores before subsequent stores. (This option is
used by the Linux smp_wmb() primitive.)

• LoadStore: order preceding loads before subsequent stores.

• StoreLoad: order preceding stores before subsequent loads.

• LoadLoad: order preceding loads before subsequent loads. (This option is used
by the Linux smp_rmb() primitive.)

• Sync: fully complete all preceding operations before starting any subsequent
operations.

• MemIssue: complete preceding memory operations before subsequent memory
operations, important for some instances of memory-mapped I/O.

• Lookaside: same as MemIssue, but only applies to preceding stores and
subsequent loads, and even then only for stores and loads that access the same
memory location.

The Linux smp_mb() primitive uses the first four options together, as in membar
#LoadLoad | #LoadStore | #StoreStore | #StoreLoad, thus fully or-
dering memory operations.

So, why is membar #MemIssue needed? Because a membar #StoreLoad
could permit a subsequent load to get its value from a write buffer, which would be
disastrous if the write was to an MMIO register that induced side effects on the value
to be read. In contrast, membar #MemIssue would wait until the write buffers were
flushed before permitting the loads to execute, thereby ensuring that the load actually
gets its value from the MMIO register. Drivers could instead use membar #Sync, but
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the lighter-weight membar #MemIssue is preferred in cases where the additional
function of the more-expensive membar #Sync are not required.

The membar #Lookaside is a lighter-weight version of membar #MemIssue,
which is useful when writing to a given MMIO register affects the value that will next
be read from that register. However, the heavier-weight membar #MemIssue must
be used when a write to a given MMIO register affects the value that will next be read
from some other MMIO register.

It is not clear why SPARC does not define wmb() to be membar #MemIssue
and smb_wmb() to be membar #StoreStore, as the current definitions seem
vulnerable to bugs in some drivers. It is quite possible that all the SPARC CPUs
that Linux runs on implement a more conservative memory-ordering model than the
architecture would permit.

SPARC requires a flush instruction be used between the time that an instruction
is stored and executed [SPA94]. This is needed to flush any prior value for that location
from the SPARC’s instruction cache. Note that flush takes an address, and will flush
only that address from the instruction cache. On SMP systems, all CPUs’ caches are
flushed, but there is no convenient way to determine when the off-CPU flushes complete,
though there is a reference to an implementation note.

C.7.8 x86

Since the x86 CPUs provide “process ordering” so that all CPUs agree on the order
of a given CPU’s writes to memory, the smp_wmb() primitive is a no-op for the
CPU [Int04b]. However, a compiler directive is required to prevent the compiler
from performing optimizations that would result in reordering across the smp_wmb()
primitive.

On the other hand, x86 CPUs have traditionally given no ordering guarantees for
loads, so the smp_mb() and smp_rmb() primitives expand to lock;addl. This
atomic instruction acts as a barrier to both loads and stores.

Intel has also published a memory model for x86 [Int07]. It turns out that Intel’s
actual CPUs enforced tighter ordering than was claimed in the previous specifications,
so this model is in effect simply mandating the earlier de-facto behavior. Even more
recently, Intel published an updated memory model for x86 [Int11, Section 8.2], which
mandates a total global order for stores, although individual CPUs are still permitted
to see their own stores as having happened earlier than this total global order would
indicate. This exception to the total ordering is needed to allow important hardware
optimizations involving store buffers. In addition, memory ordering obeys causality,
so that if CPU 0 sees a store by CPU 1, then CPU 0 is guaranteed to see all stores that
CPU 1 saw prior to its store. Software may use atomic operations to override these
hardware optimizations, which is one reason that atomic operations tend to be more
expensive than their non-atomic counterparts. This total store order is not guaranteed
on older processors.

It is also important to note that atomic instructions operating on a given memory
location should all be of the same size [Int11, Section 8.1.2.2]. For example, if you write
a program where one CPU atomically increments a byte while another CPU executes a
4-byte atomic increment on that same location, you are on your own.

However, note that some SSE instructions are weakly ordered (clflush and
non-temporal move instructions [Int04a]). CPUs that have SSE can use mfence for
smp_mb(), lfence for smp_rmb(), and sfence for smp_wmb().
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A few versions of the x86 CPU have a mode bit that enables out-of-order stores, and
for these CPUs, smp_wmb() must also be defined to be lock;addl.

Although many older x86 implementations accommodated self-modifying code
without the need for any special instructions, newer revisions of the x86 architecture no
longer requires x86 CPUs to be so accommodating. Interestingly enough, this relaxation
comes just in time to inconvenience JIT implementors.

C.7.9 zSeries

The zSeries machines make up the IBM™ mainframe family, previously known as
the 360, 370, and 390 [Int04c]. Parallelism came late to zSeries, but given that these
mainframes first shipped in the mid 1960s, this is not saying much. The bcr 15,0 in-
struction is used for the Linux smp_mb(), smp_rmb(), and smp_wmb() primitives.
It also has comparatively strong memory-ordering semantics, as shown in Table C.5,
which should allow the smp_wmb() primitive to be a nop (and by the time you read
this, this change may well have happened). The table actually understates the situation,
as the zSeries memory model is otherwise sequentially consistent, meaning that all
CPUs will agree on the order of unrelated stores from different CPUs.

As with most CPUs, the zSeries architecture does not guarantee a cache-coherent
instruction stream, hence, self-modifying code must execute a serializing instruction
between updating the instructions and executing them. That said, many actual zSeries
machines do in fact accommodate self-modifying code without serializing instructions.
The zSeries instruction set provides a large set of serializing instructions, including
compare-and-swap, some types of branches (for example, the aforementioned bcr
15,0 instruction), and test-and-set, among others.

C.8 Are Memory Barriers Forever?

There have been a number of recent systems that are significantly less aggressive about
out-of-order execution in general and re-ordering memory references in particular. Will
this trend continue to the point where memory barriers are a thing of the past?

The argument in favor would cite proposed massively multi-threaded hardware
architectures, so that each thread would wait until memory was ready, with tens, hun-
dreds, or even thousands of other threads making progress in the meantime. In such an
architecture, there would be no need for memory barriers, because a given thread would
simply wait for all outstanding operations to complete before proceeding to the next
instruction. Because there would be potentially thousands of other threads, the CPU
would be completely utilized, so no CPU time would be wasted.

The argument against would cite the extremely limited number of applications
capable of scaling up to a thousand threads, as well as increasingly severe realtime
requirements, which are in the tens of microseconds for some applications. The realtime-
response requirements are difficult enough to meet as is, and would be even more difficult
to meet given the extremely low single-threaded throughput implied by the massive
multi-threaded scenarios.

Another argument in favor would cite increasingly sophisticated latency-hiding
hardware implementation techniques that might well allow the CPU to provide the
illusion of fully sequentially consistent execution while still providing almost all of the
performance advantages of out-of-order execution. A counter-argument would cite the

461



increasingly severe power-efficiency requirements presented both by battery-operated
devices and by environmental responsibility.

Who is right? We have no clue, so are preparing to live with either scenario.

C.9 Advice to Hardware Designers
There are any number of things that hardware designers can do to make the lives of
software people difficult. Here is a list of a few such things that we have encountered in
the past, presented here in the hope that it might help prevent future such problems:

1. I/O devices that ignore cache coherence.

This charming misfeature can result in DMAs from memory missing recent
changes to the output buffer, or, just as bad, cause input buffers to be overwritten
by the contents of CPU caches just after the DMA completes. To make your
system work in face of such misbehavior, you must carefully flush the CPU
caches of any location in any DMA buffer before presenting that buffer to the I/O
device. And even then, you need to be very careful to avoid pointer bugs, as even
a misplaced read to an input buffer can result in corrupting the data input!

2. External busses that fail to transmit cache-coherence data.

This is an even more painful variant of the above problem, but causes groups of
devices—and even memory itself—to fail to respect cache coherence. It is my
painful duty to inform you that as embedded systems move to multicore architec-
tures, we will no doubt see a fair number of such problems arise. Hopefully these
problems will clear up by the year 2015.

3. Device interrupts that ignore cache coherence.

This might sound innocent enough — after all, interrupts aren’t memory refer-
ences, are they? But imagine a CPU with a split cache, one bank of which is
extremely busy, therefore holding onto the last cacheline of the input buffer. If the
corresponding I/O-complete interrupt reaches this CPU, then that CPU’s memory
reference to the last cache line of the buffer could return old data, again resulting
in data corruption, but in a form that will be invisible in a later crash dump. By
the time the system gets around to dumping the offending input buffer, the DMA
will most likely have completed.

4. Inter-processor interrupts (IPIs) that ignore cache coherence.

This can be problematic if the IPI reaches its destination before all of the cache
lines in the corresponding message buffer have been committed to memory.

5. Context switches that get ahead of cache coherence.

If memory accesses can complete too wildly out of order, then context switches
can be quite harrowing. If the task flits from one CPU to another before all the
memory accesses visible to the source CPU make it to the destination CPU, then
the task could easily see the corresponding variables revert to prior values, which
can fatally confuse most algorithms.

6. Overly kind simulators and emulators.
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It is difficult to write simulators or emulators that force memory re-ordering, so
software that runs just fine in these environments can get a nasty surprise when it
first runs on the real hardware. Unfortunately, it is still the rule that the hardware
is more devious than are the simulators and emulators, but we hope that this
situation changes.

Again, we encourage hardware designers to avoid these practices!
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Appendix D

Read-Copy Update
Implementations

This appendix describes several fully functional production-quality RCU implemen-
tations. Understanding of these implementations requires a thorough understanding
of the material in Chapters 1 and 8, as well as a reasonably good understanding of
the Linux kernel, the latter of which may be found in several textbooks and web-
sites [BC05, CRKH05, Cor08, Lov05].

If you are new to RCU implementations, you should start with the simpler “toy”
RCU implementations that may be found in Section 8.3.5.

Section D.1 presents “Sleepable RCU”, or SRCU, which allows SRCU readers to
sleep arbitrarily. This is a simple implementation, as production-quality RCU imple-
mentations go, and a good place to start learning about such implementations.

Section D.2 gives an overview of a highly scalable implementation of Classic RCU,
designed for SMP systems sporting thousands of CPUs. Section D.3 takes the reader on
a code walkthrough of this same implementation (as of late 2008).

Finally, Section D.4 provides a detailed view of the preemptible RCU implementa-
tion used in real-time systems.

D.1 Sleepable RCU Implementation

Classic RCU requires that read-side critical sections obey the same rules obeyed by the
critical sections of pure spinlocks: blocking or sleeping of any sort is strictly prohibited.
This has frequently been an obstacle to the use of RCU, and Paul has received numerous
requests for a “sleepable RCU” (SRCU) that permits arbitrary sleeping (or blocking)
within RCU read-side critical sections. Paul had previously rejected all such requests as
unworkable, since arbitrary sleeping in RCU read-side could indefinitely extend grace
periods, which in turn could result in arbitrarily large amounts of memory awaiting the
end of a grace period, which finally would result in disaster, as fancifully depicted in
Figure D.1, with the most likely disaster being hangs due to memory exhaustion. After
all, any concurrency-control primitive that could result in system hangs — even when
used correctly – does not deserve to exist.

However, the realtime kernels that require spinlock critical sections be preemptible [Mol05]
also require that RCU read-side critical sections be preemptible [MS05]. Preemptible
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Figure D.1: Sleeping While RCU Reading Considered Harmful

critical sections in turn require that lock-acquisition primitives block in order to avoid
deadlock, which in turns means that both RCU’s and spinlocks’ critical sections be able
to block awaiting a lock. However, these two forms of sleeping have the special property
that priority boosting and priority inheritance may be used to awaken the sleeping tasks
in short order.

Nevertheless, use of RCU in realtime kernels was the first crack in the tablets of
stone on which were inscribed “RCU read-side critical sections can never sleep”. That
said, indefinite sleeping, such as blocking waiting for an incoming TCP connection, is
strictly verboten even in realtime kernels.

Quick Quiz D.1: Why is sleeping prohibited within Classic RCU read-side critical
sections?

Quick Quiz D.2: Why not permit sleeping in Classic RCU read-side critical sections
by eliminating context switch as a quiescent state, leaving user-mode execution and idle
loop as the remaining quiescent states?

D.1.1 SRCU Implementation Strategy
The primary challenge in designing an SRCU is to prevent any given task sleeping in an
RCU read-side critical section from blocking an unbounded number of RCU callbacks.
SRCU uses two strategies to achieve this goal:

1. refusing to provide asynchronous grace-period interfaces, such as the Classic
RCU’s call_rcu() API, and

2. isolating grace-period detection within each subsystem using SRCU.

The rationale for these strategies are discussed in the following sections.

D.1.1.1 Abolish Asynchronous Grace-Period APIs

The problem with the call_rcu() API is that a single thread can generate an arbi-
trarily large number of blocks of memory awaiting a grace period, as illustrated by the
following:

1 while (p = kmalloc(sizeof(*p), GFP_ATOMIC))
2 call_rcu(&p->rcu, f);
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In contrast, the analogous code using synchronize_rcu() can have at most a
single block of memory per thread awaiting a grace period:

1 while (p = kmalloc(sizeof(*p),
2 GFP_ATOMIC)) {
3 synchronize_rcu();
4 kfree(&p->rcu, f);
5 }

Therefore, SRCU provides an equivalent to synchronize_rcu(), but not to
call_rcu().

D.1.1.2 Isolate Grace-Period Detection

In Classic RCU, a single read-side critical section could indefinitely delay all RCU
callbacks, for example, as follows:

1 /* BUGGY: Do not use!! */
2 rcu_read_lock();
3 schedule_timeout_interruptible(longdelay);
4 rcu_read_unlock();

This sort of behavior might be tolerated if RCU were used only within a single
subsystem that was carefully designed to withstand long-term delay of grace periods. It
is the fact that a single RCU read-side bug in one isolated subsystem can delay all users
of RCU that forced these long-term RCU read-side delays to be abolished.

One way around this issue is for grace-period detection to be performed on a
subsystem-by-subsystem basis, so that a lethargic RCU reader will delay grace periods
only within that reader’s subsystem. Since each subsystem can have only a bounded
number of memory blocks awaiting a grace period, and since the number of subsystems
is also presumably bounded, the total amount of memory awaiting a grace period will
also be bounded. The designer of a given subsystem is responsible for: (1) ensuring that
SRCU read-side sleeping is bounded and (2) limiting the amount of memory waiting
for synchronize_srcu().1

This is precisely the approach that SRCU takes, as described in the following section.

D.1.2 SRCU API and Usage
The SRCU API is shown in Figure D.2. The following sections describe how to use it.

int init_srcu_struct(struct srcu_struct *sp);
void cleanup_srcu_struct(struct srcu_struct *sp);
int srcu_read_lock(struct srcu_struct *sp);
void srcu_read_unlock(struct srcu_struct *sp, int idx);
void synchronize_srcu(struct srcu_struct *sp);
long srcu_batches_completed(struct srcu_struct *sp);

Figure D.2: SRCU API

D.1.2.1 Initialization and Cleanup

Each subsystem using SRCU must create an struct srcu_struct, either by declar-
ing a variable of this type or by dynamically allocating the memory, for example, via

1 For example, an SRCU-protected hash table might have a lock per hash chain, thus allowing at most one
block per hash chain to be waiting for synchronize_srcu().
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kmalloc(). Once this structure is in place, it must be initialized via init_srcu_
struct(), which returns zero for success or an error code for failure (for example,
upon memory exhaustion).

If the struct srcu_struct is dynamically allocated, then cleanup_srcu_
struct() must be called before it is freed. Similarly, if the struct srcu_
struct is a variable declared within a Linux kernel module, then cleanup_srcu_
struct() must be called before the module is unloaded. Either way, the caller must
take care to ensure that all SRCU read-side critical sections have completed (and that
no more will commence) before calling cleanup_srcu_struct(). One way to
accomplish this is described in Section D.1.2.4.

D.1.2.2 Read-Side Primitives

The read-side srcu_read_lock() and srcu_read_unlock() primitives are
used as shown:

1 idx = srcu_read_lock(&ss);
2 /* read-side critical section. */
3 srcu_read_unlock(&ss, idx);

The ss variable is the struct srcu_struct whose initialization was described
in Section D.1.2.1, and the idx variable is an integer that in effect tells srcu_read_
unlock() the grace period during which the corresponding srcu_read_lock()
started.

This carrying of an index is a departure from the RCU API, which, when required,
stores the equivalent information in the task structure. However, since a given task
could potentially occupy an arbitrarily large number of nested SRCU read-side critical
sections, SRCU cannot reasonably store this index in the task structure.

D.1.2.3 Update-Side Primitives

The synchronize_srcu() primitives may be used as shown below:

1 list_del_rcu(p);
2 synchronize_srcu(&ss);
3 kfree(p);

As one might expect by analogy with Classic RCU, this primitive blocks until
until after the completion of all SRCU read-side critical sections that started before the
synchronize_srcu() started, as shown in Table D.1. Here, CPU 1 need only wait
for the completion of CPU 0’s SRCU read-side critical section. It need not wait for the
completion of CPU 2’s SRCU read-side critical section, because CPU 2 did not start this
critical section until after CPU 1 began executing synchronize_srcu(). Finally,
CPU 1’s synchronize_srcu() need not wait for CPU 3’s SRCU read-side critical
section, because CPU 3 is using s2 rather than s1 as its struct srcu_struct.
CPU 3’s SRCU read-side critical section is thus related to a different set of grace periods
than those of CPUs 0 and 2.

The srcu_batches_completed() primitive may be used to monitor the
progress of a given struct srcu_struct’s grace periods. This primitive is used in
“torture tests” that validate SRCU’s operation.
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CPU 0 CPU 1 CPU 2 CPU 3
1 i0 = srcu_read_lock(&s1) i3 = srcu_read_lock(&s2)
2 synchronize_srcu(&s1)enter
3 i2 = srcu_read_lock(&s1)
4 srcu_read_unlock(&s1, i0)
5 synchronize_srcu(&s1)exit
6 srcu_read_unlock(&s1, i2)

Table D.1: SRCU Update and Read-Side Critical Sections

D.1.2.4 Cleaning Up Safely

Cleaning up SRCU safely can be a challenge, but fortunately many uses need not do
so. For example, uses in operating-system kernels that are initialized at boot time
need not be cleaned up. However, uses within loadable modules must clean up if the
corresponding module is to be safely unloaded.

In some cases, such as the RCU torture module, only a small known set of threads
are using the SRCU read-side primitives against a particular struct srcu_struct.
In these cases, the module-exit code need only kill that set of threads, wait for them to
exit, and then clean up.

In other cases, for example, for device drivers, any thread in the system might
be using the SRCU read-side primitives. Although one could apply the method of
the previous paragraph, this ends up being equivalent to a full reboot, which can be
unattractive. Figure D.3 shows one way that cleanup could be accomplished without a
reboot.

1 int readside(void)
2 {
3 int idx;
4
5 rcu_read_lock();
6 if (nomoresrcu) {
7 rcu_read_unlock();
8 return -EINVAL;
9 }
10 idx = srcu_read_lock(&ss);
11 rcu_read_unlock();
12 /* SRCU read-side critical section. */
13 srcu_read_unlock(&ss, idx);
14 return 0;
15 }
16
17 void cleanup(void)
18 {
19 nomoresrcu = 1;
20 synchronize_rcu();
21 synchronize_srcu(&ss);
22 cleanup_srcu_struct(&ss);
23 }

Figure D.3: SRCU Safe Cleanup

The readside() function overlaps an RCU and an SRCU read-side critical
section, with the former running from lines 5-11 and the latter running from lines 10-13.
The RCU read-side critical section uses Pure RCU [McK04] to guard the value of the
nomoresrcu variable. If this variable is set, we are cleaning up, and therefore must
not enter the SRCU read-side critical section, so we return -EINVAL instead. On the
other hand, if we are not yet cleaning up, we proceed into the SRCU read-side critical
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section.
The cleanup() function first sets the nomoresrcu variable on line 19, but then

must wait for all currently executing RCU read-side critical sections to complete via the
synchronize_rcu() primitive on line 20. Once the cleanup() function reaches
line 21, all calls to readside() that could possibly have seen nomorersrcu equal
to zero must have already reached line 11, and therefore already must have entered their
SRCU read-side critical section. All future calls to readside() will exit via line 8,
and will thus refrain from entering the read-side critical section.

Therefore, once cleanup() completes its call to synchronize_srcu() on
line 21, all SRCU read-side critical sections will have completed, and no new ones will
be able to start. It is therefore safe on line 22 to call cleanup_srcu_struct() to
clean up.

D.1.3 Implementation
This section describes SRCU’s data structures, initialization and cleanup primitives,
read-side primitives, and update-side primitives.

D.1.3.1 Data Structures

SRCU’s data structures are shown in Figure D.4, and are depicted schematically in
Figure D.5. The completed field is a count of the number of grace periods since the
struct srcu was initialized, and as shown in the diagram, its low-order bit is used to
index the struct srcu_struct_array. The per_cpu_ref field points to the
array, and the mutex field is used to permit but one synchronize_srcu() at a
time to proceed.

1 struct srcu_struct_array {
2 int c[2];
3 };
4 struct srcu_struct {
5 int completed;
6 struct srcu_struct_array *per_cpu_ref;
7 struct mutex mutex;
8 };

Figure D.4: SRCU Data Structures

D.1.3.2 Initialization Implementation

SRCU’s initialization function, init_srcu_struct(), is shown in Figure D.6.
This function simply initializes the fields in the struct srcu_struct, returning
zero if initialization succeeds or -ENOMEM otherwise.

SRCU’s cleanup functions are shown in Figure D.7. The main cleanup function,
cleanup_srcu_struct() is shown on lines 19-29 of this figure, however, it
immediately invokes srcu_readers_active(), shown on lines 13-17 of this
figure, to verify that there are no readers currently using this struct srcu_struct.

The srcu_readers_active() function simply returns the sum of srcu_
readers_active_idx() on both possible indexes, while srcu_readers_active_
idx(), as shown on lines 1-11, sums up the per-CPU counters corresponding to the
specified index, returning the result.
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Figure D.5: SRCU Data-Structure Diagram

1 int init_srcu_struct(struct srcu_struct *sp)
2 {
3 sp->completed = 0;
4 mutex_init(&sp->mutex);
5 sp->per_cpu_ref =
6 alloc_percpu(struct srcu_struct_array);
7 return (sp->per_cpu_ref ? 0 : -ENOMEM);
8 }

Figure D.6: SRCU Initialization

If the value returned from srcu_readers_active() is non-zero, then cleanup_
srcu_struct() issues a warning on line 24 and simply returns on lines 25 and 26,
declining to destroy a struct srcu_struct that is still in use. Such a warning
always indicates a bug, and given that the bug has been reported, it is better to allow
the system to continue with a modest memory leak than to introduce possible memory
corruption.

Otherwise, cleanup_srcu_struct() frees the array of per-CPU counters and
NULLs the pointer on lines 27 and 28.

D.1.3.3 Read-Side Implementation

The code implementing srcu_read_lock() is shown in Figure D.8. This function
has been carefully constructed to avoid the need for memory barriers and atomic
instructions.

Lines 5 and 11 disable and re-enable preemption, in order to force the sequence of
code to execute unpreempted on a single CPU. Line 6 picks up the bottom bit of the
grace-period counter, which will be used to select which rank of per-CPU counters is
to be used for this SRCU read-side critical section. The barrier() call on line 7
is a directive to the compiler that ensures that the index is fetched but once,2 so that
the index used on line 9 is the same one returned on line 12. Lines 8-9 increment the
selected counter for the current CPU.3 Line 10 forces subsequent execution to occur

2 Please note that, despite the name, barrier() has absolutely no effect on the CPU’s ability to reorder
execution of both code and of memory accesses.

3 It is important to note that the smp_processor_id() primitive has long-term meaning only if
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1 int srcu_readers_active_idx(struct srcu_struct *sp,
2 int idx)
3 {
4 int cpu;
5 int sum;
6
7 sum = 0;
8 for_each_possible_cpu(cpu)
9 sum += per_cpu_ptr(sp->per_cpu_ref, cpu)->c[idx];
10 return sum;
11 }
12
13 int srcu_readers_active(struct srcu_struct *sp)
14 {
15 return srcu_readers_active_idx(sp, 0) +
16 srcu_readers_active_idx(sp, 1);
17 }
18
19 void cleanup_srcu_struct(struct srcu_struct *sp)
20 {
21 int sum;
22
23 sum = srcu_readers_active(sp);
24 WARN_ON(sum);
25 if (sum != 0)
26 return;
27 free_percpu(sp->per_cpu_ref);
28 sp->per_cpu_ref = NULL;
29 }

Figure D.7: SRCU Cleanup

after lines 8-9, in order to prevent to misordering of any code in a non-CONFIG_
PREEMPT build, but only from the perspective of an intervening interrupt handler.
However, in a CONFIG_PREEMPT kernel, the required barrier() call is embedded
in the preempt_enable() on line 11, so the srcu_barrier() is a no-op in that
case. Finally, line 12 returns the index so that it may be passed in to the corresponding
srcu_read_unlock().

1 int srcu_read_lock(struct srcu_struct *sp)
2 {
3 int idx;
4
5 preempt_disable();
6 idx = sp->completed & 0x1;
7 barrier();
8 per_cpu_ptr(sp->per_cpu_ref,
9 smp_processor_id())->c[idx]++;
10 srcu_barrier();
11 preempt_enable();
12 return idx;
13 }

Figure D.8: SRCU Read-Side Acquisition

The code for srcu_read_unlock() is shown in Figure D.9. Again, lines 3 and 7
disable and re-enable preemption so that the whole code sequence executes unpreempted
on a single CPU. In CONFIG_PREEMPT kernels, the preempt_disable() on
line 3 contains a barrier() primitive, otherwise, the barrier() is supplied by
line 4. Again, this directive forces the subsequent code to execute after the critical

preemption is disabled. In absence of preemption disabling, a potential preemption immediately following
execution of this primitive could cause the subsequent code to execute on some other CPU.
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section from the perspective of intervening interrupt handlers. Lines 5 and 6 decrement
the counter for this CPU, but with the same index as was used by the corresponding
srcu_read_lock().

1 void srcu_read_unlock(struct srcu_struct *sp, int idx)
2 {
3 preempt_disable();
4 srcu_barrier();
5 per_cpu_ptr(sp->per_cpu_ref,
6 smp_processor_id())->c[idx]--;
7 preempt_enable();
8 }

Figure D.9: SRCU Read-Side Release

The key point is that a given CPU’s counters can be observed by other CPUs only in
cooperation with that CPU’s interrupt handlers. These interrupt handlers are responsible
for ensuring that any needed memory barriers are executed prior to observing the
counters.

D.1.3.4 Update-Side Implementation

The key point behind SRCU is that synchronize_sched() blocks until all currently-
executing preempt-disabled regions of code complete. The synchronize_srcu()
primitive makes heavy use of this effect, as can be seen in Figure D.10.

Line 5 takes a snapshot of the grace-period counter. Line 6 acquires the mutex,
and lines 7-10 check to see whether at least two grace periods have elapsed since the
snapshot, and, if so, releases the lock and returns — in this case, someone else has
done our work for us. Otherwise, line 11 guarantees that any other CPU that sees the
incremented value of the grace period counter in srcu_read_lock() also sees any
changes made by this CPU prior to entering synchronize_srcu(). This guarantee
is required to make sure that any SRCU read-side critical sections not blocking the next
grace period have seen any prior changes.

Line 12 fetches the bottom bit of the grace-period counter for later use as an index
into the per-CPU counter arrays, and then line 13 increments the grace-period counter.
Line 14 then waits for any currently-executing srcu_read_lock() to complete, so
that by the time that we reach line 15, all extant instances of srcu_read_lock()
will be using the updated value from sp->completed. Therefore, the counters
sampled in by srcu_readers_active_idx() on line 15 are guaranteed to be
monotonically decreasing, so that once their sum reaches zero, it is guaranteed to stay
there.

However, there are no memory barriers in the srcu_read_unlock() prim-
itive, so the CPU is within its rights to reorder the counter decrement up into the
SRCU critical section, so that references to an SRCU-protected data structure could
in effect “bleed out” of the SRCU critical section. This scenario is addressed by the
synchronize_sched() on line 17, which blocks until all other CPUs executing in
preempt_disable() code sequences (such as that in srcu_read_unlock())
complete these sequences. Because completion of a given preempt_disable()
code sequence is observed from the CPU executing that sequence, completion of the
sequence implies completion of any prior SRCU read-side critical section. Any required
memory barriers are supplied by the code making the observation.
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At this point, it is therefore safe to release the mutex as shown on line 18 and return
to the caller, who can now be assured that all SRCU read-side critical sections sharing
the same struct srcu_struct will observe any update made prior to the call to
synchronize_srcu().

1 void synchronize_srcu(struct srcu_struct *sp)
2 {
3 int idx;
4
5 idx = sp->completed;
6 mutex_lock(&sp->mutex);
7 if ((sp->completed - idx) >= 2) {
8 mutex_unlock(&sp->mutex);
9 return;
10 }
11 synchronize_sched();
12 idx = sp->completed & 0x1;
13 sp->completed++;
14 synchronize_sched();
15 while (srcu_readers_active_idx(sp, idx))
16 schedule_timeout_interruptible(1);
17 synchronize_sched();
18 mutex_unlock(&sp->mutex);
19 }

Figure D.10: SRCU Update-Side Implementation

Quick Quiz D.3: Why is it OK to assume that updates separated by synchronize_sched()
will be performed in order?

Quick Quiz D.4: Why must line 17 in synchronize_srcu() (Figure D.10)
precede the release of the mutex on line 18? What would have to change to permit these
two lines to be interchanged? Would such a change be worthwhile? Why or why not?

D.1.4 SRCU Summary
SRCU provides an RCU-like set of primitives that permit general sleeping in the SRCU
read-side critical sections. However, it is important to note that SRCU has been used
only in prototype code, though it has passed the RCU torture test. It will be very
interesting to see what use, if any, SRCU sees in the future.

D.2 Hierarchical RCU Overview
Although Classic RCU’s read-side primitives enjoy excellent performance and scala-
bility, the update-side primitives, which determine when pre-existing read-side critical
sections have finished, were designed with only a few tens of CPUs in mind. Their
scalability is limited by a global lock that must be acquired by each CPU at least once
during each grace period. Although Classic RCU actually scales to a couple of hundred
CPUs, and can be tweaked to scale to roughly a thousand CPUs (but at the expense of
extending grace periods), emerging multicore systems will require it to scale better.

In addition, Classic RCU has a sub-optimal dynticks interface, with the result that
Classic RCU will wake up every CPU at least once per grace period. To see the problem
with this, consider a 16-CPU system that is sufficiently lightly loaded that it is keeping
only four CPUs busy. In a perfect world, the remaining twelve CPUs could be put into
deep sleep mode in order to conserve energy. Unfortunately, if the four busy CPUs
are frequently performing RCU updates, those twelve idle CPUs will be awakened
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frequently, wasting significant energy. Thus, any major change to Classic RCU should
also leave sleeping CPUs lie.

Both the classic and the hierarchical implementations have Classic RCU semantics
and identical APIs, however, the old implementation will be called “classic RCU” and
the new implementation will be called “hierarchical RCU”.

@@@ roadmap @@@

D.2.1 Review of RCU Fundamentals
In its most basic form, RCU is a way of waiting for things to finish. Of course, there
are a great many other ways of waiting for things to finish, including reference counts,
reader-writer locks, events, and so on. The great advantage of RCU is that it can wait
for each of (say) 20,000 different things without having to explicitly track each and
every one of them, and without having to worry about the performance degradation,
scalability limitations, complex deadlock scenarios, and memory-leak hazards that are
inherent in schemes using explicit tracking.

In RCU’s case, the things waited on are called "RCU read-side critical sections".
An RCU read-side critical section starts with an rcu_read_lock() primitive, and
ends with a corresponding rcu_read_unlock() primitive. RCU read-side critical
sections can be nested, and may contain pretty much any code, as long as that code does
not explicitly block or sleep (although a special form of RCU called SRCU, described
in Section D.1 does permit general sleeping in SRCU read-side critical sections). If you
abide by these conventions, you can use RCU to wait for any desired piece of code to
complete.

RCU accomplishes this feat by indirectly determining when these other things have
finished, as has been described elsewhere [MS98a] for classic RCU and Section D.4 for
preemptible RCU.

In particular, as shown in the Figure 8.19 on page 180, RCU is a way of waiting
for pre-existing RCU read-side critical sections to completely finish, also including the
memory operations executed by those critical sections.

However, note that RCU read-side critical sections that begin after the beginning of
a given grace period can and will extend beyond the end of that grace period.

The following section gives a very high-level view of how the Classic RCU imple-
mentation operates.

D.2.2 Brief Overview of Classic RCU Implementation
The key concept behind the Classic RCU implementation is that Classic RCU read-side
critical sections are confined to kernel code and are not permitted to block. This means
that any time a given CPU is seen either blocking, in the idle loop, or exiting the kernel,
we know that all RCU read-side critical sections that were previously running on that
CPU must have completed. Such states are called “quiescent states”, and after each
CPU has passed through at least one quiescent state, the RCU grace period ends.

Classic RCU’s most important data structure is the rcu_ctrlblk structure, which
contains the ->cpumask field, which contains one bit per CPU, as shown in Fig-
ure D.11. Each CPU’s bit is set to one at the beginning of each grace period, and each
CPU must clear its bit after it passes through a quiescent state. Because multiple CPUs
might want to clear their bits concurrently, which would corrupt the ->cpumask field,
a ->lock spinlock is used to protect ->cpumask, preventing any such corruption.
Unfortunately, this spinlock can also suffer extreme contention if there are more than
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Figure D.11: Flat Classic RCU State

a few hundred CPUs, which might soon become quite common if multicore trends
continue. Worse yet, the fact that all CPUs must clear their own bit means that CPUs are
not permitted to sleep through a grace period, which limits Linux’s ability to conserve
power.

The next section lays out what we need from a new non-real-time RCU implementa-
tion.

D.2.3 RCU Desiderata
The list of real-time RCU desiderata [MS05] is a very good start:

1. Deferred destruction, so that an RCU grace period cannot end until all pre-existing
RCU read-side critical sections have completed.

2. Reliable, so that RCU supports 24x7 operation for years at a time.

3. Callable from irq handlers.

4. Contained memory footprint, so that mechanisms exist to expedite grace periods
if there are too many callbacks. (This is weakened from the LCA2005 list.)

5. Independent of memory blocks, so that RCU can work with any conceivable
memory allocator.

6. Synchronization-free read side, so that only normal non-atomic instructions
operating on CPU- or task-local memory are permitted. (This is strengthened
from the LCA2005 list.)

7. Unconditional read-to-write upgrade, which is used in several places in the Linux
kernel where the update-side lock is acquired within the RCU read-side critical
section.

8. Compatible API.

9. Because this is not to be a real-time RCU, the requirement for preemptible RCU
read-side critical sections can be dropped. However, we need to add the following
new requirements to account for changes over the past few years.
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10. Scalability with extremely low internal-to-RCU lock contention. RCU must
support at least 1,024 CPUs gracefully, and preferably at least 4,096.

11. Energy conservation: RCU must be able to avoid awakening low-power-state
dynticks-idle CPUs, but still determine when the current grace period ends. This
has been implemented in real-time RCU, but needs serious simplification.

12. RCU read-side critical sections must be permitted in NMI handlers as well as irq
handlers. Note that preemptible RCU was able to avoid this requirement due to a
separately implemented synchronize_sched().

13. RCU must operate gracefully in face of repeated CPU-hotplug operations. This is
simply carrying forward a requirement met by both classic and real-time.

14. It must be possible to wait for all previously registered RCU callbacks to complete,
though this is already provided in the form of rcu_barrier().

15. Detecting CPUs that are failing to respond is desirable, to assist diagnosis both
of RCU and of various infinite loop bugs and hardware failures that can prevent
RCU grace periods from ending.

16. Extreme expediting of RCU grace periods is desirable, so that an RCU grace
period can be forced to complete within a few hundred microseconds of the last
relevant RCU read-side critical second completing. However, such an operation
would be expected to incur severe CPU overhead, and would be primarily useful
when carrying out a long sequence of operations that each needed to wait for an
RCU grace period.

The most pressing of the new requirements is the first one, scalability. The next
section therefore describes how to make order-of-magnitude reductions in contention
on RCU’s internal locks.

D.2.4 Towards a More Scalable RCU Implementation
One effective way to reduce lock contention is to create a hierarchy, as shown in
Figure D.12. Here, each of the four rcu_node structures has its own lock, so that only
CPUs 0 and 1 will acquire the lower left rcu_node’s lock, only CPUs 2 and 3 will
acquire the lower middle rcu_node’s lock, and only CPUs 4 and 5 will acquire the
lower right rcu_node’s lock. During any given grace period, only one of the CPUs
accessing each of the lower rcu_node structures will access the upper rcu_node,
namely, the last of each pair of CPUs to record a quiescent state for the corresponding
grace period.

This results in a significant reduction in lock contention: instead of six CPUs
contending for a single lock each grace period, we have only three for the upper rcu_
node’s lock (a reduction of 50%) and only two for each of the lower rcu_nodes’
locks (a reduction of 67%).

The tree of rcu_node structures is embedded into a linear array in the rcu_
state structure, with the root of the tree in element zero, as shown in Figure D.13
for an eight-CPU system with a three-level hierarchy. Each arrow links a given rcu_
node structure to its parent, representing the rcu_node’s ->parent field. Each
rcu_node indicates the range of CPUs covered, so that the root node covers all of the
CPUs, each node in the second level covers half of the CPUs, and each node in the leaf
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Figure D.12: Hierarchical RCU State
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Figure D.13: Mapping rcu_node Hierarchy Into Array

level covering a pair of CPUs. This array is allocated statically at compile time based
on the value of NR_CPUS.

The sequence of diagrams in Figure D.14 shows how grace periods are detected. In
the first figure, no CPU has yet passed through a quiescent state, as indicated by the red
rectangles. Suppose that all six CPUs simultaneously try to tell RCU that they have
passed through a quiescent state. Only one of each pair will be able to acquire the lock
on the corresponding lower rcu_node, and so the second figure shows the result if
the lucky CPUs are numbers 0, 3, and 5, as indicated by the green rectangles. Once
these lucky CPUs have finished, then the other CPUs will acquire the lock, as shown in
the third figure. Each of these CPUs will see that they are the last in their group, and
therefore all three will attempt to move to the upper rcu_node. Only one at a time can
acquire the upper rcu_node structure’s lock, and the fourth, fifth, and sixth figures
show the sequence of states assuming that CPU 1, CPU 2, and CPU 4 acquire the lock
in that order. The sixth and final figure in the group shows that all CPUs have passed
through a quiescent state, so that the grace period has ended.

In the above sequence, there were never more than three CPUs contending for any
one lock, in happy contrast to Classic RCU, where all six CPUs might contend. However,
even more dramatic reductions in lock contention are possible with larger numbers of
CPUs. Consider a hierarchy of rcu_node structures, with 64 lower structures and
64*64=4,096 CPUs, as shown in Figure D.15.
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Figure D.14: Hierarchical RCU Grace Period

Here each of the lower rcu_node structures’ locks are acquired by 64 CPUs, a
64-times reduction from the 4,096 CPUs that would acquire Classic RCU’s single global
lock. Similarly, during a given grace period, only one CPU from each of the lower
rcu_node structures will acquire the upper rcu_node structure’s lock, which is
again a 64x reduction from the contention level that would be experienced by Classic
RCU running on a 4,096-CPU system.

Quick Quiz D.5: Wait a minute! With all those new locks, how do you avoid
deadlock?

Quick Quiz D.6: Why stop at a 64-times reduction? Why not go for a few orders
of magnitude instead?

Quick Quiz D.7: But I don’t care about McKenney’s lame excuses in the answer to
Quick Quiz 2!!! I want to get the number of CPUs contending on a single lock down to
something reasonable, like sixteen or so!!!

The implementation maintains some per-CPU data, such as lists of RCU callbacks,
organized into rcu_data structures. In addition, rcu (as in call_rcu()) and rcu_bh
(as in call_rcu_bh()) each maintain their own hierarchy, as shown in Figure D.16.

Quick Quiz D.8: OK, so what is the story with the colors?
The next section discusses energy conservation.

D.2.5 Towards a Greener RCU Implementation

As noted earlier, an important goal of this effort is to leave sleeping CPUs lie in order to
promote energy conservation. In contrast, classic RCU will happily awaken each and
every sleeping CPU at least once per grace period in some cases, which is suboptimal in
the case where a small number of CPUs are busy doing RCU updates and the majority
of the CPUs are mostly idle. This situation occurs frequently in systems sized for peak
loads, and we need to be able to accommodate it gracefully. Furthermore, we need to fix
a long-standing bug in Classic RCU where a dynticks-idle CPU servicing an interrupt
containing a long-running RCU read-side critical section will fail to prevent an RCU
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grace period from ending.
Quick Quiz D.9: Given such an egregious bug, why does Linux run at all?
This is accomplished by requiring that all CPUs manipulate counters located in

a per-CPU rcu_dynticks structure. Loosely speaking, these counters have even-
numbered values when the corresponding CPU is in dynticks idle mode, and have
odd-numbered values otherwise. RCU thus needs to wait for quiescent states only
for those CPUs whose rcu_dynticks counters are odd, and need not wake up
sleeping CPUs, whose counters will be even. As shown in Figure D.17, each per-CPU
rcu_dynticks structure is shared by the “rcu” and “rcu_bh” implementations.

The following section presents a high-level view of the RCU state machine.

D.2.6 State Machine

At a sufficiently high level, Linux-kernel RCU implementations can be thought of as
high-level state machines as shown in Figure D.18. The common-case path through this
state machine on a busy system goes through the two uppermost loops, initializing at
the beginning of each grace period (GP), waiting for quiescent states (QS), and noting
when each CPU passes through its first quiescent state for a given grace period. On
such a system, quiescent states will occur on each context switch, or, for CPUs that are
either idle or executing user-mode code, each scheduling-clock interrupt. CPU-hotplug
events will take the state machine through the “CPU Offline” box, while the presence of
“holdout” CPUs that fail to pass through quiescent states quickly enough will exercise
the path through the “Send resched IPIs to Holdout CPUs” box. RCU implementations
that avoid unnecessarily awakening dyntick-idle CPUs will mark those CPUs as being
in an extended quiescent state, taking the “Y” branch out of the “CPUs in dyntick-idle
Mode?” decision diamond (but note that CPUs in dyntick-idle mode will not be sent
resched IPIs). Finally, if CONFIG_RCU_CPU_STALL_DETECTOR is enabled, truly
excessive delays in reaching quiescent states will exercise the “Complain About Holdout
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Figure D.16: Hierarchical RCU State With BH

CPUs” path.
Quick Quiz D.10: But doesn’t this state diagram indicate that dyntick-idle CPUs

will get hit with reschedule IPIs? Won’t that wake them up?
The events in the above state schematic interact with different data structures, as

shown in Figure D.19. However, the state schematic does not directly translate into C
code for any of the RCU implementations. Instead, these implementations are coded as
an event-driven system within the kernel. Therefore, the following section describes
some “use cases”, or ways in which the RCU algorithm traverses the above state
schematic as well as the relevant data structures.

D.2.7 Use Cases
This section gives an overview of several “use cases” within the RCU implementation,
listing the data structures touched and the functions invoked. The use cases are as
follows:

1. Start a New Grace Period (Section D.2.7.1)

2. Pass Through a Quiescent State (Section D.2.7.2)

3. Announce a Quiescent State to RCU (Section D.2.7.3)

4. Enter and Leave Dynticks Idle Mode (Section D.2.7.4)

5. Interrupt from Dynticks Idle Mode (Section D.2.7.5)
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6. NMI from Dynticks Idle Mode (Section D.2.7.6)

7. Note That a CPU is in Dynticks Idle Mode (Section D.2.7.7)

8. Offline a CPU (Section D.2.7.8)

9. Online a CPU (Section D.2.7.9)

10. Detect a Too-Long Grace Period (Section D.2.7.10)

Each of these use cases is described in the following sections.

D.2.7.1 Start a New Grace Period

The rcu_start_gp() function starts a new grace period. This function is invoked
when a CPU having callbacks waiting for a grace period notices that no grace period is
in progress.

The rcu_start_gp() function updates state in the rcu_state and rcu_
data structures to note the newly started grace period, acquires the ->onoff lock
(and disables irqs) to exclude any concurrent CPU-hotplug operations, sets the bits in
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all of the rcu_node structures to indicate that all CPUs (including this one) must pass
through a quiescent state, and finally releases the ->onoff lock.

The bit-setting operation is carried out in two phases. First, the non-leaf rcu_node
structures’ bits are set without holding any additional locks, and then finally each leaf
rcu_node structure’s bits are set in turn while holding that structure’s ->lock.

Quick Quiz D.11: But what happens if a CPU tries to report going through a
quiescent state (by clearing its bit) before the bit-setting CPU has finished?

Quick Quiz D.12: And what happens if all CPUs try to report going through a
quiescent state before the bit-setting CPU has finished, thus ending the new grace period
before it starts?

D.2.7.2 Pass Through a Quiescent State

The rcu and rcu_bh flavors of RCU have different sets of quiescent states. Quiescent
states for rcu are context switch, idle (either dynticks or the idle loop), and user-
mode execution, while quiescent states for rcu_bh are any code outside of softirq with

484



interrupts enabled. Note that an quiescent state for rcu is also a quiescent state for
rcu_bh. Quiescent states for rcu are recorded by invoking rcu_qsctr_inc(), while
quiescent states for rcu_bh are recorded by invoking rcu_bh_qsctr_inc(). These
two functions record their state in the current CPU’s rcu_data structure.

These functions are invoked from the scheduler, from __do_softirq(), and
from rcu_check_callbacks(). This latter function is invoked from the scheduling-
clock interrupt, and analyzes state to determine whether this interrupt occurred within
a quiescent state, invoking rcu_qsctr_inc() and/or rcu_bh_qsctr_inc(),
as appropriate. It also raises RCU_SOFTIRQ, which results in rcu_process_
callbacks() being invoked on the current CPU at some later time from softirq
context.

D.2.7.3 Announce a Quiescent State to RCU

The afore-mentioned rcu_process_callbacks() function has several duties:

1. Determining when to take measures to end an over-long grace period (via force_
quiescent_state()).

2. Taking appropriate action when some other CPU detected the end of a grace period
(via rcu_process_gp_end()). “Appropriate action“ includes advancing this
CPU’s callbacks and recording the new grace period. This same function updates
state in response to some other CPU starting a new grace period.

3. Reporting the current CPU’s quiescent states to the core RCU mechanism (via
rcu_check_quiescent_state(), which in turn invokes cpu_quiet()).
This of course might mark the end of the current grace period.

4. Starting a new grace period if there is no grace period in progress and this CPU
has RCU callbacks still waiting for a grace period (via cpu_needs_another_
gp() and rcu_start_gp()).

5. Invoking any of this CPU’s callbacks whose grace period has ended (via rcu_
do_batch()).

These interactions are carefully orchestrated in order to avoid buggy behavior such
as reporting a quiescent state from the previous grace period against the current grace
period.

D.2.7.4 Enter and Leave Dynticks Idle Mode

The scheduler invokes rcu_enter_nohz() to enter dynticks-idle mode, and invokes
rcu_exit_nohz() to exit it. The rcu_enter_nohz() function increments a
per-CPU dynticks_nesting variable and also a per-CPU dynticks counter, the
latter of which must then have an even-numbered value. The rcu_exit_nohz()
function decrements this same per-CPU dynticks_nesting variable, and again
increments the per-CPU dynticks counter, the latter of which must then have an
odd-numbered value.

The dynticks counter can be sampled by other CPUs. If the value is even, the
first CPU is in an extended quiescent state. Similarly, if the counter value changes
during a given grace period, the first CPU must have been in an extended quiescent
state at some point during the grace period. However, there is another dynticks_nmi
per-CPU variable that must also be sampled, as will be discussed below.

485



D.2.7.5 Interrupt from Dynticks Idle Mode

Interrupts from dynticks idle mode are handled by rcu_irq_enter() and rcu_
irq_exit(). The rcu_irq_enter() function increments the per-CPU dynticks_
nesting variable, and, if the prior value was zero, also increments the dynticks
per-CPU variable (which must then have an odd-numbered value).

The rcu_irq_exit() function decrements the per-CPU dynticks_nesting
variable, and, if the new value is zero, also increments the dynticks per-CPU variable
(which must then have an even-numbered value).

Note that entering an irq handler exits dynticks idle mode and vice versa. This
enter/exit anti-correspondence can cause much confusion. You have been warned.

D.2.7.6 NMI from Dynticks Idle Mode

NMIs from dynticks idle mode are handled by rcu_nmi_enter() and rcu_nmi_
exit(). These functions both increment the dynticks_nmi counter, but only if
the aforementioned dynticks counter is even. In other words, NMI’s refrain from
manipulating the dynticks_nmi counter if the NMI occurred in non-dynticks-idle
mode or within an interrupt handler.

The only difference between these two functions is the error checks, as rcu_nmi_
enter() must leave the dynticks_nmi counter with an odd value, and rcu_nmi_
exit() must leave this counter with an even value.

D.2.7.7 Note That a CPU is in Dynticks Idle Mode

The force_quiescent_state() function implements a three-phase state ma-
chine. The first phase (RCU_INITIALIZING) waits for rcu_start_gp() to com-
plete grace-period initialization. This state is not exited by force_quiescent_
state(), but rather by rcu_start_gp().

In the second phase (RCU_SAVE_DYNTICK), the dyntick_save_progress_
counter() function scans the CPUs that have not yet reported a quiescent state,
recording their per-CPU dynticks and dynticks_nmi counters. If these counters
both have even-numbered values, then the corresponding CPU is in dynticks-idle state,
which is therefore noted as an extended quiescent state (reported via cpu_quiet_
msk()).

In the third phase (RCU_FORCE_QS), the rcu_implicit_dynticks_qs()
function again scans the CPUs that have not yet reported a quiescent state (either explic-
itly or implicitly during the RCU_SAVE_DYNTICK phase), again checking the per-CPU
dynticks and dynticks_nmi counters. If each of these has either changed in value
or is now even, then the corresponding CPU has either passed through or is now in
dynticks idle, which as before is noted as an extended quiescent state.

If rcu_implicit_dynticks_qs() finds that a given CPU has neither been
in dynticks idle mode nor reported a quiescent state, it invokes rcu_implicit_
offline_qs(), which checks to see if that CPU is offline, which is also reported as
an extended quiescent state. If the CPU is online, then rcu_implicit_offline_
qs() sends it a reschedule IPI in an attempt to remind it of its duty to report a quiescent
state to RCU.

Note that force_quiescent_state() does not directly invoke either dyntick_
save_progress_counter() or rcu_implicit_dynticks_qs(), instead
passing these functions to an intervening rcu_process_dyntick() function that
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abstracts out the common code involved in scanning the CPUs and reporting extended
quiescent states.

Quick Quiz D.13: And what happens if one CPU comes out of dyntick-idle mode
and then passed through a quiescent state just as another CPU notices that the first CPU
was in dyntick-idle mode? Couldn’t they both attempt to report a quiescent state at the
same time, resulting in confusion?

Quick Quiz D.14: But what if all the CPUs end up in dyntick-idle mode? Wouldn’t
that prevent the current RCU grace period from ever ending?

Quick Quiz D.15: Given that force_quiescent_state() is a three-phase
state machine, don’t we have triple the scheduling latency due to scanning all the CPUs?

D.2.7.8 Offline a CPU

CPU-offline events cause rcu_cpu_notify() to invoke rcu_offline_cpu(),
which in turn invokes __rcu_offline_cpu() on both the rcu and the rcu_bh
instances of the data structures. This function clears the outgoing CPU’s bits so that
future grace periods will not expect this CPU to announce quiescent states, and further
invokes cpu_quiet() in order to announce the offline-induced extended quiescent
state. This work is performed with the global ->onofflock held in order to prevent
interference with concurrent grace-period initialization.

Quick Quiz D.16: But the other reason to hold ->onofflock is to prevent
multiple concurrent online/offline operations, right?

D.2.7.9 Online a CPU

CPU-online events cause rcu_cpu_notify() to invoke rcu_online_cpu(),
which initializes the incoming CPU’s dynticks state, and then invokes rcu_init_
percpu_data() to initialize the incoming CPU’s rcu_data structure, and also to
set this CPU’s bits (again protected by the global ->onofflock) so that future grace
periods will wait for a quiescent state from this CPU. Finally, rcu_online_cpu()
sets up the RCU softirq vector for this CPU.

Quick Quiz D.17: Given all these acquisitions of the global ->onofflock, won’t
there be horrible lock contention when running with thousands of CPUs?

Quick Quiz D.18: Why not simplify the code by merging the detection of dyntick-
idle CPUs with that of offline CPUs?

D.2.7.10 Detect a Too-Long Grace Period

When the CONFIG_RCU_CPU_STALL_DETECTOR kernel parameter is specified, the
record_gp_stall_check_time() function records the time and also a times-
tamp set three seconds into the future. If the current grace period still has not ended
by that time, the check_cpu_stall() function will check for the culprit, invoking
print_cpu_stall() if the current CPU is the holdout, or print_other_cpu_
stall() if it is some other CPU. A two-jiffies offset helps ensure that CPUs report on
themselves when possible, taking advantage of the fact that a CPU can normally do a
better job of tracing its own stack than it can tracing some other CPU’s stack.
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D.2.8 Testing
RCU is fundamental synchronization code, so any failure of RCU results in random,
difficult-to-debug memory corruption. It is therefore extremely important that RCU be
highly reliable. Some of this reliability stems from careful design, but at the end of the
day we must also rely on heavy stress testing, otherwise known as torture.

Fortunately, although there has been some debate as to exactly what populations
are covered by the provisions of the Geneva Convention it is still the case that it does
not apply to software. Therefore, it is still legal to torture your software. In fact, it is
strongly encouraged, because if you don’t torture your software, it will end up torturing
you by crashing at the most inconvenient times imaginable.

Therefore, we torture RCU quite vigorously using the rcutorture module.
However, it is not sufficient to torture the common-case uses of RCU. It is also

necessary to torture it in unusual situations, for example, when concurrently onlining
and offlining CPUs and when CPUs are concurrently entering and exiting dynticks idle
mode. I use a script @@@ move to CodeSamples, ref @@@ and use the test_no_
idle_hz module parameter to rcutorture to stress-test dynticks idle mode. Just to be
fully paranoid, I sometimes run a kernbench workload in parallel as well. Ten hours of
this sort of torture on a 128-way machine seems sufficient to shake out most bugs.

Even this is not the complete story. As Alexey Dobriyan and Nick Piggin demon-
strated in early 2008, it is also necessary to torture RCU with all relevant combinations
of kernel parameters. The relevant kernel parameters may be identified using yet another
script @@@ move to CodeSamples, ref @@@

1. CONFIG_CLASSIC_RCU: Classic RCU.

2. CONFIG_PREEMPT_RCU: Preemptible (real-time) RCU.

3. CONFIG_TREE_RCU: Classic RCU for huge SMP systems.

4. CONFIG_RCU_FANOUT: Number of children for each rcu_node.

5. CONFIG_RCU_FANOUT_EXACT: Balance the rcu_node tree.

6. CONFIG_HOTPLUG_CPU: Allow CPUs to be offlined and onlined.

7. CONFIG_NO_HZ: Enable dyntick-idle mode.

8. CONFIG_SMP: Enable multi-CPU operation.

9. CONFIG_RCU_CPU_STALL_DETECTOR: Enable RCU to detect when CPUs
go on extended quiescent-state vacations.

10. CONFIG_RCU_TRACE: Generate RCU trace files in debugfs.

We ignore the CONFIG_DEBUG_LOCK_ALLOC configuration variable under the
perhaps-naive assumption that hierarchical RCU could not have broken lockdep. There
are still 10 configuration variables, which would result in 1,024 combinations if they
were independent boolean variables. Fortunately the first three are mutually exclusive,
which reduces the number of combinations down to 384, but CONFIG_RCU_FANOUT
can take on values from 2 to 64, increasing the number of combinations to 12,096. This
is an infeasible number of combinations.
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One key observation is that only CONFIG_NO_HZ and CONFIG_PREEMPT can be
expected to have changed behavior if either CONFIG_CLASSIC_RCU or CONFIG_
PREEMPT_RCU are in effect, as only these portions of the two pre-existing RCU
implementations were changed during this effort. This cuts out almost two thirds of the
possible combinations.

Furthermore, not all of the possible values of CONFIG_RCU_FANOUT produce
significantly different results, in fact only a few cases really need to be tested separately:

1. Single-node “tree”.

2. Two-level balanced tree.

3. Three-level balanced tree.

4. Autobalanced tree, where CONFIG_RCU_FANOUT specifies an unbalanced tree,
but such that it is auto-balanced in absence of CONFIG_RCU_FANOUT_EXACT.

5. Unbalanced tree.

Looking further, CONFIG_HOTPLUG_CPUmakes sense only given CONFIG_SMP,
and CONFIG_RCU_CPU_STALL_DETECTOR is independent, and really only needs
to be tested once (though someone even more paranoid than am I might decide to test
it both with and without CONFIG_SMP). Similarly, CONFIG_RCU_TRACE need only
be tested once, but the truly paranoid (such as myself) will choose to run it both with
and without CONFIG_NO_HZ.

This allows us to obtain excellent coverage of RCU with only 15 test cases. All test
cases specify the following configuration parameters in order to run rcutorture and so
that CONFIG_HOTPLUG_CPU=n actually takes effect:

CONFIG_RCU_TORTURE_TEST=m
CONFIG_MODULE_UNLOAD=y
CONFIG_SUSPEND=n
CONFIG_HIBERNATION=n

The 15 test cases are as follows:

1. Force single-node “tree” for small systems:

CONFIG_NR_CPUS=8
CONFIG_RCU_FANOUT=8
CONFIG_RCU_FANOUT_EXACT=n
CONFIG_RCU_TRACE=y
CONFIG_PREEMPT_RCU=n
CONFIG_CLASSIC_RCU=n
CONFIG_TREE_RCU=y

2. Force two-level tree for large systems:

CONFIG_NR_CPUS=8
CONFIG_RCU_FANOUT=4
CONFIG_RCU_FANOUT_EXACT=n
CONFIG_RCU_TRACE=n
CONFIG_PREEMPT_RCU=n
CONFIG_CLASSIC_RCU=n
CONFIG_TREE_RCU=y
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3. Force three-level tree for huge systems:

CONFIG_NR_CPUS=8
CONFIG_RCU_FANOUT=2
CONFIG_RCU_FANOUT_EXACT=n
CONFIG_RCU_TRACE=y
CONFIG_PREEMPT_RCU=n
CONFIG_CLASSIC_RCU=n
CONFIG_TREE_RCU=y

4. Test autobalancing to a balanced tree:

CONFIG_NR_CPUS=8
CONFIG_RCU_FANOUT=6
CONFIG_RCU_FANOUT_EXACT=n
CONFIG_RCU_TRACE=y
CONFIG_PREEMPT_RCU=n
CONFIG_CLASSIC_RCU=n
CONFIG_TREE_RCU=y

5. Test unbalanced tree:

CONFIG_NR_CPUS=8
CONFIG_RCU_FANOUT=6
CONFIG_RCU_FANOUT_EXACT=y
CONFIG_RCU_CPU_STALL_DETECTOR=y
CONFIG_RCU_TRACE=y
CONFIG_PREEMPT_RCU=n
CONFIG_CLASSIC_RCU=n
CONFIG_TREE_RCU=y

6. Disable CPU-stall detection:

CONFIG_SMP=y
CONFIG_NO_HZ=y
CONFIG_RCU_CPU_STALL_DETECTOR=n
CONFIG_HOTPLUG_CPU=y
CONFIG_RCU_TRACE=y
CONFIG_PREEMPT_RCU=n
CONFIG_CLASSIC_RCU=n
CONFIG_TREE_RCU=y

7. Disable CPU-stall detection and dyntick idle mode:

CONFIG_SMP=y
CONFIG_NO_HZ=n
CONFIG_RCU_CPU_STALL_DETECTOR=n
CONFIG_HOTPLUG_CPU=y
CONFIG_RCU_TRACE=y
CONFIG_PREEMPT_RCU=n
CONFIG_CLASSIC_RCU=n
CONFIG_TREE_RCU=y

8. Disable CPU-stall detection and CPU hotplug:

CONFIG_SMP=y
CONFIG_NO_HZ=y
CONFIG_RCU_CPU_STALL_DETECTOR=n
CONFIG_HOTPLUG_CPU=n
CONFIG_RCU_TRACE=y
CONFIG_PREEMPT_RCU=n
CONFIG_CLASSIC_RCU=n
CONFIG_TREE_RCU=y
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9. Disable CPU-stall detection, dyntick idle mode, and CPU hotplug:

CONFIG_SMP=y
CONFIG_NO_HZ=n
CONFIG_RCU_CPU_STALL_DETECTOR=n
CONFIG_HOTPLUG_CPU=n
CONFIG_RCU_TRACE=y
CONFIG_PREEMPT_RCU=n
CONFIG_CLASSIC_RCU=n
CONFIG_TREE_RCU=y

10. Disable SMP, CPU-stall detection, dyntick idle mode, and CPU hotplug:

CONFIG_SMP=n
CONFIG_NO_HZ=n
CONFIG_RCU_CPU_STALL_DETECTOR=n
CONFIG_HOTPLUG_CPU=n
CONFIG_RCU_TRACE=y
CONFIG_PREEMPT_RCU=n
CONFIG_CLASSIC_RCU=n
CONFIG_TREE_RCU=y

This combination located a number of compiler warnings.

11. Disable SMP and CPU hotplug:

CONFIG_SMP=n
CONFIG_NO_HZ=y
CONFIG_RCU_CPU_STALL_DETECTOR=y
CONFIG_HOTPLUG_CPU=n
CONFIG_RCU_TRACE=y
CONFIG_PREEMPT_RCU=n
CONFIG_CLASSIC_RCU=n
CONFIG_TREE_RCU=y

12. Test Classic RCU with dynticks idle but without preemption:

CONFIG_NO_HZ=y
CONFIG_PREEMPT=n
CONFIG_RCU_TRACE=y
CONFIG_PREEMPT_RCU=n
CONFIG_CLASSIC_RCU=y
CONFIG_TREE_RCU=n

13. Test Classic RCU with preemption but without dynticks idle:

CONFIG_NO_HZ=n
CONFIG_PREEMPT=y
CONFIG_RCU_TRACE=y
CONFIG_PREEMPT_RCU=n
CONFIG_CLASSIC_RCU=y
CONFIG_TREE_RCU=n

14. Test Preemptible RCU with dynticks idle:

CONFIG_NO_HZ=y
CONFIG_PREEMPT=y
CONFIG_RCU_TRACE=y
CONFIG_PREEMPT_RCU=y
CONFIG_CLASSIC_RCU=n
CONFIG_TREE_RCU=n
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15. Test Preemptible RCU without dynticks idle:

CONFIG_NO_HZ=n
CONFIG_PREEMPT=y
CONFIG_RCU_TRACE=y
CONFIG_PREEMPT_RCU=y
CONFIG_CLASSIC_RCU=n
CONFIG_TREE_RCU=n

For a large change that affects RCU core code, one should run rcutorture for each of
the above combinations, and concurrently with CPU offlining and onlining for cases
with CONFIG_HOTPLUG_CPU. For small changes, it may suffice to run kernbench in
each case. Of course, if the change is confined to a particular subset of the configuration
parameters, it may be possible to reduce the number of test cases.

Torturing software: the Geneva Convention does not (yet) prohibit it, and I strongly
recommend it!

D.2.9 Conclusion
This hierarchical implementation of RCU reduces lock contention, avoids unnecessarily
awakening dyntick-idle sleeping CPUs, while helping to debug Linux’s hotplug-CPU
code paths. This implementation is designed to handle single systems with thousands of
CPUs, and on 64-bit systems has an architectural limitation of a quarter million CPUs, a
limit I expect to be sufficient for at least the next few years.

This RCU implementation of course has some limitations:

1. The force_quiescent_state() can scan the full set of CPUs with irqs
disabled. This would be fatal in a real-time implementation of RCU, so if
hierarchy ever needs to be introduced to preemptible RCU, some other approach
will be required. It is possible that it will be problematic on 4,096-CPU systems,
but actual testing on such systems is required to prove this one way or the other.

On busy systems, the force_quiescent_state() scan would not be ex-
pected to happen, as CPUs should pass through quiescent states within three
jiffies of the start of a quiescent state. On semi-busy systems, only the CPUs
in dynticks-idle mode throughout would need to be scanned. In some cases,
for example when a dynticks-idle CPU is handling an interrupt during a scan,
subsequent scans are required. However, each such scan is performed separately,
so scheduling latency is degraded by the overhead of only one such scan.

If this scan proves problematic, one straightforward solution would be to do the
scan incrementally. This would increase code complexity slightly and would also
increase the time required to end a grace period, but would nonetheless be a likely
solution.

2. The rcu_node hierarchy is created at compile time, and is therefore sized for
the worst-case NR_CPUS number of CPUs. However, even for 4,096 CPUs, the
rcu_node hierarchy consumes only 65 cache lines on a 64-bit machine (and just
you try accommodating 4,096 CPUs on a 32-bit machine!). Of course, a kernel
built with NR_CPUS=4096 running on a 16-CPU machine would use a two-level
tree when a single-node tree would work just fine. Although this configuration
would incur added locking overhead, this does not affect hot-path read-side code,
so should not be a problem in practice.
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3. This patch does increase kernel text and data somewhat: the old Classic RCU
implementation consumes 1,757 bytes of kernel text and 456 bytes of kernel
data for a total of 2,213 bytes, while the new hierarchical RCU implementation
consumes 4,006 bytes of kernel text and 624 bytes of kernel data for a total of
4,630 bytes on a NR_CPUS=4 system. This is a non-problem even for most
embedded systems, which often come with hundreds of megabytes of main
memory. However, if this is a problem for tiny embedded systems, it may be
necessary to provide both “scale up” and “scale down” implementations of RCU.

This hierarchical RCU implementation should nevertheless be a vast improvement
over Classic RCU for machines with hundreds of CPUs. After all, Classic RCU was
designed for systems with only 16-32 CPUs.

At some point, it may be necessary to also apply hierarchy to the preemptible RCU
implementation. This will be challenging due to the modular arithmetic used on the
per-CPU counter pairs, but should be doable.

D.3 Hierarchical RCU Code Walkthrough

This section walks through selected sections of the Linux-kernel hierarchical RCU
code. As such, this section is intended for hard-core hackers who wish to understand
hierarchical RCU at a very low level, and such hackers should first read Section D.2.
Hard-core masochists might also be interested in reading this section. Of course really
hard-core masochists will read this section before reading Section D.2.

Section D.3.1 describes data structures and kernel parameters, Section D.3.2 covers
external function interfaces, Section D.3.3 presents the initialization process, Sec-
tion D.3.4 explains the CPU-hotplug interface, Section D.3.5 covers miscellaneous
utility functions, Section D.3.6 describes the mechanics of grace-period detection, Sec-
tion D.3.7 presents the dynticks-idle interface, Section D.3.8 covers the functions that
handle holdout CPUs (including offline and dynticks-idle CPUs), and Section D.3.9
presents functions that report on stalled CPUs, namely those spinning in kernel mode
for many seconds. Finally, Section D.3.10 reports on possible design flaws and fixes.

D.3.1 Data Structures and Kernel Parameters

A full understanding of the Hierarchical RCU data structures is critically important to
understanding the algorithms. To this end, Section D.3.1.1 describes the data structures
used to track each CPU’s dyntick-idle state, Section D.3.1.2 describes the fields in the
per-node data structure making up the rcu_node hierarchy, Section D.3.1.3 describes
per-CPU rcu_data structure, Section D.3.1.4 describes the field in the global rcu_
state structure, and Section D.3.1.5 describes the kernel parameters that control
Hierarchical RCU’s operation.

Figure D.17 on Page 482 and Figure D.26 on Page 508 can be very helpful in
keeping one’s place through the following detailed data-structure descriptions.

D.3.1.1 Tracking Dyntick State

The per-CPU rcu_dynticks structure tracks dynticks state using the following
fields:
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• dynticks_nesting: This int counts the number of reasons that the corre-
sponding CPU should be monitored for RCU read-side critical sections. If the
CPU is in dynticks-idle mode, then this counts the irq nesting level, otherwise it
is one greater than the irq nesting level.

• dynticks: This int counter’s value is even if the corresponding CPU is in
dynticks-idle mode and there are no irq handlers currently running on that CPU,
otherwise the counter’s value is odd. In other words, if this counter’s value is odd,
then the corresponding CPU might be in an RCU read-side critical section.

• dynticks_nmi: This int counter’s value is odd if the corresponding CPU is
in an NMI handler, but only if the NMI arrived while this CPU was in dyntick-idle
mode with no irq handlers running. Otherwise, the counter’s value will be even.

This state is shared between the rcu and rcu_bh implementations.

D.3.1.2 Nodes in the Hierarchy

As noted earlier, the rcu_node hierarchy is flattened into the rcu_state structure
as shown in Figure D.13 on page 478. Each rcu_node in this hierarchy has fields as
follows:

• lock: This spinlock guards the non-constant fields in this structure. This lock is
acquired from softirq context, so must disable irqs.

Quick Quiz D.19: Why not simply disable bottom halves (softirq) when acquir-
ing the rcu_data structure’s lock? Wouldn’t this be faster?

The lock field of the root rcu_node has additional responsibilities:

1. Serializes CPU-stall checking, so that a given stall is reported by only one
CPU. This can be important on systems with thousands of CPUs!

2. Serializes starting a new grace period, so that multiple CPUs don’t start
conflicting grace periods concurrently.

3. Prevents new grace periods from starting in code that needs to run within
the confines of a single grace period.

4. Serializes the state machine forcing quiescent states (in force_quiescent_
state()) in order to keep the number of reschedule IPIs down to a dull
roar.

• qsmask: This bitmask tracks which CPUs (for leaf rcu_node structures) or
groups of CPUs (for non-leaf rcu_node structures) still need to pass through a
quiescent state in order for the current grace period to end.

• qsmaskinit: This bitmask tracks which CPUs or groups of CPUs will need
to pass through a quiescent state for subsequent grace periods to end. The
online/offline code manipulates the qsmaskinit fields, which are copied to the
corresponding qsmask fields at the beginning of each grace period. This copy
operation is one reason why grace period initialization must exclude online/offline
operations.
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• grpmask: This bitmask has a single bit set, and that is the bit corresponding
to the this rcu_node structure’s position in the parent rcu_node structure’s
qsmask and qsmaskinit fields. Use of this field simplifies quiescent-state
processing, as suggested by Manfred Spraul.

Quick Quiz D.20: How about the qsmask and qsmaskinit fields for the leaf
rcu_node structures? Doesn’t there have to be some way to work out which
of the bits in these fields corresponds to each CPU covered by the rcu_node
structure in question?

• grplo: This field contains the number of the lowest-numbered CPU covered by
this rcu_node structure.

• grphi: This field contains the number of the highest-numbered CPU covered by
this rcu_node structure.

• grpnum: This field contains the bit number in the parent rcu_node structure’s
qsmask and qsmaskinit fields that this rcu_node structure corresponds
to. In other words, given a pointer rnp to a given rcu_node structure, it will
always be the case that 1UL << rnp->grpnum == rnp->grpmask. The
grpnum field is used only for tracing output.

• level: This field contains zero for the root rcu_node structure, one for the
rcu_node structures that are children of the root, and so on down the hierarchy.

• parent: This field is a pointer to the parent rcu_node structure, or NULL for
the root rcu_node structure.

D.3.1.3 Per-CPU Data

The rcu_data structure contains RCU’s per-CPU state. It contains control vari-
ables governing grace periods and quiescent states (completed, gpnum, passed_
quiesc_completed, passed_quiesc, qs_pending, beenonline, mynode,
and grpmask). The rcu_data structure also contains control variables pertaining
to RCU callbacks (nxtlist, nxttail, qlen, and blimit). Kernels with dynticks
enabled will have relevant control variables in the rcu_data structure (dynticks,
dynticks_snap, and dynticks_nmi_snap). The rcu_data structure con-
tains event counters used by tracing (dynticks_fqs given dynticks, offline_
fqs, and resched_ipi). Finally, a pair of fields count calls to rcu_pending()
in order to determine when to force quiescent states (n_rcu_pending and n_rcu_
pending_force_qs), and a cpu field indicates which CPU to which a given rcu_
data structure corresponds.

Each of these fields is described below.

• completed: This field contains the number of the most recent grace period that
this CPU is aware of having completed.

• gpnum: This field contains the number of the most recent grace period that this
CPU is aware of having started.

• passed_quiesc_completed: This field contains the number of the grace
period that had most recently completed when this CPU last passed through a
quiescent state. The "most recently completed" will be from the viewpoint of
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the CPU passing through the quiescent state: if the CPU is not yet aware that
grace period (say) 42 has completed, it will still record the old value of 41. This
is OK, because the only way that the grace period can complete is if this CPU has
already passed through a quiescent state. This field is initialized to a (possibly
mythical) past grace period number to avoid race conditions when booting and
when onlining a CPU.

• passed_quiesc: This field indicates whether this CPU has passed through
a quiescent state since the grace period number stored in passed_quiesc_
completed completed. This field is cleared each time the corresponding CPU
becomes aware of the start of a new grace period.

• qs_pending: This field indicates that this CPU is aware that the core RCU
mechanism is waiting for it to pass through a quiescent state. This field is set to
one when the CPU detects a new grace period or when a CPU is coming online.

Quick Quiz D.21: But why bother setting qs_pending to one when a CPU is
coming online, given that being offline is an extended quiescent state that should
cover any ongoing grace period?

Quick Quiz D.22: Why record the last completed grace period number in
passed_quiesc_completed? Doesn’t that cause this RCU implementation
to be vulnerable to quiescent states seen while no grace period was in progress
being incorrectly applied to the next grace period that starts?

• beenonline: This field, initially zero, is set to one whenever the corresponding
CPU comes online. This is used to avoid producing useless tracing output for
CPUs that never have been online, which is useful in kernels where NR_CPUS
greatly exceeds the actual number of CPUs.

Quick Quiz D.23: What is the point of running a system with NR_CPUS way
bigger than the actual number of CPUs?

• mynode: This field is a pointer to the leaf rcu_node structure that handles the
corresponding CPU.

• grpmask: This field is a bitmask that has the single bit set that indicates which
bit in mynode->qsmask signifies the corresponding CPU.

• nxtlist: This field is a pointer to the oldest RCU callback (rcu_head struc-
ture) residing on this CPU, or NULL if this CPU currently has no such callbacks.
Additional callbacks may be chained via their next pointers.

• nxttail: This field is an array of double-indirect tail pointers into the nxtlist
callback list. If nxtlist is empty, then all of the nxttail pointers directly
reference the nxtlist field. Each element of the nxttail array has meaning
as follows:

– RCU_DONE_TAIL=0: This element references the ->next field of the
last callback that has passed through its grace period and is ready to invoke,
or references the nxtlist field if there is no such callback.

– RCU_WAIT_TAIL=1: This element references the next field of the last
callback that is waiting for the current grace period to end, or is equal to the
RCU_DONE_TAIL element if there is no such callback.
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– RCU_NEXT_READY_TAIL=2: This element references the next field of
the last callback that is ready to wait for the next grace period, or is equal to
the RCU_WAIT_TAIL element if there is no such callback.

– RCU_NEXT_TAIL=3: This element references the next field of the last
callback in the list, or references the nxtlist field if the list is empty.

Quick Quiz D.24: Why not simply have multiple lists rather than this funny
multi-tailed list?

• qlen: This field contains the number of callbacks queued on nxtlist.

• blimit: This field contains the maximum number of callbacks that may be
invoked at a time. This limitation improves system responsiveness under heavy
load.

• dynticks: This field references the rcu_dynticks structure for the corre-
sponding CPU, which is described in Section D.3.1.1.

• dynticks_snap: This field contains a past value of dynticks->dynticks,
which is used to detect when a CPU passes through a dynticks idle state when
this CPU happens to be in an irq handler each time that force_quiescent_
state() checks it.

• dynticks_nmi_snap: This field contains a past value of dynticks->dynticks_
nmi, which is used to detect when a CPU passes through a dynticks idle state
when this CPU happens to be in an NMI handler each time that force_quiescent_
state() checks it.

• dynticks_fqs: This field counts the number of times that some other CPU
noted a quiescent state on behalf of the CPU corresponding to this rcu_data
structure due to its being in dynticks-idle mode.

• offline_fqs: This field counts the number of times that some other CPU
noted a quiescent state on behalf of the CPU corresponding to this rcu_data
structure due to its being offline.

Quick Quiz D.25: So some poor CPU has to note quiescent states on behalf of
each and every offline CPU? Yecch! Won’t that result in excessive overheads in
the not-uncommon case of a system with a small number of CPUs but a large
value for NR_CPUS?

• resched_ipi: This field counts the number of times that a reschedule IPI is
sent to the corresponding CPU. Such IPIs are sent to CPUs that fail to report
passing through a quiescent states in a timely manner, but are neither offline nor
in dynticks idle state.

• n_rcu_pending: This field counts the number of calls to rcu_pending(),
which is called once per jiffy on non-dynticks-idle CPUs.

• n_rcu_pending_force_qs: This field holds a threshold value for n_rcu_
pending. If n_rcu_pending reaches this threshold, that indicates that the
current grace period has extended too long, so force_quiescent_state()
is invoked to expedite it.

497



D.3.1.4 RCU Global State

The rcu_state structure contains RCU’s global state for each instance of RCU
(rcu and rcu_bh). It includes fields relating to the hierarchy of rcu_node structures,
including the node array itself, the level array that contains pointers to the levels
of the hierarchy, the levelcnt array that contains the count of nodes at each level
of the hierarchy, the levelspread array that contains the number of children per
node for each level of the hierarchy, and the rda array of pointer to each of the CPU’s
rcu_data structures. The rcu_state structure also contains a number of fields co-
ordinating various details of the current grace period and its interaction with other mech-
anisms (signaled, gpnum, completed, onofflock, fqslock, jiffies_
force_qs, n_force_qs, n_force_qs_lh, n_force_qs_ngp, gp_start,
jiffies_stall, and dynticks_completed).

Each of these fields are described below.

• node: This field is the array of rcu_node structures, with the root node of
the hierarchy being located at ->node[0]. The size of this array is specified
by the NUM_RCU_NODES C-preprocessor macro, which is computed from NR_
CPUS and CONFIG_RCU_FANOUT as described in Section D.3.1.5. Note that
traversing the ->node array starting at element zero has the effect of doing a
breadth-first search of the rcu_node hierarchy.

• level: This field is an array of pointers into the node array. The root node of
the hierarchy is referenced by ->level[0], the first node of the second level
of the hierarchy (if there is one) by ->level[1], and so on. The first leaf node
is referenced by ->level[NUM_RCU_LVLS-1], and the size of the level
array is thus specified by NUM_RCU_LVLS, which is computed as described in
Section D.3.1.5. The ->level field is often used in combination with ->node
to scan a level of the rcu_node hierarchy, for example, all of the leaf nodes.
The elements of ->level are filled in by the boot-time rcu_init_one()
function.

• levelcnt: This field is an array containing the number of rcu_node struc-
tures in each level of the hierarchy, including the number of rcu_data structures
referencing the leaf rcu_node structures, so that this array has one more element
than does the ->level array. Note that ->levelcnt[0] will always contain
a value of one, corresponding to the single root rcu_node at the top of the hier-
archy. This array is initialized with the values NUM_RCU_LVL_0, NUM_RCU_
LVL_1, NUM_RCU_LVL_2, and NUM_RCU_LVL_3, which are C-preprocessor
macros computed as described in Section D.3.1.5. The ->levelcnt field is
used to initialize other parts of the hierarchy and for debugging purposes.

• levelspread: Each element of this field contains the desired number of
children for the corresponding level of the rcu_node hierarchy. This ar-
ray’s element’s values are computed at runtime by one of the two rcu_init_
levelspread() functions, selected by the CONFIG_RCU_FANOUT_EXACT
kernel parameter.

• rda: Each element of this field contains a pointer to the corresponding CPU’s
rcu_data structure. This array is initialized at boot time by the RCU_DATA_
PTR_INIT() macro.
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• signaled: This field is used to maintain state used by the force_quiescent_
state() function, as described in Section D.3.8. This field takes on values as
follows:

– RCU_GP_INIT: This value indicates that the current grace period is still in
the process of being initialized, so that force_quiescent_state()
should take no action. Of course, grace-period initialization would need
to stretch out for three jiffies before this race could arise, but if you have a
very large number of CPUs, this race could in fact occur. Once grace-period
initialization is complete, this value is set to either RCU_SAVE_DYNTICK
(if CONFIG_NO_HZ) or RCU_FORCE_QS otherwise.

– RCU_SAVE_DYNTICK: This value indicates that force_quiescent_
state() should check the dynticks state of any CPUs that have not yet
reported quiescent states for the current grace period. Quiescent states will
be reported on behalf of any CPUs that are in dyntick-idle mode.

– RCU_FORCE_QS: This value indicates that force_quiescent_state()
should recheck dynticks state along with the online/offline state of any CPUs
that have not yet reported quiescent states for the current grace period. The
rechecking of dynticks states allows the implementation to handle cases
where a given CPU might be in dynticks-idle state, but have been in an irq
or NMI handler both times it was checked. If all else fails, a reschedule IPI
will be sent to the laggard CPU.

This field is guarded by the root rcu_node structure’s lock.

Quick Quiz D.26: So what guards the earlier fields in this structure?

• gpnum: This field contains the number of the current grace period, or that of the
last grace period if no grace period is currently in effect. This field is guarded
by the root rcu_node structure’s lock, but is frequently accessed (but never
modified) without holding this lock.

• completed: This field contains the number of the last completed grace period.
As such, it is equal to ->gpnum when there is no grace period in progress, or one
less than ->gpnum when there is a grace period in progress. In principle, one
could replace this pair of fields with a single boolean, as is done in Classic RCU
in some versions of Linux, but in practice race resolution is much simpler given
the pair of numbers. This field is guarded by the root rcu_node structure’s lock,
but is frequently accessed (but never modified) without holding this lock.

• onofflock: This field prevents online/offline processing from running con-
currently with grace-period initialization. There is one exception to this: if the
rcu_node hierarchy consists of but a single structure, then that single structure’s
->lock field will instead take on this job.

• fqslock: This field prevents more than one task from forcing quiescent states
with force_quiescent_state().

• jiffies_force_qs: This field contains the time, in jiffies, when force_
quiescent_state() should be invoked in order to force CPUs into quiescent
states and/or report extended quiescent states. This field is guarded by the root
rcu_node structure’s lock, but is frequently accessed (but never modified)
without holding this lock.
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• n_force_qs: This field counts the number of calls to force_quiescent_
state() that actually do work, as opposed to leaving early due to the grace
period having already completed, some other CPU currently running force_
quiescent_state(), or force_quiescent_state() having run too
recently. This field is used for tracing and debugging, and is guarded by ->fqslock.

• n_force_qs_lh: This field holds an approximate count of the number of times
that force_quiescent_state() returned early due to the ->fqslock
being held by some other CPU. This field is used for tracing and debugging, and
is not guarded by any lock, hence its approximate nature.

• n_force_qs_ngp: This field counts the number of times that force_quiescent_
state() that successfully acquire ->fqslock, but then find that there is no
grace period in progress. This field is used for tracing and debugging, and is
guarded by ->fqslock.

• gp_start: This field records the time at which the most recent grace pe-
riod began, in jiffies. This is used to detect stalled CPUs, but only when the
CONFIG_RCU_CPU_STALL_DETECTOR kernel parameter is selected. This
field is guarded by the root rcu_node’s ->lock, but is sometimes accessed
(but not modified) outside of this lock.

• jiffies_stall: This field holds the time, in jiffies, at which the current grace
period will have extended for so long that it will be appropriate to check for CPU
stalls. As with ->gp_start, this field exists only when the CONFIG_RCU_
CPU_STALL_DETECTOR kernel parameter is selected. This field is guarded by
the root rcu_node’s ->lock, but is sometimes accessed (but not modified)
outside of this lock.

• dynticks_completed: This field records the value of ->completed at
the time when force_quiescent_state() snapshots dyntick state, but is
also initialized to an earlier grace period at the beginning of each grace period.
This field is used to prevent dyntick-idle quiescent states from a prior grace period
from being applied to the current grace period. As such, this field exists only
when the CONFIG_NO_HZ kernel parameter is selected. This field is guarded
by the root rcu_node’s ->lock, but is sometimes accessed (but not modified)
outside of this lock.

D.3.1.5 Kernel Parameters

The following kernel parameters affect this variant of RCU:

• NR_CPUS, the maximum number of CPUs in the system.

• CONFIG_RCU_FANOUT, the desired number of children for each node in the
rcu_node hierarchy.

• CONFIG_RCU_FANOUT_EXACT, a boolean preventing rebalancing of the rcu_
node hierarchy.

• CONFIG_HOTPLUG_CPU, permitting CPUs to come online and go offline.

• CONFIG_NO_HZ, indicating that dynticks-idle mode is supported.
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1 #define MAX_RCU_LVLS 3
2 #define RCU_FANOUT (CONFIG_RCU_FANOUT)
3 #define RCU_FANOUT_SQ (RCU_FANOUT * RCU_FANOUT)
4 #define RCU_FANOUT_CUBE (RCU_FANOUT_SQ * RCU_FANOUT)
5
6 #if NR_CPUS <= RCU_FANOUT
7 # define NUM_RCU_LVLS 1
8 # define NUM_RCU_LVL_0 1
9 # define NUM_RCU_LVL_1 (NR_CPUS)
10 # define NUM_RCU_LVL_2 0
11 # define NUM_RCU_LVL_3 0
12 #elif NR_CPUS <= RCU_FANOUT_SQ
13 # define NUM_RCU_LVLS 2
14 # define NUM_RCU_LVL_0 1
15 # define NUM_RCU_LVL_1 (((NR_CPUS) + RCU_FANOUT - 1) / RCU_FANOUT)
16 # define NUM_RCU_LVL_2 (NR_CPUS)
17 # define NUM_RCU_LVL_3 0
18 #elif NR_CPUS <= RCU_FANOUT_CUBE
19 # define NUM_RCU_LVLS 3
20 # define NUM_RCU_LVL_0 1
21 # define NUM_RCU_LVL_1 (((NR_CPUS) + RCU_FANOUT_SQ - 1) / RCU_FANOUT_SQ)
22 # define NUM_RCU_LVL_2 (((NR_CPUS) + (RCU_FANOUT) - 1) / (RCU_FANOUT))
23 # define NUM_RCU_LVL_3 NR_CPUS
24 #else
25 # error "CONFIG_RCU_FANOUT insufficient for NR_CPUS"
26 #endif /* #if (NR_CPUS) <= RCU_FANOUT */
27
28 #define RCU_SUM (NUM_RCU_LVL_0 + NUM_RCU_LVL_1 + NUM_RCU_LVL_2 + NUM_RCU_LVL_3)
29 #define NUM_RCU_NODES (RCU_SUM - NR_CPUS)

Figure D.20: Determining Shape of RCU Hierarchy

• CONFIG_SMP, indicating that multiple CPUs may be present.

• CONFIG_RCU_CPU_STALL_DETECTOR, indicating that RCU should check
for stalled CPUs when RCU grace periods extend too long.

• CONFIG_RCU_TRACE, indicating that RCU should provide tracing information
in debugfs.

The CONFIG_RCU_FANOUT and NR_CPUS parameters are used to determine the
shape of the rcu_node hierarchy at compile time, as shown in Figure D.20. Line 1
defines the maximum depth of the rcu_node hierarchy, currently three. Note that
increasing the maximum permitted depth requires changes elsewhere, for example,
adding another leg to the #if statement running from lines 6-26. Lines 2-4 compute
the fanout, the square of the fanout, and the cube of the fanout, respectively.

Then these values are compared to NR_CPUS to determine the required depth of
the rcu_node hierarchy, which is placed into NUM_RCU_LVLS, which is used to
size a number of arrays in the rcu_state structure. There is always one node at the
root level, and there are always NUM_CPUS number of rcu_data structures below
the leaf level. If there is more than just the root level, the number of nodes at the
leaf level is computed by dividing NR_CPUS by RCU_FANOUT, rounding up. The
number of nodes at other levels is computed in a similar manner, but using (for example)
RCU_FANOUT_SQ instead of RCU_FANOUT.

Line 28 then sums up all of the levels, resulting in the number of rcu_node
structures plus the number of rcu_data structures. Finally, line 29 subtracts NR_
CPUS (which is the number of rcu_data structures) from the sum, resulting in the
number of rcu_node structures, which is retained in NUM_RCU_NODES. This value
is then used to size the ->nodes array in the rcu_state structure.
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1 void __rcu_read_lock(void)
2 {
3 preempt_disable();
4 __acquire(RCU);
5 rcu_read_acquire();
6 }
7
8 void __rcu_read_unlock(void)
9 {
10 rcu_read_release();
11 __release(RCU);
12 preempt_enable();
13 }
14
15 void __rcu_read_lock_bh(void)
16 {
17 local_bh_disable();
18 __acquire(RCU_BH);
19 rcu_read_acquire();
20 }
21
22 void __rcu_read_unlock_bh(void)
23 {
24 rcu_read_release();
25 __release(RCU_BH);
26 local_bh_enable();
27 }

Figure D.21: RCU Read-Side Critical Sections

D.3.2 External Interfaces
RCU’s external interfaces include not just the standard RCU API, but also the internal in-
terfaces to the rest of the kernel that are required for the RCU implementation itself. The
interfaces are rcu_read_lock(), rcu_read_unlock(), rcu_read_lock_
bh(), rcu_read_unlock_bh(), call_rcu() (which is a wrapper around _
_call_rcu()), call_rcu_bh() (ditto), rcu_check_callbacks(), rcu_
process_callbacks() (which is a wrapper around __rcu_process_callbacks()),
rcu_pending() (which is a wrapper around __rcu_pending()), rcu_needs_
cpu(), rcu_cpu_notify(), and __rcu_init(). Note that synchronize_
rcu() and rcu_barrier() are common to all RCU implementations, and are
defined in terms of call_rcu(). Similarly, rcu_barrier_bh() is common to
all RCU implementations and is defined in terms of call_rcu_bh().

These external APIs are each described in the following sections.

D.3.2.1 Read-Side Critical Sections

Figure D.21 shows the functions that demark RCU read-side critical sections. Lines 1-6
show __rcu_read_lock(), which begins an “rcu” read-side critical section. line 3
disables preemption, line 4 is a sparse marker noting the beginning of an RCU read-side
critical section, and line 5 updates lockdep state. Lines 8-13 show __rcu_read_
unlock(), which is the inverse of __rcu_read_lock(). Lines 15-20 show _
_rcu_read_lock_bh() and lines 22-27 show __rcu_read_unlock_bh(),
which are analogous to the previous two functions, but disable and enable bottom-half
processing rather than preemption.

Quick Quiz D.27: I thought that RCU read-side processing was supposed to be
fast! The functions shown in Figure D.21 have so much junk in them that they just have
to be slow! What gives here?
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1 static void
2 __call_rcu(struct rcu_head *head,
3 void (*func)(struct rcu_head *rcu),
4 struct rcu_state *rsp)
5 {
6 unsigned long flags;
7 struct rcu_data *rdp;
8
9 head->func = func;
10 head->next = NULL;
11 smp_mb();
12 local_irq_save(flags);
13 rdp = rsp->rda[smp_processor_id()];
14 rcu_process_gp_end(rsp, rdp);
15 check_for_new_grace_period(rsp, rdp);
16 *rdp->nxttail[RCU_NEXT_TAIL] = head;
17 rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
18 if (ACCESS_ONCE(rsp->completed) ==
19 ACCESS_ONCE(rsp->gpnum)) {
20 unsigned long nestflag;
21 struct rcu_node *rnp_root = rcu_get_root(rsp);
22
23 spin_lock_irqsave(&rnp_root->lock, nestflag);
24 rcu_start_gp(rsp, nestflag);
25 }
26 if (unlikely(++rdp->qlen > qhimark)) {
27 rdp->blimit = LONG_MAX;
28 force_quiescent_state(rsp, 0);
29 } else if ((long)(ACCESS_ONCE(rsp->jiffies_force_qs) -
30 jiffies) < 0 ||
31 (rdp->n_rcu_pending_force_qs -
32 rdp->n_rcu_pending) < 0)
33 force_quiescent_state(rsp, 1);
34 local_irq_restore(flags);
35 }
36
37 void call_rcu(struct rcu_head *head,
38 void (*func)(struct rcu_head *rcu))
39 {
40 __call_rcu(head, func, &rcu_state);
41 }
42
43 void call_rcu_bh(struct rcu_head *head,
44 void (*func)(struct rcu_head *rcu))
45 {
46 __call_rcu(head, func, &rcu_bh_state);
47 }

Figure D.22: call_rcu() Code

D.3.2.2 call_rcu()

Figure D.22 shows the code for __call_rcu(), call_rcu(), and call_rcu_
bh(). Note that call_rcu() and call_rcu_bh() are simple wrappers for __
call_rcu(), and thus will not be considered further here.

Turning attention to __call_rcu(), lines 9-10 initialize the specified rcu_
head, and line 11 ensures that updates to RCU-protected data structures carried out
prior to invoking __call_rcu() are seen prior to callback registry. Lines 12 and
34 disable and re-enable interrupts to prevent destructive interference by any calls
to __call_rcu() from an interrupt handler. Line 13 obtains a reference to the
current CPU’s rcu_data structure, line 14 invokes rcu_process_gp_end() in
order to advance callbacks if the current grace period has now ended, while line 15
invokes check_for_new_grace_period() to record state if a new grace period
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has started.
Quick Quiz D.28: Why not simply use __get_cpu_var() to pick up a reference

to the current CPU’s rcu_data structure on line 13 in Figure D.22?
Lines 16 and 17 enqueue the new callback. Lines 18 and 19 check to see there is a

grace period in progress, and, if not, line 23 acquires the root rcu_node structure’s
lock and line 24 invokes rcu_start_gp() to start a new grace period (and also to
release the lock).

Line 26 checks to see if too many RCU callbacks are waiting on this CPU, and, if
so, line 27 increases ->blimit in order to increase the rate at which callbacks are
processed, while line 28 invokes force_quiescent_state() urgently in order to
try to convince holdout CPUs to pass through quiescent states. Otherwise, lines 29-32
check to see if it has been too long since the grace period started (or since the last call
to force_quiescent_state(), as the case may be), and, if so, line 33 invokes
force_quiescent_state() non-urgently, again to convince holdout CPUs to
pass through quiescent states.

D.3.2.3 rcu_check_callbacks()

Figure D.23 shows the code that is called from the scheduling-clock interrupt handler
once per jiffy from each CPU. The rcu_pending() function (which is a wrapper
for __rcu_pending()) is invoked, and if it returns non-zero, then rcu_check_
callbacks() is invoked. (Note that there is some thought being given to merging
rcu_pending() into rcu_check_callbacks().)

Starting with __rcu_pending(), line 4 counts this call to rcu_pending()
for use in deciding when to force quiescent states. Line 6 invokes check_cpu_
stall() in order to report on CPUs that are spinning in the kernel, or perhaps
that have hardware problems, if CONFIG_RCU_CPU_STALL_DETECTOR is selected.
Lines 7-23 perform a series of checks, returning non-zero if RCU needs the current
CPU to do something. Line 7 checks to see if the current CPU owes RCU a quiescent
state for the current grace period, line 9 invokes cpu_has_callbacks_ready_
to_invoke() to see if the current CPU has callbacks whose grace period has ended,
thus being ready to invoke, line 11 invokes cpu_needs_another_gp() to see if
the current CPU has callbacks that need another RCU grace period to elapse, line 13
checks to see if the current grace period has ended, line 15 checks to see if a new
grace period has started, and, finally, lines 17-22 check to see if it is time to attempt to
force holdout CPUs to pass through a quiescent state. This latter check breaks down as
follows: (1) lines 17-18 check to see if there is a grace period in progress, and, if so,
lines 19-22 check to see if sufficient jiffies (lines 19-20) or calls to rcu_pending()
(lines 21-22) have elapsed that force_quiescent_state() should be invoked.
If none of the checks in the series triggers, then line 24 returns zero, indicating that
rcu_check_callbacks() need not be invoked.

Lines 27-33 show rcu_pending(), which simply invokes __rcu_pending()
twice, once for “rcu” and again for “rcu_bh”.

Quick Quiz D.29: Given that rcu_pending() is always called twice on lines 29-
32 of Figure D.23, shouldn’t there be some way to combine the checks of the two
structures?

Lines 35-48 show rcu_check_callbacks(), which checks to see if the scheduling-
clock interrupt interrupted an extended quiescent state, and then initiates RCU’s softirq
processing (rcu_process_callbacks()). Lines 37-41 perform this check for
“rcu”, while lines 42-43 perform the check for “rcu_bh”.
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1 static int __rcu_pending(struct rcu_state *rsp,
2 struct rcu_data *rdp)
3 {
4 rdp->n_rcu_pending++;
5
6 check_cpu_stall(rsp, rdp);
7 if (rdp->qs_pending)
8 return 1;
9 if (cpu_has_callbacks_ready_to_invoke(rdp))
10 return 1;
11 if (cpu_needs_another_gp(rsp, rdp))
12 return 1;
13 if (ACCESS_ONCE(rsp->completed) != rdp->completed)
14 return 1;
15 if (ACCESS_ONCE(rsp->gpnum) != rdp->gpnum)
16 return 1;
17 if (ACCESS_ONCE(rsp->completed) !=
18 ACCESS_ONCE(rsp->gpnum) &&
19 ((long)(ACCESS_ONCE(rsp->jiffies_force_qs) -
20 jiffies) < 0 ||
21 (rdp->n_rcu_pending_force_qs -
22 rdp->n_rcu_pending) < 0))
23 return 1;
24 return 0;
25 }
26
27 int rcu_pending(int cpu)
28 {
29 return __rcu_pending(&rcu_state,
30 &per_cpu(rcu_data, cpu)) ||
31 __rcu_pending(&rcu_bh_state,
32 &per_cpu(rcu_bh_data, cpu));
33 }
34
35 void rcu_check_callbacks(int cpu, int user)
36 {
37 if (user ||
38 (idle_cpu(cpu) && !in_softirq() &&
39 hardirq_count() <= (1 << HARDIRQ_SHIFT))) {
40 rcu_qsctr_inc(cpu);
41 rcu_bh_qsctr_inc(cpu);
42 } else if (!in_softirq()) {
43 rcu_bh_qsctr_inc(cpu);
44 }
45 raise_softirq(RCU_SOFTIRQ);
46 }

Figure D.23: rcu_check_callbacks() Code
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1 static void
2 __rcu_process_callbacks(struct rcu_state *rsp,
3 struct rcu_data *rdp)
4 {
5 unsigned long flags;
6
7 if ((long)(ACCESS_ONCE(rsp->jiffies_force_qs) -
8 jiffies) < 0 ||
9 (rdp->n_rcu_pending_force_qs -
10 rdp->n_rcu_pending) < 0)
11 force_quiescent_state(rsp, 1);
12 rcu_process_gp_end(rsp, rdp);
13 rcu_check_quiescent_state(rsp, rdp);
14 if (cpu_needs_another_gp(rsp, rdp)) {
15 spin_lock_irqsave(&rcu_get_root(rsp)->lock, flags);
16 rcu_start_gp(rsp, flags);
17 }
18 rcu_do_batch(rdp);
19 }
20
21 static void
22 rcu_process_callbacks(struct softirq_action *unused)
23 {
24 smp_mb();
25 __rcu_process_callbacks(&rcu_state,
26 &__get_cpu_var(rcu_data));
27 __rcu_process_callbacks(&rcu_bh_state,
28 &__get_cpu_var(rcu_bh_data));
29 smp_mb();
30 }

Figure D.24: rcu_process_callbacks() Code

Lines 37-39 check to see if the scheduling clock interrupt came from user-mode
execution (line 37) or directly from the idle loop (line 38’s idle_cpu() invocation)
with no intervening levels of interrupt (the remainder of line 38 and all of line 39). If
this check succeeds, so that the scheduling clock interrupt did come from an extended
quiescent state, then because any quiescent state for “rcu” is also a quiescent state for
“rcu_bh”, lines 40 and 41 report the quiescent state for both flavors of RCU.

Similarly for “rcu_bh”, line 42 checks to see if the scheduling-clock interrupt came
from a region of code with softirqs enabled, and, if so line 43 reports the quiescent state
for “rcu_bh” only.

Quick Quiz D.30: Shouldn’t line 42 of Figure D.23 also check for in_hardirq()?

In either case, line 45 invokes an RCU softirq, which will result in rcu_process_
callbacks() being called on this CPU at some future time (like when interrupts are
re-enabled after exiting the scheduler-clock interrupt).

D.3.2.4 rcu_process_callbacks()

Figure D.24 shows the code for rcu_process_callbacks(), which is a wrapper
around __rcu_process_callbacks(). These functions are invoked as a result
of a call to raise_softirq(RCU_SOFTIRQ), for example, line 47 of Figure D.23,
which is normally done if there is reason to believe that the RCU core needs this CPU
to do something.

Lines 7-10 check to see if it has been awhile since the current grace period started,
and, if so, line 11 invokes force_quiescent_state() in order to try to convince
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1 int rcu_needs_cpu(int cpu)
2 {
3 return per_cpu(rcu_data, cpu).nxtlist ||
4 per_cpu(rcu_bh_data, cpu).nxtlist;
5 }
6
7 static int __cpuinit
8 rcu_cpu_notify(struct notifier_block *self,
9 unsigned long action, void *hcpu)
10 {
11 long cpu = (long)hcpu;
12
13 switch (action) {
14 case CPU_UP_PREPARE:
15 case CPU_UP_PREPARE_FROZEN:
16 rcu_online_cpu(cpu);
17 break;
18 case CPU_DEAD:
19 case CPU_DEAD_FROZEN:
20 case CPU_UP_CANCELED:
21 case CPU_UP_CANCELED_FROZEN:
22 rcu_offline_cpu(cpu);
23 break;
24 default:
25 break;
26 }
27 return NOTIFY_OK;
28 }

Figure D.25: rcu_needs_cpu() and rcu_cpu_notify Code

holdout CPUs to pass through a quiescent state for this grace period.

Quick Quiz D.31: But don’t we also need to check that a grace period is actually in
progress in __rcu_process_callbacks in Figure D.24?

In any case, line 12 invokes rcu_process_gp_end(), which checks to see if
some other CPU ended the last grace period that this CPU was aware of, and, if so,
notes the end of the grace period and advances this CPU’s RCU callbacks accordingly.
Line 13 invokes rcu_check_quiescent_state(), which checks to see if some
other CPU has started a new grace period, and also whether the current CPU has passed
through a quiescent state for the current grace period, updating state appropriately if so.
Line 14 checks to see if there is no grace period in progress and whether the current CPU
has callbacks that need another grace period. If so, line 15 acquires the root rcu_node
structure’s lock, and line 17 invokes rcu_start_gp(), which starts a new grace
period (and also releases the root rcu_node structure’s lock). In either case, line 18
invokes rcu_do_batch(), which invokes any of this CPU’s callbacks whose grace
period has completed.

Quick Quiz D.32: What happens if two CPUs attempt to start a new grace period
concurrently in Figure D.24?

Lines 21-30 are rcu_process_callbacks(), which is again a wrapper for
__rcu_process_callbacks(). Line 24 executes a memory barrier to ensure that
any prior RCU read-side critical sections are seen to have ended before any subsequent
RCU processing. Lines 25-26 and 27-28 invoke __rcu_process_callbacks()
for “rcu” and “rcu_bh”, respectively, and, finally, line 29 executes a memory barrier to
ensure that any RCU processing carried out by __rcu_process_callbacks() is
seen prior to any subsequent RCU read-side critical sections.
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Figure D.26: Initialized RCU Data Layout

D.3.2.5 rcu_needs_cpu() and rcu_cpu_notify()

Figure D.25 shows the code for rcu_needs_cpu() and rcu_cpu_notify(),
which are invoked by the Linux kernel to check on switching to dynticks-idle mode and
to handle CPU hotplug, respectively.

Lines 1-5 show rcu_needs_cpu(), which simply checks if the specified CPU
has either “rcu” (line 3) or “rcu_bh” (line 4) callbacks.

Lines 7-28 show rcu_cpu_notify(), which is a very typical CPU-hotplug
notifier function with the typical switch statement. Line 16 invokes rcu_online_
cpu() if the specified CPU is going to be coming online, and line 22 invokes rcu_
offline_cpu() if the specified CPU has gone to be going offline. It is important to
note that CPU-hotplug operations are not atomic, but rather happen in stages that can
extend for multiple grace periods. RCU must therefore gracefully handle CPUs that are
in the process of coming or going.

D.3.3 Initialization

This section walks through the initialization code, which links the main data structures
together as shown in Figure D.26. The yellow region represents fields in the rcu_
state data structure, including the ->node array, individual elements of which are
shown in pink, matching the convention used in Section D.2. The blue boxes each
represent one rcu_data structure, and the group of blue boxes makes up a set of
per-CPU rcu_data structures.

The ->levelcnt[] array is initialized at compile time, as is ->level[0],
but the rest of the values and pointers are filled in by the functions described in the
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1 #ifdef CONFIG_RCU_FANOUT_EXACT
2 static void __init
3 rcu_init_levelspread(struct rcu_state *rsp)
4 {
5 int i;
6
7 for (i = NUM_RCU_LVLS - 1; i >= 0; i--)
8 rsp->levelspread[i] = CONFIG_RCU_FANOUT;
9 }
10 #else
11 static void __init
12 rcu_init_levelspread(struct rcu_state *rsp)
13 {
14 int ccur;
15 int cprv;
16 int i;
17
18 cprv = NR_CPUS;
19 for (i = NUM_RCU_LVLS - 1; i >= 0; i--) {
20 ccur = rsp->levelcnt[i];
21 rsp->levelspread[i] = (cprv + ccur - 1) / ccur;
22 cprv = ccur;
23 }
24 }
25 #endif

Figure D.27: rcu_init_levelspread() Code

following sections. The figure shows a two-level hierarchy, but one-level and three-level
hierarchies are possible as well. Each element of the ->levelspread[] array gives
the number of children per node at the corresponding level of the hierarchy. In the figure,
therefore, the root node has two children and the nodes at the leaf level each have three
children. Each element of the levelcnt[] array indicates how many nodes there are
on the corresponding level of the hierarchy: 1 at the root level, 2 at the leaf level, and
6 at the rcu_data level—and any extra elements are unused and left as zero. Each
element of the ->level[] array references the first node of the corresponding level
of the rcu_node hierarchy, and each element of the ->rda[] array references the
corresponding CPU’s rcu_data structure. The ->parent field of each rcu_node
structure references its parent, except for the root rcu_node structure, which has a
NULL ->parent pointer. Finally, the ->mynode field of each rcu_data structure
references its parent rcu_node structure.

Quick Quiz D.33: How does the code traverse a given path through the rcu_node
hierarchy from root to leaves?

Again, the following sections walk through the code that builds this structure.

D.3.3.1 rcu_init_levelspread()

Figure D.27 shows the code for the rcu_init_levelspread() function, which
controls the fanout, or the number of children per parent, in the rcu_node hierarchy.
There are two versions of this function, one shown on lines 2-9 that enforces the
exact fanout (specified by CONFIG_RCU_FANOUT), and the other on lines 11-25 that
determines the number of child nodes based indirectly on the specified fanout, but
then balances the tree. The CONFIG_RCU_FANOUT_EXACT kernel parameter selects
which version to use for a given kernel build.

The exact-fanout version simply assigns all of the elements of the specified rcu_
state structure’s ->levelspread array to the CONFIG_RCU_FANOUT kernel
parameter, as shown by the loop on lines 7 and 8.
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1 static void __init rcu_init_one(struct rcu_state *rsp)
2 {
3 int cpustride = 1;
4 int i;
5 int j;
6 struct rcu_node *rnp;
7
8 for (i = 1; i < NUM_RCU_LVLS; i++)
9 rsp->level[i] = rsp->level[i - 1] +
10 rsp->levelcnt[i - 1];
11 rcu_init_levelspread(rsp);
12 for (i = NUM_RCU_LVLS - 1; i >= 0; i--) {
13 cpustride *= rsp->levelspread[i];
14 rnp = rsp->level[i];
15 for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) {
16 spin_lock_init(&rnp->lock);
17 rnp->qsmask = 0;
18 rnp->qsmaskinit = 0;
19 rnp->grplo = j * cpustride;
20 rnp->grphi = (j + 1) * cpustride - 1;
21 if (rnp->grphi >= NR_CPUS)
22 rnp->grphi = NR_CPUS - 1;
23 if (i == 0) {
24 rnp->grpnum = 0;
25 rnp->grpmask = 0;
26 rnp->parent = NULL;
27 } else {
28 rnp->grpnum = j % rsp->levelspread[i - 1];
29 rnp->grpmask = 1UL << rnp->grpnum;
30 rnp->parent = rsp->level[i - 1] +
31 j / rsp->levelspread[i - 1];
32 }
33 rnp->level = i;
34 }
35 }
36 }

Figure D.28: rcu_init_one() Code

The hierarchy-balancing version on lines 11-24 uses a pair of local variables ccur
and cprv which track the number of rcu_node structures on the current and previous
levels, respectively. This function works from the leaf level up the hierarchy, so cprv
is initialized by line 18 to NR_CPUS, which corresponds to the number of rcu_data
structures that feed into the leaf level. Lines 19-23 iterate from the leaf to the root.
Within this loop, line 20 picking up the number of rcu_node structures for the current
level into ccur. Line 21 then rounds up the ratio of the number of nodes on the
previous (lower) level (be they rcu_node or rcu_data) to the number of rcu_
node structures on the current level, placing the result in the specified rcu_state
structure’s ->levelspread array. Line 22 then sets up for the next pass through the
loop.

After a call to either function, the ->levelspread array contains the number of
children for each level of the rcu_node hierarchy.

D.3.3.2 rcu_init_one()

Figure D.28 shows the code for rcu_init_one(), which does boot-time initializa-
tion for the specified rcu_state structure.

Recall from Section D.3.1.4 that the ->levelcnt[] array in the rcu_state
structure is compile-time initialized to the number of nodes at each level of the hierarchy
starting from the root, with an additional element in the array initialized to the maximum
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possible number of CPUs, NR_CPUS. In addition, the first element of the ->level[]
array is compile-time initialized to reference to the root rcu_node structure, which
is in turn the first element of the ->node[] array in the rcu_state structure. This
array is further laid out in breadth-first order. Keeping all of this in mind, the loop at
lines 8-10 initializes the rest of the ->level[] array to reference the first rcu_node
structure of each level of the rcu_node hierarchy.

Line 11 then invokes rcu_init_levelspread(), which fills in the ->levelspread[]
array, as was described in Section D.3.3.1. The auxiliary arrays are then fully initialized,
and thus ready for the loop from lines 15-35, each pass through which initializes one
level of the rcu_node hierarchy, starting from the leaves.

Line 13 computes the number of CPUs per rcu_node structure for the current
level of the hierarchy, and line 14 obtains a pointer to the first rcu_node structure on
the current level of the hierarchy, in preparation for the loop from lines 15-34, each pass
through which initializes one rcu_node structure.

Lines 16-18 initialize the rcu_node structure’s spinlock and its CPU masks. The
qsmaskinit field will have bits set as CPUs come online later in boot, and the
qsmask field will have bits set when the first grace period starts. Line 19 sets the
->grplo field to the number of the this rcu_node structure’s first CPU and line 20
sets the ->grphi to the number of this rcu_node structure’s last CPU. If the last
rcu_node structure on a given level of the hierarchy is only partially full, lines 21 and
22 set its ->grphi field to the number of the last possible CPU in the system.

Lines 24-26 initialize the ->grpnum, ->grpmask, and ->parent fields for the
root rcu_node structure, which has no parent, hence the zeroes and NULL. Lines 28-
31 initialize these same fields for the rest of the rcu_node structures in the hierarchy.
Line 28 computes the ->grpnum field as the index of this rcu_node structure within
the set having the same parent, and line 29 sets the corresponding bit in the ->grpmask
field. Finally, lines 30-31 places a pointer to the parent node into the ->parent field.
These three fields will used to propagate quiescent states up the hierarchy.

Finally, line 33 records the hierarchy level in ->level, which is used for tracing
when traversing the full hierarchy.

D.3.3.3 __rcu_init()

Figure D.29 shows the __rcu_init() function and its RCU_DATA_PTR_INIT()
helper macro. The __rcu_init() function is invoked during early boot, before the
scheduler has initialized, and before more than one CPU is running.

The RCU_DATA_PTR_INIT() macro takes as arguments a pointer to an rcu_
state structure and the name of a set of rcu_data per-CPU variables. This macro
scans the per-CPU rcu_data structures, assigning the ->mynode pointer of each
rcu_data structure to point to the corresponding leaf rcu_node structure. It also
fills out the specified rcu_state structure’s ->rda[] array entries to each point
to the corresponding rcu_data structure. Line 3 picks up a pointer to the first leaf
rcu_node structure in local variable rnp (which must be declared by the invoker of
this macro), and line 4 sets local variable j to the corresponding leaf-node number of
zero. Each pass through the loop spanning lines 5-10 performs initialization for the
corresponding potential CPU (as specified by NR_CPUS). Within this loop, line 6 checks
to see if we have moved beyond the bounds of the current leaf rcu_node structure,
and, if so, line 7 advances to the next structure. Then, still within the loop, line 8 sets the
->mynode pointer of the current CPU’s rcu_data structure to reference the current
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1 #define RCU_DATA_PTR_INIT(rsp, rcu_data) \
2 do { \
3 rnp = (rsp)->level[NUM_RCU_LVLS - 1]; \
4 j = 0; \
5 for_each_possible_cpu(i) { \
6 if (i > rnp[j].grphi) \
7 j++; \
8 per_cpu(rcu_data, i).mynode = &rnp[j]; \
9 (rsp)->rda[i] = &per_cpu(rcu_data, i); \
10 } \
11 } while (0)
12
13 void __init __rcu_init(void)
14 {
15 int i;
16 int j;
17 struct rcu_node *rnp;
18
19 rcu_init_one(&rcu_state);
20 RCU_DATA_PTR_INIT(&rcu_state, rcu_data);
21 rcu_init_one(&rcu_bh_state);
22 RCU_DATA_PTR_INIT(&rcu_bh_state, rcu_bh_data);
23
24 for_each_online_cpu(i)
25 rcu_cpu_notify(&rcu_nb, CPU_UP_PREPARE,
26 (void *)(long)i);
27 register_cpu_notifier(&rcu_nb);
28 }

Figure D.29: __rcu_init() Code

leaf rcu_node structure, and line 9 sets the current CPU’s ->rda[] element (within
the rcu_state structure) to reference the current CPU’s rcu_data structure.

Quick Quiz D.34: C-preprocessor macros are so 1990s! Why not get with the times
and convert RCU_DATA_PTR_INIT() in Figure D.29 to be a function?

The __rcu_init() function first invokes rcu_init_one() on the rcu_
state structure on line 19, then invokes RCU_DATA_PTR_INIT() on the rcu_
state structure and the rcu_data set of per-CPU variables. It then repeats this for
rcu_bh_state and rcu_bh_data on lines 21-22. The loop spanning lines 24-26
invokes rcu_cpu_notify() for each CPU that is currently online (which should be
only the boot CPU), and line 27 registers a notifier so that rcu_cpu_notify() will
be invoked each time a CPU comes online, in order to inform RCU of its presence.

Quick Quiz D.35: What happens if a CPU comes online between the time that the
last online CPU is notified on lines 25-26 of Figure D.29 and the time that register_
cpu_notifier() is invoked on line 27?

The rcu_cpu_notify() and related functions are discussed in Section D.3.4
below.

D.3.4 CPU Hotplug
The CPU-hotplug functions described in the following sections allow RCU to track
which CPUs are and are not present, but also complete initialization of each CPU’s
rcu_data structure as that CPU comes online.

D.3.4.1 rcu_init_percpu_data()

Figure D.30 shows the code for rcu_init_percpu_data(), which initializes the
specified CPU’s rcu_data structure in response to booting up or to that CPU coming
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1 static void
2 rcu_init_percpu_data(int cpu, struct rcu_state *rsp)
3 {
4 unsigned long flags;
5 int i;
6 long lastcomp;
7 unsigned long mask;
8 struct rcu_data *rdp = rsp->rda[cpu];
9 struct rcu_node *rnp = rcu_get_root(rsp);
10
11 spin_lock_irqsave(&rnp->lock, flags);
12 lastcomp = rsp->completed;
13 rdp->completed = lastcomp;
14 rdp->gpnum = lastcomp;
15 rdp->passed_quiesc = 0;
16 rdp->qs_pending = 1;
17 rdp->beenonline = 1;
18 rdp->passed_quiesc_completed = lastcomp - 1;
19 rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
20 rdp->nxtlist = NULL;
21 for (i = 0; i < RCU_NEXT_SIZE; i++)
22 rdp->nxttail[i] = &rdp->nxtlist;
23 rdp->qlen = 0;
24 rdp->blimit = blimit;
25 #ifdef CONFIG_NO_HZ
26 rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
27 #endif /* #ifdef CONFIG_NO_HZ */
28 rdp->cpu = cpu;
29 spin_unlock(&rnp->lock);
30 spin_lock(&rsp->onofflock);
31 rnp = rdp->mynode;
32 mask = rdp->grpmask;
33 do {
34 spin_lock(&rnp->lock);
35 rnp->qsmaskinit |= mask;
36 mask = rnp->grpmask;
37 spin_unlock(&rnp->lock);
38 rnp = rnp->parent;
39 } while (rnp != NULL && !(rnp->qsmaskinit & mask));
40 spin_unlock(&rsp->onofflock);
41 cpu_quiet(cpu, rsp, rdp, lastcomp);
42 local_irq_restore(flags);
43 }

Figure D.30: rcu_init_percpu_data() Code
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1 static void __cpuinit rcu_online_cpu(int cpu)
2 {
3 #ifdef CONFIG_NO_HZ
4 struct rcu_dynticks *rdtp;
5
6 rdtp = &per_cpu(rcu_dynticks, cpu);
7 rdtp->dynticks_nesting = 1;
8 rdtp->dynticks |= 1;
9 rdtp->dynticks_nmi = (rdtp->dynticks_nmi + 1) & ~0x1;
10 #endif /* #ifdef CONFIG_NO_HZ */
11 rcu_init_percpu_data(cpu, &rcu_state);
12 rcu_init_percpu_data(cpu, &rcu_bh_state);
13 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
14 }

Figure D.31: rcu_online_cpu() Code

online. It also sets up the rcu_node hierarchy so that this CPU will participate in
future grace periods.

Line 8 gets a pointer to this CPU’s rcu_data structure, based on the specified
rcu_state structure, and places this pointer into the local variable rdp. Line 9
gets a pointer to the root rcu_node structure for the specified rcu_state structure,
placing it in local variable rnp.

Lines 11-29 initialize the fields of the rcu_data structure under the protection
of the root rcu_node structure’s lock in order to ensure consistent values. Line 17
is important for tracing, due to the fact that many Linux distributions set NR_CPUS to
a very large number, which could result in excessive output when tracing rcu_data
structures. The ->beenonline field is used to solve this problem, as it will be set to
the value one on any rcu_data structure corresponding to a CPU that has ever been
online, and set to zero for all other rcu_data structures. This allows the tracing code
to easily ignore irrelevant CPUs.

Lines 30-40 propagate the onlining CPU’s bit up the rcu_node hierarchy, pro-
ceeding until either the root rcu_node is reached or until the corresponding bit is
already set, whichever comes first. This bit-setting is done under the protection of
->onofflock in order to exclude initialization of a new grace period, and, in addition,
each rcu_node structure is initialized under the protection of its lock. Line 41 then
invokes cpu_quiet() to signal RCU that this CPU has been in an extended quiescent
state, and finally, line 42 re-enables irqs.

Quick Quiz D.36: Why call cpu_quiet() on line 41 of Figure D.30, given that
we are excluding grace periods with various locks, and given that any earlier grace
periods would not have been waiting on this previously-offlined CPU?

It is important to note that rcu_init_percpu_data() is invoked not only at
boot time, but also every time that a given CPU is brought online.

D.3.4.2 rcu_online_cpu()

Figure D.31 shows the code for rcu_online_cpu(), which informs RCU that the
specified CPU is coming online.

When dynticks (CONFIG_NO_HZ) is enabled, line 6 obtains a reference to the
specified CPU’s rcu_dynticks structure, which is shared between the “rcu” and
“rcu_bh” implementations of RCU. Line 7 sets the ->dynticks_nesting field to
the value one, reflecting the fact that a newly onlined CPU is not in dynticks-idle mode
(recall that the ->dynticks_nesting field tracks the number of reasons that the
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corresponding CPU needs to be tracked for RCU read-side critical sections, in this case
because it can run process-level code). Line 8 forces the ->dynticks field to an
odd value that is at least as large as the last value it had when previously online, again
reflecting the fact that newly onlined CPUs are not in dynticks-idle mode, and line 9
forces the ->dynticks_nmi field to an even value that is at least as large as the last
value it had when previously online, reflecting the fact that this CPU is not currently
executing in an NMI handler.

Lines 11-13 are executed regardless of the value of the CONFIG_NO_HZ kernel
parameter. Line 11 initializes the specified CPU’s rcu_data structure for “rcu”,
and line 12 does so for “rcu_bh”. Finally, line 13 registers the rcu_process_
callbacks() to be invoked by subsequent raise_softirq() invocations on
this CPU.

D.3.4.3 rcu_offline_cpu()

Figure D.32 shows the code for __rcu_offline_cpu() and its wrapper function,
rcu_offline_cpu(). The purpose of this wrapper function (shown in lines 43-47
of the figure) is simply to invoke __rcu_offline_cpu() twice, once for “rcu”
and again for “rcu_bh”. The purpose of the __rcu_offline_cpu() function is
to prevent future grace periods from waiting on the CPU being offlined, to note the
extended quiescent state, and to find a new home for any RCU callbacks in process on
this CPU.

Turning to __rcu_offline_cpu(), shown on lines 1-41 of the figure, line 12
acquires the specified rcu_state structure’s ->onofflock, excluding grace-period
initialization for multi-rcu_node hierarchies.

Quick Quiz D.37: But what if the rcu_node hierarchy has only a single structure,
as it would on a small system? What prevents concurrent grace-period initialization in
that case, given the code in Figure D.32?

Line 13 picks up a pointer to the leaf rcu_node structure corresponding to
this CPU, using the ->mynode pointer in this CPU’s rcu_data structure (see Fig-
ure D.26). Line 14 picks up a mask with this CPU’s bit set for use on the leaf rcu_node
structure’s qsmask field.

The loop spanning lines 15-25 then clears this CPU’s bits up the rcu_node
hierarchy, starting with this CPU’s leaf rcu_node structure. Line 16 acquires the
current rcu_node structure’s ->lock field, and line 17 clears the bit corresponding
to this CPU (or group, higher up in the hierarchy) from the ->qsmaskinit field,
so that future grace periods will not wait on quiescent states from this CPU. If the
resulting ->qsmaskinit value is non-zero, as checked by line 18, then the current
rcu_node structure has other online CPUs that it must track, so line 19 releases the
current rcu_node structure’s ->lock and line 20 exits the loop. Otherwise, we need
to continue walking up the rcu_node hierarchy. In this case, line 22 picks up the
mask to apply to the next level up, line 23 releases the current rcu_node structure’s
->lock, and line 24 advances up to the next level of the hierarchy. Line 25 exits the
loop should we exit out the top of the hierarchy.

Quick Quiz D.38: But does line 25 of Figure D.32 ever really exit the loop? Why
or why not?

Line 26 picks up the specified rcu_state structure’s ->completed field into
the local variable lastcomp, line 27 releases ->onofflock (but leaves irqs dis-
abled), and line 28 invokes cpu_quiet() in order to note that the CPU being offlined
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1 static void
2 __rcu_offline_cpu(int cpu, struct rcu_state *rsp)
3 {
4 int i;
5 unsigned long flags;
6 long lastcomp;
7 unsigned long mask;
8 struct rcu_data *rdp = rsp->rda[cpu];
9 struct rcu_data *rdp_me;
10 struct rcu_node *rnp;
11
12 spin_lock_irqsave(&rsp->onofflock, flags);
13 rnp = rdp->mynode;
14 mask = rdp->grpmask;
15 do {
16 spin_lock(&rnp->lock);
17 rnp->qsmaskinit &= ~mask;
18 if (rnp->qsmaskinit != 0) {
19 spin_unlock(&rnp->lock);
20 break;
21 }
22 mask = rnp->grpmask;
23 spin_unlock(&rnp->lock);
24 rnp = rnp->parent;
25 } while (rnp != NULL);
26 lastcomp = rsp->completed;
27 spin_unlock(&rsp->onofflock);
28 cpu_quiet(cpu, rsp, rdp, lastcomp);
29 rdp_me = rsp->rda[smp_processor_id()];
30 if (rdp->nxtlist != NULL) {
31 *rdp_me->nxttail[RCU_NEXT_TAIL] = rdp->nxtlist;
32 rdp_me->nxttail[RCU_NEXT_TAIL] =
33 rdp->nxttail[RCU_NEXT_TAIL];
34 rdp->nxtlist = NULL;
35 for (i = 0; i < RCU_NEXT_SIZE; i++)
36 rdp->nxttail[i] = &rdp->nxtlist;
37 rdp_me->qlen += rdp->qlen;
38 rdp->qlen = 0;
39 }
40 local_irq_restore(flags);
41 }
42
43 static void rcu_offline_cpu(int cpu)
44 {
45 __rcu_offline_cpu(cpu, &rcu_state);
46 __rcu_offline_cpu(cpu, &rcu_bh_state);
47 }

Figure D.32: rcu_offline_cpu() Code
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is now in an extended quiescent state, passing in lastcomp to avoid reporting this
quiescent state against a different grace period than it occurred in.

Quick Quiz D.39: Suppose that line 26 got executed seriously out of order in
Figure D.32, so that lastcomp is set to some prior grace period, but so that the current
grace period is still waiting on the now-offline CPU? In this case, won’t the call to
cpu_quiet() fail to report the quiescent state, thus causing the grace period to wait
forever for this now-offline CPU?

Quick Quiz D.40: Given that an offline CPU is in an extended quiescent state, why
does line 28 of Figure D.32 need to care which grace period it is dealing with?

Lines 29-39 move any RCU callbacks from the CPU going offline to the currently
running CPU. This operation must avoid reordering the callbacks being moved, as
otherwise rcu_barrier() will not work correctly. Line 29 puts a pointer to the
currently running CPU’s rcu_data structure into local variable rdp_me. Line 30
then checks to see if the CPU going offline has any RCU callbacks. If so, lines 31-38
move them. Line 31 splices the list of callbacks onto the end of the running CPU’s
list. Lines 32-33 sets the running CPU’s callback tail pointer to that of the CPU going
offline, and then lines 34-36 initialize the going-offline CPU’s list to be empty. Line 37
adds the length of the going-offline CPU’s callback list to that of the currently running
CPU, and, finally, line 38 zeroes the going-offline CPU’s list length.

Quick Quiz D.41: But this list movement in Figure D.32 makes all of the going-
offline CPU’s callbacks go through another grace period, even if they were ready to
invoke. Isn’t that inefficient? Furthermore, couldn’t an unfortunate pattern of CPUs
going offline then coming back online prevent a given callback from ever being invoked?

Finally, line 40 re-enables irqs.

D.3.5 Miscellaneous Functions
This section describes the miscellaneous utility functions:

1. rcu_batches_completed

2. rcu_batches_completed_bh

3. cpu_has_callbacks_ready_to_invoke

4. cpu_needs_another_gp

5. rcu_get_root

Figure D.33 shows a number of miscellaneous functions. Lines 1-9 show rcu_
batches_completed() and rcu_batches_completed_bh(), which are used
by the rcutorture test suite. Lines 11-15 show cpu_has_callbacks_ready_to_
invoke(), which indicates whether the specified rcu_data structure has RCU
callbacks that have passed through their grace period, which is indicated by the “done”
tail pointer no longer pointing to the head of the list. Lines 17-24 show cpu_needs_
another_gp(), which indicates whether the CPU corresponding to the specified
rcu_data structure requires an additional grace period during a time when no grace
period is in progress. Note that the specified rcu_data structure is required to
be associated with the specified rcu_state structure. Finally, lines 26-30 show
rcu_get_root(), which returns the root rcu_node structure associated with the
specified rcu_state structure.
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1 long rcu_batches_completed(void)
2 {
3 return rcu_state.completed;
4 }
5
6 long rcu_batches_completed_bh(void)
7 {
8 return rcu_bh_state.completed;
9 }
10
11 static int
12 cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
13 {
14 return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL];
15 }
16
17 static int
18 cpu_needs_another_gp(struct rcu_state *rsp,
19 struct rcu_data *rdp)
20 {
21 return *rdp->nxttail[RCU_DONE_TAIL] &&
22 ACCESS_ONCE(rsp->completed) ==
23 ACCESS_ONCE(rsp->gpnum);
24 }
25
26 static struct rcu_node
27 *rcu_get_root(struct rcu_state *rsp)
28 {
29 return &rsp->node[0];
30 }

Figure D.33: Miscellaneous Functions

D.3.6 Grace-Period-Detection Functions
This section covers functions that are directly involved in detecting beginnings and ends
of grace periods. This of course includes actually starting and ending grace periods, but
also includes noting when other CPUs have started or ended grace periods.

D.3.6.1 Noting New Grace Periods

The main purpose of Hierarchical RCU is to detect grace periods, and the functions
more directly involved in this task are described in this section. Section D.3.6.1 covers
functions that allow CPUs to note that a new grace period has begun, Section D.3.6.2
covers functions that allow CPUs to note that an existing grace period has ended,
Section D.3.6.3 covers rcu_start_gp(), which starts a new grace period, and
Section D.3.6.4 covers functions involved in reporting CPUs’ quiescent states to the
RCU core.

Figure D.34 shows the code for note_new_gpnum(), which updates state to
reflect a new grace period, as well as check_for_new_grace_period(), which
is used by CPUs to detect when other CPUs have started a new grace period.

Line 4 of note_new_gpnum() sets the ->qs_pending flag is the current
CPU’s rcu_data structure to indicate that RCU needs a quiescent state from this
CPU, line 5 clears the ->passed_quiesc flag to indicate that this CPU has not yet
passed through such a quiescent state, line 6 copies the grace-period number from the
global rcu_state structure to this CPU’s rcu_data structure so that this CPU will
remember that it has already noted the beginning of this new grace period. Finally,
lines 7-8 record the time in jiffies at which this CPU will attempt to force holdout CPUs
to pass through quiescent states (by invoking force_quiescent_state() on or
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1 static void note_new_gpnum(struct rcu_state *rsp,
2 struct rcu_data *rdp)
3 {
4 rdp->qs_pending = 1;
5 rdp->passed_quiesc = 0;
6 rdp->gpnum = rsp->gpnum;
7 rdp->n_rcu_pending_force_qs = rdp->n_rcu_pending +
8 RCU_JIFFIES_TILL_FORCE_QS;
9 }
10
11 static int
12 check_for_new_grace_period(struct rcu_state *rsp,
13 struct rcu_data *rdp)
14 {
15 unsigned long flags;
16 int ret = 0;
17
18 local_irq_save(flags);
19 if (rdp->gpnum != rsp->gpnum) {
20 note_new_gpnum(rsp, rdp);
21 ret = 1;
22 }
23 local_irq_restore(flags);
24 return ret;
25 }

Figure D.34: Noting New Grace Periods

1 static void
2 rcu_process_gp_end(struct rcu_state *rsp,
3 struct rcu_data *rdp)
4 {
5 long completed_snap;
6 unsigned long flags;
7
8 local_irq_save(flags);
9 completed_snap = ACCESS_ONCE(rsp->completed);
10 if (rdp->completed != completed_snap) {
11 rdp->nxttail[RCU_DONE_TAIL] =
12 rdp->nxttail[RCU_WAIT_TAIL];
13 rdp->nxttail[RCU_WAIT_TAIL] =
14 rdp->nxttail[RCU_NEXT_READY_TAIL];
15 rdp->nxttail[RCU_NEXT_READY_TAIL] =
16 rdp->nxttail[RCU_NEXT_TAIL];
17 rdp->completed = completed_snap;
18 }
19 local_irq_restore(flags);
20 }

Figure D.35: Noting End of Old Grace Periods

after that future time), assuming that the grace period does not end beforehand.

Lines 18 and 23 of check_for_new_grace_period() disable and re-enable
interrupts, respectively. Line 19 checks to see if there is a new grace period that the
current CPU has not yet noted, and, if so, line 20 invokes note_new_gpnum()
in order to note the new grace period, and line 21 sets the return value accordingly.
Either way, line 24 returns status: non-zero if a new grace period has started, and zero
otherwise.

Quick Quiz D.42: Why not just expand note_new_gpnum() inline into check_
for_new_grace_period() in Figure D.34?

519



−>next
−>func

−>next
−>func

−>next
−>func

−>next
−>func

−>next
−>func

−>next
−>func

−>nxtlist
−>nxttail[RCU_DONE_TAIL]
−>nxttail[RCU_WAIT_TAIL]
−>nxttail[RCU_NEXT_READY_TAIL]
−>nxttail[RCU_NEXT_TAIL]

Figure D.36: RCU Callback List

D.3.6.2 Noting End of Old Grace Periods

Figure D.35 shows rcu_process_gp_end(), which is invoked when a CPU sus-
pects that a grace period might have ended (possibly because the CPU in question in
fact ended the grace period). If a grace period really has ended, then this function
advances the current CPU’s RCU callbacks, which are managed as a singly linked list
with multiple tail pointers, as shown in Figure D.36. This multiple tail pointer layout,
spearheaded by Lai Jiangshan, simplifies list handling [Jia08]. In this figure, the blue
box represents one CPU’s rcu_data structure, with the six white boxes at the bottom
of the diagram representing a list of six RCU callbacks (rcu_head structures). In
this list, the first three callbacks have passed through their grace period and are thus
waiting to be invoked, the fourth callback (the first on the second line) is waiting for
the current grace period to complete, and the last two are waiting for the next grace
period. The last two tail pointers reference the last element, so that the final sublist,
which would comprise callbacks that had not yet been associated with a specific grace
period, is empty.

Lines 8 and 19 of Figure D.35 suppress and re-enable interrupts, respectively. Line 9
picks up a snapshot of the rcu_state structure’s ->completed field, storing it in
the local variable completed_snap. Line 10 checks to see if the current CPU is
not yet aware of the end of a grace period, and if it is not aware, lines 11-16 advance
this CPU’s RCU callbacks by manipulating the tail pointers. Line 17 then records the
most recently completed grace period number in this CPU’s rcu_data structure in
the ->completed field.

D.3.6.3 Starting a Grace Period

Figure D.37 shows rcu_start_gp(), which starts a new grace period, also releasing
the root rcu_node structure’s lock, which must be acquired by the caller.

Line 3 is annotation for the sparse utility, indicating that rcu_start_gp()
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1 static void
2 rcu_start_gp(struct rcu_state *rsp, unsigned long flags)
3 __releases(rcu_get_root(rsp)->lock)
4 {
5 struct rcu_data *rdp = rsp->rda[smp_processor_id()];
6 struct rcu_node *rnp = rcu_get_root(rsp);
7 struct rcu_node *rnp_cur;
8 struct rcu_node *rnp_end;
9
10 if (!cpu_needs_another_gp(rsp, rdp)) {
11 spin_unlock_irqrestore(&rnp->lock, flags);
12 return;
13 }
14 rsp->gpnum++;
15 rsp->signaled = RCU_GP_INIT;
16 rsp->jiffies_force_qs = jiffies +
17 RCU_JIFFIES_TILL_FORCE_QS;
18 rdp->n_rcu_pending_force_qs = rdp->n_rcu_pending +
19 RCU_JIFFIES_TILL_FORCE_QS;
20 record_gp_stall_check_time(rsp);
21 dyntick_record_completed(rsp, rsp->completed - 1);
22 note_new_gpnum(rsp, rdp);
23 rdp->nxttail[RCU_NEXT_READY_TAIL] =
24 rdp->nxttail[RCU_NEXT_TAIL];
25 rdp->nxttail[RCU_WAIT_TAIL] =
26 rdp->nxttail[RCU_NEXT_TAIL];
27 if (NUM_RCU_NODES == 1) {
28 rnp->qsmask = rnp->qsmaskinit;
29 spin_unlock_irqrestore(&rnp->lock, flags);
30 return;
31 }
32 spin_unlock(&rnp->lock);
33 spin_lock(&rsp->onofflock);
34 rnp_end = rsp->level[NUM_RCU_LVLS - 1];
35 rnp_cur = &rsp->node[0];
36 for (; rnp_cur < rnp_end; rnp_cur++)
37 rnp_cur->qsmask = rnp_cur->qsmaskinit;
38 rnp_end = &rsp->node[NUM_RCU_NODES];
39 rnp_cur = rsp->level[NUM_RCU_LVLS - 1];
40 for (; rnp_cur < rnp_end; rnp_cur++) {
41 spin_lock(&rnp_cur->lock);
42 rnp_cur->qsmask = rnp_cur->qsmaskinit;
43 spin_unlock(&rnp_cur->lock);
44 }
45 rsp->signaled = RCU_SIGNAL_INIT;
46 spin_unlock_irqrestore(&rsp->onofflock, flags);
47 }

Figure D.37: Starting a Grace Period
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releases the root rcu_node structure’s lock. Local variable rdp references the running
CPU’s rcu_data structure, rnp references the root rcu_node structure, and rnp_
cur and rnp_end are used as cursors in traversing the rcu_node hierarchy.

Line 10 invokes cpu_needs_another_gp() to see if this CPU really needs
another grace period to be started, and if not, line 11 releases the root rcu_node
structure’s lock and line 12 returns. This code path can be executed due to multiple
CPUs concurrently attempting to start a grace period. In this case, the winner will start
the grace period, and the losers will exit out via this code path.

Otherwise, line 14 increments the specified rcu_state structure’s ->gpnum
field, officially marking the start of a new grace period.

Quick Quiz D.43: But there has been no initialization yet at line 15 of Figure D.37!
What happens if a CPU notices the new grace period and immediately attempts to report
a quiescent state? Won’t it get confused?

Line 15 sets the ->signaled field to RCU_GP_INIT in order to prevent any other
CPU from attempting to force an end to the new grace period before its initialization
completes. Lines 16-18 schedule the next attempt to force an end to the new grace period,
first in terms of jiffies and second in terms of the number of calls to rcu_pending.
Of course, if the grace period ends naturally before that time, there will be no need
to attempt to force it. Line 20 invokes record_gp_stall_check_time() to
schedule a longer-term progress check—if the grace period extends beyond this time, it
should be considered to be an error. Line 22 invokes note_new_gpnum() in order
to initialize this CPU’s rcu_data structure to account for the new grace period.

Lines 23-26 advance all of this CPU’s callbacks so that they will be eligible to be
invoked at the end of this new grace period. This represents an acceleration of callbacks,
as other CPUs would only be able to move the RCU_NEXT_READY_TAIL batch to
be serviced by the current grace period; the RCU_NEXT_TAIL would instead need to
be advanced to the RCU_NEXT_READY_TAIL batch. The reason that this CPU can
accelerate the RCU_NEXT_TAIL batch is that it knows exactly when this new grace
period started. In contrast, other CPUs would be unable to correctly resolve the race
between the start of a new grace period and the arrival of a new RCU callback.

Line 27 checks to see if there is but one rcu_node structure in the hierarchy, and
if so, line 28 sets the ->qsmask bits corresponding to all online CPUs, in other words,
corresponding to those CPUs that must pass through a quiescent state for the new grace
period to end. Line 29 releases the root rcu_node structure’s lock and line 30 returns.
In this case, gcc’s dead-code elimination is expected to dispense with lines 32-46.

Otherwise, the rcu_node hierarchy has multiple structures, requiring a more
involved initialization scheme. Line 32 releases the root rcu_node structure’s lock,
but keeps interrupts disabled, and then line 33 acquires the specified rcu_state
structure’s ->onofflock, preventing any concurrent CPU-hotplug operations from
manipulating RCU-specific state.

Line 34 sets the rnp_end local variable to reference the first leaf rcu_node
structure, which also happens to be the rcu_node structure immediately following the
last non-leaf rcu_node structure in the ->node array. Line 35 sets the rnp_cur
local variable to reference the root rcu_node structure, which also happens to be
first such structure in the ->node array. Lines 36 and 37 then traverse all of the non-
leaf rcu_node structures, setting the bits corresponding to lower-level rcu_node
structures that have CPUs that must pass through quiescent states in order for the new
grace period to end.

Quick Quiz D.44: Hey! Shouldn’t we hold the non-leaf rcu_node structures’
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1 void rcu_qsctr_inc(int cpu)
2 {
3 struct rcu_data *rdp = &per_cpu(rcu_data, cpu);
4 rdp->passed_quiesc = 1;
5 rdp->passed_quiesc_completed = rdp->completed;
6 }
7
8 void rcu_bh_qsctr_inc(int cpu)
9 {
10 struct rcu_data *rdp = &per_cpu(rcu_bh_data, cpu);
11 rdp->passed_quiesc = 1;
12 rdp->passed_quiesc_completed = rdp->completed;
13 }

Figure D.38: Code for Recording Quiescent States

locks when munging their state in line 37 of Figure D.37???
Line 38 sets local variable rnp_end to one past the last leaf rcu_node structure,

and line 39 sets local variable rnp_cur to the first leaf rcu_node structure, so that
the loop spanning lines 40-44 traverses all leaves of the rcu_node hierarchy. During
each pass through this loop, line 41 acquires the current leaf rcu_node structure’s
lock, line 42 sets the bits corresponding to online CPUs (each of which must pass
through a quiescent state before the new grace period can end), and line 43 releases the
lock.

Quick Quiz D.45: Why can’t we merge the loop spanning lines 36-37 with the loop
spanning lines 40-44 in Figure D.37?

Line 45 then sets the specified rcu_state structure’s ->signaled field to
permit forcing of quiescent states, and line 46 releases the ->onofflock to permit
CPU-hotplug operations to manipulate RCU state.

D.3.6.4 Reporting Quiescent States

This hierarchical RCU implementation implements a layered approach to reporting
quiescent states, using the following functions:

1. rcu_qsctr_inc() and rcu_bh_qsctr_inc() are invoked when a given
CPU passes through a quiescent state for “rcu” and “rcu_bh”, respectively. Note
that the dynticks-idle and CPU-offline quiescent states are handled specially, due
to the fact that such a CPU is not executing, and thus is unable to report itself as
being in a quiescent state.

2. rcu_check_quiescent_state() checks to see if the current CPU has
passed through a quiescent state, invoking cpu_quiet() if so.

3. cpu_quiet() reports the specified CPU as having passed through a quiescent
state by invoking cpu_quiet_msk(). The specified CPU must either be the
current CPU or an offline CPU.

4. cpu_quiet_msk() reports the specified vector of CPUs as having passed
through a quiescent state. The CPUs in the vector need not be the current CPU,
nor must they be offline.

Each of these functions is described below.
Figure D.38 shows the code for rcu_qsctr_inc() and rcu_bh_qsctr_

inc(), which note the current CPU’s passage through a quiescent state.
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1 static void
2 rcu_check_quiescent_state(struct rcu_state *rsp,
3 struct rcu_data *rdp)
4 {
5 if (check_for_new_grace_period(rsp, rdp))
6 return;
7 if (!rdp->qs_pending)
8 return;
9 if (!rdp->passed_quiesc)
10 return;
11 cpu_quiet(rdp->cpu, rsp, rdp,
12 rdp->passed_quiesc_completed);
13 }

Figure D.39: Code for rcu_check_quiescent_state()

Line 3 of rcu_qsctr_inc() obtains a pointer to the specified CPU’s rcu_
data structure (which corresponds to “rcu” as opposed to “rcu_bh”). Line 4 sets the
->passed_quiesc field, recording the quiescent state. Line 5 sets the ->passed_
quiesc_completed field to the number of the last completed grace period that
this CPU knows of (which is stored in the ->completed field of the rcu_data
structure).

The rcu_bh_qsctr_inc() function operates in the same manner, the only
difference being that line 10 obtains the rcu_data pointer from the rcu_bh_data
per-CPU variable rather than the rcu_data per-CPU variable.

Figure D.39 shows the code for rcu_check_quiescent_state(), which is
invoked from rcu_process_callbacks() (described in Section D.3.2.4) in order
to determine when other CPUs have started a new grace period and to inform RCU of
recent quiescent states for this CPU.

Line 5 invokes check_for_new_grace_period() to check for a new grace
period having been started by some other CPU, and also updating this CPU’s local state
to account for that new grace period. If a new grace period has just started, line 6 returns.
Line 7 checks to see if RCU is still expecting a quiescent state from the current CPU,
and line 8 returns if not. Line 9 checks to see if this CPU has passed through a quiescent
state since the start of the current grace period (in other words, if rcu_qsctr_inc()
or rcu_bh_qsctr_inc() have been invoked for “rcu” and “rcu_bh”, respectively),
and line 10 returns if not.

Therefore, execution reaches line 11 only if a previously noted grace period is still
in effect, if this CPU needs to pass through a quiescent state in order to allow this grace
period to end, and if this CPU has passed through such a quiescent state. In this case,
lines 11-12 invoke cpu_quiet() in order to report this quiescent state to RCU.

Quick Quiz D.46: What prevents lines 11-12 of Figure D.39 from reporting a
quiescent state from a prior grace period against the current grace period?

Figure D.40 shows cpu_quiet, which is used to report a quiescent state for the
specified CPU. As noted earlier, this must either be the currently running CPU or a CPU
that is guaranteed to remain offline throughout.

Line 9 picks up a pointer to the leaf rcu_node structure responsible for this CPU.
Line 10 acquires this leaf rcu_node structure’s lock and disables interrupts. Line 11
checks to make sure that the specified grace period is still in effect, and, if not, line 11
clears the indication that this CPU passed through a quiescent state (since it belongs to
a defunct grace period), line 13 releases the lock and re-enables interrupts, and line 14
returns to the caller.
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1 static void
2 cpu_quiet(int cpu, struct rcu_state *rsp,
3 struct rcu_data *rdp, long lastcomp)
4 {
5 unsigned long flags;
6 unsigned long mask;
7 struct rcu_node *rnp;
8
9 rnp = rdp->mynode;
10 spin_lock_irqsave(&rnp->lock, flags);
11 if (lastcomp != ACCESS_ONCE(rsp->completed)) {
12 rdp->passed_quiesc = 0;
13 spin_unlock_irqrestore(&rnp->lock, flags);
14 return;
15 }
16 mask = rdp->grpmask;
17 if ((rnp->qsmask & mask) == 0) {
18 spin_unlock_irqrestore(&rnp->lock, flags);
19 } else {
20 rdp->qs_pending = 0;
21 rdp = rsp->rda[smp_processor_id()];
22 rdp->nxttail[RCU_NEXT_READY_TAIL] =
23 rdp->nxttail[RCU_NEXT_TAIL];
24 cpu_quiet_msk(mask, rsp, rnp, flags);
25 }
26 }

Figure D.40: Code for cpu_quiet()

Otherwise, line 16 forms a mask with the specified CPU’s bit set. Line 17 checks to
see if this bit is still set in the leaf rcu_node structure, and, if not, line 18 releases the
lock and re-enables interrupts.

On the other hand, if the CPU’s bit is still set, line 20 clears ->qs_pending,
reflecting that this CPU has passed through its quiescent state for this grace period.
Line 21 then overwrites local variable rdp with a pointer to the running CPU’s rcu_
data structure, and lines 22-23 updates the running CPU’s RCU callbacks so that all
those not yet associated with a specific grace period be serviced by the next grace period.
Finally, line 24 clears bits up the rcu_node hierarchy, ending the current grace period
if appropriate and perhaps even starting a new one. Note that cpu_quiet() releases
the lock and re-enables interrupts.

Quick Quiz D.47: How do lines 22-23 of Figure D.40 know that it is safe to promote
the running CPU’s RCU callbacks?

Figure D.41 shows cpu_quiet_msk(), which updates the rcu_node hierarchy
to reflect the passage of the CPUs indicated by argument mask through their respective
quiescent states. Note that argument rnp is the leaf rcu_node structure corresponding
to the specified CPUs.

Quick Quiz D.48: Given that argument mask on line 2 of Figure D.41 is an
unsigned long, how can it possibly deal with systems with more than 64 CPUs?

Line 4 is annotation for the sparse utility, indicating that cpu_quiet_msk()
releases the leaf rcu_node structure’s lock.

Each pass through the loop spanning lines 6-23 does the required processing for one
level of the rcu_node hierarchy, traversing the data structures as shown by the blue
arrow in Figure D.42.

Line 7 checks to see if all of the bits in mask have already been cleared in the
current rcu_node structure’s ->qsmask field, and, if so, line 8 releases the lock
and re-enables interrupts, and line 9 returns to the caller. If not, line 11 clears the bits
specified by mask from the current rcu_node structure’s qsmask field. Line 12 then
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1 static void
2 cpu_quiet_msk(unsigned long mask, struct rcu_state *rsp,
3 struct rcu_node *rnp, unsigned long flags)
4 __releases(rnp->lock)
5 {
6 for (;;) {
7 if (!(rnp->qsmask & mask)) {
8 spin_unlock_irqrestore(&rnp->lock, flags);
9 return;
10 }
11 rnp->qsmask &= ~mask;
12 if (rnp->qsmask != 0) {
13 spin_unlock_irqrestore(&rnp->lock, flags);
14 return;
15 }
16 mask = rnp->grpmask;
17 if (rnp->parent == NULL) {
18 break;
19 }
20 spin_unlock_irqrestore(&rnp->lock, flags);
21 rnp = rnp->parent;
22 spin_lock_irqsave(&rnp->lock, flags);
23 }
24 rsp->completed = rsp->gpnum;
25 rcu_process_gp_end(rsp, rsp->rda[smp_processor_id()]);
26 rcu_start_gp(rsp, flags);
27 }

Figure D.41: Code for cpu_quiet_msk()

checks to see if there are more bits remaining in ->qsmask, and, if so, line 13 releases
the lock and re-enables interrupts, and line 14 returns to the caller.

Otherwise, it is necessary to advance up to the next level of the rcu_node hier-
archy. In preparation for this next level, line 16 places a mask with the single bit set
corresponding to the current rcu_node structure within its parent. Line 17 checks to
see if there in fact is a parent for the current rcu_node structure, and, if not, line 18
breaks from the loop. On the other hand, if there is a parent rcu_node structure,
line 20 releases the current rcu_node structure’s lock, line 21 advances the rnp local
variable to the parent, and line 22 acquires the parent’s lock. Execution then continues
at the beginning of the loop on line 7.

If line 18 breaks from the loop, we know that the current grace period has ended,
as the only way that all bits can be cleared in the root rcu_node structure is if all
CPUs have passed through quiescent states. In this case, line 24 updates the rcu_
state structure’s ->completed field to match the number of the newly ended grace
period, indicating that the grace period has in fact ended. Line 24 then invokes rcu_
process_gp_end() to advance the running CPU’s RCU callbacks, and, finally,
line 26 invokes rcu_start_gp() in order to start a new grace period should any
remaining callbacks on the currently running CPU require one.

Figure D.43 shows rcu_do_batch(), which invokes RCU callbacks whose
grace periods have ended. Only callbacks on the running CPU will be invoked—other
CPUs must invoke their own callbacks.

Quick Quiz D.49: How do RCU callbacks on dynticks-idle or offline CPUs get
invoked?

Line 7 invokes cpu_has_callbacks_ready_to_invoke() to see if this
CPU has any RCU callbacks whose grace period has completed, and, if not, line 8
returns. Lines 9 and 18 disable and re-enable interrupts, respectively. Lines 11-13
remove the ready-to-invoke callbacks from ->nxtlist, and lines 14-17 make any
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Figure D.42: Scanning rcu_node Structures When Applying Quiescent States

needed adjustments to the tail pointers.
Quick Quiz D.50: Why would lines 14-17 in Figure D.43 need to adjust the tail

pointers?
Line 19 initializes local variable count to zero in preparation for counting the

number of callbacks that will actually be invoked. Each pass through the loop spanning
lines 20-27 invokes and counts a callback, with lines 25-26 exiting the loop if too many
callbacks are to be invoked at a time (thus preserving responsiveness). The remainder
of the function then requeues any callbacks that could not be invoked due to this limit.

Lines 28 and 41 disable and re-enable interrupts, respectively. Line 29 updates
the ->qlen field, which maintains a count of the total number of RCU callbacks for
this CPU. Line 30 checks to see if there were any ready-to-invoke callbacks that could
not be invoked at the moment due to the limit on the number that may be invoked at
a given time. If such callbacks remain, lines 30-38 requeue them, again adjusting the
tail pointers as needed. Lines 39-40 restore the batch limit if it was increased due to
excessive callback backlog, and lines 42-43 cause additional RCU processing to be
scheduled if there are any ready-to-invoke callbacks remaining.

D.3.7 Dyntick-Idle Functions
The functions in this section are defined only in CONFIG_NO_HZ builds of the Linux
kernel, though in some cases, extended-no-op versions are present otherwise. These
functions control whether or not RCU pays attention to a given CPU. CPUs in dynticks-
idle mode are ignored, but only if they are not currently in an interrupt or NMI handler.
The functions in this section communicate this CPU state to RCU.

This set of functions is greatly simplified from that used in preemptible RCU, see
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1 static void rcu_do_batch(struct rcu_data *rdp)
2 {
3 unsigned long flags;
4 struct rcu_head *next, *list, **tail;
5 int count;
6
7 if (!cpu_has_callbacks_ready_to_invoke(rdp))
8 return;
9 local_irq_save(flags);
10 list = rdp->nxtlist;
11 rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
12 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
13 tail = rdp->nxttail[RCU_DONE_TAIL];
14 for (count = RCU_NEXT_SIZE - 1; count >= 0; count--)
15 if (rdp->nxttail[count] ==
16 rdp->nxttail[RCU_DONE_TAIL])
17 rdp->nxttail[count] = &rdp->nxtlist;
18 local_irq_restore(flags);
19 count = 0;
20 while (list) {
21 next = list->next;
22 prefetch(next);
23 list->func(list);
24 list = next;
25 if (++count >= rdp->blimit)
26 break;
27 }
28 local_irq_save(flags);
29 rdp->qlen -= count;
30 if (list != NULL) {
31 *tail = rdp->nxtlist;
32 rdp->nxtlist = list;
33 for (count = 0; count < RCU_NEXT_SIZE; count++)
34 if (&rdp->nxtlist == rdp->nxttail[count])
35 rdp->nxttail[count] = tail;
36 else
37 break;
38 }
39 if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
40 rdp->blimit = blimit;
41 local_irq_restore(flags);
42 if (cpu_has_callbacks_ready_to_invoke(rdp))
43 raise_softirq(RCU_SOFTIRQ);
44 }

Figure D.43: Code for rcu_do_batch()
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1 void rcu_enter_nohz(void)
2 {
3 unsigned long flags;
4 struct rcu_dynticks *rdtp;
5
6 smp_mb();
7 local_irq_save(flags);
8 rdtp = &__get_cpu_var(rcu_dynticks);
9 rdtp->dynticks++;
10 rdtp->dynticks_nesting--;
11 local_irq_restore(flags);
12 }
13
14 void rcu_exit_nohz(void)
15 {
16 unsigned long flags;
17 struct rcu_dynticks *rdtp;
18
19 local_irq_save(flags);
20 rdtp = &__get_cpu_var(rcu_dynticks);
21 rdtp->dynticks++;
22 rdtp->dynticks_nesting++;
23 local_irq_restore(flags);
24 smp_mb();
25 }

Figure D.44: Entering and Exiting Dyntick-Idle Mode

Section 11.7 for a description of the earlier more-complex model. Manfred Spraul put
forth the idea for this simplified interface in one of his state-based RCU patches [Spr08b,
Spr08a].

Section D.3.7.1 describes the functions that enter and exit dynticks-idle mode from
process context, Section D.3.7.2 describes the handling of NMIs from dynticks-idle
mode, Section D.3.7.3 covers handling of interrupts from dynticks-idle mode, and
Section D.3.7.4 presents functions that check whether some other CPU is currently in
dynticks-idle mode.

D.3.7.1 Entering and Exiting Dyntick-Idle Mode

Figure D.44 shows the rcu_enter_nohz() and rcu_exit_nohz() functions
that allow the scheduler to transition to and from dynticks-idle mode. Therefore, after
rcu_enter_nohz() has been call, RCU will ignore it, at least until the next rcu_
exit_nohz(), the next interrupt, or the next NMI.

Line 6 of rcu_enter_nohz() executes a memory barrier to ensure that any
preceding RCU read-side critical sections are seen to have occurred before the following
code that tells RCU to ignore this CPU. Lines 7 and 11 disable and restore interrupts
in order to avoid interference with the state change. Line 8 picks up a pointer to the
running CPU’s rcu_dynticks structure, line 9 increments the ->dynticks field
(which now must be even to indicate that this CPU may be ignored), and finally line 10
decrements the ->dynticks_nesting field (which now must be zero to indicate
that there is no reason to pay attention to this CPU).

Lines 19 and 23 of rcu_exit_nohz() disable and re-enable interrupts, again to
avoid interference. Line 20 obtains a pointer to this CPU’s rcu_dynticks structure,
line 21 increments the ->dynticks field (which now must be odd in order to indicate
that RCU must once again pay attention to this CPU), and line 22 increments the
->dynticks_nesting field (which now must have the value 1 to indicate that there
is one reason to pay attention to this CPU).
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1 void rcu_nmi_enter(void)
2 {
3 struct rcu_dynticks *rdtp;
4
5 rdtp = &__get_cpu_var(rcu_dynticks);
6 if (rdtp->dynticks & 0x1)
7 return;
8 rdtp->dynticks_nmi++;
9 smp_mb();
10 }
11
12 void rcu_nmi_exit(void)
13 {
14 struct rcu_dynticks *rdtp;
15
16 rdtp = &__get_cpu_var(rcu_dynticks);
17 if (rdtp->dynticks & 0x1)
18 return;
19 smp_mb();
20 rdtp->dynticks_nmi++;

Figure D.45: NMIs from Dyntick-Idle Mode

D.3.7.2 NMIs from Dyntick-Idle Mode

Figure D.45 shows rcu_nmi_enter() and rcu_nmi_exit(), which handle NMI
entry and exit, respectively. It is important to keep in mind that entering an NMI handler
exits dyntick-idle mode and vice versa, in other words, RCU must pay attention to CPUs
that claim to be in dyntick-idle mode while they are executing NMI handlers, due to
the fact that NMI handlers can contain RCU read-side critical sections. This reversal of
roles can be quite confusing: you have been warned.

Line 5 of rcu_nmi_enter() obtains a pointer to this CPU’s rcu_dynticks
structure, and line 6 checks to see if this CPU is already under scrutiny by RCU, with
line 7 silently returning if so. Otherwise, line 8 increments the ->dynticks_nmi
field, which must now have an odd-numbered value. Finally, line 9 executes a memory
barrier to ensure that the prior increment of ->dynticks_nmi is see by all CPUs to
happen before any subsequent RCU read-side critical section.

Line 16 of rcu_nmi_exit() again fetches a pointer to this CPU’s rcu_dynticks
structure, and line 17 checks to see if RCU would be paying attention to this CPU even
if it were not in an NMI, with line 18 silently returning if so. Otherwise, line 19 executes
a memory barrier to ensure that any RCU read-side critical sections within the handler
are seen by all CPUs to happen before the increment of the ->dynticks_nmi field
on line 20. The new value of this field must now be even.

Quick Quiz D.51: But how does the code in Figure D.45 handle nested NMIs?

D.3.7.3 Interrupts from Dyntick-Idle Mode

Figure D.46 shows rcu_irq_enter() and rcu_irq_exit(), which handle in-
terrupt entry and exit, respectively. As with NMIs, it is important to note that entering
an interrupt handler exits dyntick-idle mode and vice versa, due to the fact that RCU
read-side critical sections can appear in interrupt handlers.

Line 5 of rcu_irq_enter() once again acquires a reference to the current
CPU’s rcu_dynticks structure. Line 6 increments the ->dynticks_nesting
field, and if the original value was already non-zero (in other words, RCU was already
paying attention to this CPU), line 7 silently returns. Otherwise, line 8 increments
the ->dynticks field, which then must have an odd-numbered value. Finally, line 9
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1 void rcu_irq_enter(void)
2 {
3 struct rcu_dynticks *rdtp;
4
5 rdtp = &__get_cpu_var(rcu_dynticks);
6 if (rdtp->dynticks_nesting++)
7 return;
8 rdtp->dynticks++;
9 smp_mb();
10 }
11
12 void rcu_irq_exit(void)
13 {
14 struct rcu_dynticks *rdtp;
15
16 rdtp = &__get_cpu_var(rcu_dynticks);
17 if (--rdtp->dynticks_nesting)
18 return;
19 smp_mb();
20 rdtp->dynticks++;
21 if (__get_cpu_var(rcu_data).nxtlist ||
22 __get_cpu_var(rcu_bh_data).nxtlist)
23 set_need_resched();
24 }

Figure D.46: Interrupts from Dyntick-Idle Mode

executes a memory barrier so that this increment is seen by all CPUs as happening
before any RCU read-side critical sections that might be in the interrupt handler.

Line 16 of rcu_irq_exit() does the by-now traditional acquisition of a refer-
ence to the currently running CPU’s rcu_dynticks structure. Line 17 decrements
the ->dynticks_nesting field, and, if the result is non-zero (in other words, RCU
must still pay attention to this CPU despite exiting this interrupt handler), then line 18
silently returns. Otherwise, line 19 executes a memory barrier so that any RCU read-side
critical sections that might have been in the interrupt handler are seen by all CPUs as
having happened before the increment on line 20 of the ->dynticks field (which
must now have an even-numbered value). Lines 21 and 22 check to see if the interrupt
handler posted any “rcu” or “rcu_bh” callbacks, and, if so, line 23 forces this CPU
to reschedule, which has the side-effect of forcing it out of dynticks-idle mode, as is
required to allow RCU to handle the grace period required by these callbacks.

D.3.7.4 Checking for Dyntick-Idle Mode

The dyntick_save_progress_counter() and rcu_implicit_dynticks_
qs() functions are used to check whether a CPU is in dynticks-idle mode. The
dyntick_save_progress_counter() function is invoked first, and returns
non-zero if the CPU is currently in dynticks-idle mode. If the CPU was not in dynticks-
idle mode, for example, because it is currently handling an interrupt or NMI, then
the rcu_implicit_dynticks_qs() function is called some jiffies later. This
function looks at the current state in conjunction with state stored away by the earlier
call to dyntick_save_progress_counter(), again returning non-zero if the
CPU either is in dynticks-idle mode or was in dynticks-idle mode during the intervening
time. The rcu_implicit_dynticks_qs() function may be invoked repeatedly,
if need be, until it returns true.

Figure D.47 shows the code for dyntick_save_progress_counter(), which
is passed a given CPU-rcu_state pair’s rcu_data structure. Lines 8 and 9 take
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1 static int
2 dyntick_save_progress_counter(struct rcu_data *rdp)
3 {
4 int ret;
5 int snap;
6 int snap_nmi;
7
8 snap = rdp->dynticks->dynticks;
9 snap_nmi = rdp->dynticks->dynticks_nmi;
10 smp_mb();
11 rdp->dynticks_snap = snap;
12 rdp->dynticks_nmi_snap = snap_nmi;
13 ret = ((snap & 0x1) == 0) && ((snap_nmi & 0x1) == 0);
14 if (ret)
15 rdp->dynticks_fqs++;
16 return ret;
17 }

Figure D.47: Code for dyntick_save_progress_counter()

1 static int
2 rcu_implicit_dynticks_qs(struct rcu_data *rdp)
3 {
4 long curr;
5 long curr_nmi;
6 long snap;
7 long snap_nmi;
8
9 curr = rdp->dynticks->dynticks;
10 snap = rdp->dynticks_snap;
11 curr_nmi = rdp->dynticks->dynticks_nmi;
12 snap_nmi = rdp->dynticks_nmi_snap;
13 smp_mb();
14 if ((curr != snap || (curr & 0x1) == 0) &&
15 (curr_nmi != snap_nmi || (curr_nmi & 0x1) == 0)) {
16 rdp->dynticks_fqs++;
17 return 1;
18 }
19 return rcu_implicit_offline_qs(rdp);
20 }

Figure D.48: Code for rcu_implicit_dynticks_qs()

snapshots of the CPU’s rcu_dynticks structure’s ->dynticks and ->dynticks_
nmi fields, and then line 10 executes a memory barrier to ensure that the snapshot is
seen by all CPUs to have happened before any later processing depending on these
values. This memory barrier pairs up with those in rcu_enter_nohz(), rcu_
exit_nohz(), rcu_nmi_enter(), rcu_nmi_exit(), rcu_irq_enter(),
and rcu_irq_exit(). Lines 11 and 12 store these two snapshots away so that they
can be accessed by a later call to rcu_implicit_dynticks_qs(). Line 13
checks to see if both snapshots have even-numbered values, indicating that the CPU in
question was in neither non-idle process state, an interrupt handler, nor an NMI handler.
If so, lines 14 and 15 increment the statistical counter ->dynticks_fqs, which is
used only for tracing. Either way, line 16 returns the indication of whether the CPU was
in dynticks-idle mode.

Quick Quiz D.52: Why isn’t there a memory barrier between lines 8 and 9 of
Figure D.47? Couldn’t this cause the code to fetch even-numbered values from both the
->dynticks and ->dynticks_nmi fields, even though these two fields never were
zero at the same time?

Figure D.48 shows the code for rcu_implicit_dynticks_qs(). Lines 9-12
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pick up both new values for the CPU’s rcu_dynticks structure’s ->dynticks and
->dynticks_nmi fields, as well as the snapshots taken by the last call to dyntick_
save_progress_counter(). Line 13 then executes a memory barrier to ensure
that the values are seen by other CPUs to be gathered prior to subsequent RCU process-
ing. As with dyntick_save_progress_counter(), this memory barrier pairs
with those in rcu_enter_nohz(), rcu_exit_nohz(), rcu_nmi_enter(),
rcu_nmi_exit(), rcu_irq_enter(), and rcu_irq_exit(). Lines 14-15
then check to make sure that this CPU is either currently in dynticks-idle mode
((curr & 0x1) == 0 and (curr_nmi & 0x1) == 0) or has passed through
dynticks-idle mode since the last call to dyntick_save_progress_counter()
(curr != snap and curr_nmi != snap_nmi). If so, line 16 increments the
->dynticks_fqs statistical counter (again, used only for tracing) and line 17 returns
non-zero to indicate that the specified CPU has passed through a quiescent state. Other-
wise, line 19 invokes rcu_implicit_offline_qs() (described in Section D.3.8)
to check whether the specified CPU is currently offline.

D.3.8 Forcing Quiescent States

Normally, CPUs pass through quiescent states which are duly recorded, so that grace
periods end in a timely manner. However, any of the following three conditions can
prevent CPUs from passing through quiescent states:

1. The CPU is in dyntick-idle state, and is sleeping in a low-power mode. Although
such a CPU is officially in an extended quiescent state, because it is not executing
instructions, it cannot do anything on its own.

2. The CPU is in the process of coming online, and RCU has been informed that
it is online, but this CPU is not yet actually executing code, nor is it marked as
online in cpu_online_map. The current grace period will therefore wait on it,
but it cannot yet pass through quiescent states on its own.

3. The CPU is running user-level code, but has avoided entering the scheduler for an
extended time period.

In each of these cases, RCU needs to take action on behalf of the non-responding
CPU. The following sections describe the functions that take such action. Section D.3.8.1
describes the functions that record and recall the dynticks-idle grace-period number (in
order to avoid incorrectly applying a dynticks-idle quiescent state to the wrong grace
period), Section D.3.8.2 describes functions that detect offline and holdout CPUs, Sec-
tion D.3.8.3 covers rcu_process_dyntick(), which scans for holdout CPUs, and
Section D.3.8.4 describes force_quiescent_state(), which drives the process
of detecting extended quiescent states and forcing quiescent states on holdout CPUs.

D.3.8.1 Recording and Recalling Dynticks-Idle Grace Period

Figure D.49 shows the code for dyntick_record_completed() and dyntick_
recall_completed(). These functions are defined as shown only if dynticks is
enabled (in other words, the CONFIG_NO_HZ kernel parameter is selected), otherwise
they are essentially no-ops. The purpose of these functions is to ensure that a given
observation of a CPU in dynticks-idle mode is associated with the correct grace period
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1 static void
2 dyntick_record_completed(struct rcu_state *rsp,
3 long comp)
4 {
5 rsp->dynticks_completed = comp;
6 }
7
8 static long
9 dyntick_recall_completed(struct rcu_state *rsp)
10 {
11 return rsp->dynticks_completed;
12 }

Figure D.49: Recording and Recalling Dynticks-Idle Grace Period

1 static int rcu_implicit_offline_qs(struct rcu_data *rdp)
2 {
3 if (cpu_is_offline(rdp->cpu)) {
4 rdp->offline_fqs++;
5 return 1;
6 }
7 if (rdp->cpu != smp_processor_id())
8 smp_send_reschedule(rdp->cpu);
9 else
10 set_need_resched();
11 rdp->resched_ipi++;
12 return 0;
13 }

Figure D.50: Handling Offline and Holdout CPUs

in face of races between reporting this CPU in dynticks-idle mode and this CPU coming
out of dynticks-idle mode and reporting a quiescent state on its own.

Lines 1-6 show dyntick_record_completed(), which stores the value spec-
ified by its comp argument into the specified rcu_state structure’s ->dynticks_
completed field. Lines 8-12 show dyntick_recall_completed(), which re-
turns the value stored by the most recent call to dyntick_record_completed()
for this combination of CPU and rcu_state structure.

D.3.8.2 Handling Offline and Holdout CPUs

Figure D.50 shows the code for rcu_implicit_offline_qs(), which checks
for offline CPUs and forcing online holdout CPUs to enter a quiescent state.

Line 3 checks to see if the specified CPU is offline, and, if so, line 4 increments
statistical counter ->offline_fqs (which is used only for tracing), and line 5 returns
non-zero to indicate that the CPU is in an extended quiescent state.

Otherwise, the CPU is online, not in dynticks-idle mode (or this function would
not have been called in the first place), and has not yet passed through a quiescent state
for this grace period. Line 7 checks to see if the holdout CPU is the current running
CPU, and, if not, line 8 sends the holdout CPU a reschedule IPI. Otherwise, line 10 sets
the TIF_NEED_RESCHED flag for the current task, forcing the current CPU into the
scheduler. In either case, the CPU should then quickly enter a quiescent state. Line 11
increments statistical counter resched_ipi, which is again used only for tracing.
Finally, line 12 returns zero to indicate that the holdout CPU is still refusing to pass
through a quiescent state.
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1 static int
2 rcu_process_dyntick(struct rcu_state *rsp,
3 long lastcomp,
4 int (*f)(struct rcu_data *))
5 {
6 unsigned long bit;
7 int cpu;
8 unsigned long flags;
9 unsigned long mask;
10 struct rcu_node *rnp_cur;
11 struct rcu_node *rnp_end;
12
13 rnp_cur = rsp->level[NUM_RCU_LVLS - 1];
14 rnp_end = &rsp->node[NUM_RCU_NODES];
15 for (; rnp_cur < rnp_end; rnp_cur++) {
16 mask = 0;
17 spin_lock_irqsave(&rnp_cur->lock, flags);
18 if (rsp->completed != lastcomp) {
19 spin_unlock_irqrestore(&rnp_cur->lock, flags);
20 return 1;
21 }
22 if (rnp_cur->qsmask == 0) {
23 spin_unlock_irqrestore(&rnp_cur->lock, flags);
24 continue;
25 }
26 cpu = rnp_cur->grplo;
27 bit = 1;
28 for (; cpu <= rnp_cur->grphi; cpu++, bit <<= 1) {
29 if ((rnp_cur->qsmask & bit) != 0 &&
30 f(rsp->rda[cpu]))
31 mask |= bit;
32 }
33 if (mask != 0 && rsp->completed == lastcomp) {
34 cpu_quiet_msk(mask, rsp, rnp_cur, flags);
35 continue;
36 }
37 spin_unlock_irqrestore(&rnp_cur->lock, flags);
38 }
39 return 0;
40 }

Figure D.51: Scanning for Holdout CPUs

D.3.8.3 Scanning for Holdout CPUs

Figure D.51 shows the code for rcu_process_dyntick(), which scans the leaf
rcu_node structures in search of holdout CPUs, as illustrated by the blue arrow
in Figure D.52. It invokes the function passed in through argument f on each such
CPU’s rcu_data structure, and returns non-zero if the grace period specified by the
lastcomp argument has ended.

Lines 13 and 14 acquire references to the first and the last leaf rcu_node structures,
respectively. Each pass through the loop spanning lines 15-38 processes one of the leaf
rcu_node structures.

Line 16 sets the local variable mask to zero. This variable will be used to accumulate
the CPUs within the current leaf rcu_node structure that are in extended quiescent
states, and can thus be reported as such. Line 17 acquires the current leaf rcu_node
structure’s lock, and line 18 checks to see if the current grace period has completed,
and, if so, line 19 releases the lock and line 20 returns non-zero. Otherwise, line 22
checks for holdout CPUs associated with this rcu_node structure, and, if there are
none, line 23 releases the lock and line 24 restarts the loop from the beginning on the
next leaf rcu_node structure.

Execution reaches line 26 if there is at least one holdout CPU associated with this
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Figure D.52: Scanning Leaf rcu_node Structures

rcu_node structure. Lines 26 and 27 set local variables cpu and bit to reference the
lowest-numbered CPU associated with this rcu_node structure. Each pass through
the loop spanning lines 28-32 checks one of the CPUs associated with the current
rcu_node structure. Line 29 checks to see if the this CPU is still holding out or if
it has already passed through a quiescent state. If it is still a holdout, line 30 invokes
the specified function (either dyntick_save_progress_counter() or rcu_
implicit_dynticks_qs(), as specified by the caller), and if that function returns
non-zero (indicating that the current CPU is in an extended quiescent state), then line 31
sets the current CPU’s bit in mask.

Line 33 then checks to see if any CPUs were identified as being in extended quiescent
states and if the current grace period is still in force, and, if so, line 34 invokes cpu_
quiet_msk() to report that the grace period need no longer wait for those CPUs
and then line 35 restarts the loop with the next rcu_node structure. (Note that cpu_
quiet_msk() releases the current rcu_node structure’s lock, and might well end
the current grace period.) Otherwise, if all holdout CPUs really are still holding out,
line 37 releases the current rcu_node structure’s lock.

Once all of the leaf rcu_node structures have been processed, the loop exits, and
line 39 returns zero to indicate that the current grace period is still in full force. (Recall
that line 20 returns non-zero should the current grace period come to an end.)

536



1 static void
2 force_quiescent_state(struct rcu_state *rsp, int relaxed)
3 {
4 unsigned long flags;
5 long lastcomp;
6 struct rcu_data *rdp = rsp->rda[smp_processor_id()];
7 struct rcu_node *rnp = rcu_get_root(rsp);
8 u8 signaled;
9
10 if (ACCESS_ONCE(rsp->completed) ==
11 ACCESS_ONCE(rsp->gpnum))
12 return;
13 if (!spin_trylock_irqsave(&rsp->fqslock, flags)) {
14 rsp->n_force_qs_lh++;
15 return;
16 }
17 if (relaxed &&
18 (long)(rsp->jiffies_force_qs - jiffies) >= 0 &&
19 (rdp->n_rcu_pending_force_qs -
20 rdp->n_rcu_pending) >= 0)
21 goto unlock_ret;
22 rsp->n_force_qs++;
23 spin_lock(&rnp->lock);
24 lastcomp = rsp->completed;
25 signaled = rsp->signaled;
26 rsp->jiffies_force_qs =
27 jiffies + RCU_JIFFIES_TILL_FORCE_QS;
28 rdp->n_rcu_pending_force_qs =
29 rdp->n_rcu_pending +
30 RCU_JIFFIES_TILL_FORCE_QS;
31 if (lastcomp == rsp->gpnum) {
32 rsp->n_force_qs_ngp++;
33 spin_unlock(&rnp->lock);
34 goto unlock_ret;
35 }
36 spin_unlock(&rnp->lock);
37 switch (signaled) {
38 case RCU_GP_INIT:
39 break;
40 case RCU_SAVE_DYNTICK:
41 if (RCU_SIGNAL_INIT != RCU_SAVE_DYNTICK)
42 break;
43 if (rcu_process_dyntick(rsp, lastcomp,
44 dyntick_save_progress_counter))
45 goto unlock_ret;
46 spin_lock(&rnp->lock);
47 if (lastcomp == rsp->completed) {
48 rsp->signaled = RCU_FORCE_QS;
49 dyntick_record_completed(rsp, lastcomp);
50 }
51 spin_unlock(&rnp->lock);
52 break;
53 case RCU_FORCE_QS:
54 if (rcu_process_dyntick(rsp,
55 dyntick_recall_completed(rsp),
56 rcu_implicit_dynticks_qs))
57 goto unlock_ret;
58 break;
59 }
60 unlock_ret:
61 spin_unlock_irqrestore(&rsp->fqslock, flags);
62 }

Figure D.53: force_quiescent_state() Code
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D.3.8.4 Code for force_quiescent_state()

Figure D.53 shows the code for force_quiescent_state() for CONFIG_SMP,4

which is invoked when RCU feels the need to expedite the current grace period by
forcing CPUs through quiescent states. RCU feels this need when either:

1. the current grace period has gone on for more than three jiffies (or as specified by
the compile-time value of RCU_JIFFIES_TILL_FORCE_QS), or

2. a CPU enqueuing an RCU callback via either call_rcu() or call_rcu_
bh() sees more than 10,000 callbacks enqueued (or as specified by the boot-time
parameter qhimark).

Lines 10-12 check to see if there is a grace period in progress, silently exiting if not.
Lines 13-16 attempt to acquire ->fqslock, which prevents concurrent attempts to
expedite a grace period. The ->n_force_qs_lh counter is incremented when this
lock is already held, and is visible via the fqlh= field in the rcuhier debugfs file
when the CONFIG_RCU_TRACE kernel parameter is enabled. Lines 17-21 check to
see if it is really necessary to expedite the current grace period, in other words, if (1)
the current CPU has 10,000 RCU callbacks waiting, or (2) at least three jiffies have
passed since either the beginning of the current grace period or since the last attempt
to expedite the current grace period, measured either by the jiffies counter or by
the number of calls to rcu_pending. Line 22 then counts the number of attempts to
expedite grace periods.

Lines 23-36 are executed with the root rcu_node structure’s lock held in order
to prevent confusion should the current grace period happen to end just as we try to
expedite it. Lines 24 and 25 snapshot the ->completed and ->signaled fields,
lines 26-30 set the soonest time that a subsequent non-relaxed force_quiescent_
state() will be allowed to actually do any expediting, and lines 31-35 check to see
if the grace period ended while we were acquiring the rcu_node structure’s lock,
releasing this lock and returning if so.

Lines 37-59 drive the force_quiescent_state() state machine. If the grace
period is still in the midst of initialization, lines 41 and 42 simply return, allowing
force_quiescent_state() to be called again at a later time, presumably after
initialization has completed. If dynticks are enabled (via the CONFIG_NO_HZ kernel
parameter), the first post-initialization call to force_quiescent_state() in a
given grace period will execute lines 40-52, and the second and subsequent calls will
execute lines 53-59. On the other hand, if dynticks is not enabled, then all post-
initialization calls to force_quiescent_state() will execute lines 53-59.

The purpose of lines 40-52 is to record the current dynticks-idle state of all CPUs
that have not yet passed through a quiescent state, and to record a quiescent state for
any that are currently in dynticks-idle state (but not currently in an irq or NMI handler).
Lines 41-42 serve to inform gcc that this branch of the switch statement is dead code for
non-CONFIG_NO_HZ kernels. Lines 43-45 invoke rcu_process_dyntick() in
order to invoke dyntick_save_progress_counter() for each CPU that has
not yet passed through a quiescent state for the current grace period, exiting force_
quiescent_state() if the grace period ends in the meantime (possibly due to
having found that all the CPUs that had not yet passed through a quiescent state were
sleeping in dyntick-idle mode). Lines 46 and 51 acquire and release the root rcu_node

4 For non-CONFIG_SMP, force_quiescent_state is a simple wrapper around set_need_
resched().
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1 static void
2 record_gp_stall_check_time(struct rcu_state *rsp)
3 {
4 rsp->gp_start = jiffies;
5 rsp->jiffies_stall =
6 jiffies + RCU_SECONDS_TILL_STALL_CHECK;
7 }

Figure D.54: record_gp_stall_check_time() Code

structure’s lock, again to avoid possible confusion with a concurrent end of the current
grace period. Line 47 checks to see if the current grace period is still in force, and,
if so, line 48 advances the state machine to the RCU_FORCE_QS state and line 49
saves the current grace-period number for the benefit of the next invocation of force_
quiescent_state(). The reason for saving the current grace-period number is to
correctly handle race conditions involving the current grace period ending concurrently
with the next invocation of force_quiescent_state().

As noted earlier, lines 53-58 handle the second and subsequent invocations of
force_quiescent_state() in CONFIG_NO_HZ kernels, and all invocations in
non-CONFIG_NO_HZ kernels. Lines 54 and 58 invoke rcu_process_dyntick(),
which cycles through the CPUs that have still not passed through a quiescent state,
invoking rcu_implicit_dynticks_qs() on them, which in turn checks to see
if any of these CPUs have passed through dyntick-idle state (if CONFIG_NO_HZ is
enabled), checks to see if we are waiting on any offline CPUs, and finally sends a
reschedule IPI to any remaining CPUs not in the first two groups.

D.3.9 CPU-Stall Detection

RCU checks for stalled CPUs when the CONFIG_RCU_CPU_STALL_DETECTOR
kernel parameter is selected. “Stalled CPUs” are those spinning in the kernel with
preemption disabled, which degrades response time. These checks are implemented
via the record_gp_stall_check_time(), check_cpu_stall(), print_
cpu_stall(), and print_other_cpu_stall() functions, each of which is
described below. All of these functions are no-ops when the CONFIG_RCU_CPU_
STALL_DETECTOR kernel parameter is not selected.

Figure D.54 shows the code for record_gp_stall_check_time(). Line 4
records the current time (of the start of the grace period) in jiffies, and lines 5-6 record
the time at which CPU stalls should be checked for, should the grace period run on that
long.

Figure D.55 shows the code for check_cpu_stall, which checks to see if the
grace period has stretched on too long, invoking either print_cpu_stall() or
print_other_cpu_stall() in order to print a CPU-stall warning message if so.

Line 8 computes the number of jiffies since the time at which stall warnings should
be printed, which will be negative if it is not yet time to print warnings. Line 9 obtains a
pointer to the leaf rcu_node structure corresponding to the current CPU, and line 10
checks to see if the current CPU has not yet passed through a quiescent state and if the
grace period has extended too long (in other words, if the current CPU is stalled), with
line 11 invoking print_cpu_stall() if so.

Otherwise, lines 12-13 check to see if the grace period is still in effect and if it has
extended a couple of jiffies past the CPU-stall warning duration, with line 14 invoking
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1 static void
2 check_cpu_stall(struct rcu_state *rsp,
3 struct rcu_data *rdp)
4 {
5 long delta;
6 struct rcu_node *rnp;
7
8 delta = jiffies - rsp->jiffies_stall;
9 rnp = rdp->mynode;
10 if ((rnp->qsmask & rdp->grpmask) && delta >= 0) {
11 print_cpu_stall(rsp);
12 } else if (rsp->gpnum != rsp->completed &&
13 delta >= RCU_STALL_RAT_DELAY) {
14 print_other_cpu_stall(rsp);
15 }
16 }

Figure D.55: check_cpu_stall() Code

1 static void print_cpu_stall(struct rcu_state *rsp)
2 {
3 unsigned long flags;
4 struct rcu_node *rnp = rcu_get_root(rsp);
5
6 printk(KERN_ERR
7 "INFO: RCU detected CPU %d stall "
8 "(t=%lu jiffies)\n",
9 smp_processor_id(),
10 jiffies - rsp->gp_start);
11 dump_stack();
12 spin_lock_irqsave(&rnp->lock, flags);
13 if ((long)(jiffies - rsp->jiffies_stall) >= 0)
14 rsp->jiffies_stall =
15 jiffies + RCU_SECONDS_TILL_STALL_RECHECK;
16 spin_unlock_irqrestore(&rnp->lock, flags);
17 set_need_resched();
18 }

Figure D.56: print_cpu_stall() Code

print_other_cpu_stall() if so.
Quick Quiz D.53: Why wait the extra couple jiffies on lines 12-13 in Figure D.55?

Figure D.56 shows the code for print_cpu_stall().
Line 6-11 prints a console message and dumps the current CPU’s stack, while

lines 12-17 compute the time to the next CPU stall warning, should the grace period
stretch on that much additional time.

Quick Quiz D.54: What prevents the grace period from ending before the stall
warning is printed in Figure D.56?

Figure D.57 shows the code for print_other_cpu_stall(), which prints
out stall warnings for CPUs other than the currently running CPU.

Lines 10 and 11 pick up references to the first leaf rcu_node structure and one past
the last leaf rcu_node structure, respectively. Line 12 acquires the root rcu_node
structure’s lock, and also disables interrupts. Line 13 calculates the how long ago the
CPU-stall warning time occurred (which will be negative if it has not yet occurred), and
lines 14 and 15 check to see if the CPU-stall warning time has passed and if the grace
period has not yet ended, with line 16 releasing the lock (and re-enabling interrupts) and
line 17 returning if so.

Quick Quiz D.55: Why does print_other_cpu_stall() in Figure D.57
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1 static void print_other_cpu_stall(struct rcu_state *rsp)
2 {
3 int cpu;
4 long delta;
5 unsigned long flags;
6 struct rcu_node *rnp = rcu_get_root(rsp);
7 struct rcu_node *rnp_cur;
8 struct rcu_node *rnp_end;
9
10 rnp_cur = rsp->level[NUM_RCU_LVLS - 1];
11 rnp_end = &rsp->node[NUM_RCU_NODES];
12 spin_lock_irqsave(&rnp->lock, flags);
13 delta = jiffies - rsp->jiffies_stall;
14 if (delta < RCU_STALL_RAT_DELAY ||
15 rsp->gpnum == rsp->completed) {
16 spin_unlock_irqrestore(&rnp->lock, flags);
17 return;
18 }
19 rsp->jiffies_stall = jiffies +
20 RCU_SECONDS_TILL_STALL_RECHECK;
21 spin_unlock_irqrestore(&rnp->lock, flags);
22 printk(KERN_ERR "INFO: RCU detected CPU stalls:");
23 for (; rnp_cur < rnp_end; rnp_cur++) {
24 if (rnp_cur->qsmask == 0)
25 continue;
26 cpu = 0;
27 for (; cpu <= rnp_cur->grphi - rnp_cur->grplo; cpu++)
28 if (rnp_cur->qsmask & (1UL << cpu))
29 printk(" %d", rnp_cur->grplo + cpu);
30 }
31 printk(" (detected by %d, t=%ld jiffies)\n",
32 smp_processor_id(),
33 (long)(jiffies - rsp->gp_start));
34 force_quiescent_state(rsp, 0);
35 }

Figure D.57: print_other_cpu_stall() Code
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need to check for the grace period ending when print_cpu_stall() did not?
Otherwise, lines 19 and 20 compute the next time that CPU stall warnings should

be printed (if the grace period extends that long) and line 21 releases the lock and
re-enables interrupts. Lines 23-33 print a list of the stalled CPUs, and, finally, line 34
invokes force_quiescent_state() in order to nudge the offending CPUs into
passing through a quiescent state.

D.3.10 Possible Flaws and Changes

The biggest possible issue with Hierarchical RCU put forward as of this writing is the
fact that force_quiescent_state() involves a potential walk through all CPUs’
rcu_data structures. On a machine with thousands of CPUs, this could potentially
represent an excessive impact on scheduling latency, given that this scan is conducted
with interrupts disabled.

Should this become a problem in real life, one fix is to maintain separate force_
quiescent_state() sequencing on a per-leaf-rcu_node basis as well as the
current per-rcu_state ->signaled state variable. This would allow incremental
forcing of quiescent states on a per-leaf-rcu_node basis, greatly reducing the worst-
case degradation of scheduling latency.

In the meantime, those caring deeply about scheduling latency can limit the number
of CPUs in the system or use the preemptible RCU implementation.

D.4 Preemptible RCU

The preemptible RCU implementation is unusual in that it permits read-side critical
sections to be preempted and to be blocked waiting for locks. However, it does not
handle general blocking (for example, via the wait_event() primitive): if you need
that, you should instead use SRCU, which is described in Appendix D.1. In contrast to
SRCU, preemptible RCU only permits blocking within primitives that are both subject
to priority inheritance and non-blocking in a non-CONFIG_PREEMPT kernel. This
ability to acquire blocking locks and to be preempted within RCU read-side critical
sections is required for the aggressive real-time capabilities provided by Ingo Molnar’s
-rt patchset. However, the initial preemptible RCU implementation [McK05c] had some
limitations, including:

1. Its read-side primitives cannot be called from within non-maskable interrupt
(NMI) or systems-management interrupt handlers.

2. Its read-side primitives use both atomic instructions and memory barriers, both of
which have excessive overhead.

3. It does no priority boosting of RCU read-side critical sections [McK07d].

The new preemptible RCU implementation that accepted into the 2.6.26 Linux kernel
removes these limitations, and this appendix describes its design, serving as an update to
the LWN article [McK07a]. However, please note that this implementation was replaced
with a faster and simpler implementation in the 2.6.32 Linux kernel. This description
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nevertheless remains to bear witness to the most complex RCU implementation ever
devised.

Quick Quiz D.56: Why is it important that blocking primitives called from within
a preemptible-RCU read-side critical section be subject to priority inheritance?

Quick Quiz D.57: Could the prohibition against using primitives that would block
in a non-CONFIG_PREEMPT kernel be lifted, and if so, under what conditions?

D.4.1 Conceptual RCU

Understanding and validating an RCU implementation is much easier given a view of
RCU at the lowest possible level. This section gives a very brief overview of the most
basic concurrency requirements that an RCU implementation must support. For more
detail, please see Section 8.3.2.

RCU implementations must obey the following rule: if any statement in a given
RCU read-side critical section precedes a grace period, then all statements in that RCU
read-side critical section must complete before that grace period ends.

Reader Reader Reader

ReaderReader

Reader

Reader Reader

Reader

Removal Reclamation

Forbidden!

Figure D.58: Buggy Grace Period From Broken RCU

This is illustrated by Figure D.58, where time advances from left to right. The
red "Removal" box represents the update-side critical section that modifies the RCU-
protected data structure, for example, via list_del_rcu(); the large yellow "Grace
Period" box represents a grace period (surprise!) which might be invoked via synchronize_
rcu(), and the green "Reclamation" box represents freeing the affected data element,
perhaps via kfree(). The blue "Reader" boxes each represent an RCU read-side
critical section, for example, beginning with rcu_read_lock() and ending with
rcu_read_unlock(). The red-rimmed "Reader" box is an example of an illegal
situation: any so-called RCU implementation that permits a read-side critical section to
completely overlap a grace period is buggy, since the updater might free up memory
that this reader is still using.

So, what is the poor RCU implementation to do in this situation?
It must extend the grace period, perhaps as shown in Figure D.59. In short, the

RCU implementation must ensure that any RCU read-side critical sections in progress
at the start of a given grace period have completely finished, memory operations and all,
before that grace period is permitted to complete. This fact allows RCU validation to
be extremely focused: simply demonstrate that any RCU read-side critical section in
progress at the beginning of a grace period must terminate before that grace period ends,
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Figure D.59: Good Grace Period From Correct RCU

along with sufficient barriers to prevent either the compiler or the CPU from undoing
the RCU implementation’s work.

D.4.2 Overview of Preemptible RCU Algorithm

This section focuses on a specific implementation of preemptible RCU. Many other
implementations are possible, and are described elsewhere [MSMB06, MS05]. This
article focuses on this specific implementation’s general approach, the data structures,
the grace-period state machine, and a walk through the read-side primitives.

D.4.2.1 General Approach

Because this implementation of preemptible RCU does not require memory barriers in
rcu_read_lock() and rcu_read_unlock(), a multi-stage grace-period detec-
tion algorithm is required. Instead of using a single wait queue of callbacks (which
has sufficed for earlier RCU implementations), this implementation uses an array of
wait queues, so that RCU callbacks are enqueued on each element of this array in
turn. This difference in callback flow is shown in Figure D.60 for a preemptible RCU
implementation with two waitlist stages per grace period (in contrast, the September 10
2007 patch to -rt [McK07c] uses four waitlist stages).

Given two stages per grace period, any pair of stages forms a full grace period.
Similarly, in an implementation with four stages per grace period, any sequence of four
stages would form a full grace period.

To determine when a grace-period stage can end, preemptible RCU uses a per-
CPU two-element rcu_flipctr array that tracks in-progress RCU read-side critical
sections. One element of a given CPU’s rcu_flipctr array tracks old RCU read-side
critical sections, in other words, critical sections that started before the current grace-
period stage. The other element tracks new RCU read-side critical sections, namely
those starting during the current grace-period stage. The array elements switch roles at
the beginning of each new grace-period stage, as shown in Figure D.61.

During the first stage on the left-hand side of the above figure, rcu_flipctr[0]
tracks the new RCU read-side critical sections, and is therefore incremented by rcu_
read_lock() and decremented by rcu_read_unlock(). Similarly, rcu_flipctr[1]
tracks the old RCU read-side critical sections (those that started during earlier stages),
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Figure D.60: Classic vs. Preemptible RCU Callback Processing

and is therefore decremented by rcu_read_unlock() and never incremented at all.
Because each CPU’s old rcu_flipctr[1] elements are never incremented, their

sum across all CPUs must eventually go to zero, although preemption in the midst of an
RCU read-side critical section might cause any individual counter to remain non-zero
or even to go negative. For example, suppose that a task calls rcu_read_lock()
on one CPU, is preempted, resumes on another CPU, and then calls rcu_read_
unlock(). The first CPU’s counter will then be +1 and the second CPU’s counter
will be -1, however, they will still sum to zero. Regardless of possible preemption,
when the sum of the old counter elements does go to zero, it is safe to move to the next
grace-period stage, as shown on the right-hand side of the above figure.

In this second stage, the elements of each CPU’s rcu_flipctr counter array
switch roles. The rcu_flipctr[0] counter now tracks the old RCU read-side
critical sections, in other words, the ones that started during grace period stage 0.
Similarly, the rcu_flipctr[1] counter now tracks the new RCU read-side critical
sections that start in grace period stage 1. Therefore, rcu_read_lock() now in-
crements rcu_flipctr[1], while rcu_read_unlock() still might decrement
either counter. Specifically, if the matching rcu_read_lock() executed during
grace-period stage 0 (the old stage at this point), then rcu_read_unlock() must
decrement rcu_flipctr[0], but if the matching rcu_read_lock() executed
during grace-period stage 1 (the new stage), then rcu_read_unlock() must instead
decrement rcu_flipctr[1].

The critical point is that all rcu_flipctr elements tracking the old RCU read-
side critical sections must strictly decrease. Therefore, once the sum of these old
counters reaches zero, it cannot change.
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Figure D.61: Preemptible RCU Counter Flip Operation

The rcu_read_lock() primitive uses the bottom bit of the current grace-period
counter (rcu_ctrlblk.completed & 0x1) to index the rcu_flipctr array,
and records this index in the task structure. The matching rcu_read_unlock()
uses this recorded value to ensure that it decrements a counter corresponding to the one
that the matching rcu_read_lock() incremented. Of course, if the RCU read-side
critical section has been preempted, rcu_read_unlock() might be decrementing
the counter belonging to a different CPU than the one whose counter was incremented
by the matching rcu_read_lock().

Each CPU also maintains rcu_flip_flag and rcu_mb_flag per-CPU vari-
ables. The rcu_flip_flag variable is used to synchronize the start of each grace-
period stage: once a given CPU has responded to its rcu_flip_flag, it must refrain
from incrementing the rcu_flip array element that now corresponds to the old grace-
period stage. The CPU that advances the counter (rcu_ctrlblk.completed)
changes the value of each CPU’s rcu_mb_flag to rcu_flipped, but a given
rcu_mb_flag may be changed back to rcu_flip_seen only by the correspond-
ing CPU.

The rcu_mb_flag variable is used to force each CPU to execute a memory barrier
at the end of each grace-period stage. These memory barriers are required to ensure that
memory accesses from RCU read-side critical sections ending in a given grace-period
stage are ordered before the end of that stage. This approach gains the benefits memory
barriers at the beginning and end of each RCU read-side critical section without having
to actually execute all those costly barriers. The rcu_mb_flag is set to rcu_mb_
needed by the CPU that detects that the sum of the old counters is zero, but a given
rcu_mb_flag is changed back to rcu_mb_done only by the corresponding CPU,
and even then only after executing a memory barrier.

D.4.2.2 Data Structures

This section describes preemptible RCU’s major data structures, including rcu_
ctrlblk, rcu_data, rcu_flipctr, rcu_try_flip_state, rcu_try_flip_
flag, and rcu_mb_flag.
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rcu_ctrlblk The rcu_ctrlblk structure is global, and holds the lock that
protects grace-period processing (fliplock) as well as holding the global grace-
period counter (completed). The least-significant bit of completed is used by
rcu_read_lock() to select which set of counters to increment.

rcu_data The rcu_data structure is a per-CPU structure, and contains the fol-
lowing fields:

• lock guards the remaining fields in this structure.

• completed is used to synchronize CPU-local activity with the global counter
in rcu_ctrlblk.

• waitlistcount is used to maintain a count of the number of non-empty wait-
lists. This field is used by rcu_pending() to help determine if this CPU has
any RCU-related work left to be done.

• nextlist, nextail, waitlist, waittail, donelist, and donetail
form lists containing RCU callbacks that are waiting for invocation at the end of
a grace period. Each list has a tail pointer, allowing O(1) appends. The RCU
callbacks flow through these lists as shown below.

• rcupreempt_trace accumulates statistics.

nextlist nexttail

waitlist[0] waittail[0]

waitlist[1] waittail[1]

donelist donetail

call_rcu()

rcu_process_callbacks()

Figure D.62: Preemptible RCU Callback Flow

Figure D.62 shows how RCU callbacks flow through a given rcu_data struc-
ture’s lists, from creation by call_rcu() through invocation by rcu_process_
callbacks(). Each blue arrow represents one pass by the grace-period state machine,
which is described in a later section.
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rcu_flipctr As noted earlier, the rcu_flipctr per-CPU array of counters
contains the counter pairs that track outstanding RCU read-side critical sections. Any
given counter in this array can go negative, for example, when a task is migrated to a
different CPU in the middle of an RCU read-side critical section. However, the sum of
the counters will still remain positive throughout the corresponding grace period, and
will furthermore go to zero at the end of that grace period.

rcu_try_flip_state The rcu_try_flip_state variable tracks the cur-
rent state of the grace-period state machine, as described in the next section.

rcu_try_flip_flag The rcu_try_flip_flag per-CPU variable alerts the
corresponding CPU that the grace-period counter has recently been incremented, and
also records that CPU’s acknowledgment. Once a given CPU has acknowledged the
counter flip, all subsequent actions taken by rcu_read_lock() on that CPU must
account for the new value of the grace-period counter, in particular, when incrementing
rcu_flipctr in rcu_read_lock().

rcu_mb_flag The rcu_mb_flag per-CPU variable alerts the corresponding CPU
that it must execute a memory barrier in order for the grace-period state machine to
proceed, and also records that CPU’s acknowledgment. Once a given CPU has executed
its memory barrier, the memory operations of all prior RCU read-side critical will be
visible to any code sequenced after the corresponding grace period.

D.4.2.3 Grace-Period State Machine

This section gives an overview of the states executed by the grace-period state machine,
and then walks through the relevant code.

Grace-Period State Machine Overview The state (recorded in rcu_try_flip_
state) can take on the following values:

• rcu_try_flip_idle_state: the grace-period state machine is idle due to
there being no RCU grace-period activity. The rcu_ctrlblk.completed
grace-period counter is incremented upon exit from this state, and all of the
per-CPU rcu_flip_flag variables are set to rcu_flipped.

• rcu_try_flip_waitack_state: waiting for all CPUs to acknowledge
that they have seen the previous state’s increment, which they do by setting
their rcu_flip_flag variables to rcu_flip_seen. Once all CPUs have so
acknowledged, we know that the old set of counters can no longer be incremented.

• rcu_try_flip_waitzero_state: waiting for the old counters to sum to
zero. Once the counters sum to zero, all of the per-CPU rcu_mb_flag variables
are set to rcu_mb_needed.

• rcu_try_flip_waitmb_state: waiting for all CPUs to execute a memory-
barrier instruction, which they signify by setting their rcu_mb_flag variables
to rcu_mb_done. Once all CPUs have done so, all CPUs are guaranteed to see
the changes made by any RCU read-side critical section that started before the
beginning of the corresponding grace period, even on weakly ordered machines.
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Figure D.63: Preemptible RCU State Machine

The grace period state machine cycles through these states sequentially, as shown in
Figure D.63.

Figure D.64 shows how the state machine operates over time. The states are shown
along the figure’s left-hand side and the relevant events are shown along the timeline,
with time proceeding in the downward direction. We will elaborate on this figure when
we validate the algorithm in a later section.

In the meantime, here are some important things to note:

1. The increment of the rcu_ctrlblk.completed counter might be observed
at different times by different CPUs, as indicated by the blue oval. However,
after a given CPU has acknowledged the increment, it is required to use the new
counter. Therefore, once all CPUs have acknowledged, the old counter can only
be decremented.

2. A given CPU advances its callback lists just before acknowledging the counter
increment.

3. The blue oval represents the fact that memory reordering might cause different
CPUs to see the increment at different times. This means that a given CPU might
believe that some other CPU has jumped the gun, using the new value of the
counter before the counter was actually incremented. In fact, in theory, a given
CPU might see the next increment of the rcu_ctrlblk.completed counter
as early as the last preceding memory barrier. (Note well that this sentence is
very imprecise. If you intend to do correctness proofs involving memory barriers,
please see Appendix D.4.3.3.
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Figure D.64: Preemptible RCU State Machine Timeline

1 void rcu_check_callbacks(int cpu, int user)
2 {
3 unsigned long flags;
4 struct rcu_data *rdp = RCU_DATA_CPU(cpu);
5
6 rcu_check_mb(cpu);
7 if (rcu_ctrlblk.completed == rdp->completed)
8 rcu_try_flip();
9 spin_lock_irqsave(&rdp->lock, flags);
10 RCU_TRACE_RDP(rcupreempt_trace_check_callbacks, rdp);
11 __rcu_advance_callbacks(rdp);
12 spin_unlock_irqrestore(&rdp->lock, flags);
13 }

Figure D.65: rcu_check_callbacks() Implementation

4. Because rcu_read_lock() does not contain any memory barriers, the corre-
sponding RCU read-side critical sections might be reordered by the CPU to follow
the rcu_read_unlock(). Therefore, the memory barriers are required to en-
sure that the actions of the RCU read-side critical sections have in fact completed.

5. As we will see, the fact that different CPUs can see the counter flip happening at
different times means that a single trip through the state machine is not sufficient
for a grace period: multiple trips are required.

Grace-Period State Machine Walkthrough This section walks through the C code
that implements the RCU grace-period state machine, which is invoked from the
scheduling-clock interrupt, which invokes rcu_check_callbacks() with irqs
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1 static void rcu_check_mb(int cpu)
2 {
3 if (per_cpu(rcu_mb_flag, cpu) == rcu_mb_needed) {
4 smp_mb();
5 per_cpu(rcu_mb_flag, cpu) = rcu_mb_done;
6 }
7 }

Figure D.66: rcu_check_mb() Implementation

1 static void rcu_try_flip(void)
2 {
3 unsigned long flags;
4
5 RCU_TRACE_ME(rcupreempt_trace_try_flip_1);
6 if (!spin_trylock_irqsave(&rcu_ctrlblk.fliplock, flags)) {
7 RCU_TRACE_ME(rcupreempt_trace_try_flip_e1);
8 return;
9 }
10 switch (rcu_try_flip_state) {
11 case rcu_try_flip_idle_state:
12 if (rcu_try_flip_idle())
13 rcu_try_flip_state = rcu_try_flip_waitack_state;
14 break;
15 case rcu_try_flip_waitack_state:
16 if (rcu_try_flip_waitack())
17 rcu_try_flip_state = rcu_try_flip_waitzero_state;
18 break;
19 case rcu_try_flip_waitzero_state:
20 if (rcu_try_flip_waitzero())
21 rcu_try_flip_state = rcu_try_flip_waitmb_state;
22 break;
23 case rcu_try_flip_waitmb_state:
24 if (rcu_try_flip_waitmb())
25 rcu_try_flip_state = rcu_try_flip_idle_state;
26 }
27 spin_unlock_irqrestore(&rcu_ctrlblk.fliplock, flags);
28 }

Figure D.67: rcu_try_flip() Implementation

(and thus also preemption) disabled. This function is implemented as shown in Fig-
ure D.65. Line 4 selects the rcu_data structure corresponding to the current CPU,
and line 6 checks to see if this CPU needs to execute a memory barrier to advance the
state machine out of the rcu_try_flip_waitmb_state state. Line 7 checks to
see if this CPU is already aware of the current grace-period stage number, and line 8
attempts to advance the state machine if so. Lines 9 and 12 hold the rcu_data’s lock,
and line 11 advances callbacks if appropriate. Line 10 updates RCU tracing statistics, if
enabled via CONFIG_RCU_TRACE.

The rcu_check_mb() function executes a memory barrier as needed as shown
in Figure D.66. Line 3 checks to see if this CPU needs to execute a memory barrier, and,
if so, line 4 executes one and line 5 informs the state machine. Note that this memory
barrier ensures that any CPU that sees the new value of rcu_mb_flag will also see
the memory operations executed by this CPU in any prior RCU read-side critical section.

The rcu_try_flip() function implements the top level of the RCU grace-period
state machine, as shown in Figure D.67. Line 6 attempts to acquire the global RCU
state-machine lock, and returns if unsuccessful. Lines; 5 and 7 accumulate RCU-tracing
statistics (again, if CONFIG_RCU_TRACE is enabled). Lines 10 through 26 execute the
state machine, each invoking a function specific to that state. Each such function returns
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1 static int rcu_try_flip_idle(void)
2 {
3 int cpu;
4
5 RCU_TRACE_ME(rcupreempt_trace_try_flip_i1);
6 if (!rcu_pending(smp_processor_id())) {
7 RCU_TRACE_ME(rcupreempt_trace_try_flip_ie1);
8 return 0;
9 }
10 RCU_TRACE_ME(rcupreempt_trace_try_flip_g1);
11 rcu_ctrlblk.completed++;
12 smp_mb();
13 for_each_cpu_mask(cpu, rcu_cpu_online_map)
14 per_cpu(rcu_flip_flag, cpu) = rcu_flipped;
15 return 1;
16 }

Figure D.68: rcu_try_flip_idle() Implementation

1 static int rcu_try_flip_waitack(void)
2 {
3 int cpu;
4
5 RCU_TRACE_ME(rcupreempt_trace_try_flip_a1);
6 for_each_cpu_mask(cpu, rcu_cpu_online_map)
7 if (per_cpu(rcu_flip_flag, cpu) != rcu_flip_seen) {
8 RCU_TRACE_ME(rcupreempt_trace_try_flip_ae1);
9 return 0;
10 }
11 smp_mb();
12 RCU_TRACE_ME(rcupreempt_trace_try_flip_a2);
13 return 1;
14 }

Figure D.69: rcu_try_flip_waitack() Implementation

1 if the state needs to be advanced and 0 otherwise. In principle, the next state could be
executed immediately, but in practice we choose not to do so in order to reduce latency.
Finally, line 27 releases the global RCU state-machine lock that was acquired by line 6.

The rcu_try_flip_idle() function is called when the RCU grace-period
state machine is idle, and is thus responsible for getting it started when needed. Its code
is shown in Figure D.68. Line 6 checks to see if there is any RCU grace-period work
pending for this CPU, and if not, line 8 leaves, telling the top-level state machine to
remain in the idle state. If instead there is work to do, line 11 increments the grace-
period stage counter, line 12 does a memory barrier to ensure that CPUs see the new
counter before they see the request to acknowledge it, and lines 13 and 14 set all of the
online CPUs’ rcu_flip_flag. Finally, line 15 tells the top-level state machine to
advance to the next state.

The rcu_try_flip_waitack() function, shown in Figure D.69, checks to
see if all online CPUs have acknowledged the counter flip (AKA "increment", but
called "flip" because the bottom bit, which rcu_read_lock() uses to index the
rcu_flipctr array, does flip). If they have, it tells the top-level grace-period state
machine to move to the next state.

Line 6 cycles through all of the online CPUs, and line 7 checks to see if the current
such CPU has acknowledged the last counter flip. If not, line 9 tells the top-level
grace-period state machine to remain in this state. Otherwise, if all online CPUs have
acknowledged, then line 11 does a memory barrier to ensure that we don’t check for
zeroes before the last CPU acknowledges. This may seem dubious, but CPU designers

552



1 static int rcu_try_flip_waitzero(void)
2 {
3 int cpu;
4 int lastidx = !(rcu_ctrlblk.completed & 0x1);
5 int sum = 0;
6
7 RCU_TRACE_ME(rcupreempt_trace_try_flip_z1);
8 for_each_possible_cpu(cpu)
9 sum += per_cpu(rcu_flipctr, cpu)[lastidx];
10 if (sum != 0) {
11 RCU_TRACE_ME(rcupreempt_trace_try_flip_ze1);
12 return 0;
13 }
14 smp_mb();
15 for_each_cpu_mask(cpu, rcu_cpu_online_map)
16 per_cpu(rcu_mb_flag, cpu) = rcu_mb_needed;
17 RCU_TRACE_ME(rcupreempt_trace_try_flip_z2);
18 return 1;
19 }

Figure D.70: rcu_try_flip_waitzero() Implementation

1 static int rcu_try_flip_waitmb(void)
2 {
3 int cpu;
4
5 RCU_TRACE_ME(rcupreempt_trace_try_flip_m1);
6 for_each_cpu_mask(cpu, rcu_cpu_online_map)
7 if (per_cpu(rcu_mb_flag, cpu) != rcu_mb_done) {
8 RCU_TRACE_ME(rcupreempt_trace_try_flip_me1);
9 return 0;
10 }
11 smp_mb();
12 RCU_TRACE_ME(rcupreempt_trace_try_flip_m2);
13 return 1;
14 }

Figure D.71: rcu_try_flip_waitmb() Implementation

have sometimes done strange things. Finally, line 13 tells the top-level grace-period
state machine to advance to the next state.

The rcu_try_flip_waitzero() function, shown in Figure D.70, checks to
see if all pre-existing RCU read-side critical sections have completed, telling the state
machine to advance if so. Lines 8 and 9 sum the counters, and line 10 checks to see
if the result is zero, and, if not, line 12 tells the state machine to stay right where it is.
Otherwise, line 14 executes a memory barrier to ensure that no CPU sees the subsequent
call for a memory barrier before it has exited its last RCU read-side critical section.
This possibility might seem remote, but again, CPU designers have done stranger things,
and besides, this is anything but a fastpath. Lines 15 and 16 set all online CPUs’
rcu_mb_flag variables, and line 18 tells the state machine to advance to the next
state.

The rcu_try_flip_waitmb() function, shown in Figure D.71, checks to see
if all online CPUs have executed the requested memory barrier, telling the state machine
to advance if so. Lines 6 and 7 check each online CPU to see if it has done the needed
memory barrier, and if not, line 9 tells the state machine not to advance. Otherwise, if
all CPUs have executed a memory barrier, line 11 executes a memory barrier to ensure
that any RCU callback invocation follows all of the memory barriers, and line 13 tells
the state machine to advance.

The __rcu_advance_callbacks() function, shown in Figure D.72, advances
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1 static void __rcu_advance_callbacks(struct rcu_data *rdp)
2 {
3 int cpu;
4 int i;
5 int wlc = 0;
6
7 if (rdp->completed != rcu_ctrlblk.completed) {
8 if (rdp->waitlist[GP_STAGES - 1] != NULL) {
9 *rdp->donetail = rdp->waitlist[GP_STAGES - 1];
10 rdp->donetail = rdp->waittail[GP_STAGES - 1];
11 RCU_TRACE_RDP(rcupreempt_trace_move2done, rdp);
12 }
13 for (i = GP_STAGES - 2; i >= 0; i--) {
14 if (rdp->waitlist[i] != NULL) {
15 rdp->waitlist[i + 1] = rdp->waitlist[i];
16 rdp->waittail[i + 1] = rdp->waittail[i];
17 wlc++;
18 } else {
19 rdp->waitlist[i + 1] = NULL;
20 rdp->waittail[i + 1] =
21 &rdp->waitlist[i + 1];
22 }
23 }
24 if (rdp->nextlist != NULL) {
25 rdp->waitlist[0] = rdp->nextlist;
26 rdp->waittail[0] = rdp->nexttail;
27 wlc++;
28 rdp->nextlist = NULL;
29 rdp->nexttail = &rdp->nextlist;
30 RCU_TRACE_RDP(rcupreempt_trace_move2wait, rdp);
31 } else {
32 rdp->waitlist[0] = NULL;
33 rdp->waittail[0] = &rdp->waitlist[0];
34 }
35 rdp->waitlistcount = wlc;
36 rdp->completed = rcu_ctrlblk.completed;
37 }
38 cpu = raw_smp_processor_id();
39 if (per_cpu(rcu_flip_flag, cpu) == rcu_flipped) {
40 smp_mb();
41 per_cpu(rcu_flip_flag, cpu) = rcu_flip_seen;
42 smp_mb();
43 }
44 }

Figure D.72: __rcu_advance_callbacks() Implementation
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1 void __rcu_read_lock(void)
2 {
3 int idx;
4 struct task_struct *t = current;
5 int nesting;
6
7 nesting = ACCESS_ONCE(t->rcu_read_lock_nesting);
8 if (nesting != 0) {
9 t->rcu_read_lock_nesting = nesting + 1;
10 } else {
11 unsigned long flags;
12
13 local_irq_save(flags);
14 idx = ACCESS_ONCE(rcu_ctrlblk.completed) & 0x1;
15 ACCESS_ONCE(__get_cpu_var(rcu_flipctr)[idx])++;
16 ACCESS_ONCE(t->rcu_read_lock_nesting) = nesting + 1;
17 ACCESS_ONCE(t->rcu_flipctr_idx) = idx;
18 local_irq_restore(flags);
19 }
20 }

Figure D.73: __rcu_read_lock() Implementation

callbacks and acknowledges the counter flip. Line 7 checks to see if the global rcu_
ctrlblk.completed counter has advanced since the last call by the current CPU
to this function. If not, callbacks need not be advanced (lines 8-37). Otherwise, lines 8
through 37 advance callbacks through the lists (while maintaining a count of the number
of non-empty lists in the wlc variable). In either case, lines 38 through 43 acknowledge
the counter flip if needed.

Quick Quiz D.58: How is it possible for lines 38-43 of __rcu_advance_
callbacks() to be executed when lines 7-37 have not? Won’t they both be executed
just after a counter flip, and never at any other time?

D.4.2.4 Read-Side Primitives

This section examines the rcu_read_lock() and rcu_read_unlock() primi-
tives, followed by a discussion of how this implementation deals with the fact that these
two primitives do not contain memory barriers.

rcu_read_lock() The implementation of rcu_read_lock() is as shown in
Figure D.73. Line 7 fetches this task’s RCU read-side critical-section nesting counter.
If line 8 finds that this counter is non-zero, then we are already protected by an outer
rcu_read_lock(), in which case line 9 simply increments this counter.

However, if this is the outermost rcu_read_lock(), then more work is required.
Lines 13 and 18 suppress and restore irqs to ensure that the intervening code is nei-
ther preempted nor interrupted by a scheduling-clock interrupt (which runs the grace
period state machine). Line 14 fetches the grace-period counter, line 15 increments
the current counter for this CPU, line 16 increments the nesting counter, and line 17
records the old/new counter index so that rcu_read_unlock() can decrement the
corresponding counter (but on whatever CPU it ends up running on).

The ACCESS_ONCE() macros force the compiler to emit the accesses in order.
Although this does not prevent the CPU from reordering the accesses from the viewpoint
of other CPUs, it does ensure that NMI and SMI handlers running on this CPU will see
these accesses in order. This is critically important:
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1. In absence of the ACCESS_ONCE() in the assignment to idx, the compiler
would be within its rights to: (a) eliminate the local variable idx and (b) compile
the increment on line 16 as a fetch-increment-store sequence, doing separate
accesses to rcu_ctrlblk.completed for the fetch and the store. If the
value of rcu_ctrlblk.completed had changed in the meantime, this would
corrupt the rcu_flipctr values.

2. If the assignment to rcu_read_lock_nesting (line 17) were to be reordered
to precede the increment of rcu_flipctr (line 16), and if an NMI occurred
between these two events, then an rcu_read_lock() in that NMI’s handler
would incorrectly conclude that it was already under the protection of rcu_
read_lock().

3. If the assignment to rcu_read_lock_nesting (line 17) were to be reordered
to follow the assignment to rcu_flipctr_idx (line 18), and if an NMI
occurred between these two events, then an rcu_read_lock() in that NMI’s
handler would clobber rcu_flipctr_idx, possibly causing the matching
rcu_read_unlock() to decrement the wrong counter. This in turn could
result in premature ending of a grace period, indefinite extension of a grace period,
or even both.

It is not clear that the ACCESS_ONCE on the assignment to nesting (line 7) is
required. It is also unclear whether the smp_read_barrier_depends() (line 15)
is needed: it was added to ensure that changes to index and value remain ordered.

The reasons that irqs must be disabled from line 13 through line 19 are as follows:

1. Suppose one CPU loaded rcu_ctrlblk.completed (line 14), then a second
CPU incremented this counter, and then the first CPU took a scheduling-clock
interrupt. The first CPU would then see that it needed to acknowledge the counter
flip, which it would do. This acknowledgment is a promise to avoid incrementing
the newly old counter, and this CPU would break this promise. Worse yet, this
CPU might be preempted immediately upon return from the scheduling-clock
interrupt, and thus end up incrementing the counter at some random point in the
future. Either situation could disrupt grace-period detection.

2. Disabling irqs has the side effect of disabling preemption. If this code were
to be preempted between fetching rcu_ctrlblk.completed (line 14) and
incrementing rcu_flipctr (line 16), it might well be migrated to some other
CPU. This would result in it non-atomically incrementing the counter from that
other CPU. If this CPU happened to be executing in rcu_read_lock() or
rcu_read_unlock() just at that time, one of the increments or decrements
might be lost, again disrupting grace-period detection. The same result could hap-
pen on RISC machines if the preemption occurred in the middle of the increment
(after the fetch of the old counter but before the store of the newly incremented
counter).

3. Permitting preemption in the midst of line 16, between selecting the current CPU’s
copy of the rcu_flipctr array and the increment of the element indicated
by rcu_flipctr_idx, can result in a similar failure. Execution might well
resume on some other CPU. If this resumption happened concurrently with an
rcu_read_lock() or rcu_read_unlock() running on the original CPU,
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1 void __rcu_read_unlock(void)
2 {
3 int idx;
4 struct task_struct *t = current;
5 int nesting;
6
7 nesting = ACCESS_ONCE(t->rcu_read_lock_nesting);
8 if (nesting > 1) {
9 t->rcu_read_lock_nesting = nesting - 1;
10 } else {
11 unsigned long flags;
12
13 local_irq_save(flags);
14 idx = ACCESS_ONCE(t->rcu_flipctr_idx);
15 ACCESS_ONCE(t->rcu_read_lock_nesting) = nesting - 1;
16 ACCESS_ONCE(__get_cpu_var(rcu_flipctr)[idx])--;
17 local_irq_restore(flags);
18 }
19 }

Figure D.74: __rcu_read_unlock() Implementation

an increment or decrement might be lost, resulting in either premature termination
of a grace period, indefinite extension of a grace period, or even both.

4. Failing to disable preemption can also defeat RCU priority boosting, which
relies on rcu_read_lock_nesting to determine when a given task is in an
RCU read-side critical section. So, for example, if a given task is indefinitely
preempted just after incrementing rcu_flipctr, but before updating rcu_
read_lock_nesting, then it will stall RCU grace periods for as long as it is
preempted. However, because rcu_read_lock_nesting has not yet been
incremented, the RCU priority booster has no way to tell that boosting is needed.
Therefore, in the presence of CPU-bound realtime threads, the preempted task
might stall grace periods indefinitely, eventually causing an OOM event.

The last three reasons could of course be addressed by disabling preemption rather
than disabling of irqs, but given that the first reason requires disabling irqs in any case,
there is little reason to separately disable preemption. It is entirely possible that the first
reason might be tolerated by requiring an additional grace-period stage, however, it is
not clear that disabling preemption is much faster than disabling interrupts on modern
CPUs.

rcu_read_unlock() The implementation of rcu_read_unlock() is shown
in Figure D.74. Line 7 fetches the rcu_read_lock_nesting counter, which line 8
checks to see if we are under the protection of an enclosing rcu_read_lock()
primitive. If so, line 9 simply decrements the counter.

However, as with rcu_read_lock(), we otherwise must do more work. Lines 13
and 17 disable and restore irqs in order to prevent the scheduling-clock interrupt from
invoking the grace-period state machine while in the midst of rcu_read_unlock()
processing. Line 14 picks up the rcu_flipctr_idx that was saved by the matching
rcu_read_lock(), line 15 decrements rcu_read_lock_nesting so that irq
and NMI/SMI handlers will henceforth update rcu_flipctr, line 16 decrements the
counter (with the same index as, but possibly on a different CPU than, that incremented
by the matching rcu_read_lock().
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The ACCESS_ONCE() macros and irq disabling are required for similar reasons
that they are in rcu_read_lock().

Quick Quiz D.59: What problems could arise if the lines containing ACCESS_
ONCE() in rcu_read_unlock() were reordered by the compiler?

Quick Quiz D.60: What problems could arise if the lines containing ACCESS_
ONCE() in rcu_read_unlock() were reordered by the CPU?

Quick Quiz D.61: What problems could arise in rcu_read_unlock() if irqs
were not disabled?
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Figure D.75: Preemptible RCU with Read-Side Memory Barriers

Memory-Barrier Considerations Note that these two primitives contains no memory
barriers, so there is nothing to stop the CPU from executing the critical section before
executing the rcu_read_lock() or after executing the rcu_read_unlock().
The purpose of the rcu_try_flip_waitmb_state is to account for this possible
reordering, but only at the beginning or end of a grace period. To see why this approach
is helpful, consider Figure D.75, which shows the wastefulness of the conventional
approach of placing a memory barrier at the beginning and end of each RCU read-side
critical section [MSMB06].

The "MB"s represent memory barriers, and only the emboldened barriers are needed,
namely the first and last on a given CPU for each grace period. This preemptible
RCU implementation therefore associates the memory barriers with the grace period, as
shown in Figure D.76.

Given that the Linux kernel can execute literally millions of RCU read-side critical
sections per grace period, this latter approach can result in substantial read-side savings,
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Figure D.76: Preemptible RCU with Grace-Period Memory Barriers

due to the fact that it amortizes the cost of the memory barrier over all the read-side
critical sections in a grace period.

D.4.3 Validation of Preemptible RCU
D.4.3.1 Testing

The preemptible RCU algorithm was tested with a two-stage grace period on weakly
ordered POWER4 and POWER5 CPUs using rcutorture running for more than 24 hours
on each machine, with 15M and 20M grace periods, respectively, and with no errors. Of
course, this in no way proves that this algorithm is correct. At most, it shows either that
these two machines were extremely lucky or that any bugs remaining in preemptible
RCU have an extremely low probability of occurring. We therefore required additional
assurance that this algorithm works, or, alternatively, identification of remaining bugs.

This task requires a conceptual approach, which is taken in the next section.

D.4.3.2 Conceptual Validation

Because neither rcu_read_lock() nor rcu_read_unlock() contain memory
barriers, the RCU read-side critical section can bleed out on weakly ordered machines.
In addition, the relatively loose coupling of this RCU implementation permits CPUs
to disagree on when a given grace period starts and ends. This leads to the question as
to how long a given RCU read-side critical section can possibly extend relative to the
grace-period state machine.

The worst-case scenario is shown in Figure D.77. Here, CPU 0 is executing the short-
est possible removal and reclamation sequence, while CPU 1 executes the longest possi-
ble RCU read-side critical section. Because the callback queues are advanced just before
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Figure D.77: Preemptible RCU Worst-Case Scenario

acknowledging a counter flip, the latest that CPU 0 can execute its list_del_rcu()
and call_rcu() is just before its scheduling-clock interrupt that acknowledges the
counter flip. The call_rcu() invocation places the callback on CPU 0’s next list,
and the interrupt will move the callback from the next list to the wait[0] list. This
callback will move again (from the wait[0] list to the wait[1] list) at CPU 0’s
first scheduling-clock interrupt following the next counter flip. Similarly, the callback
will move from the wait[1] list to the done list at CPU 0’s first scheduling-clock
interrupt following the counter flip resulting in the value 3. The callback might be
invoked immediately afterward.

Meanwhile, CPU 1 is executing an RCU read-side critical section. Let us assume
that the rcu_read_lock() follows the first counter flip (the one resulting in the
value 1), so that the rcu_read_lock() increments CPU 1’s rcu_flipctr[1]
counter. Note that because rcu_read_lock() does not contain any memory barriers,
the contents of the critical section might be executed early by the CPU. However, this
early execution cannot precede the last memory barrier executed by CPU 1, as shown
on the diagram. This is nevertheless sufficiently early that an rcu_dereference()
could fetch a pointer to the item being deleted by CPU 0’s list_del_rcu().

Because the rcu_read_lock() incremented an index-1 counter, the correspond-
ing rcu_read_unlock() must precede the "old counters zero" event for index 1.
However, because rcu_read_unlock() contains no memory barriers, the contents
of the corresponding RCU read-side critical section (possibly including a reference to
the item deleted by CPU 0) can be executed late by CPU 1. However, it cannot be
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executed after CPU 1’s next memory barrier, as shown on the diagram. Because the
latest possible reference by CPU 1 precedes the earliest possible callback invocation by
CPU 0, two passes through the grace-period state machine suffice to constitute a full
grace period, and hence it is safe to do:

#define GP_STAGES 2

Quick Quiz D.62: Suppose that the irq disabling in rcu_read_lock() was
replaced by preemption disabling. What effect would that have on GP_STAGES?

Quick Quiz D.63: Why can’t the rcu_dereference() precede the memory
barrier?

D.4.3.3 Formal Validation

Formal validation of this algorithm is quite important, but remains as future work. One
tool for doing this validation is described in Section 11.

Quick Quiz D.64: What is a more precise way to say "CPU 0 might see CPU 1’s
increment as early as CPU 1’s last previous memory barrier"?
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Appendix E

Read-Copy Update in Linux

This chapter gives a history of RCU in the Linux kernel from mid-2008 onwards.
Earlier history of RCU may be found elsewhere [McK04, MW08]. Section E.1 gives an
overview of the growth of RCU usage in Linux and Section E.2 presents a detailed view
of recent RCU evolution.

E.1 RCU Usage Within Linux
The Linux kernel’s usage of RCU has increased over the years, as can be seen from
Figure E.1 [McK06a]. RCU has replaced other synchronization mechanisms in exist-
ing code (for example, brlock in the networking protocol stacks [MM00, Tor03a,
Tor03b]), and it has also been introduced with code implementing new functionality (for
example, the audit system within SELinux [Mor04]). However, RCU remains a niche
technology compared to locking, as shown in Figure E.2. If locking is the hammer in
the kernel hacker’s concurrency toolbox, perhaps RCU is the screwdriver. If so, it is an
rapidly evolving screwdriver, as can be seen in Figure E.3.

E.2 RCU Evolution
This section presents ongoing experience with RCU since mid-2008.

E.2.1 2.6.27 Linux Kernel
This release added the call_rcu_sched(), rcu_barrier_sched(), and rcu_
barrier_bh() RCU API members.

E.2.2 2.6.28 Linux Kernel
One welcome change involved an actual reduction in the size of RCU’s API with the
removal of the list_for_each_rcu() primitive. This primitive is superseded
by list_for_each_entry_rcu(), which has the advantage of iterating over
structures rather than iterating over the pointer pairs making up a list_head structure
(which, confusingly, acts as a list element as well as a list header). This change was
accepted into the 2.6.28 Linux kernel.
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Figure E.1: RCU API Usage in the Linux Kernel

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 2
00

2

 2
00

3

 2
00

4

 2
00

5

 2
00

6

 2
00

7

 2
00

8

 2
00

9

 2
01

0

 2
01

1

 2
01

2

# 
R

C
U

/lo
ck

in
g 

A
P

I U
se

s

Year

locking

RCU

Figure E.2: RCU API Usage in the Linux Kernel vs. Locking

564



 0

 5

 10

 15

 20

 25

 30

 35

 2002  2003  2004  2005  2006  2007  2008

# 
R

C
U

 A
P

I M
em

be
rs

Year

Figure E.3: RCU API Growth Over Time

Unfortunately, the 2.6.28 Linux kernel also added rcu_read_lock_sched()
and rcu_read_unlock_sched() RCU API members. These APIs were added to
promote readability. In the past, primitives to disable interrupts or preemption were
used to mark the RCU read-side critical sections corresponding to synchronize_
sched(). However, this practice led to bugs when developers removed the need to
disable preemption or interrupts, but failed to notice the need for RCU protection. Use
of rcu_read_lock_sched() will help prevent such bugs in the future.

E.2.3 2.6.29 Linux Kernel

A new more-scalable implementation, dubbed “Tree RCU”, replaces the flat bitmap with
a combining tree, and was accepted into the 2.6.29 Linux kernel. This implementation
was inspired by the ever-growing core counts of modern multiprocessors, and is designed
for many hundreds of CPUs. Its current architectural limit is 262,144 CPUs, which
the developer (perhaps naïvely) believes to be sufficient for quite some time. This
implementation also adopts preemptible RCU’s improved dynamic-tick interface.

Mathieu Desnoyers added rcu_read_lock_sched_notrace() and rcu_
read_unlock_sched_notrace(), which are required to permit the tracing code
in the Linux kernel to use RCU. Without these APIs, attempts to trace RCU read-side
critical sections lead to infinite recursion.

Eric Dumazet added a new type of RCU-protected list that allows single-bit mark-
ers to be stored in the list pointers. This type of list enables a number of lockless
algorithms, including some reported on by Maged Michael [Mic04]. Eric’s work adds
the hlist_nulls_add_head_rcu(), hlist_nulls_del_rcu(), hlist_
nulls_del_init_rcu(), and hlist_nulls_for_each_entry_rcu(). It
also adds a new structure named hlist_nulls_node.

Although it is strictly speaking not part of the Linux kernel, at about this same time,
Mathieu Desnoyers announced his user-space RCU implementation [Des09]. This is an

565



important first step towards a real-time user-level RCU implementation.

E.2.4 2.6.31 Linux Kernel

Jiri Pirko added list_entry_rcu and list_first_entry_rcu() primitives
that encapsulate the rcu_dereference() RCU-subscription primitive into higher-
level list-access primitives, which will hopefully eliminate a class of bugs.

In addition, the “Tree RCU” implementation was upgraded from “experimental”
status.

E.2.5 2.6.32 Linux Kernel

Perhaps the largest change in this version of the Linux kernel is the removal of the old
“Classic RCU” implementation. This implementation is superseded by the “Tree RCU”
implementation.

This version saw a number of other changes, including:

1. The appearance of synchronize_rcu_expedited(), synchronize_
sched_expedited(), and synchronize_rcu_bh_expedited()RCU
API members. These primitives are equivalent to their non-expedited counterparts,
except that they take measures to expedite the grace period.

2. Add preemptible-RCU functionality to the “Tree RCU” implementation, thus
removing one obstacle to real-time response from large multiprocessor machines
running Linux.

3. This new “Tree Preemptible RCU” implementation obsoletes the old preemptible
RCU implementation, which was removed from the Linux kernel.

E.2.6 2.6.33 Linux Kernel

Perhaps the most dramatic addition to this release was a day-one bug in Tree RCU [McK09a].
Other changes include:

1. “Tiny RCU”, also known as “RCU: The Bloatwatch Edition” [McK09b].

2. Expedited SRCU in the form of synchronize_srcu_expedited().

3. A cleanup of Tree RCU synchronization prompted by the afore-mentioned bug.

4. Add expedited implementation for Tree Preemptible RCU (in earlier releases,
“expedited” support had simply mapped to synchronize_rcu(), which is
semantically correct if somewhat unhelpful from a performance viewpoint.)

5. Add a fourth level to Tree RCU, which improves stress testing. Therefore, if
someone ever wants to run Linux on a system with 16,777,216 CPUs, RCU is
ready for them! Give or take the response-time implications of scanning through
16 million per-CPU data elements...
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E.2.7 2.6.34 Linux Kernel
The most visible addition for this release was CONFIG_PROVE_RCU, which allows
rcu_dereference() to check for correct locking conditions [McK10]. Other
changes include:

1. Simplifying Tree RCU’s interactions between forcing an old grace period and
starting a new one.

2. Rework counters so that free-running counters are unsigned. (You simply cannot
imagine the glee on the faces of certain C-compiler hackers while they discussed
optimizations that would break code that naively overflowed signed integers!!!)

3. Update Tree Preemptible RCU’s stall detection to print out any tasks preempted
for excessive time periods while in an RCU read-side critical section.

4. Other bug fixes and improvements to Tree RCU’s CPU-stall-detection code.
This code checks for CPUs being locked up, for example, in infinite loops with
interrupts disabled.

5. Prototype some code to accelerate grace periods when the last CPU goes idle
in battery-powered multiprocessor systems. There were people who were quite
unhappy about RCU taking a few extra milliseconds to get the system in a state
where all CPUs could be powered down!

E.2.8 2.6.35 Linux Kernel
This release includes a number of bug fixes and cleanups. The major change is the
first installment of Mathieu Desnoyers’s patch to check for misuse of RCU callbacks,
for example, passing a rcu_head structure to call_rcu() a second time within a
single grace period.

E.2.9 2.6.36 Linux Kernel
The core of Mathieu Desnoyers’s debugobjects work appeared in 2.6.36, with some
cleanups deferred to 2.6.37 due to dependencies on commits flowing up other maintainer
trees. A key piece of Arnd Bergmann’s sparse RCU checking appeared in 2.6.36, with
the remainder deferred to 2.6.37, again due to dependencies on commits flowing up
other maintainer trees. Finally, a patch from Eric Dumazet fixed an error in rcu_
dereference_bh()’s error checking.

E.2.10 2.6.37 Linux Kernel
The final cleanups from Mathieu Desnoyers’s debugobjects work appeared in 2.6.37, as
did the remainder of Arnd Bergmann’s sparse-based checking work. Lai Jiangshan added
some preemption nastiness to rcutorture and made some simplifications to Tree RCU’s
handling of per-CPU data. Tetsuo Handa fixed an RCU lockdep splat, Christian Dietrich
removed a redundant #ifdef, and Dongdong Deng added an ACCESS_ONCE() that
help call out lockless accesses to some Tree RCU control data.

Paul’s implementation of preemptible Tiny RCU also appeared in 2.6.37, as did a
number of enhancements to the RCU CPU stall-warning code, docbook fixes, coalescing
of duplicate code, Tree RCU speedups, added tracing to support queuing models on
RCU callback flow, and several miscellaneous fixes and cleanups.
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E.2.11 2.6.38 Linux Kernel
Lai Jiangshan moved synchronize_sched_expedited() out of kernel/sched.c
and into kernel/rcutree.c and kernel/rcu_tiny.c where it belongs. He
also simplified RCU-callback handling during CPU-hotplug operations by eliminating
the orphan_cbs_list, so that RCU callbacks orphaned by a CPU that is going
offline are immediately adopted by the CPU that is orchestrating the offlining sequence.
Tejun Heo improved synchronize_sched_expedited()’s batching capabili-
ties, which in turn improves performance and scalability for workloads with many
concurrent synchronize_sched_expedited operations. Frédéric Weisbecker
provided a couple of subtle changes to the RCU core code that make RCU more power-
efficient when idle. Mariusz Kozlowski fixed an embarrassing syntax error in __list_
for_each_rcu(), which was then removed. (But the fixed version is there in the git
tree should it be needed.) Nick Piggin added the hlist_bl_set_first_rcu(),
hlist_bl_first_rcu(), hlist_bl_del_init_rcu(), hlist_bl_del_
rcu(), hlist_bl_add_head_rcu(), and hlist_bl_for_each_entry_
rcu() primitives for RCU-protected use of bit-locked doubly-linked lists. Christoph
Lameter implemented __this_cpu_read(), which is an optimized variant of __
get_cpu_var() for use in cases where the variable is accessed directly.

In addition, TINY_RCU gained priority boosting, a race condition in synchronize_
sched_expedited()was fixed, synchronize_srcu_expedited()was mod-
ified to retain its expedited nature in the face of concurrent readers, grace-period be-
gin/end checks were improved, and the TREE_RCU leaf-level fanout was limited to 16
in order to fix lock-contention problems. This last change reduces the maximum number
of CPUs that TREE_RCU and TREE_PREEMPT_RCU can support down to 4,194,304,
which is (again, perhaps naïvely) believed to be sufficient.

E.2.12 2.6.39 Linux Kernel
Lai Jiangshan made TINY_RCU’s exit_rcu() invoke __rcu_read_unlock()
rather than rcu_read_unlock() in case of a task exiting while in an RCU read-side
critical section in order to preserve debugging state, Jesper Juhl removed a duplicate
include of sched.h from rcutorture, and Amerigo Wang removed some dead code
from rcu_fixup_free().

In addition, a new rcu_access_index() was created for use in the MCE
subsystem.

E.2.13 3.0 Linux Kernel
What many expected to be the 2.6.40 release became instead the 3.0 release. The most
important RCU feature was the addition of priority boosting for Tree RCU: Important
in more ways than planned [McK11a], resulting in RCU fixes after 3.0-rc7. Kudos to
Shaohua Li, Peter Zijlstra, Steven Rostedt for much help dealing with the fallout of the
collision between RCU, the scheduler, and threaded interrupts. In addition, RCU CPU
stall warnings are now unconditionally compiled into Tree RCU, though they may still
be disabled via the rcu_cpu_stall_suppress module parameter, which may be
controlled from either the kernel boot parameter string or sysfs.

Mathieu Desnoyers enabled DEBUG_OBJECTS_RCU_HEAD checking to be car-
ried out in non-preemptible RCU implementations. Lai Jiangshan created a fire-and-
forget kfree_rcu() (and applied it throughout the kernel), and also made TREE_
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RCU’s exit_rcu() invoke __rcu_read_unlock() rather than rcu_read_
unlock() in case of a task exiting while in an RCU read-side critical section in
order to preserve debugging state. Eric Dumazet further shrank TINY_RCU and Gleb
Natapov added RCU hooks to allow virtualization to call RCU’s attention to quies-
cent states that occur when switching context to and from a guest OS. Peter Zijlstra
streamlined RCU kthread blocking and wakeup.

E.2.14 3.1 Linux Kernel

The 3.1 version was a quiet time for RCU, with cleanups and minor fixes from Arun
Sharma, Jiri Kosina, Michal Hocko, Peter Zijlstra, and Jan H. Schönherr.

E.2.15 3.2 Linux Kernel

The 3.2 Linux kernel contains a number of fixes to issues located during the first phase
of a top-to-bottom inspection of RCU’s code. One outcome of this inspection is that
deadlock can occur if an irq-disabled section of code overlaps the end but not the
beginning of a preemptible RCU read-side critical section. Therefore, do not code RCU
read-side critical sections that partially overlap with irq-disabled code sections: Instead,
either fully enclose the irq-disable code sections within a given RCU read-side critical
section or vice versa.

This release saw the first RCU event-tracing capabilities. Eric Dumazet applied
the new kthread_create_on_node() primitive to ensure that RCU’s kthreads
have memory placed optimally on NUMA systems. He also made the rcu_assign_
pointer() unconditionally insert a memory barrier because the earlier compiler
magic permitting this barrier to be omitted under certain circumstances fails in newer
versions of the compiler. Therefore, when assigning NULL to an RCU-protected pointer,
use RCU_INIT_POINTER() rather than rcu_assign_pointer().

Shaohua Li eliminated an unnecessary self-wakeup of RCU’s per-CPU kthreads,
and Andi Kleen cleaned up some conflicting variable declarations. Mike Galbraith fixed
a bug that caused RCU to ignore the RCU_BOOST_PRIO kernel parameter, and finally,
rcutorture made some headway in catching up to the ever-expanding RCU capabilities.

E.2.16 3.3 Linux Kernel

The 3.3 Linux kernel contains energy-efficiency improvements that reduce RCU’s need
for scheduling-clock ticks from otherwise idle CPUs, a new srcu_read_lock_
raw() primitive needed by uprobes, additional fixes for issues located in the still-
ongoing top-to-bottom inspection of RCU, and improvements to rcutorture that
enable scripted KVM-based testing of RCU, independent of the type or presence of
userspace layout.

Also included were some -rt RCU patches from Thomas Gleixner, as well as
a number of RCU-infrastructure patches from Frédéric Weisbecker in support of the
long-hoped-for application of dyntick-idle mode to usermode execution.

Although some initial work has gone into permitting RCU-preempt’s __rcu_
read_lock() and __rcu_read_unlock() to be inlined, much more work is
needed to disentangle various include-file issues. Finally, there were miscellaneous fixes
from Rusty Russell.
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There has been an initial request for rcu_barrier_expedited(), but given
that the requester found another way to solve this problem, this has relatively low
priority.

E.2.17 3.4 Linux Kernel
The 3.4 kernel contains yet more energy-efficiency work, reducing their downsides to
rapid idle entry/exit workloads. The tradeoff managed here is increased work on idle
entry compared to longer idle times, and so the changes in this release do a better job
of recognizing when additional effort is futile, for example, if the CPU is entering and
exiting idle rapidly due to the workload, there is little point in taking idle-entry actions
that would allow the CPU to stay asleep longer.

This release also added RCU_NONIDLE(), which is used to handle the increasingly
frequent practice of invoking RCU from idle CPUs. Because RCU ignores idle CPUs,
this practice is quite dangerous. The new RCU_NONIDLE() macro therefore carries
out a momentary exit from idle so that RCU read-side critical sections can do their job.

RCU’s handling of CPU hotplug was improved, rcutorture gained some primitive
ability to test RCU CPU stalls warnings, and the stall warnings themselves were im-
proved by adding more information and by adding the ability to control timeouts via
sysfs. TREE_RCU no longer may be used in CONFIG_SMP=n kernels; TINY_RCU is
used instead. This release also saw the addition of lockdep-RCU checks for sleeping in
a non-preemptible-RCU read-side critical section, as well as for entering the idle loop
while in an RCU read-side critical section.

TINY_RCU inherited the TREE_RCU fixes for the v3.0-rc7 RCU trainwreck [McK11a].
The grace-period initialization process dropped the old single-node optimization, and
callbacks remaining on offlined CPUs no longer need to go through a second full grace
period. Furthermore, offline CPUs are no longer permitted to invoke RCU callbacks.

Yet more tweaks to the energy-efficiency code limited the amount of time lazy
callbacks could languish on an idle CPU. Finally, a number of fixes were supplied by
Frédéric Weisbecker, Heiko Carstens, Julia Lawall, Hugh Dickins, Jan Beulich, and
Paul Gortmaker.

E.2.18 3.5 Linux Kernel
The 3.5 Linux kernel included yet more adjustments to the CONFIG_RCU_FAST_
NO_HZ energy-efficiency code, including timer handling and proper handling of RCU_
NONIDLE() pauses out of idle.

It also included work to reduce the disruption due to rcu_barrier() and friends
by avoiding enqueuing callbacks on CPUs that have none. This work also made the
interaction between rcu_barrier() and callbacks orphaned by offlined CPUs more
explicit, which was required in order to avoid some nasty race conditions. An abortive
attempt to inline __rcu_read_unlock() left but one commit that consolidated and
reduced the overhead of RCU’s task-exit handling.

This release contains a complete rewrite of SRCU by Lai Jiangshan as well as fixes
from Jan Engelhardt, Michel Machado, and Dave Jones.

E.2.19 3.6 Linux Kernel
The 3.6 Linux kernel included the first round of changes to reduce RCU’s scheduling-
latency impact on systems with thousands of CPUs, namely allowing leaf-level fanout
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of the rcu_node tree to be controlled by a boot-time parameter. This change reduced
the amount of memory that needed to be touched during grace-period initialization by a
factor of four, thus reducing the latency impact from about 200 microseconds to 60-70
microseconds. This release also increased rcu_barrier() concurrency.

Following an established tradition, this release also contained energy-efficiency
changes for the CONFIG_RCU_FAST_NO_HZ facility. Finally, the release contained a
number of fixes, including an uninitialized-string fix from Carsten Emde.

E.2.20 3.7 Linux Kernel
The 3.7 Linux kernel moved grace-period initialization to a separate kthread, where it is
preemptible, which should eliminate grace-period-initialization-latency problems on
large systems. This release also removed the previous _rcu_barrier() dependency
on the much-maligned __stop_machine(). It also contained some of the RCU
infrastructure required by Frédéric Weisbecker’s CONFIG_NO_HZ_FULL bare-metal
facility [Cor13b], and much of this RCU infrastructure was in fact also written by
Frédéric. Finally, it contained fixes and optimizations from Tejun Heo, Thomas Gleixner,
Li Zhong, and Dimiti Sivanich.

E.2.21 3.8 Linux Kernel
The 3.8 Linux kernel added a prototype implementation of RCU callback offloading in
the form of a new CONFIG_RCU_NOCB_CPU Kconfig parameter [Cor12b], for which
Paul Gortmaker provided a couple of badly needed fixes. This prototype implementation
requires that CPU 0 not be offloaded, and in fact that all callbacks be handled by CPU 0.
This is clearly not scalable, so a better implementation will appear later. RCU CPU
stall-warning messages were once again upgraded, and some improvements to RCU’s
CPU-hotplug code were added.

Lai Jiangshan added static definition capability to SRCU and Michael Wang re-
worked RCU’s old debugfs tracing facility. Antti P. Miettinen added a kernel boot
parameter that forces all RCU synchronous grace-period primitives to execute in expe-
dited mode, and Eric Dumazet fixed an RCU callback batch-limit problem.

E.2.22 3.9 Linux Kernel
The 3.9 Linux kernel tags groups of callbacks with the corresponding number, which
allows RCU to be maximally aggressive about promoting callbacks with no need
to worry about over-promoting them. In addition, this release adds RCU CPU stall
warnings for TINY_RCU.

Lai Jiangshan provided some SRCU updates, allowing SRCU read-side primitives
to be invoked from idle and offline CPUs, along with some additional fixes. Additional
fixes were provided by Sasha Levin, Steven Rostedt, Li Zhong, Cody P. Schafer, and
Josh Triplett.

E.2.23 3.10 Linux Kernel
With the 3.10 Linux kernel, RCU finally has an energy-efficiency mechanism that
delivers energy savings that are measurable at the system level [MER13]. The trick is
making CONFIG_RCU_FAST_NO_HZ use the callback-tagging from 3.9. This means
that CPUs going idle need only classify and number their own callbacks, which is
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considerably cheaper than than the prior approach of attempting to force the RCU state
machine forward. In addition, the callback-tagging was enhanced to allow CPUs to
indicate the need for future grace periods, which allows CPUs to indicate a need for a
grace period, and to have that grace period complete, despite the fact that the requesting
CPU was asleep through the whole process.

In addition, the CONFIG_RCU_NOCB_CPU facility was improved to remove its
dependency on CPU 0, thus allowing RCU callbacks to be offloaded from all CPUs.

This release also included fixes from Steven Rostedt, Eric Dumazet, Sasha Levin,
Frédéric Weisbecker, Al Viro, Steven Whitehouse, Srivatsa S. Bhat, Jiang Fang, and
Akinobu Mita.

E.2.24 3.11 Linux Kernel

The 3.11 Linux kernel added cleanups for the callback-tagging work in 3.9 and 3.10
and removed TINY_PREEMPT_RCU in favor of running TREE_PREEMPT_RCU in
uniprocessor mode. This release also includes fixes from Paul Gortmaker and Kees
Cook.

E.2.25 3.12 Linux Kernel

The 3.12 kernel adds the CONFIG_NO_HZ_FULL_SYSIDLE Kconfig parameter that
provides the infrastructure required to allow CONFIG_NO_HZ_FULL to efficiently
determine when the entire system is idle. This is important because unless CONFIG_
NO_HZ_FULL can prove that the full system is idle, it must force CPU 0 to keep its
scheduling-clock interrupt active, which is not so good for battery lifetime [Cor13a].

This release also improved rcutorture’s test coverage by testing synchronous, asyn-
chronous, and expedited grace-period primitives in parallel. It also adds duplicate-
callback testing and makes rcutorture give more information when a CPU-online op-
eration fails. Finally, it includes fixes from Steven Rostedt, Tejun Heo, and Borislav
Petkov.

E.2.26 3.12 Linux Kernel

The 3.13 kernel contains some improvements in CONFIG_RCU_FAST_NO_HZ exe-
cution, especially avoiding too-frequent attempts to advance callbacks. The rationale
is that those events permitting callbacks to advance typically occur only every few
milliseconds, so attempting to advance callbacks more frequently than once per jiffy
does nothing but reduce performance and waste power. The 3.13 kernel therefore does
not attempt to advance callbacks if it has already done so within the current jiffy.

A new rcu_is_watching() function allows the caller to determine whether
or not it is safe to enter an RCU read-side critical section. In other words, rcu_
is_watching() returns true unless the CPU is either idle or offline. In addition,
a new smp_mb__after_srcu_read_unlock() interface (provided by Michael
S. Tsirkin) guarantees a full memory barrier from srcu_read_unlock(). Note that
although srcu_read_unlock() currently already provides a full memory barrier,
earlier implementations did not do so and future implementations might once again not
do so.

RCU’s source files have a new home in 3.13, consolidated from the kernel
directory into a new kernel/rcu directory.
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Finally, Christoph Lameter provided a patch updating RCU’s use of per-CPU-
variable APIs and Kirill Tkhai provided a fix for a problem in which kernels built with
CONFIG_RCU_NOCB_CPU_ALL would panic on boot when running on systems with
sparse CPU numbering.
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Appendix F

Answers to Quick Quizzes

F.1 Introduction

Quick Quiz 1.1:
Come on now!!! Parallel programming has been known to be exceedingly hard for
many decades. You seem to be hinting that it is not so hard. What sort of game are you
playing?

Answer:
If you really believe that parallel programming is exceedingly hard, then you should
have a ready answer to the question “Why is parallel programming hard?” One could list
any number of reasons, ranging from deadlocks to race conditions to testing coverage,
but the real answer is that it is not really all that hard. After all, if parallel programming
was really so horribly difficult, how could a large number of open-source projects,
ranging from Apache to MySQL to the Linux kernel, have managed to master it?

A better question might be: ”Why is parallel programming perceived to be so
difficult?” To see the answer, let’s go back to the year 1991. Paul McKenney was
walking across the parking lot to Sequent’s benchmarking center carrying six dual-
80486 Sequent Symmetry CPU boards, when he suddenly realized that he was carrying
several times the price of the house he had just purchased.1 This high cost of parallel
systems meant that parallel programming was restricted to a privileged few who worked
for an employer who either manufactured or could afford to purchase machines costing
upwards of $100,000 — in 1991 dollars US.

In contrast, in 2006, Paul finds himself typing these words on a dual-core x86 laptop.
Unlike the dual-80486 CPU boards, this laptop also contains 2GB of main memory,
a 60GB disk drive, a display, Ethernet, USB ports, wireless, and Bluetooth. And the
laptop is more than an order of magnitude cheaper than even one of those dual-80486
CPU boards, even before taking inflation into account.

1 Yes, this sudden realization did cause him to walk quite a bit more carefully. Why do you ask?
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Parallel systems have truly arrived. They are no longer the sole domain of a
privileged few, but something available to almost everyone.

The earlier restricted availability of parallel hardware is the real reason that parallel
programming is considered so difficult. After all, it is quite difficult to learn to program
even the simplest machine if you have no access to it. Since the age of rare and
expensive parallel machines is for the most part behind us, the age during which parallel
programming is perceived to be mind-crushingly difficult is coming to a close.2

Quick Quiz 1.2:
How could parallel programming ever be as easy as sequential programming?

Answer:
It depends on the programming environment. SQL [Int92] is an underappreciated suc-
cess story, as it permits programmers who know nothing about parallelism to keep a
large parallel system productively busy. We can expect more variations on this theme as
parallel computers continue to become cheaper and more readily available. For example,
one possible contender in the scientific and technical computing arena is MATLAB*P,
which is an attempt to automatically parallelize common matrix operations.

Finally, on Linux and UNIX systems, consider the following shell command:
get_input | grep "interesting" | sort

This shell pipeline runs the get_input, grep, and sort processes in parallel.
There, that wasn’t so hard, now was it?

Quick Quiz 1.3:
Oh, really??? What about correctness, maintainability, robustness, and so on?

Answer:
These are important goals, but they are just as important for sequential programs as they
are for parallel programs. Therefore, important though they are, they do not belong on a
list specific to parallel programming.

Quick Quiz 1.4:
And if correctness, maintainability, and robustness don’t make the list, why do produc-
tivity and generality?

Answer:
Given that parallel programming is perceived to be much harder than is sequential pro-
gramming, productivity is tantamount and therefore must not be omitted. Furthermore,
high-productivity parallel-programming environments such as SQL have been special
purpose, hence generality must also be added to the list.

Quick Quiz 1.5:
Given that parallel programs are much harder to prove correct than are sequential pro-

2 Parallel programming is in some ways more difficult than sequential programming, for example, parallel
validation is more difficult. But no longer mind-crushingly difficult.
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grams, again, shouldn’t correctness really be on the list?

Answer:
From an engineering standpoint, the difficulty in proving correctness, either formally
or informally, would be important insofar as it impacts the primary goal of productiv-
ity. So, in cases where correctness proofs are important, they are subsumed under the
“productivity” rubric.

Quick Quiz 1.6:
What about just having fun?

Answer:
Having fun is important as well, but, unless you are a hobbyist, would not normally be a
primary goal. On the other hand, if you are a hobbyist, go wild!

Quick Quiz 1.7:
Are there no cases where parallel programming is about something other than perfor-
mance?

Answer:
There are certainly cases where the problem to be solved is inherently parallel, for
example, Monte Carlo methods and some numerical computations. Even in these cases,
however, there will be some amount of extra work managing the parallelism.

Quick Quiz 1.8:
Why all this prattling on about non-technical issues??? And not just any non-technical
issue, but productivity of all things? Who cares?

Answer:
If you are a pure hobbyist, perhaps you don’t need to care. But even pure hobbyists will
often care about how much they can get done, and how quickly. After all, the most pop-
ular hobbyist tools are usually those that are the best suited for the job, and an important
part of the definition of “best suited” involves productivity. And if someone is paying
you to write parallel code, they will very likely care deeply about your productivity.
And if the person paying you cares about something, you would be most wise to pay at
least some attention to it!

Besides, if you really didn’t care about productivity, you would be doing it by hand
rather than using a computer!

Quick Quiz 1.9:
Given how cheap parallel hardware has become, how can anyone afford to pay people
to program it?

Answer:
There are a number of answers to this question:
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1. Given a large computational cluster of parallel machines, the aggregate cost of the
cluster can easily justify substantial developer effort, because the development
cost can be spread over the large number of machines.

2. Popular software that is run by tens of millions of users can easily justify substan-
tial developer effort, as the cost of this development can be spread over the tens of
millions of users. Note that this includes things like kernels and system libraries.

3. If the low-cost parallel machine is controlling the operation of a valuable piece of
equipment, then the cost of this piece of equipment might easily justify substantial
developer effort.

4. If the software for the low-cost parallel produces an extremely valuable result
(e.g., mineral exploration), then the valuable result might again justify substantial
developer cost.

5. Safety-critical systems protect lives, which can clearly justify very large developer
effort.

6. Hobbyists and researchers might seek knowledge, experience, fun, or glory rather
than mere money.

So it is not the case that the decreasing cost of hardware renders software worthless, but
rather that it is no longer possible to “hide” the cost of software development within the
cost of the hardware, at least not unless there are extremely large quantities of hardware.

Quick Quiz 1.10:
This is a ridiculously unachievable ideal! Why not focus on something that is achievable
in practice?

Answer:
This is eminently achievable. The cellphone is a computer that can be used to make
phone calls and to send and receive text messages with little or no programming or
configuration on the part of the end user.

This might seem to be a trivial example at first glance, but if you consider it carefully
you will see that it is both simple and profound. When we are willing to sacrifice
generality, we can achieve truly astounding increases in productivity. Those who cling
to generality will therefore fail to set the productivity bar high enough to succeed in
production environments.

Quick Quiz 1.11:
What other bottlenecks might prevent additional CPUs from providing additional per-
formance?

Answer:
There are any number of potential bottlenecks:

1. Main memory. If a single thread consumes all available memory, additional
threads will simply page themselves silly.
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2. Cache. If a single thread’s cache footprint completely fills any shared CPU
cache(s), then adding more threads will simply thrash the affected caches.

3. Memory bandwidth. If a single thread consumes all available memory band-
width, additional threads will simply result in additional queuing on the system
interconnect.

4. I/O bandwidth. If a single thread is I/O bound, adding more threads will simply
result in them all waiting in line for the affected I/O resource.

Specific hardware systems might have any number of additional bottlenecks.

Quick Quiz 1.12:
What besides CPU cache capacity might require limiting the number of concurrent
threads?

Answer:
There are any number of potential limits on the number of threads:

1. Main memory. Each thread consumes some memory (for its stack if nothing else),
so that excessive numbers of threads can exhaust memory, resulting in excessive
paging or memory-allocation failures.

2. I/O bandwidth. If each thread initiates a given amount of mass-storage I/O
or networking traffic, excessive numbers of threads can result in excessive I/O
queuing delays, again degrading performance. Some networking protocols may
be subject to timeouts or other failures if there are so many threads that networking
events cannot be responded to in a timely fashion.

3. Synchronization overhead. For many synchronization protocols, excessive num-
bers of threads can result in excessive spinning, blocking, or rollbacks, thus
degrading performance.

Specific applications and platforms may have any number of additional limiting
factors.

Quick Quiz 1.13:
Are there any other obstacles to parallel programming?

Answer:
There are a great many other potential obstacles to parallel programming. Here are a
few of them:

1. The only known algorithms for a given project might be inherently sequential in
nature. In this case, either avoid parallel programming (there being no law saying
that your project has to run in parallel) or invent a new parallel algorithm.

2. The project allows binary-only plugins that share the same address space, such
that no one developer has access to all of the source code for the project. Because
many parallel bugs, including deadlocks, are global in nature, such binary-only
plugins pose a severe challenge to current software development methodologies.
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This might well change, but for the time being, all developers of parallel code
sharing a given address space need to be able to see all of the code running in that
address space.

3. The project contains heavily used APIs that were designed without regard to
parallelism [AGH+11]. Some of the more ornate features of the System V
message-queue API form a case in point. Of course, if your project has been
around for a few decades, and if its developers did not have access to parallel
hardware, your project undoubtedly has at least its share of such APIs.

4. The project was implemented without regard to parallelism. Given that there are a
great many techniques that work extremely well in a sequential environment, but
that fail miserably in parallel environments, if your project ran only on sequential
hardware for most of its lifetime, then your project undoubtably has at least its
share of parallel-unfriendly code.

5. The project was implemented without regard to good software-development
practice. The cruel truth is that shared-memory parallel environments are often
much less forgiving of sloppy development practices than are sequential environ-
ments. You may be well-served to clean up the existing design and code prior to
attempting parallelization.

6. The people who originally did the development on your project have since moved
on, and the people remaining, while well able to maintain it or add small features,
are unable to make “big animal” changes. In this case, unless you can work out a
very simple way to parallelize your project, you will probably be best off leaving
it sequential. That said, there are a number of simple approaches that you might
use to parallelize your project, including running multiple instances of it, using a
parallel implementation of some heavily used library function, or making use of
some other parallel project, such as a database.

One can argue that many of these obstacles are non-technical in nature, but that does
not make them any less real. In short, parallelization of a large body of code can be a
large and complex effort. As with any large and complex effort, it makes sense to do
your homework beforehand.

Quick Quiz 1.14:
Where are the answers to the Quick Quizzes found?

Answer:
In Appendix F starting on page 575.

Hey, I thought I owed you an easy one!

Quick Quiz 1.15:
Some of the Quick Quiz questions seem to be from the viewpoint of the reader rather
than the author. Is that really the intent?

Answer:
Indeed it is! Many are questions that Paul E. McKenney would probably have asked if
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he was a novice student in a class covering this material. It is worth noting that Paul
was taught most of this material by parallel hardware and software, not by professors.
In Paul’s experience, professors are much more likely to provide answers to verbal
questions than are parallel systems, Watson notwithstanding. Of course, we could
have a lengthy debate over which of professors or parallel systems provide the most
useful answers to these sorts of questions, but for the time being let’s just agree that
usefulness of answers varies widely across the population both of professors and of
parallel systems.

Other quizzes are quite similar to actual questions that have been asked during
conference presentations and lectures covering the material in this book. A few others
are from the viewpoint of the author.

Quick Quiz 1.16:
These Quick Quizzes just are not my cup of tea. What do you recommend?

Answer:
There are a number of alternatives available to you:

1. Just ignore the Quick Quizzes and read the rest of the book. You might miss out
on the interesting material in some of the Quick Quizzes, but the rest of the book
has lots of good material as well. This is an eminently reasonable approach if
your main goal is to gain a general understanding of the material or if you are
skimming through to book to find a solution to a specific problem.

2. If you find the Quick Quizzes distracting but impossible to ignore, you can
always clone the LATEX source for this book from the git archive. Then modify
Makefile and qqz.sty to eliminate the Quick Quizzes from the PDF output.
Alternatively, you could modify these two files so as to pull the answers inline,
immediately following the questions.

3. Look at the answer immediately rather than investing a large amount of time in
coming up with your own answer. This approach is reasonable when a given
Quick Quiz’s answer holds the key to a specific problem you are trying to solve.
This approach is also reasonable if you want a somewhat deeper understanding of
the material, but when you do not expect to be called upon to generate parallel
solutions given only a blank sheet of paper.

4. If you prefer a more academic and rigorous treatment of parallel programming,
you might like Herlihy’s and Shavit’s textbook [HS08]. This book starts with
an interesting combination of low-level primitives at high levels of abstraction
from the hardware, and works its way through locking and simple data structures
including lists, queues, hash tables, and counters, culminating with transactional
memory. Michael Scott’s textbook [Sco13] approaches similar material with
more of a software-engineering focus, and as far as I know, is the first formally
published textbook to include a section devoted to RCU.

5. If you would like an academic treatment of parallel programming from a programming-
language-pragmatics viewpoint, you might be interested in the concurrency chap-
ter from Scott’s textbook [Sco06] on programming languages.
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6. If you are interested in an object-oriented patternist treatment of parallel pro-
gramming focussing on C++, you might try Volumes 2 and 4 of Schmidt’s POSA
series [SSRB00, BHS07]. Volume 4 in particular has some interesting chapters
applying this work to a warehouse application. The realism of this example is
attested to by the section entitled “Partitioning the Big Ball of Mud”, wherein the
problems inherent in parallelism often take a back seat to the problems inherent
in getting one’s head around a real-world application.

7. If your primary focus is scientific and technical computing, and you prefer a
patternist approach, you might try Mattson et al.’s textbook [MSM05]. It covers
Java, C/C++, OpenMP, and MPI. Its patterns are admirably focused first on design,
then on implementation.

8. If you are interested in POSIX Threads, you might take a look at David R.
Butenhof’s book [But97].

9. If you are interested in C++, but in a Windows environment, you might try Herb
Sutter’s “Effective Concurrency” series in Dr. Dobbs Journal [Sut08]. This series
does a reasonable job of presenting a commonsense approach to parallelism.

10. If you want to try out Intel Threading Building Blocks, then perhaps James
Reinders’s book [Rei07] is what you are looking for.

11. Finally, those preferring to work in Java might be well-served by Doug Lea’s
textbooks [Lea97, GPB+07].

In contrast, this book meshes real-world machines with real-world algorithms. If your
sole goal is to find (say) an optimal parallel queue, you might be better served by one
of the above books. However, if you are interested in principles of parallel design that
allow multiple such queues to operate in parallel, read on!

Coming back to the topic of Quick Quizzes, if you need a deep understanding of
the material, then you might well need to learn to tolerate the Quick Quizzes. Don’t
get me wrong, passively reading the material can be quite valuable, but gaining full
problem-solving capability really does require that you practice solving problems.

I learned this the hard way during coursework for my late-in-life Ph.D. I was
studying a familiar topic, and was surprised at how few of the chapter’s exercises I could
solve off the top of my head. Forcing myself to answer the questions greatly increased
my retention of the material. So with these Quick Quizzes I am not asking you to do
anything that I have not been doing myself!

F.2 Hardware and its Habits

Quick Quiz 2.1:
Why should parallel programmers bother learning low-level properties of the hardware?
Wouldn’t it be easier, better, and more general to remain at a higher level of abstraction?

Answer:
It might well be easier to ignore the detailed properties of the hardware, but in most cases
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it would be quite foolish to do so. If you accept that the only purpose of parallelism is
to increase performance, and if you further accept that performance depends on detailed
properties of the hardware, then it logically follows that parallel programmers are going
to need to know at least a few hardware properties.

This is the case in most engineering disciplines. Would you want to use a bridge
designed by an engineer who did not understand the properties of the concrete and
steel making up that bridge? If not, why would you expect a parallel programmer to be
able to develop competent parallel software without at least some understanding of the
underlying hardware?

Quick Quiz 2.2:
What types of machines would allow atomic operations on multiple data elements?

Answer:
One answer to this question is that it is often possible to pack multiple elements of data
into a single machine word, which can then be manipulated atomically.

A more trendy answer would be machines supporting transactional memory [Lom77].
However, such machines are still research curiosities, although as of early 2012 it appears
that commodity systems supporting limited forms of hardware transactional memory
will be commercially available within a couple of years. The jury is still out on the
applicability of software transactional memory [MMW07, PW07, RHP+07, CBM+08,
DFGG11, MS12].

Quick Quiz 2.3:
So have CPU designers also greatly reduced the overhead of cache misses?

Answer:
Unfortunately, not so much. There has been some reduction given constant numbers of
CPUs, but the finite speed of light and the atomic nature of matter limits their ability
to reduce cache-miss overhead for larger systems. Section 2.3 discusses some possible
avenues for possible future progress.

Quick Quiz 2.4:
This is a simplified sequence of events? How could it possibly be any more complex?

Answer:
This sequence ignored a number of possible complications, including:

1. Other CPUs might be concurrently attempting to perform CAS operations involv-
ing this same cacheline.

2. The cacheline might have been replicated read-only in several CPUs’ caches, in
which case, it would need to be flushed from their caches.

3. CPU 7 might have been operating on the cache line when the request for it arrived,
in which case CPU 7 might need to hold off the request until its own operation
completed.
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4. CPU 7 might have ejected the cacheline from its cache (for example, in order
to make room for other data), so that by the time that the request arrived, the
cacheline was on its way to memory.

5. A correctable error might have occurred in the cacheline, which would then need
to be corrected at some point before the data was used.

Production-quality cache-coherence mechanisms are extremely complicated due to
these sorts of considerations.

Quick Quiz 2.5:
Why is it necessary to flush the cacheline from CPU 7’s cache?

Answer:
If the cacheline was not flushed from CPU 7’s cache, then CPUs 0 and 7 might have
different values for the same set of variables in the cacheline. This sort of incoher-
ence would greatly complicate parallel software, and so hardware architects have been
convinced to avoid it.

Quick Quiz 2.6:
Surely the hardware designers could be persuaded to improve this situation! Why
have they been content with such abysmal performance for these single-instruction
operations?

Answer:
The hardware designers have been working on this problem, and have consulted with
no less a luminary than the physicist Stephen Hawking. Hawking’s observation was that
the hardware designers have two basic problems [Gar07]:

1. the finite speed of light, and

2. the atomic nature of matter.

The first problem limits raw speed, and the second limits miniaturization, which
in turn limits frequency. And even this sidesteps the power-consumption issue that is
currently holding production frequencies to well below 10 GHz.

Nevertheless, some progress is being made, as may be seen by comparing Table F.1
with Table 2.1 on page 22. Integration of hardware threads in a single core and multiple
cores on a die have improved latencies greatly, at least within the confines of a single
core or single die. There has been some improvement in overall system latency, but only
by about a factor of two. Unfortunately, neither the speed of light nor the atomic nature
of matter has changed much in the past few years.

Section 2.3 looks at what else hardware designers might be able to do to ease the
plight of parallel programmers.

Quick Quiz 2.7:
These numbers are insanely large! How can I possibly get my head around them?
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Operation Cost (ns) Ratio
Clock period 0.4 1.0
“Best-case” CAS 12.2 33.8
Best-case lock 25.6 71.2
Single cache miss 12.9 35.8
CAS cache miss 7.0 19.4
Off-Core
Single cache miss 31.2 86.6
CAS cache miss 31.2 86.5
Off-Socket
Single cache miss 92.4 256.7
CAS cache miss 95.9 266.4
Comms Fabric 4,500 7,500
Global Comms 195,000,000 324,000,000

Table F.1: Performance of Synchronization Mechanisms on 16-CPU 2.8GHz Intel
X5550 (Nehalem) System

Answer:
Get a roll of toilet paper. In the USA, each roll will normally have somewhere around
350-500 sheets. Tear off one sheet to represent a single clock cycle, setting it aside.
Now unroll the rest of the roll.

The resulting pile of toilet paper will likely represent a single CAS cache miss.
For the more-expensive inter-system communications latencies, use several rolls (or

multiple cases) of toilet paper to represent the communications latency.
Important safety tip: make sure to account for the needs of those you live with when

appropriating toilet paper!

Quick Quiz 2.8:
But individual electrons don’t move anywhere near that fast, even in conductors!!! The
electron drift velocity in a conductor under the low voltages found in semiconductors is
on the order of only one millimeter per second. What gives???

Answer:
Electron drift velocity tracks the long-term movement of individual electrons. It turns
out that individual electrons bounce around quite randomly, so that their instantaneous
speed is very high, but over the long term, they don’t move very far. In this, electrons
resemble long-distance commuters, who might spend most of their time traveling at
full highway speed, but over the long term going nowhere. These commuters’ speed
might be 70 miles per hour (113 kilometers per hour), but their long-term drift velocity
relative to the planet’s surface is zero.

When designing circuitry, electrons’ instantaneous speed is often more important
than their drift velocity. When a voltage is applied to a wire, more electrons enter the
wire than leave it, but the electrons entering cause the electrons already there to move a
bit further down the wire, which causes other electrons to move down, and so on. The
result is that the electric field moves quite quickly down the wire. Just as the speed of
sound in air is much greater than is the typical wind speed, the electric field propagates
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down the wire at a much higher velocity than the electron drift velocity.

Quick Quiz 2.9:
Given that distributed-systems communication is so horribly expensive, why does any-
one bother with them?

Answer:
There are a number of reasons:

1. Shared-memory multiprocessor systems have strict size limits. If you need more
than a few thousand CPUs, you have no choice but to use a distributed system.

2. Extremely large shared-memory systems tend to be quite expensive and to have
even longer cache-miss latencies than does the small four-CPU system shown in
Table 2.1.

3. The distributed-systems communications latencies do not necessarily consume
the CPU, which can often allow computation to proceed in parallel with message
transfer.

4. Many important problems are “embarrassingly parallel”, so that extremely large
quantities of processing may be enabled by a very small number of messages.
SETI@HOME [aCB08] is but one example of such an application. These sorts of
applications can make good use of networks of computers despite extremely long
communications latencies.

It is likely that continued work on parallel applications will increase the number
of embarrassingly parallel applications that can run well on machines and/or clusters
having long communications latencies. That said, greatly reduced hardware latencies
would be an extremely welcome development.

Quick Quiz 2.10:
OK, if we are going to have to apply distributed-programming techniques to shared-
memory parallel programs, why not just always use these distributed techniques and
dispense with shared memory?

Answer:
Because it is often the case that only a small fraction of the program is performance-
critical. Shared-memory parallelism allows us to focus distributed-programming tech-
niques on that small fraction, allowing simpler shared-memory techniques to be used on
the non-performance-critical bulk of the program.

F.3 Tools of the Trade

Quick Quiz 3.1:
But this silly shell script isn’t a real parallel program! Why bother with such trivia???
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Answer:
Because you should never forget the simple stuff!

Please keep in mind that the title of this book is “Is Parallel Programming Hard,
And, If So, What Can You Do About It?”. One of the most effective things you can do
about it is to avoid forgetting the simple stuff! After all, if you choose to do parallel
programming the hard way, you have no one but yourself to blame.

Quick Quiz 3.2:
Is there a simpler way to create a parallel shell script? If so, how? If not, why not?

Answer:
One straightforward approach is the shell pipeline: grep $pattern1 | sed -e ’s/a/b/’ | sort

For a sufficiently large input file, grep will pattern-match in parallel with sed editing

and with the input processing of sort. See the file parallel.sh for a demonstration
of shell-script parallelism and pipelining.

Quick Quiz 3.3:
But if script-based parallel programming is so easy, why bother with anything else?

Answer:
In fact, it is quite likely that a very large fraction of parallel programs in use today are
script-based. However, script-based parallelism does have its limitations:

1. Creation of new processes is usually quite heavyweight, involving the expensive
fork() and exec() system calls.

2. Sharing of data, including pipelining, typically involves expensive file I/O.

3. The reliable synchronization primitives available to scripts also typically involve
expensive file I/O.

These limitations require that script-based parallelism use coarse-grained parallelism,
with each unit of work having execution time of at least tens of milliseconds, and
preferably much longer.

Those requiring finer-grained parallelism are well advised to think hard about their
problem to see if it can be expressed in a coarse-grained form. If not, they should
consider using other parallel-programming environments, such as those discussed in
Section 3.2.

Quick Quiz 3.4:
Why does this wait() primitive need to be so complicated? Why not just make it
work like the shell-script wait does?

Answer:
Some parallel applications need to take special action when specific children exit, and
therefore need to wait for each child individually. In addition, some parallel applications
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need to detect the reason that the child died. As we saw in Figure 3.3, it is not hard to
build a waitall() function out of the wait() function, but it would be impossible
to do the reverse. Once the information about a specific child is lost, it is lost.

Quick Quiz 3.5:
Isn’t there a lot more to fork() and wait() than discussed here?

Answer:
Indeed there is, and it is quite possible that this section will be expanded in future
versions to include messaging features (such as UNIX pipes, TCP/IP, and shared file
I/O) and memory mapping (such as mmap() and shmget()). In the meantime, there
are any number of textbooks that cover these primitives in great detail, and the truly
motivated can read manpages, existing parallel applications using these primitives, as
well as the source code of the Linux-kernel implementations themselves.

Quick Quiz 3.6:
If the mythread() function in Figure 3.5 can simply return, why bother with pthread_
exit()?

Answer:
In this simple example, there is no reason whatsoever. However, imagine a more
complex example, where mythread() invokes other functions, possibly separately
compiled. In such a case, pthread_exit() allows these other functions to end the
thread’s execution without having to pass some sort of error return all the way back up
to mythread().

Quick Quiz 3.7:
If the C language makes no guarantees in presence of a data race, then why does the
Linux kernel have so many data races? Are you trying to tell me that the Linux kernel is
completely broken???

Answer:
Ah, but the Linux kernel is written in a carefully selected superset of the C language
that includes special gcc extensions, such as asms, that permit safe execution even
in presence of data races. In addition, the Linux kernel does not run on a number of
platforms where data races would be especially problematic. For an example, consider
embedded systems with 32-bit pointers and 16-bit busses. On such a system, a data
race involving a store to and a load from a given pointer might well result in the load
returning the low-order 16 bits of the old value of the pointer concatenated with the
high-order 16 bits of the new value of the pointer.

Quick Quiz 3.8:
What if I want several threads to hold the same lock at the same time?

Answer:
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The first thing you should do is to ask yourself why you would want to do such a thing.
If the answer is “because I have a lot of data that is read by many threads, and only
occasionally updated”, then POSIX reader-writer locks might be what you are looking
for. These are introduced in Section 3.2.4.

Another way to get the effect of multiple threads holding the same lock is for one
thread to acquire the lock, and then use pthread_create() to create the other
threads. The question of why this would ever be a good idea is left to the reader.

Quick Quiz 3.9:
Why not simply make the argument to lock_reader() on line 5 of Figure 3.6 be a
pointer to a pthread_mutex_t?

Answer:
Because we will need to pass lock_reader() to pthread_create(). Although
we could cast the function when passing it to pthread_create(), function casts
are quite a bit uglier and harder to get right than are simple pointer casts.

Quick Quiz 3.10:
Writing four lines of code for each acquisition and release of a pthread_mutex_t
sure seems painful! Isn’t there a better way?

Answer:
Indeed! And for that reason, the pthread_mutex_lock() and pthread_mutex_
unlock() primitives are normally wrapped in functions that do this error checking.
Later on, we will wrapper them with the Linux kernel spin_lock() and spin_
unlock() APIs.

Quick Quiz 3.11:
Is “x = 0” the only possible output from the code fragment shown in Figure 3.7? If so,
why? If not, what other output could appear, and why?

Answer:
No. The reason that “x = 0” was output was that lock_reader() acquired the lock
first. Had lock_writer() instead acquired the lock first, then the output would
have been “x = 3”. However, because the code fragment started lock_reader()
first and because this run was performed on a multiprocessor, one would normally
expect lock_reader() to acquire the lock first. However, there are no guarantees,
especially on a busy system.

Quick Quiz 3.12:
Using different locks could cause quite a bit of confusion, what with threads seeing each
others’ intermediate states. So should well-written parallel programs restrict themselves
to using a single lock in order to avoid this kind of confusion?

Answer:
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Although it is sometimes possible to write a program using a single global lock that both
performs and scales well, such programs are exceptions to the rule. You will normally
need to use multiple locks to attain good performance and scalability.

One possible exception to this rule is “transactional memory”, which is currently
a research topic. Transactional-memory semantics can be loosely thought of as those
of a single global lock with optimizations permitted and with the addition of roll-
back [Boe09].

Quick Quiz 3.13:
In the code shown in Figure 3.8, is lock_reader() guaranteed to see all the values
produced by lock_writer()? Why or why not?

Answer:
No. On a busy system, lock_reader() might be preempted for the entire dura-
tion of lock_writer()’s execution, in which case it would not see any of lock_
writer()’s intermediate states for x.

Quick Quiz 3.14:
Wait a minute here!!! Figure 3.7 didn’t initialize shared variable x, so why does it need
to be initialized in Figure 3.8?

Answer:
See line 3 of Figure 3.6. Because the code in Figure 3.7 ran first, it could rely on the
compile-time initialization of x. The code in Figure 3.8 ran next, so it had to re-initialize
x.

Quick Quiz 3.15:
Instead of using ACCESS_ONCE() everywhere, why not just declare goflag as
volatile on line 10 of Figure 3.9?

Answer:
A volatile declaration is in fact a reasonable alternative in this particular case. How-
ever, use of ACCESS_ONCE() has the benefit of clearly flagging to the reader that
goflag is subject to concurrent reads and updates. However, ACCESS_ONCE() is
especially useful in cases where most of the accesses are protected by a lock (and thus
not subject to change), but where a few of the accesses are made outside of the lock.
Using a volatile declaration in this case would make it harder for the reader to note the
special accesses outside of the lock, and would also make it harder for the compiler to
generate good code under the lock.

Quick Quiz 3.16:
ACCESS_ONCE() only affects the compiler, not the CPU. Don’t we also need memory
barriers to make sure that the change in goflag’s value propagates to the CPU in a
timely fashion in Figure 3.9?
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Answer:
No, memory barriers are not needed and won’t help here. Memory barriers only enforce
ordering among multiple memory references: They do absolutely nothing to expedite
the propagation of data from one par of the system to another. This leads to a quick
rule of thumb: You do not need memory barriers unless you are using more than one
variable to communicate between multiple threads.

But what about nreadersrunning? Isn’t that a second variable used for com-
munication? Indeed it is, and there really are the needed memory-barrier instructions
buried in __sync_fetch_and_add(), which make sure that the thread proclaims
its presence before checking to see if it should start.

Quick Quiz 3.17:
Would it ever be necessary to use ACCESS_ONCE() when accessing a per-thred vari-
able, for example, a variable declared using the gcc __thread storage class?

Answer:
It depends. If the per-thread variable was accessed only from its thread, and never
from a single handler, then no. Otherwise, it is quite possible that ACCESS_ONCE() is
needed. We will see examples of both situations in Section 4.4.4.

This leads to the question of how one thread can gain access to another thread’s
__thread variable, and the answer is that the second thread must store a pointer to
its __thread pointer somewhere that the first thread has access to. One common
approach is to maintain a linked list with one element per thread, and to store the address
of each thread’s __thread variable in the corresponding element.

Quick Quiz 3.18:
Isn’t comparing against single-CPU throughput a bit harsh?

Answer:
Not at all. In fact, this comparison was, if anything, overly lenient. A more bal-
anced comparison would be against single-CPU throughput with the locking primitives
commented out.

Quick Quiz 3.19:
But 1,000 instructions is not a particularly small size for a critical section. What do I do
if I need a much smaller critical section, for example, one containing only a few tens of
instructions?

Answer:
If the data being read never changes, then you do not need to hold any locks while ac-
cessing it. If the data changes sufficiently infrequently, you might be able to checkpoint
execution, terminate all threads, change the data, then restart at the checkpoint.

Another approach is to keep a single exclusive lock per thread, so that a thread
read-acquires the larger aggregate reader-writer lock by acquiring its own lock, and
write-acquires by acquiring all the per-thread locks [HW92]. This can work quite well
for readers, but causes writers to incur increasingly large overheads as the number of

591



threads increases.
Some other ways of handling very small critical sections are described in Section 8.3.

Quick Quiz 3.20:
In Figure 3.10, all of the traces other than the 100M trace deviate gently from the ideal
line. In contrast, the 100M trace breaks sharply from the ideal line at 64 CPUs. In
addition, the spacing between the 100M trace and the 10M trace is much smaller than
that between the 10M trace and the 1M trace. Why does the 100M trace behave so much
differently than the other traces?

Answer:
Your first clue is that 64 CPUs is exactly half of the 128 CPUs on the machine. The
difference is an artifact of hardware threading. This system has 64 cores with two
hardware threads per core. As long as fewer than 64 threads are running, each can run
in its own core. But as soon as there are more than 64 threads, some of the threads
must share cores. Because the pair of threads in any given core share some hardware
resources, the throughput of two threads sharing a core is not quite as high as that of
two threads each in their own core. So the performance of the 100M trace is limited
not by the reader-writer lock, but rather by the sharing of hardware resources between
hardware threads in a single core.

This can also be seen in the 10M trace, which deviates gently from the ideal line up
to 64 threads, then breaks sharply down, parallel to the 100M trace. Up to 64 threads,
the 10M trace is limited primarily by reader-writer lock scalability, and beyond that,
also by sharing of hardware resources between hardware threads in a single core.

Quick Quiz 3.21:
Power-5 is several years old, and new hardware should be faster. So why should anyone
worry about reader-writer locks being slow?

Answer:
In general, newer hardware is improving. However, it will need to improve more than
two orders of magnitude to permit reader-writer lock to achieve idea performance on 128
CPUs. Worse yet, the greater the number of CPUs, the larger the required performance
improvement. The performance problems of reader-writer locking are therefore very
likely to be with us for quite some time to come.

Quick Quiz 3.22:
Is it really necessary to have both sets of primitives?

Answer:
Strictly speaking, no. One could implement any member of the second set using the
corresponding member of the first set. For example, one could implement __sync_
nand_and_fetch() in terms of __sync_fetch_and_nand() as follows:

tmp = v;
ret = __sync_fetch_and_nand(p, tmp);
ret = ~ret & tmp;
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It is similarly possible to implement __sync_fetch_and_add(), __sync_
fetch_and_sub(), and __sync_fetch_and_xor() in terms of their post-
value counterparts.

However, the alternative forms can be quite convenient, both for the programmer
and for the compiler/library implementor.

Quick Quiz 3.23:
Given that these atomic operations will often be able to generate single atomic instruc-
tions that are directly supported by the underlying instruction set, shouldn’t they be the
fastest possible way to get things done?

Answer:
Unfortunately, no. See Chapter 4 for some stark counterexamples.

Quick Quiz 3.24:
What happened to the Linux-kernel equivalents to fork() and join()?

Answer:
They don’t really exist. All tasks executing within the Linux kernel share memory, at
least unless you want to do a huge amount of memory-mapping work by hand.

Quick Quiz 3.25:
Wouldn’t the shell normally use vfork() rather than fork()?

Answer:
It might well do that, however, checking is left as an exercise for the reader. But in the
meantime, I hope that we cna agree that vfork() is a variant of fork(), so that we
can use fork() as a generic term covering both.

F.4 Counting

Quick Quiz 4.1:
Why on earth should efficient and scalable counting be hard? After all, computers have
special hardware for the sole purpose of doing counting, addition, subtraction, and lots
more besides, don’t they???

Answer:
Because the straightforward counting algorithms, for example, atomic operations on
a shared counter, either are slow and scale badly, or are inaccurate, as will be seen in
Section 4.1.

Quick Quiz 4.2:
Network-packet counting problem. Suppose that you need to collect statistics on the
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number of networking packets (or total number of bytes) transmitted and/or received.
Packets might be transmitted or received by any CPU on the system. Suppose further
that this large machine is capable of handling a million packets per second, and that
there is a systems-monitoring package that reads out the count every five seconds. How
would you implement this statistical counter?

Answer:
Hint: The act of updating the counter must be blazingly fast, but because the counter is
read out only about once in five million updates, the act of reading out the counter can be
quite slow. In addition, the value read out normally need not be all that accurate—after
all, since the counter is updated a thousand times per millisecond, we should be able
to work with a value that is within a few thousand counts of the “true value”, whatever
“true value” might mean in this context. However, the value read out should maintain
roughly the same absolute error over time. For example, a 1% error might be just fine
when the count is on the order of a million or so, but might be absolutely unacceptable
once the count reaches a trillion. See Section 4.2.

Quick Quiz 4.3:
Approximate structure-allocation limit problem. Suppose that you need to maintain
a count of the number of structures allocated in order to fail any allocations once the
number of structures in use exceeds a limit (say, 10,000). Suppose further that these
structures are short-lived, that the limit is rarely exceeded, and that a “sloppy” approxi-
mate limit is acceptable.

Answer:
Hint: The act of updating the counter must again be blazingly fast, but the counter is
read out each time that the counter is increased. However, the value read out need not be
accurate except that it must distinguish approximately between values below the limit
and values greater than or equal to the limit. See Section 4.3.

Quick Quiz 4.4:
Exact structure-allocation limit problem. Suppose that you need to maintain a count
of the number of structures allocated in order to fail any allocations once the number
of structures in use exceeds an exact limit (again, say 10,000). Suppose further that
these structures are short-lived, and that the limit is rarely exceeded, that there is almost
always at least one structure in use, and suppose further still that it is necessary to know
exactly when this counter reaches zero, for example, in order to free up some memory
that is not required unless there is at least one structure in use.

Answer:
Hint: The act of updating the counter must once again be blazingly fast, but the counter
is read out each time that the counter is increased. However, the value read out need not
be accurate except that it absolutely must distinguish perfectly between values between
the limit and zero on the one hand, and values that either are less than or equal to zero
or are greater than or equal to the limit on the other hand. See Section 4.4.
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Quick Quiz 4.5:
Removable I/O device access-count problem. Suppose that you need to maintain a
reference count on a heavily used removable mass-storage device, so that you can tell
the user when it is safe to remove the device. This device follows the usual removal
procedure where the user indicates a desire to remove the device, and the system tells
the user when it is safe to do so.

Answer:
Hint: Yet again, the act of updating the counter must be blazingly fast and scalable
in order to avoid slowing down I/O operations, but because the counter is read out
only when the user wishes to remove the device, the counter read-out operation can
be extremely slow. Furthermore, there is no need to be able to read out the counter at
all unless the user has already indicated a desire to remove the device. In addition, the
value read out need not be accurate except that it absolutely must distinguish perfectly
between non-zero and zero values, and even then only when the device is in the process
of being removed. However, once it has read out a zero value, it must act to keep the
value at zero until it has taken some action to prevent subsequent threads from gaining
access to the device being removed. See Section 4.5.

Quick Quiz 4.6:
But doesn’t the ++ operator produce an x86 add-to-memory instruction? And won’t the
CPU cache cause this to be atomic?

Answer:
Although the ++ operator could be atomic, there is no requirement that it be so. And
indeed, gcc often chooses to load the value to a register, increment the register, then
store the value to memory, which is decidedly non-atomic.

Quick Quiz 4.7:
The 8-figure accuracy on the number of failures indicates that you really did test this.
Why would it be necessary to test such a trivial program, especially when the bug is
easily seen by inspection?

Answer:
Not only are there very few trivial parallel programs, and most days I am not so sure
that there are many trivial sequential programs, either.

No matter how small or simple the program, if you haven’t tested it, it does not
work. And even if you have tested it, Murphy’s Law says that there will be at least a
few bugs still lurking.

Furthermore, while proofs of correctness certainly do have their place, they never
will replace testing, including the counttorture.h test setup used here. After all,
proofs are only as good as the assumptions that they are based on. Furthermore, proofs
can have bugs just as easily as programs can!

Quick Quiz 4.8:
Why doesn’t the dashed line on the x axis meet the diagonal line at x = 1?
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Answer:
Because of the overhead of the atomic operation. The dashed line on the x axis rep-
resents the overhead of a single non-atomic increment. After all, an ideal algorithm
would not only scale linearly, it would also incur no performance penalty compared to
single-threaded code.

This level of idealism may seem severe, but if it is good enough for Linus Torvalds,
it is good enough for you.

Quick Quiz 4.9:
But atomic increment is still pretty fast. And incrementing a single variable in a tight
loop sounds pretty unrealistic to me, after all, most of the program’s execution should
be devoted to actually doing work, not accounting for the work it has done! Why should
I care about making this go faster?

Answer:
In many cases, atomic increment will in fact be fast enough for you. In those cases,
you should by all means use atomic increment. That said, there are many real-world
situations where more elaborate counting algorithms are required. The canonical exam-
ple of such a situation is counting packets and bytes in highly optimized networking
stacks, where it is all too easy to find much of the execution time going into these sorts
of accounting tasks, especially on large multiprocessors.

In addition, as noted at the beginning of this chapter, counting provides an excellent
view of the issues encountered in shared-memory parallel programs.

Quick Quiz 4.10:
But why can’t CPU designers simply ship the addition operation to the data, avoiding
the need to circulate the cache line containing the global variable being incremented?

Answer:
It might well be possible to do this in some cases. However, there are a few complica-
tions:

1. If the value of the variable is required, then the thread will be forced to wait for
the operation to be shipped to the data, and then for the result to be shipped back.

2. If the atomic increment must be ordered with respect to prior and/or subsequent
operations, then the thread will be forced to wait for the operation to be shipped
to the data, and for an indication that the operation completed to be shipped back.

3. Shipping operations among CPUs will likely require more lines in the system
interconnect, which will consume more die area and more electrical power.

But what if neither of the first two conditions holds? Then you should think carefully
about the algorithms discussed in Section 4.2, which achieve near-ideal performance on
commodity hardware.

If either or both of the first two conditions hold, there is some hope for improved
hardware. One could imagine the hardware implementing a combining tree, so that the
increment requests from multiple CPUs are combined by the hardware into a single
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addition when the combined request reaches the hardware. The hardware could also
apply an order to the requests, thus returning to each CPU the return value corresponding
to its particular atomic increment. This results in instruction latency that varies as
O(logN), where N is the number of CPUs, as shown in Figure F.1. And CPUs with this
sort of hardware optimization are starting to appear as of 2011.

This is a great improvement over the O(N) performance of current hardware shown
in Figure 4.4, and it is possible that hardware latencies might decrease further if innova-
tions such as three-dimensional fabrication prove practical. Nevertheless, we will see
that in some important special cases, software can do much better.

Quick Quiz 4.11:
But doesn’t the fact that C’s “integers” are limited in size complicate things?

Answer:
No, because modulo addition is still commutative and associative. At least as long as
you use unsigned integers. Recall that in the C standard, overflow of signed integers
results in undefined behavior, never mind the fact that machines that do anything other
than wrap on overflow are quite rare these days. Unfortunately, compilers frequently
carry out optimizations that assume that signed integers will not overflow, so if your code
allows signed integers to overflow, you can run into trouble even on twos-complement
hardware.

That said, one potential source of additional complexity arises when attempting
to gather (say) a 64-bit sum from 32-bit per-thread counters. Dealing with this added
complexity is left as an exercise for the reader, for whom some of the techniques
introduced later in this chapter could be quite helpful.

Quick Quiz 4.12:
An array??? But doesn’t that limit the number of threads?

Answer:
It can, and in this toy implementation, it does. But it is not that hard to come up with
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an alternative implementation that permits an arbitrary number of threads, for example,
using the gcc __thread facility, as shown in Section 4.2.4.

Quick Quiz 4.13:
What other choice does gcc have, anyway???

Answer:
According to the C standard, the effects of fetching a variable that might be concurrently
modified by some other thread are undefined. It turns out that the C standard really has
no other choice, given that C must support (for example) eight-bit architectures which
are incapable of atomically loading a long. An upcoming version of the C standard
aims to fill this gap, but until then, we depend on the kindness of the gcc developers.

Alternatively, use of volatile accesses such as those provided by ACCESS_ONCE() [Cor12a]
can help constrain the compiler, at least in cases where the hardware is capable of ac-
cessing the value with a single memory-reference instruction.

Quick Quiz 4.14:
How does the per-thread counter variable in Figure 4.6 get initialized?

Answer:
The C standard specifies that the initial value of global variables is zero, unless they
are explicitly initialized. So the initial value of all the instances of counter will be
zero. Furthermore, in the common case where the user is interested only in differences
between consecutive reads from statistical counters, the initial value is irrelevant.

Quick Quiz 4.15:
How is the code in Figure 4.6 supposed to permit more than one counter?

Answer:
Indeed, this toy example does not support more than one counter. Modifying it so that it
can provide multiple counters is left as an exercise to the reader.

Quick Quiz 4.16:
The read operation takes time to sum up the per-thread values, and during that time, the
counter could well be changing. This means that the value returned by read_count()
in Figure 4.6 will not necessarily be exact. Assume that the counter is being incremented
at rate r counts per unit time, and that read_count()’s execution consumes ∆ units
of time. What is the expected error in the return value?

Answer:
Let’s do worst-case analysis first, followed by a less conservative analysis.

In the worst case, the read operation completes immediately, but is then delayed for
∆ time units before returning, in which case the worst-case error is simply r∆.

This worst-case behavior is rather unlikely, so let us instead consider the case where
the reads from each of the N counters is spaced equally over the time period ∆. There
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will be N +1 intervals of duration ∆

N+1 between the N reads. The error due to the delay
after the read from the last thread’s counter will be given by r∆

N(N+1) , the second-to-last

thread’s counter by 2r∆

N(N+1) , the third-to-last by 3r∆

N(N+1) , and so on. The total error is
given by the sum of the errors due to the reads from each thread’s counter, which is:

r∆

N (N +1)

N

∑
i=1

i (F.1)

Expressing the summation in closed form yields:

r∆

N (N +1)
N (N +1)

2
(F.2)

Cancelling yields the intuitively expected result:

r∆

2
(F.3)

It is important to remember that error continues accumulating as the caller executes
code making use of the count returned by the read operation. For example, if the caller
spends time t executing some computation based on the result of the returned count, the
worst-case error will have increased to r (t∆).

The expected error will have similarly increased to:

r
(

∆

2
+ t

)
(F.4)

Of course, it is sometimes unacceptable for the counter to continue incrementing
during the read operation. Section 4.5 discusses a way to handle this situation.

All that aside, in most uses of statistical counters, the error in the value returned by
read_count() is irrelevant. This irrelevance is due to the fact that the time required
for read_count() to execute is normally extremely small compared to the time
interval between successive calls to read_count().

Quick Quiz 4.17:
Why doesn’t inc_count() in Figure 4.8 need to use atomic instructions? After all,
we now have multiple threads accessing the per-thread counters!

Answer:
Because one of the two threads only reads, and because the variable is aligned and
machine-sized, non-atomic instructions suffice. That said, the ACCESS_ONCE()macro
is used to prevent compiler optimizations that might otherwise prevent the counter up-
dates from becoming visible to eventual() [Cor12a].

An older version of this algorithm did in fact use atomic instructions, kudos to
Ersoy Bayramoglu for pointing out that they are in fact unnecessary. That said, atomic
instructions would be needed in cases where the per-thread counter variables were
smaller than the global global_count. However, note that on a 32-bit system, the
per-thread counter variables might need to be limited to 32 bits in order to sum them
accurately, but with a 64-bit global_count variable to avoid overflow. In this case,
it is necessary to zero the per-thead counter variables periodically in order to avoid
overflow. It is extremely important to note that this zeroing cannot be delayed too long
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or overflow of the smaller per-thread variables will result. This approach therefore
imposes real-time requirements on the underlying system, and in turn must be used with
extreme care.

In contrast, if all variables are the same size, overflow of any variable is harmless
because the eventual sum will be modulo the word size.

Quick Quiz 4.18:
Won’t the single global thread in the function eventual() of Figure 4.8 be just as
severe a bottleneck as a global lock would be?

Answer:
In this case, no. What will happen instead is that as the number of threads increases,
the estimate of the counter value returned by read_count() will become more
inaccurate.

Quick Quiz 4.19:
Won’t the estimate returned by read_count() in Figure 4.8 become increasingly
inaccurate as the number of threads rises?

Answer:
Yes. If this proves problematic, one fix is to provide multiple eventual() threads,
each covering its own subset of the other threads. In more extreme cases, a tree-like
hierarchy of eventual() threads might be required.

Quick Quiz 4.20:
Given that in the eventually-consistent algorithm shown in Figure 4.8 both reads and
updates have extremely low overhead and are extremely scalable, why would anyone
bother with the implementation described in Section 4.2.2, given its costly read-side
code?

Answer:
The thread executing eventual() consumes CPU time. As more of these eventually-
consistent counters are added, the resulting eventual() threads will eventually
consume all available CPUs. This implementation therefore suffers a different sort
of scalability limitation, with the scalability limit being in terms of the number of
eventually consistent counters rather than in terms of the number of threads or CPUs.

Quick Quiz 4.21:
Why do we need an explicit array to find the other threads’ counters? Why doesn’t
gcc provide a per_thread() interface, similar to the Linux kernel’s per_cpu()
primitive, to allow threads to more easily access each others’ per-thread variables?

Answer:
Why indeed?

To be fair, gcc faces some challenges that the Linux kernel gets to ignore. When
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a user-level thread exits, its per-thread variables all disappear, which complicates the
problem of per-thread-variable access, particularly before the advent of user-level RCU
(see Section 8.3). In contrast, in the Linux kernel, when a CPU goes offline, that CPU’s
per-CPU variables remain mapped and accessible.

Similarly, when a new user-level thread is created, its per-thread variables suddenly
come into existence. In contrast, in the Linux kernel, all per-CPU variables are mapped
and initialized at boot time, regardless of whether the corresponding CPU exists yet, or
indeed, whether the corresponding CPU will ever exist.

A key limitation that the Linux kernel imposes is a compile-time maximum bound
on the number of CPUs, namely, CONFIG_NR_CPUS, along with a typically tighter
boot-time bound of nr_cpu_ids. In contrast, in user space, there is no hard-coded
upper limit on the number of threads.

Of course, both environments must handle dynamically loaded code (dynamic
libraries in user space, kernel modules in the Linux kernel), which increases the com-
plexity of per-thread variables.

These complications make it significantly harder for user-space environments to
provide access to other threads’ per-thread variables. Nevertheless, such access is highly
useful, and it is hoped that it will someday appear.

Quick Quiz 4.22:
Doesn’t the check for NULL on line 19 of Figure 4.9 add extra branch mispredictions?
Why not have a variable set permanently to zero, and point unused counter-pointers to
that variable rather than setting them to NULL?

Answer:
This is a reasonable strategy. Checking for the performance difference is left as an
exercise for the reader. However, please keep in mind that the fastpath is not read_
count(), but rather inc_count().

Quick Quiz 4.23:
Why on earth do we need something as heavyweight as a lock guarding the summation
in the function read_count() in Figure 4.9?

Answer:
Remember, when a thread exits, its per-thread variables disappear. Therefore, if we
attempt to access a given thread’s per-thread variables after that thread exits, we will get
a segmentation fault. The lock coordinates summation and thread exit, preventing this
scenario.

Of course, we could instead read-acquire a reader-writer lock, but Chapter 8 will
introduce even lighter-weight mechanisms for implementing the required coordination.

Another approach would be to use an array instead of a per-thread variable, which,
as Alexey Roytman notes, would eliminate the tests against NULL. However, array
accesses are often slower than accesses to per-thread variables, and use of an array
would imply a fixed upper bound on the number of threads. Also, note that neither tests
nor locks are needed on the inc_count() fastpath.
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1 long __thread counter = 0;
2 long *counterp[NR_THREADS] = { NULL };
3 int finalthreadcount = 0;
4 DEFINE_SPINLOCK(final_mutex);
5
6 void inc_count(void)
7 {
8 counter++;
9 }
10
11 long read_count(void)
12 {
13 int t;
14 long sum = 0;
15
16 for_each_thread(t)
17 if (counterp[t] != NULL)
18 sum += *counterp[t];
19 return sum;
20 }
21
22 void count_init(void)
23 {
24 }
25
26 void count_register_thread(void)
27 {
28 counterp[smp_thread_id()] = &counter;
29 }
30
31 void count_unregister_thread(int nthreadsexpected)
32 {
33 spin_lock(&final_mutex);
34 finalthreadcount++;
35 spin_unlock(&final_mutex);
36 while (finalthreadcount < nthreadsexpected)
37 poll(NULL, 0, 1);
38 }

Figure F.2: Per-Thread Statistical Counters With Lockless Summation

Quick Quiz 4.24:
Why on earth do we need to acquire the lock in count_register_thread() in
Figure 4.9? It is a single properly aligned machine-word store to a location that no other
thread is modifying, so it should be atomic anyway, right?

Answer:
This lock could in fact be omitted, but better safe than sorry, especially given that this
function is executed only at thread startup, and is therefore not on any critical path. Now,
if we were testing on machines with thousands of CPUs, we might need to omit the
lock, but on machines with “only” a hundred or so CPUs, there is no need to get fancy.

Quick Quiz 4.25:
Fine, but the Linux kernel doesn’t have to acquire a lock when reading out the aggregate
value of per-CPU counters. So why should user-space code need to do this???

Answer:
Remember, the Linux kernel’s per-CPU variables are always accessible, even if the
corresponding CPU is offline — even if the corresponding CPU never existed and never
will exist.
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One workaround is to ensure that each thread continues to exist until all threads
are finished, as shown in Figure F.2 (count_tstat.c). Analysis of this code is
left as an exercise to the reader, however, please note that it does not fit well into the
counttorture.h counter-evaluation scheme. (Why not?) Chapter 8 will introduce
synchronization mechanisms that handle this situation in a much more graceful manner.

Quick Quiz 4.26:
What fundamental difference is there between counting packets and counting the total
number of bytes in the packets, given that the packets vary in size?

Answer:
When counting packets, the counter is only incremented by the value one. On the other
hand, when counting bytes, the counter might be incremented by largish numbers.

Why does this matter? Because in the increment-by-one case, the value returned
will be exact in the sense that the counter must necessarily have taken on that value at
some point in time, even if it is impossible to say precisely when that point occurred.
In contrast, when counting bytes, two different threads might return values that are
inconsistent with any global ordering of operations.

To see this, suppose that thread 0 adds the value three to its counter, thread 1 adds
the value five to its counter, and threads 2 and 3 sum the counters. If the system is
“weakly ordered” or if the compiler uses aggressive optimizations, thread 2 might find
the sum to be three and thread 3 might find the sum to be five. The only possible global
orders of the sequence of values of the counter are 0,3,8 and 0,5,8, and neither order is
consistent with the results obtained.

If you missed this one, you are not alone. Michael Scott used this question to stump
Paul E. McKenney during Paul’s Ph.D. defense.

Quick Quiz 4.27:
Given that the reader must sum all the threads’ counters, this could take a long time
given large numbers of threads. Is there any way that the increment operation can
remain fast and scalable while allowing readers to also enjoy reasonable performance
and scalability?

Answer:
One approach would be to maintain a global approximation to the value. Readers
would increment their per-thread variable, but when it reached some predefined limit,
atomically add it to a global variable, then zero their per-thread variable. This would
permit a tradeoff between average increment overhead and accuracy of the value read
out.

The reader is encouraged to think up and try out other approaches, for example,
using a combining tree.

Quick Quiz 4.28:
Why does Figure 4.12 provide add_count() and sub_count() instead of the
inc_count() and dec_count() interfaces show in Section 4.2?
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Answer:
Because structures come in different sizes. Of course, a limit counter corresponding to a
specific size of structure might still be able to use inc_count() and dec_count().

Quick Quiz 4.29:
What is with the strange form of the condition on line 3 of Figure 4.12? Why not the
following more intuitive form of the fastpath?

3 if (counter + delta <= countermax){
4 counter += delta;
5 return 1;
6 }

Answer:
Two words. “Integer overflow.”

Try the above formulation with counter equal to 10 and delta equal to ULONG_
MAX. Then try it again with the code shown in Figure 4.12.

A good understanding of integer overflow will be required for the rest of this
example, so if you have never dealt with integer overflow before, please try several
examples to get the hang of it. Integer overflow can sometimes be more difficult to get
right than parallel algorithms!

Quick Quiz 4.30:
Why does globalize_count() zero the per-thread variables, only to later call
balance_count() to refill them in Figure 4.12? Why not just leave the per-thread
variables non-zero?

Answer:
That is in fact what an earlier version of this code did. But addition and subtraction are
extremely cheap, and handling all of the special cases that arise is quite complex. Again,
feel free to try it yourself, but beware of integer overflow!

Quick Quiz 4.31:
Given that globalreserve counted against us in add_count(), why doesn’t it
count for us in sub_count() in Figure 4.12?

Answer:
The globalreserve variable tracks the sum of all threads’ countermax vari-
ables. The sum of these threads’ counter variables might be anywhere from zero to
globalreserve. We must therefore take a conservative approach, assuming that all
threads’ counter variables are full in add_count() and that they are all empty in
sub_count().

But remember this question, as we will come back to it later.

Quick Quiz 4.32:
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Suppose that one thread invokes add_count() shown in Figure 4.12, and then another
thread invokes sub_count(). Won’t sub_count() return failure even though the
value of the counter is non-zero?

Answer:
Indeed it will! In many cases, this will be a problem, as discussed in Section 4.3.3, and
in those cases the algorithms from Section 4.4 will likely be preferable.

Quick Quiz 4.33:
Why have both add_count() and sub_count() in Figure 4.12? Why not simply
pass a negative number to add_count()?

Answer:
Given that add_count() takes an unsigned long as its argument, it is going to
be a bit tough to pass it a negative number. And unless you have some anti-matter
memory, there is little point in allowing negative numbers when counting the number of
structures in use!

Quick Quiz 4.34:
Why set counter to countermax / 2 in line 15 of Figure 4.13? Wouldn’t it be
simpler to just take countermax counts?

Answer:
First, it really is reserving countermax counts (see line 14), however, it adjusts so
that only half of these are actually in use by the thread at the moment. This allows
the thread to carry out at least countermax / 2 increments or decrements before
having to refer back to globalcount again.

Note that the accounting in globalcount remains accurate, thanks to the adjust-
ment in line 18.

Quick Quiz 4.35:
In Figure 4.14, even though a quarter of the remaining count up to the limit is assigned
to thread 0, only an eighth of the remaining count is consumed, as indicated by the
uppermost dotted line connecting the center and the rightmost configurations. Why is
that?

Answer:
The reason this happened is that thread 0’s counterwas set to half of its countermax.
Thus, of the quarter assigned to thread 0, half of that quarter (one eighth) came from
globalcount, leaving the other half (again, one eighth) to come from the remaining
count.

There are two purposes for taking this approach: (1) To allow thread 0 to use the
fastpath for decrements as well as increments, and (2) To reduce the inaccuracies if all
threads are monotonically incrementing up towards the limit. To see this last point, step
through the algorithm and watch what it does.
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Quick Quiz 4.36:
Why is it necessary to atomically manipulate the thread’s counter and countermax
variables as a unit? Wouldn’t it be good enough to atomically manipulate them individu-
ally?

Answer:
This might well be possible, but great care is required. Note that removing counter
without first zeroing countermax could result in the corresponding thread increasing
counter immediately after it was zeroed, completely negating the effect of zeroing
the counter.

The opposite ordering, namely zeroing countermax and then removing counter,
can also result in a non-zero counter. To see this, consider the following sequence of
events:

1. Thread A fetches its countermax, and finds that it is non-zero.

2. Thread B zeroes Thread A’s countermax.

3. Thread B removes Thread A’s counter.

4. Thread A, having found that its countermax is non-zero, proceeds to add to its
counter, resulting in a non-zero value for counter.

Again, it might well be possible to atomically manipulate countermax and
counter as separate variables, but it is clear that great care is required. It is also
quite likely that doing so will slow down the fastpath.

Exploring these possibilities are left as exercises for the reader.

Quick Quiz 4.37:
In what way does line 7 of Figure 4.17 violate the C standard?

Answer:
It assumes eight bits per byte. This assumption does hold for all current commodity
microprocessors that can be easily assembled into shared-memory multiprocessors, but
certainly does not hold for all computer systems that have ever run C code. (What could
you do instead in order to comply with the C standard? What drawbacks would it have?)

Quick Quiz 4.38:
Given that there is only one ctrandmax variable, why bother passing in a pointer to it
on line 18 of Figure 4.17?

Answer:
There is only one ctrandmax variable per thread. Later, we will see code that needs
to pass other threads’ ctrandmax variables to split_ctrandmax().

Quick Quiz 4.39:
Why does merge_ctrandmax() in Figure 4.17 return an int rather than storing
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directly into an atomic_t?

Answer:
Later, we will see that we need the int return to pass to the atomic_cmpxchg()
primitive.

Quick Quiz 4.40:
Yecch! Why the ugly goto on line 11 of Figure 4.18? Haven’t you heard of the break
statement???

Answer:
Replacing the goto with a break would require keeping a flag to determine whether
or not line 15 should return, which is not the sort of thing you want on a fastpath. If
you really hate the goto that much, your best bet would be to pull the fastpath into a
separate function that returned success or failure, with “failure” indicating a need for
the slowpath. This is left as an exercise for goto-hating readers.

Quick Quiz 4.41:
Why would the atomic_cmpxchg() primitive at lines 13-14 of Figure 4.18 ever
fail? After all, we picked up its old value on line 9 and have not changed it!

Answer:
Later, we will see how the flush_local_count() function in Figure 4.20 might
update this thread’s ctrandmax variable concurrently with the execution of the fast-
path on lines 8-14 of Figure 4.18.

Quick Quiz 4.42:
What stops a thread from simply refilling its ctrandmax variable immediately after
flush_local_count() on line 14 of Figure 4.20 empties it?

Answer:
This other thread cannot refill its ctrandmax until the caller of flush_local_
count() releases the gblcnt_mutex. By that time, the caller of flush_local_
count() will have finished making use of the counts, so there will be no problem with
this other thread refilling — assuming that the value of globalcount is large enough
to permit a refill.

Quick Quiz 4.43:
What prevents concurrent execution of the fastpath of either atomic_add() or
atomic_sub() from interfering with the ctrandmax variable while flush_
local_count() is accessing it on line 27 of Figure 4.20 empties it?

Answer:
Nothing. Consider the following three cases:

1. If flush_local_count()’s atomic_xchg() executes before the split_
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ctrandmax() of either fastpath, then the fastpath will see a zero counter and
countermax, and will thus transfer to the slowpath (unless of course delta is
zero).

2. If flush_local_count()’s atomic_xchg() executes after the split_
ctrandmax() of either fastpath, but before that fastpath’s atomic_cmpxchg(),
then the atomic_cmpxchg() will fail, causing the fastpath to restart, which
reduces to case 1 above.

3. If flush_local_count()’s atomic_xchg() executes after the atomic_
cmpxchg() of either fastpath, then the fastpath will (most likely) complete suc-
cessfully before flush_local_count() zeroes the thread’s ctrandmax
variable.

Either way, the race is resolved correctly.

Quick Quiz 4.44:
Given that the atomic_set() primitive does a simple store to the specified atomic_
t, how can line 21 of balance_count() in Figure 4.21 work correctly in face of
concurrent flush_local_count() updates to this variable?

Answer:
The caller of both balance_count() and flush_local_count() hold gblcnt_
mutex, so only one may be executing at a given time.

Quick Quiz 4.45:
But signal handlers can be migrated to some other CPU while running. Doesn’t this
possibility require that atomic instructions and memory barriers are required to reliably
communicate between a thread and a signal handler that interrupts that thread?

Answer:
No. If the signal handler is migrated to another CPU, then the interrupted thread is also
migrated along with it.

Quick Quiz 4.46:
In Figure 4.22, why is the REQ theft state colored red?

Answer:
To indicate that only the fastpath is permitted to change the theft state, and that if the
thread remains in this state for too long, the thread running the slowpath will resend the
POSIX signal.

Quick Quiz 4.47:
In Figure 4.22, what is the point of having separate REQ and ACK theft states? Why
not simplify the state machine by collapsing them into a single REQACK state? Then
whichever of the signal handler or the fastpath gets there first could set the state to
READY.
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Answer:
Reasons why collapsing the REQ and ACK states would be a very bad idea include:

1. The slowpath uses the REQ and ACK states to determine whether the signal
should be retransmitted. If the states were collapsed, the slowpath would have no
choice but to send redundant signals, which would have the unhelpful effect of
needlessly slowing down the fastpath.

2. The following race would result:

(a) The slowpath sets a given thread’s state to REQACK.

(b) That thread has just finished its fastpath, and notes the REQACK state.

(c) The thread receives the signal, which also notes the REQACK state, and,
because there is no fastpath in effect, sets the state to READY.

(d) The slowpath notes the READY state, steals the count, and sets the state to
IDLE, and completes.

(e) The fastpath sets the state to READY, disabling further fastpath execution
for this thread.

The basic problem here is that the combined REQACK state can be referenced by
both the signal handler and the fastpath. The clear separation maintained by the
four-state setup ensures orderly state transitions.

That said, you might well be able to make a three-state setup work correctly. If you
do succeed, compare carefully to the four-state setup. Is the three-state solution really
preferable, and why or why not?

Quick Quiz 4.48:
In Figure 4.24 function flush_local_count_sig(), why are there ACCESS_
ONCE() wrappers around the uses of the theft per-thread variable?

Answer:
The first one (on line 11) can be argued to be unnecessary. The last two (lines 14 and
16) are important. If these are removed, the compiler would be within its rights to rewrite
lines 14-17 as follows: 14 theft = THEFT_READY;

15 if (counting) {
16 theft = THEFT_ACK;
17 }

This would be fatal, as the slowpath might see the transient value of THEFT_READY,

and start stealing before the corresponding thread was ready.

Quick Quiz 4.49:
In Figure 4.24, why is it safe for line 28 to directly access the other thread’s countermax
variable?

Answer:
Because the other thread is not permitted to change the value of its countermax
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variable unless it holds the gblcnt_mutex lock. But the caller has acquired this lock,
so it is not possible for the other thread to hold it, and therefore the other thread is not
permitted to change its countermax variable. We can therefore safely access it — but
not change it.

Quick Quiz 4.50:
In Figure 4.24, why doesn’t line 33 check for the current thread sending itself a signal?

Answer:
There is no need for an additional check. The caller of flush_local_count() has
already invoked globalize_count(), so the check on line 28 will have succeeded,
skipping the later pthread_kill().

Quick Quiz 4.51:
The code in Figure 4.24, works with gcc and POSIX. What would be required to make
it also conform to the ISO C standard?

Answer:
The theft variable must be of type sig_atomic_t to guarantee that it can be safely
shared between the signal handler and the code interrupted by the signal.

Quick Quiz 4.52:
In Figure 4.24, why does line 41 resend the signal?

Answer:
Because many operating systems over several decades have had the property of losing
the occasional signal. Whether this is a feature or a bug is debatable, but irrelevant. The
obvious symptom from the user’s viewpoint will not be a kernel bug, but rather a user
application hanging.

Your user application hanging!

Quick Quiz 4.53:
Not only are POSIX signals slow, sending one to each thread simply does not scale.
What would you do if you had (say) 10,000 threads and needed the read side to be fast?

Answer:
One approach is to use the techniques shown in Section 4.2.3, summarizing an approx-
imation to the overall counter value in a single variable. Another approach would be
to use multiple threads to carry out the reads, with each such thread interacting with a
specific subset of the updating threads.

Quick Quiz 4.54:
What if you want an exact limit counter to be exact only for its lower limit, but to allow
the upper limit to be inexact?
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Answer:
One simple solution is to overstate the upper limit by the desired amount. The limiting
case of such overstatement results in the upper limit being set to the largest value that
the counter is capable of representing.

Quick Quiz 4.55:
What else had you better have done when using a biased counter?

Answer:
You had better have set the upper limit to be large enough accommodate the bias, the
expected maximum number of accesses, and enough “slop” to allow the counter to work
efficiently even when the number of accesses is at its maximum.

Quick Quiz 4.56:
This is ridiculous! We are read-acquiring a reader-writer lock to update the counter?
What are you playing at???

Answer:
Strange, perhaps, but true! Almost enough to make you think that the name “reader-
writer lock” was poorly chosen, isn’t it?

Quick Quiz 4.57:
What other issues would need to be accounted for in a real system?

Answer:
A huge number!

Here are a few to start with:

1. There could be any number of devices, so that the global variables are inappropri-
ate, as are the lack of arguments to functions like do_io().

2. Polling loops can be problematic in real systems. In many cases, it is far better to
have the last completing I/O wake up the device-removal thread.

3. The I/O might fail, and so do_io() will likely need a return value.

4. If the device fails, the last I/O might never complete. In such cases, there might
need to be some sort of timeout to allow error recovery.

5. Both add_count() and sub_count() can fail, but their return values are
not checked.

6. Reader-writer locks do not scale well. One way of avoiding the high read-
acquisition costs of reader-writer locks is presented in Chapters 6 and 8.

7. The polling loops result in poor energy efficiency. An event-driven design is
preferable.
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Quick Quiz 4.58:
On the count_stat.c row of Table 4.1, we see that the update side scales linearly
with the number of threads. How is that possible given that the more threads there are,
the more per-thread counters must be summed up?

Answer:
The read-side code must scan the entire fixed-size array, regardless of the number of
threads, so there is no difference in performance. In contrast, in the last two algorithms,
readers must do more work when there are more threads. In addition, the last two
algorithms interpose an additional level of indirection because they map from integer
thread ID to the corresponding __thread variable.

Quick Quiz 4.59:
Even on the last row of Table 4.1, the read-side performance of these statistical counter
implementations is pretty horrible. So why bother with them?

Answer:
“Use the right tool for the job.”

As can be seen from Figure 4.3, single-variable atomic increment need not apply
for any job involving heavy use of parallel updates. In contrast, the algorithms shown
in Table 4.1 do an excellent job of handling update-heavy situations. Of course, if you
have a read-mostly situation, you should use something else, for example, an eventually
consistent design featuring a single atomically incremented variable that can be read out
using a single load, similar to the approach used in Section 4.2.3.

Quick Quiz 4.60:
Given the performance data shown in Table 4.2, we should always prefer update-side
signals over read-side atomic operations, right?

Answer:
That depends on the workload. Note that you need almost one hundred thousand readers
(with roughly a 60-nanosecond performance gain) to make up for even one writer (with
almost a 5-millisecond performance loss). Although there are no shortage of workloads
with far greater read intensity, you will need to consider your particular workload.

In addition, although memory barriers have historically been expensive compared
to ordinary instructions, you should check this on the specific hardware you will be
running. The properties of computer hardware do change over time, and algorithms
must change accordingly.

Quick Quiz 4.61:
Can advanced techniques be applied to address the lock contention for readers seen in
Table 4.2?

Answer:
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One approach is to give up some update-side performance, as is done with scalable
non-zero indicators (SNZI) [ELLM07]. There are a number of other ways one might
go about this, and these are left as exercises for the reader. Any number of approaches
that apply hierarchy, which replace frequent global-lock acquisitions with local lock
acquisitions corresponding to lower levels of the hierarchy, should work quite well.

Quick Quiz 4.62:
The ++ operator works just fine for 1,000-digit numbers! Haven’t you heard of operator
overloading???

Answer:
In the C++ language, you might well be able to use ++ on a 1,000-digit number, assum-
ing that you had access to a class implementing such numbers. But as of 2010, the C
language does not permit operator overloading.

Quick Quiz 4.63:
But if we are going to have to partition everything, why bother with shared-memory
multithreading? Why not just partition the problem completely and run as multiple
processes, each in its own address space?

Answer:
Indeed, multiple processes with separate address spaces can be an excellent way to
exploit parallelism, as the proponents of the fork-join methodology and the Erlang
language would be very quick to tell you. However, there are also some advantages to
shared-memory parallelism:

1. Only the most performance-critical portions of the application must be partitioned,
and such portions are usually a small fraction of the application.

2. Although cache misses are quite slow compared to individual register-to-register
instructions, they are typically considerably faster than inter-process-communication
primitives, which in turn are considerably faster than things like TCP/IP network-
ing.

3. Shared-memory multiprocessors are readily available and quite inexpensive, so,
in stark contrast to the 1990s, there is little cost penalty for use of shared-memory
parallelism.

As always, use the right tool for the job!

F.5 Partitioning and Synchronization Design

Quick Quiz 5.1:
Is there a better solution to the Dining Philosophers Problem?

Answer:
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Figure F.3: Dining Philosophers Problem, Fully Partitioned

One such improved solution is shown in Figure F.3, where the philosophers are
simply provided with an additional five forks. All five philosophers may now eat
simultaneously, and there is never any need for philosophers to wait on one another. In
addition, this approach offers greatly improved disease control.

This solution might seem like cheating to some, but such “cheating” is key to finding
good solutions to many concurrency problems.

Quick Quiz 5.2:
And in just what sense can this “horizontal parallelism” be said to be “horizontal”?

Answer:
Inman was working with protocol stacks, which are normally depicted vertically, with
the application on top and the hardware interconnect on the bottom. Data flows up and
down this stack. “Horizontal parallelism” processes packets from different network con-
nections in parallel, while “vertical parallelism” handles different protocol-processing
steps for a given packet in parallel.

“Vertical parallelism” is also called “pipelining”.

Quick Quiz 5.3:
In this compound double-ended queue implementation, what should be done if the
queue has become non-empty while releasing and reacquiring the lock?

Answer:
In this case, simply dequeue an item from the non-empty queue, release both locks, and
return.

Quick Quiz 5.4:
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Is the hashed double-ended queue a good solution? Why or why not?

Answer:
The best way to answer this is to run lockhdeq.c on a number of different multipro-
cessor systems, and you are encouraged to do so in the strongest possible terms. One
reason for concern is that each operation on this implementation must acquire not one
but two locks.

The first well-designed performance study will be cited.3 Do not forget to compare
to a sequential implementation!

Quick Quiz 5.5:
Move all the elements to the queue that became empty? In what possible universe is
this brain-dead solution in any way optimal???

Answer:
It is optimal in the case where data flow switches direction only rarely. It would of
course be an extremely poor choice if the double-ended queue was being emptied from
both ends concurrently. This of course raises another question, namely, in what possible
universe emptying from both ends concurrently would be a reasonable thing to do.
Work-stealing queues are one possible answer to this question.

Quick Quiz 5.6:
Why can’t the compound parallel double-ended queue implementation be symmetric?

Answer:
The need to avoid deadlock by imposing a lock hierarchy forces the asymmetry, just
as it does in the fork-numbering solution to the Dining Philosophers Problem (see
Section 5.1.1).

Quick Quiz 5.7:
Why is it necessary to retry the right-dequeue operation on line 28 of Figure 5.12?

Answer:
This retry is necessary because some other thread might have enqueued an element
between the time that this thread dropped d->rlock on line 25 and the time that it
reacquired this same lock on line 27.

Quick Quiz 5.8:
Surely the left-hand lock must sometimes be available!!! So why is it necessary that
line 25 of Figure 5.12 unconditionally release the right-hand lock?

Answer:
It would be possible to use spin_trylock() to attempt to acquire the left-hand
lock when it was available. However, the failure case would still need to drop the

3 The studies by Dalessandro et al. [DCW+11] and Dice et al. [DLM+10] are good starting points.
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right-hand lock and then re-acquire the two locks in order. Making this transformation
(and determining whether or not it is worthwhile) is left as an exercise for the reader.

Quick Quiz 5.9:
The tandem double-ended queue runs about twice as fast as the hashed double-ended
queue, even when I increase the size of the hash table to an insanely large number. Why
is that?

Answer:
The hashed double-ended queue’s locking design only permits one thread at a time
at each end, and further requires two lock acquisitions for each operation. The tan-
dem double-ended queue also permits one thread at a time at each end, and in the
common case requires only one lock acquisition per operation. Therefore, the tandem
double-ended queue should be expected to outperform the hashed double-ended queue.

Can you created a double-ended queue that allows multiple concurrent operations at
each end? If so, how? If not, why not?

Quick Quiz 5.10:
Is there a significantly better way of handling concurrency for double-ended queues?

Answer:
One approach is to transform the problem to be solved so that multiple double-ended
queues can be used in parallel, allowing the simpler single-lock double-ended queue to
be used, and perhaps also replace each double-ended queue with a pair of conventional
single-ended queues. Without such “horizontal scaling”, the speedup is limited to 2.0. In
contrast, horizontal-scaling designs can achieve very large speedups, and are especially
attractive if there are multiple threads working either end of the queue, because in this
multiple-thread case the dequeue simply cannot provide strong ordering guarantees.
After all, the fact that a given thread removed an item first in no way implies that it will
process that item first [HKLP12]. And if there are no guarantees, we may as well obtain
the performance benefits that come with refusing to provide these guarantees.

Regardless of whether or not the problem can be transformed to use multiple queues,
it is worth asking whether work can be batched so that each enqueue and dequeue oper-
ation corresponds to larger units of work. This batching approach decreases contention
on the queue data structures, which increases both performance and scalability, as will
be seen in Section 5.3. After all, if you must incur high synchronization overheads, be
sure you are getting your money’s worth.

Other researchers are working on other ways to take advantage of limited ordering
guarantees in queues [KLP12].

Quick Quiz 5.11:
Don’t all these problems with critical sections mean that we should just always use
non-blocking synchronization [Her90], which don’t have critical sections?

Answer:
Although non-blocking synchronization can be very useful in some situations, it is no
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panacea. Also, non-blocking synchronization really does have critical sections, as noted
by Josh Triplett. For example, in a non-blocking algorithm based on compare-and-swap
operations, the code starting at the initial load and continuing to the compare-and-swap
is in many ways analogous to a lock-based critical section.

Quick Quiz 5.12:
What are some ways of preventing a structure from being freed while its lock is being
acquired?

Answer:
Here are a few possible solutions to this existence guarantee problem:

1. Provide a statically allocated lock that is held while the per-structure lock is being
acquired, which is an example of hierarchical locking (see Section 5.4.2). Of
course, using a single global lock for this purpose can result in unacceptably high
levels of lock contention, dramatically reducing performance and scalability.

2. Provide an array of statically allocated locks, hashing the structure’s address to
select the lock to be acquired, as described in Chapter 6. Given a hash function of
sufficiently high quality, this avoids the scalability limitations of the single global
lock, but in read-mostly situations, the lock-acquisition overhead can result in
unacceptably degraded performance.

3. Use a garbage collector, in software environments providing them, so that a
structure cannot be deallocated while being referenced. This works very well,
removing the existence-guarantee burden (and much else besides) from the devel-
oper’s shoulders, but imposes the overhead of garbage collection on the program.
Although garbage-collection technology has advanced considerably in the past
few decades, its overhead may be unacceptably high for some applications. In
addition, some applications require that the developer exercise more control over
the layout and placement of data structures than is permitted by most garbage
collected environments.

4. As a special case of a garbage collector, use a global reference counter, or a global
array of reference counters.

5. Use hazard pointers [Mic04], which can be thought of as an inside-out reference
count. Hazard-pointer-based algorithms maintain a per-thread list of pointers, so
that the appearance of a given pointer on any of these lists acts as a reference to
the corresponding structure. Hazard pointers are an interesting research direction,
but have not yet seen much use in production (written in 2008).

6. Use transactional memory (TM) [HM93, Lom77, ST95], so that each reference
and modification to the data structure in question is performed atomically. Al-
though TM has engendered much excitement in recent years, and seems likely
to be of some use in production software, developers should exercise some cau-
tion [BLM05, BLM06, MMW07], particularly in performance-critical code. In
particular, existence guarantees require that the transaction cover the full path
from a global reference to the data elements being updated.
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7. Use RCU, which can be thought of as an extremely lightweight approximation
to a garbage collector. Updaters are not permitted to free RCU-protected data
structures that RCU readers might still be referencing. RCU is most heavily used
for read-mostly data structures, and is discussed at length in Chapter 8.

For more on providing existence guarantees, see Chapters 6 and 8.

Quick Quiz 5.13:
How can a single-threaded 64-by-64 matrix multiple possibly have an efficiency of less
than 1.0? Shouldn’t all of the traces in Figure 5.23 have efficiency of exactly 1.0 when
running on only one thread?

Answer:
The matmul.c program creates the specified number of worker threads, so even the
single-worker-thread case incurs thread-creation overhead. Making the changes required
to optimize away thread-creation overhead in the single-worker-thread case is left as an
exercise to the reader.

Quick Quiz 5.14:
How are data-parallel techniques going to help with matrix multiply? It is already data
parallel!!!

Answer:
I am glad that you are paying attention! This example serves to show that although
data parallelism can be a very good thing, it is not some magic wand that automatically
wards off any and all sources of inefficiency. Linear scaling at full performance, even to
“only” 64 threads, requires care at all phases of design and implementation.

In particular, you need to pay careful attention to the size of the partitions. For
example, if you split a 64-by-64 matrix multiply across 64 threads, each thread gets only
64 floating-point multiplies. The cost of a floating-point multiply is miniscule compared
to the overhead of thread creation.

Moral: If you have a parallel program with variable input, always include a check
for the input size being too small to be worth parallelizing. And when it is not helpful to
parallelize, it is not helpful to incur the overhead required to spawn a thread, now is it?

Quick Quiz 5.15:
In what situation would hierarchical locking work well?

Answer:
If the comparison on line 31 of Figure 5.26 were replaced by a much heavier-weight
operation, then releasing bp->bucket_lock might reduce lock contention enough
to outweigh the overhead of the extra acquisition and release of cur->node_lock.

Quick Quiz 5.16:
In Figure 5.32, there is a pattern of performance rising with increasing run length in
groups of three samples, for example, for run lengths 10, 11, and 12. Why?
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Answer:
This is due to the per-CPU target value being three. A run length of 12 must acquire the
global-pool lock twice, while a run length of 13 must acquire the global-pool lock three
times.

Quick Quiz 5.17:
Allocation failures were observed in the two-thread tests at run lengths of 19 and greater.
Given the global-pool size of 40 and the per-thread target pool size s of three, number
of thread n equal to two, and assuming that the per-thread pools are initially empty with
none of the memory in use, what is the smallest allocation run length m at which failures
can occur? (Recall that each thread repeatedly allocates m block of memory, and then
frees the m blocks of memory.) Alternatively, given n threads each with pool size s, and
where each thread repeatedly first allocates m blocks of memory and then frees those m
blocks, how large must the global pool size be?

Answer:
The exact solution to this problem is left as an exercise to the reader. The first solution
received will be credited to its submitter. As a rough rule of thumb, the global pool size
should be at least m+2sn, where “m” is the maximum number of elements allocated at
a given time, “s” is the per-CPU pool size, and “n” is the number of CPUs.

F.6 Locking

Quick Quiz 6.1:
Just how can serving as a whipping boy be considered to be in any way honorable???

Answer:
The reason locking serves as a research-paper whipping boy is because it is heavily used
in practice. In contrast, if no one used or cared about locking, most research papers
would not bother even mentioning it.

Quick Quiz 6.2:
But the definition of deadlock only said that each thread was holding at least one lock
and waiting on another lock that was held by some thread. How do you know that there
is a cycle?

Answer:
Suppose that there is no cycle in the graph. We would then have a directed acyclic graph
(DAG), which would have at least one leaf node.

If this leaf node was a lock, then we would have a thread that was waiting on a lock
that wasn’t held by any thread, which violates the definition. (And in this case the thread
would immediately acquire the lock.)

On the other hand, if this leaf node was a thread, then we would have a thread that
was not waiting on any lock, again violating the definition. (And in this case, the thread
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would either be running or be blocked on something that is not a lock.)
Therefore, given this definition of deadlock, there must be a cycle in the correspond-

ing graph.

Quick Quiz 6.3:
Are there any exceptions to this rule, so that there really could be a deadlock cycle
containing locks from both the library and the caller, even given that the library code
never invokes any of the caller’s functions?

Answer:
Indeed there are! Here are a few of them:

1. If one of the library function’s arguments is a pointer to a lock that this library
function acquires, and if the library function holds one if its locks while acquiring
the caller’s lock, then we could have a deadlock cycle involving both caller and
library locks.

2. If one of the library functions returns a pointer to a lock that is acquired by the
caller, and if the caller acquires one if its locks while holding the library’s lock,
we could again have a deadlock cycle involving both caller and library locks.

3. If one of the library functions acquires a lock and then returns while still holding
it, and if the caller acquires one of its locks, we have yet another way to create a
deadlock cycle involving both caller and library locks.

4. If the caller has a signal handler that acquires locks, then the deadlock cycle can
involve both caller and library locks. In this case, however, the library’s locks are
innocent bystanders in the deadlock cycle. That said, please note that acquiring a
lock from within a signal handler is a no-no in most environments—it is not just
a bad idea, it is unsupported.

Quick Quiz 6.4:
But if qsort() releases all its locks before invoking the comparison function, how
can it protect against races with other qsort() threads?

Answer:
By privatizing the data elements being compared (as discussed in Chapter 7) or through
use of deferral mechanisms such as reference counting (as discussed in Chapter 8).

Quick Quiz 6.5:
Name one common exception where it is perfectly reasonable to pass a pointer to a lock
into a function.

Answer:
Locking primitives, of course!
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Quick Quiz 6.6:
Doesn’t the fact that pthread_cond_wait() first releases the mutex and then re-
acquires it eliminate the possibility of deadlock?

Answer:
Absolutely not!

Consider the a program that acquires mutex_a, and then mutex_b, in that or-
der, and then passes mutex_a to pthread_cond_wait. Now, pthread_cond_
wait will release mutex_a, but will re-acquire it before returning. If some other
thread acquires mutex_a in the meantime and then blocks on mutex_b, the program
will deadlock.

Quick Quiz 6.7:
Can the transformation from Figure 6.9 to Figure 6.10 be applied universally?

Answer:
Absolutely not!

This transformation assumes that the layer_2_processing() function is
idempotent, given that it might be executed multiple times on the same packet when the
layer_1() routing decision changes. Therefore, in real life, this transformation can
become arbitrarily complex.

Quick Quiz 6.8:
But the complexity in Figure 6.10 is well worthwhile given that it avoids deadlock,
right?

Answer:
Maybe.

If the routing decision in layer_1() changes often enough, the code will always
retry, never making forward progress. This is termed “livelock” if no thread makes any
forward progress or “starvation” if some threads make forward progress but other do
not (see Section 6.1.2).

Quick Quiz 6.9:
When using the “acquire needed locks first” approach described in Section 6.1.1.6, how
can livelock be avoided?

Answer:
Provide an additional global lock. If a given thread has repeatedly tried and failed to
acquire the needed locks, then have that thread unconditionally acquire the new global
lock, and then unconditionally acquire any needed locks. (Suggested by Doug Lea.)

Quick Quiz 6.10:
Why is it illegal to acquire a Lock A that is acquired outside of a signal handler without
blocking signals while holding a Lock B that is acquired within a signal handler?
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Answer:
Because this would lead to deadlock. Given that Lock A is held outside of a signal
handler without blocking signals, a signal might be handled while holding this lock.
The corresponding signal handler might then acquire Lock B, so that Lock B is acquired
while holding Lock A. Therefore, if we also acquire Lock A while holding Lock B as
called out in the question, we will have a deadlock cycle.

Therefore, it is illegal to acquire a lock that is acquired outside of a signal handler
without blocking signals while holding a another lock that is acquired within a signal
handler.

Quick Quiz 6.11:
How can you legally block signals within a signal handler?

Answer:
One of the simplest and fastest ways to do so is to use the sa_mask field of the
struct sigaction that you pass to sigaction() when setting up the signal.

Quick Quiz 6.12:
If acquiring locks in signal handlers is such a bad idea, why even discuss ways of
making it safe?

Answer:
Because these same rules apply to the interrupt handlers used in operating-system
kernels and in some embedded applications.

In many application environments, acquiring locks in signal handlers is frowned
upon [Ope97]. However, that does not stop clever developers from (usually unwisely)
fashioning home-brew locks out of atomic operations. And atomic operations are in
many cases perfectly legal in signal handlers.

Quick Quiz 6.13:
Given an object-oriented application that passes control freely among a group of objects
such that there is no straightforward locking hierarchy,4 layered or otherwise, how can
this application be parallelized?

Answer:
There are a number of approaches:

1. In the case of parametric search via simulation, where a large number of sim-
ulations will be run in order to converge on (for example) a good design for a
mechanical or electrical device, leave the simulation single-threaded, but run many
instances of the simulation in parallel. This retains the object-oriented design,
and gains parallelism at a higher level, and likely also avoids synchronization
overhead.

2. Partition the objects into groups such that there is no need to operate on ob-

4 Also known as “object-oriented spaghetti code.”

622



jects in more than one group at a given time. Then associate a lock with each
group. This is an example of a single-lock-at-a-time design, which discussed in
Section 6.1.1.7.

3. Partition the objects into groups such that threads can all operate on objects in the
groups in some groupwise ordering. Then associate a lock with each group, and
impose a locking hierarchy over the groups.

4. Impose an arbitrarily selected hierarchy on the locks, and then use conditional
locking if it is necessary to acquire a lock out of order, as was discussed in
Section 6.1.1.5.

5. Before carrying out a given group of operations, predict which locks will be
acquired, and attempt to acquire them before actually carrying out any updates.
If the prediction turns out to be incorrect, drop all the locks and retry with an
updated prediction that includes the benefit of experience. This approach was
discussed in Section 6.1.1.6.

6. Use transactional memory. This approach has a number of advantages and
disadvantages which will be discussed in Section 15.2.

7. Refactor the application to be more concurrency-friendly. This would likely also
have the side effect of making the application run faster even when single-threaded,
but might also make it more difficult to modify the application.

8. Use techniques from later chapters in addition to locking.

Quick Quiz 6.14:
How can the livelock shown in Figure 6.11 be avoided?

Answer:
Figure 6.10 provides some good hints. In many cases, livelocks are a hint that you
should revisit your locking design. Or visit it in the first place if your locking design
“just grew”.

That said, one good-and-sufficient approach due to Doug Lea is to use conditional
locking as described in Section 6.1.1.5, but combine this with acquiring all needed
locks first, before modifying shared data, as described in Section 6.1.1.6. If a given
critical section retries too many times, unconditionally acquire a global lock, then
unconditionally acquire all the needed locks. This avoids both deadlock and livelock,
and scales reasonably assuming that the global lock need not be acquired too often.

Quick Quiz 6.15:
What problems can you spot in the code in Figure 6.12?

Answer:
Here are a couple:

1. A one-second wait is way too long for most uses. Wait intervals should begin
with roughly the time required to execute the critical section, which will normally
be in the microsecond or millisecond range.
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2. The code does not check for overflow. On the other hand, this bug is nullified by
the previous bug: 32 bits worth of seconds is more than 50 years.

Quick Quiz 6.16:
Wouldn’t it be better just to use a good parallel design so that lock contention was low
enough to avoid unfairness?

Answer:
It would be better in some sense, but there are situations where it can be appropriate to
use designs that sometimes result in high lock contentions.

For example, imagine a system that is subject to a rare error condition. It might
well be best to have a simple error-handling design that has poor performance and
scalability for the duration of the rare error condition, as opposed to a complex and
difficult-to-debug design that is helpful only when one of those rare error conditions is
in effect.

That said, it is usually worth putting some effort into attempting to produce a design
that both simple as well as efficient during error conditions, for example by partitioning
the problem.

Quick Quiz 6.17:
How might the lock holder be interfered with?

Answer:
If the data protected by the lock is in the same cache line as the lock itself, then attempts
by other CPUs to acquire the lock will result in expensive cache misses on the part of
the CPU holding the lock. This is a special case of false sharing, which can also occur if
a pair of variables protected by different locks happen to share a cache line. In contrast,
if the lock is in a different cache line than the data that it protects, the CPU holding the
lock will usually suffer a cache miss only on first access to a given variable.

Of course, the downside of placing the lock and data into separate cache lines is that
the code will incur two cache misses rather than only one in the uncontended case.

Quick Quiz 6.18:
Does it ever make sense to have an exclusive lock acquisition immediately followed by
a release of that same lock, that is, an empty critical section?

Answer:
This usage is rare, but is occasionally used. The point is that the semantics of exclusive
locks have two components: (1) the familiar data-protection semantic and (2) a messag-
ing semantic, where releasing a given lock notifies a waiting acquisition of that same
lock.

One historical use of empty critical sections appeared in the networking stack of the
2.4 Linux kernel. This usage pattern can be thought of as a way of approximating the
effects of read-copy update (RCU), which is discussed in Section 8.3.

The empty-lock-critical-section idiom can also be used to reduce lock contention in
some situations. For example, consider a multithreaded user-space application where
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each thread processes unit of work maintained in a per-thread list, where thread are
prohibited from touching each others’ lists. There could also be updates that require that
all previously scheduled units of work have completed before the update can progress.
One way to handle this is to schedule a unit of work on each thread, so that when all of
these units of work complete, the update may proceed.

In some applications, threads can come and go. For example, each thread might
correspond to one user of the application, and thus be removed when that user logs
out or otherwise disconnects. In many applications, threads cannot depart atomically:
They must instead explicitly unravel themselves from various portions of the application
using a specific sequence of actions. One specific action will be refusing to accept
further requests from other threads, and another specific action will be disposing of any
remaining units of work on its list, for example, by placing these units of work in a
global work-item-disposal list to be taken by one of the remaining threads. (Why not
just drain the thread’s work-item list by executing each item? Because a given work
item might generate more work items, so that the list could not be drained in a timely
fashion.)

If the application is to perform and scale well, a good locking design is required.
One common solution is to have a global lock (call it G) protecting the entire process
of departing (and perhaps other things as well), with finer-grained locks protecting the
individual unraveling operations.

Now, a departing thread must clearly refuse to accept further requests before dis-
posing of the work on its list, because otherwise additional work might arrive after
the disposal action, which would render that disposal action ineffective. So simplified
pseudocode for a departing thread might be as follows:

1. Acquire lock G.

2. Acquire the lock guarding communications.

3. Refuse further communications from other threads.

4. Release the lock guarding communications.

5. Acquire the lock guarding the global work-item-disposal list.

6. Move all pending work items to the global work-item-disposal list.

7. Release the lock guarding the global work-item-disposal list.

8. Release lock G.

Of course, a thread that needs to wait for all pre-existing work items will need to take
departing threads into account. To see this, suppose that this thread starts waiting for all
pre-existing work items just after a departing thread has refused further communications
from other threads. How can this thread wait for the departing thread’s work items to
complete, keeping in mind that threads are not allowed to access each others’ lists of
work items?

One straightforward approach is for this thread to acquire G and then the lock
guarding the global work-item-disposal list, then move the work items to its own list.
The thread then release both locks, places a work item on the end of it own list, and then
wait for all of the work items that it placed on each thread’s list (including its own) to
complete.
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This approach does work well in many cases, but if special processing is required
for each work item as it is pulled in from the global work-item-disposal list, the result
could be excessive contention on G. One way to avoid that contention is to acquire G
and then immediately release it. Then the process of waiting for all prior work items
look something like the following:

1. Set a global counter to one and initialize a condition variable to zero.

2. Send a message to all threads to cause them to atomically increment the global
counter, and then to enqueue a work item. The work item will atomically decre-
ment the global counter, and if the result is zero, it will set a condition variable to
one.

3. Acquire G, which will wait on any currently departing thread to finish departing.
Because only one thread may depart at a time, all the remaining threads will have
already received the message sent in the preceding step.

4. Release G.

5. Acquire the lock guarding the global work-item-disposal list.

6. Move all work items from the global work-item-disposal list to this thread’s list,
processing them as needed along the way.

7. Release the lock guarding the global work-item-disposal list.

8. Enqueue an additional work item onto this thread’s list. (As before, this work
item will atomically decrement the global counter, and if the result is zero, it will
set a condition variable to one.)

9. Wait for the condition variable to take on the value one.

Once this procedure completes, all pre-existing work items are guaranteed to have
completed. The empty critical sections are using locking for messaging as well as for
protection of data.

Quick Quiz 6.19:
Is there any other way for the VAX/VMS DLM to emulate a reader-writer lock?

Answer:
There are in fact several. One way would be to use the null, protected-read, and exclusive
modes. Another way would be to use the null, protected-read, and concurrent-write
modes. A third way would be to use the null, concurrent-read, and exclusive modes.

Quick Quiz 6.20:
The code in Figure 6.15 is ridiculously complicated! Why not conditionally acquire a
single global lock?

Answer:
Conditionally acquiring a single global lock does work very well, but only for relatively
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small numbers of CPUs. To see why it is problematic in systems with many hundreds
of CPUs, look at Figure 4.3 and extrapolate the delay from eight to 1,000 CPUs.

Quick Quiz 6.21:
Wait a minute! If we “win” the tournament on line 16 of Figure 6.15, we get to do all
the work of do_force_quiescent_state(). Exactly how is that a win, really?

Answer:
How indeed? This just shows that in concurrency, just as in life, one should take care to
learn exactly what winning entails before playing the game.

Quick Quiz 6.22:
Why not rely on the C language’s default initialization of zero instead of using the
explicit initializer shown on line 2 of Figure 6.16?

Answer:
Because this default initialization does not apply to locks allocated as auto variables
within the scope of a function.

Quick Quiz 6.23:
Why bother with the inner loop on lines 7-8 of Figure 6.16? Why not simply repeatedly
do the atomic exchange operation on line 6?

Answer:
Suppose that the lock is held and that several threads are attempting to acquire the lock.
In this situation, if these threads all loop on the atomic exchange operation, they will
ping-pong the cache line containing the lock among themselves, imposing load on the
interconnect. In contrast, if these threads are spinning in the inner loop on lines 7-8,
they will each spin within their own caches, putting negligible load on the interconnect.

Quick Quiz 6.24:
Why not simply store zero into the lock word on line 14 of Figure 6.16?

Answer:
This can be a legitimate implementation, but only if this store is preceded by a memory
barrier and makes use of ACCESS_ONCE(). The memory barrier is not required when
the xchg() operation is used because this operation implies a full memory barrier due
to the fact that it returns a value.

Quick Quiz 6.25:
How can you tell if one counter is greater than another, while accounting for counter
wrap?

Answer:
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In the C language, the following macro correctly handles this:

#define ULONG_CMP_LT(a, b) \
(ULONG_MAX / 2 < (a) - (b))

Although it is tempting to simply subtract two signed integers, this should be avoided
because signed overflow is undefined in the C language. For example, if the compiler
knows that one of the values is positive and the other negative, it is within its rights
to simply assume that the positive number is greater than the negative number, even
though subtracting the negative number from the positive number might well result in
overflow and thus a negative number.

How could the compiler know the signs of the two numbers? It might be able to
deduce it based on prior assignments and comparisons. In this case, if the per-CPU
counters were signed, the compiler could deduce that they were always increasing in
value, and then might assume that they would never go negative. This assumption could
well lead the compiler to generate unfortunate code [McK12d, Reg10].

Quick Quiz 6.26:
Which is better, the counter approach or the flag approach?

Answer:
The flag approach will normally suffer fewer cache misses, but a better answer is to try
both and see which works best for your particular workload.

Quick Quiz 6.27:
How can relying on implicit existence guarantees result in a bug?

Answer:
Here are some bugs resulting from improper use of implicit existence guarantees:

1. A program writes the address of a global variable to a file, then a later instance
of that same program reads that address and attempts to dereference it. This can
fail due to address-space randomization, to say nothing of recompilation of the
program.

2. A module can record the address of one of its variables in a pointer located in
some other module, then attempt to dereference that pointer after the module has
been unloaded.

3. A function can record the address of one of its on-stack variables into a global
pointer, which some other function might attempt to dereference after that function
has returned.

I am sure that you can come up with additional possibilities.

Quick Quiz 6.28:
What if the element we need to delete is not the first element of the list on line 8 of
Figure 6.17?
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Answer:
This is a very simple hash table with no chaining, so the only element in a given bucket
is the first element. The reader is invited to adapt this example to a hash table with full
chaining.

Quick Quiz 6.29:
What race condition can occur in Figure 6.17?

Answer:
Consider the following sequence of events:

1. Thread 0 invokes delete(0), and reaches line 10 of the figure, acquiring the
lock.

2. Thread 1 concurrently invokes delete(0), reaching line 10, but spins on the
lock because Thread 0 holds it.

3. Thread 0 executes lines 11-14, removing the element from the hashtable, releasing
the lock, and then freeing the element.

4. Thread 0 continues execution, and allocates memory, getting the exact block of
memory that it just freed.

5. Thread 0 then initializes this block of memory as some other type of structure.

6. Thread 1’s spin_lock() operation fails due to the fact that what it believes to
be p->lock is no longer a spinlock.

Because there is no existence guarantee, the identity of the data element can change
while a thread is attempting to acquire that element’s lock on line 10!

F.7 Data Ownership

Quick Quiz 7.1:
What form of data ownership is extremely difficult to avoid when creating shared-
memory parallel programs (for example, using pthreads) in C or C++?

Answer:
Use of auto variables in functions. By default, these are private to the thread executing
the current function.

Quick Quiz 7.2:
What synchronization remains in the example shown in Section 7.1?

Answer:
The creation of the threads via the sh & operator and the joining of thread via the sh
wait command.
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Of course, if the processes explicitly share memory, for example, using the shmget()
or mmap() system calls, explicit synchronization might well be needed when acccess-
ing or updating the shared memory. The processes might also synchronize using any of
the following interprocess communications mechanisms:

1. System V semaphores.

2. System V message queues.

3. UNIX-domain sockets.

4. Networking protocols, including TCP/IP, UDP, and a whole host of others.

5. File locking.

6. Use of the open() system call with the O_CREAT and O_EXCL flags.

7. Use of the rename() system call.

A complete list of possible synchronization mechanisms is left as an exercise to the
reader, who is warned that it will be an extremely long list. A surprising number of
unassuming system calls can be pressed into service as synchronization mechanisms.

Quick Quiz 7.3:
Is there any shared data in the example shown in Section 7.1?

Answer:
That is a philosophical question.

Those wishing the answer “no” might argue that processes by definition do not share
memory.

Those wishing to answer “yes” might list a large number of synchronization mecha-
nisms that do not require shared memory, note that the kernel will have some shared
state, and perhaps even argue that the assignment of process IDs (PIDs) constitute shared
data.

Such arguments are excellent intellectual exercise, and are also a wonderful way
of feeling intelligent, scoring points against hapless classmates or colleagues, and
(especially!) avoiding getting anything useful done.

Quick Quiz 7.4:
Does it ever make sense to have partial data ownership where each thread reads only its
own instance of a per-thread variable, but writes to other threads’ instances?

Answer:
Amazingly enough, yes. One example is a simple message-passing system where
threads post messages to other threads’ mailboxes, and where each thread is responsible
for removing any message it sent once that message has been acted on. Implementation
of such an algorithm is left as an exercise for the reader, as is the task of identifying
other algorithms with similar ownership patterns.
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Quick Quiz 7.5:
What mechanisms other than POSIX signals may be used to ship functions?

Answer:
There is a very large number of such mechanisms, including:

1. System V message queues.

2. Shared-memory dequeue (see Section 5.1.2).

3. Shared-memory mailboxes.

4. UNIX-domain sockets.

5. TCP/IP or UDP, possibly augmented by any number of higher-level protocols,
including RPC, HTTP, XML, SOAP, and so on.

Compilation of a complete list is left as an exercise to sufficiently single-minded readers,
who are warned that the list will be extremely long.

Quick Quiz 7.6:
But none of the data in the eventual() function shown on lines 15-32 of Figure 4.8 is
actually owned by the eventual() thread! In just what way is this data ownership???

Answer:
The key phrase is “owns the rights to the data”. In this case, the rights in question are
the rights to access the per-thread counter variable defined on line 1 of the figure.
This situation is similar to that described in Section 7.2.

However, there really is data that is owned by the eventual() thread, namely the
t and sum variables defined on lines 17 and 18 of the figure.

For other examples of designated threads, look at the kernel threads in the Linux
kernel, for example, those created by kthread_create() and kthread_run().

Quick Quiz 7.7:
Is it possible to obtain greater accuracy while still maintaining full privacy of the per-
thread data?

Answer:
Yes. One approach is for read_count() to add the value of its own per-thread
variable. This maintains full ownership and performance, but only a slight improvement
in accuracy, particulary on systems with very large numbers of threads.

Another approach is for read_count() to use function shipping, for example,
in the form of per-thread signals. This greatly improves accuracy, but at a significant
performance cost for read_count().

However, both of these methods have the advantage of eliminating cache-line
bouncing for the common case of updating counters.
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F.8 Deferred Processing

Quick Quiz 8.1:
Why not implement reference-acquisition using a simple compare-and-swap operation
that only acquires a reference if the reference counter is non-zero?

Answer:
Although this can resolve the race between the release of the last reference and acquisi-
tion of a new reference, it does absolutely nothing to prevent the data structure from
being freed and reallocated, possibly as some completely different type of structure.
It is quite likely that the “simple compare-and-swap operation” would give undefined
results if applied to the differently typed structure.

In short, use of atomic operations such as compare-and-swap absolutely requires
either type-safety or existence guarantees.

Quick Quiz 8.2:
Why isn’t it necessary to guard against cases where one CPU acquires a reference just
after another CPU releases the last reference?

Answer:
Because a CPU must already hold a reference in order to legally acquire another refer-
ence. Therefore, if one CPU releases the last reference, there cannot possibly be any
CPU that is permitted to acquire a new reference. This same fact allows the non-atomic
check in line 22 of Figure 8.2.

Quick Quiz 8.3:
Suppose that just after the atomic_dec_and_test() on line 22 of Figure 8.2 is
invoked, that some other CPU invokes kref_get(). Doesn’t this result in that other
CPU now having an illegal reference to a released object?

Answer:
This cannot happen if these functions are used correctly. It is illegal to invoke kref_
get() unless you already hold a reference, in which case the kref_sub() could not
possibly have decremented the counter to zero.

Quick Quiz 8.4:
Suppose that kref_sub() returns zero, indicating that the release() function was
not invoked. Under what conditions can the caller rely on the continued existence of the
enclosing object?

Answer:
The caller cannot rely on the continued existence of the object unless it knows that at
least one reference will continue to exist. Normally, the caller will have no way of
knowing this, and must therefore carefullly avoid referencing the object after the call to
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kref_sub().

Quick Quiz 8.5:
Why can’t the check for a zero reference count be made in a simple “if” statement with
an atomic increment in its “then” clause?

Answer:
Suppose that the “if” condition completed, finding the reference counter value equal to
one. Suppose that a release operation executes, decrementing the reference counter to
zero and therefore starting cleanup operations. But now the “then” clause can increment
the counter back to a value of one, allowing the object to be used after it has been
cleaned up.

Quick Quiz 8.6:
Why does hp_store() in Figure 8.5 take a double indirection to the data element?
Why not void * instead of void **?

Answer:
Because hp_record() must check for concurrent modifications. To do that job, it
needs a pointer to a pointer to the element, so that it can check for a modification to the
pointer to the element.

Quick Quiz 8.7:
Why does hp_store()’s caller need to restart its traversal from the beginning in case
of failure? Isn’t that inefficient for large data structures?

Answer:
It might be inefficient in some sense, but the fact is that such restarting is absolutely
required for correctness. To see this, consider a hazard-pointer-protected linked list
containing elements A, B, and C that is subjecte to the following sequence of events:

1. Thread 0 stores a hazard pointer to element B (having presumably traversed to
element B from element A).

2. Thread 1 removes element B from the list, which sets the pointer from element B
to element C to a special HAZPTR_POISON value in order to mark the deletion.
Because Thread 0 has a hazard pointer to element B, it cannot yet be freed.

3. Thread 1 removes element C from the list. Because there are no hazard pointers
referencing element C, it is immediately freed.

4. Thread 0 attempts to acquire a hazard pointer to now-removed element B’s
successor, but sees the HAZPTR_POISON value, and thus returns zero, forcing
the caller to restart its traversal from the beginning of the list.

Which is a very good thing, because otherwise Thread 0 would have attempted
to access the now-freed element C, which might have resulted in arbitrarily horrible
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memory corruption, especially if the memory for element C had since been re-allocated
for some other purpose.

Quick Quiz 8.8:
Given that papers on hazard pointers use the bottom bits of each pointer to mark deleted
elements, what is up with HAZPTR_POISON?

Answer:
The published implementations of hazard pointers used non-blocking synchornization
techniques for insertion and deletion. These techniques require that readers traversing
the data structure “help” updaters complete their updates, which in turn means that
readers need to look at the successor of a deleted element.

In contrast, we will be using locking to synchronize updates, which does away with
the need for readers to help updaters complete their updates, which in turn allows us to
leave pointers’ bottom bits alone. This approach allows read-side code to be simpler
and faster.

Quick Quiz 8.9:
But don’t these restrictions on hazard pointers also apply to other forms of reference
counting?

Answer:
These restrictions apply only to reference-counting mechanisms whose reference acqui-
sition can fail.

Quick Quiz 8.10:
But hazard pointers don’t write to the data structure!

Answer:
Indeed, they do not. However, they do write to the hazard pointers themselves, and,
more important, require that possible failures be handled for all hp_store() calls,
each of which might fail. Therefore, although hazard pointers are extremely useful, it is
still worth looking for improved mechanisms.

Quick Quiz 8.11:
Why isn’t this sequence-lock discussion in Chapter 6, you know, the one on locking?

Answer:
The sequence-lock mechanism is really a combination of two separate synchronization
mechanisms, sequence counts and locking. In fact, the sequence-count mechanism is
available separately in the Linux kernel via the write_seqcount_begin() and
write_seqcount_end() primitives.

However, the combined write_seqlock() and write_sequnlock() prim-
itives are used much more heavily in the Linux kernel. More importantly, many more
people will understand what you mean if you say “sequence lock” than if you say
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“sequence count”.
So this section is entitled “Sequence Locks” so that people will understand what

it is about just from the title, and it appears in the “Deferred Processing” because (1)
of the emphasis on the “sequence count” aspect of “sequence locks” and (2) because a
“sequence lock” is much more than merely a lock.

Quick Quiz 8.12:
Can you use sequence locks as the only synchronization mechanism protecting a linked
list supporting concurrent addition, deletion, and search?

Answer:
One trivial way of accomplishing this is to surround all accesses, including the read-only
accesses, with write_seqlock() and write_sequnlock(). Of course, this
solution also prohibits all read-side parallelism, and furthermore could just as easily be
implemented using simple locking.

If you do come up with a solution that uses read_seqbegin() and read_
seqretry() to protect read-side accesses, make sure that you correctly handle the
following sequence of events:

1. CPU 0 is traversing the linked list, and picks up a pointer to list element A.

2. CPU 1 removes element A from the list and frees it.

3. CPU 2 allocates an unrelated data structure, and gets the memory formerly
occupied by element A. In this unrelated data structure, the memory previously
used for element A’s ->next pointer is now occupied by a floating-point number.

4. CPU 0 picks up what used to be element A’s ->next pointer, gets random bits,
and therefore gets a segmentation fault.

One way to protect against this sort of problem requires use of “type-safe memory”,
which will be discussed in Section 8.3.3.6. But in that case, you would be using some
other synchronization mechanism in addition to sequence locks!

Quick Quiz 8.13:
Why bother with the check on line 19 of read_seqbegin() in Figure 8.9? Given
that a new writer could begin at any time, why not simply incorporate the check into
line 31 of read_seqretry()?

Answer:
That would be a legitimate implementation. However, it would not save anything to
move the check down to read_seqretry(): There would be roughly the same
number of instructions. Furthermore, the reader’s accesses from its doomed read-side
critical section could inflict overhead on the writer in the form of cache misses. We can
avoid these cache misses by placing the check in read_seqbegin() as shown on
line 19 of Figure 8.9.

Quick Quiz 8.14:
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Why is the smp_mb() on line 29 of Figure 8.9 needed?

Answer:
If it was omitted, both the compiler and the CPU would be within their rights to move
the critical section preceding the call to read_seqretry() down below this func-
tion. This would prevent the sequence lock from protecting the critical section. The
smp_mb() primitive prevents such reordering.

Quick Quiz 8.15:
What prevents sequence-locking updaters from starving readers?

Answer:
Nothing. This is one of the weaknesses of sequence locking, and as a result, you should
use sequence locking only in read-mostly situations. Unless of course read-side starva-
tion is acceptable in your situation, in which case, go wild with the sequence-locking
updates!

Quick Quiz 8.16:
What if something else serializes writers, so that the lock is not needed?

Answer:
In this case, the ->lock field could be omitted, as it is in seqcount_t in the Linux
kernel.

Quick Quiz 8.17:
Why isn’t seq on line 2 of Figure 8.9 unsigned rather than unsigned long?
After all, if unsigned is good enough for the Linux kernel, shouldn’t it be good
enough for everyone?

Answer:
Not at all. The Linux kernel has a number of special attributes that allow it to ignore the
following sequence of events:

1. Thread 0 executes read_seqbegin(), picking up ->seq in line 17, noting
that the value is even, and thus returning to the caller.

2. Thread 0 starts executing its read-side critical section, but is then preempted for a
long time.

3. Other threads repeatedly invoke write_seqlock() and write_sequnlock(),
until the value of ->seq overflows back to the value that Thread 0 fetched.

4. Thread 0 resumes execution, completing its read-side critical section with incon-
sistent data.

5. Thread 0 invokes read_seqretry(), which incorrectly concludes that Thread 0
has seen a consistent view of the data protected by the sequence lock.
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The Linux kernel uses sequence locking for things that are updated rarely, with
time-of-day information being a case in point. This information is updated at most
once per millisecond, so that seven weeks would be required to overflow the counter.
If a kernel thread was preempted for seven weeks, the Linux kernel’s soft-lockup code
would be emitting warnings every two minutes for that entire time.

In contrast, with a 64-bit counter, more than five centuries would be required to
overflow, even given an update every nanosecond. Therefore, this implementation uses
a type for ->seq that is 64 bits on 64-bit systems.

Quick Quiz 8.18:
But doesn’t Section 8.2’s seqlock also permit readers and updaters to get work done
concurrently?

Answer:
Yes and no. Although seqlock readers can run concurrently with seqlock writers, when-
ever this happens, the read_seqretry() primitive will force the reader to retry.
This means that any work done by a seqlock reader running concurrently with a seqlock
updater will be discarded and redone. So seqlock readers can run concurrently with
updaters, but they cannot actually get any work done in this case.

In contrast, RCU readers can perform useful work even in presence of concurrent
RCU updaters.

Quick Quiz 8.19:
What prevents the list_for_each_entry_rcu() from getting a segfault if it
happens to execute at exactly the same time as the list_add_rcu()?

Answer:
On all systems running Linux, loads from and stores to pointers are atomic, that is, if a
store to a pointer occurs at the same time as a load from that same pointer, the load will
return either the initial value or the value stored, never some bitwise mashup of the two.
In addition, the list_for_each_entry_rcu() always proceeds forward through
the list, never looking back. Therefore, the list_for_each_entry_rcu() will
either see the element being added by list_add_rcu() or it will not, but either way,
it will see a valid well-formed list.

Quick Quiz 8.20:
Why do we need to pass two pointers into hlist_for_each_entry_rcu() when
only one is needed for list_for_each_entry_rcu()?

Answer:
Because in an hlist it is necessary to check for NULL rather than for encountering the
head. (Try coding up a single-pointer hlist_for_each_entry_rcu() If you
come up with a nice solution, it would be a very good thing!)

Quick Quiz 8.21:
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How would you modify the deletion example to permit more than two versions of the
list to be active?

Answer:
One way of accomplishing this is as shown in Figure F.4.

1 spin_lock(&mylock);
2 p = search(head, key);
3 if (p == NULL)
4 spin_unlock(&mylock);
5 else {
6 list_del_rcu(&p->list);
7 spin_unlock(&mylock);
8 synchronize_rcu();
9 kfree(p);

10 }

Figure F.4: Concurrent RCU Deletion

Note that this means that multiple concurrent deletions might be waiting in synchronize_rcu().

Quick Quiz 8.22:
How many RCU versions of a given list can be active at any given time?

Answer:
That depends on the synchronization design. If a semaphore protecting the update is
held across the grace period, then there can be at most two versions, the old and the new.

However, if only the search, the update, and the list_replace_rcu() were
protected by a lock, then there could be an arbitrary number of versions active, limited
only by memory and by how many updates could be completed within a grace period.
But please note that data structures that are updated so frequently probably are not good
candidates for RCU. That said, RCU can handle high update rates when necessary.

Quick Quiz 8.23:
How can RCU updaters possibly delay RCU readers, given that the rcu_read_lock()
and rcu_read_unlock() primitives neither spin nor block?

Answer:
The modifications undertaken by a given RCU updater will cause the corresponding CPU
to invalidate cache lines containing the data, forcing the CPUs running concurrent RCU
readers to incur expensive cache misses. (Can you design an algorithm that changes
a data structure without inflicting expensive cache misses on concurrent readers? On
subsequent readers?)

Quick Quiz 8.24:
WTF? How the heck do you expect me to believe that RCU has a 100-femtosecond
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overhead when the clock period at 3GHz is more than 300 picoseconds?

Answer:
First, consider that the inner loop used to take this measurement is as follows:

1 for (i = 0; i < CSCOUNT_SCALE; i++) {
2 rcu_read_lock();
3 rcu_read_unlock();
4 }

Next, consider the effective definitions of rcu_read_lock() and rcu_read_
unlock():

1 #define rcu_read_lock() do { } while (0)
2 #define rcu_read_unlock() do { } while (0)

Consider also that the compiler does simple optimizations, allowing it to replace the
loop with:

i = CSCOUNT_SCALE;

So the "measurement" of 100 femtoseconds is simply the fixed overhead of the
timing measurements divided by the number of passes through the inner loop containing
the calls to rcu_read_lock() and rcu_read_unlock(). And therefore, this
measurement really is in error, in fact, in error by an arbitrary number of orders of
magnitude. As you can see by the definition of rcu_read_lock() and rcu_read_
unlock() above, the actual overhead is precisely zero.

It certainly is not every day that a timing measurement of 100 femtoseconds turns
out to be an overestimate!

Quick Quiz 8.25:
Why does both the variability and overhead of rwlock decrease as the critical-section
overhead increases?

Answer:
Because the contention on the underlying rwlock_t decreases as the critical-section
overhead increases. However, the rwlock overhead will not quite drop to that on a single
CPU because of cache-thrashing overhead.

Quick Quiz 8.26:
Is there an exception to this deadlock immunity, and if so, what sequence of events
could lead to deadlock?

Answer:
One way to cause a deadlock cycle involving RCU read-side primitives is via the
following (illegal) sequence of statements:

idx = srcu_read_lock(&srcucb);
synchronize_srcu(&srcucb);
srcu_read_unlock(&srcucb, idx);

The synchronize_srcu() cannot return until all pre-existing SRCU read-side
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critical sections complete, but is enclosed in an SRCU read-side critical section that
cannot complete until the synchronize_srcu() returns. The result is a classic
self-deadlock–you get the same effect when attempting to write-acquire a reader-writer
lock while read-holding it.

Note that this self-deadlock scenario does not apply to RCU Classic, because the
context switch performed by the synchronize_rcu() would act as a quiescent
state for this CPU, allowing a grace period to complete. However, this is if anything
even worse, because data used by the RCU read-side critical section might be freed as a
result of the grace period completing.

In short, do not invoke synchronous RCU update-side primitives from within an
RCU read-side critical section.

Quick Quiz 8.27:
But wait! This is exactly the same code that might be used when thinking of RCU as a
replacement for reader-writer locking! What gives?

Answer:
This is an effect of the Law of Toy Examples: beyond a certain point, the code fragments
look the same. The only difference is in how we think about the code. However, this
difference can be extremely important. For but one example of the importance, consider
that if we think of RCU as a restricted reference counting scheme, we would never be
fooled into thinking that the updates would exclude the RCU read-side critical sections.

It nevertheless is often useful to think of RCU as a replacement for reader-writer
locking, for example, when you are replacing reader-writer locking with RCU.

Quick Quiz 8.28:
Why the dip in refcnt overhead near 6 CPUs?

Answer:
Most likely NUMA effects. However, there is substantial variance in the values mea-
sured for the refcnt line, as can be seen by the error bars. In fact, standard deviations
range in excess of 10% of measured values in some cases. The dip in overhead therefore
might well be a statistical aberration.

Quick Quiz 8.29:
What if the element we need to delete is not the first element of the list on line 9 of
Figure 8.32?

Answer:
As with Figure 6.17, this is a very simple hash table with no chaining, so the only
element in a given bucket is the first element. The reader is again invited to adapt this
example to a hash table with full chaining.

Quick Quiz 8.30:
Why is it OK to exit the RCU read-side critical section on line 15 of Figure 8.32 before
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releasing the lock on line 17?

Answer:
First, please note that the second check on line 14 is necessary because some other CPU
might have removed this element while we were waiting to acquire the lock. However,
the fact that we were in an RCU read-side critical section while acquiring the lock
guarantees that this element could not possibly have been re-allocated and re-inserted
into this hash table. Furthermore, once we acquire the lock, the lock itself guarantees
the element’s existence, so we no longer need to be in an RCU read-side critical section.

The question as to whether it is necessary to re-check the element’s key is left as an
exercise to the reader.

Quick Quiz 8.31:
Why not exit the RCU read-side critical section on line 23 of Figure 8.32 before releas-
ing the lock on line 22?

Answer:
Suppose we reverse the order of these two lines. Then this code is vulnerable to the
following sequence of events:

1. CPU 0 invokes delete(), and finds the element to be deleted, executing through
line 15. It has not yet actually deleted the element, but is about to do so.

2. CPU 1 concurrently invokes delete(), attempting to delete this same element.
However, CPU 0 still holds the lock, so CPU 1 waits for it at line 13.

3. CPU 0 executes lines 16 and 17, and blocks at line 18 waiting for CPU 1 to exit
its RCU read-side critical section.

4. CPU 1 now acquires the lock, but the test on line 14 fails because CPU 0 has
already removed the element. CPU 1 now executes line 22 (which we switched
with line 23 for the purposes of this Quick Quiz) and exits its RCU read-side
critical section.

5. CPU 0 can now return from synchronize_rcu(), and thus executes line 19,
sending the element to the freelist.

6. CPU 1 now attempts to release a lock for an element that has been freed, and,
worse yet, possibly reallocated as some other type of data structure. This is a fatal
memory-corruption error.

Quick Quiz 8.32:
But what if there is an arbitrarily long series of RCU read-side critical sections in
multiple threads, so that at any point in time there is at least one thread in the system
executing in an RCU read-side critical section? Wouldn’t that prevent any data from a
SLAB_DESTROY_BY_RCU slab ever being returned to the system, possibly resulting
in OOM events?

Answer:
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1 struct profile_buffer {
2 long size;
3 atomic_t entry[0];
4 };
5 static struct profile_buffer *buf = NULL;
6
7 void nmi_profile(unsigned long pcvalue)
8 {
9 struct profile_buffer *p;
10
11 rcu_read_lock();
12 p = rcu_dereference(buf);
13 if (p == NULL) {
14 rcu_read_unlock();
15 return;
16 }
17 if (pcvalue >= p->size) {
18 rcu_read_unlock();
19 return;
20 }
21 atomic_inc(&p->entry[pcvalue]);
22 rcu_read_unlock();
23 }
24
25 void nmi_stop(void)
26 {
27 struct profile_buffer *p = buf;
28
29 if (p == NULL)
30 return;
31 rcu_assign_pointer(buf, NULL);
32 synchronize_rcu();
33 kfree(p);
34 }

Figure F.5: Using RCU to Wait for Mythical Preemptible NMIs to Finish

There could certainly be an arbitrarily long period of time during which at least one
thread is always in an RCU read-side critical section. However, the key words in the
description in Section 8.3.3.6 are “in-use” and “pre-existing”. Keep in mind that a
given RCU read-side critical section is conceptually only permitted to gain references
to data elements that were in use at the beginning of that critical section. Furthermore,
remember that a slab cannot be returned to the system until all of its data elements have
been freed, in fact, the RCU grace period cannot start until after they have all been freed.

Therefore, the slab cache need only wait for those RCU read-side critical sections
that started before the freeing of the last element of the slab. This in turn means that any
RCU grace period that begins after the freeing of the last element will do—the slab may
be returned to the system after that grace period ends.

Quick Quiz 8.33:
Suppose that the nmi_profile() function was preemptible. What would need to
change to make this example work correctly?

Answer:
One approach would be to use rcu_read_lock() and rcu_read_unlock() in
nmi_profile(), and to replace the synchronize_sched()with synchronize_
rcu(), perhaps as shown in Figure F.5.
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Quick Quiz 8.34:
Why do some of the cells in Table 8.4 have exclamation marks (“!”)?

Answer:
The API members with exclamation marks (rcu_read_lock(), rcu_read_unlock(),
and call_rcu()) were the only members of the Linux RCU API that Paul E. McKen-
ney was aware of back in the mid-90s. During this timeframe, he was under the mistaken
impression that he knew all that there is to know about RCU.

Quick Quiz 8.35:
How do you prevent a huge number of RCU read-side critical sections from indefinitely
blocking a synchronize_rcu() invocation?

Answer:
There is no need to do anything to prevent RCU read-side critical sections from indefi-
nitely blocking a synchronize_rcu() invocation, because the synchronize_
rcu() invocation need wait only for pre-existing RCU read-side critical sections. So
as long as each RCU read-side critical section is of finite duration, there should be no
problem.

Quick Quiz 8.36:
The synchronize_rcu() API waits for all pre-existing interrupt handlers to com-
plete, right?

Answer:
Absolutely not! And especially not when using preemptible RCU! You instead want
synchronize_irq(). Alternatively, you can place calls to rcu_read_lock()
and rcu_read_unlock() in the specific interrupt handlers that you want synchronize_
rcu() to wait for.

Quick Quiz 8.37:
What happens if you mix and match? For example, suppose you use rcu_read_
lock() and rcu_read_unlock() to delimit RCU read-side critical sections, but
then use call_rcu_bh() to post an RCU callback?

Answer:
If there happened to be no RCU read-side critical sections delimited by rcu_read_
lock_bh() and rcu_read_unlock_bh() at the time call_rcu_bh() was
invoked, RCU would be within its rights to invoke the callback immediately, possibly
freeing a data structure still being used by the RCU read-side critical section! This
is not merely a theoretical possibility: a long-running RCU read-side critical section
delimited by rcu_read_lock() and rcu_read_unlock() is vulnerable to this
failure mode.

This vulnerability disappears in -rt kernels, where RCU Classic and RCU BH both
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map onto a common implementation.

Quick Quiz 8.38:
Hardware interrupt handlers can be thought of as being under the protection of an
implicit rcu_read_lock_bh(), right?

Answer:
Absolutely not! And especially not when using preemptible RCU! If you need to access
“rcu_bh”-protected data structures in an interrupt handler, you need to provide explicit
calls to rcu_read_lock_bh() and rcu_read_unlock_bh().

Quick Quiz 8.39:
What happens if you mix and match RCU Classic and RCU Sched?

Answer:
In a non-PREEMPT or a PREEMPT kernel, mixing these two works "by accident"
because in those kernel builds, RCU Classic and RCU Sched map to the same imple-
mentation. However, this mixture is fatal in PREEMPT_RT builds using the -rt patchset,
due to the fact that Realtime RCU’s read-side critical sections can be preempted, which
would permit synchronize_sched() to return before the RCU read-side critical
section reached its rcu_read_unlock() call. This could in turn result in a data
structure being freed before the read-side critical section was finished with it, which
could in turn greatly increase the actuarial risk experienced by your kernel.

In fact, the split between RCU Classic and RCU Sched was inspired by the need for
preemptible RCU read-side critical sections.

Quick Quiz 8.40:
In general, you cannot rely on synchronize_sched() to wait for all pre-existing
interrupt handlers, right?

Answer:
That is correct! Because -rt Linux uses threaded interrupt handlers, there can be context
switches in the middle of an interrupt handler. Because synchronize_sched()
waits only until each CPU has passed through a context switch, it can return before a
given interrupt handler completes.

If you need to wait for a given interrupt handler to complete, you should instead
use synchronize_irq() or place explicit RCU read-side critical sections in the
interrupt handlers that you wish to wait on.

Quick Quiz 8.41:
Why do both SRCU and QRCU lack asynchronous call_srcu() or call_qrcu()
interfaces?

Answer:
Given an asynchronous interface, a single task could register an arbitrarily large num-
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ber of SRCU or QRCU callbacks, thereby consuming an arbitrarily large quantity of
memory. In contrast, given the current synchronous synchronize_srcu() and
synchronize_qrcu() interfaces, a given task must finish waiting for a given grace
period before it can start waiting for the next one.

Quick Quiz 8.42:
Under what conditions can synchronize_srcu() be safely used within an SRCU
read-side critical section?

Answer:
In principle, you can use synchronize_srcu() with a given srcu_struct
within an SRCU read-side critical section that uses some other srcu_struct. In
practice, however, doing this is almost certainly a bad idea. In particular, the code shown
in Figure F.6 could still result in deadlock.

1 idx = srcu_read_lock(&ssa);
2 synchronize_srcu(&ssb);
3 srcu_read_unlock(&ssa, idx);
4
5 /* . . . */
6
7 idx = srcu_read_lock(&ssb);
8 synchronize_srcu(&ssa);
9 srcu_read_unlock(&ssb, idx);

Figure F.6: Multistage SRCU Deadlocks

Quick Quiz 8.43:
Why doesn’t list_del_rcu() poison both the next and prev pointers?

Answer:
Poisoning the next pointer would interfere with concurrent RCU readers, who must
use this pointer. However, RCU readers are forbidden from using the prev pointer, so
it may safely be poisoned.

Quick Quiz 8.44:
Normally, any pointer subject to rcu_dereference() must always be updated
using rcu_assign_pointer(). What is an exception to this rule?

Answer:
One such exception is when a multi-element linked data structure is initialized as a unit
while inaccessible to other CPUs, and then a single rcu_assign_pointer() is
used to plant a global pointer to this data structure. The initialization-time pointer assign-
ments need not use rcu_assign_pointer(), though any such assignments that
happen after the structure is globally visible must use rcu_assign_pointer().
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However, unless this initialization code is on an impressively hot code-path, it
is probably wise to use rcu_assign_pointer() anyway, even though it is in
theory unnecessary. It is all too easy for a "minor" change to invalidate your cherished
assumptions about the initialization happening privately.

Quick Quiz 8.45:
Are there any downsides to the fact that these traversal and update primitives can be
used with any of the RCU API family members?

Answer:
It can sometimes be difficult for automated code checkers such as “sparse” (or indeed for
human beings) to work out which type of RCU read-side critical section a given RCU
traversal primitive corresponds to. For example, consider the code shown in Figure F.7.

1 rcu_read_lock();
2 preempt_disable();
3 p = rcu_dereference(global_pointer);
4
5 /* . . . */
6
7 preempt_enable();
8 rcu_read_unlock();

Figure F.7: Diverse RCU Read-Side Nesting

Is the rcu_dereference() primitive in an RCU Classic or an RCU Sched
critical section? What would you have to do to figure this out?

Quick Quiz 8.46:
Why wouldn’t any deadlock in the RCU implementation in Figure 8.36 also be a dead-
lock in any other RCU implementation?

Answer:

Suppose the functions foo() and bar() in Figure F.8 are invoked concurrently
from different CPUs. Then foo() will acquire my_lock() on line 3, while bar()
will acquire rcu_gp_lock on line 13. When foo() advances to line 4, it will attempt
to acquire rcu_gp_lock, which is held by bar(). Then when bar() advances to
line 14, it will attempt to acquire my_lock, which is held by foo().

Each function is then waiting for a lock that the other holds, a classic deadlock.
Other RCU implementations neither spin nor block in rcu_read_lock(), hence

avoiding deadlocks.

Quick Quiz 8.47:
Why not simply use reader-writer locks in the RCU implementation in Figure 8.36 in
order to allow RCU readers to proceed in parallel?
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1 void foo(void)
2 {
3 spin_lock(&my_lock);
4 rcu_read_lock();
5 do_something();
6 rcu_read_unlock();
7 do_something_else();
8 spin_unlock(&my_lock);
9 }
10
11 void bar(void)
12 {
13 rcu_read_lock();
14 spin_lock(&my_lock);
15 do_some_other_thing();
16 spin_unlock(&my_lock);
17 do_whatever();
18 rcu_read_unlock();
19 }

Figure F.8: Deadlock in Lock-Based RCU Implementation

Answer:
One could in fact use reader-writer locks in this manner. However, textbook reader-
writer locks suffer from memory contention, so that the RCU read-side critical sections
would need to be quite long to actually permit parallel execution [McK03].

On the other hand, use of a reader-writer lock that is read-acquired in rcu_read_
lock() would avoid the deadlock condition noted above.

Quick Quiz 8.48:
Wouldn’t it be cleaner to acquire all the locks, and then release them all in the loop from
lines 15-18 of Figure 8.37? After all, with this change, there would be a point in time
when there were no readers, simplifying things greatly.

Answer:
Making this change would re-introduce the deadlock, so no, it would not be cleaner.

Quick Quiz 8.49:
Is the implementation shown in Figure 8.37 free from deadlocks? Why or why not?

Answer:
One deadlock is where a lock is held across synchronize_rcu(), and that same
lock is acquired within an RCU read-side critical section. However, this situation will
deadlock any correctly designed RCU implementation. After all, the synchronize_
rcu() primitive must wait for all pre-existing RCU read-side critical sections to
complete, but if one of those critical sections is spinning on a lock held by the thread
executing the synchronize_rcu(), we have a deadlock inherent in the definition
of RCU.

Another deadlock happens when attempting to nest RCU read-side critical sections.
This deadlock is peculiar to this implementation, and might be avoided by using recursive
locks, or by using reader-writer locks that are read-acquired by rcu_read_lock()
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and write-acquired by synchronize_rcu().
However, if we exclude the above two cases, this implementation of RCU does not

introduce any deadlock situations. This is because only time some other thread’s lock
is acquired is when executing synchronize_rcu(), and in that case, the lock is
immediately released, prohibiting a deadlock cycle that does not involve a lock held
across the synchronize_rcu() which is the first case above.

Quick Quiz 8.50:
Isn’t one advantage of the RCU algorithm shown in Figure 8.37 that it uses only primi-
tives that are widely available, for example, in POSIX pthreads?

Answer:
This is indeed an advantage, but do not forget that rcu_dereference() and rcu_
assign_pointer() are still required, which means volatile manipulation for
rcu_dereference() and memory barriers for rcu_assign_pointer(). Of
course, many Alpha CPUs require memory barriers for both primitives.

Quick Quiz 8.51:
But what if you hold a lock across a call to synchronize_rcu(), and then acquire
that same lock within an RCU read-side critical section?

Answer:
Indeed, this would deadlock any legal RCU implementation. But is rcu_read_
lock() really participating in the deadlock cycle? If you believe that it is, then
please ask yourself this same question when looking at the RCU implementation in
Section 8.3.5.9.

Quick Quiz 8.52:
How can the grace period possibly elapse in 40 nanoseconds when synchronize_
rcu() contains a 10-millisecond delay?

Answer:
The update-side test was run in absence of readers, so the poll() system call was
never invoked. In addition, the actual code has this poll() system call commented
out, the better to evaluate the true overhead of the update-side code. Any production
uses of this code would be better served by using the poll() system call, but then
again, production uses would be even better served by other implementations shown
later in this section.

Quick Quiz 8.53:
Why not simply make rcu_read_lock() wait when a concurrent synchronize_
rcu() has been waiting too long in the RCU implementation in Figure 8.38? Wouldn’t
that prevent synchronize_rcu() from starving?

Answer:
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Although this would in fact eliminate the starvation, it would also mean that rcu_
read_lock() would spin or block waiting for the writer, which is in turn waiting on
readers. If one of these readers is attempting to acquire a lock that the spinning/blocking
rcu_read_lock() holds, we again have deadlock.

In short, the cure is worse than the disease. See Section 8.3.5.4 for a proper cure.

Quick Quiz 8.54:
Why the memory barrier on line 5 of synchronize_rcu() in Figure 8.41 given
that there is a spin-lock acquisition immediately after?

Answer:
The spin-lock acquisition only guarantees that the spin-lock’s critical section will not
“bleed out” to precede the acquisition. It in no way guarantees that code preceding the
spin-lock acquisition won’t be reordered into the critical section. Such reordering could
cause a removal from an RCU-protected list to be reordered to follow the complement-
ing of rcu_idx, which could allow a newly starting RCU read-side critical section to
see the recently removed data element.

Exercise for the reader: use a tool such as Promela/spin to determine which (if any)
of the memory barriers in Figure 8.41 are really needed. See Section 11 for information
on using these tools. The first correct and complete response will be credited.

Quick Quiz 8.55:
Why is the counter flipped twice in Figure 8.41? Shouldn’t a single flip-and-wait cycle
be sufficient?

Answer:
Both flips are absolutely required. To see this, consider the following sequence of
events:

1. Line 8 of rcu_read_lock() in Figure 8.40 picks up rcu_idx, finding its
value to be zero.

2. Line 8 of synchronize_rcu() in Figure 8.41 complements the value of
rcu_idx, setting its value to one.

3. Lines 10-13 of synchronize_rcu() find that the value of rcu_refcnt[0]
is zero, and thus returns. (Recall that the question is asking what happens if
lines 14-20 are omitted.)

4. Lines 9 and 10 of rcu_read_lock() store the value zero to this thread’s
instance of rcu_read_idx and increments rcu_refcnt[0], respectively.
Execution then proceeds into the RCU read-side critical section.

5. Another instance of synchronize_rcu() again complements rcu_idx, this
time setting its value to zero. Because rcu_refcnt[1] is zero, synchronize_
rcu() returns immediately. (Recall that rcu_read_lock() incremented
rcu_refcnt[0], not rcu_refcnt[1]!)

6. The grace period that started in step 5 has been allowed to end, despite the fact
that the RCU read-side critical section that started beforehand in step 4 has not
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completed. This violates RCU semantics, and could allow the update to free a
data element that the RCU read-side critical section was still referencing.

Exercise for the reader: What happens if rcu_read_lock() is preempted for a
very long time (hours!) just after line 8? Does this implementation operate correctly in
that case? Why or why not? The first correct and complete response will be credited.

Quick Quiz 8.56:
Given that atomic increment and decrement are so expensive, why not just use non-
atomic increment on line 10 and a non-atomic decrement on line 25 of Figure 8.40?

Answer:
Using non-atomic operations would cause increments and decrements to be lost, in turn
causing the implementation to fail. See Section 8.3.5.5 for a safe way to use non-atomic
operations in rcu_read_lock() and rcu_read_unlock().

Quick Quiz 8.57:
Come off it! We can see the atomic_read() primitive in rcu_read_lock()!!!
So why are you trying to pretend that rcu_read_lock() contains no atomic opera-
tions???

Answer:
The atomic_read() primitives does not actually execute atomic machine instruc-
tions, but rather does a normal load from an atomic_t. Its sole purpose is to keep the
compiler’s type-checking happy. If the Linux kernel ran on 8-bit CPUs, it would also
need to prevent “store tearing”, which could happen due to the need to store a 16-bit
pointer with two eight-bit accesses on some 8-bit systems. But thankfully, it seems that
no one runs Linux on 8-bit systems.

Quick Quiz 8.58:
Great, if we have N threads, we can have 2N ten-millisecond waits (one set per flip_
counter_and_wait() invocation, and even that assumes that we wait only once
for each thread. Don’t we need the grace period to complete much more quickly?

Answer:
Keep in mind that we only wait for a given thread if that thread is still in a pre-existing
RCU read-side critical section, and that waiting for one hold-out thread gives all the
other threads a chance to complete any pre-existing RCU read-side critical sections
that they might still be executing. So the only way that we would wait for 2N intervals
would be if the last thread still remained in a pre-existing RCU read-side critical section
despite all the waiting for all the prior threads. In short, this implementation will not
wait unnecessarily.

However, if you are stress-testing code that uses RCU, you might want to comment
out the poll() statement in order to better catch bugs that incorrectly retain a reference
to an RCU-protected data element outside of an RCU read-side critical section.
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Quick Quiz 8.59:
All of these toy RCU implementations have either atomic operations in rcu_read_
lock() and rcu_read_unlock(), or synchronize_rcu() overhead that in-
creases linearly with the number of threads. Under what circumstances could an RCU
implementation enjoy light-weight implementations for all three of these primitives, all
having deterministic (O(1)) overheads and latencies?

Answer:
Special-purpose uniprocessor implementations of RCU can attain this ideal [McK09c].

Quick Quiz 8.60:
If any even value is sufficient to tell synchronize_rcu() to ignore a given task,
why doesn’t line 10 of Figure 8.49 simply assign zero to rcu_reader_gp?

Answer:
Assigning zero (or any other even-numbered constant) would in fact work, but assigning
the value of rcu_gp_ctr can provide a valuable debugging aid, as it gives the devel-
oper an idea of when the corresponding thread last exited an RCU read-side critical
section.

Quick Quiz 8.61:
Why are the memory barriers on lines 17 and 29 of Figure 8.49 needed? Aren’t the
memory barriers inherent in the locking primitives on lines 18 and 28 sufficient?

Answer:
These memory barriers are required because the locking primitives are only guaranteed
to confine the critical section. The locking primitives are under absolutely no obligation
to keep other code from bleeding in to the critical section. The pair of memory barriers
are therefore requires to prevent this sort of code motion, whether performed by the
compiler or by the CPU.

Quick Quiz 8.62:
Couldn’t the update-side optimization described in Section 8.3.5.6 be applied to the
implementation shown in Figure 8.49?

Answer:
Indeed it could, with a few modifications. This work is left as an exercise for the reader.

Quick Quiz 8.63:
Is the possibility of readers being preempted in line 3 of Figure 8.49 a real problem, in
other words, is there a real sequence of events that could lead to failure? If not, why
not? If so, what is the sequence of events, and how can the failure be addressed?

Answer:
It is a real problem, there is a sequence of events leading to failure, and there are a
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number of possible ways of addressing it. For more details, see the Quick Quizzes near
the end of Section 8.3.5.8. The reason for locating the discussion there is to (1) give you
more time to think about it, and (2) because the nesting support added in that section
greatly reduces the time required to overflow the counter.

Quick Quiz 8.64:
Why not simply maintain a separate per-thread nesting-level variable, as was done in
previous section, rather than having all this complicated bit manipulation?

Answer:
The apparent simplicity of the separate per-thread variable is a red herring. This ap-
proach incurs much greater complexity in the guise of careful ordering of operations,
especially if signal handlers are to be permitted to contain RCU read-side critical
sections. But don’t take my word for it, code it up and see what you end up with!

Quick Quiz 8.65:
Given the algorithm shown in Figure 8.51, how could you double the time required to
overflow the global rcu_gp_ctr?

Answer:
One way would be to replace the magnitude comparison on lines 33 and 34 with
an inequality check of the per-thread rcu_reader_gp variable against rcu_gp_
ctr+RCU_GP_CTR_BOTTOM_BIT.

Quick Quiz 8.66:
Again, given the algorithm shown in Figure 8.51, is counter overflow fatal? Why or why
not? If it is fatal, what can be done to fix it?

Answer:
It can indeed be fatal. To see this, consider the following sequence of events:

1. Thread 0 enters rcu_read_lock(), determines that it is not nested, and there-
fore fetches the value of the global rcu_gp_ctr. Thread 0 is then preempted
for an extremely long time (before storing to its per-thread rcu_reader_gp
variable).

2. Other threads repeatedly invoke synchronize_rcu(), so that the new value
of the global rcu_gp_ctr is now RCU_GP_CTR_BOTTOM_BIT less than it
was when thread 0 fetched it.

3. Thread 0 now starts running again, and stores into its per-thread rcu_reader_
gp variable. The value it stores is RCU_GP_CTR_BOTTOM_BIT+1 greater than
that of the global rcu_gp_ctr.

4. Thread 0 acquires a reference to RCU-protected data element A.

5. Thread 1 now removes the data element A that thread 0 just acquired a reference
to.
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6. Thread 1 invokes synchronize_rcu(), which increments the global rcu_
gp_ctr by RCU_GP_CTR_BOTTOM_BIT. It then checks all of the per-thread
rcu_reader_gp variables, but thread 0’s value (incorrectly) indicates that it
started after thread 1’s call to synchronize_rcu(), so thread 1 does not wait
for thread 0 to complete its RCU read-side critical section.

7. Thread 1 then frees up data element A, which thread 0 is still referencing.

Note that scenario can also occur in the implementation presented in Section 8.3.5.7.
One strategy for fixing this problem is to use 64-bit counters so that the time required

to overflow them would exceed the useful lifetime of the computer system. Note that
non-antique members of the 32-bit x86 CPU family allow atomic manipulation of 64-bit
counters via the cmpxchg64b instruction.

Another strategy is to limit the rate at which grace periods are permitted to occur in
order to achieve a similar effect. For example, synchronize_rcu() could record
the last time that it was invoked, and any subsequent invocation would then check this
time and block as needed to force the desired spacing. For example, if the low-order
four bits of the counter were reserved for nesting, and if grace periods were permitted
to occur at most ten times per second, then it would take more than 300 days for the
counter to overflow. However, this approach is not helpful if there is any possibility that
the system will be fully loaded with CPU-bound high-priority real-time threads for the
full 300 days. (A remote possibility, perhaps, but best to consider it ahead of time.)

A third approach is to administratively abolish real-time threads from the system in
question. In this case, the preempted process will age up in priority, thus getting to run
long before the counter had a chance to overflow. Of course, this approach is less than
helpful for real-time applications.

A final approach would be for rcu_read_lock() to recheck the value of the
global rcu_gp_ctr after storing to its per-thread rcu_reader_gp counter, retrying
if the new value of the global rcu_gp_ctr is inappropriate. This works, but introduces
non-deterministic execution time into rcu_read_lock(). On the other hand, if your
application is being preempted long enough for the counter to overflow, you have no
hope of deterministic execution time in any case!

Quick Quiz 8.67:
Doesn’t the additional memory barrier shown on line 14 of Figure 8.53, greatly increase
the overhead of rcu_quiescent_state?

Answer:
Indeed it does! An application using this implementation of RCU should therefore
invoke rcu_quiescent_state sparingly, instead using rcu_read_lock() and
rcu_read_unlock() most of the time.

However, this memory barrier is absolutely required so that other threads will see
the store on lines 12-13 before any subsequent RCU read-side critical sections executed
by the caller.

Quick Quiz 8.68:
Why are the two memory barriers on lines 19 and 22 of Figure 8.53 needed?
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Answer:
The memory barrier on line 19 prevents any RCU read-side critical sections that might
precede the call to rcu_thread_offline() won’t be reordered by either the com-
piler or the CPU to follow the assignment on lines 20-21. The memory barrier on line 22
is, strictly speaking, unnecessary, as it is illegal to have any RCU read-side critical
sections following the call to rcu_thread_offline().

Quick Quiz 8.69:
To be sure, the clock frequencies of ca-2008 Power systems were quite high, but even a
5GHz clock frequency is insufficient to allow loops to be executed in 50 picoseconds!
What is going on here?

Answer:
Since the measurement loop contains a pair of empty functions, the compiler opti-
mizes it away. The measurement loop takes 1,000 passes between each call to rcu_
quiescent_state(), so this measurement is roughly one thousandth of the over-
head of a single call to rcu_quiescent_state().

Quick Quiz 8.70:
Why would the fact that the code is in a library make any difference for how easy it is to
use the RCU implementation shown in Figures 8.53 and 8.54?

Answer:
A library function has absolutely no control over the caller, and thus cannot force
the caller to invoke rcu_quiescent_state() periodically. On the other hand, a
library function that made many references to a given RCU-protected data structure
might be able to invoke rcu_thread_online() upon entry, rcu_quiescent_
state() periodically, and rcu_thread_offline() upon exit.

Quick Quiz 8.71:
But what if you hold a lock across a call to synchronize_rcu(), and then acquire
that same lock within an RCU read-side critical section? This should be a deadlock, but
how can a primitive that generates absolutely no code possibly participate in a deadlock
cycle?

Answer:
Please note that the RCU read-side critical section is in effect extended beyond the
enclosing rcu_read_lock() and rcu_read_unlock(), out to the previous and
next call to rcu_quiescent_state(). This rcu_quiescent_state can be
thought of as a rcu_read_unlock() immediately followed by an rcu_read_
lock().

Even so, the actual deadlock itself will involve the lock acquisition in the RCU read-
side critical section and the synchronize_rcu(), never the rcu_quiescent_
state().
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Quick Quiz 8.72:
Given that grace periods are prohibited within RCU read-side critical sections, how can
an RCU data structure possibly be updated while in an RCU read-side critical section?

Answer:
This situation is one reason for the existence of asynchronous grace-period primitives
such as call_rcu(). This primitive may be invoked within an RCU read-side critical
section, and the specified RCU callback will in turn be invoked at a later time, after a
grace period has elapsed.

The ability to perform an RCU update while within an RCU read-side critical
section can be extremely convenient, and is analogous to a (mythical) unconditional
read-to-write upgrade for reader-writer locking.

Quick Quiz 8.73:
The statistical-counter implementation shown in Figure 4.9 (count_end.c) used a
global lock to guard the summation in read_count(), which resulted in poor perfor-
mance and negative scalability. How could you use RCU to provide read_count()
with excellent performance and good scalability. (Keep in mind that read_count()’s
scalability will necessarily be limited by its need to scan all threads’ counters.)

Answer:
Hint: place the global variable finalcount and the array counterp[] into a single
RCU-protected struct. At initialization time, this structure would be allocated and set to
all zero and NULL.

The inc_count() function would be unchanged.
The read_count() function would use rcu_read_lock() instead of acquir-

ing final_mutex, and would need to use rcu_dereference() to acquire a
reference to the current structure.

The count_register_thread() function would set the array element corre-
sponding to the newly created thread to reference that thread’s per-thread counter
variable.

The count_unregister_thread() function would need to allocate a new
structure, acquire final_mutex, copy the old structure to the new one, add the out-
going thread’s counter variable to the total, NULL the pointer to this same counter
variable, use rcu_assign_pointer() to install the new structure in place of the
old one, release final_mutex, wait for a grace period, and finally free the old
structure.

Does this really work? Why or why not?
See Section 12.2.1 on page 336 for more details.

Quick Quiz 8.74:
Section 4.5 showed a fanciful pair of code fragments that dealt with counting I/O ac-
cesses to removable devices. These code fragments suffered from high overhead on the
fastpath (starting an I/O) due to the need to acquire a reader-writer lock. How would
you use RCU to provide excellent performance and scalability? (Keep in mind that the
performance of the common-case first code fragment that does I/O accesses is much
more important than that of the device-removal code fragment.)
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Answer:
Hint: replace the read-acquisitions of the reader-writer lock with RCU read-side critical
sections, then adjust the device-removal code fragment to suit.

See Section 12.2.2 on Page 339 for one solution to this problem.

F.9 Data Structures

Quick Quiz 9.1:
But there are many types of hash tables, of which the chained hash tables described here
are but one type. Why the focus on chained hash tables?

Answer:
Chained hash tables are completely partitionable, and thus well-suited to concurrent
use. There are other completely-partitionable hash tables, for example, split-ordered
list [SS06], but they are considerably more complex. We therefore start with chained
hash tables.

Quick Quiz 9.2:
But isn’t the double comparison on lines 15-18 in Figure 9.4 inefficient in the case
where the key fits into an unsigned long?

Answer:
Indeed it is! However, hash tables quite frequently store information with keys such
as character strings that do not necessarily fit into an unsigned long. Simplifying the
hash-table implementation for the case where keys always fit into unsigned longs is left
as an exercise for the reader.

Quick Quiz 9.3:
Instead of simply increasing the number of hash buckets, wouldn’t it be better to cache-
align the existing hash buckets?

Answer:
The answer depends on a great many things. If the hash table has a large number of
elements per bucket, it would clearly be better to increase the number of hash buckets.
On the other hand, if the hash table is lightly loaded, the answer depends on the hard-
ware, the effectiveness of the hash function, and the workload. Interested readers are
encouraged to experiment.

Quick Quiz 9.4:
Given the negative scalability of the Schrödinger’s Zoo application across sockets, why
not just run multiple copies of the application, with each copy having a subset of the
animals and confined to run on a single socket?
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Answer:
You can do just that! In fact, you can extend this idea to large clustered systems, run-
ning one copy of the application on each node of the cluster. This practice is called
“sharding”, and is heavily used in practice by large web-based retailers [DHJ+07].

However, if you are going to shard on a per-socket basis within a multisocket system,
why not buy separate smaller and cheaper single-socket systems, and then run one shard
of the database on each of those systems?

Quick Quiz 9.5:
But if elements in a hash table can be deleted concurrently with lookups, doesn’t that
mean that a lookup could return a reference to a data element that was deleted immedi-
ately after it was looked up?

Answer:
Yes it can! This is why hashtab_lookup() must be invoked within an RCU read-
side critical section, and it is why hashtab_add() and hashtab_del() must
also use RCU-aware list-manipulation primitives. Finally, this is why the caller of
hashtab_del() must wait for a grace period (e.g., by calling synchronize_
rcu()) before freeing the deleted element.

Quick Quiz 9.6:
The dangers of extrapolating from eight CPUs to 60 CPUs was made quite clear in
Section 9.2.3. But why should extrapolating up from 60 CPUs be any safer?

Answer:
It isn’t any safer, and a useful exercise would be to run these programs on larger sys-
tems. That said, other testing has shown that RCU read-side primitives offer consistent
performance and scalability up to at least 1024 CPUs.

Quick Quiz 9.7:
The code in Figure 9.25 computes the hash twice! Why this blatant inefficiency?

Answer:
The reason is that the old and new hash tables might have completely different hash
functions, so that a hash computed for the old table might be completely irrelevant to
the new table.

Quick Quiz 9.8:
How does the code in Figure 9.25 protect against the resizing process progressing past
the selected bucket?

Answer:
It does not provide any such protection. That is instead the job of the update-side
concurrency-control functions described next.
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Quick Quiz 9.9:
The code in Figures 9.25 and 9.26 compute the hash and execute the bucket-selection
logic twice for updates! Why this blatant inefficiency?

Answer:
This approach allows the hashtorture.h testing infrastructure to be reused. That
said, a production-quality resizable hash table would likely be optimized to avoid this
double computation. Carrying out this optimization is left as an exercise for the reader.

Quick Quiz 9.10:
Suppose that one thread is inserting an element into the new hash table during a resize
operation. What prevents this insertion to be lost due to a subsequent resize operation
completing before the insertion does?

Answer:
The second resize operation will not be able to move beyond the bucket into which the
insertion is taking place due to the insertion holding the lock on one of the hash buckets
in the new hash table (the second hash table of three in this example). Furthermore, the
insertion operation takes place within an RCU read-side critical section. As we will see
when we examine the hashtab_resize() function, this means that the first resize
operation will use synchronize_rcu() to wait for the insertion’s read-side critical
section to complete.

Quick Quiz 9.11:
In the hashtab_lookup() function in Figure 9.27, the code carefully finds the right
bucket in the new hash table if the element to be looked up has already been distributed
by a concurrent resize operation. This seems wasteful for RCU-protected lookups. Why
not just stick with the old hash table in this case?

Answer:
Suppose that a resize operation begins and distributes half of the old table’s buckets to
the new table. Suppose further that a thread adds a new element that goes into one of the
already-distributed buckets, and that this same thread now looks up this newly added
element. If lookups unconditionally traversed only the old hash table, this thread would
get a lookup failure for the element that it just added, which certainly sounds like a bug
to me!

Quick Quiz 9.12:
The hashtab_del() function in Figure 9.27 does not always remove the element
from the old hash table. Doesn’t this mean that readers might access this newly removed
element after it has been freed?

Answer:
No. The hashtab_del() function omits removing the element from the old hash ta-
ble only if the resize operation has already progressed beyond the bucket containing the
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just-deleted element. But this means that new hashtab_lookup() operations will
use the new hash table when looking up that element. Therefore, only old hashtab_
lookup() operations that started before the hashtab_del() might encounter the
newly removed element. This means that hashtab_del() need only wait for an
RCU grace period to avoid inconveniencing hashtab_lookup() operations.

Quick Quiz 9.13:
In the hashtab_resize() function in Figure 9.27, what guarantees that the update
to ->ht_new on line 29 will be seen as happening before the update to ->ht_
resize_cur on line 36 from the perspective of hashtab_lookup(), hashtab_
add(), and hashtab_del()?

Answer:
The synchronize_rcu() on line 30 of Figure 9.27 ensures that all pre-existing
RCU readers have completed between the time that we install the new hash-table ref-
erence on line 29 and the time that we update ->ht_resize_cur on line 36. This
means that any reader that sees a non-negative value of ->ht_resize_cur cannot
have started before the assignment to ->ht_new, and thus must be able to see the
reference to the new hash table.

Quick Quiz 9.14:
Couldn’t the hashtorture.h code be modified to accommodate a version of hashtab_
lock_mod() that subsumes the ht_get_bucket() functionality?

Answer:
It probably could, and doing so would benefit all of the per-bucket-locked hash tables
presented in this chapter. Making this modification is left as an exercise for the reader.

Quick Quiz 9.15:
How much do these specializations really save? Are the really worth it?

Answer:
The answer to the first question is left as an exercise to the reader. Try specializing the
resizable hash table and see how much performance improvement results. The second
question cannot be answered in general, but must instead be answered with respect to a
specific use case. Some use cases are extremely sensitive to performance and scalability,
while others are less so.

F.10 Validation

Quick Quiz 10.1:
When in computing is the willingness to follow a fragmentary plan critically important?
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Answer:
There are any number of situations, but perhaps the most important situation is when
no one has ever created anything resembling the program to be developed. In this case,
the only way to create a credible plan is to implement the program, create the plan, and
implement it a second time. But whoever implements the program for the first time
has no choice but to follow a fragmentary plan because any detailed plan created in
ignorance cannot survive first contact with the real world.

And perhaps this is one reason why evolution has favored insanely optimistic human
beings who are happy to follow fragmentary plans!

Quick Quiz 10.2:
Suppose that you are writing a script that processes the output of the time command,
which looks as follows:

real 0m0.132s
user 0m0.040s
sys 0m0.008s

The script is required to check its input for errors, and to give appropriate diagnostics
if fed erroneous time output. What test inputs should you provide to this program to
test it for use with time output generated by single-threaded programs?

Answer:

1. Do you have a test case in which all the time is consumed in user mode by a
CPU-bound program?

2. Do you have a test case in which all the time is consumed in system mode by a
CPU-bound program?

3. Do you have a test case in which all three times are zero?

4. Do you have a test case in which the “user” and “sys” times sum to more than the
“real” time? (This would of course be completely legitimate in a multithreaded
program.)

5. Do you have a set of tests cases in which one of the times uses more than one
second?

6. Do you have a set of tests cases in which one of the times uses more than ten
second?

7. Do you have a set of test cases in which one of the times has non-zero minutes?
(For example, “15m36.342s”.)

8. Do you have a set of test cases in which one of the times has a seconds value of
greater than 60?

9. Do you have a set of test cases in which one of the times overflows 32 bits of
milliseconds? 64 bits of milliseconds?

10. Do you have a set of test cases in which one of the times is negative?
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11. Do you have a set of test cases in which one of the times has a positive minutes
value but a negative seconds value?

12. Do you have a set of test cases in which one of the times omits the “m” or the
“s”?

13. Do you have a set of test cases in which one of the times is non-numeric? (For
example, “Go Fish”.)

14. Do you have a set of test cases in which one of the lines is omitted? (For example,
where there is a “real” value and a “sys” value, but no “user” value.)

15. Do you have a set of test cases where one of the lines is duplicated? Or duplicated,
but with a different time value for the duplicate?

16. Do you have a set of test cases where a given line has more than one time value?
(For example, “real 0m0.132s 0m0.008s”.)

17. Do you have a set of test cases containing random characters?

18. In all test cases involving invalid input, did you generate all permutations?

19. For each test case, do you have an expected outcome for that test?

If you did not generate test data for a substantial number of the above cases, you
will need to cultivate a more destructive attitude in order to have a chance of generating
high-quality tests.

Of course, one way to economize on destructiveness is to generate the tests with
the to-be-tested source code at hand, which is called white-box testing (as opposed to
black-box testing). However, this is no panacea: You will find that it is all too easy to
find your thinking limited by what the program can handle, thus failing to generate truly
destructive inputs.

Quick Quiz 10.3:
You are asking me to do all this validation BS before I even start coding??? That sounds
like a great way to never get started!!!

Answer:
If it is your project, for example, a hobby, do what you like. Any time you waste will
be your own, and you have no one else to answer to for it. And there is a good chance
that the time will not be completely wasted. For example, if you are embarking on a
first-of-a-kind project, the requirements are in some sense unknowable anyway. In this
case, the best approach might be to quickly prototype a number of rough solutions, try
them out, and see what works best.

Quick Quiz 10.4:
How can you implement WARN_ON_ONCE()?

Answer:
If you don’t mind having a WARN_ON_ONCE() that will sometimes warn twice or
three times, simply maintain a static variable that is initialized to zero. If the condition
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triggers, check the static variable, and if it is non-zero, return. Otherwise, set it to one,
print the message, and return.

If you really need the message to never appear more than once, perhaps because it is
huge, you can use an atomic exchange operation in place of “set it to one” above. Print
the message only if the atomic exchange operation returns zero.

Quick Quiz 10.5:
Why would anyone bother copying existing code in pen on paper??? Doesn’t that just
increase the probability of transcription errors?

Answer:
If you are worried about transcription errors, please allow me to be the first to introduce
you to a really cool tool named diff. In addition, carrying out the copying can be quite
valuable:

1. If you are copying a lot of code, you are probably failing to take advantage of an
opportunity for abstraction. The act of copying code can provide great motivation
for abstraction.

2. Copying the code gives you an opportunity to think about whether the code really
works in its new setting. Is there some non-obvious constraint, such as the need
to disable interrupts or to hold some lock?

3. Copying the code also gives you time to consider whether there is some better
way to get the job done.

So, yes, copy the code!

Quick Quiz 10.6:
This procedure is ridiculously over-engineered! How can you expect to get a reasonable
amount of software written doing it this way???

Answer:
Indeed, repeatedly copying code by hand is laborious and slow. However, when com-
bined with heavy-duty stress testing and proofs of correctness, this approach is also
extremely effective for complex parallel code where ultimate performance and reliability
are required and where debugging is difficult. The Linux-kernel RCU implementation
is a case in point.

On the other hand, if you are writing a simple single-threaded shell script to manipu-
late some data, then you would be best-served by a different methodology. For example,
you might enter each command one at a time into an interactive shell with a test data set
to make sure that it did what you wanted, then copy-and-paste the successful commands
into your script. Finally, test the script as a whole.

If you have a friend or colleague who is willing to help out, pair programming can
work very well, as can any number of formal design- and code-review processes.

And if you are writing code as a hobby, then do whatever you like.
In short, different types of software need different development methodologies.
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Quick Quiz 10.7:
Suppose that you had a very large number of systems at your disposal. For example,
at current cloud prices, you can purchase a huge amount of CPU time at a reasonably
low cost. Why not use this approach to get close enough to certainty for all practical
purposes?

Answer:
This approach might well be a valuable addition to your validation arsenal. But it does
have a few limitations:

1. Some bugs have extremely low probabilities of occurrence, but nevertheless need
to be fixed. For example, suppose that the Linux kernel’s RCU implementation
had a bug that is triggered only once per century of machine time on average. A
century of CPU time is hugely expensive even on the cheapest cloud platforms,
but we could expect this bug to result in more than 2,000 failures per day on the
more than 100 million Linux instances in the world as of 2011.

2. The bug might well have zero probability of occurrence on your test setup, which
means that you won’t see it no matter how much machine time you burn testing it.

Of course, if your code is small enough, formal validation may be helpful, as discussed
in Section 11. But beware: formal validation of your code will not find errors in your
assumptions, misunderstanding of the requirements, misunderstanding of the software
or hardware primitives you use, or errors that you did not think to construct a proof for.

Quick Quiz 10.8:
Say what??? When I plug the earlier example of five tests each with a 10% failure rate
into the formula, I get 59,050% and that just doesn’t make sense!!!

Answer:
You are right, that makes no sense at all.

Remember that a probability is a number between zero and one, so that you need to
divide a percentage by 100 to get a probability. So 10% is a probability of 0.1, which
gets a probability of 0.4095, which rounds to 41%, which quite sensibly matches the
earlier result.

Quick Quiz 10.9:
In Equation 10.6, are the logarithms base-10, base-2, or base-e?

Answer:
It does not matter. You will get the same answer no matter what base of logarithms you
use because the result is a pure ratio of logarithms. The only constraint is that you use
the same base for both the numerator and the denominator.

Quick Quiz 10.10:
Suppose that a bug causes a test failure three times per hour on average. How long must
the test run error-free to provide 99.9% confidence that the fix significantly reduced the
probability of failure?
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Answer:
We set n to 3 and P to 99.9 in Equation 10.28, resulting in:

T =−1
3

log
100−99.9

100
= 2.3 (F.5)

If the test runs without failure for 2.3 hours, we can be 99.9% certain that the fix
reduced the probability of failure.

Quick Quiz 10.11:
Doing the summation of all the factorials and exponentials is a real pain. Isn’t there an
easier way?

Answer:
One approach is to use the open-source symbolic manipulation program named “max-
ima”. Once you have installed this program, which is a part of many Debian-based
Linux distributions, you can run it and give the load(distrib); command fol-
lowed by any number of bfloat(cdf_poisson(m,l)); commands, where the m
is replaced by the desired value of m and the l is replaced by the desired value of λ .

In particular, the bfloat(cdf_poisson(2,24)); command results in 1.181617112359357b-8,
which matches the value given by Equation 10.30.

Alternatively, you can use the rough-and-ready method described in Section 10.6.2.

Quick Quiz 10.12:
But wait!!! Given that there has to be some number of failures (including the possibility
of zero failures), shouldn’t the summation shown in Equation 10.30 approach the value
1 as m goes to infinity?

Answer:
Indeed it should. And it does.

To see this, note that e−λ does not depend on i, which means that it can be pulled
out of the summation as follows:

e−λ
∞

∑
i=0

λ i

i!
(F.6)

The remaining summation is exactly the Taylor series for eλ , yielding:

e−λ eλ (F.7)

The two exponentials are reciprocals, and therefore cancel, resulting in exactly 1, as
required.

Quick Quiz 10.13:
How is this approach supposed to help if the corruption affected some unrelated pointer,
which then caused the corruption???

Answer:
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Indeed, that can happen. Many CPUs have hardware-debugging facilities that can help
you locate that unrelated pointer. Furthermore, if you have a core dump, you can search
the core dump for pointers referencing the corrupted region of memory. You can also
look at the data layout of the corruption, and check pointers whose type matches that
layout.

You can also step back and test the modules making up your program more in-
tensively, which will likely confine the corruption to the module responsible for it. If
this makes the corruption vanish, consider adding additional argument checking to the
functions exported from each module.

Nevertheless, this is a hard problem, which is why I used the words “a bit of a dark
art”.

Quick Quiz 10.14:
But I did the bisection, and ended up with a huge commit. What do I do now?

Answer:
A huge commit? Shame on you! This is but one reason why you are supposed to keep
the commits small.

And that is your answer: Break up the commit into bite-sized pieces and bisect the
pieces. In my experience, the act of breaking up the commit is often sufficient to make
the bug painfully obvious.

Quick Quiz 10.15:
Why don’t existing conditional-locking primitives provide this spurious-failure func-
tionality?

Answer:
There are locking algorithms that depend on conditional-locking primitives telling them
the truth. For example, if conditional-lock failure signals that some other thread is
already working on a given job, spurious failure might cause that job to never get done,
possibly resulting in a hang.

Quick Quiz 10.16:
That is ridiculous!!! After all, isn’t getting the correct answer later than one would like
has better than getting an incorrect answer???

Answer:
This question fails to consider the option of choosing not to compute the answer at all,
and in doing so, also fails to consider the costs of computing the answer. For example,
consider short-term weather forecasting, for which accurate models exist, but which
require large (and expensive) clustered supercomputers, at least if you want to actually
run the model faster than the weather.

And in this case, any performance bug that prevents the model from running faster
than the actual weather prevents any forecasting. Given that the whole purpose of
purchasing the large clustered supercomputer was to forecast weather, if you cannot run
the model faster than the weather, you would be better off not running the model at all.
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More severe examples may be found in the area of safety-critical real-time comput-
ing.

Quick Quiz 10.17:
But if you are going to put in all the hard work of parallelizing an application, why not
do it right? Why settle for anything less than optimal performance and linear scalability?

Answer:
Although I do heartily salute your spirit and aspirations, you are forgetting that there
may be high costs due to delays in the program’s completion. For an extreme example,
suppose that a 40% performance shortfall from a single-threaded application is causing
one person to die each day. Suppose further that in a day you could hack together a
quick and dirty parallel program that ran 50% faster on an eight-CPU system than the
sequential version, but that an optimal parallel program would require four months of
painstaking design, coding, debugging, and tuning.

It is safe to say that more than 100 people would prefer the quick and dirty version.

Quick Quiz 10.18:
But what about other sources of error, for example, due to interactions between caches
and memory layout?

Answer:
Changes in memory layout can indeed result in unrealistic decreases in execution time.
For example, suppose that a given microbenchmark almost always overflows the L0
cache’s associativity, but with just the right memory layout, it all fits. If this is a real
concern, consider running your microbenchmark using huge pages (or within the kernel
or on bare metal) in order to completely control the memory layout.

Quick Quiz 10.19:
Wouldn’t the techniques suggested to isolate the code under test also affect that code’s
performance, particularly if it is running within a larger application?

Answer:
Indeed it might, although in most microbenchmarking efforts you would extract the
code under test from the enclosing application. Nevertheless, if for some reason you
must keep the code under test within the application, you will very likely need to use
the techniques discussed in Section 10.7.6.

Quick Quiz 10.20:
This approach is just plain weird! Why not use means and standard deviations, like we
were taught in our statistics classes?

Answer:
Because mean and standard deviation were not designed to do this job. To see this, try
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applying mean and standard deviation to the following data set, given a 1% relative
error in measurement:

49,548.4 49,549.4 49,550.2 49,550.9 49,550.9 49,551.0 49,551.5 49,552.1
49,899.0 49,899.3 49,899.7 49,899.8 49,900.1 49,900.4 52,244.9 53,333.3
53,333.3 53,706.3 53,706.3 54,084.5

The problem is that mean and standard deviation do not rest on any sort of measurement-
error assumption, and they will therefore see the difference between the values near
49,500 and those near 49,900 as being statistically significant, when in fact they are well
within the bounds of estimated measurement error.

Of course, it is possible to create a script similar to that in Figure 10.6 that uses
standard deviation rather than absolute difference to get a similar effect, and this is left
as an exercise for the interested reader. Be careful to avoid divide-by-zero errors arising
from strings of identical data values!

Quick Quiz 10.21:
But what if all the y-values in the trusted group of data are exactly zero? Won’t that
cause the script to reject any non-zero value?

Answer:
Indeed it will! But if your performance measurements often produce a value of exactly
zero, perhaps you need to take a closer look at your performance-measurement code.

Note that many approaches based on mean and standard deviation will have similar
problems with this sort of dataset.

F.11 Formal Verification

Quick Quiz 11.1:
Why is there an unreached statement in locker? After all, isn’t this a full state-space
search?

Answer:
The locker process is an infinite loop, so control never reaches the end of this process.
However, since there are no monotonically increasing variables, Promela is able to
model this infinite loop with a small number of states.

Quick Quiz 11.2:
What are some Promela code-style issues with this example?

Answer:
There are several:

1. The declaration of sum should be moved to within the init block, since it is not
used anywhere else.
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2. The assertion code should be moved outside of the initialization loop. The
initialization loop can then be placed in an atomic block, greatly reducing the
state space (by how much?).

3. The atomic block covering the assertion code should be extended to include the
initialization of sum and j, and also to cover the assertion. This also reduces the
state space (again, by how much?).

Quick Quiz 11.3:
Is there a more straightforward way to code the do-od statement?

Answer:
Yes. Replace it with if-fi and remove the two break statements.

Quick Quiz 11.4:
Why are there atomic blocks at lines 12-21 and lines 44-56, when the operations within
those atomic blocks have no atomic implementation on any current production micro-
processor?

Answer:
Because those operations are for the benefit of the assertion only. They are not part of
the algorithm itself. There is therefore no harm in marking them atomic, and so marking
them greatly reduces the state space that must be searched by the Promela model.

Quick Quiz 11.5:
Is the re-summing of the counters on lines 24-27 really necessary?

Answer:
Yes. To see this, delete these lines and run the model.

Alternatively, consider the following sequence of steps:

1. One process is within its RCU read-side critical section, so that the value of
ctr[0] is zero and the value of ctr[1] is two.

2. An updater starts executing, and sees that the sum of the counters is two so that
the fastpath cannot be executed. It therefore acquires the lock.

3. A second updater starts executing, and fetches the value of ctr[0], which is
zero.

4. The first updater adds one to ctr[0], flips the index (which now becomes zero),
then subtracts one from ctr[1] (which now becomes one).

5. The second updater fetches the value of ctr[1], which is now one.

6. The second updater now incorrectly concludes that it is safe to proceed on the
fastpath, despite the fact that the original reader has not yet completed.
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Quick Quiz 11.6:
Yeah, that’s just great! Now, just what am I supposed to do if I don’t happen to have a
machine with 40GB of main memory???

Answer:
Relax, there are a number of lawful answers to this question:

1. Further optimize the model, reducing its memory consumption.

2. Work out a pencil-and-paper proof, perhaps starting with the comments in the
code in the Linux kernel.

3. Devise careful torture tests, which, though they cannot prove the code correct,
can find hidden bugs.

4. There is some movement towards tools that do model checking on clusters of
smaller machines. However, please note that we have not actually used such tools
myself, courtesy of some large machines that Paul has occasional access to.

5. Wait for memory sizes of affordable systems to expand to fit your problem.

6. Use one of a number of cloud-computing services to rent a large system for a
short time period.

Quick Quiz 11.7:
Why not simply increment rcu_update_flag, and then only increment dynticks_
progress_counter if the old value of rcu_update_flag was zero???

Answer:
This fails in presence of NMIs. To see this, suppose an NMI was received just after
rcu_irq_enter() incremented rcu_update_flag, but before it incremented
dynticks_progress_counter. The instance of rcu_irq_enter() invoked
by the NMI would see that the original value of rcu_update_flag was non-zero,
and would therefore refrain from incrementing dynticks_progress_counter.
This would leave the RCU grace-period machinery no clue that the NMI handler was
executing on this CPU, so that any RCU read-side critical sections in the NMI handler
would lose their RCU protection.

The possibility of NMI handlers, which, by definition cannot be masked, does
complicate this code.

Quick Quiz 11.8:
But if line 7 finds that we are the outermost interrupt, wouldn’t we always need to
increment dynticks_progress_counter?

Answer:
Not if we interrupted a running task! In that case, dynticks_progress_counter
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would have already been incremented by rcu_exit_nohz(), and there would be no
need to increment it again.

Quick Quiz 11.9:
Can you spot any bugs in any of the code in this section?

Answer:
Read the next section to see if you were correct.

Quick Quiz 11.10:
Why isn’t the memory barrier in rcu_exit_nohz() and rcu_enter_nohz()
modeled in Promela?

Answer:
Promela assumes sequential consistency, so it is not necessary to model memory barriers.
In fact, one must instead explicitly model lack of memory barriers, for example, as
shown in Figure 11.13 on page 299.

Quick Quiz 11.11:
Isn’t it a bit strange to model rcu_exit_nohz() followed by rcu_enter_nohz()?
Wouldn’t it be more natural to instead model entry before exit?

Answer:
It probably would be more natural, but we will need this particular order for the liveness
checks that we will add later.

Quick Quiz 11.12:
Wait a minute! In the Linux kernel, both dynticks_progress_counter and
rcu_dyntick_snapshot are per-CPU variables. So why are they instead being
modeled as single global variables?

Answer:
Because the grace-period code processes each CPU’s dynticks_progress_counter
and rcu_dyntick_snapshot variables separately, we can collapse the state onto
a single CPU. If the grace-period code were instead to do something special given
specific values on specific CPUs, then we would indeed need to model multiple CPUs.
But fortunately, we can safely confine ourselves to two CPUs, the one running the
grace-period processing and the one entering and leaving dynticks-idle mode.

Quick Quiz 11.13:
Given there are a pair of back-to-back changes to gp_state on lines 25 and 26, how
can we be sure that line 25’s changes won’t be lost?

Answer:
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Recall that Promela and spin trace out every possible sequence of state changes. There-
fore, timing is irrelevant: Promela/spin will be quite happy to jam the entire rest of the
model between those two statements unless some state variable specifically prohibits
doing so.

Quick Quiz 11.14:
But what would you do if you needed the statements in a single EXECUTE_MAINLINE()
group to execute non-atomically?

Answer:
The easiest thing to do would be to put each such statement in its own EXECUTE_
MAINLINE() statement.

Quick Quiz 11.15:
But what if the dynticks_nohz() process had “if” or “do” statements with condi-
tions, where the statement bodies of these constructs needed to execute non-atomically?

Answer:
One approach, as we will see in a later section, is to use explicit labels and “goto”
statements. For example, the construct:

if
:: i == 0 -> a = -1;
:: else -> a = -2;
fi;

could be modeled as something like:

EXECUTE_MAINLINE(stmt1,
if
:: i == 0 -> goto stmt1_then;
:: else -> goto stmt1_else;
fi)
stmt1_then: skip;
EXECUTE_MAINLINE(stmt1_then1, a = -1; goto stmt1_end)
stmt1_else: skip;
EXECUTE_MAINLINE(stmt1_then1, a = -2)
stmt1_end: skip;

However, it is not clear that the macro is helping much in the case of the “if”
statement, so these sorts of situations will be open-coded in the following sections.

Quick Quiz 11.16:
Why are lines 45 and 46 (the in_dyntick_irq = 0; and the i++;) executed
atomically?

Answer:
These lines of code pertain to controlling the model, not to the code being modeled, so
there is no reason to model them non-atomically. The motivation for modeling them
atomically is to reduce the size of the state space.
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Quick Quiz 11.17:
What property of interrupts is this dynticks_irq() process unable to model?

Answer:
One such property is nested interrupts, which are handled in the following section.

Quick Quiz 11.18:
Does Paul always write his code in this painfully incremental manner?

Answer:
Not always, but more and more frequently. In this case, Paul started with the smallest
slice of code that included an interrupt handler, because he was not sure how best to
model interrupts in Promela. Once he got that working, he added other features. (But if
he was doing it again, he would start with a “toy” handler. For example, he might have
the handler increment a variable twice and have the mainline code verify that the value
was always even.)

Why the incremental approach? Consider the following, attributed to Brian W.
Kernighan:

Debugging is twice as hard as writing the code in the first place. Therefore,
if you write the code as cleverly as possible, you are, by definition, not
smart enough to debug it.

This means that any attempt to optimize the production of code should place at
least 66% of its emphasis on optimizing the debugging process, even at the expense
of increasing the time and effort spent coding. Incremental coding and testing is one
way to optimize the debugging process, at the expense of some increase in coding effort.
Paul uses this approach because he rarely has the luxury of devoting full days (let alone
weeks) to coding and debugging.

Quick Quiz 11.19:
But what happens if an NMI handler starts running before an irq handler completes, and
if that NMI handler continues running until a second irq handler starts?

Answer:
This cannot happen within the confines of a single CPU. The first irq handler cannot
complete until the NMI handler returns. Therefore, if each of the dynticks and
dynticks_nmi variables have taken on an even value during a given time interval,
the corresponding CPU really was in a quiescent state at some time during that interval.

Quick Quiz 11.20:
This is still pretty complicated. Why not just have a cpumask_t that has a bit set for
each CPU that is in dyntick-idle mode, clearing the bit when entering an irq or NMI
handler, and setting it upon exit?

Answer:
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Although this approach would be functionally correct, it would result in excessive irq
entry/exit overhead on large machines. In contrast, the approach laid out in this section
allows each CPU to touch only per-CPU data on irq and NMI entry/exit, resulting in
much lower irq entry/exit overhead, especially on large machines.

Quick Quiz 11.21:
But x86 has strong memory ordering! Why would you need to formalize its memory
model?

Answer:
Actually, academics consider the x86 memory model to be weak because it can allow
prior stores to be reordered with subsequent loads. From an academic viewpoint, a
strong memory model is one that allows absolutely no reordering, so that all threads
agree on the order of all operations visible to them.

Quick Quiz 11.22:
Why does line 8 of Figure 11.24 initialize the registers? Why not instead initialize them
on lines 4 and 5?

Answer:
Either way works. However, in general, it is better to use initialization than ex-
plicit instructions. The explicit instructions are used in this example to demonstrate
their use. In addition, many of the litmus tests available on the tool’s web site
(http://www.cl.cam.ac.uk/~pes20/ppcmem/) were automatically gener-
ated, which generates explicit initialization instructions.

Quick Quiz 11.23:
But whatever happened to line 17 of Figure 11.24, the one that is the Fail: label?

Answer:
The implementation of powerpc version of atomic_add_return() loops when
the stwcx instruction fails, which it communicates by setting non-zero status in the
condition-code register, which in turn is tested by the bne instruction. Because actually
modeling the loop would result in state-space explosion, we instead branch to the Fail:
label, terminating the model with the initial value of 2 in thread 1’s r3 register, which
will not trigger the exists assertion.

There is some debate about whether this trick is universally applicable, but I have
not seen an example where it fails.

Quick Quiz 11.24:
Does the ARM Linux kernel have a similar bug?

Answer:
ARM does not have this particular bug because that it places smp_mb() before and
after the atomic_add_return() function’s assembly-language implementation.
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PowerPC no longer has this bug; it has long since been fixed. Finding any other bugs
that the Linux kernel might have is left as an exercise for the reader.

F.12 Putting It All Together

Quick Quiz 12.1:
Why on earth did we need that global lock in the first place?

Answer:
A given thread’s __thread variables vanish when that thread exits. It is therefore nec-
essary to synchronize any operation that accesses other threads’ __thread variables
with thread exit. Without such synchronization, accesses to __thread variable of a
just-exited thread will result in segmentation faults.

Quick Quiz 12.2:
Just what is the accuracy of read_count(), anyway?

Answer:
Refer to Figure 4.9 on Page 51. Clearly, if there are no concurrent invocations of
inc_count(), read_count() will return an exact result. However, if there are
concurrent invocations of inc_count(), then the sum is in fact changing as read_
count() performs its summation. That said, because thread creation and exit are
excluded by final_mutex, the pointers in counterp remain constant.

Let’s imagine a mythical machine that is able to take an instantaneous snapshot
of its memory. Suppose that this machine takes such a snapshot at the beginning of
read_count()’s execution, and another snapshot at the end of read_count()’s
execution. Then read_count() will access each thread’s counter at some time
between these two snapshots, and will therefore obtain a result that is bounded by those
of the two snapshots, inclusive. The overall sum will therefore be bounded by the pair of
sums that would have been obtained from each of the two snapshots (again, inclusive).

The expected error is therefore half of the difference between the pair of sums
that would have been obtained from each of the two snapshots, that is to say, half of
the execution time of read_count() multiplied by the number of expected calls to
inc_count() per unit time.

Or, for those who prefer equations:

ε =
TrRi

2
(F.8)

where ε is the expected error in read_count()’s return value, Tr is the time that
read_count() takes to execute, and Ri is the rate of inc_count() calls per unit
time. (And of course, Tr and Ri should use the same units of time: microseconds and
calls per microsecond, seconds and calls per second, or whatever, as long as they are the
same units.)

Quick Quiz 12.3:
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Hey!!! Line 45 of Figure 12.1 modifies a value in a pre-existing countarray struc-
ture! Didn’t you say that this structure, once made available to read_count(),
remained constant???

Answer:
Indeed I did say that. And it would be possible to make count_register_thread()
allocate a new structure, much as count_unregister_thread() currently does.

But this is unnecessary. Recall the derivation of the error bounds of read_
count() that was based on the snapshots of memory. Because new threads start
with initial counter values of zero, the derivation holds even if we add a new thread
partway through read_count()’s execution. So, interestingly enough, when adding
a new thread, this implementation gets the effect of allocating a new structure, but
without actually having to do the allocation.

Quick Quiz 12.4:
Wow! Figure 12.1 contains 69 lines of code, compared to only 42 in Figure 4.9. Is this
extra complexity really worth it?

Answer:
This of course needs to be decided on a case-by-case basis. If you need an implemen-
tation of read_count() that scales linearly, then the lock-based implementation
shown in Figure 4.9 simply will not work for you. On the other hand, if calls to count_
read() are sufficiently rare, then the lock-based version is simpler and might thus be
better, although much of the size difference is due to the structure definition, memory
allocation, and NULL return checking.

Of course, a better question is "why doesn’t the language implement cross-thread
access to __thread variables?" After all, such an implementation would make both the
locking and the use of RCU unnecessary. This would in turn enable an implementation
that was even simpler than the one shown in Figure 4.9, but with all the scalability and
performance benefits of the implementation shown in Figure 12.1!

Quick Quiz 12.5:
But cant’t the approach shown in Figure 12.5 result in extra cache misses, in turn
resulting in additional read-side overhead?

Answer:
Indeed it can.

One way to avoid this cache-miss overhead is shown in Figure F.9: Simply embed
an instance of a measurement structure named meas into the animal structure,
and point the ->mp field at this ->meas field.

Measurement updates can then be carried out as follows:

1. Allocate a new measurement structure and place the new measurements into
it.

2. Use rcu_assign_pointer() to point ->mp to this new structure.

3. Wait for a grace period to elapse, for example using either synchronize_
rcu() or call_rcu().
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1 struct measurement {
2 double meas_1;
3 double meas_2;
4 double meas_3;
5 };
6
7 struct animal {
8 char name[40];
9 double age;

10 struct measurement *mp;
11 struct measurement meas;
12 char photo[0]; /* large bitmap. */
13 };

Figure F.9: Localized Correlated Measurement Fields

4. Copy the measurements from the new measurement structure into the embed-
ded ->meas field.

5. Use rcu_assign_pointer() to point ->mp back to the old embedded
->meas field.

6. After another grace period elapses, free up the new measurement field.

This approach uses a heavier weight update procedure to eliminate the extra cache
miss in the common case. The extra cache miss will be incurred only while an update is
actually in progress.

Quick Quiz 12.6:
But how does this scan work while a resizable hash table is being resized? In that case,
neither the old nor the new hash table is guaranteed to contain all the elements in the
hash table!

Answer:
True, resizable hash tables as described in Section 9.4 cannot be fully scanned while
being resized. One simple way around this is to acquire the hashtab structure’s
->ht_lock while scanning, but this prevents more than one scan from proceeding
concurrently.

Another approach is for updates to mutate the old hash table as well as the new one
while resizing is in progress. This would allow scans to find all elements in the old hash
table. Implementing this is left as an exercise for the reader.

F.13 Advanced Synchronization

Quick Quiz 13.1:
How on earth could the assertion on line 21 of the code in Figure 13.3 on page 346
possibly fail?

Answer:
The key point is that the intuitive analysis missed is that there is nothing preventing the
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assignment to C from overtaking the assignment to A as both race to reach thread2().
This is explained in the remainder of this section.

Quick Quiz 13.2:
Great... So how do I fix it?

Answer:
The easiest fix is to replace the barrier() on line 12 with an smp_mb().

Quick Quiz 13.3:
What assumption is the code fragment in Figure 13.4 making that might not be valid on
real hardware?

Answer:
The code assumes that as soon as a given CPU stops seeing its own value, it will imme-
diately see the final agreed-upon value. On real hardware, some of the CPUs might well
see several intermediate results before converging on the final value.

Quick Quiz 13.4:
How could CPUs possibly have different views of the value of a single variable at the
same time?

Answer:
Many CPUs have write buffers that record the values of recent writes, which are applied
once the corresponding cache line makes its way to the CPU. Therefore, it is quite
possible for each CPU to see a different value for a given variable at a single point in
time — and for main memory to hold yet another value. One of the reasons that memory
barriers were invented was to allow software to deal gracefully with situations like this
one.

Quick Quiz 13.5:
Why do CPUs 2 and 3 come to agreement so quickly, when it takes so long for CPUs 1
and 4 to come to the party?

Answer:
CPUs 2 and 3 are a pair of hardware threads on the same core, sharing the same cache
hierarchy, and therefore have very low communications latencies. This is a NUMA, or,
more accurately, a NUCA effect.

This leads to the question of why CPUs 2 and 3 ever disagree at all. One possible
reason is that they each might have a small amount of private cache in addition to a
larger shared cache. Another possible reason is instruction reordering, given the short
10-nanosecond duration of the disagreement and the total lack of memory barriers in
the code fragment.
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Quick Quiz 13.6:
But if the memory barriers do not unconditionally force ordering, how the heck can a
device driver reliably execute sequences of loads and stores to MMIO registers?

Answer:
MMIO registers are special cases: because they appear in uncached regions of physical
memory. Memory barriers do unconditionally force ordering of loads and stores to
uncached memory. See Section @@@ for more information on memory barriers and
MMIO regions.

Quick Quiz 13.7:
How do we know that modern hardware guarantees that at least one of the loads will
see the value stored by the other thread in the ears-to-mouths scenario?

Answer:
The scenario is as follows, with A and B both initially zero:

CPU 0: A=1; smp_mb(); r1=B;
CPU 1: B=1; smp_mb(); r2=A;
If neither of the loads see the corresponding store, when both CPUs finish, both r1

and r2 will be equal to zero. Let’s suppose that r1 is equal to zero. Then we know that
CPU 0’s load from B happened before CPU 1’s store to B: After all, we would have
had r1 equal to one otherwise. But given that CPU 0’s load from B happened before
CPU 1’s store to B, memory-barrier pairing guarantees that CPU 0’s store to A happens
before CPU 1’s load from A, which in turn guarantees that r2 will be equal to one, not
zero.

Therefore, at least one of r1 and r2 must be nonzero, which means that at least one
of the loads saw the value from the corresponding store, as claimed.

Quick Quiz 13.8:
How can the other “Only one store” entries in Table 13.1 be used?

Answer:
For combination 2, if CPU 1’s load from B sees a value prior to CPU 2’s store to B, then
we know that CPU 2’s load from A will return the same value as CPU 1’s load from A,
or some later value.

For combination 4, if CPU 2’s load from B sees the value from CPU 1’s store to B,
then we know that CPU 2’s load from A will return the same value as CPU 1’s load
from A, or some later value.

For combination 8, if CPU 2’s load from A sees CPU 1’s store to A, then we know
that CPU 1’s load from B will return the same value as CPU 2’s load from A, or some
later value.

Quick Quiz 13.9:
How could the assertion b==2 on page 353 possibly fail?

Answer:
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If the CPU is not required to see all of its loads and stores in order, then the b=1+a
might well see an old version of the variable “a”.

This is why it is so very important that each CPU or thread see all of its own loads
and stores in program order.

Quick Quiz 13.10:
How could the code on page 353 possibly leak memory?

Answer:
Only the first execution of the critical section should see p==NULL. However, if there
is no global ordering of critical sections for mylock, then how can you say that a
particular one was first? If several different executions of that critical section thought
that they were first, they would all see p==NULL, and they would all allocate memory.
All but one of those allocations would be leaked.

This is why it is so very important that all the critical sections for a given exclusive
lock appear to execute in some well-defined order.

Quick Quiz 13.11:
How could the code on page 353 possibly count backwards?

Answer:
Suppose that the counter started out with the value zero, and that three executions of the
critical section had therefore brought its value to three. If the fourth execution of the
critical section is not constrained to see the most recent store to this variable, it might
well see the original value of zero, and therefore set the counter to one, which would be
going backwards.

This is why it is so very important that loads from a given variable in a given critical
section see the last store from the last prior critical section to store to that variable.

Quick Quiz 13.12:
What effect does the following sequence have on the order of stores to variables “a” and
“b”?
a = 1;
b = 1;
<write barrier>

Answer:
Absolutely none. This barrier would ensure that the assignments to “a” and “b” hap-
pened before any subsequent assignments, but it does nothing to enforce any order of
assignments to “a” and “b” themselves.

Quick Quiz 13.13:
What sequence of LOCK-UNLOCK operations would act as a full memory barrier?

Answer:
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A series of two back-to-back LOCK-UNLOCK operations, or, somewhat less conven-
tionally, an UNLOCK operation followed by a LOCK operation.

Quick Quiz 13.14:
What (if any) CPUs have memory-barrier instructions from which these semi-permeable
locking primitives might be constructed?

Answer:
Itanium is one example. The identification of any others is left as an exercise for the
reader.

Quick Quiz 13.15:
Given that operations grouped in curly braces are executed concurrently, which of the
rows of Table 13.2 are legitimate reorderings of the assignments to variables “A” through
“F” and the LOCK/UNLOCK operations? (The order in the code is A, B, LOCK, C, D,
UNLOCK, E, F.) Why or why not?

Answer:

1. Legitimate, executed in order.

2. Legitimate, the lock acquisition was executed concurrently with the last assign-
ment preceding the critical section.

3. Illegitimate, the assignment to “F” must follow the LOCK operation.

4. Illegitimate, the LOCK must complete before any operation in the critical sec-
tion. However, the UNLOCK may legitimately be executed concurrently with
subsequent operations.

5. Legitimate, the assignment to “A” precedes the UNLOCK, as required, and all
other operations are in order.

6. Illegitimate, the assignment to “C” must follow the LOCK.

7. Illegitimate, the assignment to “D” must precede the UNLOCK.

8. Legitimate, all assignments are ordered with respect to the LOCK and UNLOCK
operations.

9. Illegitimate, the assignment to “A” must precede the UNLOCK.

Quick Quiz 13.16:
What are the constraints for Table 13.3?

Answer:
All CPUs must see the following ordering constraints:

1. LOCK M precedes B, C, and D.
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2. UNLOCK M follows A, B, and C.

3. LOCK Q precedes F, G, and H.

4. UNLOCK Q follows E, F, and G.

F.14 Ease of Use

Quick Quiz 14.1:
Can a similar algorithm be used when deleting elements?

Answer:
Yes. However, since each thread must hold the locks of three consecutive elements to
delete the middle one, if there are N threads, there must be 2N +1 elements (rather than
just N +1) in order to avoid deadlock.

Quick Quiz 14.2:
Yetch! What ever possessed someone to come up with an algorithm that deserves to be
shaved as much as this one does???

Answer:
That would be Paul.

He was considering the Dining Philosopher’s Problem, which involves a rather
unsanitary spaghetti dinner attended by five philosophers. Given that there are five
plates and but five forks on the table, and given that each philosopher requires two forks
at a time to eat, one is supposed to come up with a fork-allocation algorithm that avoids
deadlock. Paul’s response was “Sheesh! Just get five more forks!”.

This in itself was OK, but Paul then applied this same solution to circular linked
lists.

This would not have been so bad either, but he had to go and tell someone about it!

Quick Quiz 14.3:
Give an exception to this rule.

Answer:
One exception would be a difficult and complex algorithm that was the only one known
to work in a given situation. Another exception would be a difficult and complex algo-
rithm that was nonetheless the simplest of the set known to work in a given situation.
However, even in these cases, it may be very worthwhile to spend a little time trying to
come up with a simpler algorithm! After all, if you managed to invent the first algorithm
to do some task, it shouldn’t be that hard to go on to invent a simpler one.
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F.15 Conflicting Visions of the Future

Quick Quiz 15.1:
What about non-persistent primitives represented by data structures in mmap() regions
of memory? What happens when there is an exec() within a critical section of such a
primitive?

Answer:
If the exec()ed program maps those same regions of memory, then this program could
in principle simply release the lock. The question as to whether this approach is sound
from a software-engineering viewpoint is left as an exercise for the reader.

Quick Quiz 15.2:
Why would it matter that oft-written variables shared the cache line with the lock vari-
able?

Answer:
If the lock is in the same cacheline as some of the variables that it is protecting, then
writes to those variables by one CPU will invalidate that cache line for all the other
CPUs. These invalidations will generate large numbers of conflicts and retries, perhaps
even degrading performance and scalability compared to locking.

Quick Quiz 15.3:
Why are relatively small updates important to HTM performance and scalability?

Answer:
The larger the updates, the greater the probability of conflict, and thus the greater
probability of retries, which degrade performance.

Quick Quiz 15.4:
How could a red-black tree possibly efficiently enumerate all elements of the tree re-
gardless of choice of synchronization mechanism???

Answer:
In many cases, the enumeration need not be exact. In these cases, hazard pointers or
RCU may be used to protect readers with low probability of conflict with any given
insertion or deletion.

Quick Quiz 15.5:
But why can’t a debugger emulate single stepping by setting breakpoints at successive
lines of the transaction, relying on the retry to retrace the steps of the earlier instances
of the transaction?
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Answer:
This scheme might work with reasonably high probability, but it can fail in ways that
would be quite surprising to most users. To see this, consider the following transaction:

1 begin_trans();
2 if (a) {
3 do_one_thing();
4 do_another_thing();
5 } else {
6 do_a_third_thing();
7 do_a_fourth_thing();
8 }
9 end_trans();

Suppose that the user sets a breakpoint at line 3, which triggers, aborting the
transaction and entering the debugger. Suppose that between the time that the breakpoint
triggers and the debugger gets around to stopping all the threads, some other thread sets
the value of a to zero. When the poor user attempts to single-step the program, surprise!
The program is now in the else-clause instead of the then-clause.

This is not what I call an easy-to-use debugger.

Quick Quiz 15.6:
But why would anyone need an empty lock-based critical section???

Answer:
See the answer to the Quick Quiz in Section 6.2.1.

However, it is claimed that given a strongly atomic HTM implementation without
forward-progress guarantees, any memory-based locking design based on empty critical
sections will operate correctly in the presence of transactional lock elision. Although I
have not seen a proof of this statement, there is a straightforward rationale for this claim.
The main idea is that in a strongly atomic HTM implementation, the results of a given
transaction are not visible until after the transaction completes successfully. Therefore,
if you can see that a transaction has started, it is guaranteed to have already completed,
which means that a subsequent empty lock-based critical section will successfully “wait”
on it—after all, there is no waiting required.

This line of reasoning does not apply to weakly atomic systems (including many
STM implementation), and it also does not apply to lock-based programs that use
means other than memory to communicate. One such means is the passage of time (for
example, in hard real-time systems) or flow of priority (for example, in soft real-time
systems).

Locking designs that rely on priority boosting are of particular interest.

Quick Quiz 15.7:
Can’t transactional lock elision trivially handle locking’s time-based messaging seman-
tics by simply choosing not to elide empty lock-based critical sections?

Answer:
It could do so, but this would be both unnecessary and insufficient.

It would be unnecessary in cases where the empty critical section was due to
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conditional compilation. Here, it might well be that the only purpose of the lock was to
protect data, so eliding it completely would be the right thing to do. In fact, leaving the
empty lock-based critical section would degrade performance and scalability.

On the other hand, it is possible for a non-empty lock-based critical section to be
relying on both the data-protection and time-based and messaging semantics of locking.
Using transactional lock elision in such a case would be incorrect, and would result in
bugs.

Quick Quiz 15.8:
Given modern hardware [MOZ09], how can anyone possibly expect parallel software
relying on timing to work?

Answer:
The short answer is that on commonplace commodity hardware, synchronization designs
based on any sort of fine-grained timing are foolhardy and cannot be expected to operate
correctly under all conditions.

That said, there are systems designed for hard real-time use that are much more
deterministic. In the (very unlikely) event that you are using such a system, here is
a toy example showing how time-based synchronization can work. Again, do not try
this on commodity microprocessors, as they have highly nondeterministic performance
characteristics.

This example uses multiple worker threads along with a control thread. Each worker
thread corresponds to an outbound data feed, and records the current time (for example,
from the clock_gettime() system call) in a per-thread my_timestamp variable
after executing each unit of work. The real-time nature of this example results in the
following set of constraints:

1. It is a fatal error for a given worker thread to fail to update its timestamp for a
time period of more than MAX_LOOP_TIME.

2. Locks are used sparingly to access and update global state. item Locks are granted
in strict FIFO order within a given thread priority.

When worker threads complete their feed, they must disentangle themselves from
the rest of the application and place a status value in a per-thread my_status variable
that is initialized to -1. Threads do not exit; they instead are placed on a thread pool to
accommodate later processing requirements. The control thread assigns (and re-assigns)
worker threads as needed, and also maintains a histogram of thread statuses. The control
thread runs at a real-time priority no higher than that of the worker threads.

Worker threads’ code is as follows:
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1 int my_status = -1; /* Thread local. */
2
3 while (continue_working()) {
4 enqueue_any_new_work();
5 wp = dequeue_work();
6 do_work(wp);
7 my_timestamp = clock_gettime(...);
8 }
9
10 acquire_lock(&departing_thread_lock);
11
12 /*
13 * Disentangle from application, might
14 * acquire other locks, can take much longer
15 * than MAX_LOOP_TIME, especially if many
16 * threads exit concurrently.
17 */
18 my_status = get_return_status();
19 release_lock(&departing_thread_lock);
20
21 /* thread awaits repurposing. */

The control thread’s code is as follows:

1 for (;;) {
2 for_each_thread(t) {
3 ct = clock_gettime(...);
4 d = ct - per_thread(my_timestamp, t);
5 if (d >= MAX_LOOP_TIME) {
6 /* thread departing. */
7 acquire_lock(&departing_thread_lock);
8 release_lock(&departing_thread_lock);
9 i = per_thread(my_status, t);
10 status_hist[i]++; /* Bug if TLE! */
11 }
12 }
13 /* Repurpose threads as needed. */
14 }

Line 5 uses the passage of time to deduce that the thread has exited, executing
lines 6-10 if so. The empty lock-based critical section on lines 7 and 8 guarantees that
any thread in the process of exiting completes (remember that locks are granted in FIFO
order!).

Once again, do not try this sort of thing on commodity microprocessors. After all, it
is difficult enough to get right on systems specifically designed for hard real-time use!

Quick Quiz 15.9:
But the boostee() function in Figure 15.12 alternatively acquires its locks in reverse
order! Won’t this result in deadlock?

Answer:
No deadlock will result. To arrive at deadlock, two different threads must each acquire
the two locks in oppposite orders, which does not happen in this example. However,
deadlock detectors such as lockdep [Cor06a] will flag this as a false positive.

F.16 Important Questions

Quick Quiz A.1:
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What SMP coding errors can you see in these examples? See time.c for full code.

Answer:

1. Missing barrier() or volatile on tight loops.

2. Missing Memory barriers on update side.

3. Lack of synchronization between producer and consumer.

Quick Quiz A.2:
How could there be such a large gap between successive consumer reads? See timelocked.
c for full code.

Answer:

1. The consumer might be preempted for long time periods.

2. A long-running interrupt might delay the consumer.

3. The producer might also be running on a faster CPU than is the consumer (for
example, one of the CPUs might have had to decrease its clock frequency due to
heat-dissipation or power-consumption constraints).

F.17 Synchronization Primitives

Quick Quiz B.1:
Give an example of a parallel program that could be written without synchronization
primitives.

Answer:
There are many examples. One of the simplest would be a parametric study using a
single independent variable. If the program run_study took a single argument, then
we could use the following bash script to run two instances in parallel, as might be
appropriate on a two-CPU system:

run_study 1 > 1.out& run_study 2 > 2.out; wait

One could of course argue that the bash ampersand operator and the “wait” primitive
are in fact synchronization primitives. If so, then consider that this script could be run
manually in two separate command windows, so that the only synchronization would be
supplied by the user himself or herself.

Quick Quiz B.2:
What problems could occur if the variable counter were incremented without the
protection of mutex?
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Answer:
On CPUs with load-store architectures, incrementing counter might compile into
something like the following:

LOAD counter,r0
INC r0
STORE r0,counter

On such machines, two threads might simultaneously load the value of counter,
each increment it, and each store the result. The new value of counter will then only
be one greater than before, despite two threads each incrementing it.

Quick Quiz B.3:
How could you work around the lack of a per-thread-variable API on systems that do
not provide it?

Answer:
One approach would be to create an array indexed by smp_thread_id(), and an-
other would be to use a hash table to map from smp_thread_id() to an array index
— which is in fact what this set of APIs does in pthread environments.

Another approach would be for the parent to allocate a structure containing fields
for each desired per-thread variable, then pass this to the child during thread creation.
However, this approach can impose large software-engineering costs in large systems.
To see this, imagine if all global variables in a large system had to be declared in a single
file, regardless of whether or not they were C static variables!

F.18 Why Memory Barriers?

Quick Quiz C.1:
Where does a writeback message originate from and where does it go to?

Answer:
The writeback message originates from a given CPU, or in some designs from a given
level of a given CPU’s cache—or even from a cache that might be shared among several
CPUs. The key point is that a given cache does not have room for a given data item, so
some other piece of data must be ejected from the cache to make room. If there is some
other piece of data that is duplicated in some other cache or in memory, then that piece
of data may be simply discarded, with no writeback message required.

On the other hand, if every piece of data that might be ejected has been modified
so that the only up-to-date copy is in this cache, then one of those data items must be
copied somewhere else. This copy operation is undertaken using a “writeback message”.

The destination of the writeback message has to be something that is able to store
the new value. This might be main memory, but it also might be some other cache. If it
is a cache, it is normally a higher-level cache for the same CPU, for example, a level-1
cache might write back to a level-2 cache. However, some hardware designs permit
cross-CPU writebacks, so that CPU 0’s cache might send a writeback message to CPU 1.
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This would normally be done if CPU 1 had somehow indicated an interest in the data,
for example, by having recently issued a read request.

In short, a writeback message is sent from some part of the system that is short of
space, and is received by some other part of the system that can accommodate the data.

Quick Quiz C.2:
What happens if two CPUs attempt to invalidate the same cache line concurrently?

Answer:
One of the CPUs gains access to the shared bus first, and that CPU “wins”. The other
CPU must invalidate its copy of the cache line and transmit an “invalidate acknowledge”
message to the other CPU.
Of course, the losing CPU can be expected to immediately issue a “read invalidate”
transaction, so the winning CPU’s victory will be quite ephemeral.

Quick Quiz C.3:
When an “invalidate” message appears in a large multiprocessor, every CPU must give
an “invalidate acknowledge” response. Wouldn’t the resulting “storm” of “invalidate
acknowledge” responses totally saturate the system bus?

Answer:
It might, if large-scale multiprocessors were in fact implemented that way. Larger
multiprocessors, particularly NUMA machines, tend to use so-called “directory-based”
cache-coherence protocols to avoid this and other problems.

Quick Quiz C.4:
If SMP machines are really using message passing anyway, why bother with SMP at
all?

Answer:
There has been quite a bit of controversy on this topic over the past few decades. One
answer is that the cache-coherence protocols are quite simple, and therefore can be
implemented directly in hardware, gaining bandwidths and latencies unattainable by
software message passing. Another answer is that the real truth is to be found in eco-
nomics due to the relative prices of large SMP machines and that of clusters of smaller
SMP machines. A third answer is that the SMP programming model is easier to use than
that of distributed systems, but a rebuttal might note the appearance of HPC clusters
and MPI. And so the argument continues.

Quick Quiz C.5:
How does the hardware handle the delayed transitions described above?

Answer:
Usually by adding additional states, though these additional states need not be actually
stored with the cache line, due to the fact that only a few lines at a time will be transi-
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tioning. The need to delay transitions is but one issue that results in real-world cache
coherence protocols being much more complex than the over-simplified MESI protocol
described in this appendix. Hennessy and Patterson’s classic introduction to computer
architecture [HP95] covers many of these issues.

Quick Quiz C.6:
What sequence of operations would put the CPUs’ caches all back into the “invalid”
state?

Answer:
There is no such sequence, at least in absence of special “flush my cache” instructions
in the CPU’s instruction set. Most CPUs do have such instructions.

Quick Quiz C.7:
But if the main purpose of store buffers is to hide acknowledgment latencies in multi-
processor cache-coherence protocols, why do uniprocessors also have store buffers?

Answer:
Because the purpose of store buffers is not just to hide acknowledgement latencies
in multiprocessor cache-coherence protocols, but to hide memory latencies in gen-
eral. Because memory is much slower than is cache on uniprocessors, store buffers on
uniprocessors can help to hide write-miss latencies.

Quick Quiz C.8:
In step 1 above, why does CPU 0 need to issue a “read invalidate” rather than a simple
“invalidate”?

Answer:
Because the cache line in question contains more than just the variable a.

Quick Quiz C.9:
In step 1 of the first scenario in Section C.4.3, why is an “invalidate” sent instead of a
”read invalidate” message? Doesn’t CPU 0 need the values of the other variables that
share this cache line with “a”?

Answer:
CPU 0 already has the values of these variables, given that it has a read-only copy of the
cache line containing “a”. Therefore, all CPU 0 need do is to cause the other CPUs to
discard their copies of this cache line. An “invalidate” message therefore suffices.

Quick Quiz C.10:
Say what??? Why do we need a memory barrier here, given that the CPU cannot
possibly execute the assert() until after the while loop completes?
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Answer:
CPUs are free to speculatively execute, which can have the effect of executing the
assertion before the while loop completes. Furthermore, compilers normally assume
that only the currently executing thread is updating the variables, and this assumption
allows the compiler to hoist the load of a to precede the loop.

In fact, some compilers would transform the loop to a branch around an infinite loop
as follows:

1 void foo(void)
2 {
3 a = 1;
4 smp_mb();
5 b = 1;
6 }
7
8 void bar(void)
9 {

10 if (b == 0)
11 for (;;)
12 continue;
13 smp_mb();
14 assert(a == 1);
15 }

Given this optimization, the assertion could clearly fire. You should use volatile
casts or (where available) C++ relaxed atomics to prevent the compiler from optimizing
your parallel code into oblivion.

In short, both compilers and CPUs are quite aggressive about optimizing, so you
must clearly communicate your constraints to them, using compiler directives and
memory barriers.

Quick Quiz C.11:
Does the guarantee that each CPU sees its own memory accesses in order also guarantee
that each user-level thread will see its own memory accesses in order? Why or why not?

Answer:
No. Consider the case where a thread migrates from one CPU to another, and where
the destination CPU perceives the source CPU’s recent memory operations out of order.
To preserve user-mode sanity, kernel hackers must use memory barriers in the context-
switch path. However, the locking already required to safely do a context switch should
automatically provide the memory barriers needed to cause the user-level task to see
its own accesses in order. That said, if you are designing a super-optimized scheduler,
either in the kernel or at user level, please keep this scenario in mind!

Quick Quiz C.12:
Could this code be fixed by inserting a memory barrier between CPU 1’s “while” and
assignment to “c”? Why or why not?

Answer:
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No. Such a memory barrier would only force ordering local to CPU 1. It would have no
effect on the relative ordering of CPU 0’s and CPU 1’s accesses, so the assertion could
still fail. However, all mainstream computer systems provide one mechanism or another
to provide “transitivity”, which provides intuitive causal ordering: if B saw the effects
of A’s accesses, and C saw the effects of B’s accesses, then C must also see the effects
of A’s accesses. In short, hardware designers have taken at least a little pity on software
developers.

Quick Quiz C.13:
Suppose that lines 3-5 for CPUs 1 and 2 in Table C.4 are in an interrupt handler, and
that the CPU 2’s line 9 is run at process level. What changes, if any, are required to
enable the code to work correctly, in other words, to prevent the assertion from firing?

Answer:
The assertion will need to written to ensure that the load of “e” precedes that of “a”. In
the Linux kernel, the barrier() primitive may be used to accomplish this in much the
same way that the memory barrier was used in the assertions in the previous examples.

Quick Quiz C.14:
If CPU 2 executed an assert(e==0||c==1) in the example in Table C.4, would
this assert ever trigger?

Answer:
The result depends on whether the CPU supports “transitivity.” In other words, CPU 0
stored to “e” after seeing CPU 1’s store to “c”, with a memory barrier between CPU 0’s
load from “c” and store to “e”. If some other CPU sees CPU 0’s store to “e”, is it also
guaranteed to see CPU 1’s store?

All CPUs I am aware of claim to provide transitivity.

Quick Quiz C.15:
Why is Alpha’s smp_read_barrier_depends() an smp_mb() rather than smp_
rmb()?

Answer:
First, Alpha has only mb and wmb instructions, so smp_rmb() would be implemented
by the Alpha mb instruction in either case.

More importantly, smp_read_barrier_depends() must order subsequent
stores. For example, consider the following code:

1 p = global_pointer;
2 smp_read_barrier_depends();
3 if (do_something_with(p->a, p->b) == 0)
4 p->hey_look = 1;

Here the store to p->hey_look must be ordered, not just the loads from p->a
and p->b.
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F.19 Read-Copy Update Implementations

Quick Quiz D.1:
Why is sleeping prohibited within Classic RCU read-side critical sections?

Answer:
Because sleeping implies a context switch, which in Classic RCU is a quiescent state,
and RCU’s grace-period detection requires that quiescent states never appear in RCU
read-side critical sections.

Quick Quiz D.2:
Why not permit sleeping in Classic RCU read-side critical sections by eliminating
context switch as a quiescent state, leaving user-mode execution and idle loop as the
remaining quiescent states?

Answer:
This would mean that a system undergoing heavy kernel-mode execution load (e.g., due
to kernel threads) might never complete a grace period, which would cause it to exhaust
memory sooner or later.

Quick Quiz D.3:
Why is it OK to assume that updates separated by synchronize_sched() will be
performed in order?

Answer:
Because this property is required for the synchronize_sched() aspect of RCU to
work at all. For example, consider a code sequence that removes an object from a list,
invokes synchronize_sched(), then frees the object. If this property did not hold,
then that object might appear to be freed before it was removed from the list, which is
precisely the situation that synchronize_sched() is supposed to prevent!

Quick Quiz D.4:
Why must line 17 in synchronize_srcu() (Figure D.10) precede the release of
the mutex on line 18? What would have to change to permit these two lines to be
interchanged? Would such a change be worthwhile? Why or why not?

Answer:
Suppose that the order was reversed, and that CPU 0 has just reached line 13 of
synchronize_srcu(), while both CPU 1 and CPU 2 start executing another
synchronize_srcu() each, and CPU 3 starts executing a srcu_read_lock().
Suppose that CPU 1 reaches line 6 of synchronize_srcu() just before CPU 0
increments the counter on line 13. Most importantly, suppose that CPU 3 executes
srcu_read_lock() out of order with the following SRCU read-side critical section,
so that it acquires a reference to some SRCU-protected data structure before CPU 0
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increments sp->completed, but executes the srcu_read_lock() after CPU 0
does this increment.

Then CPU 0 will not wait for CPU 3 to complete its SRCU read-side critical section
before exiting the “while” loop on lines 15-16 and releasing the mutex (remember, the
CPU could be reordering the code).

Now suppose that CPU 2 acquires the mutex next, and again increments sp->completed.
This CPU will then have to wait for CPU 3 to exit its SRCU read-side critical section
before exiting the loop on lines 15-16 and releasing the mutex. But suppose that CPU 3
again executes out of order, completing the srcu_read_unlock() prior to execut-
ing a final reference to the pointer it obtained when entering the SRCU read-side critical
section.

CPU 1 will then acquire the mutex, but see that the sp->completed counter has
incremented twice, and therefore take the early exit. The caller might well free up the
element that CPU 3 is still referencing (due to CPU 3’s out-of-order execution).

To prevent this perhaps improbable, but entirely possible, scenario, the final synchronize_sched()
must precede the mutex release in synchronize_srcu().

Another approach would be to change to comparison on line 7 of synchronize_srcu()
to check for at least three increments of the counter. However, such a change would
increase the latency of a “bulk update” scenario, where a hash table is being updated or
unloaded using multiple threads. In the current code, the latency of the resulting con-
current synchronize_srcu() calls would take at most two SRCU grace periods,
while with this change, three would be required.

More experience will be required to determine which approach is really better. For
one thing, there must first be some use of SRCU with multiple concurrent updaters.

Quick Quiz D.5:
Wait a minute! With all those new locks, how do you avoid deadlock?

Answer:
Deadlock is avoided by never holding more than one of the rcu_node structures’
locks at a given time. This algorithm uses two more locks, one to prevent CPU hotplug
operations from running concurrently with grace-period advancement (onofflock)
and another to permit only one CPU at a time from forcing a quiescent state to end
quickly (fqslock). These are subject to a locking hierarchy, so that fqslock must
be acquired before onofflock, which in turn must be acquired before any of the
rcu_node structures’ locks.

Also, as a practical matter, refusing to ever hold more than one of the rcu_node
locks means that it is unnecessary to track which ones are held. Such tracking would be
painful as well as unnecessary.

Quick Quiz D.6:
Why stop at a 64-times reduction? Why not go for a few orders of magnitude instead?

Answer:
RCU works with no problems on systems with a few hundred CPUs, so allowing 64
CPUs to contend on a single lock leaves plenty of headroom. Keep in mind that these
locks are acquired quite rarely, as each CPU will check in about one time per grace

693



period, and grace periods extend for milliseconds.

Quick Quiz D.7:
But I don’t care about McKenney’s lame excuses in the answer to Quick Quiz 2!!! I want
to get the number of CPUs contending on a single lock down to something reasonable,
like sixteen or so!!!

Answer:
OK, have it your way, then! Set CONFIG_RCU_FANOUT=16 and (for NR_CPUS=4096)
you will get a three-level hierarchy with with 256 rcu_node structures at the lowest
level, 16 rcu_node structures as intermediate nodes, and a single root-level rcu_
node. The penalty you will pay is that more rcu_node structures will need to be
scanned when checking to see which CPUs need help completing their quiescent states
(256 instead of only 64).

Quick Quiz D.8:
OK, so what is the story with the colors?

Answer:
Data structures analogous to rcu_state (including rcu_ctrlblk) are yellow,
those containing the bitmaps used to determine when CPUs have checked in are pink,
and the per-CPU rcu_data structures are blue. The data structures used to conserve
energy (such as rcu_dynticks) will be colored green.

Quick Quiz D.9:
Given such an egregious bug, why does Linux run at all?

Answer:
Because the Linux kernel contains device drivers that are (relatively) well behaved. Few
if any of them spin in RCU read-side critical sections for the many milliseconds that
would be required to provoke this bug. The bug nevertheless does need to be fixed, and
this variant of RCU does fix it.

Quick Quiz D.10:
But doesn’t this state diagram indicate that dyntick-idle CPUs will get hit with resched-
ule IPIs? Won’t that wake them up?

Answer:
No. Keep in mind that RCU is handling groups of CPUs. One particular group might
contain both dyntick-idle CPUs and CPUs in normal mode that have somehow managed
to avoid passing through a quiescent state. Only the latter group will be sent a reschedule
IPI; the dyntick-idle CPUs will merely be marked as being in an extended quiescent
state.
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Quick Quiz D.11:
But what happens if a CPU tries to report going through a quiescent state (by clearing
its bit) before the bit-setting CPU has finished?

Answer:
There are three cases to consider here:

1. A CPU corresponding to a non-yet-initialized leaf rcu_node structure tries to
report a quiescent state. This CPU will see its bit already cleared, so will give up
on reporting its quiescent state. Some later quiescent state will serve for the new
grace period.

2. A CPU corresponding to a leaf rcu_node structure that is currently being
initialized tries to report a quiescent state. This CPU will see that the rcu_node
structure’s ->lock is held, so will spin until it is released. But once the lock
is released, the rcu_node structure will have been initialized, reducing to the
following case.

3. A CPU corresponding to a leaf rcu_node that has already been initialized tries
to report a quiescent state. This CPU will find its bit set, and will therefore clear
it. If it is the last CPU for that leaf node, it will move up to the next level of the
hierarchy. However, this CPU cannot possibly be the last CPU in the system to
report a quiescent state, given that the CPU doing the initialization cannot yet
have checked in.

So, in all three cases, the potential race is resolved correctly.

Quick Quiz D.12:
And what happens if all CPUs try to report going through a quiescent state before the
bit-setting CPU has finished, thus ending the new grace period before it starts?

Answer:
The bit-setting CPU cannot pass through a quiescent state during initialization, as it
has irqs disabled. Its bits therefore remain non-zero, preventing the grace period from
ending until the data structure has been fully initialized.

Quick Quiz D.13:
And what happens if one CPU comes out of dyntick-idle mode and then passed through
a quiescent state just as another CPU notices that the first CPU was in dyntick-idle
mode? Couldn’t they both attempt to report a quiescent state at the same time, resulting
in confusion?

Answer:
They will both attempt to acquire the lock on the same leaf rcu_node structure. The
first one to acquire the lock will report the quiescent state and clear the appropriate bit,
and the second one to acquire the lock will see that this bit has already been cleared.

Quick Quiz D.14:
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But what if all the CPUs end up in dyntick-idle mode? Wouldn’t that prevent the current
RCU grace period from ever ending?

Answer:
Indeed it will! However, CPUs that have RCU callbacks are not permitted to enter
dyntick-idle mode, so the only way that all the CPUs could possibly end up in dyntick-
idle mode would be if there were absolutely no RCU callbacks in the system. And if
there are no RCU callbacks in the system, then there is no need for the RCU grace
period to end. In fact, there is no need for the RCU grace period to even start.

RCU will restart if some irq handler does a call_rcu(), which will cause an
RCU callback to appear on the corresponding CPU, which will force that CPU out of
dyntick-idle mode, which will in turn permit the current RCU grace period to come to
an end.

Quick Quiz D.15:
Given that force_quiescent_state() is a three-phase state machine, don’t we
have triple the scheduling latency due to scanning all the CPUs?

Answer:
Ah, but the three phases will not execute back-to-back on the same CPU, and, further-
more, the first (initialization) phase doesn’t do any scanning. Therefore, the scheduling-
latency hit of the three-phase algorithm is no different than that of a single-phase
algorithm. If the scheduling latency becomes a problem, one approach would be to
recode the state machine to scan the CPUs incrementally, most likely by keeping state
on a per-leaf-rcu_node basis. But first show me a problem in the real world, then I
will consider fixing it!

Quick Quiz D.16:
But the other reason to hold ->onofflock is to prevent multiple concurrent online/of-
fline operations, right?

Answer:
Actually, no! The CPU-hotplug code’s synchronization design prevents multiple con-
current CPU online/offline operations, so only one CPU online/offline operation can
be executing at any given time. Therefore, the only purpose of ->onofflock is to
prevent a CPU online or offline operation from running concurrently with grace-period
initialization.

Quick Quiz D.17:
Given all these acquisitions of the global ->onofflock, won’t there be horrible lock
contention when running with thousands of CPUs?

Answer:
Actually, there can be only three acquisitions of this lock per grace period, and each
grace period lasts many milliseconds. One of the acquisitions is by the CPU initializing
for the current grace period, and the other two onlining and offlining some CPU. These
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latter two cannot run concurrently due to the CPU-hotplug locking, so at most two CPUs
can be contending for this lock at any given time.

Lock contention on ->onofflock should therefore be no problem, even on
systems with thousands of CPUs.

Quick Quiz D.18:
Why not simplify the code by merging the detection of dyntick-idle CPUs with that of
offline CPUs?

Answer:
It might well be that such merging may eventually be the right thing to do. In the
meantime, however, there are some challenges:

1. CPUs are not allowed to go into dyntick-idle mode while they have RCU callbacks
pending, but CPUs are allowed to go offline with callbacks pending. This means
that CPUs going offline need to have their callbacks migrated to some other CPU,
thus, we cannot allow CPUs to simply go quietly offline.

2. Present-day Linux systems run with NR_CPUS much larger than the actual num-
ber of CPUs. A unified approach could thus end up uselessly waiting on CPUs
that are not just offline, but which never existed in the first place.

3. RCU is already operational when CPUs get onlined one at a time during boot, and
therefore must handle the online process. This onlining must exclude grace-period
initialization, so the ->onofflock must still be used.

4. CPUs often switch into and out of dyntick-idle mode extremely frequently, so it
is not reasonable to use the heavyweight online/offline code path for entering and
exiting dyntick-idle mode.

Quick Quiz D.19:
Why not simply disable bottom halves (softirq) when acquiring the rcu_data struc-
ture’s lock? Wouldn’t this be faster?

Answer:
Because this lock can be acquired from functions called by call_rcu(), which in
turn can be invoked from irq handlers. Therefore, irqs must be disabled when holding
this lock.

Quick Quiz D.20:
How about the qsmask and qsmaskinit fields for the leaf rcu_node structures?
Doesn’t there have to be some way to work out which of the bits in these fields corre-
sponds to each CPU covered by the rcu_node structure in question?

Answer:
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Indeed there does! The grpmask field in each CPU’s rcu_data structure does this
job.

Quick Quiz D.21:
But why bother setting qs_pending to one when a CPU is coming online, given that
being offline is an extended quiescent state that should cover any ongoing grace period?

Answer:
Because this helps to resolve a race between a CPU coming online just as a new grace
period is starting.

Quick Quiz D.22:
Why record the last completed grace period number in passed_quiesc_completed?
Doesn’t that cause this RCU implementation to be vulnerable to quiescent states seen
while no grace period was in progress being incorrectly applied to the next grace period
that starts?

Answer:
We record the last completed grace period number in order to avoid races where a
quiescent state noted near the end of one grace period is incorrectly applied to the
next grace period, especially for dyntick and CPU-offline grace periods. Therefore,
force_quiescent_state() and friends all check the last completed grace period
number to avoid such races.

Now these dyntick and CPU-offline grace periods are only checked for when a
grace period is actually active. The only quiescent states that can be recorded when
no grace period is in progress are self-detected quiescent states, which are recorded in
the passed_quiesc_completed, passed_quiesc, and qs_pending. These
variables are initialized every time the corresponding CPU notices that a new grace
period has started, preventing any obsolete quiescent states from being applied to the
new grace period.

All that said, optimizing grace-period latency may require that gpnum be tracked in
addition to completed.

Quick Quiz D.23:
What is the point of running a system with NR_CPUS way bigger than the actual number
of CPUs?

Answer:
Because this allows producing a single binary of the Linux kernel that runs on a wide
variety of systems, greatly easing administration and validation.

Quick Quiz D.24:
Why not simply have multiple lists rather than this funny multi-tailed list?
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Answer:
Because this multi-tailed approach, due to Lai Jiangshan, simplifies callback processing.

Quick Quiz D.25:
So some poor CPU has to note quiescent states on behalf of each and every offline CPU?
Yecch! Won’t that result in excessive overheads in the not-uncommon case of a system
with a small number of CPUs but a large value for NR_CPUS?

Answer:
Actually, no it will not!

Offline CPUs are excluded from both the qsmask and qsmaskinit bit masks,
so RCU normally ignores them. However, there are races with online/offline operations
that can result in an offline CPU having its qsmask bit set. These races must of course
be handled correctly, and the way they are handled is to permit other CPUs to note that
RCU is waiting on a quiescent state from an offline CPU.

Quick Quiz D.26:
So what guards the earlier fields in this structure?

Answer:
Nothing does, as they are constants set at compile time or boot time. Of course, the fields
internal to each rcu_node in the ->node array may change, but they are guarded
separately.

Quick Quiz D.27:
I thought that RCU read-side processing was supposed to be fast! The functions shown
in Figure D.21 have so much junk in them that they just have to be slow! What gives
here?

Answer:
Appearances can be deceiving. The preempt_disable(), preempt_enable(),
local_bh_disable(), and local_bh_enable() each do a single non-atomic
manipulation of local data. Even that assumes CONFIG_PREEMPT, otherwise, the
preempt_disable() and preempt_enable() functions emit no code, not
even compiler directives. The __acquire() and __release() functions emit
no code (not even compiler directives), but are instead used by the sparse semantic-
parsing bug-finding program. Finally, rcu_read_acquire() and rcu_read_
release() emit no code (not even compiler directives) unless the “lockdep” lock-
order debugging facility is enabled, in which case they can indeed be somewhat expen-
sive.

In short, unless you are a kernel hacker who has enabled debugging options, these
functions are extremely cheap, and in some cases, absolutely free of overhead. And, in
the words of a Portland-area furniture retailer, “free is a very good price”.

Quick Quiz D.28:
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Why not simply use __get_cpu_var() to pick up a reference to the current CPU’s
rcu_data structure on line 13 in Figure D.22?

Answer:
Because we might be called either from call_rcu() (in which case we would
need __get_cpu_var(rcu_data)) or from call_rcu_bh() (in which case
we would need __get_cpu_var(rcu_bh_data)). Using the ->rda[] array of
whichever rcu_state structure we were passed works correctly regardless of which
API __call_rcu() was invoked from (suggested by Lai Jiangshan [Jia08]).

Quick Quiz D.29:
Given that rcu_pending() is always called twice on lines 29-32 of Figure D.23,
shouldn’t there be some way to combine the checks of the two structures?

Answer:
Sorry, but this was a trick question. The C language’s short-circuit boolean expression
evaluation means that __rcu_pending() is invoked on rcu_bh_state only if
the prior invocation on rcu_state returns zero.

The reason the two calls are in this order is that “rcu” is used more heavily than is
“rcu_bh”, so the first call is more likely to return non-zero than is the second.

Quick Quiz D.30:
Shouldn’t line 42 of Figure D.23 also check for in_hardirq()?

Answer:
No. The rcu_read_lock_bh() primitive disables softirq, not hardirq. Because
call_rcu_bh() need only wait for pre-existing “rcu_bh” read-side critical sections
to complete, we need only check in_softirq().

Quick Quiz D.31:
But don’t we also need to check that a grace period is actually in progress in __rcu_
process_callbacks in Figure D.24?

Answer:
Indeed we do! And the first thing that force_quiescent_state() does is to
perform exactly that check.

Quick Quiz D.32:
What happens if two CPUs attempt to start a new grace period concurrently in Fig-
ure D.24?

Answer:
One of the CPUs will be the first to acquire the root rcu_node structure’s lock, and
that CPU will start the grace period. The other CPU will then acquire the lock and
invoke rcu_start_gp(), which, seeing that a grace period is already in progress,
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will immediately release the lock and return.

Quick Quiz D.33:
How does the code traverse a given path through the rcu_node hierarchy from root to
leaves?

Answer:
It turns out that the code never needs to do such a traversal, so there is nothing special
in place to handle this.

Quick Quiz D.34:
C-preprocessor macros are so 1990s! Why not get with the times and convert RCU_
DATA_PTR_INIT() in Figure D.29 to be a function?

Answer:
Because, although it is possible to pass a reference to a particular CPU’s instance of a
per-CPU variable to a function, there does not appear to be a good way pass a reference
to the full set of instances of a given per-CPU variable to a function. One could of
course build an array of pointers, then pass a reference to the array in, but that is part of
what the RCU_DATA_PTR_INIT() macro is doing in the first place.

Quick Quiz D.35:
What happens if a CPU comes online between the time that the last online CPU is noti-
fied on lines 25-26 of Figure D.29 and the time that register_cpu_notifier()
is invoked on line 27?

Answer:
Only one CPU is online at this point, so the only way another CPU can come online is
if this CPU puts it online, which it is not doing.

Quick Quiz D.36:
Why call cpu_quiet() on line 41 of Figure D.30, given that we are excluding grace
periods with various locks, and given that any earlier grace periods would not have been
waiting on this previously-offlined CPU?

Answer:
A new grace period might have started just after the ->onofflock was released on
line 40. The cpu_quiet() will help expedite such a grace period.

Quick Quiz D.37:
But what if the rcu_node hierarchy has only a single structure, as it would on a small
system? What prevents concurrent grace-period initialization in that case, given the
code in Figure D.32?
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Answer:
The later acquisition of the sole rcu_node structure’s ->lock on line 16 excludes
grace-period initialization, which must acquire this same lock in order to initialize this
sole rcu_node structure for the new grace period.

The ->onofflock is needed only for multi-node hierarchies, and is used in
that case as an alternative to acquiring and holding all of the rcu_node structures’
->lock fields, which would be incredibly painful on large systems.

Quick Quiz D.38:
But does line 25 of Figure D.32 ever really exit the loop? Why or why not?

Answer:
The only way that line 25 could exit the loop is if all CPUs were to be put offline. This
cannot happen in the Linux kernel as of 2.6.28, though other environments have been
designed to offline all CPUs during the normal shutdown procedure.

Quick Quiz D.39:
Suppose that line 26 got executed seriously out of order in Figure D.32, so that
lastcomp is set to some prior grace period, but so that the current grace period
is still waiting on the now-offline CPU? In this case, won’t the call to cpu_quiet()
fail to report the quiescent state, thus causing the grace period to wait forever for this
now-offline CPU?

Answer:
First, the lock acquisitions on lines 16 and 12 would prevent the execution of line 26
from being pushed that far out of order. Nevertheless, even if line 26 managed to be mis-
ordered that dramatically, what would happen is that force_quiescent_state()
would eventually be invoked, and would notice that the current grace period was wait-
ing for a quiescent state from an offline CPU. Then force_quiescent_state()
would report the extended quiescent state on behalf of the offlined CPU.

Quick Quiz D.40:
Given that an offline CPU is in an extended quiescent state, why does line 28 of Fig-
ure D.32 need to care which grace period it is dealing with?

Answer:
It really does not need to care in this case. However, because it does need to care in
many other cases, the cpu_quiet() function does take the grace-period number as
an argument, so some value must be supplied.

Quick Quiz D.41:
But this list movement in Figure D.32 makes all of the going-offline CPU’s callbacks go
through another grace period, even if they were ready to invoke. Isn’t that inefficient?
Furthermore, couldn’t an unfortunate pattern of CPUs going offline then coming back
online prevent a given callback from ever being invoked?
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Answer:
It is inefficient, but it is simple. Given that this is not a commonly executed code path,
this is the right tradeoff. The starvation case would be a concern, except that the online
and offline process involves multiple grace periods.

Quick Quiz D.42:
Why not just expand note_new_gpnum() inline into check_for_new_grace_
period() in Figure D.34?

Answer:
Because note_new_gpnum() must be called for each new grace period, including
both those started by this CPU and those started by other CPUs. In contrast, check_
for_new_grace_period() is called only for the case where some other CPU
started the grace period.

Quick Quiz D.43:
But there has been no initialization yet at line 15 of Figure D.37! What happens if a
CPU notices the new grace period and immediately attempts to report a quiescent state?
Won’t it get confused?

Answer:
There are two cases of interest.

In the first case, there is only a single rcu_node structure in the hierarchy. Since
the CPU executing in rcu_start_gp() is currently holding that rcu_node struc-
ture’s lock, the CPU attempting to report the quiescent state will not be able to acquire
this lock until initialization is complete, at which point the quiescent state will be
reported normally.

In the second case, there are multiple rcu_node structures, and the leaf rcu_
node structure corresponding to the CPU that is attempting to report the quiescent state
already has that CPU’s ->qsmask bit cleared. Therefore, the CPU attempting to report
the quiescent state will give up, and some later quiescent state for that CPU will be
applied to the new grace period.

Quick Quiz D.44:
Hey! Shouldn’t we hold the non-leaf rcu_node structures’ locks when munging their
state in line 37 of Figure D.37???

Answer:
There is no need to hold their locks. The reasoning is as follows:

1. The new grace period cannot end, because the running CPU (which is initializing
it) won’t pass through a quiescent state. Therefore, there is no race with another
invocation of rcu_start_gp().

2. The running CPU holds ->onofflock, so there is no race with CPU-hotplug
operations.
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3. The leaf rcu_node structures are not yet initialized, so they have all of their
->qsmask bits cleared. This means that any other CPU attempting to report a
quiescent state will stop at the leaf level, and thus cannot race with the current
CPU for non-leaf rcu_node structures.

4. The RCU tracing functions access, but do not modify, the rcu_node structures’
fields. Races with these functions is therefore harmless.

Quick Quiz D.45:
Why can’t we merge the loop spanning lines 36-37 with the loop spanning lines 40-44
in Figure D.37?

Answer:
If we were to do so, we would either be needlessly acquiring locks for the non-leaf
rcu_node structures or would need ugly checks for a given node being a leaf node
on each pass through the loop. (Recall that we must acquire the locks for the leaf
rcu_node structures due to races with CPUs attempting to report quiescent states.)

Nevertheless, it is quite possible that experience on very large systems will show
that such merging is in fact the right thing to do.

Quick Quiz D.46:
What prevents lines 11-12 of Figure D.39 from reporting a quiescent state from a prior
grace period against the current grace period?

Answer:
If this could occur, it would be a serious bug, since the CPU in question might be in
an RCU read-side critical section that started before the beginning of the current grace
period.

There are several cases to consider for the CPU in question:

1. It remained online and active throughout.

2. It was in dynticks-idle mode for at least part of the current grace period.

3. It was offline for at least part of the current grace period.

In the first case, the prior grace period could not have ended without this CPU
explicitly reporting a quiescent state, which would leave ->qs_pending zero. This
in turn would mean that lines 7-8 would return, so that control would not reach cpu_
quiet() unless check_for_new_grace_period() had noted the new grace
period. However, if the current grace period had been noted, it would also have set
->passed_quiesc to zero, in which case lines 9-10 would have returned, again mean-
ing that cpu_quiet() would not be invoked. Finally, the only way that ->passed_
quiesc could be invoked would be if rcu_check_callbacks() was invoked by
a scheduling-clock interrupt that occurred somewhere between lines 5 and 9 of rcu_
check_quiescent_state() in Figure D.39. However, this would be a case of a
quiescent state occurring in the current grace period, which would be totally legitimate
to report against the current grace period. So this case is correctly covered.

704



In the second case, where the CPU in question spent part of the new quiescent state
in dynticks-idle mode, note that dynticks-idle mode is an extended quiescent state, hence
it is again permissible to report this quiescent state against the current grace period.

In the third case, where the CPU in question spent part of the new quiescent
state offline, note that offline CPUs are in an extended quiescent state, which is again
permissible to report against the current grace period.

So quiescent states from prior grace periods are never reported against the current
grace period.

Quick Quiz D.47:
How do lines 22-23 of Figure D.40 know that it is safe to promote the running CPU’s
RCU callbacks?

Answer:
Because the specified CPU has not yet passed through a quiescent state, and because we
hold the corresponding leaf node’s lock, we know that the current grace period cannot
possibly have ended yet. Therefore, there is no danger that any of the callbacks currently
queued were registered after the next grace period started, given that they have already
been queued and the next grace period has not yet started.

Quick Quiz D.48:
Given that argument mask on line 2 of Figure D.41 is an unsigned long, how can it
possibly deal with systems with more than 64 CPUs?

Answer:
Because mask is specific to the specified leaf rcu_node structure, it need only be
large enough to represent the CPUs corresponding to that particular rcu_node struc-
ture. Since at most 64 CPUs may be associated with a given rcu_node structure (32
CPUs on 32-bit systems), the unsigned long mask argument suffices.

Quick Quiz D.49:
How do RCU callbacks on dynticks-idle or offline CPUs get invoked?

Answer:
They don’t. CPUs with RCU callbacks are not permitted to enter dynticks-idle mode,
so dynticks-idle CPUs never have RCU callbacks. When CPUs go offline, their RCU
callbacks are migrated to an online CPU, so offline CPUs never have RCU callbacks,
either. Thus, there is no need to invoke callbacks on dynticks-idle or offline CPUs.

Quick Quiz D.50:
Why would lines 14-17 in Figure D.43 need to adjust the tail pointers?

Answer:
If any of the tail pointers reference the last callback in the sublist that was ready to in-
voke, they must be changed to instead reference the ->nxtlist pointer. This situation
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occurs when the sublists immediately following the ready-to-invoke sublist are empty.

Quick Quiz D.51:
But how does the code in Figure D.45 handle nested NMIs?

Answer:
It does not have to handle nested NMIs, because NMIs do not nest.

Quick Quiz D.52:
Why isn’t there a memory barrier between lines 8 and 9 of Figure D.47? Couldn’t
this cause the code to fetch even-numbered values from both the ->dynticks and
->dynticks_nmi fields, even though these two fields never were zero at the same
time?

Answer:
First, review the code in Figures D.44, D.45, and D.46, and note that dynticks and
dynticks_nmi will never have odd values simultaneously (see especially lines 6 and
17 of Figure D.45, and recall that interrupts cannot happen from NMIs).

Of course, given the placement of the memory barriers in these functions, it might
appear to another CPU that both counters were odd at the same time, but logically this
cannot happen, and would indicate that the CPU had in fact passed through dynticks-idle
mode.

Now, let’s suppose that at the time line 8 fetches ->dynticks, the value of
->dynticks_nmiwas at odd number, and that at the time line 9 fetches ->dynticks_
nmi, the value of ->dynticks was an odd number. Given that both counters cannot
be odd simultaneously, there must have been a time between these two fetches when
both counters were even, and thus a time when the CPU was in dynticks-idle mode,
which is a quiescent state, as required.

So, why can’t the && on line 13 of Figure D.47 be replaced with an ==? Well, it
could be, but this would likely be more confusing than helpful.

Quick Quiz D.53:
Why wait the extra couple jiffies on lines 12-13 in Figure D.55?

Answer:
This added delay gives the offending CPU a better chance of reporting on itself, thus
getting a decent stack trace of the stalled code. Of course, if the offending CPU is
spinning with interrupts disabled, it will never report on itself, so other CPUs do so after
a short delay.

Quick Quiz D.54:
What prevents the grace period from ending before the stall warning is printed in Fig-
ure D.56?

Answer:
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The caller checked that this CPU still had not reported a quiescent state, and because
preemption is disabled, there is no way that a quiescent state could have been reported
in the meantime.

Quick Quiz D.55:
Why does print_other_cpu_stall() in Figure D.57 need to check for the grace
period ending when print_cpu_stall() did not?

Answer:
The other CPUs might pass through a quiescent state at any time, so the grace period
might well have ended in the meantime.

Quick Quiz D.56:
Why is it important that blocking primitives called from within a preemptible-RCU
read-side critical section be subject to priority inheritance?

Answer:
Because blocked readers stall RCU grace periods, which can result in OOM. For exam-
ple, if a reader did a wait_event() within an RCU read-side critical section, and
that event never occurred, then RCU grace periods would stall indefinitely, guaranteeing
that the system would OOM sooner or later. There must therefore be some way to cause
these readers to progress through their read-side critical sections in order to avoid such
OOMs. Priority boosting is one way to force such progress, but only if readers are
restricted to blocking such that they can be awakened via priority boosting.

Of course, there are other methods besides priority inheritance that handle the
priority inversion problem, including priority ceiling, preemption disabling, and so on.
However, there are good reasons why priority inheritance is the approach used in the
Linux kernel, so this is what is used for RCU.

Quick Quiz D.57:
Could the prohibition against using primitives that would block in a non-CONFIG_
PREEMPT kernel be lifted, and if so, under what conditions?

Answer:
If testing and benchmarking demonstrated that the preemptible RCU worked well
enough that classic RCU could be dispensed with entirely, and if priority inheritance
was implemented for blocking synchronization primitives such as semaphores, then
those primitives could be used in RCU read-side critical sections.

Quick Quiz D.58:
How is it possible for lines 38-43 of __rcu_advance_callbacks() to be exe-
cuted when lines 7-37 have not? Won’t they both be executed just after a counter flip,
and never at any other time?

Answer:
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Consider the following sequence of events:

1. CPU 0 executes lines 5-12 of rcu_try_flip_idle().

2. CPU 1 executes __rcu_advance_callbacks(). Because rcu_ctrlblk.completed
has been incremented, lines 7-37 execute. However, none of the rcu_flip_
flag variables have been set, so lines 38-43 do not execute.

3. CPU 0 executes lines 13-15 of rcu_try_flip_idle().

4. Later, CPU 1 again executes __rcu_advance_callbacks(). The counter
has not been incremented since the earlier execution, but the rcu_flip_flag
variables have all been set, so only lines 38-43 are executed.

Quick Quiz D.59:
What problems could arise if the lines containing ACCESS_ONCE() in rcu_read_
unlock() were reordered by the compiler?

Answer:

1. If the ACCESS_ONCE() were omitted from the fetch of rcu_flipctr_idx
(line 14), then the compiler would be within its rights to eliminate idx. It would
also be free to compile the rcu_flipctr decrement as a fetch-increment-
store sequence, separately fetching rcu_flipctr_idx for both the fetch and
the store. If an NMI were to occur between the fetch and the store, and if
the NMI handler contained an rcu_read_lock(), then the value of rcu_
flipctr_idx would change in the meantime, resulting in corruption of the
rcu_flipctr values, destroying the ability to correctly identify grace periods.

2. Another failure that could result from omitting the ACCESS_ONCE() from
line 14 is due to the compiler reordering this statement to follow the decrement
of rcu_read_lock_nesting (line 16). In this case, if an NMI were to
occur between these two statements, then any rcu_read_lock() in the NMI
handler could corrupt rcu_flipctr_idx, causing the wrong rcu_flipctr
to be decremented. As with the analogous situation in rcu_read_lock(),
this could result in premature grace-period termination, an indefinite grace period,
or even both.

3. If ACCESS_ONCE() macros were omitted such that the update of rcu_read_
lock_nesting could be interchanged by the compiler with the decrement of
rcu_flipctr, and if an NMI occurred in between, any rcu_read_lock()
in the NMI handler would incorrectly conclude that it was protected by an enclos-
ing rcu_read_lock(), and fail to increment the rcu_flipctr variables.

It is not clear that the ACCESS_ONCE() on the fetch of rcu_read_lock_
nesting (line 7) is required.

Quick Quiz D.60:
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What problems could arise if the lines containing ACCESS_ONCE() in rcu_read_
unlock() were reordered by the CPU?

Answer:
Absolutely none! The code in rcu_read_unlock() interacts with the scheduling-
clock interrupt handler running on the same CPU, and is thus insensitive to reorderings
because CPUs always see their own accesses as if they occurred in program order. Other
CPUs do access the rcu_flipctr, but because these other CPUs don’t access any of
the other variables, ordering is irrelevant.

Quick Quiz D.61:
What problems could arise in rcu_read_unlock() if irqs were not disabled?

Answer:

1. Disabling irqs has the side effect of disabling preemption. Suppose that this code
were to be preempted in the midst of line 17 between selecting the current CPU’s
copy of the rcu_flipctr array and the decrement of the element indicated
by rcu_flipctr_idx. Execution might well resume on some other CPU. If
this resumption happened concurrently with an rcu_read_lock() or rcu_
read_unlock() running on the original CPU, an increment or decrement
might be lost, resulting in either premature termination of a grace period, indefinite
extension of a grace period, or even both.

2. Failing to disable preemption can also defeat RCU priority boosting, which relies
on rcu_read_lock_nesting to determine which tasks to boost. If preemp-
tion occurred between the update of rcu_read_lock_nesting (line 16) and
of rcu_flipctr (line 17), then a grace period might be stalled until this task
resumed. But because the RCU priority booster has no way of knowing that
this particular task is stalling grace periods, needed boosting will never occur.
Therefore, if there are CPU-bound realtime tasks running, the preempted task
might never resume, stalling grace periods indefinitely, and eventually resulting
in OOM.

Of course, both of these situations could be handled by disabling preemption rather
than disabling irqs. (The CPUs I have access to do not show much difference between
these two alternatives, but others might.)

Quick Quiz D.62:
Suppose that the irq disabling in rcu_read_lock() was replaced by preemption
disabling. What effect would that have on GP_STAGES?

Answer:
No finite value of GP_STAGES suffices. The following scenario, courtesy of Oleg
Nesterov, demonstrates this:

Suppose that low-priority Task A has executed rcu_read_lock() on CPU 0,
and thus has incremented per_cpu(rcu_flipctr, 0)[0], which thus has a
value of one. Suppose further that Task A is now preempted indefinitely.
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Given this situation, consider the following sequence of events:

1. Task B starts executing rcu_read_lock(), also on CPU 0, picking up the
low-order bit of rcu_ctrlblk.completed, which is still equal to zero.

2. Task B is interrupted by a sufficient number of scheduling-clock interrupts to
allow the current grace-period stage to complete, and also be sufficient long-
running interrupts to allow the RCU grace-period state machine to advance the
rcu_ctrlblk.complete counter so that its bottom bit is now equal to one
and all CPUs have acknowledged this increment operation.

3. CPU 1 starts summing the index==0 counters, starting with per_cpu(rcu_
flipctr, 0)[0], which is equal to one due to Task A’s increment. CPU 1’s
local variable sum is therefore equal to one.

4. Task B returns from interrupt, resuming its execution of rcu_read_lock(),
incrementing per_cpu(rcu_flipctr, 0)[0], which now has a value of
two.

5. Task B is migrated to CPU 2.

6. Task B completes its RCU read-side critical section, and executes rcu_read_
unlock(), which decrements per_cpu(rcu_flipctr, 2)[0], which is
now -1.

7. CPU 1 now adds per_cpu(rcu_flipctr, 1)[0] and per_cpu(rcu_
flipctr, 2)[0] to its local variable sum, obtaining the value zero.

8. CPU 1 then incorrectly concludes that all prior RCU read-side critical sections
have completed, and advances to the next RCU grace-period stage. This means
that some other task might well free up data structures that Task A is still using!

This sequence of events could repeat indefinitely, so that no finite value of GP_
STAGES could prevent disrupting Task A. This sequence of events demonstrates the
importance of the promise made by CPUs that acknowledge an increment of rcu_
ctrlblk.completed, as the problem illustrated by the above sequence of events is
caused by Task B’s repeated failure to honor this promise.

Therefore, more-pervasive changes to the grace-period state will be required in order
for rcu_read_lock() to be able to safely dispense with irq disabling.

Quick Quiz D.63:
Why can’t the rcu_dereference() precede the memory barrier?

Answer:
Because the memory barrier is being executed in an interrupt handler, and interrupts are
exact in the sense that a single value of the PC is saved upon interrupt, so that the inter-
rupt occurs at a definite place in the code. Therefore, if the rcu_dereference()
were to precede the memory barrier, the interrupt would have had to have occurred
after the rcu_dereference(), and therefore the interrupt would also have had to
have occurred after the rcu_read_lock() that begins the RCU read-side critical
section. This would have forced the rcu_read_lock() to use the earlier value
of the grace-period counter, which would in turn have meant that the corresponding
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rcu_read_unlock() would have had to precede the first "Old counters zero [0]"
rather than the second one. This in turn would have meant that the read-side critical
section would have been much shorter — which would have been counter-productive,
given that the point of this exercise was to identify the longest possible RCU read-side
critical section.

Quick Quiz D.64:
What is a more precise way to say "CPU 0 might see CPU 1’s increment as early as
CPU 1’s last previous memory barrier"?

Answer:
First, it is important to note that the problem with the less-precise statement is that it
gives the impression that there might be a single global timeline, which there is not,
at least not for popular microprocessors. Second, it is important to note that memory
barriers are all about perceived ordering, not about time. Finally, a more precise way of
stating above statement would be as follows: "If CPU 0 loads the value resulting from
CPU 1’s increment, then any subsequent load by CPU 0 will see the values from any
relevant stores by CPU 1 if these stores preceded CPU 1’s last prior memory barrier."

Even this more-precise version leaves some wiggle room. The word "subsequent"
must be understood to mean "ordered after", either by an explicit memory barrier or by
the CPU’s underlying memory ordering. In addition, the memory barriers must be strong
enough to order the relevant operations. For example, CPU 1’s last prior memory barrier
must order stores (for example, smp_wmb() or smp_mb()). Similarly, if CPU 0
needs an explicit memory barrier to ensure that its later load follows the one that saw
the increment, then this memory barrier needs to be an smp_rmb() or smp_mb().

In general, much care is required when proving parallel algorithms.
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Appendix G

Glossary

Associativity: The number of cache lines that can be held simultaneously in a given
cache, when all of these cache lines hash identically in that cache. A cache
that could hold four cache lines for each possible hash value would be termed a
“four-way set-associative” cache, while a cache that could hold only one cache
line for each possible hash value would be termed a “direct-mapped” cache. A
cache whose associativity was equal to its capacity would be termed a “fully
associative” cache. Fully associative caches have the advantage of eliminating
associativity misses, but, due to hardware limitations, fully associative caches
are normally quite limited in size. The associativity of the large caches found on
modern microprocessors typically range from two-way to eight-way.

Associativity Miss: A cache miss incurred because the corresponding CPU has recently
accessed more data hashing to a given set of the cache than will fit in that set.
Fully associative caches are not subject to associativity misses (or, equivalently,
in fully associative caches, associativity and capacity misses are identical).

Atomic: An operation is considered “atomic” if it is not possible to observe any
intermediate state. For example, on most CPUs, a store to a properly aligned
pointer is atomic, because other CPUs will see either the old value or the new
value, but are guaranteed not to see some mixed value containing some pieces of
the new and old values.

Cache: In modern computer systems, CPUs have caches in which to hold frequently
used data. These caches can be thought of as hardware hash tables with very
simple hash functions, but in which each hash bucket (termed a “set” by hardware
types) can hold only a limited number of data items. The number of data items that
can be held by each of a cache’s hash buckets is termed the cache’s “associativity”.
These data items are normally called “cache lines”, which can be thought of a
fixed-length blocks of data that circulate among the CPUs and memory.

Cache Coherence: A property of most modern SMP machines where all CPUs will
observe a sequence of values for a given variable that is consistent with at least
one global order of values for that variable. Cache coherence also guarantees that
at the end of a group of stores to a given variable, all CPUs will agree on the final
value for that variable. Note that cache coherence applies only to the series of
values taken on by a single variable. In contrast, the memory consistency model
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for a given machine describes the order in which loads and stores to groups of
variables will appear to occur. See Section 13.2.4.2 for more information.

Cache Coherence Protocol: A communications protocol, normally implemented in
hardware, that enforces memory consistency and ordering, preventing different
CPUs from seeing inconsistent views of data held in their caches.

Cache Geometry: The size and associativity of a cache is termed its geometry. Each
cache may be thought of as a two-dimensional array, with rows of cache lines
(“sets”) that have the same hash value, and columns of cache lines (“ways”) in
which every cache line has a different hash value. The associativity of a given
cache is its number of columns (hence the name “way” – a two-way set-associative
cache has two “ways”), and the size of the cache is its number of rows multiplied
by its number of columns.

Cache Line: (1) The unit of data that circulates among the CPUs and memory, usually
a moderate power of two in size. Typical cache-line sizes range from 16 to 256
bytes.
(2) A physical location in a CPU cache capable of holding one cache-line unit of
data.
(3) A physical location in memory capable of holding one cache-line unit of data,
but that it also aligned on a cache-line boundary. For example, the address of the
first word of a cache line in memory will end in 0x00 on systems with 256-byte
cache lines.

Cache Miss: A cache miss occurs when data needed by the CPU is not in that CPU’s
cache. The data might be missing because of a number of reasons, including: (1)
this CPU has never accessed the data before (“startup” or “warmup” miss), (2)
this CPU has recently accessed more data than would fit in its cache, so that some
of the older data had to be removed (“capacity” miss), (3) this CPU has recently
accessed more data in a given set1 than that set could hold (“associativity” miss),
(4) some other CPU has written to the data (or some other data in the same cache
line) since this CPU has accessed it (“communication miss”), or (5) this CPU
attempted to write to a cache line that is currently read-only, possibly due to that
line being replicated in other CPUs’ caches.

Capacity Miss: A cache miss incurred because the corresponding CPU has recently
accessed more data than will fit into the cache.

Code Locking: A simple locking design in which a “global lock” is used to protect
a set of critical sections, so that access by a given thread to that set is granted
or denied based only on the set of threads currently occupying the set of critical
sections, not based on what data the thread intends to access. The scalability of a
code-locked program is limited by the code; increasing the size of the data set
will normally not increase scalability (in fact, will typically decrease scalability
by increasing “lock contention”). Contrast with “data locking”.

Communication Miss: A cache miss incurred because the some other CPU has written
to the cache line since the last time this CPU accessed it.

1 In hardware-cache terminology, the word “set” is used in the same way that the word “bucket” is used
when discussing software caches.
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Critical Section: A section of code guarded by some synchronization mechanism, so
that its execution constrained by that primitive. For example, if a set of critical
sections are guarded by the same global lock, then only one of those critical
sections may be executing at a given time. If a thread is executing in one such
critical section, any other threads must wait until the first thread completes before
executing any of the critical sections in the set.

Data Locking: A scalable locking design in which each instance of a given data
structure has its own lock. If each thread is using a different instance of the
data structure, then all of the threads may be executing in the set of critical
sections simultaneously. Data locking has the advantage of automatically scaling
to increasing numbers of CPUs as the number of instances of data grows. Contrast
with “code locking”.

Direct-Mapped Cache: A cache with only one way, so that it may hold only one cache
line with a given hash value.

Embarrassingly Parallel: A problem or algorithm where adding threads does not
significantly increase the overall cost of the computation, resulting in linear
speedups as threads are added (assuming sufficient CPUs are available).

Exclusive Lock: An exclusive lock is a mutual-exclusion mechanism that permits only
one thread at a time into the set of critical sections guarded by that lock.

False Sharing: If two CPUs each frequently write to one of a pair of data items, but
the pair of data items are located in the same cache line, this cache line will be
repeatedly invalidated, “ping-ponging” back and forth between the two CPUs’
caches. This is a common cause of “cache thrashing”, also called “cacheline
bouncing” (the latter most commonly in the Linux community). False sharing
can dramatically reduce both performance and scalability.

Fragmentation: A memory pool that has a large amount of unused memory, but not
laid out to permit satisfying a relatively small request is said to be fragmented.
External fragmentation occurs when the space is divided up into small fragments
lying between allocated blocks of memory, while internal fragmentation occurs
when specific requests or types of requests have been allotted more memory than
they actually requested.

Fully Associative Cache: A fully associative cache contains only one set, so that it
can hold any subset of memory that fits within its capacity.

Grace Period: A grace period is any contiguous time interval such that any RCU
read-side critical section that began before the start of that interval has completed
before the end of that same interval. Many RCU implementations define a grace
period to be a time interval during which each thread has passed through at least
one quiescent state. Since RCU read-side critical sections by definition cannot
contain quiescent states, these two definitions are almost always interchangeable.

Heisenbug: A timing-sensitive bug that disappears from sight when you add print
statements or tracing in an attempt to track it down.

Hot Spot: Data structure that is very heavily used, resulting in high levels of contention
on the corresponding lock. One example of this situation would be a hash table
with a poorly chosen hash function.
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Humiliatingly Parallel: A problem or algorithm where adding threads significantly
decreases the overall cost of the computation, resulting in large superlinear
speedups as threads are added (assuming sufficient CPUs are available).

Invalidation: When a CPU wishes to write to a data item, it must first ensure that
this data item is not present in any other CPUs’ cache. If necessary, the item
is removed from the other CPUs’ caches via “invalidation” messages from the
writing CPUs to any CPUs having a copy in their caches.

IPI: Inter-processor interrupt, which is an interrupt sent from one CPU to another. IPIs
are used heavily in the Linux kernel, for example, within the scheduler to alert
CPUs that a high-priority process is now runnable.

IRQ: Interrupt request, often used as an abbreviation for “interrupt” within the Linux
kernel community, as in “irq handler”.

Linearizable: A sequence of operations is “linearizable” if there is at least one global
ordering of the sequence that is consistent with the observations of all CPUs/threads.

Lock: A software abstraction that can be used to guard critical sections, as such, an
example of a ”mutual exclusion mechanism”. An “exclusive lock” permits only
one thread at a time into the set of critical sections guarded by that lock, while a
“reader-writer lock” permits any number of reading threads, or but one writing
thread, into the set of critical sections guarded by that lock. (Just to be clear, the
presence of a writer thread in any of a given reader-writer lock’s critical sections
will prevent any reader from entering any of that lock’s critical sections and vice
versa.)

Lock Contention: A lock is said to be suffering contention when it is being used so
heavily that there is often a CPU waiting on it. Reducing lock contention is often
a concern when designing parallel algorithms and when implementing parallel
programs.

Memory Consistency: A set of properties that impose constraints on the order in
which accesses to groups of variables appear to occur. Memory consistency
models range from sequential consistency, a very constraining model popular
in academic circles, through process consistency, release consistency, and weak
consistency.

MESI Protocol: The cache-coherence protocol featuring modified, exclusive, shared,
and invalid (MESI) states, so that this protocol is named after the states that
the cache lines in a given cache can take on. A modified line has been recently
written to by this CPU, and is the sole representative of the current value of the
corresponding memory location. An exclusive cache line has not been written to,
but this CPU has the right to write to it at any time, as the line is guaranteed not
to be replicated into any other CPU’s cache (though the corresponding location in
main memory is up to date). A shared cache line is (or might be) replicated in
some other CPUs’ cache, meaning that this CPU must interact with those other
CPUs before writing to this cache line. An invalid cache line contains no value,
instead representing “empty space” in the cache into which data from memory
might be loaded.
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Mutual-Exclusion Mechanism: A software abstraction that regulates threads’ access
to “critical sections” and corresponding data.

NMI: Non-maskable interrupt. As the name indicates, this is an extremely high-priority
interrupt that cannot be masked. These are used for hardware-specific purposes
such as profiling. The advantage of using NMIs for profiling is that it allows you
to profile code that runs with interrupts disabled.

NUCA: Non-uniform cache architecture, where groups of CPUs share caches. CPUs
in a group can therefore exchange cache lines with each other much more quickly
than they can with CPUs in other groups. Systems comprised of CPUs with
hardware threads will generally have a NUCA architecture.

NUMA: Non-uniform memory architecture, where memory is split into banks and
each such bank is “close” to a group of CPUs, the group being termed a “NUMA
node”. An example NUMA machine is Sequent’s NUMA-Q system, where each
group of four CPUs had a bank of memory near by. The CPUs in a given group
can access their memory much more quickly than another group’s memory.

NUMA Node: A group of closely placed CPUs and associated memory within a larger
NUMA machines. Note that a NUMA node might well have a NUCA architecture.

Pipelined CPU: A CPU with a pipeline, which is an internal flow of instructions
internal to the CPU that is in some way similar to an assembly line, with many
of the same advantages and disadvantages. In the 1960s through the early 1980s,
pipelined CPUs were the province of supercomputers, but started appearing in
microprocessors (such as the 80486) in the late 1980s.

Process Consistency: A memory-consistency model in which each CPU’s stores ap-
pear to occur in program order, but in which different CPUs might see accesses
from more than one CPU as occurring in different orders.

Program Order: The order in which a given thread’s instructions would be executed
by a now-mythical “in-order” CPU that completely executed each instruction
before proceeding to the next instruction. (The reason such CPUs are now the stuff
of ancient myths and legends is that they were extremely slow. These dinosaurs
were one of the many victims of Moore’s-Law-driven increases in CPU clock
frequency. Some claim that these beasts will roam the earth once again, others
vehemently disagree.)

Quiescent State: In RCU, a point in the code where there can be no references held to
RCU-protected data structures, which is normally any point outside of an RCU
read-side critical section. Any interval of time during which all threads pass
through at least one quiescent state each is termed a “grace period”.

Read-Copy Update (RCU): A synchronization mechanism that can be thought of as
a replacement for reader-writer locking or reference counting. RCU provides ex-
tremely low-overhead access for readers, while writers incur additional overhead
maintaining old versions for the benefit of pre-existing readers. Readers neither
block nor spin, and thus cannot participate in deadlocks, however, they also can
see stale data and can run concurrently with updates. RCU is thus best-suited
for read-mostly situations where stale data can either be tolerated (as in routing
tables) or avoided (as in the Linux kernel’s System V IPC implementation).
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Read-Side Critical Section: A section of code guarded by read-acquisition of some
reader-writer synchronization mechanism. For example, if one set of critical
sections are guarded by read-acquisition of a given global reader-writer lock,
while a second set of critical section are guarded by write-acquisition of that same
reader-writer lock, then the first set of critical sections will be the read-side critical
sections for that lock. Any number of threads may concurrently execute the read-
side critical sections, but only if no thread is executing one of the write-side
critical sections.

Reader-Writer Lock: A reader-writer lock is a mutual-exclusion mechanism that
permits any number of reading threads, or but one writing thread, into the set
of critical sections guarded by that lock. Threads attempting to write must wait
until all pre-existing reading threads release the lock, and, similarly, if there is
a pre-existing writer, any threads attempting to write must wait for the writer
to release the lock. A key concern for reader-writer locks is “fairness”: can an
unending stream of readers starve a writer or vice versa.

Sequential Consistency: A memory-consistency model where all memory references
appear to occur in an order consistent with a single global order, and where each
CPU’s memory references appear to all CPUs to occur in program order.

Store Buffer: A small set of internal registers used by a given CPU to record pending
stores while the corresponding cache lines are making their way to that CPU.
Also called “store queue”.

Store Forwarding: An arrangement where a given CPU refers to its store buffer as
well as its cache so as to ensure that the software sees the memory operations
performed by this CPU as if they were carried out in program order.

Super-Scalar CPU: A scalar (non-vector) CPU capable of executing multiple instruc-
tions concurrently. This is a step up from a pipelined CPU that executes multiple
instructions in an assembly-line fashion — in a super-scalar CPU, each stage
of the pipeline would be capable of handling more than one instruction. For
example, if the conditions were exactly right, the Intel Pentium Pro CPU from the
mid-1990s could execute two (and sometimes three) instructions per clock cycle.
Thus, a 200MHz Pentium Pro CPU could “retire”, or complete the execution of,
up to 400 million instructions per second.

Teachable: A topic, concept, method, or mechanism that the teacher understands
completely and is therefore comfortable teaching.

Transactional Memory (TM): Shared-memory synchronization scheme featuring “trans-
actions”, each of which is an atomic sequence of operations that offers atomicity,
consistency, isolation, but differ from classic transactions in that they do not
offer durability. Transactional memory may be implemented either in hardware
(hardwire transactional memory, or HTM), in software (software transactional
memory, or STM), or in a combination of hardware and software (“unbounded”
transactional memory, or UTM).

Unteachable: A topic, concept, method, or mechanism that the teacher does not under-
stand well is therefore uncomfortable teaching.
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Vector CPU: A CPU that can apply a single instruction to multiple items of data
concurrently. In the 1960s through the 1980s, only supercomputers had vector
capabilities, but the advent of MMX in x86 CPUs and VMX in PowerPC CPUs
brought vector processing to the masses.

Write Miss: A cache miss incurred because the corresponding CPU attempted to write
to a cache line that is read-only, most likely due to its being replicated in other
CPUs’ caches.

Write-Side Critical Section: A section of code guarded by write-acquisition of some
reader-writer synchronization mechanism. For example, if one set of critical
sections are guarded by write-acquisition of a given global reader-writer lock,
while a second set of critical section are guarded by read-acquisition of that same
reader-writer lock, then the first set of critical sections will be the write-side
critical sections for that lock. Only one thread may execute in the write-side
critical section at a time, and even then only if there are no threads are executing
concurrently in any of the corresponding read-side critical sections.
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