1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418
// SPDX-License-Identifier: GPL-2.0
//! Regulator abstractions, providing a standard kernel interface to control
//! voltage and current regulators.
//!
//! The intention is to allow systems to dynamically control regulator power
//! output in order to save power and prolong battery life. This applies to both
//! voltage regulators (where voltage output is controllable) and current sinks
//! (where current limit is controllable).
//!
//! C header: [`include/linux/regulator/consumer.h`](srctree/include/linux/regulator/consumer.h)
//!
//! Regulators are modeled in Rust with a collection of states. Each state may
//! enforce a given invariant, and they may convert between each other where applicable.
//!
//! See [Voltage and current regulator API](https://docs.kernel.org/driver-api/regulator.html)
//! for more information.
use crate::{
bindings,
device::Device,
error::{from_err_ptr, to_result, Result},
prelude::*,
};
use core::{marker::PhantomData, mem::ManuallyDrop, ptr::NonNull};
mod private {
pub trait Sealed {}
impl Sealed for super::Enabled {}
impl Sealed for super::Disabled {}
impl Sealed for super::Dynamic {}
}
/// A trait representing the different states a [`Regulator`] can be in.
pub trait RegulatorState: private::Sealed + 'static {
/// Whether the regulator should be disabled when dropped.
const DISABLE_ON_DROP: bool;
}
/// A state where the [`Regulator`] is known to be enabled.
///
/// The `enable` reference count held by this state is decremented when it is
/// dropped.
pub struct Enabled;
/// A state where this [`Regulator`] handle has not specifically asked for the
/// underlying regulator to be enabled. This means that this reference does not
/// own an `enable` reference count, but the regulator may still be on.
pub struct Disabled;
/// A state that models the C API. The [`Regulator`] can be either enabled or
/// disabled, and the user is in control of the reference count. This is also
/// the default state.
///
/// Use [`Regulator::is_enabled`] to check the regulator's current state.
pub struct Dynamic;
impl RegulatorState for Enabled {
const DISABLE_ON_DROP: bool = true;
}
impl RegulatorState for Disabled {
const DISABLE_ON_DROP: bool = false;
}
impl RegulatorState for Dynamic {
const DISABLE_ON_DROP: bool = false;
}
/// A trait that abstracts the ability to check if a [`Regulator`] is enabled.
pub trait IsEnabled: RegulatorState {}
impl IsEnabled for Disabled {}
impl IsEnabled for Dynamic {}
/// An error that can occur when trying to convert a [`Regulator`] between states.
pub struct Error<State: RegulatorState> {
/// The error that occurred.
pub error: kernel::error::Error,
/// The regulator that caused the error, so that the operation may be retried.
pub regulator: Regulator<State>,
}
/// A `struct regulator` abstraction.
///
/// # Examples
///
/// ## Enabling a regulator
///
/// This example uses [`Regulator<Enabled>`], which is suitable for drivers that
/// enable a regulator at probe time and leave them on until the device is
/// removed or otherwise shutdown.
///
/// These users can store [`Regulator<Enabled>`] directly in their driver's
/// private data struct.
///
/// ```
/// # use kernel::prelude::*;
/// # use kernel::c_str;
/// # use kernel::device::Device;
/// # use kernel::regulator::{Voltage, Regulator, Disabled, Enabled};
/// fn enable(dev: &Device, min_voltage: Voltage, max_voltage: Voltage) -> Result {
/// // Obtain a reference to a (fictitious) regulator.
/// let regulator: Regulator<Disabled> = Regulator::<Disabled>::get(dev, c_str!("vcc"))?;
///
/// // The voltage can be set before enabling the regulator if needed, e.g.:
/// regulator.set_voltage(min_voltage, max_voltage)?;
///
/// // The same applies for `get_voltage()`, i.e.:
/// let voltage: Voltage = regulator.get_voltage()?;
///
/// // Enables the regulator, consuming the previous value.
/// //
/// // From now on, the regulator is known to be enabled because of the type
/// // `Enabled`.
/// //
/// // If this operation fails, the `Error` will contain the regulator
/// // reference, so that the operation may be retried.
/// let regulator: Regulator<Enabled> =
/// regulator.try_into_enabled().map_err(|error| error.error)?;
///
/// // The voltage can also be set after enabling the regulator, e.g.:
/// regulator.set_voltage(min_voltage, max_voltage)?;
///
/// // The same applies for `get_voltage()`, i.e.:
/// let voltage: Voltage = regulator.get_voltage()?;
///
/// // Dropping an enabled regulator will disable it. The refcount will be
/// // decremented.
/// drop(regulator);
///
/// // ...
///
/// Ok(())
/// }
/// ```
///
/// A more concise shortcut is available for enabling a regulator. This is
/// equivalent to `regulator_get_enable()`:
///
/// ```
/// # use kernel::prelude::*;
/// # use kernel::c_str;
/// # use kernel::device::Device;
/// # use kernel::regulator::{Voltage, Regulator, Enabled};
/// fn enable(dev: &Device) -> Result {
/// // Obtain a reference to a (fictitious) regulator and enable it.
/// let regulator: Regulator<Enabled> = Regulator::<Enabled>::get(dev, c_str!("vcc"))?;
///
/// // Dropping an enabled regulator will disable it. The refcount will be
/// // decremented.
/// drop(regulator);
///
/// // ...
///
/// Ok(())
/// }
/// ```
///
/// ## Disabling a regulator
///
/// ```
/// # use kernel::prelude::*;
/// # use kernel::device::Device;
/// # use kernel::regulator::{Regulator, Enabled, Disabled};
/// fn disable(dev: &Device, regulator: Regulator<Enabled>) -> Result {
/// // We can also disable an enabled regulator without reliquinshing our
/// // refcount:
/// //
/// // If this operation fails, the `Error` will contain the regulator
/// // reference, so that the operation may be retried.
/// let regulator: Regulator<Disabled> =
/// regulator.try_into_disabled().map_err(|error| error.error)?;
///
/// // The refcount will be decremented when `regulator` is dropped.
/// drop(regulator);
///
/// // ...
///
/// Ok(())
/// }
/// ```
///
/// ## Using [`Regulator<Dynamic>`]
///
/// This example mimics the behavior of the C API, where the user is in
/// control of the enabled reference count. This is useful for drivers that
/// might call enable and disable to manage the `enable` reference count at
/// runtime, perhaps as a result of `open()` and `close()` calls or whatever
/// other driver-specific or subsystem-specific hooks.
///
/// ```
/// # use kernel::prelude::*;
/// # use kernel::c_str;
/// # use kernel::device::Device;
/// # use kernel::regulator::{Regulator, Dynamic};
/// struct PrivateData {
/// regulator: Regulator<Dynamic>,
/// }
///
/// // A fictictious probe function that obtains a regulator and sets it up.
/// fn probe(dev: &Device) -> Result<PrivateData> {
/// // Obtain a reference to a (fictitious) regulator.
/// let mut regulator = Regulator::<Dynamic>::get(dev, c_str!("vcc"))?;
///
/// Ok(PrivateData { regulator })
/// }
///
/// // A fictictious function that indicates that the device is going to be used.
/// fn open(dev: &Device, data: &mut PrivateData) -> Result {
/// // Increase the `enabled` reference count.
/// data.regulator.enable()?;
///
/// Ok(())
/// }
///
/// fn close(dev: &Device, data: &mut PrivateData) -> Result {
/// // Decrease the `enabled` reference count.
/// data.regulator.disable()?;
///
/// Ok(())
/// }
///
/// fn remove(dev: &Device, data: PrivateData) -> Result {
/// // `PrivateData` is dropped here, which will drop the
/// // `Regulator<Dynamic>` in turn.
/// //
/// // The reference that was obtained by `regulator_get()` will be
/// // released, but it is up to the user to make sure that the number of calls
/// // to `enable()` and `disabled()` are balanced before this point.
/// Ok(())
/// }
/// ```
///
/// # Invariants
///
/// - `inner` is a non-null wrapper over a pointer to a `struct
/// regulator` obtained from [`regulator_get()`].
///
/// [`regulator_get()`]: https://docs.kernel.org/driver-api/regulator.html#c.regulator_get
pub struct Regulator<State = Dynamic>
where
State: RegulatorState,
{
inner: NonNull<bindings::regulator>,
_phantom: PhantomData<State>,
}
impl<T: RegulatorState> Regulator<T> {
/// Sets the voltage for the regulator.
///
/// This can be used to ensure that the device powers up cleanly.
pub fn set_voltage(&self, min_voltage: Voltage, max_voltage: Voltage) -> Result {
// SAFETY: Safe as per the type invariants of `Regulator`.
to_result(unsafe {
bindings::regulator_set_voltage(
self.inner.as_ptr(),
min_voltage.as_microvolts(),
max_voltage.as_microvolts(),
)
})
}
/// Gets the current voltage of the regulator.
pub fn get_voltage(&self) -> Result<Voltage> {
// SAFETY: Safe as per the type invariants of `Regulator`.
let voltage = unsafe { bindings::regulator_get_voltage(self.inner.as_ptr()) };
if voltage < 0 {
Err(kernel::error::Error::from_errno(voltage))
} else {
Ok(Voltage::from_microvolts(voltage))
}
}
fn get_internal(dev: &Device, name: &CStr) -> Result<Regulator<T>> {
// SAFETY: It is safe to call `regulator_get()`, on a device pointer
// received from the C code.
let inner = from_err_ptr(unsafe { bindings::regulator_get(dev.as_raw(), name.as_ptr()) })?;
// SAFETY: We can safely trust `inner` to be a pointer to a valid
// regulator if `ERR_PTR` was not returned.
let inner = unsafe { NonNull::new_unchecked(inner) };
Ok(Self {
inner,
_phantom: PhantomData,
})
}
fn enable_internal(&mut self) -> Result {
// SAFETY: Safe as per the type invariants of `Regulator`.
to_result(unsafe { bindings::regulator_enable(self.inner.as_ptr()) })
}
fn disable_internal(&mut self) -> Result {
// SAFETY: Safe as per the type invariants of `Regulator`.
to_result(unsafe { bindings::regulator_disable(self.inner.as_ptr()) })
}
}
impl Regulator<Disabled> {
/// Obtains a [`Regulator`] instance from the system.
pub fn get(dev: &Device, name: &CStr) -> Result<Self> {
Regulator::get_internal(dev, name)
}
/// Attempts to convert the regulator to an enabled state.
pub fn try_into_enabled(self) -> Result<Regulator<Enabled>, Error<Disabled>> {
// We will be transferring the ownership of our `regulator_get()` count to
// `Regulator<Enabled>`.
let mut regulator = ManuallyDrop::new(self);
regulator
.enable_internal()
.map(|()| Regulator {
inner: regulator.inner,
_phantom: PhantomData,
})
.map_err(|error| Error {
error,
regulator: ManuallyDrop::into_inner(regulator),
})
}
}
impl Regulator<Enabled> {
/// Obtains a [`Regulator`] instance from the system and enables it.
///
/// This is equivalent to calling `regulator_get_enable()` in the C API.
pub fn get(dev: &Device, name: &CStr) -> Result<Self> {
Regulator::<Disabled>::get_internal(dev, name)?
.try_into_enabled()
.map_err(|error| error.error)
}
/// Attempts to convert the regulator to a disabled state.
pub fn try_into_disabled(self) -> Result<Regulator<Disabled>, Error<Enabled>> {
// We will be transferring the ownership of our `regulator_get()` count
// to `Regulator<Disabled>`.
let mut regulator = ManuallyDrop::new(self);
regulator
.disable_internal()
.map(|()| Regulator {
inner: regulator.inner,
_phantom: PhantomData,
})
.map_err(|error| Error {
error,
regulator: ManuallyDrop::into_inner(regulator),
})
}
}
impl Regulator<Dynamic> {
/// Obtains a [`Regulator`] instance from the system. The current state of
/// the regulator is unknown and it is up to the user to manage the enabled
/// reference count.
///
/// This closely mimics the behavior of the C API and can be used to
/// dynamically manage the enabled reference count at runtime.
pub fn get(dev: &Device, name: &CStr) -> Result<Self> {
Regulator::get_internal(dev, name)
}
/// Increases the `enabled` reference count.
pub fn enable(&mut self) -> Result {
self.enable_internal()
}
/// Decreases the `enabled` reference count.
pub fn disable(&mut self) -> Result {
self.disable_internal()
}
}
impl<T: IsEnabled> Regulator<T> {
/// Checks if the regulator is enabled.
pub fn is_enabled(&self) -> bool {
// SAFETY: Safe as per the type invariants of `Regulator`.
unsafe { bindings::regulator_is_enabled(self.inner.as_ptr()) != 0 }
}
}
impl<T: RegulatorState> Drop for Regulator<T> {
fn drop(&mut self) {
if T::DISABLE_ON_DROP {
// SAFETY: By the type invariants, we know that `self` owns a
// reference on the enabled refcount, so it is safe to relinquish it
// now.
unsafe { bindings::regulator_disable(self.inner.as_ptr()) };
}
// SAFETY: By the type invariants, we know that `self` owns a reference,
// so it is safe to relinquish it now.
unsafe { bindings::regulator_put(self.inner.as_ptr()) };
}
}
/// A voltage.
///
/// This type represents a voltage value in microvolts.
#[repr(transparent)]
#[derive(Copy, Clone, PartialEq, Eq)]
pub struct Voltage(i32);
impl Voltage {
/// Creates a new `Voltage` from a value in microvolts.
pub fn from_microvolts(uv: i32) -> Self {
Self(uv)
}
/// Returns the value of the voltage in microvolts as an [`i32`].
pub fn as_microvolts(self) -> i32 {
self.0
}
}