1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664
// SPDX-License-Identifier: GPL-2.0
//! Direct memory access (DMA).
//!
//! C header: [`include/linux/dma-mapping.h`](srctree/include/linux/dma-mapping.h)
use crate::{
bindings, build_assert, device,
device::{Bound, Core},
error::{to_result, Result},
prelude::*,
transmute::{AsBytes, FromBytes},
types::ARef,
};
/// Trait to be implemented by DMA capable bus devices.
///
/// The [`dma::Device`](Device) trait should be implemented by bus specific device representations,
/// where the underlying bus is DMA capable, such as [`pci::Device`](::kernel::pci::Device) or
/// [`platform::Device`](::kernel::platform::Device).
pub trait Device: AsRef<device::Device<Core>> {
/// Set up the device's DMA streaming addressing capabilities.
///
/// This method is usually called once from `probe()` as soon as the device capabilities are
/// known.
///
/// # Safety
///
/// This method must not be called concurrently with any DMA allocation or mapping primitives,
/// such as [`CoherentAllocation::alloc_attrs`].
unsafe fn dma_set_mask(&self, mask: DmaMask) -> Result {
// SAFETY:
// - By the type invariant of `device::Device`, `self.as_ref().as_raw()` is valid.
// - The safety requirement of this function guarantees that there are no concurrent calls
// to DMA allocation and mapping primitives using this mask.
to_result(unsafe { bindings::dma_set_mask(self.as_ref().as_raw(), mask.value()) })
}
/// Set up the device's DMA coherent addressing capabilities.
///
/// This method is usually called once from `probe()` as soon as the device capabilities are
/// known.
///
/// # Safety
///
/// This method must not be called concurrently with any DMA allocation or mapping primitives,
/// such as [`CoherentAllocation::alloc_attrs`].
unsafe fn dma_set_coherent_mask(&self, mask: DmaMask) -> Result {
// SAFETY:
// - By the type invariant of `device::Device`, `self.as_ref().as_raw()` is valid.
// - The safety requirement of this function guarantees that there are no concurrent calls
// to DMA allocation and mapping primitives using this mask.
to_result(unsafe { bindings::dma_set_coherent_mask(self.as_ref().as_raw(), mask.value()) })
}
/// Set up the device's DMA addressing capabilities.
///
/// This is a combination of [`Device::dma_set_mask`] and [`Device::dma_set_coherent_mask`].
///
/// This method is usually called once from `probe()` as soon as the device capabilities are
/// known.
///
/// # Safety
///
/// This method must not be called concurrently with any DMA allocation or mapping primitives,
/// such as [`CoherentAllocation::alloc_attrs`].
unsafe fn dma_set_mask_and_coherent(&self, mask: DmaMask) -> Result {
// SAFETY:
// - By the type invariant of `device::Device`, `self.as_ref().as_raw()` is valid.
// - The safety requirement of this function guarantees that there are no concurrent calls
// to DMA allocation and mapping primitives using this mask.
to_result(unsafe {
bindings::dma_set_mask_and_coherent(self.as_ref().as_raw(), mask.value())
})
}
}
/// A DMA mask that holds a bitmask with the lowest `n` bits set.
///
/// Use [`DmaMask::new`] or [`DmaMask::try_new`] to construct a value. Values
/// are guaranteed to never exceed the bit width of `u64`.
///
/// This is the Rust equivalent of the C macro `DMA_BIT_MASK()`.
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub struct DmaMask(u64);
impl DmaMask {
/// Constructs a `DmaMask` with the lowest `n` bits set to `1`.
///
/// For `n <= 64`, sets exactly the lowest `n` bits.
/// For `n > 64`, results in a build error.
///
/// # Examples
///
/// ```
/// use kernel::dma::DmaMask;
///
/// let mask0 = DmaMask::new::<0>();
/// assert_eq!(mask0.value(), 0);
///
/// let mask1 = DmaMask::new::<1>();
/// assert_eq!(mask1.value(), 0b1);
///
/// let mask64 = DmaMask::new::<64>();
/// assert_eq!(mask64.value(), u64::MAX);
///
/// // Build failure.
/// // let mask_overflow = DmaMask::new::<100>();
/// ```
#[inline]
pub const fn new<const N: u32>() -> Self {
let Ok(mask) = Self::try_new(N) else {
build_error!("Invalid DMA Mask.");
};
mask
}
/// Constructs a `DmaMask` with the lowest `n` bits set to `1`.
///
/// For `n <= 64`, sets exactly the lowest `n` bits.
/// For `n > 64`, returns [`EINVAL`].
///
/// # Examples
///
/// ```
/// use kernel::dma::DmaMask;
///
/// let mask0 = DmaMask::try_new(0)?;
/// assert_eq!(mask0.value(), 0);
///
/// let mask1 = DmaMask::try_new(1)?;
/// assert_eq!(mask1.value(), 0b1);
///
/// let mask64 = DmaMask::try_new(64)?;
/// assert_eq!(mask64.value(), u64::MAX);
///
/// let mask_overflow = DmaMask::try_new(100);
/// assert!(mask_overflow.is_err());
/// # Ok::<(), Error>(())
/// ```
#[inline]
pub const fn try_new(n: u32) -> Result<Self> {
Ok(Self(match n {
0 => 0,
1..=64 => u64::MAX >> (64 - n),
_ => return Err(EINVAL),
}))
}
/// Returns the underlying `u64` bitmask value.
#[inline]
pub const fn value(&self) -> u64 {
self.0
}
}
/// Possible attributes associated with a DMA mapping.
///
/// They can be combined with the operators `|`, `&`, and `!`.
///
/// Values can be used from the [`attrs`] module.
///
/// # Examples
///
/// ```
/// # use kernel::device::{Bound, Device};
/// use kernel::dma::{attrs::*, CoherentAllocation};
///
/// # fn test(dev: &Device<Bound>) -> Result {
/// let attribs = DMA_ATTR_FORCE_CONTIGUOUS | DMA_ATTR_NO_WARN;
/// let c: CoherentAllocation<u64> =
/// CoherentAllocation::alloc_attrs(dev, 4, GFP_KERNEL, attribs)?;
/// # Ok::<(), Error>(()) }
/// ```
#[derive(Clone, Copy, PartialEq)]
#[repr(transparent)]
pub struct Attrs(u32);
impl Attrs {
/// Get the raw representation of this attribute.
pub(crate) fn as_raw(self) -> crate::ffi::c_ulong {
self.0 as crate::ffi::c_ulong
}
/// Check whether `flags` is contained in `self`.
pub fn contains(self, flags: Attrs) -> bool {
(self & flags) == flags
}
}
impl core::ops::BitOr for Attrs {
type Output = Self;
fn bitor(self, rhs: Self) -> Self::Output {
Self(self.0 | rhs.0)
}
}
impl core::ops::BitAnd for Attrs {
type Output = Self;
fn bitand(self, rhs: Self) -> Self::Output {
Self(self.0 & rhs.0)
}
}
impl core::ops::Not for Attrs {
type Output = Self;
fn not(self) -> Self::Output {
Self(!self.0)
}
}
/// DMA mapping attributes.
pub mod attrs {
use super::Attrs;
/// Specifies that reads and writes to the mapping may be weakly ordered, that is that reads
/// and writes may pass each other.
pub const DMA_ATTR_WEAK_ORDERING: Attrs = Attrs(bindings::DMA_ATTR_WEAK_ORDERING);
/// Specifies that writes to the mapping may be buffered to improve performance.
pub const DMA_ATTR_WRITE_COMBINE: Attrs = Attrs(bindings::DMA_ATTR_WRITE_COMBINE);
/// Lets the platform to avoid creating a kernel virtual mapping for the allocated buffer.
pub const DMA_ATTR_NO_KERNEL_MAPPING: Attrs = Attrs(bindings::DMA_ATTR_NO_KERNEL_MAPPING);
/// Allows platform code to skip synchronization of the CPU cache for the given buffer assuming
/// that it has been already transferred to 'device' domain.
pub const DMA_ATTR_SKIP_CPU_SYNC: Attrs = Attrs(bindings::DMA_ATTR_SKIP_CPU_SYNC);
/// Forces contiguous allocation of the buffer in physical memory.
pub const DMA_ATTR_FORCE_CONTIGUOUS: Attrs = Attrs(bindings::DMA_ATTR_FORCE_CONTIGUOUS);
/// Hints DMA-mapping subsystem that it's probably not worth the time to try
/// to allocate memory to in a way that gives better TLB efficiency.
pub const DMA_ATTR_ALLOC_SINGLE_PAGES: Attrs = Attrs(bindings::DMA_ATTR_ALLOC_SINGLE_PAGES);
/// This tells the DMA-mapping subsystem to suppress allocation failure reports (similarly to
/// `__GFP_NOWARN`).
pub const DMA_ATTR_NO_WARN: Attrs = Attrs(bindings::DMA_ATTR_NO_WARN);
/// Indicates that the buffer is fully accessible at an elevated privilege level (and
/// ideally inaccessible or at least read-only at lesser-privileged levels).
pub const DMA_ATTR_PRIVILEGED: Attrs = Attrs(bindings::DMA_ATTR_PRIVILEGED);
}
/// An abstraction of the `dma_alloc_coherent` API.
///
/// This is an abstraction around the `dma_alloc_coherent` API which is used to allocate and map
/// large coherent DMA regions.
///
/// A [`CoherentAllocation`] instance contains a pointer to the allocated region (in the
/// processor's virtual address space) and the device address which can be given to the device
/// as the DMA address base of the region. The region is released once [`CoherentAllocation`]
/// is dropped.
///
/// # Invariants
///
/// - For the lifetime of an instance of [`CoherentAllocation`], the `cpu_addr` is a valid pointer
/// to an allocated region of coherent memory and `dma_handle` is the DMA address base of the
/// region.
/// - The size in bytes of the allocation is equal to `size_of::<T> * count`.
/// - `size_of::<T> * count` fits into a `usize`.
// TODO
//
// DMA allocations potentially carry device resources (e.g.IOMMU mappings), hence for soundness
// reasons DMA allocation would need to be embedded in a `Devres` container, in order to ensure
// that device resources can never survive device unbind.
//
// However, it is neither desirable nor necessary to protect the allocated memory of the DMA
// allocation from surviving device unbind; it would require RCU read side critical sections to
// access the memory, which may require subsequent unnecessary copies.
//
// Hence, find a way to revoke the device resources of a `CoherentAllocation`, but not the
// entire `CoherentAllocation` including the allocated memory itself.
pub struct CoherentAllocation<T: AsBytes + FromBytes> {
dev: ARef<device::Device>,
dma_handle: bindings::dma_addr_t,
count: usize,
cpu_addr: *mut T,
dma_attrs: Attrs,
}
impl<T: AsBytes + FromBytes> CoherentAllocation<T> {
/// Allocates a region of `size_of::<T> * count` of coherent memory.
///
/// # Examples
///
/// ```
/// # use kernel::device::{Bound, Device};
/// use kernel::dma::{attrs::*, CoherentAllocation};
///
/// # fn test(dev: &Device<Bound>) -> Result {
/// let c: CoherentAllocation<u64> =
/// CoherentAllocation::alloc_attrs(dev, 4, GFP_KERNEL, DMA_ATTR_NO_WARN)?;
/// # Ok::<(), Error>(()) }
/// ```
pub fn alloc_attrs(
dev: &device::Device<Bound>,
count: usize,
gfp_flags: kernel::alloc::Flags,
dma_attrs: Attrs,
) -> Result<CoherentAllocation<T>> {
build_assert!(
core::mem::size_of::<T>() > 0,
"It doesn't make sense for the allocated type to be a ZST"
);
let size = count
.checked_mul(core::mem::size_of::<T>())
.ok_or(EOVERFLOW)?;
let mut dma_handle = 0;
// SAFETY: Device pointer is guaranteed as valid by the type invariant on `Device`.
let ret = unsafe {
bindings::dma_alloc_attrs(
dev.as_raw(),
size,
&mut dma_handle,
gfp_flags.as_raw(),
dma_attrs.as_raw(),
)
};
if ret.is_null() {
return Err(ENOMEM);
}
// INVARIANT:
// - We just successfully allocated a coherent region which is accessible for
// `count` elements, hence the cpu address is valid. We also hold a refcounted reference
// to the device.
// - The allocated `size` is equal to `size_of::<T> * count`.
// - The allocated `size` fits into a `usize`.
Ok(Self {
dev: dev.into(),
dma_handle,
count,
cpu_addr: ret.cast::<T>(),
dma_attrs,
})
}
/// Performs the same functionality as [`CoherentAllocation::alloc_attrs`], except the
/// `dma_attrs` is 0 by default.
pub fn alloc_coherent(
dev: &device::Device<Bound>,
count: usize,
gfp_flags: kernel::alloc::Flags,
) -> Result<CoherentAllocation<T>> {
CoherentAllocation::alloc_attrs(dev, count, gfp_flags, Attrs(0))
}
/// Returns the number of elements `T` in this allocation.
///
/// Note that this is not the size of the allocation in bytes, which is provided by
/// [`Self::size`].
pub fn count(&self) -> usize {
self.count
}
/// Returns the size in bytes of this allocation.
pub fn size(&self) -> usize {
// INVARIANT: The type invariant of `Self` guarantees that `size_of::<T> * count` fits into
// a `usize`.
self.count * core::mem::size_of::<T>()
}
/// Returns the base address to the allocated region in the CPU's virtual address space.
pub fn start_ptr(&self) -> *const T {
self.cpu_addr
}
/// Returns the base address to the allocated region in the CPU's virtual address space as
/// a mutable pointer.
pub fn start_ptr_mut(&mut self) -> *mut T {
self.cpu_addr
}
/// Returns a DMA handle which may be given to the device as the DMA address base of
/// the region.
pub fn dma_handle(&self) -> bindings::dma_addr_t {
self.dma_handle
}
/// Returns a DMA handle starting at `offset` (in units of `T`) which may be given to the
/// device as the DMA address base of the region.
///
/// Returns `EINVAL` if `offset` is not within the bounds of the allocation.
pub fn dma_handle_with_offset(&self, offset: usize) -> Result<bindings::dma_addr_t> {
if offset >= self.count {
Err(EINVAL)
} else {
// INVARIANT: The type invariant of `Self` guarantees that `size_of::<T> * count` fits
// into a `usize`, and `offset` is inferior to `count`.
Ok(self.dma_handle + (offset * core::mem::size_of::<T>()) as bindings::dma_addr_t)
}
}
/// Common helper to validate a range applied from the allocated region in the CPU's virtual
/// address space.
fn validate_range(&self, offset: usize, count: usize) -> Result {
if offset.checked_add(count).ok_or(EOVERFLOW)? > self.count {
return Err(EINVAL);
}
Ok(())
}
/// Returns the data from the region starting from `offset` as a slice.
/// `offset` and `count` are in units of `T`, not the number of bytes.
///
/// For ringbuffer type of r/w access or use-cases where the pointer to the live data is needed,
/// [`CoherentAllocation::start_ptr`] or [`CoherentAllocation::start_ptr_mut`] could be used
/// instead.
///
/// # Safety
///
/// * Callers must ensure that the device does not read/write to/from memory while the returned
/// slice is live.
/// * Callers must ensure that this call does not race with a write to the same region while
/// the returned slice is live.
pub unsafe fn as_slice(&self, offset: usize, count: usize) -> Result<&[T]> {
self.validate_range(offset, count)?;
// SAFETY:
// - The pointer is valid due to type invariant on `CoherentAllocation`,
// we've just checked that the range and index is within bounds. The immutability of the
// data is also guaranteed by the safety requirements of the function.
// - `offset + count` can't overflow since it is smaller than `self.count` and we've checked
// that `self.count` won't overflow early in the constructor.
Ok(unsafe { core::slice::from_raw_parts(self.cpu_addr.add(offset), count) })
}
/// Performs the same functionality as [`CoherentAllocation::as_slice`], except that a mutable
/// slice is returned.
///
/// # Safety
///
/// * Callers must ensure that the device does not read/write to/from memory while the returned
/// slice is live.
/// * Callers must ensure that this call does not race with a read or write to the same region
/// while the returned slice is live.
pub unsafe fn as_slice_mut(&mut self, offset: usize, count: usize) -> Result<&mut [T]> {
self.validate_range(offset, count)?;
// SAFETY:
// - The pointer is valid due to type invariant on `CoherentAllocation`,
// we've just checked that the range and index is within bounds. The immutability of the
// data is also guaranteed by the safety requirements of the function.
// - `offset + count` can't overflow since it is smaller than `self.count` and we've checked
// that `self.count` won't overflow early in the constructor.
Ok(unsafe { core::slice::from_raw_parts_mut(self.cpu_addr.add(offset), count) })
}
/// Writes data to the region starting from `offset`. `offset` is in units of `T`, not the
/// number of bytes.
///
/// # Safety
///
/// * Callers must ensure that the device does not read/write to/from memory while the returned
/// slice is live.
/// * Callers must ensure that this call does not race with a read or write to the same region
/// that overlaps with this write.
///
/// # Examples
///
/// ```
/// # fn test(alloc: &mut kernel::dma::CoherentAllocation<u8>) -> Result {
/// let somedata: [u8; 4] = [0xf; 4];
/// let buf: &[u8] = &somedata;
/// // SAFETY: There is no concurrent HW operation on the device and no other R/W access to the
/// // region.
/// unsafe { alloc.write(buf, 0)?; }
/// # Ok::<(), Error>(()) }
/// ```
pub unsafe fn write(&mut self, src: &[T], offset: usize) -> Result {
self.validate_range(offset, src.len())?;
// SAFETY:
// - The pointer is valid due to type invariant on `CoherentAllocation`
// and we've just checked that the range and index is within bounds.
// - `offset + count` can't overflow since it is smaller than `self.count` and we've checked
// that `self.count` won't overflow early in the constructor.
unsafe {
core::ptr::copy_nonoverlapping(src.as_ptr(), self.cpu_addr.add(offset), src.len())
};
Ok(())
}
/// Returns a pointer to an element from the region with bounds checking. `offset` is in
/// units of `T`, not the number of bytes.
///
/// Public but hidden since it should only be used from [`dma_read`] and [`dma_write`] macros.
#[doc(hidden)]
pub fn item_from_index(&self, offset: usize) -> Result<*mut T> {
if offset >= self.count {
return Err(EINVAL);
}
// SAFETY:
// - The pointer is valid due to type invariant on `CoherentAllocation`
// and we've just checked that the range and index is within bounds.
// - `offset` can't overflow since it is smaller than `self.count` and we've checked
// that `self.count` won't overflow early in the constructor.
Ok(unsafe { self.cpu_addr.add(offset) })
}
/// Reads the value of `field` and ensures that its type is [`FromBytes`].
///
/// # Safety
///
/// This must be called from the [`dma_read`] macro which ensures that the `field` pointer is
/// validated beforehand.
///
/// Public but hidden since it should only be used from [`dma_read`] macro.
#[doc(hidden)]
pub unsafe fn field_read<F: FromBytes>(&self, field: *const F) -> F {
// SAFETY:
// - By the safety requirements field is valid.
// - Using read_volatile() here is not sound as per the usual rules, the usage here is
// a special exception with the following notes in place. When dealing with a potential
// race from a hardware or code outside kernel (e.g. user-space program), we need that
// read on a valid memory is not UB. Currently read_volatile() is used for this, and the
// rationale behind is that it should generate the same code as READ_ONCE() which the
// kernel already relies on to avoid UB on data races. Note that the usage of
// read_volatile() is limited to this particular case, it cannot be used to prevent
// the UB caused by racing between two kernel functions nor do they provide atomicity.
unsafe { field.read_volatile() }
}
/// Writes a value to `field` and ensures that its type is [`AsBytes`].
///
/// # Safety
///
/// This must be called from the [`dma_write`] macro which ensures that the `field` pointer is
/// validated beforehand.
///
/// Public but hidden since it should only be used from [`dma_write`] macro.
#[doc(hidden)]
pub unsafe fn field_write<F: AsBytes>(&self, field: *mut F, val: F) {
// SAFETY:
// - By the safety requirements field is valid.
// - Using write_volatile() here is not sound as per the usual rules, the usage here is
// a special exception with the following notes in place. When dealing with a potential
// race from a hardware or code outside kernel (e.g. user-space program), we need that
// write on a valid memory is not UB. Currently write_volatile() is used for this, and the
// rationale behind is that it should generate the same code as WRITE_ONCE() which the
// kernel already relies on to avoid UB on data races. Note that the usage of
// write_volatile() is limited to this particular case, it cannot be used to prevent
// the UB caused by racing between two kernel functions nor do they provide atomicity.
unsafe { field.write_volatile(val) }
}
}
/// Note that the device configured to do DMA must be halted before this object is dropped.
impl<T: AsBytes + FromBytes> Drop for CoherentAllocation<T> {
fn drop(&mut self) {
let size = self.count * core::mem::size_of::<T>();
// SAFETY: Device pointer is guaranteed as valid by the type invariant on `Device`.
// The cpu address, and the dma handle are valid due to the type invariants on
// `CoherentAllocation`.
unsafe {
bindings::dma_free_attrs(
self.dev.as_raw(),
size,
self.cpu_addr.cast(),
self.dma_handle,
self.dma_attrs.as_raw(),
)
}
}
}
// SAFETY: It is safe to send a `CoherentAllocation` to another thread if `T`
// can be sent to another thread.
unsafe impl<T: AsBytes + FromBytes + Send> Send for CoherentAllocation<T> {}
/// Reads a field of an item from an allocated region of structs.
///
/// # Examples
///
/// ```
/// use kernel::device::Device;
/// use kernel::dma::{attrs::*, CoherentAllocation};
///
/// struct MyStruct { field: u32, }
///
/// // SAFETY: All bit patterns are acceptable values for `MyStruct`.
/// unsafe impl kernel::transmute::FromBytes for MyStruct{};
/// // SAFETY: Instances of `MyStruct` have no uninitialized portions.
/// unsafe impl kernel::transmute::AsBytes for MyStruct{};
///
/// # fn test(alloc: &kernel::dma::CoherentAllocation<MyStruct>) -> Result {
/// let whole = kernel::dma_read!(alloc[2]);
/// let field = kernel::dma_read!(alloc[1].field);
/// # Ok::<(), Error>(()) }
/// ```
#[macro_export]
macro_rules! dma_read {
($dma:expr, $idx: expr, $($field:tt)*) => {{
(|| -> ::core::result::Result<_, $crate::error::Error> {
let item = $crate::dma::CoherentAllocation::item_from_index(&$dma, $idx)?;
// SAFETY: `item_from_index` ensures that `item` is always a valid pointer and can be
// dereferenced. The compiler also further validates the expression on whether `field`
// is a member of `item` when expanded by the macro.
unsafe {
let ptr_field = ::core::ptr::addr_of!((*item) $($field)*);
::core::result::Result::Ok(
$crate::dma::CoherentAllocation::field_read(&$dma, ptr_field)
)
}
})()
}};
($dma:ident [ $idx:expr ] $($field:tt)* ) => {
$crate::dma_read!($dma, $idx, $($field)*)
};
($($dma:ident).* [ $idx:expr ] $($field:tt)* ) => {
$crate::dma_read!($($dma).*, $idx, $($field)*)
};
}
/// Writes to a field of an item from an allocated region of structs.
///
/// # Examples
///
/// ```
/// use kernel::device::Device;
/// use kernel::dma::{attrs::*, CoherentAllocation};
///
/// struct MyStruct { member: u32, }
///
/// // SAFETY: All bit patterns are acceptable values for `MyStruct`.
/// unsafe impl kernel::transmute::FromBytes for MyStruct{};
/// // SAFETY: Instances of `MyStruct` have no uninitialized portions.
/// unsafe impl kernel::transmute::AsBytes for MyStruct{};
///
/// # fn test(alloc: &kernel::dma::CoherentAllocation<MyStruct>) -> Result {
/// kernel::dma_write!(alloc[2].member = 0xf);
/// kernel::dma_write!(alloc[1] = MyStruct { member: 0xf });
/// # Ok::<(), Error>(()) }
/// ```
#[macro_export]
macro_rules! dma_write {
($dma:ident [ $idx:expr ] $($field:tt)*) => {{
$crate::dma_write!($dma, $idx, $($field)*)
}};
($($dma:ident).* [ $idx:expr ] $($field:tt)* ) => {{
$crate::dma_write!($($dma).*, $idx, $($field)*)
}};
($dma:expr, $idx: expr, = $val:expr) => {
(|| -> ::core::result::Result<_, $crate::error::Error> {
let item = $crate::dma::CoherentAllocation::item_from_index(&$dma, $idx)?;
// SAFETY: `item_from_index` ensures that `item` is always a valid item.
unsafe { $crate::dma::CoherentAllocation::field_write(&$dma, item, $val) }
::core::result::Result::Ok(())
})()
};
($dma:expr, $idx: expr, $(.$field:ident)* = $val:expr) => {
(|| -> ::core::result::Result<_, $crate::error::Error> {
let item = $crate::dma::CoherentAllocation::item_from_index(&$dma, $idx)?;
// SAFETY: `item_from_index` ensures that `item` is always a valid pointer and can be
// dereferenced. The compiler also further validates the expression on whether `field`
// is a member of `item` when expanded by the macro.
unsafe {
let ptr_field = ::core::ptr::addr_of_mut!((*item) $(.$field)*);
$crate::dma::CoherentAllocation::field_write(&$dma, ptr_field, $val)
}
::core::result::Result::Ok(())
})()
};
}