kernel/revocable.rs
1// SPDX-License-Identifier: GPL-2.0
2
3//! Revocable objects.
4//!
5//! The [`Revocable`] type wraps other types and allows access to them to be revoked. The existence
6//! of a [`RevocableGuard`] ensures that objects remain valid.
7
8use crate::{bindings, prelude::*, sync::rcu, types::Opaque};
9use core::{
10 marker::PhantomData,
11 ops::Deref,
12 ptr::drop_in_place,
13 sync::atomic::{AtomicBool, Ordering},
14};
15
16/// An object that can become inaccessible at runtime.
17///
18/// Once access is revoked and all concurrent users complete (i.e., all existing instances of
19/// [`RevocableGuard`] are dropped), the wrapped object is also dropped.
20///
21/// # Examples
22///
23/// ```
24/// # use kernel::revocable::Revocable;
25///
26/// struct Example {
27/// a: u32,
28/// b: u32,
29/// }
30///
31/// fn add_two(v: &Revocable<Example>) -> Option<u32> {
32/// let guard = v.try_access()?;
33/// Some(guard.a + guard.b)
34/// }
35///
36/// let v = KBox::pin_init(Revocable::new(Example { a: 10, b: 20 }), GFP_KERNEL).unwrap();
37/// assert_eq!(add_two(&v), Some(30));
38/// v.revoke();
39/// assert_eq!(add_two(&v), None);
40/// ```
41///
42/// Sample example as above, but explicitly using the rcu read side lock.
43///
44/// ```
45/// # use kernel::revocable::Revocable;
46/// use kernel::sync::rcu;
47///
48/// struct Example {
49/// a: u32,
50/// b: u32,
51/// }
52///
53/// fn add_two(v: &Revocable<Example>) -> Option<u32> {
54/// let guard = rcu::read_lock();
55/// let e = v.try_access_with_guard(&guard)?;
56/// Some(e.a + e.b)
57/// }
58///
59/// let v = KBox::pin_init(Revocable::new(Example { a: 10, b: 20 }), GFP_KERNEL).unwrap();
60/// assert_eq!(add_two(&v), Some(30));
61/// v.revoke();
62/// assert_eq!(add_two(&v), None);
63/// ```
64#[pin_data(PinnedDrop)]
65pub struct Revocable<T> {
66 is_available: AtomicBool,
67 #[pin]
68 data: Opaque<T>,
69}
70
71// SAFETY: `Revocable` is `Send` if the wrapped object is also `Send`. This is because while the
72// functionality exposed by `Revocable` can be accessed from any thread/CPU, it is possible that
73// this isn't supported by the wrapped object.
74unsafe impl<T: Send> Send for Revocable<T> {}
75
76// SAFETY: `Revocable` is `Sync` if the wrapped object is both `Send` and `Sync`. We require `Send`
77// from the wrapped object as well because of `Revocable::revoke`, which can trigger the `Drop`
78// implementation of the wrapped object from an arbitrary thread.
79unsafe impl<T: Sync + Send> Sync for Revocable<T> {}
80
81impl<T> Revocable<T> {
82 /// Creates a new revocable instance of the given data.
83 pub fn new(data: impl PinInit<T>) -> impl PinInit<Self> {
84 pin_init!(Self {
85 is_available: AtomicBool::new(true),
86 data <- Opaque::pin_init(data),
87 })
88 }
89
90 /// Tries to access the revocable wrapped object.
91 ///
92 /// Returns `None` if the object has been revoked and is therefore no longer accessible.
93 ///
94 /// Returns a guard that gives access to the object otherwise; the object is guaranteed to
95 /// remain accessible while the guard is alive. In such cases, callers are not allowed to sleep
96 /// because another CPU may be waiting to complete the revocation of this object.
97 pub fn try_access(&self) -> Option<RevocableGuard<'_, T>> {
98 let guard = rcu::read_lock();
99 if self.is_available.load(Ordering::Relaxed) {
100 // Since `self.is_available` is true, data is initialised and has to remain valid
101 // because the RCU read side lock prevents it from being dropped.
102 Some(RevocableGuard::new(self.data.get(), guard))
103 } else {
104 None
105 }
106 }
107
108 /// Tries to access the revocable wrapped object.
109 ///
110 /// Returns `None` if the object has been revoked and is therefore no longer accessible.
111 ///
112 /// Returns a shared reference to the object otherwise; the object is guaranteed to
113 /// remain accessible while the rcu read side guard is alive. In such cases, callers are not
114 /// allowed to sleep because another CPU may be waiting to complete the revocation of this
115 /// object.
116 pub fn try_access_with_guard<'a>(&'a self, _guard: &'a rcu::Guard) -> Option<&'a T> {
117 if self.is_available.load(Ordering::Relaxed) {
118 // SAFETY: Since `self.is_available` is true, data is initialised and has to remain
119 // valid because the RCU read side lock prevents it from being dropped.
120 Some(unsafe { &*self.data.get() })
121 } else {
122 None
123 }
124 }
125
126 /// # Safety
127 ///
128 /// Callers must ensure that there are no more concurrent users of the revocable object.
129 unsafe fn revoke_internal<const SYNC: bool>(&self) {
130 if self.is_available.swap(false, Ordering::Relaxed) {
131 if SYNC {
132 // SAFETY: Just an FFI call, there are no further requirements.
133 unsafe { bindings::synchronize_rcu() };
134 }
135
136 // SAFETY: We know `self.data` is valid because only one CPU can succeed the
137 // `compare_exchange` above that takes `is_available` from `true` to `false`.
138 unsafe { drop_in_place(self.data.get()) };
139 }
140 }
141
142 /// Revokes access to and drops the wrapped object.
143 ///
144 /// Access to the object is revoked immediately to new callers of [`Revocable::try_access`],
145 /// expecting that there are no concurrent users of the object.
146 ///
147 /// # Safety
148 ///
149 /// Callers must ensure that there are no more concurrent users of the revocable object.
150 pub unsafe fn revoke_nosync(&self) {
151 // SAFETY: By the safety requirement of this function, the caller ensures that nobody is
152 // accessing the data anymore and hence we don't have to wait for the grace period to
153 // finish.
154 unsafe { self.revoke_internal::<false>() }
155 }
156
157 /// Revokes access to and drops the wrapped object.
158 ///
159 /// Access to the object is revoked immediately to new callers of [`Revocable::try_access`].
160 ///
161 /// If there are concurrent users of the object (i.e., ones that called
162 /// [`Revocable::try_access`] beforehand and still haven't dropped the returned guard), this
163 /// function waits for the concurrent access to complete before dropping the wrapped object.
164 pub fn revoke(&self) {
165 // SAFETY: By passing `true` we ask `revoke_internal` to wait for the grace period to
166 // finish.
167 unsafe { self.revoke_internal::<true>() }
168 }
169}
170
171#[pinned_drop]
172impl<T> PinnedDrop for Revocable<T> {
173 fn drop(self: Pin<&mut Self>) {
174 // Drop only if the data hasn't been revoked yet (in which case it has already been
175 // dropped).
176 // SAFETY: We are not moving out of `p`, only dropping in place
177 let p = unsafe { self.get_unchecked_mut() };
178 if *p.is_available.get_mut() {
179 // SAFETY: We know `self.data` is valid because no other CPU has changed
180 // `is_available` to `false` yet, and no other CPU can do it anymore because this CPU
181 // holds the only reference (mutable) to `self` now.
182 unsafe { drop_in_place(p.data.get()) };
183 }
184 }
185}
186
187/// A guard that allows access to a revocable object and keeps it alive.
188///
189/// CPUs may not sleep while holding on to [`RevocableGuard`] because it's in atomic context
190/// holding the RCU read-side lock.
191///
192/// # Invariants
193///
194/// The RCU read-side lock is held while the guard is alive.
195pub struct RevocableGuard<'a, T> {
196 data_ref: *const T,
197 _rcu_guard: rcu::Guard,
198 _p: PhantomData<&'a ()>,
199}
200
201impl<T> RevocableGuard<'_, T> {
202 fn new(data_ref: *const T, rcu_guard: rcu::Guard) -> Self {
203 Self {
204 data_ref,
205 _rcu_guard: rcu_guard,
206 _p: PhantomData,
207 }
208 }
209}
210
211impl<T> Deref for RevocableGuard<'_, T> {
212 type Target = T;
213
214 fn deref(&self) -> &Self::Target {
215 // SAFETY: By the type invariants, we hold the rcu read-side lock, so the object is
216 // guaranteed to remain valid.
217 unsafe { &*self.data_ref }
218 }
219}