1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318
// SPDX-License-Identifier: GPL-2.0
//! Generic support for drivers of different buses (e.g., PCI, Platform, Amba, etc.).
//!
//! This documentation describes how to implement a bus specific driver API and how to align it with
//! the design of (bus specific) devices.
//!
//! Note: Readers are expected to know the content of the documentation of [`Device`] and
//! [`DeviceContext`].
//!
//! # Driver Trait
//!
//! The main driver interface is defined by a bus specific driver trait. For instance:
//!
//! ```ignore
//! pub trait Driver: Send {
//! /// The type holding information about each device ID supported by the driver.
//! type IdInfo: 'static;
//!
//! /// The table of OF device ids supported by the driver.
//! const OF_ID_TABLE: Option<of::IdTable<Self::IdInfo>> = None;
//!
//! /// The table of ACPI device ids supported by the driver.
//! const ACPI_ID_TABLE: Option<acpi::IdTable<Self::IdInfo>> = None;
//!
//! /// Driver probe.
//! fn probe(dev: &Device<device::Core>, id_info: &Self::IdInfo) -> Result<Pin<KBox<Self>>>;
//!
//! /// Driver unbind (optional).
//! fn unbind(dev: &Device<device::Core>, this: Pin<&Self>) {
//! let _ = (dev, this);
//! }
//! }
//! ```
//!
//! For specific examples see [`auxiliary::Driver`], [`pci::Driver`] and [`platform::Driver`].
//!
//! The `probe()` callback should return a `Result<Pin<KBox<Self>>>`, i.e. the driver's private
//! data. The bus abstraction should store the pointer in the corresponding bus device. The generic
//! [`Device`] infrastructure provides common helpers for this purpose on its
//! [`Device<CoreInternal>`] implementation.
//!
//! All driver callbacks should provide a reference to the driver's private data. Once the driver
//! is unbound from the device, the bus abstraction should take back the ownership of the driver's
//! private data from the corresponding [`Device`] and [`drop`] it.
//!
//! All driver callbacks should provide a [`Device<Core>`] reference (see also [`device::Core`]).
//!
//! # Adapter
//!
//! The adapter implementation of a bus represents the abstraction layer between the C bus
//! callbacks and the Rust bus callbacks. It therefore has to be generic over an implementation of
//! the [driver trait](#driver-trait).
//!
//! ```ignore
//! pub struct Adapter<T: Driver>;
//! ```
//!
//! There's a common [`Adapter`] trait that can be implemented to inherit common driver
//! infrastructure, such as finding the ID info from an [`of::IdTable`] or [`acpi::IdTable`].
//!
//! # Driver Registration
//!
//! In order to register C driver types (such as `struct platform_driver`) the [adapter](#adapter)
//! should implement the [`RegistrationOps`] trait.
//!
//! This trait implementation can be used to create the actual registration with the common
//! [`Registration`] type.
//!
//! Typically, bus abstractions want to provide a bus specific `module_bus_driver!` macro, which
//! creates a kernel module with exactly one [`Registration`] for the bus specific adapter.
//!
//! The generic driver infrastructure provides a helper for this with the [`module_driver`] macro.
//!
//! # Device IDs
//!
//! Besides the common device ID types, such as [`of::DeviceId`] and [`acpi::DeviceId`], most buses
//! may need to implement their own device ID types.
//!
//! For this purpose the generic infrastructure in [`device_id`] should be used.
//!
//! [`auxiliary::Driver`]: kernel::auxiliary::Driver
//! [`Core`]: device::Core
//! [`Device`]: device::Device
//! [`Device<Core>`]: device::Device<device::Core>
//! [`Device<CoreInternal>`]: device::Device<device::CoreInternal>
//! [`DeviceContext`]: device::DeviceContext
//! [`device_id`]: kernel::device_id
//! [`module_driver`]: kernel::module_driver
//! [`pci::Driver`]: kernel::pci::Driver
//! [`platform::Driver`]: kernel::platform::Driver
use crate::error::{Error, Result};
use crate::{acpi, device, of, str::CStr, try_pin_init, types::Opaque, ThisModule};
use core::pin::Pin;
use pin_init::{pin_data, pinned_drop, PinInit};
/// The [`RegistrationOps`] trait serves as generic interface for subsystems (e.g., PCI, Platform,
/// Amba, etc.) to provide the corresponding subsystem specific implementation to register /
/// unregister a driver of the particular type (`RegType`).
///
/// For instance, the PCI subsystem would set `RegType` to `bindings::pci_driver` and call
/// `bindings::__pci_register_driver` from `RegistrationOps::register` and
/// `bindings::pci_unregister_driver` from `RegistrationOps::unregister`.
///
/// # Safety
///
/// A call to [`RegistrationOps::unregister`] for a given instance of `RegType` is only valid if a
/// preceding call to [`RegistrationOps::register`] has been successful.
pub unsafe trait RegistrationOps {
/// The type that holds information about the registration. This is typically a struct defined
/// by the C portion of the kernel.
type RegType: Default;
/// Registers a driver.
///
/// # Safety
///
/// On success, `reg` must remain pinned and valid until the matching call to
/// [`RegistrationOps::unregister`].
unsafe fn register(
reg: &Opaque<Self::RegType>,
name: &'static CStr,
module: &'static ThisModule,
) -> Result;
/// Unregisters a driver previously registered with [`RegistrationOps::register`].
///
/// # Safety
///
/// Must only be called after a preceding successful call to [`RegistrationOps::register`] for
/// the same `reg`.
unsafe fn unregister(reg: &Opaque<Self::RegType>);
}
/// A [`Registration`] is a generic type that represents the registration of some driver type (e.g.
/// `bindings::pci_driver`). Therefore a [`Registration`] must be initialized with a type that
/// implements the [`RegistrationOps`] trait, such that the generic `T::register` and
/// `T::unregister` calls result in the subsystem specific registration calls.
///
///Once the `Registration` structure is dropped, the driver is unregistered.
#[pin_data(PinnedDrop)]
pub struct Registration<T: RegistrationOps> {
#[pin]
reg: Opaque<T::RegType>,
}
// SAFETY: `Registration` has no fields or methods accessible via `&Registration`, so it is safe to
// share references to it with multiple threads as nothing can be done.
unsafe impl<T: RegistrationOps> Sync for Registration<T> {}
// SAFETY: Both registration and unregistration are implemented in C and safe to be performed from
// any thread, so `Registration` is `Send`.
unsafe impl<T: RegistrationOps> Send for Registration<T> {}
impl<T: RegistrationOps> Registration<T> {
/// Creates a new instance of the registration object.
pub fn new(name: &'static CStr, module: &'static ThisModule) -> impl PinInit<Self, Error> {
try_pin_init!(Self {
reg <- Opaque::try_ffi_init(|ptr: *mut T::RegType| {
// SAFETY: `try_ffi_init` guarantees that `ptr` is valid for write.
unsafe { ptr.write(T::RegType::default()) };
// SAFETY: `try_ffi_init` guarantees that `ptr` is valid for write, and it has
// just been initialised above, so it's also valid for read.
let drv = unsafe { &*(ptr as *const Opaque<T::RegType>) };
// SAFETY: `drv` is guaranteed to be pinned until `T::unregister`.
unsafe { T::register(drv, name, module) }
}),
})
}
}
#[pinned_drop]
impl<T: RegistrationOps> PinnedDrop for Registration<T> {
fn drop(self: Pin<&mut Self>) {
// SAFETY: The existence of `self` guarantees that `self.reg` has previously been
// successfully registered with `T::register`
unsafe { T::unregister(&self.reg) };
}
}
/// Declares a kernel module that exposes a single driver.
///
/// It is meant to be used as a helper by other subsystems so they can more easily expose their own
/// macros.
#[macro_export]
macro_rules! module_driver {
(<$gen_type:ident>, $driver_ops:ty, { type: $type:ty, $($f:tt)* }) => {
type Ops<$gen_type> = $driver_ops;
#[$crate::prelude::pin_data]
struct DriverModule {
#[pin]
_driver: $crate::driver::Registration<Ops<$type>>,
}
impl $crate::InPlaceModule for DriverModule {
fn init(
module: &'static $crate::ThisModule
) -> impl ::pin_init::PinInit<Self, $crate::error::Error> {
$crate::try_pin_init!(Self {
_driver <- $crate::driver::Registration::new(
<Self as $crate::ModuleMetadata>::NAME,
module,
),
})
}
}
$crate::prelude::module! {
type: DriverModule,
$($f)*
}
}
}
/// The bus independent adapter to match a drivers and a devices.
///
/// This trait should be implemented by the bus specific adapter, which represents the connection
/// of a device and a driver.
///
/// It provides bus independent functions for device / driver interactions.
pub trait Adapter {
/// The type holding driver private data about each device id supported by the driver.
type IdInfo: 'static;
/// The [`acpi::IdTable`] of the corresponding driver
fn acpi_id_table() -> Option<acpi::IdTable<Self::IdInfo>>;
/// Returns the driver's private data from the matching entry in the [`acpi::IdTable`], if any.
///
/// If this returns `None`, it means there is no match with an entry in the [`acpi::IdTable`].
fn acpi_id_info(dev: &device::Device) -> Option<&'static Self::IdInfo> {
#[cfg(not(CONFIG_ACPI))]
{
let _ = dev;
None
}
#[cfg(CONFIG_ACPI)]
{
let table = Self::acpi_id_table()?;
// SAFETY:
// - `table` has static lifetime, hence it's valid for read,
// - `dev` is guaranteed to be valid while it's alive, and so is `dev.as_raw()`.
let raw_id = unsafe { bindings::acpi_match_device(table.as_ptr(), dev.as_raw()) };
if raw_id.is_null() {
None
} else {
// SAFETY: `DeviceId` is a `#[repr(transparent)]` wrapper of `struct acpi_device_id`
// and does not add additional invariants, so it's safe to transmute.
let id = unsafe { &*raw_id.cast::<acpi::DeviceId>() };
Some(table.info(<acpi::DeviceId as crate::device_id::RawDeviceIdIndex>::index(id)))
}
}
}
/// The [`of::IdTable`] of the corresponding driver.
fn of_id_table() -> Option<of::IdTable<Self::IdInfo>>;
/// Returns the driver's private data from the matching entry in the [`of::IdTable`], if any.
///
/// If this returns `None`, it means there is no match with an entry in the [`of::IdTable`].
fn of_id_info(dev: &device::Device) -> Option<&'static Self::IdInfo> {
#[cfg(not(CONFIG_OF))]
{
let _ = dev;
None
}
#[cfg(CONFIG_OF)]
{
let table = Self::of_id_table()?;
// SAFETY:
// - `table` has static lifetime, hence it's valid for read,
// - `dev` is guaranteed to be valid while it's alive, and so is `dev.as_raw()`.
let raw_id = unsafe { bindings::of_match_device(table.as_ptr(), dev.as_raw()) };
if raw_id.is_null() {
None
} else {
// SAFETY: `DeviceId` is a `#[repr(transparent)]` wrapper of `struct of_device_id`
// and does not add additional invariants, so it's safe to transmute.
let id = unsafe { &*raw_id.cast::<of::DeviceId>() };
Some(
table.info(<of::DeviceId as crate::device_id::RawDeviceIdIndex>::index(
id,
)),
)
}
}
}
/// Returns the driver's private data from the matching entry of any of the ID tables, if any.
///
/// If this returns `None`, it means that there is no match in any of the ID tables directly
/// associated with a [`device::Device`].
fn id_info(dev: &device::Device) -> Option<&'static Self::IdInfo> {
let id = Self::acpi_id_info(dev);
if id.is_some() {
return id;
}
let id = Self::of_id_info(dev);
if id.is_some() {
return id;
}
None
}
}