
CPU Time Jitter Based Non-Physical True Random Number Generator

Stephan Müller
atsec information security
Stephan.Mueller@atsec.com

Abstract

Today’s operating systems provide non-physical true
random number generators which are based on hardware
events. With the advent of virtualization and the ever
growing need of more high-quality entropy, these ran-
dom number generators reach their limits. Additional
sources of entropy must be opened up. This document
introduces an entropy source based on CPU execution
time jitter. The design and implementation of a non-
physical true random number generator, the CPU Jitter
random number generator, its statistical properties and
the maintenance and behavior of entropy is discussed in
this document.

The complete version of the analysis together with large
amounts of test results is provided at www.chronox.de.

1 Introduction

Each modern general purpose operating system offers a
non-physical true random number generator. In Unix
derivatives, the device file /dev/random allows user
space applications to access such a random number gen-
erator. Most of these random number generators obtain
their entropy from time variances of hardware events,
such as block device accesses, interrupts triggered by
devices, operations on human interface devices (HID)
like keyboards and mice, and other devices.

Limitations of these entropy sources are visible. These
include:

• Hardware events do not occur fast enough.

• Virtualized environments remove an operating sys-
tem from direct hardware access.

• Depending on the usage environment of the operat-
ing system, entire classes of hardware devices may
be missing and can therefore not be used as entropy
source.

• The more and more often used Solid State Disks
(SSDs) advertise themselves as block devices to
the operating system but yet lack the physical phe-
nomenon that is expected to deliver entropy.

• On Linux, the majority of the entropy for the
input_pool behind /dev/random is gathered
from the get_cycles time stamp. However, that
time stamp function returns 0 hard coded on sev-
eral architectures, such as MIPS. Thus, there is not
much entropy that is present in the entropy pool
behind /dev/random or /dev/urandom.

• Current cache-based attacks allow unprivileged ap-
plications to observe the operation of other pro-
cesses, privileged code as well as the kernel. Thus,
it is desirable to have fast moving keys. This ap-
plies also to the seed keys used for deterministic
random number generators.

How can these challenges be met? A new source of en-
tropy must be developed that is not affected by the men-
tioned problems.

This document introduces a non-physical true random
number generator, called CPU Jitter random number
generator, which is developed to meet the following
goals:

1. The random number generator shall only operate
on demand. Other random number generators con-
stantly operate in its lifetime, regardless whether
the operation is needed or not, binding computing
resources.

2. The random number generator shall always return
entropy with a speed that satisfies today’s require-
ment for entropy. The random number generator
shall be able to be used synchronously with the en-
tropy consuming application, such as the seeding
of a deterministic random number generator.

• 23 •

http://www.chronox.de

24 • CPU Time Jitter Based Non-Physical True Random Number Generator

3. The random number generator shall not block the
request for user noticeable time spans.

4. The random number generator shall deliver high-
quality entropy when used in virtualized environ-
ments.

5. The random number generator shall not require a
seeding with data from previous instances of the
random number generator.

6. The random number generator shall work equally
well in kernel space and user space.

7. The random number generator implementation
shall be small, and easily understood.

8. The random number generator shall provide a de-
centralized source of entropy. Every user that
needs entropy executes its own instance of the CPU
Jitter random number generator. Any denial of ser-
vice attacks or other attacks against a central en-
tropy source with the goal to decrease the level of
entropy maintained by the central entropy source
is eliminated. The goal is that there is no need of a
central /dev/random or /dev/urandom device.

9. The random number generator shall provide per-
fect forward and backward secrecy, even when the
internal state becomes known.

Apart from these implementation goals, the random
number generator must comply with the general quality
requirements placed on any (non-)physical true random
number generator:

Entropy The random numbers delivered by the gener-
ator must contain true information theoretical en-
tropy. The information theoretical entropy is based
on the definition given by Shannon.

Statistical Properties The random number bit stream
generated by the generator must not follow any sta-
tistical significant patterns. The output of the pro-
posed random number generator must pass all stan-
dard statistical tools analyzing the quality of a ran-
dom data stream.

These two basic principles will be the guiding central
theme in assessing the quality of the presented CPU Jit-
ter random number generator.

The document contains the following parts:

• Discussion of the noise source in Section 2

• Presentation of CPU Jitter random number genera-
tor design in Section 3

• Discussion of the statistical properties of the ran-
dom number generator output in Section 4

• Assessment of the entropy behavior in the random
number generator in Section 5

But now away with the theoretical blabber: show me the
facts! What is the central source of entropy that is the
basis for the presented random number generator?

2 CPU Execution Time Jitter

We do have deterministically operating CPUs, right?
Our operating systems behave fully deterministically,
right? If that would not be the case, how could we ever
have operating systems using CPUs that deliver a deter-
ministic functionality.

Current hardware supports the efficient execution of the
operating system by providing hardware facilities, in-
cluding:

• CPU instruction pipelines. Their fill level have an
impact on the execution time of one instruction.
These pipelines therefore add to the CPU execu-
tion timing jitter.

• The timer tick and its processing which alters the
caches.

• Cache coherency strategies of the CPU with its
cores add variances to instruction execution time as
the cache controlling logic must check other caches
for their information before an instruction or mem-
ory access is fetched from the local cache.

• The CPU clock cycle is different than the memory
bus clock speed. Therefore, the CPU has to en-
ter wait states for the synchronization of any mem-
ory access where the time delay added for the wait
states adds to time variances.

• The CPU frequency scaling which alters the pro-
cessing speed of instructions.

• The CPU power management which may disable
CPU features that have an impact on the execution
speed of sets of instructions.

2014 Linux Symposium • 25

In addition to the hardware nondeterminism, the follow-
ing operating system caused system usage adds to the
non-deterministic execution time of sets of instructions:

• Instruction and data caches with their varying in-
formation – tests showed that before the caches are
filled with the test code and the CPU Jitter random
number generator code, the time deltas are bigger
by a factor of two to three;

• CPU topology and caches used jointly by multiple
CPUs;

• CPU frequency scaling depending on the work
load;

• Branch prediction units;

• TLB caches;

• Moving of the execution of processes from one
CPU to another by the scheduler;

• Hardware interrupts that are required to be handled
by the operating system immediately after the de-
livery by the CPU regardless what the operating
system was doing in the mean time;

• Large memory segments whose access times may
vary due to the physical distance from the CPU.

2.1 Assumptions

The CPU Jitter random number generator is based on a
number of assumptions. Only when these assumptions
are upheld, the data generated can be believed to con-
tain the requested entropy. The following assumptions
apply:

• Attacker having hardware level privileges are as-
sumed to be not present. With hardware level priv-
ilege, on some CPU it may be possible to change
the state of the CPU such as that caches are dis-
abled. In addition, millicode may be changed such
that operations of the CPU are altered such that op-
erations are not executed any more. The assump-
tion is considered to be unproblematic, because if
an attacker has hardware level privilege, the col-
lection of entropy is the least of our worries as the
attacker may simply bypass the entropy collection
and furnish a preset key to the entropy-seeking ap-
plication.

• Attacker with physical access to the CPU interior
is assumed to be not present. In some CPUs, phys-
ical access may allow enabling debug states or the
readout of the entire CPU state at one particular
time. With the CPU state, it may be possible to
deduct upcoming variations when the CPU Jitter
random number generator is executed immediately
after taking a CPU state snapshot. An attacker
with this capability, however, is also able to read
out the entire memory. Therefore, when launching
the attack shortly after the entropy is collected, the
attacker could read out the key or seed material,
bypassing the the entropy collection. Again, with
such an attacker, the entropy collection is the least
of our worries in this case.

• The CPU Jitter random number generator is always
executed on CPUs connected to peripherals. When
the CPU has no peripherals, including no access to
RAM or any busses, special software can be ex-
pected to execute on the CPU fully deterministi-
cally. However, as this scenario requires a highly
specialized environment that does not allow gen-
eral purpose computing, this scenario is not appli-
cable.

2.2 Jitter Depicted

With the high complexity of modern operating systems
and their big monolithic kernels, all the mentioned hard-
ware components are extensively used. However, due to
the complexity, nobody is able to determine which is the
fill level of the caches or branch prediction units, or the
precise location of data in memory at one given time.

This implies that the execution of instruction may have
miniscule variations in execution time. In addition,
modern CPUs have a high-resolution timer or instruc-
tion counter that is so precise that they are impacted by
these tiny variations. For example, modern x86 CPUs
have a TSC clock whose resolution is in the nanosecond
range.

These variations in the execution time of an identical set
of CPU instructions can be visualized. For the sample
code sequence given in Figure 1, the variation in time is
shown in Figure 2.

The contents of the variable delta is not identical be-
tween the individual loop iterations. When running the

26 • CPU Time Jitter Based Non-Physical True Random Number Generator

static inline void jent_get_nstime(uint64_t ∗out)
{

...

if (clock_gettime(CLOCK_REALTIME, &time) == 0)

...

}

void main(void)

{

...

jent_get_nstime(&time);

jent_get_nstime(&time2);

delta = time2 − time;
...

}

Figure 1: Sample code for time variance observation

code with a loop count of 1,000,000 on an otherwise
quiet system to avoid additional time variance from the
noise of other processes, we get data as illustrated in
Figure 2.

Please note that the actual results of the aforementioned
code contains a few exceptionally large deltas as an op-
erating system can never be fully quiesced. Thus, the
test results were processed to cut off all time deltas
above 64. The limitation of the graph to all variations
up to 64 can be considered as a “magnification” of the
data set to the interesting values.

Figure 2 contains the following information of interest
to us:

• The bar diagram shows the relative frequency of
the different delta values measured by the code.
For example, the delta value of 22 (nanoseconds
– note the used timer returns data with nanosec-
ond precision) was measured at 25% of all deltas.
The value 23 (nanoseconds) was measured at about
25% of all time deltas.

• The red and blue vertical lines indicate the mean
and median values. The mean and median is
printed in the legend below the diagram. Note, they
may overlap each other if they are too close. Use
the legend beneath the diagram as a guidance in
this case.

• The two green vertical lines indicate the first and

Figure 2: Distribution of time variances in user space
over 1.000.000 loops

third quartile of the distribution. Again, the values
of the quartiles are listed in the legend.

• The red dotted line indicates a normal distribu-
tion defined by the measured mean and the mea-
sured standard derivation. The value of the stan-
dard derivation is given again in the legend.

• Finally, the legend contains the value for the Shan-
non Entropy that the measured test sample con-
tains. The Shannon Entropy is calculated with the
formula specified in Section 5.2 using the observa-
tions after cutting off the outliers above the thresh-
old mentioned above.

The graph together with the code now illustrates the
variation in execution time of the very same set of op-
erations – it illustrates the CPU execution time jitter for
a very tight loop. As these variations are based on the
aforementioned complexity of the operating system and
its use of hardware mechanisms, no observer can de-
duce the next variation with full certainty even though
the observer is able to fully monitor the operation of the
system. And these non-deterministic variations are the
foundation of the proposed CPU Jitter random number
generator.

As the CPU Jitter random number generator is intended
to work in kernel space as well, the same analysis is per-
formed for the kernel. For an initial test, the time stamp
variance collection is invoked 30.000.000 times. The
generation of the given number of time deltas is very
fast, typically less than 10 seconds. When re-performing

2014 Linux Symposium • 27

the test, the distribution varies greatly, including the
Shannon Entropy. The lowest observed value was in the
1.3 range and the highest was about 3. The reason for
not obtaining a longer sample is simply resources: cal-
culating the graph would take more than 8 GB of RAM.

Now that we have established the basic source of en-
tropy, the subsequent design description of the random
number generator must explain the following two as-
pects which are the basic quality requirements discussed
in Section 1 applied to our entropy phenomenon:

1. The random number generator design must be ca-
pable of preserving and collecting the entropy from
the discussed phenomenon. Thus, the random
number generator must be able to “magnify” the
entropy phenomenon.

2. The random number generator must use the ob-
served CPU execution time jitter to generate an
output bit string that delivers the entropy to a caller.
That output string must not show any statistical
anomalies that allow an observer to deduce any
random numbers or increase the probability when
guessing random numbers and thus reducing its en-
tropy.

The following section presents the design of the random
number generator. Both requirements will be discussed.

3 Random Number Generator Design

The CPU Jitter random number generator uses the above
illustrated operation to read the high-resolution timer for
obtaining time stamps. At the same time it performs
operations that are subject to the CPU execution time
jitter which also impact the time stamp readings.

3.1 Maintenance of Entropy

The heart of the random number generator is illustrated
in Figure 3.

The random number generator maintains a 64 bit un-
signed integer variable, the entropy pool, that is indi-
cated with the gray shaded boxes in Figure 3 which
identify the entropy pool at two different times in the
processing.

In a big picture, the random number generator imple-
ments an entropy collection loop that

Time StampTime Stamp

MAX_FOLD_LOOP_BIT
Low Bits

MAX_FOLD_LOOP_BIT
Low Bits

Add 2MIN_FOLD_LOOP_BITAdd 2MIN_FOLD_LOOP_BIT

New Loop
Counter

New Loop
Counter

Time DeltaTime Delta

Folding to
1 Bit

Folding to
1 Bit

XOR into PoolXOR into Pool

Rotate Left by 1Rotate Left by 1

for(i <= 64)

Folding Loop

64 Bit
Random Number

64 Bit
Random Number

Von Neumann
Unbias

Von Neumann
Unbias

Entropy Collection Loop

Fo
ld

 L
o
o
p

Fo
ld

 L
o
o
p

Folding to
1 Bit

Folding to
1 Bit

Time DeltaTime Delta

Figure 3: Entropy Collection Operation

1. fetches a time stamp to calculate a delta to the time
stamp of the previous loop iteration,

2. folds the time delta value into one bit,

3. processes this value with a Von-Neumann unbias
operation,

4. adds this value to the entropy pool using XOR,

5. rotates the pool to fill the next bit value of the pool.

The loop is executed exactly 64 times as each loop iter-
ation generates one bit to fill all 64 bits of the entropy
pool. After the loop finishes, the contents of the entropy
pool is given to the caller as a 64 bit random number1.
The following subsection discuss every step in detail.

When considering that the time delta is always com-
puted from the delta to the previous loop iteration, and
the fact that the majority of the execution time is spent
in the folding loop, the central idea of the CPU Jitter
Random Number Generator is to measure the execution
time jitter over the execution of the folding loop.

3.1.1 Obtaining Time Delta

The time delta is obtained by:

1. Reading a time stamp,

2. Subtracting that time stamp from the time stamp
calculated in the previous loop iteration,

1If the caller provides an oversampling rate of greater than 1 dur-
ing the allocation of the entropy collector, the loop iteration count
of 64 is multiplied by this oversampling rate value. For example, an
oversample rate of 3 implies that the 64 loop iterations are executed
three times – i.e. 192 times.

28 • CPU Time Jitter Based Non-Physical True Random Number Generator

3. Storing the current time stamp for use in the next
loop iteration to calculate the next delta.

For every new request to generate a new random num-
ber, the first iteration of the loop is used to “prime” the
delta calculation. In essence, all steps of the entropy col-
lection loop are performed, except of mixing the delta
into the pool and rotating the pool. This first iteration of
the entropy collection loop does not impact the number
of iterations used for entropy collection. This is imple-
mented by executing one more loop iteration than spec-
ified for the generation of the current random number.

When a new random number is to be calculated, i.e. the
entropy collection loop is triggered anew, the previous
contents of the entropy pool, which is used as a random
number in the previous round is reused. The reusing
shall just mix the data in the entropy pool even more.
But the implementation does not rely on any properties
of that data. The mixing of new time stamps into the en-
tropy pool using XOR ensures that any entropy which
may have been left over from the previous entropy col-
lection loop run is still preserved. If no entropy is left,
which is the base case in the entropy assessment, the al-
ready arbitrary bit pattern in the entropy pool does not
negatively affect the addition of new entropy in the cur-
rent round.

3.1.2 Folding Operation of Time Delta

The folding operation is depicted by the left side of Fig-
ure 3. That folding operation is implemented by a loop
where the loop counter is not fixed.

To calculate the new fold loop counter a new time stamp
is obtained. All bits above the value MAX_FOLD_LOOP_
BITS – which is set to 4 – are zeroed. The idea is that
the fast moving bits of the time stamp value determine
the size of the collection loop counter. Why is it set to 4?
The 4 low bits define a value between 0 and 16. This un-
certainty is used to quickly stabilize the distribution of
the output of that folding operation to an equidistribu-
tion of 0 and 1, i.e. about 50% of all output is 0 and also
about 50% is 1. See Section 5.2.1 for a quantitative anal-
ysis of that distribution. To ensure that the collection
loop counter has a minimum value, the value 1 is added
– that value is controlled with MIN_FOLD_LOOP_BIT.
Thus, the range of the folding counter value is from 1
to (16 + 1 - 1). Now, this newly determined collection

Von-Neumann UnbiasVon-Neumann Unbias

0...

Time Delta

⊕

⊕

Entropy Pool

6
3

Slider movement

0...
6
3

f
o
r

i

<

l
o
o
p

c
o
u
n
t
e
r

Figure 4: Folding of the time delta and mixing it into the
entropy pool

loop counter is used to perform a new fold loop as dis-
cussed in the following.

Figure 4 shows the concept of the folding operation of
one time delta value.

The upper 64 bit value illustrated in Figure 4 is the
time delta obtained at the beginning of the current en-
tropy collection loop iteration. Now, the time delta is
partitioned into chunks of 1 bit starting at the lowest
bit. The different shades of gray indicate the different
1 bit chunks. The 64 1 bit chunks of the time value
are XORed with each other to form a 1 bit value. With
the XORing of all 1 bit chunks with each other, any in-
formation theoretical entropy that is present in the time
stamp will be preserved when folding the value into the
1 bit. But as we fold it into 1 bit, the maximum entropy
the time stamp can ever add to the entropy pool is, well,
1 bit. The folding operation is done as often as specified
in the loop count.

3.1.3 Von-Neumann Unbias Operation

According to RFC 1750 section 5.2.2, a Von-Neumann
unbias operation can be considered to remove any po-
tential skews that may be present in the bit stream of the
noise source. The operation is used to ensure that in case
skews are present, they are eliminated. The unbias op-
eration is only applicable if the individual consecutive
bits are considered independent. Chapter 5 indicates the
independence of these individual bits.

To perform the Von-Neumann unbias operation, two in-
dependently generated folded bits are processed.

http://www.ietf.org/rfc/rfc1750.txt

2014 Linux Symposium • 29

3.1.4 Adding Unbiased Folded Time Delta To En-
tropy Pool

After obtaining the 1 bit folded and unbiased time
stamp, how is it mixed into the entropy pool? The lower
64 bit value in Figure 4 indicates the entropy pool. The
1 bit folded value is XORed with 1 bit from the entropy
pool.

But which bit is used? The rotation to the left by 1 bit
that concludes the entropy collection loop provides the
answer. When the entropy collection loop perform the
very first iteration, the 1 bit is XORed into bit 0 of the
entropy pool. Now, that pool is rotated left by 1 bit.
That means that bit 63 before the rotation becomes bit
0 after the rotation. Thus, the next round of the entropy
collection loop XORes the 1 bit folded time stamp again
into bit 0 which used to be bit 63 in the last entropy
collection loop iteration2.

The reason why the rotation is done with the value 1 is
due to the fact that we have 1 bit we want to add to the
pool. The way how the folded bit values are added to the
entropy pool can be viewed differently from a mathe-
matical standpoint when considering 64 1 bit values: in-
stead of saying that each of the 64 1 bit value is XORed
independently into the entropy pool and the pool value
is then rotated, it is equivalent to state that 64 1 bit val-
ues are concatenated and then the concatenated value is
XORed into the entropy pool. The reader shall keep that
analogy in mind as we will need it again in Section 5.

3.2 Generation of Random Number Bit Stream

We now know how one 64 bit random number value
is generated. The interface to the CPU Jitter random
number generator allows the caller to provide a pointer
to memory and a size variable of arbitrary length. The
random number generator is herewith requested to gen-
erate a bit stream of random numbers of the requested
size that is to be stored in the memory pointed to by the
caller.

2Note, Figure 4 illustrates that the the folded bit of the time delta
is moved over the 64 bit entropy pool as indicated with the bold
black box (a.k.a the “slider”). Technically, the slider stays at bit 0
and the entropy pool value rotates left. The end result of the mixing
of the folded bit into the entropy pool, however, is identical, regard-
less whether you rotate the entropy pool left or move the slider to
the right. To keep the figure illustrative, it indicates the movement
of the slider.

The random number generator performs the following
sequence of steps to fulfill the request:

1. Check whether the requested size is smaller than
64 bits. If yes, generate one 64 bit random num-
ber, copy the requested amount of bits to the target
memory and stop processing the request. The un-
used bits of the random number are not used fur-
ther. If a new request arrives, a fresh 64 bit random
number is generated.

2. If the requested size is larger than 64 bits, gener-
ate one random number, copy it to the target. Re-
duce the requested size by 64 bits and decide now
whether the remaining requested bits are larger or
smaller than 64 bits and based on the determina-
tion, follow either step 1 or step 2.

Mathematically step 2 implements a concatenation of
multiple random numbers generated by the random
number generator.

3.3 Initialization

The CPU Jitter random number generator is initialized
in two main parts. At first, a consuming application
must call the jent_entropy_init(3) function which
validates some basic properties of the time stamp. Only
if this validation succeeds, the CPU Jitter random num-
ber generator can be used.

The second part can be invoked multiple times. Each
invocation results in the instantiation of an indepen-
dent copy of the CPU Jitter random number generator.
This allows a consumer to maintain multiple instances
for different purposes. That second part is triggered
with the invocation of jent_entropy_collector_
alloc(3) and implements the following steps:

1. Allocation and zeroing of memory used for the
entropy pool and helper variables – struct
rand_data defines the entropy collector which
holds the entropy pool and its auxiliary values.

2. Invoking the entropy collection loop once – this
fills the entropy pool with the first random value
which is not returned to any caller. The idea is
that the entropy pool is initialized with some val-
ues other than zero. In addition, this invocation

30 • CPU Time Jitter Based Non-Physical True Random Number Generator

of the entropy collection loop implies that the en-
tropy collection loop counter value is set to a ran-
dom value in the allowed range.

3. If FIPS 140-2 is enabled by the calling application,
the FIPS 140-2 continuous test is primed by copy-
ing the random number generated in step 3 into the
comparing value and again triggering the entropy
collection loop for a fresh random number.

3.4 Memory Protection

The CPU Jitter random number generator is intended for
any consuming application without placing any require-
ments. As a standard behavior, after completing the
caller’s request for a random number, i.e. generating the
bit stream of arbitrary length, another round of the en-
tropy collection loop is triggered. That invocation shall
ensure that the entropy pool is overwritten with a new
random value. This prevents a random value returned to
the caller and potentially used for sensitive purposes lin-
gering in memory for long time. In case paging starts,
the consuming application crashes and dumps core or
simply a hacker cracks the application, no traces of even
parts of a generated random number will be found in the
memory the CPU Jitter random number generator is in
charge of.

In case a consumer is deemed to implement a
type of memory protection, the flag CRYPTO_CPU_
JITTERENTROPY_SECURE_MEMORY can be set at com-
pile time. This flag prevents the above mentioned func-
tionality.

Example consumers with memory protection are the
kernel, and libgcrypt with its secure memory.

3.5 Locking

The core of the CPU Jitter random number generator im-
plementation does not use any locking. If a user intends
to employ the random number generator in an environ-
ment with potentially concurrent accesses to the same
instance, locking must be implemented. A lock should
be taken before any request to the CPU Jitter random
number generator is made via its API functions.

Examples for the use of the CPU Jitter random number
generator with locks are given in the reference imple-
mentations outlined in the appendices.

3.6 FIPS 140-2 Continuous Self Test

If the consuming application enables a FIPS 140-2 com-
pliant mode – which is observable by the CPU Jit-
ter random number generator callback of jent_fips_
enabled – the FIPS 140-2 mode is enabled.

This mode ensures that the continuous self test is en-
forced as defined by FIPS 140-2.

3.7 Intended Method of Use

The CPU Jitter random number generator must be com-
piled without optimizations. The discussion in Sec-
tion 5.1 supported by Appendix F explains the reason.

The interface discussed in Section 3.2 is implemented
such that a caller requesting an arbitrary number of bytes
is satisfied. The output can be fed through a whitening
function, such as a deterministic random number gener-
ator or a hash based cryptographically secure whitening
function. The appendix provides various implementa-
tions of linking the CPU Jitter random number generator
with deterministic random number generators.

However, the output can also be used directly, consid-
ering the statistical properties and the entropy behavior
assessed in the following chapters. The question, how-
ever, is whether this is a wise course of action. Whiten-
ing shall help to protect the entropy that is in the pool
against observers. This especially a concern if you have
a central entropy source that is accessed by multiple
users – where a user does not necessarily mean human
user or application, since a user or an application may
serve multiple purposes and each purpose is one “user”.
The CPU Jitter random number generator is designed
to be instantiated multiple times without degrading the
different instances. If a user employs its own private
instance of the CPU Jitter random number generator,
it may be questionable whether a whitening function
would be necessary.

But bottom line: it is a decision that the reader or de-
veloper employing the random number generator finally
has to make. The implementations offered in the appen-
dices offer the connections to whitening functions. Still,
a direct use of the CPU Jitter random number generator
is offered as well.

2014 Linux Symposium • 31

3.8 Programming Dependencies on Operating Sys-
tem

The implementation of the CPU Jitter random number
generator only uses the following interfaces from the
underlying operating systems. All of them are imple-
mented with wrappers in jitterentropy-base-{*}.h.
When the used operating system offers these interfaces
or a developer replaces them with accordingly, the CPU
Jitter random number generator can be compiled on a
different operating system or for user and kernel space:

• Time stamp gathering: jent_get_nstime must
deliver the high resolution time stamp. This func-
tion is an architecture dependent function with the
following implementations:

– User space:

∗ On Mach systems like MacOS, the func-
tion mach_absolute_time is used for a
high-resolution timer.

∗ On AIX, the function read_real_time
is used for a righ resolution timer.

∗ On other POSIX systems, the clock_
gettime function is available for this
operation.

– Linux kernel space: In the Linux kernel,
the get_cycles function obtains this infor-
mation. The directory arch/ contains vari-
ous assembler implementations for different
CPUs to avoid using an operating system ser-
vice. If get_cycles returns 0, which is pos-
sible on several architectures, such as MIPS,
the kernel-internal call __getnstimeofday
is invoked which uses the best available
clocksource implementation. The goal with
the invocation of __getnstimeofday is to
have a fallback for get_cycles returning
zero. Note, if that clocksource clock also is a
low resolution timer like the Jiffies timer, the
initialization function of the CPU Jitter Ran-
dom Number Generator is expected to catch
this issue.

• jent_malloc is a wrapper for the malloc func-
tion call to obtain memory.

• jent_free is a wrapper for calling the free func-
tion to release the memory.

Loop count 0 1 2 3 4 Bit sum Figure
1 0 1 1 0 0 N/A N/A
2 0 0 0 1 0 N/A N/A
3 1 1 0 0 1 4 5

Result 1 1 2 1 1 1 6 7
Result 2 1 2 1 2 1 7 9

Table 1: Example description of tests

• __u64 must be a variable type of a 64 bit unsigned
integer – either unsigned long on a 64 bit system or
unsigned long long on a 32 bit system.

The following additional functions provided by an op-
erating system are used without a wrapper as they are
assumed to be present in every operating environment:

• memcpy

• memset

4 Random Generator Statistical Assessment

After the discussion of the design of the entropy collec-
tion, we need to perform assessments of the quality of
the random number generator. As indicated in Section 1,
the assessment is split into two parts.

This chapter contains the assessment of the statistical
properties of the data in the entropy pool and the output
data stream.

When compiling the code of the CPU Jitter ran-
dom number generator with the flag CRYPTO_CPU_
JITTERENTROPY_STAT, instrumentations are added to
the code that obtain the data for the following graphs
and distributions. The tests can be automatically re-
performed by invoking the tests_[userspace|kernel]
/getstat.sh shell script which also generates the
graphs using the R-Project language toolkit.

4.1 Statistical Properties of Entropy Pool

During a testing phase that generated 1,000,000 random
numbers, the entropy pool is observed. The observa-
tion generated statistical analyses for different aspects
illustrated in Table 1. Each line in the table is one ob-
servation of the entropy pool value of one round of the

32 • CPU Time Jitter Based Non-Physical True Random Number Generator

entropy collection loop. To read the table, assume that
the entropy pool is only 10 bits in size. Further, assume
that our entropy collection loop count is 3 to generate a
random number.

The left column contains the entropy collection loop
count and the indication for the result rows. The mid-
dle columns are the 5 bits of the entropy pool. The Bit
sum column sums the set bits in the respective row. The
Figure column references the figures that illustrate the
obtained test data results.

The “Result 1” row holds the number of bits set for each
loop count per bit position. In the example above, bit 0
has a bit set only once in all three loops. Bit 1 is set
twice. And so on.

The “Result 2” row holds the number of changes of the
bits for each loop count compared to the previous loop
count per bit position. For example, for bit 0, there is
only one change from 0 to 1 between loop count 2 and
3. For bit 7, we have two changes: from 0 to 1 and from
1 to 0.

The graphs contains the same information as explained
for Figure 2.

The bit sum of loop count 3 is simply the sum of the set
bits holds the number of set bits at the last iteration count
to generate one random number. It is expected that this
distribution follows a normal distribution closely, be-
cause only such a normal distribution is supports implies
a rectangular distribution of the probability that each bit
is equally likely to be picked when generating a random
number output bit stream. Figure 5 contains the distri-
bution of the bit sum for the generated random numbers
in user space.

In addition, the kernel space distribution is given in Fig-
ure 6 – they are almost identical and thus show the same
behavior of the CPU Jitter random number generator

Please note that the black line in the graphs above is an
approximation of the density of the measurements us-
ing the histogram. When more histogram bars would
be used, the approximation would better fit the theoret-
ical normal distribution curve given with the red dotted
line. Thus, the difference between both lines is due to
the way the graph is drawn and not seen in the actual
numbers. This applies also to the bars of the histogram
since they are left-aligned which means that on the left

Figure 5: Bit sum of last round of entropy collection
loop user space

Figure 6: Bit sum of last round of entropy collection
loop kernel space

Figure 7: Bit sum of set bits per bit position in user space

2014 Linux Symposium • 33

Figure 8: Bit sum of set bits per bit position in kernel
space

Figure 9: Bit sum of bit variations per bit position in
user space

Figure 10: Bit sum of bit variations per bit position in
kernel space

side of the diagram they overstep the black line and on
the right side they are within the black line.

The distribution for “Result 1” of the sum of of these set
bits is given in Figure 7.

Again, for the kernel we have an almost identical distri-
bution shown in Figure 8. And again, we conclude that
the behavior of the CPU Jitter random number generator
in both worlds is identical.

Just like above, the plot for the kernel space is given in
Figure 10.

A question about the shape of the distribution should be
raised. One can have no clear expectations about the
distribution other than it must show the following prop-
erties:

• It is a smooth distribution showing no breaks.

• It is a symmetrical distribution whose symmetry
point is the mean.

The distribution for “Result 2” of the sum of of these bit
variations in user space is given in Figure 9.

Just like for the preceding diagrams, no material differ-
ence is obvious between kernel and user space. The
shape of the distributions is similar to the one for the
distribution of set bits. An expected distribution can also
not be given apart from the aforementioned properties.

4.2 Statistical Properties of Random Number Bit
Stream

The discussion of the entropy in Section 5 tries to show
that one bit of random number contains one bit of en-
tropy. That is only possible if we have a rectangular dis-
tribution of the bits per bit position, i.e. each bit in the
output bit stream has an equal probability to be set. The
CPU Jitter random number block size is 64 bit. Thus
when generating a random number, each of the 64 bits
must have an equal chance to be selected by the random
number generator. Therefore, when generating large
amounts of random numbers and sum the bits per bit
position, the resulting distribution must be rectangular.
Figure 11 shows the distribution of the bit sums per bit
position for a bit stream of 10,000,000 random numbers,
i.e 640,000,000 bits.

34 • CPU Time Jitter Based Non-Physical True Random Number Generator

Figure 11: Distribution of bit count per bit position of
RNG output

Figure 12: Box plot of variations in bit count per bit
position of RNG output

Figure 11 looks pretty rectangular. But can the pic-
ture be right with all its 64 vertical lines? We support
the picture by printing the box plot in Figure 12 that
shows the variance when focusing on the upper end of
the columns.

The box plot shows the very narrow fluctuation around
expected mean value of half of the count of random
numbers produced, i.e. 5,000,000 in our case. Each bit
of a random number has the 50% chance to be set in
one random number. When looking at multiple random
numbers, a bit still has the chance of being set in 50%
of all random numbers. The fluctuation is very narrow
considering the sample size visible on the scale of the
ordinate of Figure 11.

Thus, we conclude that the bit distribution of the random
number generator allows the possibility to retain one bit
of entropy per bit of random number.

This conclusion is supported by calculating more thor-
ough statistical properties of the random number bit
stream are assessed with the following tools:

• ent

• dieharder

• BSI Test Procedure A

The ent tool is given a bit stream consisting of
10,000,000 random numbers (i.e. 80,000,000 Bytes)
with the following result where ent calculates the statis-
tics when treating the random data as bit stream as well
as byte stream:

$ dd if=/sys/kernel/debug/jitterentropy/seed of=random.out bs=8 count=10000000

Byte stream
$ ent random.out
Entropy = 7.999998 bits per byte.

Optimum compression would reduce the size
of this 80000000 byte file by 0 percent.

Chi square distribution for 80000000 samples is 272.04, and randomly
would exceed this value 25.00 percent of the times.

Arithmetic mean value of data bytes is 127.4907 (127.5 = random).
Monte Carlo value for Pi is 3.141600679 (error 0.00 percent).
Serial correlation coefficient is 0.000174 (totally uncorrelated = 0.0).

Bit stream
$ ent -b random.out
Entropy = 1.000000 bits per bit.

Optimum compression would reduce the size
of this 640000000 bit file by 0 percent.

Chi square distribution for 640000000 samples is 1.48, and randomly
would exceed this value 25.00 percent of the times.

Arithmetic mean value of data bits is 0.5000 (0.5 = random).
Monte Carlo value for Pi is 3.141600679 (error 0.00 percent).
Serial correlation coefficient is -0.000010 (totally uncorrelated = 0.0).

During many re-runs of the ent test, most of the time,
the Chi-Square test showed the test result of 50%, i.e. a
perfect result – but even the shown 25% is absolutely in
line with random bit pattern. Very similar results were
obtained when executing the same test on:

• an Intel Atom Z530 processor;

• a MIPS CPU for an embedded device;

• an Intel Pentium 4 Mobile CPU;

• an AMD Semperon processor;

• KVM guest where the host was based on an Linux
3.8 kernel and with QEMU version 1.4 without any
special configuration of hardware access;

• OpenVZ guest on an AMD Opteron processor.

• Fiasco.OC microkernel;

2014 Linux Symposium • 35

In addition, an unlimited bit stream is generated and fed
into dieharder. The test results are given with the
files tests_userspace/dieharder-res.*. The re-
sult files demonstrate that all statistical properties tested
by dieharder are covered appropriately.

The BSI Test Suite A shows no statistical weaknesses.

The test tools indicate that the bit stream complies with
the properties of random numbers.

4.3 Anti-Tests

The statistical analysis given above indicates a good
quality of the random number generator. To support that
argument, an “anti” test is pursued to show that the qual-
ity is not provided by the post-processing of the time
stamp data, but solely by the randomness of the time
deltas. The post-processing therefore is only intended
to transform the time deltas into a bit string with a ran-
dom pattern and magnifying the timer entropy.

The following subsections outline different “anti” tests.

4.3.1 Static Increment of Time Stamp

The test is implemented by changing the function jent_
get_nstime to maintain a simple value that is incre-
mented by 23 every time a time stamp is requested. The
value 23 is chosen as it is a prime. Yet, the increment is
fully predictable and does not add any entropy.

Analyzing the output bit stream shows that the Chi-
Square test of ent in both byte-wise and bit-wise output
will result in the value of 0.01 / 100.00 which indicates
a bit stream that is not random. This is readily clear, be-
cause the time delta calculation always returns the same
value: 23.

Important remark: The mentioned test can only be con-
ducted when the CPU Jitter random number generator
initialization function of jent_entropy_init(3) is not
called. This function implements a number of statistical
tests of the time source. In case the time source would
operate in static increments, the initialization function
would detect this behavior and return an error.

If the CPU Jitter random number generator would be
used with a cryptographic secure whitening function,
the outlined “anti” test would not show any problems

in the output stream. That means that a cryptographic
whitening function would hide potential entropy source
problems!

4.3.2 Pattern-based Increment of Time Stamp

Contrary to the static increment of the time stamp, this
“anti” test describes a pattern-based increment of the
time stamp. The time stamp is created by adding the
sum of 23 and an additional increment between 1 and 4
using the following code:

static unsigned int pad = 0;
static __u64 tmp = 0;
static inline void jent_get_nstime(__u64 *out)
{

tmp += 23;
pad++;
*out = (tmp + (pad & 0x3));

}

The code adds 24 in the first loop, 25 in the second, 26
in the third, 27 in the fourth, again 24 in the fifth, and so
forth.

Using such a pattern would again fail the ent test as
the Chi-Square test is at 100 or 0.01 and the data stream
can be compressed. Thus, such a time stamp increment
would again be visible in the statistical analysis of this
chapter.

In addition to the Chi-Square test, the measurements
of the second derivation of the time stamp, the varia-
tions of time deltas, would present very strange patterns
like, zero, or spikes, but no continuously falling graph
as measured.

4.3.3 Disabling of System Features

The CPU jitter is based on properties of the system, such
as caches. Some of these properties can be disabled in
either user space or kernel space. The effect on such
changes is measured in various tests.

5 Entropy Behavior

As the previous chapter covered the statistical properties
of the CPU Jitter random number generator, this chapter

36 • CPU Time Jitter Based Non-Physical True Random Number Generator

provides the assessment of the entropy behavior. With
this chapter, the second vital aspect of random number
generators mentioned in Section 1 is addressed.

The CPU Jitter random number generator does not
maintain any entropy estimator. Nor does the random
number generator tries to determine the entropy of the
individual recorded time deltas that are fed into the en-
tropy pool. There is only one basic rule that the CPU Jit-
ter random number generator follows: upon completion
of the entropy collection loop, the entropy pool contains
64 bit of entropy which are returned to the caller. That
results in the basic conclusion of the random number
bit stream returned from the CPU Jitter random number
generator holding one bit of entropy per bit of random
number.

Now you may say, that is a nice statement, but show me
the numbers. The following sections will demonstrate
the appropriateness of this statement.

Section 5.1 explains the base source of entropy for the
CPU Jitter random number generator. This section ex-
plains how the root cause of entropy is visible in the
CPU Jitter random number generator. With Section 5.2,
the explanation is given how the entropy that is present
in the root cause, the CPU execution time jitter, is har-
vested, maintained through the processing of the ran-
dom number generator and accumulated in the entropy
pool. This section provides the information theoretical
background to back up the statistical analyses given in
Section 4.

Before we start with the entropy discussion, please let
us make one issue perfectly clear: the nature of entropy,
which is an indication of the level of uncertainty present
in a set of information, can per definition not be cal-
culated. All what we can do is try to find arguments
whether the entropy estimation the CPU Jitter random
number generator applies is valid. Measurements are
used to support that assessment. Moreover, the discus-
sion must contain a worst case analysis which gives a
lower boundary of the entropy assumed to be present in
the random number bit stream extracted from the CPU
Jitter random number generator.

5.1 Base Entropy Source

As outlined in Section 3, the variations of the time delta
is the source of entropy. Unlike the graphs outlined in

Section 2 where two time stamps are invoked imme-
diately after each other, the CPU Jitter random num-
ber generator places the folding loop between each time
stamp gathering. That implies that the CPU jitter over
the folding loop is measured and used as a basis for en-
tropy.

Considering the fact that the CPU execution time jitter
over the folding loop is the source of entropy, we can
determine the following:

• The result of the folding loop shall return a one bit
value that has one bit of entropy.

• The delta of two time stamps before and after the
folding loop is given to the folding loop to obtain
the one bit value.

When viewing both findings together, we can conclude
that the CPU jitter of the time deltas each folding loop
shows must exceed 1 bit of entropy. Only this way we
can ensure that the folded time delta value has one bit of
entropy – see Section 5.2.1 for an explanation why the
folding operation retains the entropy present in the time
delta up to one bit.

Tests are implemented that measure the variations of
the time delta over an invocation of the folding loop.
The tests are provided with the tests_userspace/
timing/jitterentropy-foldtime.c test case for
user space, and the stat-fold DebugFS file for test-
ing the kernel space. To ensure that the measurements
are based on the worst-case analysis, the user space test
is compiled with -O2 optimization3. The kernel space
test is compiled with the same optimization as the ker-
nel itself.

The design of the folding loop in Section 3.1.2 explains
that the number of folding loop iterations varies between
20 and 24 iterations. The testing of the entropy of the
folding loop must identify the lower boundary and the
upper boundary. The lower boundary is the minimum
entropy the folding loop at least will have: this mini-
mum entropy is the entropy observable over a fixed fold-
ing loop count. The test uses 20 as the fixed folding loop

3The CPU execution time jitter varies between optimized and
non-optimized binaries. Optimitzed binaries show a smaller jitter
compared to non-optimized binaries. Thus, the test applies a worst
case approach with respect to the optimizations, even though the
design requires the compilation without optimizations.

2014 Linux Symposium • 37

count. On the other hand, the upper boundary of the en-
tropy is set by allowing the folding loop count to float
freely within the above mentioned range.

It is expected that the time stamps used to calculate
the folding loop count is independent from each other.
Therefore, the entropy observable with the testing of the
upper boundary is expected to identify the entropy of
the CPU execution time jitter. Nonetheless, if the reader
questions the independence, the reader must conclude
that the real entropy falls within the measured range be-
tween the lower and upper boundary.

Figure 13 presents the lower boundary of the folding
loop executing in user space of the test system. The
graph shows two peaks whereas the higher peak is cen-
tered around the execution time when the code is in the
CPU cache. For the time when the code is not in the
CPU cache – such as during context switches or during
the initial invocations – the average execution time is
larger with the center at the second peak. In addition,
Figure 14 provides the upper boundary of the folding
loop. With the graph of the upper boundary, we see 16
spikes which are the spikes of the lower boundary scat-
tered by the folding loop counter. If the folding loop
counter is 1, the variation of the time delta is centered
around a lower value than the variations of a folding
loop counter of 2 and so on. As the variations of the
delta are smaller than the differences between the means
of the different distributions, we observe the spikes.

The two graphs use the time deltas of 10,000,000 invo-
cations of the folding loop. To eliminate outliers, time
delta values above the number outlined in the graphs are
simply cut off. That means, when using all values of the
time delta variations, the calculated Shannon Entropy
would be higher than listed in the legend of the graphs.
This cutting off therefore is yet again driven by the con-
sideration of determining the worst case.

The lower boundary shows a Shannon Entropy above
2.9 bits and the upper boundary a Shannon Entropy
above 6.7 bits.

In addition to the user space measurements, Figures 15
and 16 present the lower and upper boundary of the fold-
ing loop execution time variations in kernel space on the
same system. Again, the lower boundary is above 2 bits
and the upper above 6 bits of Shannon Entropy.

As this measurement is the basis of all entropy discus-
sion, Appendix F shows the measurements for many

Figure 13: Lower boundary of entropy over folding loop
in user space

Figure 14: Upper boundary of entropy over folding loop
in user space

Figure 15: Lower boundary of entropy over folding loop
in kernel space

38 • CPU Time Jitter Based Non-Physical True Random Number Generator

Figure 16: Upper boundary of entropy over folding loop
in kernel space

different CPUs. All of these measurements show that
the lower and upper boundaries are always much higher
than the required one bit of entropy with exceptions. All
tests are executed with optimized code as even a worst
case assessment and sometimes with the non-optimized
compilation to show the difference.

For the other CPUs whose lower entropy is below 1
bit and the jent_entropy_init function allows this
CPU, statistical tests are performed to verify that no cy-
cles are present. This implies that the entropy is closer
to the upper boundary and therefore well above 1 bit.

The reader should also consider that the measured Shan-
non Entropy is a conservative measurement as the test
invokes the folding loop millions of times successively.
This implies that for the entire duration of the test,
caches, branch prediction units and similar are mostly
filled with the test code and thus have hardly any im-
pact on the variations of the time deltas. In addition, the
test systems are kept idle as much as possible to limit the
number of context switches which would have an impact
on the cache hits. In real-life scenarios, the caches are
typically filled with information that have an big impact
on the jitter measurements and thus increase the entropy.

With these measurements, we can conclude that the
CPU execution jitter over the folding loop is always
more than double the entropy in the worst case than re-
quired. Thus, the measured entropy of the CPU execu-
tion time jitter that is the basis of the CPU Jitter random
number generator is much higher than required.

The reader may now object and say that the measured
values for the Shannon Entropy are not appropriate for

the real entropy of the execution time jitter, because the
observed values may present some patterns. Such pat-
terns would imply that the real entropy is significantly
lower than the calculated Shannon Entropy. This argu-
ment can easily be refuted by the statistical tests per-
formed in Section 4. If patterns would occur, some of
the statistical tests would indicate problems. Specifi-
cally the Chi-Square test is very sensitive to any pat-
terns. Moreover, the “anti” tests presented in Section 4.3
explain that patterns are easily identifiable.

5.1.1 Impact of Frequency Scaling and Power
Management on Execution Jitter

When measuring the execution time jitter on a system
with a number of processes active such as a system with
the X11 environment and KDE active, one can iden-
tify that the absolute numbers of the execution time of a
folding loop is higher at the beginning than throughout
the measurement. The behavior of the jitter over time
is therefore an interesting topic. The following graph
plots the first 100,000 measurements4 where all mea-
surements of time deltas above 600 were removed to
make the graph more readable (i.e. the outliers are re-
moved). It is interesting to see that the execution time
has a downward trend that stabilizes after some 60,000
folding loops. The downward trend, however, is not
continuously but occurs in steps. The cause for this
behavior is the frequency scaling (Intel SpeedStep) and
power management of the system. Over time, the CPU
scales up to the maximum processing power. Regardless
of the CPU processing power level, the most important
aspect is that the oscillation within each step has an sim-
ilar “width” of about 5 to 10 cycles. Therefore, regard-
less of the stepping of the execution time, the jitter is
present with an equal amount! Thus, frequency scaling
and power management does not alter the jitter.

When “zooming” in into the graph at different loca-
tions, as done below, the case is clear that the oscillation
within each step remains at a similar level.

The constant variations support the case that the CPU
execution time jitter is agnostic of the with frequency
scaling and power management levels.

4The measurements of the folding loop execution time were re-
performed on the same system that is used for Section 5.1. As
the measurements were re-performed, the absolute numbers vary
slightly to the ones in the previous section.

2014 Linux Symposium • 39

Figure 17: Variations of the execution time jitter over
time when performing folding loop jitter measurements
with Frequency Scaling / Power Management

Figure 18: Variations of the execution time jitter over
time when performing folding loop jitter measure-
ments with Frequency Scaling / Power Management –
“zoomed in at measurements 1,000 - 3,000”

Figure 19: Variations of the execution time jitter over
time when performing folding loop jitter measure-
ments with Frequency Scaling / Power Management –
“zoomed in at measurements 42,000 - 44,000”

Figure 20: Variations of the execution time jitter over
time when performing folding loop jitter measurements
with Frequency Scaling / Power Management disabled

Figure 21: Variations of the execution time jitter over
time when performing folding loop jitter measurements
with Frequency Scaling / Power Management disabled
– “zoomed in at measurements 1,000 - 3,000”

To compare the measurements with disabled frequency
scaling and power management on the same system, the
following graphs are prepared. These graphs show the
same testing performed.

5.2 Flow of Entropy

Entropy is a is a phenomenon that is typically character-
ized with the formula for the Shannon Entropy H

H =−
N

∑
i=1

pi · log2(pi)

where N is the number of samples, and pi is the proba-
bility of sample i. As the Shannon Entropy formula uses

40 • CPU Time Jitter Based Non-Physical True Random Number Generator

Figure 22: Variations of the execution time jitter over
time when performing folding loop jitter measurements
with Frequency Scaling / Power Management disabled
– “zoomed in at measurements 42,000 - 44,000”

the logarithm at base 2, that formula results in a number
of bits of entropy present in an observed sample.

Considering the logarithm in the Shannon Entropy for-
mula one has to be careful on which operations can be
applied to data believed to contain entropy to not lose it.
The following operations are allowed with the following
properties:

• Concatenation of bit strings holding entropy im-
plies that the combined string contains the combi-
nation of both entropies, i.e. the entropy value of
both strings are added. That is only allowed when
both observations are independent from each other.

• A combination of the bit strings of two independent
observations using XOR implies that the resulting
string holds the entropy equaling to larger entropy
of both strings – for example XORing two strings,
one string with 10 bits in size and 5 bits of entropy
and another with 20 bits holding 2 bits results in
a 20 bit string holding 5 bits of entropy. The key
is that even a string with 0 entropy XORed with
a string holding entropy will not diminish the en-
tropy of the latter.

Any other operation, including partial overlapping con-
catenation of strings will diminish the entropy in the
resulting string in ways that are not easily to be deter-
mined. These properties set the limit in which the CPU
Jitter random number generator can process the time
stamps into a random bit stream.

Figure 23: Measurement of time folding operation

The graphs about the distribution of time deltas and their
variations in Section 5.1 include an indication of the
Shannon Entropy which is based on the observed sam-
ples using the mentioned formula for the Shannon En-
tropy. In each case, the Shannon Entropy is way above
1 bit – a value which is fundamental to the following
discussion.

5.2.1 First Operation: Folding of Time Delta

According to the implementation illustrated with Fig-
ure 3, the first operation after the CPU Jitter random
number generator obtains a time delta is the folding op-
eration. The list of allowed operations include the XOR
operation. The folding is an XOR operation of the 64 1
bit slices of the 64 bit time stamp. The XOR operation
does not diminish the entropy of the overall time stamp
when considered as slices. The overall time delta is ex-
pected to have more than 1 bit of entropy according to
figures in Section 5.1. The string size after the folding
is 1 bit and can thus not hold more than 1 bit of entropy.

To measure that entropy, the folding operation is closely
analyzed with the test tests_userspace/timing/
jitterentropy-folding.c. This test performs the
folding operation as illustrated in the left hand side of
Figure 3, i.e. a time delta is created which is folded. The
folded value is recorded and a folding operation is per-
formed. The distribution of the bit value – an integer
ranging from 0 to 1 – resulting from the folding oper-
ation is recorded. Figure 23 shows the distribution of
this test when measuring 10,000,000 invocations of that
time stamp with the folding operation applied.

2014 Linux Symposium • 41

The distribution shows that both values have an equal
chance of being selected. That implies that the Shannon
Entropy is 1.0 as recorded in the legend of the diagram.
We conclude that the folding operation will retain 1 bit
of entropy provided that the input, i.e. the timing value
holds 1 or more bits of entropy.

Note, the repetition of the folding loop is of no harm to
the entropy as the same value is calculated during each
folding loop execution.

5.2.2 Second Operation: Von-Neumann Unbias

The Von-Neumann unbias operation does not have an
effect on the entropy of the source. The mathematical
proof is given in the document A proposal for: Func-
tionality classes for random number generators Version
2.0 by Werner Schindler section 5.4.1 issued by the Ger-
man BSI.

The requirement on using the Von-Neumann unbias op-
eration rests on the fact that the input to the unbias op-
eration are two independent bits. The independence is
established by the following facts:

1. The bit value is determined by the delta value
which is affected by the CPU execution jitter. That
jitter is considered independent of the CPU opera-
tion before the time delta measurement,

2. The delta value is calculated to the previous exe-
cution loop iteration. That means that two loop it-
erations generate deltas based on each individual
loop. The delta of the first loop operation is neither
part of the delta of the second loop (e.g. when the
second delta would measure the time delta of both
loop iterations), nor is the delta of the second loop
iteration affected by the first operation based on the
finding in bullet 1.

5.2.3 Third Operation: Entropy Pool Update

What is the next operation? Let us look again at Fig-
ure 3. The next step after folding and unbiasing is the
mixing of the folded value into the entropy pool by
XORing it into the pool and rotating the pool.

The reader now may say, these are two distinct opera-
tions. However, in Section 3.1.2 we already concluded

that the XOR operation using 64 1 bit folded values to-
gether with the rotation by 1 bit of the entropy pool can
mathematically be interpreted as a concatenation of 64
1 bit folded values into a 64 bit string. Thus, both oper-
ations are assessed as a concatenation of the individual
folded bits into a 64 bit string followed by an XOR of
that string into the entropy pool.

Going back to the above mentioned allowed operations
with bit strings holding entropy, the concatenation oper-
ation adds the entropy of the individual bit strings that
are concatenated. Thus, we conclude that the concate-
nation of 64 strings holding 1 bit of entropy will result
in a bit string holding 64 bit of entropy.

When concatenating additional n 1 bit strings into the 64
bit entropy pool will not increase the entropy any more
as the rotation operation rolls around the 64 bit value
and starts at the beginning of that value again. When the
entropy collection loop counter has a value that is not
divisible by 64, the last bit string XORed into the en-
tropy pool is less than 64 bits – for example, the counter
has the value 260, the 4 last folded bits generated by
the loop will form a 4 bit string that is XORed into the
entropy pool. This last bit string naturally contains less
than 64 bits of entropy – the maximum entropy it con-
tains is equal to the number of bits in that string. Consid-
ering the calculation rules for entropy mentioned above,
XORing a string holding less entropy with a string with
more entropy will not diminish the entropy of the latter.
Thus, the XORing of the last bits into the entropy pool
will have no effect on the entropy of the entropy pool.

There is a catch to the calculation: the math only ap-
plies when the individual observations, i.e. the individ-
ual 1 bit folded time delta values, are independent from
each other. The argument supporting the independence
of the individual time deltas comes back to the funda-
mental property of the CPU execution time jitter which
has an unpredictable variation. Supportive is the finding
that one entropy collection loop iteration, which gener-
ates a 1 bit folded value, has a much wider distribution
compared to Figure 2 – the reader may particularly con-
sider the standard deviation. This variation in the ex-
ecution time of the loop iteration therefore breaks any
potentially present dependencies between adjacent loop
counts and their time deltas. Note again, the time deltas
we collect only need 1 bit of entropy. Looking at Fig-
ure 24 which depicts the distribution of the execution
time of one entropy loop iteration, we see that the vari-
ation and its included Shannon Entropy is high enough

https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Zertifizierung/Interpretationen/AIS_31_Functionality_classes_for_random_number_generators_e.pdf
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Zertifizierung/Interpretationen/AIS_31_Functionality_classes_for_random_number_generators_e.pdf
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Zertifizierung/Interpretationen/AIS_31_Functionality_classes_for_random_number_generators_e.pdf

42 • CPU Time Jitter Based Non-Physical True Random Number Generator

Figure 24: Distribution of execution time of one entropy
collection loop iteration

to support the conclusion of an independence between
time deltas of adjacent loop iterations.

Thus, we conclude that our entropy pool holds 64 bit of
entropy after the conclusion of the mixing operation.

5.2.4 Fourth Operation: Generation of Output
String

The fourth and last operation on the bit string holding
entropy is the generation of the string of arbitrary length.

The generation of the output string is performed by con-
catenating random numbers of the size of 64 bit with
each other until the resulting bit string matches the re-
quested size. The individual random numbers are gen-
erated by independent invocations of the entropy collec-
tion loop.

Using concatenation and the conclusion from the pre-
ceding sections5, the entropy in the resulting bit string
is equal to the number of bits in that string.

The CPU Jitter random number generator operates on
64 bit blocks – the length of the entropy pool. When
the requested bit string length is not divisible by 64 bits,
the last chunk concatenated with the output bit stream
is therefore less than 64 bits with the reminding bits
not given to the caller – note, the caller is only able to
specify the output size in bytes and thus in 8-bit chunks.
Why is this operation not considered to diminish the en-
tropy of the last chunk below its number of bits? To

5The entropy pool contains 64 bit of entropy after the completion
of the random number generation.

find the answer, let us go back how the entropy pool
is constructed: one bit of folded timer value known to
have one bit of entropy is added to the pool. When con-
sidering the entropy pool as 64 segments of individual
bits, every individual bit still contains 1 bit of entropy,
because the only operation each single bit is modified
with, is XOR. Thus, every bit in the bit string of the
entropy pool holds one bit of entropy. This ultimately
implies that when taking a subset of the entropy pool,
that subset still has as much entropy as the size of the
subset in bits.

5.3 Reasons for Chosen Values

The reader now may ask why the time delta is folded
into one bit and not into 2 or even 4 bits. Using larger
bit strings would reduce the number of foldings and thus
speed up the entropy collection. Measurements have
shown that the speed of the CPU Jitter random num-
ber generator is cut by about 40% when using 4 bits
versus 2 bits or 2 bits versus 1 bit. However, the en-
tire argumentation for entropy is based on the entropy
observed in the execution time jitter illustrated in Sec-
tion 5.1. The figures in this section support the conclu-
sion that the Shannon Entropy measured in Section 5.1
is the absolute worst case. To be on the save side, the
lower boundary of the measured entropy shall always
be significantly higher than the entropy required for the
value returned by the folding operation.

Another consideration for the size of the folded time
stamp is important: the implications of the last para-
graph in Section 5.2.4. The arguments and conclusions
in that paragraph only apply when using a size of the
folded time stamp that is less or equal 8 bits, i.e. one
byte.

6 Conclusion

For the conclusion, we need to get back to Section 1 and
consider the initial goals we have set out.

First, let us have a look at the general statistical and en-
tropy requirements. Chapter 4 concludes that the statis-
tical properties of the random number bit stream gener-
ated by the CPU Jitter random number generator meets
all expectations. Chapter 5 explains the entropy behav-
ior and concludes that the collected entropy by the CPU
execution time jitter is much larger than the entropy

2014 Linux Symposium • 43

pool. In addition, that section determines that the way
data is mixed into the entropy pool does not diminish the
gathered entropy. Therefore, this chapter concludes that
one bit of output of the CPU Jitter random number gen-
erator holds one bit of information theoretical entropy.

In addition to these general goals, Section 1 lists a num-
ber of special goals. These goals are considered to be
covered. A detailed assessment on the coverage of these
goals is given in the original document.

A Availability of Source Code

The source code of the CPU Jitter entropy ran-
dom number generator including the documenta-
tion is available at http://www.chronox.de/jent/
jitterentropy-current.tar.bz2.

The source code for the test cases and R-project files to
generate the graphs is available at the same web site.

B Linux Kernel Implementation

The document describes in Section 1 the goals of the
CPU Jitter random number generator. One of the goals
is to provide individual instances to each consumer of
entropy. One of the consumers are users inside the
Linux kernel.

As described above, the output of the CPU Jitter random
number generator is not intended to be used directly.
Instead, the output shall be used as a seed for either a
whitening function or a deterministic random number
generator. The Linux kernel support provided with the
CPU Jitter random number generator chooses the latter
approach by using the ANSI X9.31 DRNG that is pro-
vided by the Linux kernel crypto API.

Figure 25 illustrates the connection between the entropy
collection and the deterministic random number genera-
tors offered by the Linux kernel support. The interfaces
at the lower part of the illustration indicate the Linux
kernel crypto API names of the respective determinis-
tic random number generators and the file names within
/sys/kernel/debug, respectively.

Every deterministic random number generator instance
is seeded with its own instance of the CPU Jitter random
number generator. This implementation thus uses one of
the design goals outlined in Section 1, namely multiple,

CPU Jitter
RNG

Instance 1

CPU Jitter
RNG

Instance 1

Strong DRNG

ANSI X9.31

Strong DRNG

ANSI X9.31

Regular DRNG

ANSI X9.31

Regular DRNG

ANSI X9.31

Timer DT
V Seed
K Seed Key

reg(jent_drng)
Jitterentropy/drng

strong(jent_drng)
Jitterentropy/strong-drng

CPU Jitter
RNG

Instance 2

CPU Jitter
RNG

Instance 2

Timer DT
V Seed
K Seed Key

raw(jent_drng)
Jitterentropy/seed

CPU Jitter
RNG

Instance 3

CPU Jitter
RNG

Instance 3

Figure 25: Using CPU Jitter RNG to seed ANSI X9.31
DRNGs

unrelated instantiations of the CPU Jitter random num-
ber generator.

The offered deterministic random number generators
have the following characteristics:

• The regular deterministic random number gener-
ator is re-seeded with entropy from the CPU Jit-
ter random number generator after obtaining MAX_
BYTES_RESEED bytes since the last re-seed. Cur-
rently that value is set to 1 kilobytes. In ad-
dition, when reaching the limit of MAX_BYTES_
REKEY bytes since the last re-key, the determinis-
tic random number generator is re-keyed using en-
tropy from the CPU Jitter random number genera-
tor. This value is currently set to 1 megabytes.

• The strong deterministic random number genera-
tor is re-seeded and re-keyed after the generator
of MAX_BYTES_STRONG_RESEED bytes and MAX_
BYTES_STRONG_REKEY bytes, respectively. The
re-seeding value is set to 16 bytes, which is equal to
the block size of the deterministic random number
generator. This implies that the information the-
oretical entropy of one block of random number
generated from the deterministic random number
generator is always 16 bytes. The re-key value is
set to 1 kilobytes.

• Direct access to the CPU Jitter random number
generator is provided to the caller when raw en-
tropy is requested.

Currently, the kernel crypto API only implements a full
reset of the deterministic random number generators.

http://www.chronox.de/jent/doc/CPU-Jitter-NPTRNG.html
http://www.chronox.de/jent/jitterentropy-current.tar.bz2
http://www.chronox.de/jent/jitterentropy-current.tar.bz2

44 • CPU Time Jitter Based Non-Physical True Random Number Generator

Therefore, the description given above is the plan af-
ter the kernel crypto API has been extended. Cur-
rently, when hitting the re-seed threshold, the determin-
istic random number generator is reset with 48 bytes of
entropy from the CPU Jitter random number generator.
The re-key value is currently not enforced.

B.1 Kernel Crypto API Interface

When compiling the source code with the configuration
option CRYPTO_CPU_JITTERENTROPY_KCAPI, the kernel
crypto API bonding code is compiled. That code reg-
isters the mentioned deterministic random number gen-
erators with the kernel crypto API. The bonding code
provides a very thin wrapper around the management
code for the provided random number generators.

The deterministic random number generators connected
with as well as the direct access to the CPU Jitter ran-
dom number generator are accessible using the follow-
ing kernel crypto API names:

reg(jent_rng) Regular deterministic random number
generator

strong(jent_rng) Strong deterministic random number
generator

raw(jent_rng) Direct access to the CPU Jitter random
number generator which returns unmodified data
from the entropy collection loop.

When invoking a reset operation on one of the deter-
ministic random number generator, the implementation
performs the re-seed and re-key operations mentioned
above on this deterministic random number generator
irrespectively whether the thresholds are hit.

A reset on the raw(jent_rng) instance is a noop.

B.2 Kernel DebugFS Interface

The kernel DebugFS interface offered with the code is
only intended for debugging and testing purposes. Dur-
ing regular operation, that code shall not be compiled as
it allows access to the internals of the random number
generation process.

The DebugFS interface is compiled when enabling the
CRYPTO_CPU_JITTERENTROPY_DBG configuration option.
The interface registers the following files within the di-
rectory of /sys/kernel/debug/jitterentropy:

stat The stat file offers statistical data about the reg-
ular and strong random number generators, in par-
ticular the total number of generated bytes and the
number of re-seeds and re-keys.

stat-timer This file contains the statistical timer data
for one entropy collection loop count: time delta,
delta of time deltas and the entropy collection loop
counter value. This data forms the basis of the
discussion in Section 4. Reading the file will re-
turn an error if the code is not compiled with
CRYPTO_CPU_JITTERENTROPY_STAT.

stat-bits This file contains the three tests of the bit dis-
tribution for the graphs in Section 4. Reading the
file will return an error if the code is not compiled
with CRYPTO_CPU_JITTERENTROPY_STAT.

stat-fold This file provides the information for the en-
tropy tests of the folding loop as outlined in Sec-
tion 5.1. Reading the file will return an error
if the code is not compiled with CRYPTO_CPU_
JITTERENTROPY_STAT.

drng The drng file offers access to the regular deter-
ministic random number generator to pull random
number bit streams of arbitrary length. Multiple
applications calling at the same time are supported
due to locking.

strong-rng The strong-drng file offers access to the
strong deterministic random number generator to
pull random number bit streams of arbitrary length.
Multiple applications calling at the same time are
supported due to locking.

seed The seed file allows direct access to the CPU Jit-
ter random number generator to pull random num-
ber bit streams of arbitrary lengths. Multiple appli-
cations calling at the same time are supported due
to locking.

timer The timer file provides access to the time stamp
kernel code discussed in Section 2. Be careful
when obtaining data for analysis out of this file:
redirecting the output immediately into a file (even
a file on a TmpFS) significantly enlarges the mea-
surement and thus make it look having more en-
tropy than it has.

collection_loop_count This file allows access to the
entropy collection loop counter. As this counter
value is considered to be a sensitive parameter, this

2014 Linux Symposium • 45

file will return -1 unless the entire code is com-
piled with the CRYPTO_CPU_JITTERENTROPY_
STAT flag. This flag is considered to be dangerous
for normal operations as it allows access to sensi-
tive data of the entropy pool that shall not be acces-
sible in regular operation – if an observer can ac-
cess that data, the CPU Jitter random number gen-
erator must be considered to deliver much dimin-
ished entropy. Nonetheless, this flag is needed to
obtain the data that forms the basis of some graphs
given above.

B.3 Integration with random.c

The CPU Jitter random number generator can also be
integrated with the Linux /dev/random and /dev/
urandom code base to serve as a new entropy source.
The provided patch instantiates an independent copy of
an entropy collector for each entropy pool. Entropy
from the CPU Jitter random number generator is only
obtained if the entropy estimator indicates that there is
no entropy left in the entropy pool.

This implies that the currently available entropy sources
have precedence. But in an environment with limited
entropy from the default entropy sources, the CPU Jit-
ter random number generator provides entropy that may
prevent /dev/random from blocking.

The CPU Jitter random number generator is only acti-
vated, if jent_entropy_init passes.

B.4 Test Cases

The directory tests_kernel/kcapi-testmod/ con-
tains a kernel module that tests whether the Linux Ker-
nel crypto API integration works. It logs its information
at the kernel log.

The testing of the interfaces exported by DebugFS can
be performed manually on the command line by using
the tool dd with the files seed, drng, strong-drng,
and timer as dd allows you to set the block size pre-
cisely (unlike cat). The other files can be read using
cat.

C Libgcrypt Implementation

Support to plug the CPU Jitter random number gener-
ator into libgcrypt is provided. The approach is to add

libgcrypt DRNGlibgcrypt DRNG

/dev/random
/dev/urandom
/dev/random
/dev/urandom

CPU Jitter
RNG

Instance covering
WEAK

CPU Jitter
RNG

Instance covering
WEAK

_gcry_rndhw_poll_slow_gcry_rndhw_poll_slow

_gcry_jent_gather_random_gcry_jent_gather_random

CPU Jitter
RNG

Instance covering
STRONG

CPU Jitter
RNG

Instance covering
STRONG

CPU Jitter
RNG

Instance covering
VERY_STRONG

CPU Jitter
RNG

Instance covering
VERY_STRONG

GCRYCTL_SET_CPU_JITTER_ENTROPY 1

GCRYCTL_SET_CPU_
JITTER_ENTROPY 0

Figure 26: Use of CPU Jitter RNG by libgcrypt

the callback to the CPU Jitter random number genera-
tor into _gcry_rndlinux_gather_random. Thus, the
CPU Jitter random number generator has the ability to
run every time entropy is requested. Figure 26 illustrates
how the CPU Jitter random number generator hooks into
the libgcrypt seeding framework.

The wrapper code around the CPU Jitter random num-
ber generator provided for libgcrypt holds the following
instances of the random number generator. Note, the
operation of the CPU Jitter random number generator
is unchanged for each type. The goal of that approach
shall ensure that each type of seed request is handled by
a separate and independent instance of the CPU Jitter
random number generator.

weak_entropy_collector Used when GCRY_WEAK_
RANDOM random data is requested.

strong_entropy_collector Used when GCRY_STRONG_
RANDOM random data is requested.

very_strong_entropy_collector Used when
GCRY_VERY_STRONG_RANDOM random data is
requested.

The CPU Jitter random number generator with its above
mentioned instances is initialized when the caller uses
GCRYCTL_SET_CPU_JITTER_ENTROPY with the flag 1.
At this point, memory is allocated.

Only if the above mentioned instances are allocated,
the wrapper code uses them! That means the callback
from _gcry_rndlinux_gather_random to the CPU
Jitter random number generator only returns random
bytes when these instances are allocated. In turn, if
they are not allocated, the normal processing of _gcry_
rndlinux_gather_random is continued.

46 • CPU Time Jitter Based Non-Physical True Random Number Generator

CPU Jitter
RNG

Instance 1

CPU Jitter
RNG

Instance 1

Strong
Default OpenSSL

DRNG

Strong
Default OpenSSL

DRNG

Regular
Default OpenSSL

DRNG

Regular
Default OpenSSL

DRNG

Seed

jitterentropy-drng jitterentropy-strong

CPU Jitter
RNG

Instance 2

CPU Jitter
RNG

Instance 2

Seed

jitterentropy-raw

CPU Jitter
RNG

Instance 3

CPU Jitter
RNG

Instance 3

Figure 27: CPU Jitter random number generator seeding
OpenSSL default DRNG

If the user wants to disable the use of the CPU Jitter ran-
dom number generator, a call to GCRYCTL_SET_CPU_
JITTER_ENTROPY with the flag 0 must be made. That
call deallocates the random number generator instances.

The code is tested with the test application tests_
userspace/libgcrypt/jent_test.c. When using
strace on this application, one can see that after dis-
abling the CPU Jitter random number generator, /dev/
random is opened and data is read. That implies that the
standard code for seeding is invoked.

See patches/README for details on how to apply the
code to libgcrypt.

D OpenSSL Implementation

Code to link the CPU Jitter random number generator
with OpenSSL is provided.

An implementation of the CPU Jitter random number
generator encapsulated into different OpenSSL Engines
is provided. The relationship of the different engines to
the OpenSSL default random number generator is de-
picted in Figure 27.

The following OpenSSL Engines are implemented:

jitterentropy-raw The jitterentropy-raw engine
provides direct access to the CPU Jitter random
number generator.

jitterentropy-drng The jitterentropy-drng en-
gine generates random numbers out of the
OpenSSL default deterministic random number
generator. This DRNG is seeded with 16 bytes out

OpenSSL RNGOpenSSL RNG

/dev/urandom
/dev/random
/dev/urandom
/dev/random

CPU Jitter
RNG

CPU Jitter
RNG

RAND_pollRAND_poll

Figure 28: Linking OpenSSL with CPU Jitter RNG

of CPU Jitter random number generator every 1024
bytes. After 1,048,576 bytes, the DRNG is seeded
and re-keyed, if applicable, with 48 bytes after a
full reset of the DRNG. When the Note, the in-
tention of this engine implementation is that it is
registered as the default OpenSSL random number
generator using ENGINE_set_default_RAND(3).

jitterentropy-strong The jitterentropy-strong
engine is very similar to jitterentropy-drng
except that the reseeding values are 16 bytes and
1024 bytes, respectively. The goal of the reseeding
is that always information theoretical entropy is
present in the DRNG6.

The different makefiles compile the different engine
shared library. The test case tests_userspace/
openssl/jitterentropy-eng-test.c shows the
proper working of the respective CPU Jitter random
number generator OpenSSL Engines.

In addition, a patch independent from the OpenSSL En-
gine support is provided that modifies the RAND_poll
API call to seed the OpenSSL deterministic random
number generator. The RAND_poll first tries to obtain
entropy from the CPU Jitter random number generator.
If that fails, e.g. the initialization call fails due to miss-
ing high-resolution timer support, the standard call pro-
cedure to open /dev/urandom or /dev/random or the
EGD is performed.

Figure 28 illustrates the operation.

The code is tested with the test application tests_
userspace/openssl/jent_test.c. When using
strace on this application, one can see that after patch-
ing OpenSSL, /dev/urandom is not opened and thus

6For the FIPS 140-2 ANSI X9.31 DRNG, this equals to one AES
block. For the default SHA-1 based DRNG with a block size of 160
bits, the reseeding occurs a bit more frequent than necessary, though.

2014 Linux Symposium • 47

not used. That implies that the CPU Jitter random num-
ber generator code for seeding is invoked.

See patches/README for details on how to apply the
code to OpenSSL.

E Shared Library And Stand-Alone Daemon

The CPU Jitter random number generator can be
compiled as a stand-alone shared library using the
Makefile.shared makefile. The shared library ex-
ports the interfaces outlined in jitterentropy(3).
After compilation, link with the shared library using the
linker option -ljitterentropy.

To update the entropy in the input_pool behind the
Linux /dev/random and /dev/urandom devices, the
daemon jitterentropy-rngd is implemented. It
polls on /dev/random. The kernel wakes up polling
processes when the entropy counter falls below a thresh-
old. In this case, the jitterentropy-rngd gathers
256 bytes of entropy and injects it into the input_pool.
In addition, /proc/sys/kernel/random/entropy_
avail is read in 5 second steps. If the value falls be-
low 1024, jitterentropy-rngd gathers 256 bytes of
entropy and injects it into the input_pool. The reason
for polling entropy_avail is the fact that when ran-
dom numbers are extracted from /dev/urandom, the
poll on /dev/random is not triggered when the entropy
estimator falls.

F Folding Loop Entropy Measurements

Measurements as explained in Section 5.1 for different
CPUs are executed on a large number of tests on dif-
ferent CPUs with different operating systems were exe-
cuted. The test results demonstrate that the CPU Jitter
random number generator delivers high-quality entropy
on:

• a large range of CPUs ranging from embedded sys-
tems of MIPS and ARM CPUs, covering desktop
systems with AMD and Intel x86 32 bit and 64 bit
CPUs up to server CPUs of Intel Itanium, Sparc,
POWER and IBM System Z;

• a large range of operating systems: Linux,
OpenBSD, FreeBSD, NetBSD, AIX, OpenIndiana
(OpenSolaris), AIX, z/OS, and microkernel based
operating systems (Genode with microkernels of
NOVA, Fiasco.OC, Pistachio);

• a range of different compilers: GCC, Clang and the
z/OS C compiler.

The listing of the test results is provided at the web site
offering the source code as well.

G License

The implementation of the CPU Jitter random number
generator, all support mechanisms, the test cases and the
documentation are subject to the following license.

Copyright Stephan Müller <smueller@chronox.de>,
2013.

Redistribution and use in source and binary forms, with or
without modification, are permitted provided that the follow-
ing conditions are met:

1. Redistributions of source code must retain the above
copyright notice, and the entire permission notice in its
entirety, including the disclaimer of warranties.

2. Redistributions in binary form must reproduce the
above copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other
materials provided with the distribution.

3. The name of the author may not be used to endorse
or promote products derived from this software without
specific prior written permission.

ALTERNATIVELY, this product may be distributed under the
terms of the GNU General Public License, in which case the
provisions of the GPL are required INSTEAD OF the above
restrictions. (This clause is necessary due to a potential bad
interaction between the GPL and the restrictions contained in
a BSD-style copyright.)

THIS SOFTWARE IS PROVIDED “AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES,

INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABIL-

ITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF WHICH ARE HEREBY DIS-

CLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDI-

RECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUD-

ING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;

LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED

AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR

TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE

USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH DAM-

AGE.

http://genode-labs.com
https://www.chronox.de/
https://www.chronox.de/

48 • CPU Time Jitter Based Non-Physical True Random Number Generator

	CPU Time Jitter Based Non-Physical True Random Number Generator
	S. Müller
	Introduction
	CPU Execution Time Jitter
	Assumptions
	Jitter Depicted

	Random Number Generator Design
	Maintenance of Entropy
	Obtaining Time Delta
	Folding Operation of Time Delta
	Von-Neumann Unbias Operation
	Adding Unbiased Folded Time Delta To Entropy Pool

	Generation of Random Number Bit Stream
	Initialization
	Memory Protection
	Locking
	FIPS 140-2 Continuous Self Test
	Intended Method of Use
	Programming Dependencies on Operating System

	Random Generator Statistical Assessment
	Statistical Properties of Entropy Pool
	Statistical Properties of Random Number Bit Stream
	Anti-Tests
	Static Increment of Time Stamp
	Pattern-based Increment of Time Stamp
	Disabling of System Features

	Entropy Behavior
	Base Entropy Source
	Impact of Frequency Scaling and Power Management on Execution Jitter

	Flow of Entropy
	First Operation: Folding of Time Delta
	Second Operation: Von-Neumann Unbias
	Third Operation: Entropy Pool Update
	Fourth Operation: Generation of Output String

	Reasons for Chosen Values

	Conclusion
	Availability of Source Code
	Linux Kernel Implementation
	Kernel Crypto API Interface
	Kernel DebugFS Interface
	Integration with random.c
	Test Cases

	Libgcrypt Implementation
	OpenSSL Implementation
	Shared Library And Stand-Alone Daemon
	Folding Loop Entropy Measurements
	License

