Skip to main content

kernel/num/
bounded.rs

1// SPDX-License-Identifier: GPL-2.0
2
3//! Implementation of [`Bounded`], a wrapper around integer types limiting the number of bits
4//! usable for value representation.
5
6use core::{
7    cmp,
8    fmt,
9    ops::{
10        self,
11        Deref, //
12    }, //,
13};
14
15use kernel::{
16    num::Integer,
17    prelude::*, //
18};
19
20/// Evaluates to `true` if `$value` can be represented using at most `$n` bits in a `$type`.
21///
22/// `expr` must be of type `type`, or the result will be incorrect.
23///
24/// Can be used in const context.
25macro_rules! fits_within {
26    ($value:expr, $type:ty, $n:expr) => {{
27        let shift: u32 = <$type>::BITS - $n;
28
29        // `value` fits within `$n` bits if shifting it left by the number of unused bits, then
30        // right by the same number, doesn't change it.
31        //
32        // This method has the benefit of working for both unsigned and signed values.
33        ($value << shift) >> shift == $value
34    }};
35}
36
37/// Returns `true` if `value` can be represented with at most `N` bits in a `T`.
38#[inline(always)]
39fn fits_within<T: Integer>(value: T, num_bits: u32) -> bool {
40    fits_within!(value, T, num_bits)
41}
42
43/// An integer value that requires only the `N` least significant bits of the wrapped type to be
44/// encoded.
45///
46/// This limits the number of usable bits in the wrapped integer type, and thus the stored value to
47/// a narrower range, which provides guarantees that can be useful when working within e.g.
48/// bitfields.
49///
50/// # Invariants
51///
52/// - `N` is greater than `0`.
53/// - `N` is less than or equal to `T::BITS`.
54/// - Stored values can be represented with at most `N` bits.
55///
56/// # Examples
57///
58/// The preferred way to create values is through constants and the [`Bounded::new`] family of
59/// constructors, as they trigger a build error if the type invariants cannot be upheld.
60///
61/// ```
62/// use kernel::num::Bounded;
63///
64/// // An unsigned 8-bit integer, of which only the 4 LSBs are used.
65/// // The value `15` is statically validated to fit that constraint at build time.
66/// let v = Bounded::<u8, 4>::new::<15>();
67/// assert_eq!(v.get(), 15);
68///
69/// // Same using signed values.
70/// let v = Bounded::<i8, 4>::new::<-8>();
71/// assert_eq!(v.get(), -8);
72///
73/// // This doesn't build: a `u8` is smaller than the requested 9 bits.
74/// // let _ = Bounded::<u8, 9>::new::<10>();
75///
76/// // This also doesn't build: the requested value doesn't fit within 4 signed bits.
77/// // let _ = Bounded::<i8, 4>::new::<8>();
78/// ```
79///
80/// Values can also be validated at runtime with [`Bounded::try_new`].
81///
82/// ```
83/// use kernel::num::Bounded;
84///
85/// // This succeeds because `15` can be represented with 4 unsigned bits.
86/// assert!(Bounded::<u8, 4>::try_new(15).is_some());
87///
88/// // This fails because `16` cannot be represented with 4 unsigned bits.
89/// assert!(Bounded::<u8, 4>::try_new(16).is_none());
90/// ```
91///
92/// Non-constant expressions can be validated at build-time thanks to compiler optimizations. This
93/// should be used with caution, on simple expressions only.
94///
95/// ```
96/// use kernel::num::Bounded;
97/// # fn some_number() -> u32 { 0xffffffff }
98///
99/// // Here the compiler can infer from the mask that the type invariants are not violated, even
100/// // though the value returned by `some_number` is not statically known.
101/// let v = Bounded::<u32, 4>::from_expr(some_number() & 0xf);
102/// ```
103///
104/// Comparison and arithmetic operations are supported on [`Bounded`]s with a compatible backing
105/// type, regardless of their number of valid bits.
106///
107/// ```
108/// use kernel::num::Bounded;
109///
110/// let v1 = Bounded::<u32, 8>::new::<4>();
111/// let v2 = Bounded::<u32, 4>::new::<15>();
112///
113/// assert!(v1 != v2);
114/// assert!(v1 < v2);
115/// assert_eq!(v1 + v2, 19);
116/// assert_eq!(v2 % v1, 3);
117/// ```
118///
119/// These operations are also supported between a [`Bounded`] and its backing type.
120///
121/// ```
122/// use kernel::num::Bounded;
123///
124/// let v = Bounded::<u8, 4>::new::<15>();
125///
126/// assert!(v == 15);
127/// assert!(v > 12);
128/// assert_eq!(v + 5, 20);
129/// assert_eq!(v / 3, 5);
130/// ```
131///
132/// A change of backing types is possible using [`Bounded::cast`], and the number of valid bits can
133/// be extended or reduced with [`Bounded::extend`] and [`Bounded::try_shrink`].
134///
135/// ```
136/// use kernel::num::Bounded;
137///
138/// let v = Bounded::<u32, 12>::new::<127>();
139///
140/// // Changes backing type from `u32` to `u16`.
141/// let _: Bounded<u16, 12> = v.cast();
142///
143/// // This does not build, as `u8` is smaller than 12 bits.
144/// // let _: Bounded<u8, 12> = v.cast();
145///
146/// // We can safely extend the number of bits...
147/// let _ = v.extend::<15>();
148///
149/// // ... to the limits of the backing type. This doesn't build as a `u32` cannot contain 33 bits.
150/// // let _ = v.extend::<33>();
151///
152/// // Reducing the number of bits is validated at runtime. This works because `127` can be
153/// // represented with 8 bits.
154/// assert!(v.try_shrink::<8>().is_some());
155///
156/// // ... but not with 6, so this fails.
157/// assert!(v.try_shrink::<6>().is_none());
158/// ```
159///
160/// Infallible conversions from a primitive integer to a large-enough [`Bounded`] are supported.
161///
162/// ```
163/// use kernel::num::Bounded;
164///
165/// // This unsigned `Bounded` has 8 bits, so it can represent any `u8`.
166/// let v = Bounded::<u32, 8>::from(128u8);
167/// assert_eq!(v.get(), 128);
168///
169/// // This signed `Bounded` has 8 bits, so it can represent any `i8`.
170/// let v = Bounded::<i32, 8>::from(-128i8);
171/// assert_eq!(v.get(), -128);
172///
173/// // This doesn't build, as this 6-bit `Bounded` does not have enough capacity to represent a
174/// // `u8` (regardless of the passed value).
175/// // let _ = Bounded::<u32, 6>::from(10u8);
176///
177/// // Booleans can be converted into single-bit `Bounded`s.
178///
179/// let v = Bounded::<u64, 1>::from(false);
180/// assert_eq!(v.get(), 0);
181///
182/// let v = Bounded::<u64, 1>::from(true);
183/// assert_eq!(v.get(), 1);
184/// ```
185///
186/// Infallible conversions from a [`Bounded`] to a primitive integer are also supported, and
187/// dependent on the number of bits used for value representation, not on the backing type.
188///
189/// ```
190/// use kernel::num::Bounded;
191///
192/// // Even though its backing type is `u32`, this `Bounded` only uses 6 bits and thus can safely
193/// // be converted to a `u8`.
194/// let v = Bounded::<u32, 6>::new::<63>();
195/// assert_eq!(u8::from(v), 63);
196///
197/// // Same using signed values.
198/// let v = Bounded::<i32, 8>::new::<-128>();
199/// assert_eq!(i8::from(v), -128);
200///
201/// // This however does not build, as 10 bits won't fit into a `u8` (regardless of the actually
202/// // contained value).
203/// let _v = Bounded::<u32, 10>::new::<10>();
204/// // assert_eq!(u8::from(_v), 10);
205///
206/// // Single-bit `Bounded`s can be converted into a boolean.
207/// let v = Bounded::<u8, 1>::new::<1>();
208/// assert_eq!(bool::from(v), true);
209///
210/// let v = Bounded::<u8, 1>::new::<0>();
211/// assert_eq!(bool::from(v), false);
212/// ```
213///
214/// Fallible conversions from any primitive integer to any [`Bounded`] are also supported using the
215/// [`TryIntoBounded`] trait.
216///
217/// ```
218/// use kernel::num::{Bounded, TryIntoBounded};
219///
220/// // Succeeds because `128` fits into 8 bits.
221/// let v: Option<Bounded<u16, 8>> = 128u32.try_into_bounded();
222/// assert_eq!(v.as_deref().copied(), Some(128));
223///
224/// // Fails because `128` doesn't fit into 6 bits.
225/// let v: Option<Bounded<u16, 6>> = 128u32.try_into_bounded();
226/// assert_eq!(v, None);
227/// ```
228#[repr(transparent)]
229#[derive(Clone, Copy, Debug, Default, Hash)]
230pub struct Bounded<T: Integer, const N: u32>(T);
231
232/// Validating the value as a const expression cannot be done as a regular method, as the
233/// arithmetic operations we rely on to check the bounds are not const. Thus, implement
234/// [`Bounded::new`] using a macro.
235macro_rules! impl_const_new {
236    ($($type:ty)*) => {
237        $(
238        impl<const N: u32> Bounded<$type, N> {
239            /// Creates a [`Bounded`] for the constant `VALUE`.
240            ///
241            /// Fails at build time if `VALUE` cannot be represented with `N` bits.
242            ///
243            /// This method should be preferred to [`Self::from_expr`] whenever possible.
244            ///
245            /// # Examples
246            ///
247            /// ```
248            /// use kernel::num::Bounded;
249            ///
250            #[doc = ::core::concat!(
251                "let v = Bounded::<",
252                ::core::stringify!($type),
253                ", 4>::new::<7>();")]
254            /// assert_eq!(v.get(), 7);
255            /// ```
256            pub const fn new<const VALUE: $type>() -> Self {
257                // Statically assert that `VALUE` fits within the set number of bits.
258                const {
259                    assert!(fits_within!(VALUE, $type, N));
260                }
261
262                // SAFETY: `fits_within` confirmed that `VALUE` can be represented within
263                // `N` bits.
264                unsafe { Self::__new(VALUE) }
265            }
266        }
267        )*
268    };
269}
270
271impl_const_new!(
272    u8 u16 u32 u64 usize
273    i8 i16 i32 i64 isize
274);
275
276impl<T, const N: u32> Bounded<T, N>
277where
278    T: Integer,
279{
280    /// Private constructor enforcing the type invariants.
281    ///
282    /// All instances of [`Bounded`] must be created through this method as it enforces most of the
283    /// type invariants.
284    ///
285    /// # Safety
286    ///
287    /// The caller must ensure that `value` can be represented within `N` bits.
288    const unsafe fn __new(value: T) -> Self {
289        // Enforce the type invariants.
290        const {
291            // `N` cannot be zero.
292            assert!(N != 0);
293            // The backing type is at least as large as `N` bits.
294            assert!(N <= T::BITS);
295        }
296
297        // INVARIANT: The caller ensures `value` fits within `N` bits.
298        Self(value)
299    }
300
301    /// Attempts to turn `value` into a `Bounded` using `N` bits.
302    ///
303    /// Returns [`None`] if `value` doesn't fit within `N` bits.
304    ///
305    /// # Examples
306    ///
307    /// ```
308    /// use kernel::num::Bounded;
309    ///
310    /// let v = Bounded::<u8, 1>::try_new(1);
311    /// assert_eq!(v.as_deref().copied(), Some(1));
312    ///
313    /// let v = Bounded::<i8, 4>::try_new(-2);
314    /// assert_eq!(v.as_deref().copied(), Some(-2));
315    ///
316    /// // `0x1ff` doesn't fit into 8 unsigned bits.
317    /// let v = Bounded::<u32, 8>::try_new(0x1ff);
318    /// assert_eq!(v, None);
319    ///
320    /// // The range of values representable with 4 bits is `[-8..=7]`. The following tests these
321    /// // limits.
322    /// let v = Bounded::<i8, 4>::try_new(-8);
323    /// assert_eq!(v.map(Bounded::get), Some(-8));
324    /// let v = Bounded::<i8, 4>::try_new(-9);
325    /// assert_eq!(v, None);
326    /// let v = Bounded::<i8, 4>::try_new(7);
327    /// assert_eq!(v.map(Bounded::get), Some(7));
328    /// let v = Bounded::<i8, 4>::try_new(8);
329    /// assert_eq!(v, None);
330    /// ```
331    pub fn try_new(value: T) -> Option<Self> {
332        fits_within(value, N).then(|| {
333            // SAFETY: `fits_within` confirmed that `value` can be represented within `N` bits.
334            unsafe { Self::__new(value) }
335        })
336    }
337
338    /// Checks that `expr` is valid for this type at compile-time and build a new value.
339    ///
340    /// This relies on [`build_assert!`] and guaranteed optimization to perform validation at
341    /// compile-time. If `expr` cannot be proved to be within the requested bounds at compile-time,
342    /// use the fallible [`Self::try_new`] instead.
343    ///
344    /// Limit this to simple, easily provable expressions, and prefer one of the [`Self::new`]
345    /// constructors whenever possible as they statically validate the value instead of relying on
346    /// compiler optimizations.
347    ///
348    /// # Examples
349    ///
350    /// ```
351    /// use kernel::num::Bounded;
352    /// # fn some_number() -> u32 { 0xffffffff }
353    ///
354    /// // Some undefined number.
355    /// let v: u32 = some_number();
356    ///
357    /// // Triggers a build error as `v` cannot be asserted to fit within 4 bits...
358    /// // let _ = Bounded::<u32, 4>::from_expr(v);
359    ///
360    /// // ... but this works as the compiler can assert the range from the mask.
361    /// let _ = Bounded::<u32, 4>::from_expr(v & 0xf);
362    ///
363    /// // These expressions are simple enough to be proven correct, but since they are static the
364    /// // `new` constructor should be preferred.
365    /// assert_eq!(Bounded::<u8, 1>::from_expr(1).get(), 1);
366    /// assert_eq!(Bounded::<u16, 8>::from_expr(0xff).get(), 0xff);
367    /// ```
368    // Always inline to optimize out error path of `build_assert`.
369    #[inline(always)]
370    pub fn from_expr(expr: T) -> Self {
371        crate::build_assert!(
372            fits_within(expr, N),
373            "Requested value larger than maximal representable value."
374        );
375
376        // SAFETY: `fits_within` confirmed that `expr` can be represented within `N` bits.
377        unsafe { Self::__new(expr) }
378    }
379
380    /// Returns the wrapped value as the backing type.
381    ///
382    /// # Examples
383    ///
384    /// ```
385    /// use kernel::num::Bounded;
386    ///
387    /// let v = Bounded::<u32, 4>::new::<7>();
388    /// assert_eq!(v.get(), 7u32);
389    /// ```
390    pub fn get(self) -> T {
391        *self.deref()
392    }
393
394    /// Increases the number of bits usable for `self`.
395    ///
396    /// This operation cannot fail.
397    ///
398    /// # Examples
399    ///
400    /// ```
401    /// use kernel::num::Bounded;
402    ///
403    /// let v = Bounded::<u32, 4>::new::<7>();
404    /// let larger_v = v.extend::<12>();
405    /// // The contained values are equal even though `larger_v` has a bigger capacity.
406    /// assert_eq!(larger_v, v);
407    /// ```
408    pub const fn extend<const M: u32>(self) -> Bounded<T, M> {
409        const {
410            assert!(
411                M >= N,
412                "Requested number of bits is less than the current representation."
413            );
414        }
415
416        // SAFETY: The value did fit within `N` bits, so it will all the more fit within
417        // the larger `M` bits.
418        unsafe { Bounded::__new(self.0) }
419    }
420
421    /// Attempts to shrink the number of bits usable for `self`.
422    ///
423    /// Returns [`None`] if the value of `self` cannot be represented within `M` bits.
424    ///
425    /// # Examples
426    ///
427    /// ```
428    /// use kernel::num::Bounded;
429    ///
430    /// let v = Bounded::<u32, 12>::new::<7>();
431    ///
432    /// // `7` can be represented using 3 unsigned bits...
433    /// let smaller_v = v.try_shrink::<3>();
434    /// assert_eq!(smaller_v.as_deref().copied(), Some(7));
435    ///
436    /// // ... but doesn't fit within `2` bits.
437    /// assert_eq!(v.try_shrink::<2>(), None);
438    /// ```
439    pub fn try_shrink<const M: u32>(self) -> Option<Bounded<T, M>> {
440        Bounded::<T, M>::try_new(self.get())
441    }
442
443    /// Casts `self` into a [`Bounded`] backed by a different storage type, but using the same
444    /// number of valid bits.
445    ///
446    /// Both `T` and `U` must be of same signedness, and `U` must be at least as large as
447    /// `N` bits, or a build error will occur.
448    ///
449    /// # Examples
450    ///
451    /// ```
452    /// use kernel::num::Bounded;
453    ///
454    /// let v = Bounded::<u32, 12>::new::<127>();
455    ///
456    /// let u16_v: Bounded<u16, 12> = v.cast();
457    /// assert_eq!(u16_v.get(), 127);
458    ///
459    /// // This won't build: a `u8` is smaller than the required 12 bits.
460    /// // let _: Bounded<u8, 12> = v.cast();
461    /// ```
462    pub fn cast<U>(self) -> Bounded<U, N>
463    where
464        U: TryFrom<T> + Integer,
465        T: Integer,
466        U: Integer<Signedness = T::Signedness>,
467    {
468        // SAFETY: The converted value is represented using `N` bits, `U` can contain `N` bits, and
469        // `U` and `T` have the same sign, hence this conversion cannot fail.
470        let value = unsafe { U::try_from(self.get()).unwrap_unchecked() };
471
472        // SAFETY: Although the backing type has changed, the value is still represented within
473        // `N` bits, and with the same signedness.
474        unsafe { Bounded::__new(value) }
475    }
476}
477
478impl<T, const N: u32> Deref for Bounded<T, N>
479where
480    T: Integer,
481{
482    type Target = T;
483
484    fn deref(&self) -> &Self::Target {
485        // Enforce the invariant to inform the compiler of the bounds of the value.
486        if !fits_within(self.0, N) {
487            // SAFETY: Per the `Bounded` invariants, `fits_within` can never return `false` on the
488            // value of a valid instance.
489            unsafe { core::hint::unreachable_unchecked() }
490        }
491
492        &self.0
493    }
494}
495
496/// Trait similar to [`TryInto`] but for [`Bounded`], to avoid conflicting implementations.
497///
498/// # Examples
499///
500/// ```
501/// use kernel::num::{Bounded, TryIntoBounded};
502///
503/// // Succeeds because `128` fits into 8 bits.
504/// let v: Option<Bounded<u16, 8>> = 128u32.try_into_bounded();
505/// assert_eq!(v.as_deref().copied(), Some(128));
506///
507/// // Fails because `128` doesn't fit into 6 bits.
508/// let v: Option<Bounded<u16, 6>> = 128u32.try_into_bounded();
509/// assert_eq!(v, None);
510/// ```
511pub trait TryIntoBounded<T: Integer, const N: u32> {
512    /// Attempts to convert `self` into a [`Bounded`] using `N` bits.
513    ///
514    /// Returns [`None`] if `self` does not fit into the target type.
515    fn try_into_bounded(self) -> Option<Bounded<T, N>>;
516}
517
518/// Any integer value can be attempted to be converted into a [`Bounded`] of any size.
519impl<T, U, const N: u32> TryIntoBounded<T, N> for U
520where
521    T: Integer,
522    U: TryInto<T>,
523{
524    fn try_into_bounded(self) -> Option<Bounded<T, N>> {
525        self.try_into().ok().and_then(Bounded::try_new)
526    }
527}
528
529// Comparisons between `Bounded`s.
530
531impl<T, U, const N: u32, const M: u32> PartialEq<Bounded<U, M>> for Bounded<T, N>
532where
533    T: Integer,
534    U: Integer,
535    T: PartialEq<U>,
536{
537    fn eq(&self, other: &Bounded<U, M>) -> bool {
538        self.get() == other.get()
539    }
540}
541
542impl<T, const N: u32> Eq for Bounded<T, N> where T: Integer {}
543
544impl<T, U, const N: u32, const M: u32> PartialOrd<Bounded<U, M>> for Bounded<T, N>
545where
546    T: Integer,
547    U: Integer,
548    T: PartialOrd<U>,
549{
550    fn partial_cmp(&self, other: &Bounded<U, M>) -> Option<cmp::Ordering> {
551        self.get().partial_cmp(&other.get())
552    }
553}
554
555impl<T, const N: u32> Ord for Bounded<T, N>
556where
557    T: Integer,
558    T: Ord,
559{
560    fn cmp(&self, other: &Self) -> cmp::Ordering {
561        self.get().cmp(&other.get())
562    }
563}
564
565// Comparisons between a `Bounded` and its backing type.
566
567impl<T, const N: u32> PartialEq<T> for Bounded<T, N>
568where
569    T: Integer,
570    T: PartialEq,
571{
572    fn eq(&self, other: &T) -> bool {
573        self.get() == *other
574    }
575}
576
577impl<T, const N: u32> PartialOrd<T> for Bounded<T, N>
578where
579    T: Integer,
580    T: PartialOrd,
581{
582    fn partial_cmp(&self, other: &T) -> Option<cmp::Ordering> {
583        self.get().partial_cmp(other)
584    }
585}
586
587// Implementations of `core::ops` for two `Bounded` with the same backing type.
588
589impl<T, const N: u32, const M: u32> ops::Add<Bounded<T, M>> for Bounded<T, N>
590where
591    T: Integer,
592    T: ops::Add<Output = T>,
593{
594    type Output = T;
595
596    fn add(self, rhs: Bounded<T, M>) -> Self::Output {
597        self.get() + rhs.get()
598    }
599}
600
601impl<T, const N: u32, const M: u32> ops::BitAnd<Bounded<T, M>> for Bounded<T, N>
602where
603    T: Integer,
604    T: ops::BitAnd<Output = T>,
605{
606    type Output = T;
607
608    fn bitand(self, rhs: Bounded<T, M>) -> Self::Output {
609        self.get() & rhs.get()
610    }
611}
612
613impl<T, const N: u32, const M: u32> ops::BitOr<Bounded<T, M>> for Bounded<T, N>
614where
615    T: Integer,
616    T: ops::BitOr<Output = T>,
617{
618    type Output = T;
619
620    fn bitor(self, rhs: Bounded<T, M>) -> Self::Output {
621        self.get() | rhs.get()
622    }
623}
624
625impl<T, const N: u32, const M: u32> ops::BitXor<Bounded<T, M>> for Bounded<T, N>
626where
627    T: Integer,
628    T: ops::BitXor<Output = T>,
629{
630    type Output = T;
631
632    fn bitxor(self, rhs: Bounded<T, M>) -> Self::Output {
633        self.get() ^ rhs.get()
634    }
635}
636
637impl<T, const N: u32, const M: u32> ops::Div<Bounded<T, M>> for Bounded<T, N>
638where
639    T: Integer,
640    T: ops::Div<Output = T>,
641{
642    type Output = T;
643
644    fn div(self, rhs: Bounded<T, M>) -> Self::Output {
645        self.get() / rhs.get()
646    }
647}
648
649impl<T, const N: u32, const M: u32> ops::Mul<Bounded<T, M>> for Bounded<T, N>
650where
651    T: Integer,
652    T: ops::Mul<Output = T>,
653{
654    type Output = T;
655
656    fn mul(self, rhs: Bounded<T, M>) -> Self::Output {
657        self.get() * rhs.get()
658    }
659}
660
661impl<T, const N: u32, const M: u32> ops::Rem<Bounded<T, M>> for Bounded<T, N>
662where
663    T: Integer,
664    T: ops::Rem<Output = T>,
665{
666    type Output = T;
667
668    fn rem(self, rhs: Bounded<T, M>) -> Self::Output {
669        self.get() % rhs.get()
670    }
671}
672
673impl<T, const N: u32, const M: u32> ops::Sub<Bounded<T, M>> for Bounded<T, N>
674where
675    T: Integer,
676    T: ops::Sub<Output = T>,
677{
678    type Output = T;
679
680    fn sub(self, rhs: Bounded<T, M>) -> Self::Output {
681        self.get() - rhs.get()
682    }
683}
684
685// Implementations of `core::ops` between a `Bounded` and its backing type.
686
687impl<T, const N: u32> ops::Add<T> for Bounded<T, N>
688where
689    T: Integer,
690    T: ops::Add<Output = T>,
691{
692    type Output = T;
693
694    fn add(self, rhs: T) -> Self::Output {
695        self.get() + rhs
696    }
697}
698
699impl<T, const N: u32> ops::BitAnd<T> for Bounded<T, N>
700where
701    T: Integer,
702    T: ops::BitAnd<Output = T>,
703{
704    type Output = T;
705
706    fn bitand(self, rhs: T) -> Self::Output {
707        self.get() & rhs
708    }
709}
710
711impl<T, const N: u32> ops::BitOr<T> for Bounded<T, N>
712where
713    T: Integer,
714    T: ops::BitOr<Output = T>,
715{
716    type Output = T;
717
718    fn bitor(self, rhs: T) -> Self::Output {
719        self.get() | rhs
720    }
721}
722
723impl<T, const N: u32> ops::BitXor<T> for Bounded<T, N>
724where
725    T: Integer,
726    T: ops::BitXor<Output = T>,
727{
728    type Output = T;
729
730    fn bitxor(self, rhs: T) -> Self::Output {
731        self.get() ^ rhs
732    }
733}
734
735impl<T, const N: u32> ops::Div<T> for Bounded<T, N>
736where
737    T: Integer,
738    T: ops::Div<Output = T>,
739{
740    type Output = T;
741
742    fn div(self, rhs: T) -> Self::Output {
743        self.get() / rhs
744    }
745}
746
747impl<T, const N: u32> ops::Mul<T> for Bounded<T, N>
748where
749    T: Integer,
750    T: ops::Mul<Output = T>,
751{
752    type Output = T;
753
754    fn mul(self, rhs: T) -> Self::Output {
755        self.get() * rhs
756    }
757}
758
759impl<T, const N: u32> ops::Neg for Bounded<T, N>
760where
761    T: Integer,
762    T: ops::Neg<Output = T>,
763{
764    type Output = T;
765
766    fn neg(self) -> Self::Output {
767        -self.get()
768    }
769}
770
771impl<T, const N: u32> ops::Not for Bounded<T, N>
772where
773    T: Integer,
774    T: ops::Not<Output = T>,
775{
776    type Output = T;
777
778    fn not(self) -> Self::Output {
779        !self.get()
780    }
781}
782
783impl<T, const N: u32> ops::Rem<T> for Bounded<T, N>
784where
785    T: Integer,
786    T: ops::Rem<Output = T>,
787{
788    type Output = T;
789
790    fn rem(self, rhs: T) -> Self::Output {
791        self.get() % rhs
792    }
793}
794
795impl<T, const N: u32> ops::Sub<T> for Bounded<T, N>
796where
797    T: Integer,
798    T: ops::Sub<Output = T>,
799{
800    type Output = T;
801
802    fn sub(self, rhs: T) -> Self::Output {
803        self.get() - rhs
804    }
805}
806
807// Proxy implementations of `core::fmt`.
808
809impl<T, const N: u32> fmt::Display for Bounded<T, N>
810where
811    T: Integer,
812    T: fmt::Display,
813{
814    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
815        self.get().fmt(f)
816    }
817}
818
819impl<T, const N: u32> fmt::Binary for Bounded<T, N>
820where
821    T: Integer,
822    T: fmt::Binary,
823{
824    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
825        self.get().fmt(f)
826    }
827}
828
829impl<T, const N: u32> fmt::LowerExp for Bounded<T, N>
830where
831    T: Integer,
832    T: fmt::LowerExp,
833{
834    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
835        self.get().fmt(f)
836    }
837}
838
839impl<T, const N: u32> fmt::LowerHex for Bounded<T, N>
840where
841    T: Integer,
842    T: fmt::LowerHex,
843{
844    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
845        self.get().fmt(f)
846    }
847}
848
849impl<T, const N: u32> fmt::Octal for Bounded<T, N>
850where
851    T: Integer,
852    T: fmt::Octal,
853{
854    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
855        self.get().fmt(f)
856    }
857}
858
859impl<T, const N: u32> fmt::UpperExp for Bounded<T, N>
860where
861    T: Integer,
862    T: fmt::UpperExp,
863{
864    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
865        self.get().fmt(f)
866    }
867}
868
869impl<T, const N: u32> fmt::UpperHex for Bounded<T, N>
870where
871    T: Integer,
872    T: fmt::UpperHex,
873{
874    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
875        self.get().fmt(f)
876    }
877}
878
879/// Implements `$trait` for all [`Bounded`] types represented using `$num_bits`.
880///
881/// This is used to declare size properties as traits that we can constrain against in impl blocks.
882macro_rules! impl_size_rule {
883    ($trait:ty, $($num_bits:literal)*) => {
884        $(
885        impl<T> $trait for Bounded<T, $num_bits> where T: Integer {}
886        )*
887    };
888}
889
890/// Local trait expressing the fact that a given [`Bounded`] has at least `N` bits used for value
891/// representation.
892trait AtLeastXBits<const N: usize> {}
893
894/// Implementations for infallibly converting a primitive type into a [`Bounded`] that can contain
895/// it.
896///
897/// Put into their own module for readability, and to avoid cluttering the rustdoc of the parent
898/// module.
899mod atleast_impls {
900    use super::*;
901
902    // Number of bits at least as large as 64.
903    impl_size_rule!(AtLeastXBits<64>, 64);
904
905    // Anything 64 bits or more is also larger than 32.
906    impl<T> AtLeastXBits<32> for T where T: AtLeastXBits<64> {}
907    // Other numbers of bits at least as large as 32.
908    impl_size_rule!(AtLeastXBits<32>,
909        32 33 34 35 36 37 38 39
910        40 41 42 43 44 45 46 47
911        48 49 50 51 52 53 54 55
912        56 57 58 59 60 61 62 63
913    );
914
915    // Anything 32 bits or more is also larger than 16.
916    impl<T> AtLeastXBits<16> for T where T: AtLeastXBits<32> {}
917    // Other numbers of bits at least as large as 16.
918    impl_size_rule!(AtLeastXBits<16>,
919        16 17 18 19 20 21 22 23
920        24 25 26 27 28 29 30 31
921    );
922
923    // Anything 16 bits or more is also larger than 8.
924    impl<T> AtLeastXBits<8> for T where T: AtLeastXBits<16> {}
925    // Other numbers of bits at least as large as 8.
926    impl_size_rule!(AtLeastXBits<8>, 8 9 10 11 12 13 14 15);
927}
928
929/// Generates `From` implementations from a primitive type into a [`Bounded`] with
930/// enough bits to store any value of that type.
931///
932/// Note: The only reason for having this macro is that if we pass `$type` as a generic
933/// parameter, we cannot use it in the const context of [`AtLeastXBits`]'s generic parameter. This
934/// can be fixed once the `generic_const_exprs` feature is usable, and this macro replaced by a
935/// regular `impl` block.
936macro_rules! impl_from_primitive {
937    ($($type:ty)*) => {
938        $(
939        #[doc = ::core::concat!(
940            "Conversion from a [`",
941            ::core::stringify!($type),
942            "`] into a [`Bounded`] of same signedness with enough bits to store it.")]
943        impl<T, const N: u32> From<$type> for Bounded<T, N>
944        where
945            $type: Integer,
946            T: Integer<Signedness = <$type as Integer>::Signedness> + From<$type>,
947            Self: AtLeastXBits<{ <$type as Integer>::BITS as usize }>,
948        {
949            fn from(value: $type) -> Self {
950                // SAFETY: The trait bound on `Self` guarantees that `N` bits is
951                // enough to hold any value of the source type.
952                unsafe { Self::__new(T::from(value)) }
953            }
954        }
955        )*
956    }
957}
958
959impl_from_primitive!(
960    u8 u16 u32 u64 usize
961    i8 i16 i32 i64 isize
962);
963
964/// Local trait expressing the fact that a given [`Bounded`] fits into a primitive type of `N` bits,
965/// provided they have the same signedness.
966trait FitsInXBits<const N: usize> {}
967
968/// Implementations for infallibly converting a [`Bounded`] into a primitive type that can contain
969/// it.
970///
971/// Put into their own module for readability, and to avoid cluttering the rustdoc of the parent
972/// module.
973mod fits_impls {
974    use super::*;
975
976    // Number of bits that fit into a 8-bits primitive.
977    impl_size_rule!(FitsInXBits<8>, 1 2 3 4 5 6 7 8);
978
979    // Anything that fits into 8 bits also fits into 16.
980    impl<T> FitsInXBits<16> for T where T: FitsInXBits<8> {}
981    // Other number of bits that fit into a 16-bits primitive.
982    impl_size_rule!(FitsInXBits<16>, 9 10 11 12 13 14 15 16);
983
984    // Anything that fits into 16 bits also fits into 32.
985    impl<T> FitsInXBits<32> for T where T: FitsInXBits<16> {}
986    // Other number of bits that fit into a 32-bits primitive.
987    impl_size_rule!(FitsInXBits<32>,
988        17 18 19 20 21 22 23 24
989        25 26 27 28 29 30 31 32
990    );
991
992    // Anything that fits into 32 bits also fits into 64.
993    impl<T> FitsInXBits<64> for T where T: FitsInXBits<32> {}
994    // Other number of bits that fit into a 64-bits primitive.
995    impl_size_rule!(FitsInXBits<64>,
996        33 34 35 36 37 38 39 40
997        41 42 43 44 45 46 47 48
998        49 50 51 52 53 54 55 56
999        57 58 59 60 61 62 63 64
1000    );
1001}
1002
1003/// Generates [`From`] implementations from a [`Bounded`] into a primitive type that is
1004/// guaranteed to contain it.
1005///
1006/// Note: The only reason for having this macro is that if we pass `$type` as a generic
1007/// parameter, we cannot use it in the const context of `AtLeastXBits`'s generic parameter. This
1008/// can be fixed once the `generic_const_exprs` feature is usable, and this macro replaced by a
1009/// regular `impl` block.
1010macro_rules! impl_into_primitive {
1011    ($($type:ty)*) => {
1012        $(
1013        #[doc = ::core::concat!(
1014            "Conversion from a [`Bounded`] with no more bits than a [`",
1015            ::core::stringify!($type),
1016            "`] and of same signedness into [`",
1017            ::core::stringify!($type),
1018            "`]")]
1019        impl<T, const N: u32> From<Bounded<T, N>> for $type
1020        where
1021            $type: Integer + TryFrom<T>,
1022            T: Integer<Signedness = <$type as Integer>::Signedness>,
1023            Bounded<T, N>: FitsInXBits<{ <$type as Integer>::BITS as usize }>,
1024        {
1025            fn from(value: Bounded<T, N>) -> $type {
1026                // SAFETY: The trait bound on `Bounded` ensures that any value it holds (which
1027                // is constrained to `N` bits) can fit into the destination type, so this
1028                // conversion cannot fail.
1029                unsafe { <$type>::try_from(value.get()).unwrap_unchecked() }
1030            }
1031        }
1032        )*
1033    }
1034}
1035
1036impl_into_primitive!(
1037    u8 u16 u32 u64 usize
1038    i8 i16 i32 i64 isize
1039);
1040
1041// Single-bit `Bounded`s can be converted from/to a boolean.
1042
1043impl<T> From<Bounded<T, 1>> for bool
1044where
1045    T: Integer + Zeroable,
1046{
1047    fn from(value: Bounded<T, 1>) -> Self {
1048        value.get() != Zeroable::zeroed()
1049    }
1050}
1051
1052impl<T, const N: u32> From<bool> for Bounded<T, N>
1053where
1054    T: Integer + From<bool>,
1055{
1056    fn from(value: bool) -> Self {
1057        // SAFETY: A boolean can be represented using a single bit, and thus fits within any
1058        // integer type for any `N` > 0.
1059        unsafe { Self::__new(T::from(value)) }
1060    }
1061}