

How to Port a Driver
from 2.4 to 2.6 Linux*
Kernels
 by Mark Gross

How to Port a Driver from 2.4 to 2.6 Kernels and

Get it Included in the Upstream / Main line

Kernel ∗

Mark Gross mark.gross@intel.com

July 12, 2006

Abstract

This tutorial describes how to port older legacy drivers from a 2.4
kernel to recent 2.6 kernels, and attempt to get the ported driver included
in the upstream kernels.

This tutorial has two parts, and provides basic information and point-
ers to information on the mechanics of porting simple drivers from 2.4 to
2.6 kernels as well as udev, sysfs and the process of getting your driver
into the upstream kernel. This is a minimal overview of porting drivers
to the 2.6 kernel assuming a basic knowledge of 2.4 driver structure. It is
based on my experience porting a simple legacy driver from 2.4 to 2.6, and
getting that driver into the main line kernel. Examples and references are
provided from this driver. Additional examples are taken from the port
of the riport.c driver:

http://marc.theaimsgroup.com/?t=112861156300005&r=1&w=2

and

http://marc.theaimsgroup.com/?t=115098732100003&r=1&w=2

1 Syllabus

In part 1 of the tutorial, we look at the mechanics of porting from 2.4 to 2.6
and some of the new things you’ll need to work with.

∗Helpful review comments and input from Greg Kroah-Hartman, Randy Dunlap and Adri-
aan Van De Ven gratefully acknowledged.

1

1. Mechanical changes you can expect between a 2.4 and a 2.6 driver.

2. Kernel build integration differences between 2.4 and 2.6.

3. An overview of using udev for your driver to get device nodes you can talk
to.

4. Very brief introduction to sysfs programming and its use for legacy devices
to provide an interface to user space.

Part 2 discusses working with the community. Its goal is to help you get your
drivers into the mainstream kernel.

1. Getting your driver ready for LKML posting.

2. Setting up your email client for working with the LKML.

3. Knowing what documentation to read.

4. Understanding what to expect and ways to deal with it.

Part I

Mechanics of moving a 2.4 driver
to 2.6

The following sections provide an overview of some of the activities to expect
when moving a legacy driver from 2.4 to the 2.6 kernel. The first part of the
port is very mechanical and trivial. However, if you want the driver to get
into the upstream kernel trees you will not be able to stop at this point. You
will need to use udev to get your device nodes created automatically, and use
sysfs device attributes in place of IOCTLS. The bulk of this part of the tutorial
provides information and an overview for working with these 2 aspects of driver
implementation.

Your mileage will definitely vary.

2

2 Mechanical changes just to get your 2.4 driver
to build and load under the 2.6 kernel

The task of building and running your 2.4 unit tests under the 2.6 kernel won’t
take a lot of effort. Some tools you will likely use in the process of executing
your port will be :

• Tags. If you don’t know how to use tags within VIM you HAVE to learn.

• Cscope

http://cscope.sourceforge.net/

For browsing a kernel tree

cscope -Rk

• An lxr web page

http://lxr.linux.no/

or

http://lxr.free-electrons.com/

• Bash shell, grep, find, editor, make, and the typical developer tools for
doing software development under Linux.

As an example starting point, I’m using the telecom clock driver. The following
URL is the posting of the 2.4.31 driver:

http://marc.theaimsgroup.com/?t=111945397900009&r=1&w=2

The easiest way to get started on your 2.4 to 2.6 port is to build your driver out
of tree. Save off the 2.4 driver source in an out of tree directory. For this tlclk
example, save off the LKML by posting to tlclk-2.4.31.patch and run

patch -p1 -f < tlclk-2.4.31.patch

to extract the starting source code for tlclk.c tlclk.h from the above posting.

Getting started is an easy thing to do when you use a trivial make file pointing
at a known good 2.6 build tree containing a vmlinux (running this kernel is
recommended but not required).

3

point KERNELDIR to your 2.6 kernel tree.
KERNELDIR=/home/mgross/work/linux-2.6.16
obj-m := tlclk.o
default:
$(MAKE) -C $(KERNELDIR) M=$(PWD) modules

At this point you need to do the compile-edit-compile cycle to clean up any
compile failures. Keep in mind that kernel APIs evolve, and what builds and
works for the 2.6.16 kernel may not compile with the kernels used by SuSE,
RHEL, or Fedora. At the very least you can expect compile warnings when
building against different kernels.

Porting the telecom clock driver from 2.4.31 to 2.6.16, I found that I needed
to remove an include file that no longer existed, tqueue.h, and pull out the
usages of MOD IN USE, MOD INC USE COUNT, MOD DEC USE COUNT
that are now gone.

Make sure you build your driver for i386 and x86 64 if you can. Some problems
are not exposed at compile time for one but will show for the other. I recommend
you test build your driver under other architectures, the more the better.

For simple drivers there will probably not be many more changes needed. The
following is a shopping list gathered from the riport.c driver port to 2.6.17 I
recently did.

Examples of API differences you’ll need to deal with include:

• MODULE PARM macro is replaced with module param (lower case) and
its prototype now include permission flags. Note: for the 2.6.16 you’ll get
the error building for i386, where x86 64 will build just fine, watch out.

• You’ll want to use MODULE PARM DESC.

• cli /sti use must be replaced with proper spin locks, spin lock irqsave
spin unlock irqrestore. While you are at it be sure to review your locking
design. Its very likely that your driver was written for UP only and will
have problems on an SMP / multi-core system.

• init module exports are replaced by name space safe initialization, i.e. use
static int init yournamespace init() with a module init(yournamespace init);
declaration.

• cleanup module exit exports with name space safe module exit defini-
tions. i.e. Use static void exit yournamespace exit(void) with a mod-
ule exit(yournamespace exit) declaration.

4

• Use the MODULE LICENSE macro

• Use the MODULE DESCRIPTION macro

• Don’t use check region, it is racy, and deprecated.

• Put the udev enabling code at the end of your initialization logic to avoid
BUG calls if your driver fails its init function.

3 Differences in the in-tree build / makefile struc-
tures

There are no changes between merging your driver into the 2.4 and 2.6 in-tree
Makefiles. However, there are some changes to the way you get your driver to
show up in the make menuconfig screens.

For the telecom clock I added this to drivers/char/Makefile:

obj-$(CONFIG_TELCLOCK) += tlclk.o

To get the module to show up in the kernel configuration screens for the 2.4 ker-
nels you only need to add one line to the correct Config.in file (e.g. drivers/char/Config.in)
and then add the help content to another file.

For the 2.6 kernel it’s a similar change only to a different file and with more
options. For the 2.6 kernel you add config blocks of text to appropriate Kconfig
files. (e.g. drivers/char/Kconfig):

config TELCLOCK
tristate "Telecom clock driver for ATCA"
depends on EXPERIMENTAL
default n
help

The telecom clock device allows direct userspace
access to the configuration of the telecom clock
configuration settings. This device is used for
hardware synchronization across the ATCA backplane
fabric.

This is a more consolidated way to define the dependencies and help content
within one file. See Documentation/kbuild/kconfig-language.txt for more de-
tailed information.

5

At this point, you have a driver integrated into a kernel tree and it should
configure and build. You should also be able to run your unit tests against this
driver just as you did for the 2.4 kernel.

4 Introduction to udev and how it affects your
driver and its use

For most well-behaved legacy device drivers under the 2.6 kernel, you’ll need to
avoid defining major and/or minor device node numbers and the manual setup
of device nodes.

To support usability, udev exists for automatically setting up the device nodes
based on events that come up from the driver model (kobject) infrastructure.
Udev is implemented through a message-based protocol over a netlink socket. It
is initiated from the kobject uevent() API. This API tends to get called when a
driver is associated with a device and it shows up within the sysfs/class directory
hierarchy. For legacy devices, this call to kobject uevent tends to happen when
the driver is loaded. Other devices have this occur within the device probe
operation to support hot plug.

udev gets a sysfs path message and knows to look within that path for a dev
text file that it then parses for the major and minor device node values. Once
the dev file is parsed, udev creates the dev-node within the /dev directory.

Using udev is pretty painless, but understanding all the plumbing built to make
it work can be complicated. For most legacy devices there are two ways to use
udev. One is by using the misc device and the other is to create your own class
device.

To use misc device, you need to define a miscellaneous device structure and
initialize the minor, name, and fops members. Then, within your module init
code call misc register. It handles creating your device node for you.

When the driver is unloaded, be sure to call misc deregister to have your de-
vice unregistered and removed from the sysfs/class/misc/.. directory. Udev is
automatically invoked again to remove the device node.

If your device needs to create a number of device nodes, or you actually care
about the values for your device node major / minor numbers, then you can
also use the class device create() api. A nice and simple example of its use is
in arch/i386/kernel/msr.c. To use class device create you need a class object.
You can create one in your driver’s initialization code with the class create api,

6

then call class device create to get udev to do its magic.

tlclk.c example using the miscellaneous device:

static struct miscdevice tlclk_miscdev = {
.minor = MISC_DYNAMIC_MINOR,
.name = "telco_clock",
.fops = &tlclk_fops,

};

...

ret = misc_register(&tlclk_miscdev);
if (ret < 0) {

printk(KERN_ERR "tlclk: misc_register returns %d.\n", ret);
ret = -EBUSY;
goto out3;

}
....

/* Clean up code: */
misc_deregister(&tlclk_miscdev);

A sample from the riport.c driver

http://marc.theaimsgroup.com/?l=linux-kernel&m=115135603811650&w=2

on how you could set up a class node and udev support without using the misc
device:

static struct class *riport_class;
...
static int __init riport_init(void)
{

struct class_device *class_err;
...

if ((result = register_chrdev(major, "riport", &drvriport_fops)) < 0)
goto fail_register_chrdev;

...
riport_class = class_create(THIS_MODULE, "riport");

7

if (IS_ERR(riport_class)) {
result = PTR_ERR(riport_class);
goto init_fail_dev;

}

class_err = class_device_create(riport_class, NULL,
MKDEV(riport.major, 0), NULL, "riport0");

if (IS_ERR(class_err)) {
result = PTR_ERR(class_err);
class_destroy(riport_class);
goto init_fail_dev;

}
...
}

/* Clean up code: */

static void __exit riport_exit(void)
{
...

class_device_destroy(riport_class, MKDEV(riport.major, 0));
class_destroy(riport_class);

...
}

5 Introduction to sysfs and using it to replace
your IOCTL function

To use sysfs, you need to set up some connections with the driver-model. The
Linux driver-model was developed and documented back in 2003 as part of the
2.5 development kernel. It is also documented in the Linux Device Driver book,
3rd edition. There are also a number of locations for documentation you can
find on the net. The problem with these resources is that they tend to be 3
years old and somewhat out of date.

Specifically; the Linux Device Driver book by Corbett, Rubini, and Kroah-
Hartman has a number of sections that are out of sync with what is in the
2.6.17.1 kernel tree, kset hotplug ops, class simple *, that are now gone from
the kernel tree.

The good news is that you don’t need to understand all the driver model / sysfs

8

/ uevent implementation details to use it. For your driver you are looking to
implement sysfs interfaces to replace your IOCTLS. For this you just need a
device instance.

You could use the class device you created using class device create, but this
would put your devices and attributes under the
/sys/class/YOUR CLASS/your device/ path. This would not be acceptable as
it is expected that you put your hardware device attributes (register access)
under the /sys/device/... tree, and the logical (protocol, logical interface) at-
tributes exported by the driver under the class tree.

The rule of thumb is if your attribute changes HW state it probably is a device
attribute, otherwise it is a class attribute. It’s not always cut and dry, but it’s
also not a big deal to change things around if there is disagreement with your
initial implementation.

There are a number of root level sysfs directory hierarchies under the driver
model. You will only need to work with class and device objects for most legacy
devices.

Class Entries under the /sys/class directory hierarchy are intended to provide
a logical interface and view of the devices represented underneath. This
is why udev is tied to class events.

Devices Entries under the /sys/devices/ directory hierarchy are intended to
provide interfaces to the physical hardware. This is where you should put
attributes that effect actual hardware registers.

The API used for creating a platform device is platform device register simple.
It returns the device pointer with initialized kobj member so that you can attach
your attributes as needed.

The telecom clock driver had a lot of IOCTLs. The fastest way to register
attributes to your device is to use the sysfs create group API. Using this API
consists of building an attribute group structure that includes a null termi-
nated attribute array of attribute pointers. You’ll want to use the declaration
macros for devices, DEVICE ATTR. Declare your device attribute using DE-
VICE ATTR, and fill in your store and show function names.

A sample on how to create the device object needed to attach attributes too:

static ssize_t show_current_ref(struct device *d,
struct device_attribute *attr, char *buf)

{

9

unsigned long ret_val;
....

return sprintf(buf, "0x%lX\n", ret_val);
}
static DEVICE_ATTR(current_ref, S_IRUGO, show_current_ref, NULL);
....
static ssize_t store_hardware_switching(struct device *d,

struct device_attribute *attr, const char *buf, size_t count)
{
....

return strnlen(buf, count);
}
static DEVICE_ATTR(hardware_switching, (S_IWUSR|S_IWGRP), NULL,

store_hardware_switching);

static struct platform_device *tlclk_device;
static struct attribute *tlclk_sysfs_entries[] = {

&dev_attr_current_ref.attr,
&dev_attr_telclock_version.attr,
&dev_attr_alarms.attr,

....
&dev_attr_hardware_switching.attr,
&dev_attr_refalign.attr,
&dev_attr_mode_select.attr,
&dev_attr_reset.attr,
NULL

};

static struct attribute_group tlclk_attribute_group = {
.name = NULL,/* put in device directory */
.attrs = tlclk_sysfs_entries,

};
....

tlclk_device = platform_device_register_simple("telco_clock",
-1, NULL, 0);

ret = sysfs_create_group(&tlclk_device->dev.kobj,
&tlclk_attribute_group);

....
/* Clean up code: */

sysfs_remove_group(&tlclk_device->dev.kobj,
&tlclk_attribute_group);

platform_device_unregister(tlclk_device);

10

6 Driver model

You now know enough to get by to implement your driver for 2.6 kernel leverag-
ing the sysfs interface and the udev mechanisms. You may be wondering what
all this driver model business has to do with these new driver idioms. The driver
model is the collection of lower level container classes and infrastructure that
implements the handful of APIs and file system features needed to make the
idiom work. The design and theory of operation of the driver model is beyond
the scope of this tutorial.

Part II

Working with the community and
getting your driver into the
upstream kernels

This part of this tutorial is intended to prepare you for submitting your work for
inclusion in the upstream kernel trees to the Linux Kernel Mailing List (LKML).
There is a lot of information on these topics available. I’m not going to attempt
to replace any of it. It is my hope that the following helps make it easier for
new community members to participate in Linux.

• Getting your driver ready for LKML posting

• Setting up your email client for working with the LKML

• Knowing what documentation to read

• Knowing what to expect and ways to deal with it

7 Getting your driver ready for LKML posting

Here’s a quick list of the types of comments I tend to get over and over again so
you can avoid them yourself. First, re-read the Documentation/CodingStyle.

• Multi-line comments not formatted correctly

11

/*
* bla bla...
*/

• Don’t use C++ comment lines

• Name a maintainer for the driver, with yourself as the most likely victim.
You do this by changing the MAINTAINERS file. Unmaintained drivers
tend to not get included in the kernel tree.

• Be sure to address your email to the correct folks and CC the LKML.

• Be sure to include the signed off by line in your email before the patch.

• Not using static enough. Protect the kernel name space from pollution.

• Don’t use mixed case symbols like iWasACppProgrammerNowIDoLinux-
Drivers or variations on this theme.

• Remove white spaces at the end of lines. In vim, search for the regular
expression.

 $

• Remove code that’s not needed, like assignments to zero for a structure
that’s been allocated with kzmalloc.

• Install ’sparse’ and run make C=1 on your driver build to get have the
space tool do a pass on your driver code. Clean up any warnings. See
Documentation/sparse.txt for where to find the program.

• Don’t miss init declarations for linker optimizations.

• In if blocks the style police like to place constants to the right of the l-value

if (x == constant)

is better than

if (constant == x).

• Double check the indenting as it’s easy to miss some indentation. If all
else fails, you can run the scripts/Lindent tool to reformat your code. Be
sure to carefully go through the Lindent output if you use it. It is famous
for making code look bad in some places.

• Don’t use compound statement blocks with only 1 statement in them.

12

If (ret) {
bla;

} /* bad */

if (ret)
bla; /* good */

• Keep in mind that copy to user doesn’t return the same thing as user mode
copy or write operations. It returns the number of bytes NOT copied.

• C99-style initialization of structure elements. This is the .name = value,
style.

• Make sure you can handle an interrupt instantly after requesting the IRQ,
i.e. before the code returns from the function block containing the re-
quest irq call.

• For debug prints that are compiled in / out use pr debug declared in
linux/kernel.h

• Build the driver for multiple architectures and make sure to clean up any
issues found.

You should build for multiple architectures and configurations to make
sure things are clean on as many as you can handle. Try to include UP,
SMP, as well as architectures that have differences in word sizes and if
possible, little and big endian integers.

• Be sure to include a test pass with your driver built with a kernel that has
all the debug options and PREEMPT + SMP enabled.

• Be sure to fix all the warnings, and don’t just cast them away, really fix
them.

8 Setting up your email client for dealing with
the LKML

Email is the transport of information in the Linux community and there are
standards for email behavior that are difficult to maintain without support of
your email client. For instance, HTML and rich text (MS word) formatted
email are universally rejected by the mailing list. Top posting will get yourself
unfriendly feedback. There are multiple places to get documentation on mailing
list behavior (it pays to know these expected norms). A good reference is from
the ARM-Linux list, where a periodic posting of a set of such expectations
happens once a week.

13

http://www.arm.linux.org.uk/mailinglists/etiquette.php
http://www.arm.linux.org.uk/mailinglists/faq.php

Another good FAQ you should read is the one from kernel.org:

http://www.kernel.org/pub/linux/docs/lkml/

The two most important points are no top posting and text only email. Your
email client can help a lot with your compliance with the behavioral norms.
I have tried a number of email clients with the community mailing lists, and
though you can get by with Windows Outlook, and one of the GUI clients under
Linux, I have had bad things happen to me with all of them. Mutt has been the
only email client I’ve used, so far, that has not helped me to look dumber than
I already do. Others may recommend pine or other clients; they might work
well too, so give them a try if you like. I can only recommend mutt today.

9 Getting Mail

I’m using fetchmail to get my email from my account. You need your own
version of my .fetchmail file:

poll your_pop3_mail_server_URL protocol pop3 user "your_UID" password "your_PW"

Fetchmail will complain about the access settings on your .fetchmail file, but
just do what it asks.

To get my mail, I use one of the following command lines depending on where
I’m getting my mail from:

fetchmail <-- from home
fetchmail ssl <-- at work where our sysadmin doesn’t

allow the sendmail ports to be open
or in the clear.

10 Sending Mail

I’m using Open SuSE10, and I only needed to change the MTA setting in the
YaST/Network Services/Mail Transfer Agent. I needed to set outgoing mail

14

server to ”your smtp server URL”.

With the SuSE YaST configuring this isn’t hard to muddle through.

11 Setting up mutt

The biggest trick to getting things working for me was setting the envelope from
item in my .muttrc file

set envelope_from = yes

You may also want to fiddle with the color body line in the muttrc so you can
read strings that begin and end with like this .

color body brightyellow default "(^|)_[-a-z0-9_]+_[,.?]?[\n]"

Mutt doesn’t have a very sophisticated address book. It uses aliases for email
addresses that you can define using the following .mutt configuration file addi-
tions.

set alias_file = ~/.mutt/aliases
source ~/.mutt/aliases

When reading an email from someone you’d like to have in your alias list, just
use the command ’a’ in mutt to add the mail sender into your aliases. Then
when addressing your email, use the tab key to auto complete / select from your
list of aliases. The format of the alias records is simple, and you can hand edit
the alias file to add entries and even distribution lists.

12 Spell Checking

There are not as many spelling police on the LKML as you would expect, but
they are there. It’s always a good idea to run your work through a spell checker.
I like to use Vim and, for versions of Vim < 7.0 there is a must have plug-
in, VimSpell, that is very nice that works well with my Fedora and RHEL
installations. I have had problems with using VimSpell on my SuSE installations

15

where Vim 6.x with VimSpell didn’t show spelling errors in comment blocks,
but luckily the Vim 7.0 spelling works great on both. I recommend Vim 7.

Spell check your work.

13 What documentation to read

Here is a list of documentation that is useful for getting your work included in
upstream kernels. Most of this documentation is available on Greg KH’s ddk
CD.

http://www.kernel.org/pub/linux/kernel/people/gregkh/ddk/

Read the following documentation in more or less the following order of impor-
tance:

1. Documentation/CodingStyle : you need to read and follow as best as you
can.

2. Documentation/SubmittingPatches

3. Documentation/SubmittingDrivers

4. Documentation/Submitchecklist <– a new file that is currently only in
2.6.17-mm tree

5. Unreliable Guide To Hacking The Linux Kernel : not a bad document.

6. Unreliable Guild to Locking : ditto

7. Documentation/HOWTO, this document is idealistic, but more or less it’s
true. However, there is a social hierarchy and it helps to know who the
more influential folks are and what they say.

8. Documentation/driver-model/* : has the sysfs stuff, but it’s only an
overview and not too helpful in practice.

9. Documentation/filesystems/sysfs.txt

10. Documentation/kobject.txt

11. LinuxHelp UDEVPrimer.html

12. Linux kernel Development (the newer edition, 2nd at this time.)

13. Understanding the Linux Kernel (the newer edition, 2nd at this time.)

16

14. The Linux Device Drivers book (the newer edition, 3rd at this time.)

15. http://lwn.net/

16. http://lwn.net/Articles/driver-porting/ <– a bit dated but contains some
helpful articles including the following:

17. http://lwn.net/Articles/31185/ <– Device model overview

18. http://lwn.net/Articles/51437/ <– The zen of kobjects

19. http://lwn.net/Articles/54651/ <– kobjects and sysfs

20. http://lwn.net/Articles/52621/ <– kobjects and hotplug events

21. http://lwn.net/Articles/55847/ <– Examining a kobject hierarchy

22. http://lwn.net/Articles/31370/ <– Driver porting: Device classes

14 Keeping a thick skin and not giving up

Working with the LKML and the Linux kernel community has its challenges.
I’d like to give a heads up on what to expect, and how you can avoid digging
holes you can’t get out of or burning bridges.

The Linux community has had a reputation for being hard to work with. It is,
but it is getting better and less insulting for the professional engineer. Things
have been changing a lot over the past 7 years I’ve been watching. It is much
easier to make contributions without getting flamed in a public forum by rude
persons with obviously limited life experience. This isn’t to say that you will
not be given a hard time–it’s just not nearly as bad as it used to be. There has
been a noticeable effort by key LKML personalities to squelch the more childish
behaviors.

In general, when you are given a hard time, take your time and think very
carefully about how you respond to any flame bait or attacks. 99.99 % of the
time, you are a lot better off to overlook any inflammatory comments and only
address the technical comments. Don’t take the bait. You may want to even
snip the flame bait out of your replies when possible.

If you’ve ever participated in a peer review of your own code, then interacting
with the LKML for a simple driver patch will feel familiar to you. Expect a lot of
comments on formatting, coding style and spelling, followed by more technical
comments on alternative APIs you could / should be using, dumb things your
code is doing that it could do better, or things your code could do differently.
Overall, you can expect a lot of good input to your code that is important to

17

incorporate into an updated version of the driver, that you will post for more
feedback.

You may disagree with some of the input provided. After considering the input,
if you still disagree, then don’t feel afraid to respond with technical justifications
why that input should not be applied to your code. This is the source of
many interesting threads on the LKML. Just keep your responses technical
and don’t get personal or take things too personally. Chances are you’ll learn
something new, and start building your own credibility for working well with
the community. Being right on some minor point is sometimes not as important
as being able to work well with the community.

When you get into the space of dealing with code larger than your source module,
things change a lot, as now you are in a design review situation. Talking design
over email can be hard even when you have code implementing your design as
a reference.

When you get into design discussions things can get much harder for you. Keep
your senses, keep trying, and realize that sometimes you will not win, because a
longer view of working with the kernel community is needed. Look for opportu-
nities to up-level the discussion, try to get face to face time with your antagonist,
and assume they are working for the good of Linux just like yourself.

Look for help from others to get across the importance of the problem you are
trying to solve. For instance, look at the pain and suffering that has gone into
getting low latency, RT changes or HRT, and the new time subsystems into the
kernel.

Submitting drivers for review and consideration is relatively easy compared to
getting subsystem designs agreed upon, so count your blessings that you are
only trying to get a legacy driver ported and accepted into the upstream kernel.

15 What to expect and ways to deal with it

Now that you have gone through the LKML code review process and the motions
of getting your driver patch accepted into the mm tree, and then the main line
kernel, you will undoubtedly start getting emails about issues others have with
your code. Most of these issues will be raised by Operating System Vendor
(OSV) engineers stumbling over your code as they integrate it with their releases.
This is a really good sign for you and your driver. Gratefully take their work
and promptly evaluate and incorporate it into your driver.

Congratulations, you have now reaped your first Free and Open Source Software

18

(FOSS) process benefits. You have other engineers actually contributing work
back to you. Depending on how the other engineer communicates the issue to
you, after testing the changes, you may only have to do a group reply (reply all)
with the following letters, ACK. Otherwise you may need to merge their work
into yours and re-post the driver patch to the LKML.

After a few releases the emails drop off, and you need only smoke test your
driver from time to time and respond to issues as they come. How many issues
you’ll have to deal with depends on how good / simple / well-used your driver is.
For legacy devices like the telecom clock, this will be low maintenance. You’ll
have activity when your customers are using your hardware and even then it
will likely be coming from the OSV engineer.

Finally, when you do have updates to your code that need to get into the next
versions of the kernel, send the update patch to the maintainer. For odd-ball
drivers like the telecom driver and your legacy driver this maintainer is Linus
Torvalds. Sometimes you’ll need to re-post your update a few times. If you find
that your update isn’t in the next Release Candidate (RC), then soon after that
RC release you should re-post your patch against that RC to Linus, and CC the
LKML. After a few times, the patch will make it into the mainline kernel–you
sometimes just have to be persistent.

You now have a good idea on what to do to get your driver ready for inclusion
in the 2.6 kernels and how to work with the LKML community.

19

Copyright © 2006 Intel Corporation. All rights reserved. BunnyPeople,
Celeron, Celeron Inside, Centrino, Centrino logo, Chips, Core Inside,
Dialogic, EtherExpress, ETOX, FlashFile, i386, i486, i960, iCOMP,
InstantIP, Intel, Intel logo, Intel386, Intel486, Intel740, IntelDX2,
IntelDX4, IntelSX2, Intel Core, Intel Inside, Intel Inside logo, Intel. Leap
ahead., Intel. Leap ahead. logo, Intel NetBurst, Intel NetMerge, Intel
NetStructure, Intel SingleDriver, Intel SpeedStep, Intel StrataFlash, Intel
Viiv, Intel XScale, IPLink, Itanium, Itanium Inside, MCS, MMX, MMX logo,

Optimizer logo, OverDrive, Paragon, PDCharm, Pentium, Pentium II Xeon,
Pentium III Xeon, Performance at Your Command, Pentium Inside, skoool,
Sound Mark, The Computer Inside., The Journey Inside, VTune, Xeon,
Xeon Inside and Xircom are trademarks or registered trademarks of Intel
Corporation or its subsidiaries in the United States and other countries.

* Other names and brands may be claimed as the property of others.

