
I/O Workload Fingerprinting in the Genetic-Library

Jake Moilanen
IBM

moilanen@austin.ibm.com

Abstract

One great difficulty in writing an I/O sched-
uler is having one set of tunables which works
well for every workload. If the I/O scheduler
knew what kind of workload was occurring,
it could modify its tunables for better perfor-
mance. However, due to the I/O scheduler’s
depth in the kernel, it is very difficult to see this
information. One method which can be used to
obtain this information is to look at many small
pieces of information, and then aggregate them
to create a usable fingerprint.

This paper describes how to create an I/O work-
load fingerprint and its uses in both I/O sched-
ulers, and in the genetic-library. The paper’s
main focus is on the application of the fin-
gerprinting in the genetic library. By having
a workload fingerprint, the genetic library can
save genes which worked well for a particular
workload, and reintroduce them back into the
gene pool when that workload is seen again.
This leads to faster convergence on an optimal
tunable in an rapidly changing environment.

1 What is I/O Workload Finger-
printing?

Input/Output Workload Fingerprinting, or I/O
Workload Fingerprinting, is a method of taking

a number of small snapshots of individual per-
formance metrics, classifying them, and aggre-
gating all of them to create a fingerprint
of the current workload. This information is
used to assist I/O schedulers in making perfor-
mance tuning decisions.

2 Motivation

The genetic-library [1] had a need to increase
the speed which it converged on optimal tun-
ables. When a workload changed, it took a
great deal of time for the genetic-library to re-
converge on the new optimal settings. To do
this, the genetic-library must mutate and find
good genes for the new workload. These muta-
tions are really guesses, and guesses take time
to get correct.

Thus emerged the idea of classifying work-
loads, and using the workload information to
reintroduce known good genes to speed up con-
vergence towards optimal genes. Reintroduc-
tion takes the guesswork out of the equation.

While the genetic-library is one user of the I/O
workload fingerprinting, non-genetic-library
I/O schedulers could make use of the classifi-
cation. I/O schedulers can use this workload
information to change their tunables, or even
their scheduling algorithm.



166 • I/O Workload Fingerprinting in the Genetic-Library

3 How workloads are classified

These workloads are classified by how the I/O
is occurring to the block device. The I/O opera-
tions have certain characteristics, such as being
a read or a write, a sequential or random opera-
tion, and a size classification. Thus each I/O is
broken down in three different dimensions:

Type: Read/Write
Pattern: Sequential/Random
Size: Small/Large

Data for each of these dimensions is mea-
sured over a finite period, and used to de-
termine which characteristics each dimension
possesses.

To determine the type dimension, the num-
ber of read operations versus the number of
write operations is calculated. If there are more
than two times the number of read operations
as write operations, then the dimension is clas-
sified as a read. Otherwise, it is classified as a
write.

The pattern is either sequential or random.
For each I/O operation, a measurement is made
of the distance from the previous operation.
These measurements are averaged over the fi-
nite period. If the average distance is large,
then it is inferred that the disk head position is
far away, and a random workload is occurring.
Otherwise, if the distance is small, then the I/Os
are close to each other and it is inferred that the
disk operations are sequential.

The size dimension simply looks at the aver-
age size of each I/O operation and if the average
is a page or less, then the workload is inferred
to be small; otherwise it is large.

After the finite time period, these three di-
mensions are compiled together to form a

fingerprint of the workload. This in-
formation is used by I/O schedulers and the
genetic-library to help tune for the current
workload.

read

write

sequential

random

small

large

type

pattern

size

Fingerprint

Characteristic Dimension

Figure 1: Fingerprint

3.1 I/O Workload Fingerprinting Terms

The term workload is defined as the character-
ization of what the system is doing during a fi-
nite period.

A quantifiable form of the workload is called a
fingerprint.

For the purposes of this paper the term dimen-
sion is used in reference one aspect of the fin-
gerprint.

The term characteristic is in reference to the
possible outcomes a particular dimension can
take.

4 How is it Implemented?

The I/O workload fingerprinting code is broken
up into two pieces. The first is the helper func-
tions which do the statistic and fingerprinting



2006 Linux Symposium, Volume Two • 167

calculations. The second piece is the user, who
makes use of the fingerprint information.

The general code flow of the helper functions
looks like Figure 2.

reset disk stats snapshot
reset_fp_snapshot()

each I/O iterative update of snapshot
update_fp_snapshot()

finite time period up

start finite time period

calculate fingerprint
calc_fp()

Figure 2: Codeflow

4.1 Reset snapshot

The workload is measured during a finite pe-
riod, and the delta between two measurements
is needed to determine the workload. Thus,
at the beginning of the workload determina-
tion period the performance counters used for
the workload determination are zeroed. From
this point forward, any I/O operation is mea-
sured and counted towards this period’s work-
load. The function that does this is reset_fp_
snapshot().

4.2 Start finite counters

The next step is to start the counters for the time
period where the I/O workload is being deter-
mined. These counters are kept by the users
of the fingerprinting helper functions, as there
is no specific helper routines. Typically I/O is
sporadic, and thus, to determine the workload
a longer time period must pass to get accurate
numbers. This time period needs to be at least
in the order of tens of seconds.

4.3 Measure I/O metrics

Every I/O request makes a call to update_fp_
snapshot(), which updates the snapshot of
metrics with this I/O’s information. The per-
tinent information is discovered by looking at
the passed in bio struct. If the bio is a read,
then the read count is incremented. Conversely,
if the bio is a write, then the write count is in-
cremented.

To determine the distance, the bio->bi_
sector is used. It is inferred that this is
the head position of the disk, and by taking
the delta from the previous I/O’s bio->bi_
sector. This number is averaged in to the
running average which has accumulated since
the reset of the snapshot.

The size uses the bio_sectors(bio) value
passed in. This value is averaged with the run-
ning average as well.

4.4 End finite period

After a predetermined amount of time, the
timer pops, and the I/O workload period comes
to a close. This timer handler calls into the
calc_fp() routine to determine the finger-
print given the workload period snapshot.



168 • I/O Workload Fingerprinting in the Genetic-Library

4.5 Calculate the fingerprint

The calc_fp() call sets a fingerprint by
looking at the snapshot results. The first thing
determined is if the type is a read or a write. If
there are more than two times as many reads as
writes, then the workload type is considered to
be read. The reason that this is not one-to-one
is in most normal workloads there are far more
reads than writes. Hence, the two times factor
being used.

To determine the pattern, the average dis-
tance is used. If the average distance is
more than FP_CLASS_PATTERN_RAND num-
ber of sectors, then the pattern is random. If
it is under, then it is sequential. FP_CLASS_

PATTERN_RAND is defined to be 25. This num-
ber was determined through experimentation in
contrived workloads.

For the size, the average size is used. All
buffered I/O has a minimum size of one page.
Thus, if the size is greater than a page, then it is
considered a large size. If it’s a page, then the
size is small.

Once the fingerprint is determined, this pass
is complete. The next workload period is
started, and the loops starts again at reset_
fp_snapshot().

5 Application in Genetic-Library

Figure 3 shows the code flow.

5.1 Initialization

During the genetic-library initialization, two
three-dimensional arrays are created. The first
dimension of the array is for the type, the sec-
ond is for the pattern, and the last is for the size.

initialization
genetic_register_phenotype()

run child
run_child()

update top performers

run generation

reintroduce genes
reintroduce_genes()

Figure 3: Genetic-Library codeflow

Of the two arrays created, the first is for the top
genes of each workload. The second is for the
top-fitness of each workload.

There is a callback, create_top_genes(),
which does the initialization of the genes for
the particular workload. If good genes for a
particular workload are known, then those are
set.

5.2 Run generation

The kickoff of a new generation also kicks
off the finite timers for the generation. The
genetic-library uses the generation timers as the
finite timers for the I/O workload determina-
tion. By using these timers, the I/O workload
fingerprinting is in line with the genetic-library
generations, and can tailor a new generation to
the current workload.



2006 Linux Symposium, Volume Two • 169

5.3 Run child

Each child in the generation takes their finger-
print snapshot, and consolidates it with the gen-
eration’s snapshot. This is done through a fin-
gerprint helper function, consolidate_fp_
snapshot(). This function takes one master
snapshot, and updates the other child snapshots
to it. This includes adding the reads and writes,
incorporating the average distance, and the av-
erage size.

Once the child has updated the generation mas-
ter snapshot, it resets its snapshot for the next
time it is called.

5.4 Update top performers

At the end of a generation, the fingerprint is
calculated, and used to determine if this gen-
eration was the best for this workload. This is
done by comparing the previous top fitness for
this workload. If this workload had a better fit-
ness, then the average of this generation’s genes
are saved off, and its fitness is used as the top
fitness for this generation.

There is also a decay factor on the top fitness
for the current workload. Just in case there
was a spike with less-than-optimal genes, the
current workload’s top fitness is reduced every
pass through. This allows for self-correcting in
an environment which spikes.

5.5 Reintroduce generation

When the current fingerprint changes from the
last fingerprint, it indicates that the workload
changed. This is the opportune time to rein-
troduce the genes which worked well on this
workload. This is done via reintroduce_
genes(). The first child is arbitrarily picked

to get the reintroduction of genes. This is done
since no matter what the child count is, there is
always at least one, so the first is a safe one to
put them in. This reintroduction of the genes is
only done on the switch of workloads and not
every generation in order to not continuously
get bad genes which got set in the top gene’s
array because of a spike. Otherwise it could
take a while for the decay to kick in and correct
the genes.

6 Performance

For the genetic-library, the main purpose of I/O
Workload Fingerprinting is to converge on op-
timal tunables quicker during a changing work-
load. To test how well it performed, the flex-
ible file system benchmark [3], or FFSB, was
used. The FFSB is a versatile benchmark which
is able to simulate most any I/O workload.

In the performance evaluation, an OpenPower
710 system, with 2 CPUs, and 1.848 giga-
bytes of ram was used. The benchmarks were
conducted on a SLES 9 SP3 base install with
a 2.6.16 kernel. More system details can be
found in Appendix A.

To determine the convergence time, four differ-
ent workloads were simulated. These included
a random read, a random write, a sequential
read, and a sequential write. The workloads
were cycled to be as malevolent as possible for
the genetic-library. For instance, the bench-
mark started as a sequential write, and then
went to the polar opposite, random read. This
typically requires the genetic-library to search
for all new genes.

Two runs were conducted. The first was a stan-
dard genetic-library without I/O workload fin-
gerprinting turned on. The second run had the
genetic-library plus I/O workload fingerprint-
ing. In the second run, two passes were done.



170 • I/O Workload Fingerprinting in the Genetic-Library

The first pass warmed up good genes for the
workload fingerprinting, the second pass was
with a warm set of optimal genes.

The convergence was detected by pulling every
child’s genes during the run, and then plotting
them. Visual inspection clearly showed the one
or two dominant genes in a particular workload
converging to a single value. Once those genes
finally reached that value, convergence has oc-
curred.

6.1 Results

As show in Figure 4, faster convergence did
occur. As the second pass of the fingerprint-
ing run had a drastic reduction in convergence
time. Both sequential read and sequential write
converged with an 89% and a 97% reduction in
time, respectively. Random read and random
write converged with an 61% and 19% reduc-
tion in time, respectively. Sheet1

Page 1

sequential 
write

random read sequential 
read

random write

0

50

100

150

200

250

300

350

400

450

500

Convergence time

base genetic fingerprint pass 1 fingerprint pass 2

se
co

nd

Figure 4: Convergence time

In addition to the improvement of the second
pass, the first pass of the fingerprinting run did
see some improvements as well. There are two
factors which contributed. While the bench-
marks were immediately run once login prompt

was reached, there is an amount of warming of
the optimal genes which occurs from bootup.
This would mostly be seen in random read. The
other factor is because all workload gene pools
are initialized to the Anticipatory I/O scheduler
defaults. On a malevolent workload change,
the defaults are generally closer to the optimal
genes than the current tuning.

7 Future Work

At the time of this paper, use of the I/O
workload fingerprinting was reserved only for
the genetic-library. Expanding it to interact
directly with the Anticipatory I/O scheduler
would be ideal. Currently the Anticipatory I/O
Schedule is tuned to optimize sequential read
operations [2]. If the workload deviates, then
performance suffers. The I/O workload finger-
printing could set optimal tunables as workload
changes and would greatly improve the overall
performance of the Anticipatory I/O scheduler.
The optimal tunables for each workload could
be pulled from where the tunables converge in
the genetic-library during contrived workloads.

Other future work includes setting tunables in
a per-disk basis, as some systems have a RAID
setup in addition to an IDE disk. The workloads
between those two devices can vary greatly.
However, if it was known what type of work-
load each was performing, then each disk could
have its own set of tunables and could increase
the overall performance.

Expanding this idea of workload fingerprinting
to CPU workload fingerprint is an interesting
idea. By taking small pieces of information and
aggregating that information to an overall CPU
workload, fingerprinting could be useful for the
CPU scheduler. At the current time, no propos-
als have been made as to how to do this; it is
an interesting problem that would be useful to
solve.



2006 Linux Symposium, Volume Two • 171

8 Conclusion

The performance numbers clearly show a dras-
tic improvement on the convergence time. By
increasing the convergence rate, the I/O work-
load fingerprinting pushes the usability of the
genetic-library on a desktop environment. It
also greatly improves the aggregate perfor-
mance of the genetic-library, as it does not
waste time with less-than-optimal genes on a
changing workload.

Legal Statement

Copyright 2006 IBM.

This work represents the view of the author and does
not necessarily represent the view of IBM.

IBM, the IBM logo, and POWER are trademarks or
registered trademarks of International Business Ma-
chines Corporation in the United States, other coun-
tries, or both.

Linux is a trademark of Linus Torvalds in the United
States, other countries, or both.

Other company, product, and service names may be
trademarks or service marks of others.

All the benchmarking was conducted for research
purposes only, under laboratory conditions. Results
will not be realized in all computing environments.

References in this publication to IBM products or
services do not imply that IBM intends to make
them available in all countries in which IBM op-
erates. This document is provided “AS IS,” with no
express or implied warranties. Use the information
in this document at your own risk.

References

[1] Moilanen, J., Williams, P., Using genetic
algorithms to autonomically tune the
kernel, 2005 Linux Symposium

[2] Pratt, S., Heger, D., Workload Dependent
Performance Evaluation of the Linux 2.6
I/O Schedulers, 2004 Linux Symposium

[3] http://sourceforge.net/projects/ffsb/

Appendix A. Performance System

IBM OpenPower 710 System
2-way 1.66 Ghz Power5 Processors
1.848 GB of memory
15,000 RPM SCSI drives
SLES 9 SP3
2.6.16 Kernel



172 • I/O Workload Fingerprinting in the Genetic-Library



Proceedings of the
Linux Symposium

Volume Two

July 19th–22nd, 2006
Ottawa, Ontario

Canada



Conference Organizers

Andrew J. Hutton, Steamballoon, Inc.
C. Craig Ross, Linux Symposium

Review Committee

Jeff Garzik, Red Hat Software
Gerrit Huizenga, IBM
Dave Jones, Red Hat Software
Ben LaHaise, Intel Corporation
Matt Mackall, Selenic Consulting
Patrick Mochel, Intel Corporation
C. Craig Ross, Linux Symposium
Andrew Hutton, Steamballoon, Inc.

Proceedings Formatting Team

John W. Lockhart, Red Hat, Inc.
David M. Fellows, Fellows and Carr, Inc.
Kyle McMartin

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.


