kernel/
driver.rs

1// SPDX-License-Identifier: GPL-2.0
2
3//! Generic support for drivers of different buses (e.g., PCI, Platform, Amba, etc.).
4//!
5//! This documentation describes how to implement a bus specific driver API and how to align it with
6//! the design of (bus specific) devices.
7//!
8//! Note: Readers are expected to know the content of the documentation of [`Device`] and
9//! [`DeviceContext`].
10//!
11//! # Driver Trait
12//!
13//! The main driver interface is defined by a bus specific driver trait. For instance:
14//!
15//! ```ignore
16//! pub trait Driver: Send {
17//!     /// The type holding information about each device ID supported by the driver.
18//!     type IdInfo: 'static;
19//!
20//!     /// The table of OF device ids supported by the driver.
21//!     const OF_ID_TABLE: Option<of::IdTable<Self::IdInfo>> = None;
22//!
23//!     /// The table of ACPI device ids supported by the driver.
24//!     const ACPI_ID_TABLE: Option<acpi::IdTable<Self::IdInfo>> = None;
25//!
26//!     /// Driver probe.
27//!     fn probe(dev: &Device<device::Core>, id_info: &Self::IdInfo) -> Result<Pin<KBox<Self>>>;
28//!
29//!     /// Driver unbind (optional).
30//!     fn unbind(dev: &Device<device::Core>, this: Pin<&Self>) {
31//!         let _ = (dev, this);
32//!     }
33//! }
34//! ```
35//!
36//! For specific examples see [`auxiliary::Driver`], [`pci::Driver`] and [`platform::Driver`].
37//!
38//! The `probe()` callback should return a `Result<Pin<KBox<Self>>>`, i.e. the driver's private
39//! data. The bus abstraction should store the pointer in the corresponding bus device. The generic
40//! [`Device`] infrastructure provides common helpers for this purpose on its
41//! [`Device<CoreInternal>`] implementation.
42//!
43//! All driver callbacks should provide a reference to the driver's private data. Once the driver
44//! is unbound from the device, the bus abstraction should take back the ownership of the driver's
45//! private data from the corresponding [`Device`] and [`drop`] it.
46//!
47//! All driver callbacks should provide a [`Device<Core>`] reference (see also [`device::Core`]).
48//!
49//! # Adapter
50//!
51//! The adapter implementation of a bus represents the abstraction layer between the C bus
52//! callbacks and the Rust bus callbacks. It therefore has to be generic over an implementation of
53//! the [driver trait](#driver-trait).
54//!
55//! ```ignore
56//! pub struct Adapter<T: Driver>;
57//! ```
58//!
59//! There's a common [`Adapter`] trait that can be implemented to inherit common driver
60//! infrastructure, such as finding the ID info from an [`of::IdTable`] or [`acpi::IdTable`].
61//!
62//! # Driver Registration
63//!
64//! In order to register C driver types (such as `struct platform_driver`) the [adapter](#adapter)
65//! should implement the [`RegistrationOps`] trait.
66//!
67//! This trait implementation can be used to create the actual registration with the common
68//! [`Registration`] type.
69//!
70//! Typically, bus abstractions want to provide a bus specific `module_bus_driver!` macro, which
71//! creates a kernel module with exactly one [`Registration`] for the bus specific adapter.
72//!
73//! The generic driver infrastructure provides a helper for this with the [`module_driver`] macro.
74//!
75//! # Device IDs
76//!
77//! Besides the common device ID types, such as [`of::DeviceId`] and [`acpi::DeviceId`], most buses
78//! may need to implement their own device ID types.
79//!
80//! For this purpose the generic infrastructure in [`device_id`] should be used.
81//!
82//! [`auxiliary::Driver`]: kernel::auxiliary::Driver
83//! [`Core`]: device::Core
84//! [`Device`]: device::Device
85//! [`Device<Core>`]: device::Device<device::Core>
86//! [`Device<CoreInternal>`]: device::Device<device::CoreInternal>
87//! [`DeviceContext`]: device::DeviceContext
88//! [`device_id`]: kernel::device_id
89//! [`module_driver`]: kernel::module_driver
90//! [`pci::Driver`]: kernel::pci::Driver
91//! [`platform::Driver`]: kernel::platform::Driver
92
93use crate::error::{Error, Result};
94use crate::{acpi, device, of, str::CStr, try_pin_init, types::Opaque, ThisModule};
95use core::pin::Pin;
96use pin_init::{pin_data, pinned_drop, PinInit};
97
98/// The [`RegistrationOps`] trait serves as generic interface for subsystems (e.g., PCI, Platform,
99/// Amba, etc.) to provide the corresponding subsystem specific implementation to register /
100/// unregister a driver of the particular type (`RegType`).
101///
102/// For instance, the PCI subsystem would set `RegType` to `bindings::pci_driver` and call
103/// `bindings::__pci_register_driver` from `RegistrationOps::register` and
104/// `bindings::pci_unregister_driver` from `RegistrationOps::unregister`.
105///
106/// # Safety
107///
108/// A call to [`RegistrationOps::unregister`] for a given instance of `RegType` is only valid if a
109/// preceding call to [`RegistrationOps::register`] has been successful.
110pub unsafe trait RegistrationOps {
111    /// The type that holds information about the registration. This is typically a struct defined
112    /// by the C portion of the kernel.
113    type RegType: Default;
114
115    /// Registers a driver.
116    ///
117    /// # Safety
118    ///
119    /// On success, `reg` must remain pinned and valid until the matching call to
120    /// [`RegistrationOps::unregister`].
121    unsafe fn register(
122        reg: &Opaque<Self::RegType>,
123        name: &'static CStr,
124        module: &'static ThisModule,
125    ) -> Result;
126
127    /// Unregisters a driver previously registered with [`RegistrationOps::register`].
128    ///
129    /// # Safety
130    ///
131    /// Must only be called after a preceding successful call to [`RegistrationOps::register`] for
132    /// the same `reg`.
133    unsafe fn unregister(reg: &Opaque<Self::RegType>);
134}
135
136/// A [`Registration`] is a generic type that represents the registration of some driver type (e.g.
137/// `bindings::pci_driver`). Therefore a [`Registration`] must be initialized with a type that
138/// implements the [`RegistrationOps`] trait, such that the generic `T::register` and
139/// `T::unregister` calls result in the subsystem specific registration calls.
140///
141///Once the `Registration` structure is dropped, the driver is unregistered.
142#[pin_data(PinnedDrop)]
143pub struct Registration<T: RegistrationOps> {
144    #[pin]
145    reg: Opaque<T::RegType>,
146}
147
148// SAFETY: `Registration` has no fields or methods accessible via `&Registration`, so it is safe to
149// share references to it with multiple threads as nothing can be done.
150unsafe impl<T: RegistrationOps> Sync for Registration<T> {}
151
152// SAFETY: Both registration and unregistration are implemented in C and safe to be performed from
153// any thread, so `Registration` is `Send`.
154unsafe impl<T: RegistrationOps> Send for Registration<T> {}
155
156impl<T: RegistrationOps> Registration<T> {
157    /// Creates a new instance of the registration object.
158    pub fn new(name: &'static CStr, module: &'static ThisModule) -> impl PinInit<Self, Error> {
159        try_pin_init!(Self {
160            reg <- Opaque::try_ffi_init(|ptr: *mut T::RegType| {
161                // SAFETY: `try_ffi_init` guarantees that `ptr` is valid for write.
162                unsafe { ptr.write(T::RegType::default()) };
163
164                // SAFETY: `try_ffi_init` guarantees that `ptr` is valid for write, and it has
165                // just been initialised above, so it's also valid for read.
166                let drv = unsafe { &*(ptr as *const Opaque<T::RegType>) };
167
168                // SAFETY: `drv` is guaranteed to be pinned until `T::unregister`.
169                unsafe { T::register(drv, name, module) }
170            }),
171        })
172    }
173}
174
175#[pinned_drop]
176impl<T: RegistrationOps> PinnedDrop for Registration<T> {
177    fn drop(self: Pin<&mut Self>) {
178        // SAFETY: The existence of `self` guarantees that `self.reg` has previously been
179        // successfully registered with `T::register`
180        unsafe { T::unregister(&self.reg) };
181    }
182}
183
184/// Declares a kernel module that exposes a single driver.
185///
186/// It is meant to be used as a helper by other subsystems so they can more easily expose their own
187/// macros.
188#[macro_export]
189macro_rules! module_driver {
190    (<$gen_type:ident>, $driver_ops:ty, { type: $type:ty, $($f:tt)* }) => {
191        type Ops<$gen_type> = $driver_ops;
192
193        #[$crate::prelude::pin_data]
194        struct DriverModule {
195            #[pin]
196            _driver: $crate::driver::Registration<Ops<$type>>,
197        }
198
199        impl $crate::InPlaceModule for DriverModule {
200            fn init(
201                module: &'static $crate::ThisModule
202            ) -> impl ::pin_init::PinInit<Self, $crate::error::Error> {
203                $crate::try_pin_init!(Self {
204                    _driver <- $crate::driver::Registration::new(
205                        <Self as $crate::ModuleMetadata>::NAME,
206                        module,
207                    ),
208                })
209            }
210        }
211
212        $crate::prelude::module! {
213            type: DriverModule,
214            $($f)*
215        }
216    }
217}
218
219/// The bus independent adapter to match a drivers and a devices.
220///
221/// This trait should be implemented by the bus specific adapter, which represents the connection
222/// of a device and a driver.
223///
224/// It provides bus independent functions for device / driver interactions.
225pub trait Adapter {
226    /// The type holding driver private data about each device id supported by the driver.
227    type IdInfo: 'static;
228
229    /// The [`acpi::IdTable`] of the corresponding driver
230    fn acpi_id_table() -> Option<acpi::IdTable<Self::IdInfo>>;
231
232    /// Returns the driver's private data from the matching entry in the [`acpi::IdTable`], if any.
233    ///
234    /// If this returns `None`, it means there is no match with an entry in the [`acpi::IdTable`].
235    fn acpi_id_info(dev: &device::Device) -> Option<&'static Self::IdInfo> {
236        #[cfg(not(CONFIG_ACPI))]
237        {
238            let _ = dev;
239            None
240        }
241
242        #[cfg(CONFIG_ACPI)]
243        {
244            let table = Self::acpi_id_table()?;
245
246            // SAFETY:
247            // - `table` has static lifetime, hence it's valid for read,
248            // - `dev` is guaranteed to be valid while it's alive, and so is `dev.as_raw()`.
249            let raw_id = unsafe { bindings::acpi_match_device(table.as_ptr(), dev.as_raw()) };
250
251            if raw_id.is_null() {
252                None
253            } else {
254                // SAFETY: `DeviceId` is a `#[repr(transparent)]` wrapper of `struct acpi_device_id`
255                // and does not add additional invariants, so it's safe to transmute.
256                let id = unsafe { &*raw_id.cast::<acpi::DeviceId>() };
257
258                Some(table.info(<acpi::DeviceId as crate::device_id::RawDeviceIdIndex>::index(id)))
259            }
260        }
261    }
262
263    /// The [`of::IdTable`] of the corresponding driver.
264    fn of_id_table() -> Option<of::IdTable<Self::IdInfo>>;
265
266    /// Returns the driver's private data from the matching entry in the [`of::IdTable`], if any.
267    ///
268    /// If this returns `None`, it means there is no match with an entry in the [`of::IdTable`].
269    fn of_id_info(dev: &device::Device) -> Option<&'static Self::IdInfo> {
270        #[cfg(not(CONFIG_OF))]
271        {
272            let _ = dev;
273            None
274        }
275
276        #[cfg(CONFIG_OF)]
277        {
278            let table = Self::of_id_table()?;
279
280            // SAFETY:
281            // - `table` has static lifetime, hence it's valid for read,
282            // - `dev` is guaranteed to be valid while it's alive, and so is `dev.as_raw()`.
283            let raw_id = unsafe { bindings::of_match_device(table.as_ptr(), dev.as_raw()) };
284
285            if raw_id.is_null() {
286                None
287            } else {
288                // SAFETY: `DeviceId` is a `#[repr(transparent)]` wrapper of `struct of_device_id`
289                // and does not add additional invariants, so it's safe to transmute.
290                let id = unsafe { &*raw_id.cast::<of::DeviceId>() };
291
292                Some(
293                    table.info(<of::DeviceId as crate::device_id::RawDeviceIdIndex>::index(
294                        id,
295                    )),
296                )
297            }
298        }
299    }
300
301    /// Returns the driver's private data from the matching entry of any of the ID tables, if any.
302    ///
303    /// If this returns `None`, it means that there is no match in any of the ID tables directly
304    /// associated with a [`device::Device`].
305    fn id_info(dev: &device::Device) -> Option<&'static Self::IdInfo> {
306        let id = Self::acpi_id_info(dev);
307        if id.is_some() {
308            return id;
309        }
310
311        let id = Self::of_id_info(dev);
312        if id.is_some() {
313            return id;
314        }
315
316        None
317    }
318}