kernel/driver.rs
1// SPDX-License-Identifier: GPL-2.0
2
3//! Generic support for drivers of different buses (e.g., PCI, Platform, Amba, etc.).
4//!
5//! This documentation describes how to implement a bus specific driver API and how to align it with
6//! the design of (bus specific) devices.
7//!
8//! Note: Readers are expected to know the content of the documentation of [`Device`] and
9//! [`DeviceContext`].
10//!
11//! # Driver Trait
12//!
13//! The main driver interface is defined by a bus specific driver trait. For instance:
14//!
15//! ```ignore
16//! pub trait Driver: Send {
17//! /// The type holding information about each device ID supported by the driver.
18//! type IdInfo: 'static;
19//!
20//! /// The table of OF device ids supported by the driver.
21//! const OF_ID_TABLE: Option<of::IdTable<Self::IdInfo>> = None;
22//!
23//! /// The table of ACPI device ids supported by the driver.
24//! const ACPI_ID_TABLE: Option<acpi::IdTable<Self::IdInfo>> = None;
25//!
26//! /// Driver probe.
27//! fn probe(dev: &Device<device::Core>, id_info: &Self::IdInfo) -> Result<Pin<KBox<Self>>>;
28//!
29//! /// Driver unbind (optional).
30//! fn unbind(dev: &Device<device::Core>, this: Pin<&Self>) {
31//! let _ = (dev, this);
32//! }
33//! }
34//! ```
35//!
36//! For specific examples see [`auxiliary::Driver`], [`pci::Driver`] and [`platform::Driver`].
37//!
38//! The `probe()` callback should return a `Result<Pin<KBox<Self>>>`, i.e. the driver's private
39//! data. The bus abstraction should store the pointer in the corresponding bus device. The generic
40//! [`Device`] infrastructure provides common helpers for this purpose on its
41//! [`Device<CoreInternal>`] implementation.
42//!
43//! All driver callbacks should provide a reference to the driver's private data. Once the driver
44//! is unbound from the device, the bus abstraction should take back the ownership of the driver's
45//! private data from the corresponding [`Device`] and [`drop`] it.
46//!
47//! All driver callbacks should provide a [`Device<Core>`] reference (see also [`device::Core`]).
48//!
49//! # Adapter
50//!
51//! The adapter implementation of a bus represents the abstraction layer between the C bus
52//! callbacks and the Rust bus callbacks. It therefore has to be generic over an implementation of
53//! the [driver trait](#driver-trait).
54//!
55//! ```ignore
56//! pub struct Adapter<T: Driver>;
57//! ```
58//!
59//! There's a common [`Adapter`] trait that can be implemented to inherit common driver
60//! infrastructure, such as finding the ID info from an [`of::IdTable`] or [`acpi::IdTable`].
61//!
62//! # Driver Registration
63//!
64//! In order to register C driver types (such as `struct platform_driver`) the [adapter](#adapter)
65//! should implement the [`RegistrationOps`] trait.
66//!
67//! This trait implementation can be used to create the actual registration with the common
68//! [`Registration`] type.
69//!
70//! Typically, bus abstractions want to provide a bus specific `module_bus_driver!` macro, which
71//! creates a kernel module with exactly one [`Registration`] for the bus specific adapter.
72//!
73//! The generic driver infrastructure provides a helper for this with the [`module_driver`] macro.
74//!
75//! # Device IDs
76//!
77//! Besides the common device ID types, such as [`of::DeviceId`] and [`acpi::DeviceId`], most buses
78//! may need to implement their own device ID types.
79//!
80//! For this purpose the generic infrastructure in [`device_id`] should be used.
81//!
82//! [`auxiliary::Driver`]: kernel::auxiliary::Driver
83//! [`Core`]: device::Core
84//! [`Device`]: device::Device
85//! [`Device<Core>`]: device::Device<device::Core>
86//! [`Device<CoreInternal>`]: device::Device<device::CoreInternal>
87//! [`DeviceContext`]: device::DeviceContext
88//! [`device_id`]: kernel::device_id
89//! [`module_driver`]: kernel::module_driver
90//! [`pci::Driver`]: kernel::pci::Driver
91//! [`platform::Driver`]: kernel::platform::Driver
92
93use crate::error::{Error, Result};
94use crate::{acpi, device, of, str::CStr, try_pin_init, types::Opaque, ThisModule};
95use core::pin::Pin;
96use pin_init::{pin_data, pinned_drop, PinInit};
97
98/// The [`RegistrationOps`] trait serves as generic interface for subsystems (e.g., PCI, Platform,
99/// Amba, etc.) to provide the corresponding subsystem specific implementation to register /
100/// unregister a driver of the particular type (`RegType`).
101///
102/// For instance, the PCI subsystem would set `RegType` to `bindings::pci_driver` and call
103/// `bindings::__pci_register_driver` from `RegistrationOps::register` and
104/// `bindings::pci_unregister_driver` from `RegistrationOps::unregister`.
105///
106/// # Safety
107///
108/// A call to [`RegistrationOps::unregister`] for a given instance of `RegType` is only valid if a
109/// preceding call to [`RegistrationOps::register`] has been successful.
110pub unsafe trait RegistrationOps {
111 /// The type that holds information about the registration. This is typically a struct defined
112 /// by the C portion of the kernel.
113 type RegType: Default;
114
115 /// Registers a driver.
116 ///
117 /// # Safety
118 ///
119 /// On success, `reg` must remain pinned and valid until the matching call to
120 /// [`RegistrationOps::unregister`].
121 unsafe fn register(
122 reg: &Opaque<Self::RegType>,
123 name: &'static CStr,
124 module: &'static ThisModule,
125 ) -> Result;
126
127 /// Unregisters a driver previously registered with [`RegistrationOps::register`].
128 ///
129 /// # Safety
130 ///
131 /// Must only be called after a preceding successful call to [`RegistrationOps::register`] for
132 /// the same `reg`.
133 unsafe fn unregister(reg: &Opaque<Self::RegType>);
134}
135
136/// A [`Registration`] is a generic type that represents the registration of some driver type (e.g.
137/// `bindings::pci_driver`). Therefore a [`Registration`] must be initialized with a type that
138/// implements the [`RegistrationOps`] trait, such that the generic `T::register` and
139/// `T::unregister` calls result in the subsystem specific registration calls.
140///
141///Once the `Registration` structure is dropped, the driver is unregistered.
142#[pin_data(PinnedDrop)]
143pub struct Registration<T: RegistrationOps> {
144 #[pin]
145 reg: Opaque<T::RegType>,
146}
147
148// SAFETY: `Registration` has no fields or methods accessible via `&Registration`, so it is safe to
149// share references to it with multiple threads as nothing can be done.
150unsafe impl<T: RegistrationOps> Sync for Registration<T> {}
151
152// SAFETY: Both registration and unregistration are implemented in C and safe to be performed from
153// any thread, so `Registration` is `Send`.
154unsafe impl<T: RegistrationOps> Send for Registration<T> {}
155
156impl<T: RegistrationOps> Registration<T> {
157 /// Creates a new instance of the registration object.
158 pub fn new(name: &'static CStr, module: &'static ThisModule) -> impl PinInit<Self, Error> {
159 try_pin_init!(Self {
160 reg <- Opaque::try_ffi_init(|ptr: *mut T::RegType| {
161 // SAFETY: `try_ffi_init` guarantees that `ptr` is valid for write.
162 unsafe { ptr.write(T::RegType::default()) };
163
164 // SAFETY: `try_ffi_init` guarantees that `ptr` is valid for write, and it has
165 // just been initialised above, so it's also valid for read.
166 let drv = unsafe { &*(ptr as *const Opaque<T::RegType>) };
167
168 // SAFETY: `drv` is guaranteed to be pinned until `T::unregister`.
169 unsafe { T::register(drv, name, module) }
170 }),
171 })
172 }
173}
174
175#[pinned_drop]
176impl<T: RegistrationOps> PinnedDrop for Registration<T> {
177 fn drop(self: Pin<&mut Self>) {
178 // SAFETY: The existence of `self` guarantees that `self.reg` has previously been
179 // successfully registered with `T::register`
180 unsafe { T::unregister(&self.reg) };
181 }
182}
183
184/// Declares a kernel module that exposes a single driver.
185///
186/// It is meant to be used as a helper by other subsystems so they can more easily expose their own
187/// macros.
188#[macro_export]
189macro_rules! module_driver {
190 (<$gen_type:ident>, $driver_ops:ty, { type: $type:ty, $($f:tt)* }) => {
191 type Ops<$gen_type> = $driver_ops;
192
193 #[$crate::prelude::pin_data]
194 struct DriverModule {
195 #[pin]
196 _driver: $crate::driver::Registration<Ops<$type>>,
197 }
198
199 impl $crate::InPlaceModule for DriverModule {
200 fn init(
201 module: &'static $crate::ThisModule
202 ) -> impl ::pin_init::PinInit<Self, $crate::error::Error> {
203 $crate::try_pin_init!(Self {
204 _driver <- $crate::driver::Registration::new(
205 <Self as $crate::ModuleMetadata>::NAME,
206 module,
207 ),
208 })
209 }
210 }
211
212 $crate::prelude::module! {
213 type: DriverModule,
214 $($f)*
215 }
216 }
217}
218
219/// The bus independent adapter to match a drivers and a devices.
220///
221/// This trait should be implemented by the bus specific adapter, which represents the connection
222/// of a device and a driver.
223///
224/// It provides bus independent functions for device / driver interactions.
225pub trait Adapter {
226 /// The type holding driver private data about each device id supported by the driver.
227 type IdInfo: 'static;
228
229 /// The [`acpi::IdTable`] of the corresponding driver
230 fn acpi_id_table() -> Option<acpi::IdTable<Self::IdInfo>>;
231
232 /// Returns the driver's private data from the matching entry in the [`acpi::IdTable`], if any.
233 ///
234 /// If this returns `None`, it means there is no match with an entry in the [`acpi::IdTable`].
235 fn acpi_id_info(dev: &device::Device) -> Option<&'static Self::IdInfo> {
236 #[cfg(not(CONFIG_ACPI))]
237 {
238 let _ = dev;
239 None
240 }
241
242 #[cfg(CONFIG_ACPI)]
243 {
244 let table = Self::acpi_id_table()?;
245
246 // SAFETY:
247 // - `table` has static lifetime, hence it's valid for read,
248 // - `dev` is guaranteed to be valid while it's alive, and so is `dev.as_raw()`.
249 let raw_id = unsafe { bindings::acpi_match_device(table.as_ptr(), dev.as_raw()) };
250
251 if raw_id.is_null() {
252 None
253 } else {
254 // SAFETY: `DeviceId` is a `#[repr(transparent)]` wrapper of `struct acpi_device_id`
255 // and does not add additional invariants, so it's safe to transmute.
256 let id = unsafe { &*raw_id.cast::<acpi::DeviceId>() };
257
258 Some(table.info(<acpi::DeviceId as crate::device_id::RawDeviceIdIndex>::index(id)))
259 }
260 }
261 }
262
263 /// The [`of::IdTable`] of the corresponding driver.
264 fn of_id_table() -> Option<of::IdTable<Self::IdInfo>>;
265
266 /// Returns the driver's private data from the matching entry in the [`of::IdTable`], if any.
267 ///
268 /// If this returns `None`, it means there is no match with an entry in the [`of::IdTable`].
269 fn of_id_info(dev: &device::Device) -> Option<&'static Self::IdInfo> {
270 #[cfg(not(CONFIG_OF))]
271 {
272 let _ = dev;
273 None
274 }
275
276 #[cfg(CONFIG_OF)]
277 {
278 let table = Self::of_id_table()?;
279
280 // SAFETY:
281 // - `table` has static lifetime, hence it's valid for read,
282 // - `dev` is guaranteed to be valid while it's alive, and so is `dev.as_raw()`.
283 let raw_id = unsafe { bindings::of_match_device(table.as_ptr(), dev.as_raw()) };
284
285 if raw_id.is_null() {
286 None
287 } else {
288 // SAFETY: `DeviceId` is a `#[repr(transparent)]` wrapper of `struct of_device_id`
289 // and does not add additional invariants, so it's safe to transmute.
290 let id = unsafe { &*raw_id.cast::<of::DeviceId>() };
291
292 Some(
293 table.info(<of::DeviceId as crate::device_id::RawDeviceIdIndex>::index(
294 id,
295 )),
296 )
297 }
298 }
299 }
300
301 /// Returns the driver's private data from the matching entry of any of the ID tables, if any.
302 ///
303 /// If this returns `None`, it means that there is no match in any of the ID tables directly
304 /// associated with a [`device::Device`].
305 fn id_info(dev: &device::Device) -> Option<&'static Self::IdInfo> {
306 let id = Self::acpi_id_info(dev);
307 if id.is_some() {
308 return id;
309 }
310
311 let id = Self::of_id_info(dev);
312 if id.is_some() {
313 return id;
314 }
315
316 None
317 }
318}