
Linux, Open Source, and System Bring-up Tools
How to make bring-up hurt less

Tim Hockin
Google, Inc.

thockin@google.com

Abstract

System bring-up is a complex and difficult task. Mod-
ern hardware is incredibly complex and it’s not getting
any simpler. Bringup engineers spend far too much time
hunting through specs and register dumps, trying to find
the source of their problems. There are very few tools
available to make this easier.

This paper introduces three open source tools that can
help ease the pain, and hopefully shorten bring-up cy-
cles for new platforms. SGABIOS is a legacy option
ROM which implements a simple serial console inter-
face for BIOS. Iotools is a suite of low-level utilities
which enables rapid prototyping of register settings.
Prettyprint is a powerful library and toolset which al-
lows users to easily examine and manipulate device set-
tings.

Introduction

Sometimes you get lucky on a bring-up, and things just
work the way they are supposed to. More often than
not, though, something goes wrong. Unfortunately, it’s
usually many “somethings” that go wrong. When things
do go wrong, someone has to figure out what happened
and how to fix it.

Platforms today are vastly more complicated than they
were just a few years back. Almost nothing works when
the system powers on. It all needs to be configured.
When the inevitable “something” goes wrong, determin-
ing the cause can be an overwhelming task.

Of course, there are no magic bullets, but there are tools
that can help to make solving some of these problems
easier.

1 Terminology

Before diving in, it’s important that we are all speaking
the same language:

Platform: Sometimes used as a synonym for mother-
board, a platform is really the combination of compo-
nents that make up a computer system. This includes
the CPU or CPU family, the memory controller, the IO
controller, the DRAM, the IO devices, and usually the
system firmware.

Bring-up: The process of evolving a platform from an
expensive objet d’art into a fully operational computer
system. This process usually involves debugging and/or
working around the hardware, configuring the system in
the BIOS, and hacking the drivers and kernel into shape.
It often includes superstitious rituals, cynical prayers,
and lots of cussing.

BIOS: Basic Input Output System. The BIOS is the
software that executes when a PC powers on, and is pri-
marily responsible for configuring the hardware.

Device: A piece of hardware that is logically self-
contained. While a typical southbridge is a single chip,
it is usually viewed as a collection of devices, such as
disk controllers, network interfaces, and bridges.

Chipset: A hardware chip or chips that provide the bulk
of the IO on a platform. Chipsets are typically tested and
sold as a single unit. These generally include a north
bridge which contains one or more memory controllers
as well as high-speed IO bridges, and a south bridge
which contains lower-speed devices such as storage and
legacy bus interfaces.

Register: An addressable set of bits exposed by a de-
vice. Most devices contain many registers. Registers
generally hold control and status bits for the device, and
can be mapped into a multitude of address spaces such
as PCI config space, memory, or IO space.

• 183 •

184 • Linux, Open Source, and System Bring-up Tools

2 Serial Console for the Unwashed Masses

An obvious place to start is to get the BIOS output as
it boots. Just about anyone who has ever booted up a
PC has seen the BIOS output on the screen. This is,
however, not very useful. Most servers do not have a
monitor plugged in to them at all times. VGA-capable
chips, while not particularly high-tech, are not free to
buy or run. Why require one on every server?

It is a sad fact that many platforms available today still
do not have serial console support. Those that do of-
fer it usually offer it as an up-sell on the BIOS, and the
implementation quality is often questionable.

Some implementations provide side-band interfaces,
which only get used to print certain information. This is
not particularly useful to anyone, and is fortunately not
seen much any more. Some implementations do what is
called screen scraping which depends on a real VGA de-
vice with real VGA memory to store the screen contents.
They periodically scan the VGA memory and send up-
dates on the serial port. Some implementations support
text output but completely break down in the face of “ad-
vanced” features like cursor movement or color.

2.1 Solving It Once and for All

In order to provide a consistent feature set, one Google
engineer chose to solve this once and (hopefully) for
all. Thus was born SGABIOS—the Serial Graphics
Adapter. SGABIOS is a stand-alone option ROM which
can be loaded on a platform to provide serial console
support. It provides a robust set of VGA-compatible fea-
tures which allow most BIOS output to be converted to
serial-safe output. It supports basic cursor movement,
color, text input, and large serial consoles.

The easiest way to use SGABIOS is to make your BIOS
load it as an option ROM. You can try to convince your
board vendor to include it as an option ROM in the
BIOS build, or you can use tools (usually provided by
the BIOS vendor) to load an option ROM into a BIOS
image. If this is not an option for you, all is not lost.
There are commercially available add-in debug cards
which have option-ROM sockets. In a pinch, many net-
work and other cards have programmable ROMs which
can be made to load an arbitrary option ROM.

When started, SGABIOS attempts to detect if there
is a terminal attached. If detected, SGABIOS will

adapt its internal structures to the detected terminal size.
SGABIOS then traps INT 10h, the legacy “print some-
thing” BIOS function, and INT 16h, the legacy “read
keyboard” function. The final result is that any well-
behaved BIOS, option ROM, or legacy OS will now be
using the serial port transparently. However, there are
some badly behaved programs which attempt to write to
VGA memory directly. SGABIOS can not fix those ap-
plications. Fortunately, this does not seem to be a very
big problem.

We have successfully run SGABIOS with LILO and
GRUB, as well as DOS. It works wonderfully for the
uses we have found, though it does have its limita-
tions. Some applications, such as LILO, query INT
10h for previously displayed data. Because there is no
VGA memory backing it, SGABIOS only stores a small
amount of the most recently printed output. This has
been good enough to handle the applications we have
found to do this, but it does have the potential to fail. As
with so many things, it is a tradeoff of memory size vs.
functionality.

You can find SGABIOS at http://sgabios.
googlecode.com.

3 Simple Access to Registers

A recurring situation in my office is that you can boot,
but something is not right. You might have some ideas
on what it could be, but you need to run some additional
tests. You need to modify some registers.

You could have the board vendor build some test
BIOSes with the various settings. That’s not going to
be an effective, scalable, or timely solution.

You could build a custom kernel which programs the de-
sired changes; at least you control that part. It’s still a
pretty heavyweight answer, and the hardware test team
folks are not really kernel hackers. This approach is bet-
ter than the last one, but not good.

One might ask “Hold on, doesn’t the kernel expose some
APIs that let me fiddle with registers?” Why yes, it does.
Now you only have to write some simple programs to
do these tests. But again, the test team is not really C
programmers. There must be something simpler.

2008 Linux Symposium, Volume One • 185

3.1 Introducing Iotools

A simple, scriptable interface to device registers allows
anyone who can do basic programming to deal with this
problem. Almost anyone is now able to trivially read
and write registers, thereby enabling a whole new de-
bugging army.

This is the goal of iotools. The iotools package
provides a suite of simple command-line tools which en-
able various forms of register accesses. They are mostly
thin wrappers around Linux kernel interfaces such as
sysfs and device nodes. Iotools also includes a num-
ber of simple logical operation tools, which make ma-
nipulating register data easier.

The iotools “suite” is actually a single binary, a la
busybox. This allows for simple distribution and in-
stallation on target systems. The iotools binary is
less than 30 kilobytes in size when built with shared li-
braries. Building it as a static binary obviously increases
the size, depending on the libc it is linked against. This
should make iotools suitable for use in most size-
sensitive environments, such as flash or initramfs.

A note of caution is warranted. Writing to registers on a
running system can crash the system. You should al-
ways understand exactly what you are changing, and
whether there might be a kernel driver managing those
same registers. Sometimes it is enough to simply unload
a driver before making your changes. Other times you
just have to go for it.

3.2 What’s in Iotools?

At the time of writing, the iotools suite includes
tools to access the following register spaces:

• PCI: Read and write registers in PCI config space.
This includes both traditional config space (256
bytes per device) and extended config space (4
Kbytes per device) for those devices which support
it. Access is provided by sysfs or procfs and
is supported as 8-bit, 16-bit, and 32-bit operations.

• IO: Read and write registers in x86 IO ports. This
covers the 64-Kbyte space only. Access is provided
by IN and OUT instructions and is supported as 8-
bit, 16-bit, and 32-bit operations.

• MMIO: Read and write memory-mapped regis-
ters or physical memory. This provides access
to the entire 64-bit physical memory space via
/dev/mem. It supports 8-bit, 16-bit, and 32-bit
operations.

• MSR: Read and write x86 model-specific registers
on any CPU. This provides access to the full 32-bit
MSR space via /dev/cpu/*/msr. It supports
only 64-bit operations (all MSRs are 64 bits).

• TSC: Read the CPU timestamp counter on the cur-
rent CPU. This is provided by the RDTSC instruc-
tion and is always a 64-bit operation.

• CPUID: Read data from the CPUID instruction on
any CPU. This provides access to the full 32-bit
CPUID space via /dev/cpu/*/cpuid.

• SMBus: Read and write registers on SMBus de-
vices. This is provided by the /dev/i2c-*
drivers and supports 8-bit, 16-bit, and block opera-
tions.

• CMOS: Read and write legacy CMOS memory.
Most PCs have around 100 bytes of non-volatile
memory that is accessed via the real-time clock.
Access is provided by the /dev/nvram driver,
and only supports 8-bit operations. This should be
used with caution. CMOS memory is often used
by the system BIOS, and changing it can have un-
intended side effects.

In addition to the register access tools, iotools also
includes several tools to perform logical operations on
numbers. These tools are important because they sup-
port 64-bit operations and treat all numbers as unsigned,
which can be a problem in some shell environments.

• AND: Produce the logical AND of all arguments.

• OR: Produce the logical inclusive OR of all argu-
ments.

• XOR: Produce the logical exclusive OR of all ar-
guments.

• NOT: Produce the bitwise NOT of the argument.

• SHL: Shift the argument left by a specified number
of bits, zero-filling at the right.

186 • Linux, Open Source, and System Bring-up Tools

• SHR: Shift the argument right by a specified num-
ber of bits, zero-filling at the left (no sign exten-
sion).

3.3 A Simple Example

Suppose you need to test the behavior of enabling SERR
reporting on your platform. This is controlled by bit 8
of the 16-bit register at offset 4 of each PCI device. You
could whip up a quick script:

#!/bin/bash

function set_serr {
SERR is bit8 (0x100) of
16-bit register 0x4
OLD=$(pci_read16 $1 $2 $3 0x4)
NEW=$(or $OLD 0x100)
pci_write32 $1 $2 $3 4 $NEW

}

hardcoded list of PCI addresses
set_serr 0 0 0
set_serr 0 0 1
set_serr 0 0 2

You can do better than this, though. You can trivially
make this script loop for each PCI device:

#!/bin/bash

function set_serr {
SERR is bit8 (0x100) of
16-bit register 0x4
OLD=$(pci_read16 $1 $2 $3 0x4)
NEW=$(or $OLD 0x100)
pci_write32 $1 $2 $3 4 $NEW

}

for each bus, dev, func
for B in $(seq 0 255); do

for D in $(seq 0 31); do
for F in $(seq 0 7); do

pci_read32 $B $D $F 0 \
>/dev/null 2>&1

if [$? != 0]; then
does not exist
continue;

fi
set_serr $B $D $F

done
done

done

This version takes a bit longer to run, but works regard-
less of the devices in the system. You can shorten the
run time significantly by putting a sane upper bound on
the number of buses. Few systems have more than 20 or
30 buses, even in this era of point-to-point PCI Express
buses.

This is the sort of tool that someone with very basic shell
scripting skills can produce in just a few minutes with
iotools.

You can find iotools at http://iotools.
googlecode.com.

4 Making it Simpler

The previous section shows just one example of the
sorts of problems that arise during bring-up. Frankly, it
wasn’t a particularly complicated problem, and the so-
lution is bordering on real programming. Worse than
that, it requires that the person doing the work remem-
ber several “magic” numbers. Which register is this bit
in? How wide is that register? Which bit is it? Taken
further, the problem quickly becomes very difficult.

Suppose you want to examine or configure something
more complicated, like PCI Express advanced error re-
porting (AER). AER is a capability in PCI terminology.
That means that some devices will support it and some
will not. The only way to find out is to ask each de-
vice. Further, each device might put the AER registers
at a different offset in their PCI register set. As if that
is not enough, some devices have different AER register
layouts, depending on what kind of device they are and
which version of the the specification they support.

Doing this in an iotools script is certainly possible; it
just isn’t so simple anymore. Google needed something
that internalizes and hides even more of the details. This
gave rise to prettyprint.

4.1 An Unfortunate Name

The original goal of prettyprint was this: to dump
the state of all the registers in the system in a diff-
friendly format. This would allow us to use one of our
favorite debug tools, which we call “Did you try rolling
back the BIOS?” Boot with BIOS A, prettyprint
the system. Boot with BIOS B, prettyprint the sys-
tem. Then diff the results.

2008 Linux Symposium, Volume One • 187

Like the previous examples, there are other ways of do-
ing this. They all resulted in a screenful of numbers,
followed by a few hours of digging through datasheets
to find what each bit of each differing register means.
The only thing worse than going through this process
and finding that the difference is undocumented is go-
ing through this process multiple times.

Instead, prettyprint attaches a datatype to field val-
ues, allowing it to produce output which is not only
diff-friendly, but which is also human-friendly.

4.2 Fundamentals of Prettyprint

Prettyprint has two fundamental constructs: regis-
ters and fields. In keeping with the common vernacular,
a register is a single addressable set of bits. Registers
have a defined, fixed width, but they have no intrinsic
meaning.

Fields, on the other hand, are of arbitrary width and are
the only entity with meaning. Fields can be defined as
a set of register bits (regbits), constant bits, or even as
procedures. Every field has a datatype, and the result of
reading a field is a value that can be evaluated against
that datatype to produce a human-readable string.

4.3 The Power of Fields

Let’s look at a the simple example from Section 3.3.
For each PCI device there is a 16-bit register at offset
4 called %command (the % is a convention to indicate
a name is register). For each PCI device there is also a
field called serr. This field is exactly 1 bit wide, and is
composed of bit 8 of %command. When accessing this
field, one can interpret its value as a boolean, where a
value of 1 = "yes" and a value of 0 = "no".

%command

serr

0123456789101112131415

Figure 1: A simple field

Now, when you dump the state of a device, you can see
a line item that says serr: yes.

This is vastly more useful than a hexadecimal number
about which I have to remember that bit 8 being set
means SERR is enabled. Even better, since I now have a
system that understands serr directly, I can write to it
just as easily as I can read from it.

4.4 Binding Fields to Devices

The previous example glossed over the details of
“for each PCI device.” This is a key aspect of
prettyprint’s power. Registers are defined in an
abstract way, divorced of exactly which device or ac-
cess method they employ. They simply have ad-
dresses. When it comes time to use these registers,
prettyprint passes control to the drivers which en-
able each class of device. A binding is used to map
which abstract registers belong to which driver.

When starting up, prettyprint can find hardware
devices in one of two ways. Firstly, you can tell it where
a device is found. This is the only option for some de-
vices, especially legacy devices. For example, to tell
prettyprint about the serial port, you would have
to tell it something to the effect of, “There exists a se-
rial port in IO space, at address 0x3f8.” In so doing,
you have given prettyprint enough information to
bind the serial port registers and fields to a driver and
address.

Better still, you can let prettyprint discover some
devices. Many modern devices can be discovered ei-
ther through the hardware itself, such as PCI, or through
simple interfaces, such as ACPI. In this case, the driver
has a discovery routine which will find devices and bind
them as it finds them. This is how we are able to define
things like serr as something that exists “for each PCI
device.”

4.5 About the Implementation

Prettyprint is written in C++. I can hear the cries
of frustration already. Why C++? Because I thought that
the problem decomposed nicely into an object-oriented
model, and because I wanted to improve my C++.

Prettyprint has been designed from the start as
a library to be used as a backend by various applica-
tions. From state dumping utilities to interactive shells
to FUSE filesystems, anything is possible.

188 • Linux, Open Source, and System Bring-up Tools

4.6 Defining Registers And Fields

So how does one go about defining a device? One of
the things that the choice of C++ brought to the project
was a way to manipulate the language syntax. The end
goal is to have an actual interpreted language which is
used to define devices. Until then, we have a set of C++
classes, functions, and templates which define a pseudo-
language.

This pseudo language is intended to make the definition
of registers and fields as simple as possible. Let’s look
at the SERR example:

REG16("%command", 0x04);
FIELD("serr", "yesno_t",

BITS("%command", 8));

That’s pretty straightforward. We define %command as
a 16-bit register at address 0x04. We define serr as a
field with datatype yesno_t, composed of bit 8 from
%command.

Frequently, a field maps directly to a register. To sim-
plify this, prettyprint understands regfields. For
example, the PCI “intpin” field is the only consumer of
the %intpin register.

%intpin

intpin

01234567

01234567

Figure 2: A regfield

We can express that as:

REG8("%intpin", 0x3d);
FIELD("intpin", "int_t",

BITS("%intpin", 7, 0));

Or we can take the equivalent regfield shortcut:

REGFIELD8("intpin", 0x3d, "int_t");

Let’s consider a more complicated example. In a PCI-
PCI bridge, there are several registers which control the
address ranges which are decoded by the bridge. They
are implemented as two different registers, which com-
bine to form a logical 64-bit address. The low 20 bits of
both the base and limit register are fixed to 0 and 1,
respectively.

%base_lo
03415

%base_hi
031

base 063 19203132

000...000

%limit_lo
03415

%limit_hi
031

limit 063 19203132

111...111

Figure 3: Complex fields

In prettyprint, this is expressed as:

REG16("%base_lo", 0x24);
REG32("%base_hi", 0x28);
REG16("%limit_lo", 0x26);
REG32("%limit_hi", 0x2c);

FIELD("base", "addr64_t",
BITS("%base_hi", 31, 0) +
BITS("%base_lo", 15, 4) +
BITS("%0", 19, 0));

FIELD("limit", "addr64_t",
BITS("%limit_hi", 31, 0) +
BITS("%limit_lo", 15, 4) +
BITS("%1", 19, 0));

Notice the use of %0 and %1 as registers. These are
the magic registers. When read, %0 always returns all
logic 0 bits. Likewise, %1 always returns all logic 1 bits.
Also notice that the bits in a field are defined from most
significant to least significant. A field can be arbitrarily
long, and can be composed of any number of regbits.

4.7 Scopes and Paths

The examples so far have been relatively small. In real-
ity the %command register has a number of fields that
derive from it. All told, there are thousands of fields in

2008 Linux Symposium, Volume One • 189

each PCI device. prettyprint provides scopes as a
mechanism for grouping related things together.

Think of scopes like directories in a filesystem. Each
scope has a name and a set of contents. A scope can con-
tain registers, fields, or other scopes. Like the filesystem
metaphor, prettyprint has paths. There is a con-
ceptual root of the path tree, and each register, field, and
scope can be named by a unique path. Also like a UNIX
directory tree, path elements are seperated by a forward
slash (/), and two dots (..) means the parent scope.

The %command register from our previous examples
actually looks something like this:

REG16("%command", 0x04);
OPEN_SCOPE("command");

FIELD("io", "yesno_t",
BITS("../%command", 0));

FIELD("mem", "yesno_t",
BITS("../%command", 1));

FIELD("bm", "yesno_t",
BITS("../%command", 2));

FIELD("special", "yesno_t",
BITS("../%command", 3));

FIELD("mwinv", "yesno_t",
BITS("../%command", 4));

FIELD("vgasnoop", "yesno_t",
BITS("../%command", 5));

FIELD("perr", "yesno_t",
BITS("../%command", 6));

FIELD("step", "yesno_t",
BITS("../%command", 7));

FIELD("serr", "yesno_t",
BITS("../%command", 8));

FIELD("fbb", "yesno_t",
BITS("../%command", 9));

FIELD("intr", "yesno_t",
BITS("../%command", 10));

CLOSE_SCOPE();

4.8 Datatypes

Each field can be evaluated against its datatype.
Prettyprint defines a number of primitives:

• int: a decimal number

• hex: a hexadecimal number

• enum: an enumerated value

• bool: a binary enum

• bitmask: a set of name bits

These primitives are used to create several pre-defined
datatypes:

• int_t: a number

• hex_t: a hexadecimal number

• hex4_t: a 4-bit hexadecimal number

• hex8_t: a 8-bit hexadecimal number

• hex12_t: a 12-bit hexadecimal number

• hex16_t: a 16-bit hexadecimal number

• hex20_t: a 20-bit hexadecimal number

• hex32_t: a 32-bit hexadecimal number

• hex64_t: a 64-bit hexadecimal number

• hex128_t: a 128-bit hexadecimal number

• addr16_t: a 16-bit address

• addr32_t: a 32-bit address

• addr64_t: a 64-bit address

• yesno_t: a boolean, 1 = "yes", 0 = "no"

• truefalse_t: a boolean, 1 = "true", 0 = "false"

• onoff_t: a boolean, 1 = "on", 0 = "off"

• enabledisable_t: a boolean, 1 = "enabled", 0 =
"disabled"

• bitmask_t: a simple bitmask

Without doubt, any reasonably complex device will
need to define its own datatypes. Prettyprint al-
lows datatypes to be defined at any level of scope, and
to be used in any scope below the definition—similar to
C.

• INT(name, units?): define a new int type with op-
tional units.

• HEX(name, width?, units?): define a new hex
type with optional width and units.

190 • Linux, Open Source, and System Bring-up Tools

• ENUM(name, KV(name, value), ...): define a
new enum type with the specified named values.

• BOOL(name, true, false): define a new bool type
with the specified true and false strings.

• BITMASK(name, KV(name, value), ...): define
a new bitmask type with the specified named bits.

Sometimes you want to define a new datatype for ex-
actly one field. Rather than come up with a good
name for it, each of the datatype definitions supports
an ANON_ prefix, which removes the name argument
and produces an anonymous datatype. For example,
the previous PCI intpin example used int_t as the
datatype. In reality, we want an enumerated type. This
is the only field that will use this type, so we want to
declare it anonymously:

REGFIELD8("intpin", 0x3d, ANON_ENUM(
KV("none", 0),
KV("inta", 1),
KV("intb", 2),
KV("intc", 3),
KV("intd", 4)));

4.9 Advanced Techniques

So far, we’ve seen how prettyprint can be used
to define simple registers and fields. Unfortunately,
few hardware devices are so simple. Because the
prettyprint “language” is actually a dialect of C++,
there is a lot of power at your fingertips.

Hardware registers are at a premium. Often the hard-
ware will overload the meaning of some bits depending
on the state of other bits. Prettyprint supports the
conditional definition of registers and fields.

Let’s look at another example. In a PCI bridge’s IO de-
code window, there is a width field. That field deter-
mines whether the high half of the base field is valid.

REG8("%base_lo", 0x1c);
REG16("%base_hi", 0x30);

FIELD("width", ANON_ENUM(
KV("bits16", 0),
KV("bits32", 1)),

BITS("%base_lo", 3, 0));

if (FIELD_EQ("width", "bits16")) {
FIELD("base", "addr16_t",

BITS("%base_lo", 7, 4) +
BITS("%0", 11, 0));

} else { // bits32
FIELD("base", "addr32_t",

BITS("%base_hi", 15, 0) +
BITS("%base_lo", 7, 4) +
BITS("%0", 11, 0));

}

In this example you see the usage of FIELD_EQ().
This performs a read of the width field and compares
the result against the value specified. Comparisons can
be done by string or by number, thanks to function over-
loading in C++. The above example could have just as
easily (though less maintainably) used:

FIELD_EQ("width", 0)

The actual evaluation of the a comparison is done by
the specific datatype, which is the only place that can
actually determine what it means to compare values.
Prettyprint supports the following comparison op-
erations:

• FIELD_EQ: the field is equal to the specified com-
parator.

• FIELD_NE: the field is not equal to the compara-
tor.

• FIELD_LT: the field is less than the comparator.

• FIELD_LE: the field is less than or-equal-to the
comparator.

• FIELD_GT: the field is greater than the compara-
tor.

• FIELD_GE: the field is greater than or-equal-to
the comparator.

• FIELD_BOOL: the field is boolean TRUE, equiv-
alent to NE 0.

2008 Linux Symposium, Volume One • 191

• FIELD_AND: the field matches the comparator.

Again, because the prettyprint “language” is really
just C++, almost any native construct will work. There
are some limitations, though.

To start with, C++ will not allow a switch statement
on a non-integer value, so you can not switch on enu-
merated strings. In the eventual prettyprint lan-
guage implementation, this will be supported.

Secondly, control statements are evaluated just once,
as the tree of registers and fields is being built. Later
changes to control bits do not change the tree struc-
ture. This is something we want to enable in the
prettyprint language, but we do not have support
for it yet.

4.10 Discovering Specific Devices

Throughout these examples, we have looked at standard
PCI fields and registers. The PCI standard covers only
a fraction of the available PCI register space. Almost
every PCI device defines its own non-standard register
set. What about those extra registers and fields?

In the same way that prettyprint can discover
generic devices, such as PCI, it can also discover spe-
cific devices. A device definition can register itself for
discovery through a specific driver. When the driver’s
discovery mechanism detects the registered device, as
determined by a driver-specific signature, it invokes the
specific device code, rather than the generic.

For example, a device definition for an AMD Opteron
might register with the PCI driver for the vendor and de-
vice pair (0x1022, 0x1100). When the PCI driver
finds that vendor and device pair, the Opteron-specific
device code would be invoked, rather than the generic
PCI device code.

Rather than re-encoding the entire PCI specification, the
generic PCI code can be invoked from the Opteron code.
This allows device code to extend standard devices with
very little effort.

4.11 The Directory Tree

The prettyprint code is broken into four compo-
nents. The top-level directory contains the core classes

and functions that make up the prettyprint li-
brary. This includes pp_register, pp_field, pp_
datatype, etc.

The drivers subdirectory contains the driver mod-
ules. Currently prettyprint only supports Linux,
though it would not be hard to add support for other
operating systems. At the time of writing, the drivers
directory contains drivers for:

• PCI: via /sys or /proc
• MEM: via /dev/mem
• IO: via IN and OUT instructions
• MSR: via /dev/cpu/*/msr
• CPUID: via /dev/cpu/*/cpuid

The devices subdirectory contains device code, writ-
ten in the prettyprint “language.” When we have
a real language parser, this is the code that will be re-
written in the new language. Prettyprint currently
has support for:

• PCI: most of the fields for generic PCI and PCI
Express devices, including many capabilities.

• CPUID: very basic CPUID fields

Lastly, the examples subdirectory contains example
programs which use the prettyprint library.

4.12 FUSE and Prettyprint

One of the more exciting examples is the pp_fs appli-
cation. This is a FUSE filesystem which allows direct
access to registers and fields.

Using pp_fs, the example of setting SERR on all de-
vices becomes trivial:

$ find /pp -wholename *command\/serr \
| while read X; do

echo -n "$X: $(cat $X) -> "
echo "yes" > $X
cat $X

done
/pp/pci.0.0.0.2/command/serr: no -> yes
/pp/pci.0.0.1.0/command/serr: no -> yes
/pp/pci.0.0.0.1/command/serr: no -> yes
/pp/pci.0.0.0.0/command/serr: no -> yes

192 • Linux, Open Source, and System Bring-up Tools

4.13 Current Status

The current examples demonstrate the capabilities of
prettyprint. pp_discover has already proven
to be a useful tool at Google. But there is still a lot of
work to do in many areas.

Prettyprint is under active development. A great
way to get involved is to encode new hardware devices
into the prettyprint language. The larger our de-
vice repository gets, the more useful it becomes.

You can find prettyprint at
http://prettyprint.googlecode.com.

5 Acknowledgements

Thanks to Nathan Laredo for pushing to make
SGABIOS a reality.

Thanks to Aaron Durbin for busybox-ifying iotools
on a whim, and to all the Google platforms folks who
have added tools to it.

Thanks to Aaron Durbin, Mike Waychison, Jonathan
Mayer, and Lesley Northam for all their help on
prettyprint.

Thanks to Google for letting us hack on fun systems and
release our work back to the world.

Proceedings of the
Linux Symposium

Volume One

July 23rd–26th, 2008
Ottawa, Ontario

Canada

Conference Organizers

Andrew J. Hutton, Steamballoon, Inc., Linux Symposium,
Thin Lines Mountaineering

C. Craig Ross, Linux Symposium

Review Committee

Andrew J. Hutton, Steamballoon, Inc., Linux Symposium,
Thin Lines Mountaineering

Dirk Hohndel, Intel
Gerrit Huizenga, IBM
Dave Jones, Red Hat, Inc.
Matthew Wilson, rPath
C. Craig Ross, Linux Symposium

Proceedings Formatting Team

John W. Lockhart, Red Hat, Inc.
Gurhan Ozen, Red Hat, Inc.
Eugene Teo, Red Hat, Inc.
Kyle McMartin, Red Hat, Inc.
Jake Edge, LWN.net
Robyn Bergeron
Dave Boutcher, IBM
Mats Wichmann, Intel

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.

