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Abstract

In recent years, system virtualization technology has
gradually shifted its focus from data centers to embed-
ded systems for enhancing security, simplifying the pro-
cess of application porting as well as increasing sys-
tem robustness and reliability. In traditional servers,
which are mostly based on x86 or PowerPC processors,
Kernel-based Virtual Machine (KVM) is a commonly
adopted virtual machine monitor. However, there are no
such KVM implementations available for the ARM ar-
chitecture which dominates modern embedded systems.
In order to understand the challenges of system virtual-
ization for embedded systems, we have implemented a
hypervisor, called ARMvisor, which is based on KVM
for the ARM architecture.

In a typical hypervisor, there are three major compo-
nents: CPU virtualization, memory virtualization, and
I/O virtualization. For CPU virtualization, ARMvisor
uses traditional “trap and emulate” to deal with sensi-
tive instructions. Since there is no hardware support
for virtualization in ARM architecture V6 and earlier,
we have to patch the guest OS to force critical instruc-
tions to trap. For memory virtualization, the functional-
ity of the MMU, which translates a guest virtual address
to host physical address, is emulated. In ARMvisor, a
shadow page table is dynamically allocated to avoid the
inefficiency and inflexibility of static allocation for the
guest OSes. In addition, ARMvisor uses R-Map to take
care of protecting the memory space of the guest OS.
For I/O virtualization, ARMvisor relies on QEMU to
emulate I/O devices. We have implemented KVM on
ARM-based Linux kernel for all three components in

ARMvisor. At this time, we can successfully run a guest
Ubuntu system on an Ubuntu host OS with ARMvisor
on the ARM-based TI BeagleBoard.

1 Introduction

Virtualization has been a hot topic and is widely em-
ployed in data centers and server farms for enterprise
usage. Today’s mobile devices are equipped with GHz
CPU, gigabytes of memory and high-speed network.
With the advancement of computing power and Internet
connection in embedded devices, system virtualization
also assists to address security challenges, and reduces
software development cost for the mobile and embedded
space. For instance, the technique of consolidation is
capable of running multiple operating systems concur-
rently on a single computer and the technique of sand-
boxing enhances security to prevent a secure system
from destruction by an un-trusted system. The benefits
and the new opportunities have prompted several com-
panies to put virtualization into mobile and embedded
devices. Open Kernel Labs announced that the OKL4
embedded hypervisor has been deployed on more than
1.1 billion mobile phones worldwide to date. Hence,
research into the internal design and implementation of
embedded hypervisors also attact more attention in aca-
demic communities. In this paper, we have worked on
the construction of ARM based hypervisor without any
hardware virtualization support.

Essentially, the ARM architecture was not initially de-
signed with system virtualization support. In the lat-
est variant, the ARMv7-A extension which was an-
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nounced in the middle of 2010, ARM will start to sup-
port hardware virtualization and allow up to 40-bit phys-
ical address space. However, the widely used vari-
ants of ARM processors, such as ARMv5, ARMv6
and ARMv7, lack any hardware extension for virtual-
ization, making it difficult to design an efficient hy-
pervisor when well-known full virtualization method
is being applied. In fact, according to the virtualiza-
tion requirements proposed by Popek and Goldberg in
1974 [2], ARM is not considered as a virtualizable ar-
chitecture [1]. There exist numerous non-privileged
sensitive instructions which behave unpredictably when
guest operating system is running in a de-privileged
mode. These critical instructions increase the com-
plexity of full virtualization implementation, and some
of them, such as LDRT/STRT/LDRBT/STRBT instruc-
tions, will cause huge performance degradations. Tra-
ditionally, techniques like trap-and-emulation and dy-
namic binary translation (DBT) are adopted to handle
the sensitive instructions as well as critical instructions
for CPU virtualization. In ARMvisor, a lightweight par-
avirtualization method takes the place of DBT. Merely
hundreds of codes are necessarily patched into guest op-
erating system source codes.

For memory virtualization, the shadow paging mecha-
nism is also hard to be manipulated. First, the address
translations, access permissions and access attributes
described in guest page tables and other system registers
must be correctly emulated by the underlying hypervi-
sor. Second, the hypervisor must maintain coherences
between guest page tables and the shadow ones. Third,
the hypervisor needs to protect itself from destruction
by guest, as well as to forbid user mode guest to access
kernel memory pages. According to the above three
requirements, the ARM hypervisor still suffers perfor-
mance degradation, especially during the sequence of
process creation. To reduce the overhead, a lightweight
memory trace mechanism for keeping shadow page ta-
bles synchronized with the page tables of the guest OS
is proposed by ARMvisor.

The experimental results of ARMvisor have shown leap-
ing performance improvement with up to 6.63 times
speedup in average on LMBench. Additionally, in em-
bedded benchmark suite such as MiBench, the virtual-
ization overhead is minimal, meaning that performance
is fairly close to native execution.

The rest of the paper will be organized as follows. Re-
lated works will be discussed in Section 2. Software

architecture of our embedded hypervisor is presented in
Section 3. A cost model for hypervisor are formed in
Section 4. Section 5 describes the optimization method-
ologies for CPU and memory virtualization. Experi-
mental results and analysis are covered in Section 6. At
last, we conclude the paper in Section 7.

2 Related work

A variety of virtualization platforms for ARM have been
developed in the past few years as a result of the long
leap in computing power of ARM processor. Past work
[3] mentioned several benefits of virtualizing ARM ar-
chitecture in embedded systems. It was noted that the
hypervisor provides the solution to embedded system in-
cluding security issues in online embedded devices due
to the downloading of third party applications by iso-
lating hardware resource by virtual machines. An em-
bedded hypervisor also enables heterogeneous operat-
ing system platform to deal with conflicting of API in
different operating systems.

Others [1] have analyzed the requirement for designing
a hypervisor for embedded system. For instance, the hy-
pervisor must be equipped with scheduling mechanisms
for latency critical drivers to meet the real-time require-
ments, and must also support various peripheral assign-
ment policies such as directly assigned, shared assigned
devices or run-time peripheral assignment. Other im-
portant factors include accelerating the boot time of the
guest OS, utilizing the utmost performance of embedded
hardware as well as reducing the code size of hypervisor
to prevent from potential threat.

Numerous hypervisors have been designed for newer ca-
pabilities for embedded ARM platforms. OKLab has
developed OKL4 Microvisor [4] based on L4 microker-
nel for ARM, catering to the merits of embedded vir-
tualization. They claim that the hypervisor has been
ported to millions of mobile handsets and supports sys-
tem such as Windows and Android to run atop of OKL4
Microvisor. They claim that the OKL4 Microvisor sup-
ports a secure embedded platform. Other commercial
VMMs include VMware’s MVP [5], Trango [6] and
VirtuaLogix [7]. Nevertheless, none of these solutions,
including the OKL4 Microvisor, are open-sourced and
thus the insights of their design are not available.

On the other hand, Xen [8] is a well-known hypervi-
sor for system virtualization, and has been successfully
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ported to ARM architecture in Xen version 3.02 [9].
“Xen for ARM” required the guest code to be para-
virtualized by adding hyper-calls for system events such
as page table modification. However, code that needs
to be para-virtualized is not revealed in the paper. The
cost of maintenance with generations of different guest
operating system soars higher as heavier as the guest’s
code being modified for virtualization.

“KVM for ARM” [1] also implemented an embed-
ded VMM under KVM in ARMv5. They proposed
a lightweight script-based approach to para-virtualize
the kernel source code of the guest OS automatically,
by switching various kinds of non-privileged sensitive
instructions with pre-encoded hyper-calls that trap to
hypervisor for later emulation. Nonetheless, they ap-
plied a costly memory virtualization model when de-
privileging guest system in the user mode of ARM ar-
chitecture. First, they did not apply the “reverse map”
mechanism in memory virtualization for keeping the
coherency of guest’s and shadow page table. In their
model, each modification results in a page table flush
since the hypervisor is unaware of the correspondence
of guest’s page table and shadow page table. Further-
more, the benchmarking or profiling results are not yet
revealed, so it is hard to evaluate the performance results
of running virtual machines on their work.

In contrast, ARMvisor introduces a lightweight mem-
ory virtualization model mechanism to synchronize the
guest page table, which is more suitable for use in em-
bedded system due to the performance and power con-
sumption concern. Detailed measurement and analysis
of system and application level benchmarks will be re-
ported in the following section. We proposed a cost
model to measure overhead due to virtualization in gen-
eral use cases. According to the profiling results, we can
design several optimization methodologies.

3 Overview of ARMvisor

The proposed hypervisor is developed based on the open
source project KVM (Kernel-based Virtual Machine)
which was originally designed for hardware virtual-
ization extension of x86 architecture (Intel VT, AMD
SVM) to support full-virtualization on Linux kernel. It
has been included in the mainline Linux since kernel
version 2.6.20. KVM is composed numerous loadable
kernel modules which provide the core functions of the
virtualization. A modified QEMU is used to create the

Figure 1: KVM execution path

guest virtual machine and to emulate the I/O devices.
Figure 1 illustrates the execution flow when providing
a virtualization environment for the guest using KVM.
A virtual machine (VM) is initiated in QEMU by us-
ing the system call interface (ioctl) provided by the
modules of KVM. After the VM has finished its initial-
ization procedures, KVM changes the execution context
to emulated state of the guest OS and starts to execute
natively. Guest exits its execution context whenever an
exception occurs. There are two kinds of traps in KVM:
lightweight and heavyweight traps. In lightweight traps,
the emulation is handled in internal functions of KVM,
implemented in the kernel space of Linux. In contrast,
heavyweight traps that include I/O accesses and certain
CPU functions will be handled by QEMU in user space,
so context switches are required. Hence, the cost of a
single heavyweight trap is higher than a lightweight one.

Numerous hardware virtualization extension primitives
of the x86 architecture are leveraged by KVM to pro-
vide fast and stable workloads for virtual machines. A
new execution guest mode is designed to allow direct ex-
ecution of non-privileged yet sensitive x86 instructions.
Instead of unconditionally trapping on every privilege or
sensitive guest instruction, a subset of those instructions
can execute natively in the virtual ring 0 provided by
the guest mode. They modify the shadowed CPU states
indicated on VMCB (Virtual Machine Control Block)
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to emulate the desired effect as is natively executed.
VMCB is an in-memory hardware structure which con-
tains privileged registers of the guest OS context and the
control state for VMM. VMM can fetch guest’s running
status directly as well as setup the behavior of excep-
tions from the VMCB. Furthermore, functions are de-
fined for the switch between guest and host mode. For
instance, after VMM finishes its emulation tasks like
page table filling or emulating I/O instruction, vmrun
is called to reload the state of virtual machine from the
modified VMCB to physical registers and resume its ex-
ecution in guest mode. Aside from the hardware assis-
tance for CPU virtualization, specific features were pro-
posed to aid MMU virtualization on x86. Intel’s EPT
and AMD’s nested paging were designed to tackle the
issue of “shadow paging” mechanism traditionally ap-
plied in MMU virtualization.

However, due to the lack of hardware assistance in our
experimental ARM architecture, KVM’s performance
suffers in various aspects on ARM. In CPU virtualiza-
tion, software techniques are adopted due to the lack of
hardware support, such as the x86 guest mode for vir-
tualization. Lightweight traps are generated by adding
hyper-calls for non-privileged sensitive instruction em-
ulation. To apply the trap and emulation model for em-
ulating instruction, guest system is de-privileged to exe-
cute in user mode. Besides, without the help of VMCB,
a context switch interface is needed for KVM/guest
switch. The state save/recovery for both lightweight
and heavyweight traps results in extra overhead and thus
largely degrades the system performance. Details of
the methodologies we took and the optimization applied
will be illustrated in the following sections.

3.1 CPU Virtualization

Guest Operating Systems finish critical tasks that access
systems resources by executing sensitive instructions.
According to the definition [2], there are two categories
of sensitive instructions: Control Sensitive and Behavior
Sensitive instructions. Control Sensitive instructions are
those that attempt to change the amount of resource and
the configuration available, while Behavior Sensitive in-
structions are those that behave depending on the con-
figuration of resources. For example, “CPS” in ARM
modifies CPU’s status register, a.k.a. CPSR, to change
the execution mode or to enable/disable interrupt and
has control sensitivity. Moreover, executing CPS in user

mode results to NOP effect thus it is also behavior sensi-
tive. Such instructions must be handled properly to keep
the guest being correctly executed.

Actually, in order to prevent guest from ruining the
system by controlling hardware resource with privilege
and allow hypervisor to manage the resource of system,
guest operating system is de-privileged to execute in
non-privilege mode while hypervisor is located in privi-
lege level for resource management. Pure virtualization
that executes guest OS directly in user mode is proposed
under the premise that the architecture is virtualizable,
i.e. all the sensitive instructions trap when executing in
non-privilege mode. Hypervisor intercepts such traps
and emulates the instruction in various fashion. The
approach requires no modification of guest OS to run
in a virtual machine, so the engineering cost for port-
ing and maintaining multiple versions of guest OS is
minimal. However, pure virtualization is not feasible in
contemporary architectures since most of them includ-
ing x86 and ARM are not virtualizable and there exist
some non-privilege sensitive instructions, called critical
instructions, which behave abnormally when being de-
privileged in user mode.

Solutions have been proposed to ensure the exactness of
system execution in non-virtualizable architecture like
x86 without hardware extension. Past work [13] im-
ports dynamic binary translation (DBT) techniques to
overcome the obstacles in virtualizing x86 architecture
to support full virtualization. Guest binary is trans-
formed into numerous compiled code fragments (CCF)
and chained together by the VMM. In essence, most
of the guest code is identical except those sensitive in-
structions. Sensitive instructions are either translated
into non-sensitive ones, or into jumps to a callout func-
tion for correct handling. Nonetheless, DBT seems pro-
hibitive in embedded system since the translated code
accounts for large portion of memory and RAM size is
comparatively smaller than in large server or work sta-
tion.

Besides, paravirtualization [8] methodology that re-
places the non-privilege sensitive instructions with sets
of pre-defined hyper-calls for x86 is also introduced.
During execution, the hyper-call traps to the hypervi-
sor for corresponding handling for events such as page
table pointer modification. In spite that the performance
presents promising run-time results, engineering cost
is expensive for porting a guest OS to the virtual ma-
chine in Xen and thus adds difficulties for maintain-
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ing new versions of guest OS distribution for perfor-
mance issues. To solve such limitations of paravirtual-
ization, new technique called pre-virtualiztion [14] has
been proposed. They presented a semi-automatic sensi-
tive instruction re-writing mechanism in the assembler
stage, and assert that compared with paravirtualization,
the approach does not only require orders of magnitude
fewer modification of guest OS, but also achieves almost
the same performance result as paravirtualization.

Given that ARM’s ISA is non-virtualizable, ARMvisor
chooses paravirtualization techniques to handle guest’s
non-privilege sensitive instruction. Guest kernel and ap-
plications are de-privileged to execute in ARM’s user
mode, while ARMvisor executes in ARM’s supervi-
sor mode to avoid guest from crashing the host sys-
tem. ARM’s SWI, accompanied with a dedicated num-
ber, is inserted manually before each sensitive instruc-
tion as hyper-calls for instruction emulation. Traps will
be triggered and sent to the Dispatcher in the hyper-
visor. ARMvisor acknowledges the software interrupt
triggered with a specific number and then decodes and
emulates the sensitive instructions by effectively mod-
ifying the “Virtual Register File”, which represents the
virtual CPU context of guest system.

In practice, trapping on each sensitive results in huge
degradation in performance, due to the high cost of traps
in modern computer design. As stated earlier, hardware
extension of x86 architecture provides extra mode for
virtualization to address such issue. Many sensitive in-
structions can directly execute in guest mode rather than
trapping to hypervisor for later handling thus improving
performance. Vowing to lower the considerable over-
head results from “trap and emulation” without hard-
ware extension in contemporary ARM architecture, we
further proposed two optimizing technique to accelerate
the performance. Insights of each optimizing heuristic
will be discussed in later section.

3.1.1 Instruction emulation

ARMv6 defines 31 sensitive instructions, of which 7
are privileged instructions and will trap when guest sys-
tem is being de-privileged. The rest of them are crit-
ical instructions, which required code patching to pre-
vent non-deterministic behaviour in user mode. Table 1
lists the counts of various types of critical instructions
that need to be modified in Linux kernel 2.6.32 to boot

Instruction_type Count
Data Processing (movs) 4

Status Register Access (msr/mrs, cps) 34
Load/Store multiple (ldm(2,3), stm(2,3)) 8

Table 1: Sensitive instruction count

Cache/TLB’s invalidation and clean
BTB Flush

TTBR Modification
Domain configuration

Context ID
Processor status (ex: CPU ID, Page Fault Info)

Table 2: ARM co-processor operations

on ARMvisor. We figured that the critical instructions
exist in files for three separate purposes in Linux ker-
nel: kernel boot-up, exception handling and interrupt
enable/disable. Macros composed of instructions that
setup ARM Status Register for interrupt controlling are
defined in header files, and are widely deployed in large
portion of kernel code. Moreover, numerous critical in-
structions actually account for large portion of the code
in ARM Linux’s exception handling entry and return. In
our measurement, we found that merely forcing those
non-privilege sensitive instructions to trap for instruc-
tion emulation in ARMvisor brings about intolerable
performance loss in guest system. In fact, these instruc-
tions only involve virtual state change and no hardware
modification is needed. Consequently, we eliminate the
traps by replacing the instructions with Shadow Register
File Access (SRFA) in guest’s address space.

In contrast to the critical instructions, a few sensi-
tive instructions like ARM co-processor’s operation
(MCR/MRC) are privileged, and numerous essential
operations are accomplished through the execution of
those privilege instructions. Table 2 lists several func-
tions achieved by co-processor operations. Traps will
be invoked when executing these instructions in ARM’s
user space and certain hardware alteration is performed
by ARMvisor to correctly emulate guest’s desired be-
havior.

To relieve the overhead suffered in emulating those in-
structions, we concisely analyze all of the operations
and propos several refinement methodologies to achieve
performance improvement. First, guest’s TLB opera-
tions and BTB flush is dynamically replaced with NOP’s
by ARMvisor during execution, since TLB and BTB
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will be thoroughly flushed during every context switche
between guest and the hypervisor. Secondly, operations
that read information in co-processors, such as mem-
ory abort status and cache type, can also be replaced
with SRFA since only virtual state is fetched. Finally,
cache operations involving certain hardware configura-
tion must be trapped and finished in privilege level. To
minimize the overhead of emulation, technique called
Fast Instruction Trap (FIT) is applied to reduce costs of
context switching and handle those operations in guest
address space. Implementation details of SRFA and FIT
will be narrated in later section. TTBR and Domain
Register modification is comparatively complicated so
they are emulated in ARMvisor through lightweight
traps.

We conclude that many software optimizations can be
applied with paravirtualization techniques to effectively
mitigate the run-time overhead for virtualization at the
expense of higher engineering cost. It depends on the
VM distributor to decide the pros and cons of perfor-
mance elevation with the trade-off of the cost to main-
tain versions of guest OS.

3.1.2 CPU virtualization model

The hypervisor gathers system exceptions such as inter-
rupts, page faults and system calls, and properly han-
dles them for each virtual machine. Hardware exten-
sions in the x86 architecture enable guest OS exceptions
to be handled by its operating system natively without
the interference of hypervisor by setting typical bits in
VMCB.

In the ARM architecture, which lacks such hardware as-
sistance, the hypervisor is responsible for distinguishing
and virtualizing exceptions of the guest OS by deliver-
ing traps to each virtual machine. Synchronous excep-
tions such as memory access abort, system calls as well
as undefined access have higher priority and should be
injected to guest virtual machine immediately. Asyn-
chronous exceptions such as interrupt could be delivered
later when the pending queue for synchronous excep-
tions of that virtual machine is empty.

Additionally, exceptions may be invoked for virtual-
ization events such as hyper-calls for instruction em-
ulation and extra shadow page table miss, which are
non-existent when executing the OS on bare hardware.

Figure 2: VCPU virtualization flow

These traps are handled internally by the hypervisor and
the guest is actually unaware of such events.

As depicted in Figure 2, exceptions are routed to ARM-
visor for unified administration by replacing host ker-
nel’s exception vector with KVM Vector when KVM
module is loaded. Therefore, system’s exceptions are
re-directed to the Trap Interface inside ARMvisor for
later handling. The interface verifies the host and
guest exceptions and branch for separate handling path.
Whenever guest exceptions are discovered, KVM/Guest
Switch Interface saves the guest interrupt state and
switches to KVM’s context for later handling. In fact,
since KVM executes in a different address space from
the guest, page tables must be changed for consequent
trap handling. However, unlike the hardware extension
of x86 architecture that restores the page table pointer
register automatically in VMCB for exception exits,
KVM/Guest Switch Interface must be contained in a
shared page which is accessible in both guest and KVM
address space, otherwise the behavior would be unde-
fined after the modification of TTBR (Translation Table
Base Register) in ARM. As shown in Figure 3, the in-
terface is contained in a page between the address of
0xffff0000 to 0xffff1000 (if high vectors are used).
This page is write-protected to prevent from malicious
attacks crashing the system.

The trap dispatcher in ARMvisor forwards lightweight
and heavyweight traps to different emulation blocks.
Several traps, such as hyper-calls, memory access abort
and interrupt, are handled by emulation blocks in ARM-
visor respectively as illustrated in Figure 2. After all
KVM’s internal emulation blocks finish their emula-
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Figure 3: KVM vector implementation in ARMvisor

tion, KVM/Guest Switch Interface verifies if the trap is
lightweight, and if so, restores the guest interrupted con-
text to continue its previous execution. Otherwise, the
trap is heavyweight, so a context switch is required since
subsequent emulation tasks are to be finished in QEMU.
After a heavyweight trap finishes its emulation, such as
I/O access and CPU related operations through the in-
terfaces provided by QEMU, another context switch is
taken to resume the guest’s previous execution.

3.2 Memory virtualization

Generally, the VMM provides a virtualized memory
system for a guest virtual machine. When the user-
level applications and operating system run in a VM,
their memory access will be precisely controlled and
remapped to host physical memory. For security, the
VMM necessarily protects itself from illegal access by
any guest and isolates one VM from another one. In
practice, implementing memory virtualization is rela-
tively more complex than CPU virtualization. The ef-
forts involve working on guest physical memory allo-
cation, shadow paging mechanism, and virtual Memory
Management Unit (vMMU) emulation. Our implemen-
tation and the considerations for ARM memory archi-
tecture will be discussed later.

3.2.1 Guest physical memory allocation

The guest physical memory can be allocated in two
ways: static or dynamic allocation. A static alloca-
tion will reserve continuous memory pages from host
physical memory. The allocated memory pages are oc-
cupied and unlikely to be shared with VMM or other
VMs, thus the host memory resources are not being
well utilized. In contrast, the dynamic allocation method

Figure 4: The emulation flow of shadow paging

maps a region of host virtual memory as guest physical
memory. The host physical memory pages are allocated
dynamically, as the technique of demand paging. In
[10], VMware ESX server further provides a ballooning
driver for guest to reclaim unused memory pages. Cur-
rent KVM manages guest memory resources using the
existing functionalities within the Linux kernel includ-
ing buddy allocator, slab/slub allocator, virtual memory
subsystem. Once a VM is created, KVM considers the
guest physical memory as part of the user space memory
allocated in the VM process.

While executing guest binary code, all the memory ac-
cesses will be remapped to host memory by a series of
address translation processes. First, a guest virtual ad-
dress (GVA) can be translated to a guest physical ad-
dress (GPA) by walking through guest page tables. Then
the host virtual address (HVA) is generated by the infor-
mation stored in the GPA-HVA mapping table. Even-
tually the HVA will be translated to the host physical
address (HPA) by host page tables. It has no efficiency
if every guest memory access is forced to the surplus
translation. The general solution of memory virtualiza-
tion is to use a mechanism called shadow paging, which
maintains a shadow of the VM’s memory-management
data structure to directly translate GVA to HPA.

3.2.2 Shadow paging

The overall design of shadow paging shown in Figure 4.
When the hardware Prefetch Abort (PABT) trap or Data
Abort (DABT) trap is caught by the ARMvisor, the trap
will be handled following the shadow paging mecha-
nism. The first step is to obtain the mapping informa-
tion of the trapped GVA by walking through the guest
page table. If the mapping does not exist, ARMvisor
will deliver a true translation fault to guest. Otherwise,
ARMvisor will translate the GVA to GPA and will check
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whether the access permission is allowed by interpret-
ing the guest page table entries. If the memory access
is illegal, ARMvisor will inject a true permission fault.
When first two steps are finished and no true guest fault
is generated, the trap would be handled as a certain hid-
den faults such as MMIO emulation fault, hidden trans-
lation fault or hidden protection fault in the following
steps. MMIO access checker will examine whether the
accessed memory region is located in the guest I/O ad-
dress space. If it is a MMIO access, the trap will be han-
dled by the I/O emulation model in QEMU. Otherwise,
the trap is forwarded to the last two steps with respect to
shadow page table (SPT) mapping and update.

Modern ARM processors use hardware-defined page ta-
bles to map virtual address space to physical address
space. The translation table held in main memory has
two levels: the first-level table holds section, super sec-
tion translations and pointers to second-level tables. The
second-level table holds large and small page transla-
tions. Four types of mapping size are defined as super-
section (16MB), section (4MB), large page (64KB) and
small page (4KB). For each guest page table (GPT) of
guest process, ARMvisor will allocate one SPT to map
it. All of the SPTs are cached and are searched while
switching guest processes. Initially, the SPT loaded
into host translation table base register (TTBR) is empty
when running guest. As a result, any memory access
will trigger a hidden translation fault. The fault GVA
is used by ARMvisor to walk through the current first-
level SPT and second-level SPT to fill new entries for
the translation miss. The filled entries contain the map-
ping to host physical memory and the permission setting
in guest’s page table. ARMvisor will restore the execu-
tion context of the trapped instruction afterwards, then
the memory access will natively be handled by the host
MMU. Generally, the maintenance of SPTs has two con-
siderations: One is how to emulate guest’s permission
under de-privileged mode; the other is how to keep the
coherence between GPTs and SPTs. They will be ex-
plained in the next two subsections.

3.2.3 Permission model & Synchronization model

In the ARMv6 architecture, access to a memory region
is controlled by the current processor mode, access do-
main and access permission bits. The current processor
mode will be either non-privileged mode (User mode)

APX:AP[1:0] Privileged mode User mode
0:00 NA NA
0:01 RW NA
0:10 RW RO
0:11 RW RW
1:01 RO NA
1:10 RO RO

Table 3: The encoding of permission bits

or privileged modes (FIQ, IRQ, Supervisor, Abort, Un-
defined and System modes). The type of access domain
is specified by means of a domain field of the page table
entry and a Domain Access Control Register (DACR).
Three kinds of domain access are supported: The type
of NA (No access) will generate a domain fault for any
memory access. The type of Client will check access
permission bits to guard any memory access. The type
of Manager will not check any permission, so no per-
mission fault can be generated. The access permission
bits are encoded in the page table entries with several
fields, APX, AP, and XN. Table 3 shows the encoding of
the access permissions by APX and AP. The XN bit acts
as an additional permission check. If set to 1, the mem-
ory region is not executable. Otherwise, if XN clear to
0, code can execute from the memory region.

Guest OS will use the permission model to separate
kernel space from user spaces. Any user process can
only access its user space. Access to kernel space or
other user spaces is not allowed. Additionally, guest
OS may use Copy-On-Write mechanism to speed up
the process creation. Hence, hypervisor is obliged to
maintain the equivalent memory access permission to
reflect the desired guest behavior correctly. However,
fully virtualizing guest’s access permission is difficult
since guest is executed in de-privileged mode for secu-
rity issues. For example, once the permission of a mem-
ory region is set as (RW, NA) by guest OS, it means
the memory region can be arbitrarily accessed in the
guest kernel mode, while the access is forbidden in the
guest user mode. In such case, since guest is physically
executed in ARM’s non-privilege mode (user mode),
the access permission is remapped to RW/RW to em-
ulate the exact memory access behavior in virtual privi-
lege mode. Therefore, a thorough flush of SPTs is re-
quired for any mode switch between virtual privilege
and non-privilege level because the access permission
set in SPT differs based on the virtual privilege level
of guest. Moreover, LDRBT/LDRT/STRBT/STRT in-
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GPT GPT SPT SPT
Privilege User Privilege User

mode mode mode mode
NA NA NA NA
RW NA RW RW
RW RO RW RW
RW RW RW RW
PO NA RO RO
RO RO RO RO

Table 4: Access Permission bits remapping in Shadow
Page Table for kernel space region

structions must be treated as sensitive instructions since
they access memory with user permission while the pro-
cessor is in the privileged mode. Trapping each of these
instructions results to huge slowdown in program execu-
tion, since they are frequent used by operating system to
copy data from/to user space. Previous work [1] actually
proposed a memory access permission model using per-
mission remapping mechanism in SPT mentioned above
and suffered great performance loss due to large amount
of SPT flush and sensitive instruction traps.

In view of cutting down the overhead results from per-
mission transformation, we proposed a methodology
called double shadow paging in ARMvisor. We allo-
cate two SPTs for one corresponding GPT: kernel SPT
(K-SPT) and user SPT (U-SPT). Whenever translation
misses occur, each newly allocated entry which maps
the kernel space region in K-SPT is translated from GPT
entry by ARMvisor to emulate guest’s privilege level
access, while entries in U-SPT have the same permis-
sion as in GPT. Table 4 demonstrates mapping of the ac-
cess permission bits in kernel space region from GPT to
SPT. ARMvisor loads either K-SPT or U-SPT to ARM’s
TTBR (Translation Table Base Register) depending on
whether the virtual CPU mode it is switching to is priv-
ileged or non-privileged.

The mechanism of double shadow paging eliminates the
need for SPT flushing after virtual mode switch, as was
required in the previous single-table permission remap-
ping methodology. However, the maintenance of double
PTs adds complexity to the design of the synchroniza-
tion model for GPT and SPT for shadow paging mech-
anism in ARMvisor. Memory usage in the system will
also grow since more pages are allocated as first/second
level of U-SPT/K-SPT during the lifecycle of a process
comparing with the single SPT model.

GUD GKD
Virtual User Space Client No access

Virtual Kernel Space Client Client

Table 5: Domain configuration in Shadow Page Table

To reduce memory usage in the double shadow pag-
ing model, we utilize ARM’s Domain control mecha-
nism and map one GPT to only one SPT. Permission
bits of the SPT entries that map to kernel space region
are translated by ARMvisor as in the double shadow
paging model. However, the Domain Access Control
Register (DACR) is configured by ARMvisor to reflect
the same protection level on the corresponding SPT. Ta-
ble 5 lists the Domain configuration of ARMvisor. GUD
and GKD represent the domain bits of SPT that maps to
“Guest User space” and “Guest Kernel space” respec-
tively. In Virtual User Space, GUD is set as client and
GKD is set as No access to protect the guest kernel space
from invalid access by its user space. In the Virtual Ker-
nel Space region, both GUD and GKD are set as client.
DACR is modified by ARMvisor for events that involve
in virtual CPU mode switch such as system call, inter-
rupts and return to user space.

ARMvisor uses memory trace to maintain the coherence
between GPT and SPT. Once a SPT is allocated to map
a GPT, the memory page of this GPT is write protected.
This allows ARMvisor to determine when the guest OS
tries to modify the GPT entries. The synchronization
model is implemented by using a RMAP data structure
which records the reverse mapping from guest physical
pages to SPT entries. When a guest physical page is
identified as GPT, the SPT entries pointing to the page
will have their write permission bits disabled. There-
fore, later modification of GPT will trigger a protection
fault and ARMvisor will update the SPT to prevent it
from becoming inconsistent with GPT.

3.2.4 Virtual MMU emulation

Other than guest physical memory allocation and
shadow paging mechanism, ARMvisor must emulate a
virtual MMU for guest OS to access. The ARM proces-
sor provides coprocessor, CP15, to control the behav-
ior of MMU. The controls include enabling/disabling
MMU, reloading TTBR, resetting Domain register, ac-
cessing FSR/FAR, changing ASID as well as operating
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Cache and TLB. All of them are handled in the memory
virtualization.

4 Cost model

In a virtualized environment, guest applications and op-
erating systems inevitably suffer certain degree of per-
formance degradation, which correlates to the design of
hypervisor. For hypervisor developers, it is crucial to
have a cost model to assist them on analyzing perfor-
mance bottlenecks before adopting optimization. In this
section, we will propose a cost model to formulate hy-
pervisor overheads so as to discover the deficiencies of
hypervisor.

The cost model defines Guest Performance Ratio (GPR)
to evaluate a hypervisor design. As shown in (1), GPR is
defined as the ratio of the execution time for an applica-
tion running natively on the host (Thost) versus the time
taken in the virtual machine (Tguest). The range of values
is 0 < GPR <= 1. Theoretically, Tguest is greater than or
equal to Thost . If GPR is close to 1, this means the guest
application runs in native speed. Otherwise, if GPR is
close to 0, this means the guest application suffer huge
overheads from virtualization.

GPR = Thost/Tguest (1)

In (2), Tguest is divided into two parts: Tnative represents
the instruction streams of a guest application, which can
be natively executed on the host, while Tvirt represents
the virtualization overheads. In practice, the value of
Tnative s usually constant and relats to the type of guest
application. Meanwhile, the value of Tvirt is related to
both guest application type and hypervisor design. For
example, in matrix manipulation applications, most time
is spent on non-sensitive instructions, and as a result,
the value of Tnative is close to Tguest . If the application
has many sensitive instructions, the value of Tvirt will be
higher.

Tguest = Tnative +Tvirt (2)

Developers will optimize the Tvirt which is decomposed
into five parts, as shown in 3.

Tvirt = Tcpu +Tmem +Tsuspend +Tidle + ε (3)

The components are described as follows.

Tcpu represents the cost of emulating sensitive instruc-
tions and exception generating instructions, such as
software interrupt. It can be formed as following
formula:

Tcpu = ∑Cs(i) ·Tinst(i)+∑Ce( j) ·Texcpt( j)

Tmem represents memory virtualization overheads in-
cluding emulating guest memory abort, handling
shadow paging, and maintaining consistency be-
tween guest page table and shadow page table. It
can be formed as following formula:

Tmem =Cm(0) ·Tabt +Cm(1) ·Tshadow +Cm(2) ·Tsync

Tio represents the cost of I/O virtualization, including
memory mapped I/O and port mapped I/O. Both
are emulated using the device model provided by
the hypervisor. It can be formed as following for-
mula:

Tio = ∑Ca(i) ·Tmmio(i)+∑Cb( j) ·Tportio( j)

Tsuspend represents time during which the guest is tem-
porally suspended by the hypervisor. For example,
when an interrupt is coming, guest is trapped into
hypervisor, and then hypervisor will handle this in-
terrupt by its ISR. Switching to other virtual ma-
chines or host thread, the running guest will be sus-
pended for a while.

ε is used to represent as the side effect from virtual-
ization. For instance, cache or TLB flushing may
cause guest application suffer the penalty of cache
miss or TLB miss.

According to the cost model, we can figure out the opti-
mization approaches in three directions:

1. Reducing the virtualization trap counts: try to re-
duce Cs, Ce, Cm, Ca, Cb variables

2. Reduce the emulation time : try to reduce Tinst ,
Texcpt , Tabt , Tmiss, Tsync, Tmmio, Tportio, Tsuspend , ε

3. Changing virtualization model by paravirtualiza-
tion or hardware assist. This can eliminate some
variables.

In the following section, we will follow these guidelines
to optimize the CPU and Memory virtualization. For
CPU virtualization, we proposed Shadow Register file
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(SRF) to reduce traps from sensitive instructions. Addi-
tionally, Fast Instruction Trap (FIT) is used to reduce the
emulation time of some sensitive instructions. In virtu-
alizing ARM’s MMU, we use paravirtualization tech-
nique to eliminate the synchronization overhead; this
will be further illustrated in later sections.

5 Optimization

5.1 CPU Optimization

Frequent lightweight traps for instruction emulation re-
sult in significant performance loss of the guest sys-
tem. As a result, software techniques are important to
minimize the frequency of “trap and emulation” count
for sensitive instructions. Beside the lightweight and
heavyweight traps mentioned before, two abstractions
Direct Register File Access (DRFA) and Fast Instruc-
tion Trap (FIT) are proposed to accelerate the proce-
dure of instruction emulation and reduce the overhead
in CPU virtualization. The optimizing results showed
great promise and will be demonstrated in later section.

We proposed Shadow Register File (SRF), which maps
virtual CPU shadow states of the Register File into a
memory region accessible by both the VMM and guest
with read/write permission. Rather than unconditionally
trapping on every sensitive instruction, DRFA speeds up
the execution by replacing SWIs and sensitive instruc-
tions with a sequence of load or store instructions that
access the SRF in guest address space. The methodol-
ogy can be applied to instructions that only read or write
the SRF and do not need privilege permission for sub-
sequent emulation. Furthermore, VMM security is en-
sured because the SRF contains only the virtual state of
guest, which if corrupted, would not affect the operation
of the VMM.

Currently, DRFA is successfully employed to read
and write the ARM PSR (Program Status Register),
LDM/STM (2) and CP15 c1, c5 and c6 access in ARM-
visor. To illustrate, pseudo-code for replacing a mcr
instruction with DRFA is shown in Figure 5. The in-
struction is substituted by loading and effectively modi-
fying the register copy in SRF to ensure the desired ac-
tion. However, since SRF only contains subset of the
VCPU state, it must be coherent with the VCPU Regis-
ter File copy which ARMvisor acknowledges and with-
out which the guest system’s behavior would be unpre-

Figure 5: Shared memory mapping between KVM and
Guest

dictable. In fact, to reduce cost of keeping them coher-
ent, the synchronization is only held on demand and the
overhead is actually low.

Unlike the previous instructions which can be replaced
with DRFA, there are other instructions which require
extra emulation and which must be finished in privileged
mode. As mentioned in Section 3.1.1, several sensitive
instructions that relate to ARM co-processor operations
(including cache operations) require higher privilege for
correct emulation. Vowing to simplify the emulation
path for such cases, we replaced those instructions with
Fast Instruction Trap (FIT). This consists of a series of
pre-defined macros which encode information of the re-
placed instructions. ARMvisor’s FIT handler is actu-
ally mapped in guest address space in high memory sec-
tions because the decoding process of instructions em-
ulation is not necessary for FIT’s. Thus, in contrast to
Lightweight instruction traps, the emulation overhead of
FIT is considerably lower since instructions can be han-
dled without a context switch to ARMvisor.

5.2 Memory Optimization

To reduce the overhead of memory virtualization, ARM-
visor paravirtualizes the guest operating system to sup-
port shadow paging. We found that many protection
faults happened during guest process creation when ap-
plying the synchronization model mentioned previously
to ARMvisor. Second-level guest page table is usually
modified by guest OS for Copy-On-Write or remapping
usage. After analyzing such behavior in detail, we sim-
ply add two hyper-calls in the guest source code to hint
ARMvisor that modifications of second-level GPT were
made by guest OS. One hyper-call is added as the guest
OS sets the page table entry; the other one is added to
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Device Description
CPU ARM Cortex-A8

CPU Clock Frequency 720 MHz
Cache hierarchy 16KB of L1-Instruction Cache

16KB ofL1-Data Cache
256KB of L2 Unified cache

RAM 256MB
Board TI BeagleBoard

Table 6: Hardware configuration

notify ARMvisor when guest OS frees a second-level
page table. These notifications will free the synchro-
nization overhead for guest second-level page tables.

6 Evaluation

We currently support ARMv7 for host and ARMv6 for
guest. For the host, we used ARM TI BeagleBoard with
ARM Cortex-A8 as our platform. The detailed hard-
ware configuration is showen in Table 6. The software
parts consists of the ARMvisor (Linux 2.6.32), QEMU-
ARM (0.11.1) as well as para-virtualized Guest (Linux
2.6.31.5). In the guest, we use Realview-eb ARM11 as
our hardware environment for guest OS.

To demonstrate the overhead of virtualization on ARM-
visor, we first measured the slowdown of ARMvisor
compared with native performance when running the
micro-benchmarks LMBench [11]. Then we analyze the
overhead in depth by an internal profiling tool and we
develop a trap cost model to explain what other over-
heads exist. Finally, groups of application benchmarks
will also be evaluated the performance of ARMvisor.

6.1 Profiling counter

Table 7 shows the trap counts when executing a simple
program in the guest that does nothing but returned im-
mediately. Column kvm_orig shows trap counts with-
out CPU and Memory optimization, while in column
kvm_opt column all optimizations are enabled. This
do-nothing program actually measures the overhead of
process creation. During the procedure of fork and
exec, page tables are modified frequently for mapping
libraries or data into the address space. Common Oper-
ating Systems use Demand Paging to manage the mem-
ory usage. Nonetheless, the approach generates great
overhead in Memory Virtualization due to the design of

kvm_orig kvm_opt
sen_inst_trap 12825 813

irq 6 3
fast_trap 5034 5562
dat_trans 1301 25
protection 299 0

mmio 95 56
Dabt_true 178 186
Pabt_kvm 758 6

(inst_trans)
Pabt_true 106 106
mem_pv 0 714

Total_trap 20602 7471

Table 7: Profiling count for nothing

our page table synchronization model. In our synchro-
nization model, the same page table is repeatedly being
modified when forking and loading program for execu-
tion. Since we write-protect the page table when the cor-
responding shadow page table is found, repeated filling
of entries in the page table generates consequent permis-
sion fault, and causes the corresponding shadow page
being zapped often. We provide a solution to such use
case by adding hyper-calls for page table modification.
Page table protection traps disappear because the syn-
chronization model is not necessary anymore. Further-
more, the subsequent page fault is eliminated since we
map the memory address in shadow page in the hyper-
call for page table entry modification before the guest
accesses the page.

As illustrated above, kvm_opt has far less sensitive in-
struction traps since abundant portion of traps were re-
placed with direct access to SRF in the guest address
space. On the other hand, the translation misses for both
data and instruction access are reduced tremendously in
kvm_opt, since we map the corresponding memory ad-
dress in shadow page table when the hyper-call for guest
page table modification is triggered. The protection trap
count for page table modification also comes down to
zero since any attempts by guests to modify the sec-
ond level page table is acknowledged by KVM through
hyper-calls and the protection model is removed. Even
hyper-calls for guest page table set/free introduce cer-
tain overhead to the system; the total trap count of Mem-
ory Virtualization does decline enormously. In conclu-
sion, after the optimization in CPU and Memory Virtu-
alization are applied, the total trap count is only about
36% compared to original version.
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Figure 6: Ratio of performance slowdown on LMBench

6.2 LMBench

To evaluate the performance when applying different
optimization on ARMvisor in guest system’s basic op-
eration, LMBench is measured to help us understand
the bottleneck of our current design. LMBench con-
tains suites of benchmarks that are designed to measure
numerous system operations such as system call, IPC,
process creation and signal handling. We refer to the
paper [12] to choose sets of benchmarks in LMBench
and measured them in various environments and com-
pare them with native performance.

Figure 6 presents the ratio of slowdown on 3 different
extensions of features comparing to native Linux kernel.
The simple version means no optimization applied in the
ARMvisor, all sensitive instructions will be trapped into
hypervisor and the guest OS does not inform ARMvisor
for creating or modifying a page table so hypervisor
needs to trace the guest page table. The cpu-opt ver-
sion improves the performance of ARMvisor in three
aspects: firstly it use SRF technique to reduce the trap
overheads from several sensitive instructions for instruc-
tions as MSR, MRS and CPS. Secondly, it uses binary
translation to change guest TLB/Cache operations on-
the-fly. All of the TLB operations are translated into
NOP operations since the guest no longer needs to main-
tain hardware TLB, and the hypervisor will assist the
guest to maintain TLB according to the shadow page
tables. And finally, the overhead of exception/interrupt
handling in guest OS is reduced by finishing the com-

bination logic of guest code in ARMvisror to largely
reduce the traps of critical instructions. The full-opt
version further comprise the memory para-virtualization
which uses hyper-calls to inform ARMvisor about guest
page table modification and finalization, and ises SWI
fast trap to reduce the memory tracing overhead and
SWI delivery overhead.

As can be seen in Figure 6, system call and signal han-
dling related benchmarks suffer great performance loss
in ARMvisor. Performance slowdown is less signif-
icant in lat_select benchmark, typically when the
number of selected fd increases since the accounted
time portion for native execution increases. Nonethe-
less, the slowdown still reaches 30 times when select-
ing 10 files. After measuring those benchmarks using
the proposed cost model, we figured that the perfor-
mance gap could be mainly attributed to the frequent
lightweight traps for instruction emulation during the
execution path. Each trap includes a pair of context
switches between guest and VMM, which is time con-
suming. Decoding individual sensitive instructions for
correct emulation also generate latencies for the total ex-
ecution. Moreover, since the SWI exception is indirectly
generated by ARMvisor’s virtual exception emulator,
the cost of exception delivery adds additional slowdown
to the system call operation. However, after applying
CPU-opt in ARMvisor, performance improves largely
since the times of lightweight trap for instruction em-
ulations reduces. Mem-opt hardly contributes any per-
formance improvement for system call and signal han-
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Figure 7: Ratio of performance improvement on LMBench

dling since those operations also would not require large
amounts of page table modification. Figure 7 demon-
strates that All-opt improves benchmarks’ performance
in categories of system call, signal handling and select
approximately over 80% on average.

The All-opt version has less profound improvements
in IPC related benchmarks including lat_pipe and
lat_unix. According to our profiling results, I/O ac-
cess rate in IPC operation is much higher contrast to
the three types of benchmarks mentioned above. The
behaviors are quite different in pipe and Unix Socket
operation. In the scenario of communicating through
pipe, the guest kernel scheduler is often called to switch
the process for inter-process message sending and re-
ceiving. Linux Kernel scheduler fetches hardware clock
counter as TSC (Time Stamp Counter) for updating
the run queue reference clock for its scheduling policy.
Since we currently focus on minimizing CPU and Mem-
ory virtualization overhead, All-opt improve less signif-
icantly in pipe operation, since the overhead results in
frequent heavyweight traps exists for I/O emulation.

Process creation benchmarks like lat_procfork, lat_
procexec and lat_procshell have similar behavior
as the do-nothing program. As previously mentioned,
synchronization for page tables in Memory Virtualiza-
tion results in considerably larger overhead for process
operations than in the other benchmarks. As shown in
Figure 7, the performance of process creation operation
improves about 45% on average in Mem-opt solely.

Benchmark lat_pagefault tests the latency of page

fault handling in operating system. Even though we map
the page in shadow on the PTE write hyper-calls to pre-
vent further translation miss; performance improvement
in Mem-opt is smaller than in process creation bench-
marks. Profiling by our cost model, we found that sen-
sitive instruction traps account for larger proportion of
total traps than those of process creation. As a result, the
optimization for CPU virtualization has more notable ef-
fect on performance improvement.

7 Conclusion and future works

In this paper, we investigated the challenges of con-
structing virtualization environments for embedded sys-
tems by the implementation of an ARM based hypervi-
sor, ARMvisor. ARMvisor assumes that ARM proces-
sor has no hardware virtualization extension. The exper-
imental results show that ARMvisor suffers huge perfor-
mance degradation when techniques such as trap-and-
emulation and shadow paging are being adopted. As a
result, we formulized a cost model for discovering the
performance bottlenecks of hypervisor in depth. Fur-
thermore, based on the cost model, several optimization
methodologies are proposed to reduce the overheads
of CPU and Memory virtualization. The experimen-
tal results have shown leaping performance improve-
ment with up to 4.65 times speedup in average on LM-
Bench by comparing with our original design. We con-
clude that to virtualize embedded ARM platforms with-
out hardware virtualization extension in current archi-
tecture, the cost model is crucial to assist developers to
further optimize their hypervisors.
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