Smack in Embedded Computing

Casey Schaufler
The Smack Project

casey@schaufler-ca.com

Abstract

Embedded computing devices are often called upon to
provide multiple functions using special purpose soft-
ware supplied by unrelated and sometimes mutually
hostile parties. These devices are then put into the
least well protected physical environment possible, your
pocket, and connected to an unprotected wireless net-
work.

This paper explores use of the Smack Linux Security
Module (LSM) as a tool for improving the security of
embedded devices with rich feature sets. The internet
enabled cell phone is used to identify application inter-
action issues and describe how they can be addressed
using Smack. The paper compares Smack-based solu-
tions to what would be required to approach the prob-
lems using other technologies.

1 Mandatory Access Control

Mandatory Access Control (MAC) refers to any mecha-
nism for restricting how a process is allowed to view or
manipulate storage objects that does not allow unprivi-
leged processes to change either their own access con-
trol state or the access control state of storage objects.
This differs from Discretionary Access Control (DAC)
in that a DAC mechanism, such as the traditional file
permission bits or POSIX access control lists, may allow
unprivileged processes to change their own access con-
trol state or that of storage objects. MAC is the mecha-
nism best suited to providing strong separation of sensi-
tive information while allowing controlled data sharing
and communications between processes that deal with
controlled data.

1.1 Alternatives To MAC

Isolation is easy. Sharing is hard.

Virtualization is currently getting the most attention of
all the mechanisms available for providing strong sep-
aration. It is also the most expensive scheme, short
of multiple instances of hardware, requiring additional
processor speed, memory, and storage to provide multi-
ple copies of the operating system. While sharing can be
done using virtual network interfaces and authenticating
application and system level protocols like NFS, it of-
fers no improvement over having those processes on the
same real machine. Further, there is no way to share IPC
objects such as memory segments and message queues.

Chroot jails also provide limited isolation. While the
filesystem name space can be broken up, the socket and
IPC name spaces remain shared. Data sharing can also
be achieved using a variety of mount options.

Mandatory Access Controls can isolate the IPC and net-
working name spaces as well as the filesystem name
space while still allowing for appropriate sharing.

1.2 Bell and LaPadula

Prior to the current era of enlightened MAC, the only
scheme available was the Bell and LaPadula sensitiv-
ity model. This model is a digital approximation of the
United States Department of Defense paper document
sensitivity policy. This model is fine for its intended
purpose, but scales neither upward for more sophisti-
cated polices nor downward to simpler ones. While it
is possible to implement interesting protections for em-
bedded systems using this scheme, ! the combination of
rigid access rules, the size of the implementations, and
the sometimes excessive price of the products offering
it prevented this model from ever gaining traction in the
embedded space.

'HP actually sold a B&L based email appliance for some time.

o 179 o



180 e Smack in Embedded Computing

1.3 Security Enhanced Linux - SELinux

Security Enhanced Linux, or SELinux for short, is a
security infrastructure that provides type enforcement,
role based access control, Bell & LaPadula sensitivity,
and a mechanism to extend into future realms of secu-
rity management including, but not limited, to control
over the privilege scheme. SELinux associates a label
with each executable that identifies the security charac-
teristics of a process that invokes that program. The la-
bel applied to the process is influenced by the label of
the program, but the previous label of the process has an
impact as well. The access control decisions made by
SELinux are based on a policy, which is a description of
security transitions.

For an embedded system, SELinux has some draw-
backs. Because the label attached to a program file
impacts the security characteristics of the process, pro-
grams like busybox that perform multiple functions de-
pending on their invocation have to be given all the
rights any of its functions may require. The policy must
be programmed to take into account the behavior of
the applications, making it difficult to incorporate third
party programs. The policy can be large, in excess of
800,000 lines for the Fedora distribution, with a signifi-
cant filesystem data footprint as well as substantial ker-
nel memory impact. If the policy changes, for example
to accommodate a program being added to the system,
it may require that the entire filesystem be relabeled and
the policy be reloaded into the kernel. Finally, SELinux
requires that the filesystem support extended attributes,
a feature that can add cost to the system.

2 Smack

The Simplified Mandatory Access Control Kernel
(Smack, as a name not an acronym) implements a gen-
eral MAC scheme based on labels that are attached to
tasks and storage objects. The labels are NULL termi-
nated character strings, limited somewhat arbitrarily to
23 characters. The only operation that is carried out on
these labels is comparison for equality.

Unless an explicit exception has been made, a task can
access an object if and only if their labels match. There
is a small set of predefined system labels for which ex-
plicit exceptions have already been defined. A system
can be configured to allow other exceptions to suit any
number of scenarios.

Unlike SELinux, which bases the label that a task runs
with on the label of the program being run, Smack takes
an approach more in line with that of the multilevel se-
cure systems of the late twentieth century and allows
only the explicit use of privilege as a mechanism for
changing the label on a task. This means that security
is a attribute of the task, not an attribute of the program.
This is an especially important distinction in an envi-
ronment that includes third party programs, programs
written in scripting languages, and environments where
a single program is used in very different ways, as is the
case with busybox.

The label given a new storage object will be the label
of the task that creates it, and only a privileged task can
change the label of an object. This is another behav-
ior that is consistent with multilevel secure systems and
different from SELinux, which labels files based on a
number of attributes that include the label of the task,
but also the label on the containing directory.

2.1 Access Rules

The Smack system defines a small set of labels that are
used for specific purposes and that have predefined ac-
cess rules. The rules are applied in this order:

* Pronounced star. The star label is given to a
limited set of objects that require universal access
but do not provide for information sharing, such as
/dev/null. A process with the star label is de-
nied access to all objects including those with the
star label. A process with any other label is allowed
access to an object with the star label.

e _ Pronounced floor. The floor label is the default
label for system processes and system files. Pro-
cesses with any label have read access to objects
with the floor label.

e ~ Pronounced hat. The hat label is given to pro-
cesses that need to read any object on the system.
Processes with the hat label are allowed read access
to all objects on the system.

o matching labels A process has access to an object
if the labels match.

o unmatched labels If there is an explicit access de-
fined for that combination of process and object la-
bels and it includes the access requested, access is



2008 Linux Symposium, Volume Two e 181

cardfs /card cardfs smackfsroot=ESPN, smackfsdefault=ESPN 0 O

Table 1: Mount Options Example

permitted. If there is an explicit access defined for
that combination of process and object labels and
it does not include the access requested or there is
no explicit definition, the access is denied.

2.2 Defining Access Rules

A Smack access rule consists of a subject label, an ob-
ject label, and the access mode desired. This triple is
written to / smack/load, which installs the rule in the
kernel.

2.3 Unlabeled Filesystems

As previously mentioned, not all of the filesystems
popular in embedded systems support the extended at-
tributes required to label each file individually. In some
cases, such as that of removable media, it is unreason-
able to trust the labels that would be on the filesystem
if it did support them. A reasonably common situa-
tion involves an embedded system with two filesystems,
one that contains all the system data and a second that
is devoted to user data and which may be removable.
Even if neither filesystem supports extended attributes
this is easily supported by Smack via filesystem mount
options. The mount options supported by Smack are:

o smackfsroot=label Specifies the label to be used
for the root of the filesystem.

o smackfsdefault=/abel Specifies the label to be
used for files that do not have labels stored in ex-
tended attributes. For filesystems that do not sup-
port extended attributes this will be all files on the
filesystem.

An easy way to isolate the system from applications that
use external data then is to run the applications with a
label other than the floor label and to mount the external
data at that label. An entry in /etc/fstab for this
might resemble Table 1.

The application running with the ESPN label can read
the system data and modify anything on /card. Should

the application run a program found on /card the pro-
cess will continue running with the ESPN label and will
have the same access.

2.4 Networking

Network based interprocess communications are far and
away the dominant mechanism for passing information
between processes. Smack imposes the same restric-
tions on writing information to another process as it does
writing information to a storage object. The general
rule is that the sending process and the receiving pro-
cess must have the same label. If an explicit rule allows
a process with the sender’s label to write to an object
with the receiver’s label then a message can be sent. For
UDP packets the sender need only have write access to
the receiver. For TCP connections both ends must have
write access to the other, but neither is required to have
read access.

2.5 Network Labeling

Network labeling is accomplished by adding a CIPSO
IP option that represents the sender’s label to the packet
header. With the label of the sender in hand an access
decision can be made at the time of delivery, when the
label of the receiver is known.

One label is designated the ambient label. All pack-
ets that have no CIPSO tag are given the ambient la-
bel. Symmetrically, packets created by processes run-
ning with the ambient label are not given CIPSO tags.

2.6 Sockets

Sockets are not themselves elements in the Smack secu-
rity model. Sockets are data structures associated with
processes, and can sometimes be shared. Socket at-
tributes can be set by privileged processes to associate
a particular label with outgoing packets and to change
the label used on incoming checks. The labels attached
to TCP connections and to individual UDP packets can
be fetched by server processes.



182 e Smack in Embedded Computing

3 Secure Embedded Systems

There are probably as many notions of what defines an
embedded system as there are of what defines system se-
curity. For the purposes of embedded systems security,
there is a specific set of characteristics that are interest-
ing.

An embedded system will usually be resource con-
strained. Processor power, storage size, and system
memory are only some of the things that can add cost
and that are subject to scrutiny and reduction where
possible. Security solutions that require significant ad-
ditional resources introduce cost and may even push a
product out of viability.

Embedded systems often do not have multiple users.
Google’s Android project assumes this to be universal
and co-opts the userid mechanism for program isolation.
Systems are designed around data flows or application
sets rather than providing general purpose user environ-
ments. They may also assume that programs have re-
stricted use patterns and limit security concerns to vari-
ations from those patterns.

Systems deployed in embedded environments are ex-
pected to function for extended periods of time without
modification or with as few as possible. It is important
to get the software and its configuration correct prior to
release as it may never have the opportunity to be re-
paired. Even those systems that can be repaired in the
field will usually require that changes be as few and as
small as is absolutely possible. A security scheme based
on regular updates to threat profiles would be inappro-
priate to a flight data recorder.

3.1 Filesystems

Embedded systems can have particularly sensitive
filesystem requirements. The devices that they use are
often slow and may have media with limits on the num-
ber of times it can be updated. They may also be limited
in the amount of data they can store. These characteris-
tics in particular encourage the use of filesystems that do
a minimum of physical accesses and that are optimized
for size in favor of functionality. Support for extended
attributes is often eschewed because the additional me-
dia space required, the increase in code size, and the
consequences of maintaining extended attributes on the
media make them unappealing for the environment.

3.2 Networking

Networking is important to embedded systems for inter-
process communications and external access.

Because IP protocols do not normally carry any sort
of security identification information, application level
protocols are often required to provide identification and
authentication on their own. This requirement can add
significantly to the application size and complexity, the
number of libraries required, and the time required to
perform communications, especially simple ones.

Some embedded systems communicate with the world
at large and for many, including mobile phones and
more sophisticated devices, this is their primary func-
tion. In many cases it is quite important that information
be kept segregated based on its role on the device, and
that the information be delivered only to appropriate ap-
plications which may themselves have come in over the
airwaves. Clearly a mechanism needs to be available for
distributing this information safely.

4 The Mobile Phone

It is probably impossible to identify a typical embedded
system, but the mobile phone will serve for purposes of
discussion because the mobile phone is familiar, some
are known to run Linux, and they have obvious security
concerns. Those who are unfamiliar with these devices
are encouraged to have a look at Google’s Android sys-
tem 2 for a working example of how the software for one
of these devices can be assembled.

Mobile phone service providers do not make money by
selling phones. They make money by selling services
that use the information network with which the mobile
phone communicates. It is thus very important to the
service company that the system software and user ac-
count data stored on the phone be protected from any
user of the device. It is also important that access to fea-
tures of the phone that the user is expected to pay extra
for is tightly controlled. It is further a significant con-
cern that only the applications the service provider gets
paid for wind up on the phone, otherwise the consumer
may not have to buy the provider’s offerings to get the
functionality desired.

2http://code.google.com/android



An important but often overlooked aspect of the mobile
phone is that one of the most critical design criteria for
the software it runs is time to market. It can be the case
that a particular date, usually early in the holiday shop-
ping season, is a hard deadline and software develop-
ment must be completed sufficiently in advance of that
date to allow volume manufacturing. Any architecture
with a long time to market or that may interfere with
the ability to deploy third party applications in a timely
fashion will come into question even if it is adopted for
reasons of security.

4.1 A Simple Application Example

Let us now consider a mobile phone that incorporates
third party applications to provide its differentiation.
The third party applications will have been delivered
slightly late and will have little or nothing to say about
any interactions they might have with their operating
environment. The applications will certainly not have
gone through any sort of security analysis. If only to
prevent the applications from accidently interfering with
each other it is prudent to isolate them.

For the sake of simplicity, our phone implements a dis-
play manager, a keypad manager, and a radio man-
ager. These managers communicate with applications
and each other using UDP datagrams. Each of these
managers runs as a separate process, started when the
phone is turned on, and all with the Smack label phone.
Because they all have the same label they can share in-
formation freely, but because they are not running with
the floor label they cannot modify the system files. All
the device files that these managers access are also la-
beled phone.

The first application might be a news update service that
queries a database at ABC, presenting a ticker tape of
interesting headlines on the display. It is run with the
Smack label ABC. To achieve this, the application will
send messages to the radio manager asking it to call out
for updates, and sending text to the display manager to
put on the ticker tape. The radio manager needs to send
responses to the ABC application. To allow this com-
munication two Smack access rules are required.

e phone ABC w

e ABC phone w

2008 Linux Symposium, Volume Two e 183

Notice that read access is not provided in either case.
Processes with either label can send datagrams to pro-
cesses with the other, but neither can read their peer’s
data.

The second application is from a sports network and of-
fers animated recreations of football highlights. It is run
with the Smack label ESPN. The application will send
messages to the radio manager asking it to call out for
updates, and send animation frames to the display man-
ager. The radio manager needs to send responses to the
ESPN application and the keypad manager needs to send
keystrokes for control purposes. As before two Smack
access rules are required.

e phone ESPN w

e ESPN phone w

Notice that even though both ABC and ESPN processes
can communicate with the manager processes they can-
not communicate directly with each other.

It turns out that in the example here both applications
provide service based on information from a common
source, that being the shared parent company of the
news service and the sports network. If the sports an-
imation application understands the data stored by the
news application and has read access to that information
it could pre-load sport event information that appears on
the ticker tape, improving the user experience. A single
Smack rule makes this possible.

e ESPN ABC r

Now the sports animation application can read the news
application’s data and take whatever actions it deems
appropriate. Notice that it cannot execute the news ap-
plication or search directories because it does not have
execute permissions.

If at some point in the future the parent company sells
the sports network, access can be revoked without rela-
beling any files by changing the access rule.

e ESPN ABC -

Now access is explicitly denied.



184 e Smack in Embedded Computing

4.2 Software Update

A common problem on embedded devices is live, con-
trolled application software update. While getting new
software onto the device may be straightforward, mak-
ing sure that the transition occurs and that the new
software is used while retaining the old in case of un-
foreseen issues can be tricky. One popular solution to
this problem is to provide multiple filesystems, each of
which is loaded with a different version of the complete
set of software. One filesystems is mounted in the ac-
tive path while the others are mounted to the side and
the transition is made by unmounting the active path
and mounting an alternative in its stead. Updates are
performed on the out-of-path filesystems.

The Smack solution is to include all possible paths, but
to label each set differently, and to determine which gets
used by a particular process by access rules. The start-
up script running with an appropriate label, in this case
ESPN, sets its path

export PATH=/slot-a:/slot-Db
then invokes the desired program
spiffyapp —-color —-football

which will of course use the version in /slot—-aifitis
accessible, and the version in /slot—b if it is not. The
installer labels /slot—a and all the files therein with
the same label, for simplicity Slot-A and similarly the
contents of /slot—b with Slot-B. To allow access to
either version the rules would be

e ESPN Slot-A rx

e ESPN Slot-B rx
When it comes time to update /slot—a setting the ac-
cess rule

e ESPN Slot-A -

e ESPN Slot-B rx

ensures that the version in /slot-b gets used. Once
/slot—a is updated setting the access rules

e ESPN Slot-A rx

e ESPN Slot-B -

ensures that the new version is used. Note that the files
in each of the slot directories do not get relabeled as
part of this process, they retain the label that they are
given by the installer. The only change required is in the
access rules.

5 Comparisons and Conclusions

From the examples provided it should be clear that many
of the security concerns that are typical of an embedded
system can be addressed readily by Smack. It is not
enough to provide the security facilities, it is also neces-
sary to provide them in a way that is appropriate to the
problem at hand. Other schemes, including virtualiza-
tion and SELinux, can be used to address specific secu-
rity concerns, but Smack is better suited to the resource-
constrained embedded environment.

5.1 Distributions

The purpose of a distribution is to provide a set of
configuration files, documentation, programs, libraries,
scripts, and various other digital components with which
a complete system can be composed. Most distributions
available today are full-featured, offering as complete
a set of utilities as possible, often even including mul-
tiple alternatives for email services, web servers, and
window systems environments. Distributions targeted
for the embedded space will offer a slightly different set
of content and configuration, but are not fundamentally
different from their desktop or enterprise peers.

A MAC scheme based on the behavior of applications
will have to be customized to each distribution on which
it is available. The Red Hat distributions include cus-
tomized SELinux policies that match the programs they
contain. The SuSE distributions include configurations
for AppArmor. Other distributions claim support for
SELinux as well.

The embedded systems developer is typically not look-
ing for the advantages of integration that a distribu-
tion provides. The embedded systems developer will be
carefully choosing the components that go onto the box
and while it will be convenient if they all come from the
same place it is perfectly reasonable for a legacy ver-
sion of certain applications to be chosen for size, com-
patibility, or performance. This is a major problem for



2008 Linux Symposium, Volume Two e 185

a system like SELinux that depends on specific versions
of specific applications for the policy to be correct. A
system like Smack that is strictly based on processes,
rather than programs, in its security view has a serious
advantage.

5.2 User Space Impact

The user space component of a security mechanism
ought not to be a major concern for an embedded sys-
tem. Because Smack rules are trivial, the program that
loads them into the kernel need only ensure that they are
formatted correctly and can hence be kept very small.
Because labels are text strings there is no need for func-
tions that compose or format them. The current Smack
user space library provides only two functions.

e smackaccess Takes a process label, an object
label, and an access string as arguments and re-
turns an access approval or denial based on the ac-
cess rules currently loaded in the kernel. Using this
function an application can make the same deci-
sions that the kernel would. Because the kernel ta-
ble is readable, any program can use this function
to determine what the answer is to a specific access
question.

e smackrecvmsg This is a wrapper around
recvmsg that does control message processing
associated with SCM_SECURITY. It is typically
used by label-cognizant server programs that may
change their behavior based on the label of a con-
nection. These programs will require privilege to
allow connections at multiple labels and will hence
be required to be treated as trusted components of
the system.

One reason that there are so few library functions is the
direct scheme that Smack uses for labeling. Because la-
bels are text strings that require no interpretation, their
manipulation is limited to setting and fetching. The ex-
isting extended attribute interfaces are sufficient for ma-
nipulating labels on files. Process labels are dealt with
through the /proc/self/attr/current virtual
files. Socket labeling is manipulated using fsetxattr
to set outbound labels and set inbound labeling, but only
by privileged processes.

5.3 Configuration Issues

Embedded systems are usually designed to be as simple
as possible. Sophisticated configuration requirements
go against this design principle the same way that ex-
cesses in scripting would.

One problem with a virtualization solution is having
multiple operating system configurations to maintain.
Another is the hypervisor configuration. Finally, there
is the configuration required for the virtual machines to
share or communicate.

SELinux is notoriously difficult to administer. Because
the security model labels programs based on their be-
havior, any change, even a simple version update, may
require a change to the system security policy configu-
ration. A policy that does not take the entire set of appli-
cations on the system into account does not provide the
controls necessary for accurate containment. This is true
regardless of how much of the full utility of SELinux is
actually required to achieve the security goals.

Simplicity is a design goal of Smack. The coarser gran-
ularity of access control provided by a process-oriented
scheme requires much less detail in the configuration
than does a fine-grained scheme such as SELinux. Be-
cause it is an access control mechanism that can be con-
figured, it is much easier to use than the multiple con-
figurations required in a virtualized scheme.

5.4 Summation

Embedded systems are not general purpose computers.
Smack is intended to address clearly identifiable and
specific access control issues without requiring exten-
sive theoretical understanding of security lore. It does
not require the intervention of a highly trained secu-
rity professional. The low impact and strong control of
Smack make it ideal for solving the controlled access
problems of applications in embedded systems. Free-
dom from dependence on a distribution makes it attrac-
tive to developers inclined to "roll their own" system
software. With process oriented access control empha-
sis can be placed on the pragmatic security issues that
matter in the embedded space.



186 e Smack in Embedded Computing




Proceedings of the
Linux Symposium

Volume Two

July 23rd-26th, 2008
Ottawa, Ontario
Canada



Conference Organizers

Andrew J. Hutton, Steamballoon, Inc., Linux Symposium,
Thin Lines Mountaineering

C. Craig Ross, Linux Symposium

Review Committee

Andrew J. Hutton, Steamballoon, Inc., Linux Symposium,
Thin Lines Mountaineering

Dirk Hohndel, Intel

Gerrit Huizenga, IBM

Dave Jones, Red Hat, Inc.
Matthew Wilson, rPath

C. Craig Ross, Linux Symposium

Proceedings Formatting Team

John W. Lockhart, Red Hat, Inc.
Gurhan Ozen, Red Hat, Inc.
Eugene Teo, Red Hat, Inc.

Kyle McMartin, Red Hat, Inc.
Jake Edge, LWN.net

Robyn Bergeron

Dave Boutcher, /IBM

Mats Wichmann, Intel

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.



