Taking Linux Filesystems to the Space Age: Space Maps in Ext4

Saurabh Kadekodi
Spring Computing Pvt. Ltd.

saurabhkadekodi@gmail.com

Abstract

With the ever increasing filesystem sizes, there is a
constant need for faster filesystem access. A vital re-
quirement to achieve this is efficient filesystem metadata
management.

The bitmap technique currently used to manage free
space in Ext4 is faced by scalability challenges owing to
this exponential increase. This has led us to re-examine
the available choices and explore a radically different
design of managing free space called Space Maps.

This paper describes the design and implementation of
space maps in Ext4. The paper also highlights the limi-
tations of bitmaps and does a comparative study of how
space maps fare against them. In space maps, free space
is represented by extent based red-black trees and logs.
The design of space maps makes the free space informa-
tion of the filesystem extremely compact allowing it to
be stored in main memory at all times. This significantly
reduces the long, random seeks on the disk that were
required for updating the metadata. Likewise, analo-
gous on-disk structures and their interaction with the
in-memory space maps ensure that filesystem integrity
is maintained. Since seeks are the bottleneck as far as
filesystem performance is concerned, their extensive re-
duction leads to faster filesystem operations. Apart from
the allocation/deallocation improvements, the log based
design of Space Maps helps reduce fragmentation at the
filesystem level itself. Space Maps uplift the perfor-
mance of the filesystem and keep the metadata manage-
ment in tune with the highly scalable Ext4.

1 Introduction

Since linux kernel 2.6.28, Ext4 has been included in the
mainstream and has become the default filesystem with
most distributions. In a very short span of time, it has

Shweta Jain
Clogeny Technologies Pvt. Ltd.

atewhs.jain@gmail.com

grown in popularity as well as stability. Over its prede-
cessor Ext3, Ext4 brings many new features like scala-
bility, delayed allocation, multiple-block allocation, im-
proved timestamps[1] among others. One of its most
important features is its use of extents.

1.1 Impact of extents

An extent is a combination of two integers, the first is
the start block number and the second is the number of
contiguous physical blocks ahead of the start block.

Start
block no.

Length

Figure 1: Extent

Inodes in Ext4 no longer use the indirect block mapping
scheme. Instead they have extents which are used to
denote range of contiguous physical blocks owned by a
file. Huge files are split into several extents. Four ex-
tents can be stored in the Ext4 inode structure directly
and if more extents are required (eg. in case of very
large, highly fragmented or sparse files) they are stored
on disk in the form of an Htree. Extents offer multi-
ple advantages. With extents, the amount of metadata to
be written to describe contiguous blocks is much lesser
than that required by the double/triple indirect mapping
scheme. This results in improved performance for se-
quential read/writes. They also greatly reduce the time
to truncate a file as also the CPU usage[2]. Moreover,
extents encourage continuous layouts on the disk, re-
sulting in lesser fragmentation[4]. Extents have been
shown to bring about a 25% throughput gain in large se-
quential I/O workloads when compared with Ext3. Tests
conducted using the Postmark benchmark, which simu-
lates a mail server, with creation and deletion of a large

o 121 o

122 e Taking Linux Filesystems to the Space Age: Space Maps in Ext4

number of small to medium files also showed similar
performance gain[2][10].

The crux of features like delayed allocation and persis-
tent preallocation is the extent. Preallocation deals with
pre-allocating/reserving contiguous disk blocks for a file
without actually writing to them immediately. Due to
this, the file remains in a more contiguous state, enhanc-
ing the read performance of the filesystem. Moreover,
it also helps in reducing fragmentation to a great extent.
With preallocation, the applications are assured that they
will always get the space they need, avoiding situations
where the filesystem gets full in the middle of an impor-
tant operation[4].

With delayed allocation, block allocations are post-
poned to page flush time, rather than writing them to
disk immediately. As a result there are no block alloca-
tions for short lived files, and several individual block
allocation requests can be clubbed into one request[2].
Since the exact number of blocks required are known
at flush time, the allocator tends to assign a contiguous
chunk rather than satisfy short term needs, which prob-
ably would have split the file.

1.2 Extents in free space management

Ext4 also introduced extents in its free space manage-
ment technique. To avoid changing the on-disk layout,
extents were maintained only in-memory, eventually re-
lying on the on-disk bitmap blocks. One of the problems
faced by the Ext3 block allocator, which allocated one
block at a time, was that it did not perform well for high
speed sequential writes[5]. Alex Tomas addressed this
problem and implemented mballoc - the multiple block
allocator. Mballoc uses the classic buddy data structure.

Whenever a process requests for blocks, the allocator
refers the bitmap to find if the goal block is available
or not. After this point is where the traditional balloc
and mballoc differ. Balloc would have returned the sta-
tus of just one block and this would have continued for
every block that the process requires. Mballoc, on the
other hand constructs a buddy data structure as soon as
it fetches the bitmap in memory. Buddy is simply an
array of metadata, where each entry describes the status
of a cluster of nth power of 2 blocks, classified as free
or in use[5]. After the allocator confirms the availability
of the goal block from the bitmap, it refers the buddy to
find the free extent length starting from the goal block,

and if found, returns the extent to the requesting pro-
cess. In case the extent is not of appropriate length, the
allocator continues to search for the best suitable extent.
If after searching for a stipulated time, a larger extent is
not found, then mballoc returns the largest extent found
in that search.

Both, the bitmap and the buddy are maintained in the
page cache of an in-core inode[3]. Before flushing the
bitmap to disk, information from the buddy is reflected
in the bitmap and the buddy is discarded.

The bitmap and buddy combination enabled mballoc to
speed up the allocation process. The combination of de-
layed allocation and multiple block allocation have been
shown to significantly reduce CPU usage and improve
throughput on large I/O. Performance testing shows a
30% throughput gain for large sequential writes and 7%
to 10% improvement on small files (e.g., those seen in
mail-server-type workloads)[2]. The credit for this goes
to mballoc’s ability to report free space in the form of
extents. However, this mechanism still raises certain is-
sues:

1. Even though the buddy scheme of Ext4 is more
efficient at finding contiguous free space than the
bitmap-scanning scheme of Ext3, the overhead of
fetching and flushing bitmaps is still involved. Up-
dating the bitmaps in-memory is fast, seeking and
fetching them is the bottleneck.

2. Initializing the buddy bitmaps entails some cost[3].
Every time a bitmap is fetched into memory, there
is an extra overhead of constructing the buddy.

3. Usually, only one structure is used to define the free
space status of the filesystem. However in case of
mballoc, both the buddy and the bitmap are used.
Both these structures have to be updated on ev-
ery allocation/deallocation. This introduces redun-
dancy.

4. The buddy technique consumes twice the amount
of memory as compared to only bitmaps. Thus,
lesser number of bitmaps can reside in memory, re-
sulting in more seeks.

5. Whenever preallocation has to be discarded, there
is a comparison done between the buddy and the
on-disk bitmaps. The on-disk bitmaps need to be
referred to find out the exact chunk of space uti-
lized. This leads to even more seeks.

2010 Linux Symposium e 123

6. Finally, when a filesystem has significantly aged,
the buddy structure will be of little use as the avail-
able disk space may hardly be available contigu-
ously. In such cases we currently have to rely on
the primitive bitmap technique which is inefficient
and slow.

The above points clearly indicate that optimizations are
possible in the Ext4 block allocator. Something like an
in-memory list for more optimal free extent searching,
would further assist mballoc[3].

The underlying phenomenon of the success of extents, is
that the filesystem usually deals with blocks in chunks,
unlike inodes which are dealt with individually. Cre-
ation/deletion of files/directories mostly involves deal-
ing with chunk of blocks. It thus seems natural to repre-
sent their free space status, also in the form of chunks.
We take this idea further and explore a technique that is
based entirely on extents. This technique is called Space
Maps.

2 Design Details

In implementing this technique, there is a change to
Ext4’s on-disk layout. In Ext4 without space maps,
for 4K block size, each 128MB chunk is called a
blockgroup and each blockgroup has a bitmap. For
space maps, we have combined a number of such block
groups, amounting to 8GB space, calling it a metablock-
group, and each metablockgroup has a space map. The
8GB size is the default size of a metablockgroup for a
4K block size filesystem. The metablockgroup size is
tunable at mkfs time.

& 5] 5] 5]
£ Block group 1| € Block group 2 | | Block group 3 p+ €| Block group n
m m m m
lWith space maps
Q
2
§ Block group 1 Block group 2 | Block group 3 |+« Block group n
Q
2]

1 meta-blockgroup

Figure 2: Metablockgroup

A space map consists of a red-black tree and a log. The
nodes of the tree are extents of free space, sorted by off-

set and the log maintains records of recent allocations
and frees. The tree and the log together provide the free
space information.

Space Map
RB-Tree Log
1730 | 560 2350 | 100 F
P 0|20F
1020 | 320 2435 | 246
/ \ \ 760 | 150 A
301450 1500100 2800|200 | 500|260 F

Figure 3: Structure of space maps

Bitmaps have a linear relationship with the size of the
filesystem. This is not true with extent based tech-
niques. Their size changes dynamically depending on
the state of the filesystem. The tree has as many nodes
as there are number of free space fragments (holes) in
the metablockgroup. An experiment was conducted to
get an idea of the space required by the space maps.
E2freefrag|9] (a free space extent measuring utility) was
executed on a 12GB Ext3 partition which was more
than 90% full. Totalling the extents of various sizes,
there were in all 1175 extents. Ext3 is good at avoid-
ing fragmentation, but Ext4 is even better. Even then,
as a safe cut-off mark, let us assume 2000 fragments in
one metablockgroup i.e. 8GB, and calculate the space
required for space maps. Here, one space map would
require 2000 entries * 20 bytes per tree node entry = ap-
proximately only 40KB for the tree and let us keep aside
8KB for the log. Hence, space maps consume 48KB for
1 metablockgroup. This means that for an 8TB filesys-
tem, where bitmaps would have required 256MB, space
maps require merely 48MB i.e. only around 1/5th of the
space required for bitmaps. This significant reduction in
size enables space maps to reside entirely in memory at
all times. To find free space, the allocator has to refer
only the in memory structures and update them. This
eliminates the huge 1/O traffic from reading and writing
bitmaps, which resulted from the fact that only a limited
number could reside in memory at any given time.

The space maps are initialized at mkfs time. When the

124 e Taking Linux Filesystems to the Space Age: Space Maps in Ext4

filesystem is mounted, each space map is read into mem-
ory. They persist in memory for the duration that the
filesystem remains mounted. During this period they
keep their interaction with on-disk structures to a min-
imum, such that filesystem integrity is maintained. On
unmounting, space maps are flushed back to disk.

The detailed description of the tree and the log along
with a reasoning of why they are chosen is given below.

2.1 In-memory structures

2.1.1 Red black tree

The red black tree[7] of the space map, as described
above, consists of nodes which are extents of free space,
sorted by offset. The red black property of the tree helps
the tree adjust itself if it is skewing to any one side. This
limits the height of the tree making searches efficient.
The tree is the primary structure denoting the free spaces
in a particular metablockgroup, while log is a secondary
structure, temporarily noting recent operations.

Start
block no. | Length | rb_node ’
4 bytes 4 bytes 12 bytes

Figure 4: In-memory tree node

The tree node is 20 bytes in size. The start block num-
ber is relative to the first block of the metablockgroup
to which the space map belongs. Hence, just 4 bytes
suffice for the start block number and length fields.

2.1.2 Log

The log being an append-only structure, insertions to the
log are very fast. Thus all operations are initially noted
in the log, and then depending on their nature, they are
either reflected in the tree instantly or in a delayed man-
ner. The log assists the RB tree in maintaining a consis-
tent state of the filesystem. Another reason for choosing
the log is its ability to retain frees. In bitmaps, once the
requested deallocation was performed, the freed space
was forgotten. Due to this, an allocation following the
free would be searched completely independent of the

recently done free. This involved the tedious task of
searching the bitmaps again, possibly from a completely
different part of the platter. Moreover this also increased
the chances of holes in the filesystem. In such a situ-
ation, the log acts as a scratchpad noting the recently
done frees which can directly be used to satisfy the up-
coming allocation requests, if any. Additionally, as allo-
cations following frees fill up the recent frees from the
log itself they help reduce holes in the filesystem. The
working section along with an example will explain the
behaviour of the log in much more detail.

Start
block no. Length | Flags
4 bytes 4 bytes 1 byte

Figure 5: In-memory log entry

As each space map has a log, here too the start block
number is relative to the start of the metablockgroup.
The flags field is one byte with one of its bits denoting
the type of the operation viz. allocation or free. Thus, a
log entry is totally 9 bytes.

2.2 On-disk structures

2.2.1 Tree

For persistence across boots, the in-memory tree is
stored on disk as an array of extents. At mount time,
the extents from the on-disk tree are read to form the
in-memory tree. The on-disk tree is updated only under
two circumstances; when the filesystem is unmounting
or when the on-disk log gets full.

Start
block no. Length ’
4 bytes 4 bytes

Figure 6: On-disk tree node

As shown in the preceeding figure, one on-disk tree en-
try consists of just one extent. Its size is 8 bytes.

2.2.2 Log

To avoid inconsistency in case of a crash, the operations
noted in the in-memory log are also noted in the on-disk
log in a transactional manner. As the log is an append-
only structure only the last block of the on-disk log is
required in memory. The exact operation is discussed in
detail in the working of the technique.

Start
block no. Length | Flags
4 bytes 4 bytes 1 byte

Figure 8: On-disk log entry

Process Allocator

2010 Linux Symposium e 125

The on-disk log structure is same as that of the in-
memory log.

3 Working

3.1 Allocation

The first flowchart outlines the allocation procedure.
3.2 Deallocation

The second flowchart explains the process of freeing
space.

Log RB-tree

Issues command
to allocator

Y

Issues command
to search log

satisfied
by the log?

Sync log with
the tree

A

Search
the tree

A

Is space
available?

Make entry
in the log

v

Return
allocated space

Go to next
space map

[

Figure 7: Allocation flowchart

126 e Taking Linux Filesystems to the Space Age: Space Maps in Ext4

Process Allocator Log
Issues command
to free space
[
Issues command
to free space
L
Make log
entry

Figure 9: Free flowchart

The example below better illustrates the working of the
system:

e Consider a newly made filesystem. As explained
earlier, the log (left figure) is empty and the tree
(right figure) consists of a single node. For the sake
of this example, let us assume that a metablock-
group consists of 5000 blocks. The single node of
the tree indicates that the entire metablockgroup is

on-disk logs in a single transaction. Note that nei-
ther logs are synced with the trees immediately.

0[100 A 015000 |

free.
Figure 11: Second scenario
initial
-condition- e Now, suppose there is a request for allocation of
05000 ‘ 150 blocks. As there is no entry in the log that can
| satisfy the request, the tree has to be searched. But
since the tree does not reflect the updated state of

Figure 10: First scenario

e Suppose a process requests for 100 blocks. In this
case, the allocator first searches the in-memory log
of the goal metablockgroup for any recently done
free operations that can satisfy the request. Since
the log is empty, the tree is searched. Asitis able to
find a suitable extent, the process is allocated 100
blocks starting from, say, block number 0. Corre-
sponding entries are made in the in-memory and

the filesystem, we first need to sync the in-memory
log with the in-memory tree. The in-memory log
is then nullified. Here, the on-disk log is not syn-
chronized with the on-disk tree as it would result
in rewriting the entire on-disk tree. Writing the
entire tree to disk every time any operation takes
place would result in a lot of unnecessary writes
to the filesystem. The beauty of this design is that
as the on-disk structures are meant only to main-
tain space maps across boots, and are not referred
for any allocation/deallocation, it suffices to just
make a note of the operations somewhere on disk.
The log serves this purpose. Hence, only the last

2010 Linux Symposium e 127

block of the append-only on-disk log needs to be
in memory at all times to which we append en-
tries of operations. Assume that the allocator as-
signs 150 blocks starting from block number 450.
Entries in the logs are made accordingly. Even if
the in-memory structures and on-disk structures are
different, the in-memory log + in-memory tree =
on-disk log + on-disk tree; thus maintaining con-
sistency. If there is a crash at this point, replaying
the on-disk log onto the on-disk tree will give us
the exact state of the filesystem as it was before the
crash.

—DFBTA-

100 | 4900
450[150 A 1004900

Figure 12: Third scenario

e Another allocation request of 200 blocks is tackled
in a similar fashion.

100 | 350
45DHETA ﬁl |
égggggfi 600 | 4400

Figure 13: Fourth scenario

e Suppose now there is a request to free 150 blocks

starting from block number 650. For a free request,
ideally, there should be no need to search anything
at all. All that is required is that the free space man-
ager is informed about the blocks that are freed.
Here, the bitmap technique faces a problem. In
bitmaps, the specific bits of the particular bitmap
block (in whose block group the file resided) are
to be nullified. This causes a lot of seeks. This is
where the log plays its most important role. The
fastest way of informing space maps about a free
is simply appending an entry to the logs. That
is exactly what happens in space maps. So here,

only the logs are updated with the entry suggest-
ing that 150 blocks from block number 650 are
freed. This maintains perfect locality of appends
and results in very fast, virtually seekless opera-
tions. Furthermore, the deletion of a large, sparse
or fragmented file requires many bitmaps to reside
in memory. As against this, in space maps only the
last block of the on-disk log (to which the appends
are to be made) needs to be in memory. Hence, for
an 8GB metablockgroup, where in the worst case
(i.e. if the file/directory being deleted had occu-
pied blocks in all 64 block groups comprising that
metablockgroup) the bitmap technique would have
required fetching all 64 bitmap blocks in memory,
space maps require only 1 block (viz. the last block
of the on-disk log) in memory. This not only re-
duces the memory consumption but also speeds up
deallocation process.

100 | 350 |

650|150 F 600 | 4400 |

Figure 14: Fifth scenario

Suppose there is another request for 150 blocks. In
this case, the in-memory log does have a recent free
which can satisfy the request. The 150 blocks are
allocated from the log itself. This not only prevents
another sync with the tree and a scan of the whole
tree for an appropriate chunk, but also fills up a
hole, thereby reducing potential free space frag-
mentation. The two entries for allocation and free
are purged in the log itself.

600|200 A

650+80.F
650H50.A

100 | 350 |

600 | 4400

Figure 15: Sixth scenario

All further allocations and deallocations continue to

128 e Taking Linux Filesystems to the Space Age: Space Maps in Ext4

happen in the above-mentioned way.

Since logs are append-only, they can keep on filling in-
definitely. The log sizes cannot be kept infinite and thus
the design has to incorporate the handling of logs get-
ting filled up completely. Consider the following two
scenarios:

o In-memory log gets full. In this case, before the
next entry to the log is made, the log is synchro-
nized with the in-memory tree and nullified. Thus,
the filesystem is still consistent.

o On-disk log gets full. In this case, the in-memory
log is first synchronized with the in-memory tree.
The in-memory tree showing the then most up-to-
date condition of the filesystem overwrites the on-
disk tree. After this, both the logs are nullified.

4 Evaluation

Space maps were put to test using some standard bench-
marks. In the tests below, Ext4 (as of kernel 2.6.33.2)
is compared with Ext4 (of the same kernel version) with
space maps implemented. To really stress the alloca-
tor, the tests were conducted on a SOGB partition with
memory size as 384MB. Also the filesystem was made
with 1K block size to increase the number of bitmaps to
simulate the behaviour of large filesystems.

4.1 Small file handling using postmark

Postmark[10] is a tool that simulates the behaviour of
a web server, typically a mail server. Thus its tests in-
volves creation and deletion of a large number of small
files. In the test below, postmark was run 5 times. Each
time 100000 files were added to the previous test, start-
ing with 100000 files.

30T

100000 200000 300000 400000 500000

Number of small files
. Bitmaps

Figure 16: Graph of postmark

N
()]
t

N
o
t

Writes (_I\\/IB/sec)
S o

Space Maps

As predicted, better extents result in faster file writes.
There is a stark difference in the speed of allocation ini-
tially between space maps and bitmaps, but the differ-
ence gradually reduces as the number of files goes up.
Even then, at all times space maps allocation speed is
higher than that of bitmaps.

4.2 Simultaneous small file and large file creation

Mballoc has the ability to treat large and small files dif-
ferently. In order to stress mballoc, a test was conducted
in which 5 linux kernels were untarred in different di-
rectories and 5 movie files (typically in the range of
700MB) were copied simultaneously. Operations like
these jumble the allocator with large file and small file
requests at the same time. In such scenarios, mballoc
tends to make a lot of seeks. This is evident from the
results below. The following statistics were taken when
performing the tests on a newly made filesystem. The
tool used below to measure seek count is called seek-
watcher[8] by Chris Mason. It uses the output of the
blktrace[11] utility and constructs a graph with time on
the x-axis. It uses matplotlib to build the graphs.

Seeks / sec

Seeks / sec

Seeks / sec

Seeks / sec

Seek Count
160
120F - -7 - /- ----=- S G R CE
80F —-f AR - - --------- el i
R e e . L
0 ‘ ‘ ‘
0 25 50 75 100 125 150 175 201
Time (seconds)
Figure 17: Stress test seek comparison run 1
Seek Count
140 ; :
£ R R A T A e T
70F - /- ---\----- R A
35 === e N
% 33 66 100 133 166 200 233 266
Time (seconds)
Figure 18: Stress test seek comparison run 2
Seek Count
140 : :
105F - - --------- e T
T0F---------- e e
L M- o= - - - - - -
% 29 59 89 119 149 179 208 238
Time (seconds)
Figure 19: Stress test seek comparison run 3
Seek Count
140 :
105F - - - = A \-- - - - - -5 e
70F - -t - - ---- -k R
35F /= A R G
0 L L -
0 28 57 85 114 143 171 200 228

Time (seconds)

Figure 20: Stress test seek comparison run 4

2010 Linux Symposium e 129

Seek Count
140 ‘
19}
9 105 -~-~-~-----~-- e e e
g 70F---- Al e G S
b
9 35--Ax o LAAAALN M - — o m — - - - = = = = =
0 ‘ ‘ ‘ ‘
0 25 51 77 102 128 154 179 205

Time (seconds)

Figure 21: Stress test seek comparison run 5

The above test was conducted 5 times consequtively. As
clearly visible in all the operations the seek count when
allocation was done using space maps is less than half
of the seeks required by the Ext4 that used bitmaps.

4.3 Free space fragmentation using e2freefrag

The following test measures the number and size of the
fragments of free space in the filesystem. The test is just
an extension to the previously performed simultaneous
large and small file creation executed a total of 7 times.
Fragmentation was measured at the end of each itera-
tion. In Ext4 with bitmaps, we measure this attribute
with e2freefrag|9], whereas in Ext4 with space maps,
extents were nothing but the nodes of the trees. As clear
below, the number of free space fragments of the filesys-
tem go on reducing as the filesystem fills up. This is
because the nodes of the tree get filled very efficiently
resulting in lesser nodes, and thus lesser fragments.

Filesystem usage

13% 26% 39% 52% 64% 7% 89%

2001

180 1

or
80T
60 T
40T
20t
0 ' ' ' ' ' '
0 1 2 3 4 5 6 7

Number of runs of the test

. Bitmaps

=
N s O
o o

-
=)
S

Total number of free space fragments

o

Space maps

Figure 22: Graph of number of free space fragments

After having seen the number of fragments, let us have
a look at the nature of the fragments in terms of their

130 e Taking Linux Filesystems to the Space Age: Space Maps in Ext4

size. In general, the larger the extents of free space, the
more chances of a future file residing contiguously on
disk. The results show that even when the filesystem is
89% full, the extents of free space greater than 1GB are
around 74%, whereas in bitmaps it falls down drastically
to 36%. This confirms that the more extent oriented in-
formation is available, the more efficiently allocations
can be carried out with minimum free space fragmenta-
tion.

Filesystem usage

3% 26% 39% 52% 64% 7% 89%
1 2 3
Number of runs of the test

4 5
M Bitmaps

Percentage of free space extents
between 1GB and 2GB
o
o

i

Space maps

Figure 23: Graph of e2freefrag

4.4 File fragmentation using filefrag[12]

As stated earlier, the allocator tends to give better and
more contiguous space to files if it recieves better ex-
tents. The graph below completely supports the claim.
To measure the effects of file fragmentation, a test was
conducted which involved copying of large 1GB files to
a 10GB partition. The partition was made using the de-
fault flexible block group parameter of 16 block groups.
Even then, the average number of fragments shown by
files allocated using space maps are 1/5th of those allo-
cated using bitmaps.

Filesystem usage

24% 48% 2% 96%
1201

Average number of fragments of the file
=
= N W A U1 O N YO O
©O © © © © © © © © & o
+—t—t—t—t+—t+—t+—+—t+—t+—

o

1 2 3 4
Number of runs of the test
. Bitmaps Space maps

Figure 24: Graph of filefrag

5 Other benefits

e During mkfs, until the new uninitialized block
groups feature was incorporated, all the bitmaps
had to be invalidated to indicate that the entire
filesystem was free. With uninitialized block
groups you can now just set a field in the group de-
scriptors indicating that the bitmap for this block
group is invalid[2]. The actual bitmap block is
nullified only when it is about to be used. This
has significantly sped up the process of format-
ting Ext4. With space maps, the mkfs process
involves just the entry of 1 node per metablock-
group indicating that the entire metablockgroup is
free. This is as fast as the uninitilized block groups
feature if not faster, as there are lesser number of
metablockgroups than the group descriptors in a
filesystem. Along with that, this completely takes
care of marking the entire metablockgroup free as
against just the invalidation in the group descriptor.
So there is no extra operation required before using
the particular metablockgroup for the first time and
it is completely ready for usage.

o [f the filesystem is made with 1K block size, then
there are 16 times more bitmaps than the same
filesystem made with the default 4K block size.
Even in this case, as the space maps parameter for
size of metablockgroup is tunable, the number and
size of space maps can remain the same.

2010 Linux Symposium e 131

e Ext4 has done remarkably well to avoid fragmen-
tation mainly due to the use of persistent prealloca-
tion. Even though this is the case, when the inode
preallocation runs out of preallocated space, it may
have to place a part of the file at a different off-
set. While doing this, fast access to flexible extents
(extents not limited by block group size and/or not
just as powers of 2) of free space eases the job of
the allocator and results in lesser file fragments.

o Intelligent allocator heuristics will result in the re-
duction of the size of the tree as the filesystem goes
on filling up. This will in-turn increase the alloca-
tion speed as tree lookups will be faster.

6 Limitations

e Every time the filesystem is mounted, the on-disk
trees are read and the RB tree is constructed. This
is time consuming as compared with the current
bitmap technique as nothing has to be initialized
with respect to bitmaps. Also while umounting,
the trees have to again be traversed and stored onto
disk in the form of a list of extents. That too is more
time consuming as compared with the current sce-
nario.

o In cases of extreme fragmentation (say every alter-
nate disk block is empty) the memory consump-
tion due to space maps will be higher than that of
bitmaps.

7 Future enhancements

e One of the further optimizations could be the in-
telligent separation of the space maps based on file
sizes. If we have separate space maps for large and
small files, then the log entries in those space maps
(for frees) will be of similar nature. Thus more al-
location requests can be satified by the log itself
without having to rely on the tree. This will result
in maximum utilization of the log design.

e Another enhancement can be in designing a more
efficient log. Currently, the log is simply an array
of extents. Advanced data structures can enable
much faster lookups of the log, resulting in even
faster allocations/deallocations.

8 Related work

8.1 Space maps in ZFS

The concept of Space Maps is not new. ZFS, a solaris
filesystem, also has the idea of space maps but the mech-
anism of implementation varies. Each virtual device on
ZFS is divided into metaslabs, each having its own space
map. Metaslab of ZFS is analogous to the metablock-
group of Ext4. However, in case of ZFS, space map
is simply a log of allocations and frees as they happen.
Due to the use of the log, ZFS also benefits from the
perfect locality of appends. Appends are made for allo-
cations as well as frees.

Whenever the allocator wants to search for free space
in a particular metaslab, it reads its space map and re-
plays the allocations and frees into an in-memory AVL
tree of free space, sorted by offset. At this time, it also
purges any allocation-free pairs that cancel out. The on-
disk space map is then overwritten with this smaller, in-
memory version[6].

8.2 Comparison with space maps in Ext4

e In ZFS, space map is nothing but an on-disk log
of allocations and frees. Also, an AVL tree is used
which is the only in-memory structure. As against
this, the Ext4 implementation has an RB tree along
with an in-memory log helping reduce fragmenta-
tion and speed-up deallocations.

e Another difference is that the ZFS allocator has to
update the tree for each and every request whether
it is an allocation or a free. There can be cases
when the entire tree needs to be reshuffled often.
In a case where there are allocations following sev-
eral frees and if the allocations can be satisfied by
the recent frees, the Ext4 space maps can answer
the request from the in-memory log itself instead
of having to sync the tree time and again.

9 Conclusion

Space Maps demonstrate all the qualities essential for
supporting fast free space allocation and deallocation in
large filesystems common today. Finding free space can
now be done entirely in memory and requires very lit-
tle involvement of the disk. Space maps provide great

132 e Taking Linux Filesystems to the Space Age: Space Maps in Ext4

scalability and are proved to maintain filesystem consis-
tency. We believe that improvements in space maps will
further bring in optimizations and lift the current perfor-
mance of this technique even higher.

10 Acknowledgements

We wish to thank the following people for their contri-
butions; Ms. Pavneet Kaur, who shared her thoughts
during the development of space maps. Mr. Anuj
Kolekar who assisted during the testing phase. Mr.
Kalpak Shah, our mentor whose ideas and timely crit-
icism helped us bring this to fruition. Mr. Jeff Bonwick,
who laid the seed of the idea. Last, but not the least, we
wish to thank the anonymous reviewers, who patiently
read our paper and gave us valuable inputs which helped
make significant improvements in this paper.

References

[1] Mathur A., Cao M., Bhattacharya S., Dilger A.,
Tomas A and Viver L., The New ext4 filesystem:
current status and future plans. (2007) [Online]
Available: http://0ls.108.redhat.com/
2007/Reprints/mathur—-Reprint.pdf

[2] Avantika Mathur, Mingming Cao and Andreas
Dilger, ext4: the next generation of the ext3 file
system (2007) [Online] Available: http:
//www.usenix.org/publications/
login/2007-06/openpdfs/mathur.pdf

[3] Aneesh Kumar K.V, Mingming Cao, Jose R
Santos and Andreas Dilger, Ext4 block and inode
allocator improvements (2008) [Online]
Available: http://www.linuxsymposium.
org/archives/0OLS/Reprints—2008/
kumar—-reprint.pdf

[4] Ext4 (2010) [Online] Available:
http://kernelnewbies.org/Ext4

[S] Mingming Cao, et.al. State of the Art: Where we
are with the Ext3 filesystem (2005) [Online]
Available:
http://www.linuxsymposium.org/
2005/1inuxsymposium_procvl.pdf

[6] Jeff Bonwick, Space Maps (2007) [Online]
Available: http://blogs.sun.com/
bonwick/entry/space_maps

(7]

(8]

(9]

[10]

[11]

[12]

Rob Landley, Red-black tree Available: Linux
kernel documentation

Chris Mason, Seekwatcher [Online] Available:
http://oss.oracle.com/~mason/
seekwatcher

Rupesh Thakare, Andreas Dilger, Kalpak Shah,
e2freefrag [Online] Available: http:
//manpages.ubuntu.com/manpages/
lucid/en/man8/e2freefrag.8.html

Jeffrey Katcher, PostMark: A New File System
Benchmark [Online] Available: http:
//communities.netapp.com/servlet/
JiveServlet/download/2609-1551/
Katcher97-postmark—-netapp-tr3022.
pdf

Jens Axboe, Alan D. Brunelle and Nathan Scott,
blktrace User Guide [Online] Available: http:
//pdfedit.petricek.net/bt/file_

download.php?file_id=17&type=bug

Theodore Tso, filefrag Available: Linux kernel
documentation

Proceedings of the
Linux Symposium

July 13th—16th, 2010
Ottawa, Ontario
Canada

Conference Organizers

Andrew J. Hutton, Steamballoon, Inc., Linux Symposium,
Thin Lines Mountaineering

Programme Committee

Andrew J. Hutton, Linux Symposium
Martin Bligh, Google

James Bottomley, Novell

Dave Jones, Red Hat

Dirk Hohndel, Intel

Gerrit Huizenga, IBM

Matthew Wilson

Proceedings Committee

Robyn Bergeron

With thanks to
John W. Lockhart, Red Hat

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.

