
DCCP on Linux

Arnaldo Carvalho de Melo
Conectiva S.A.

acme@{conectiva.com.br,mandriva.com,ghostprotocols.net}

Abstract

In this paper I will present the current state of
DCCP for Linux, looking at several implemen-
tations done for Linux and for other kernels,
how well they interoperate, how the implemen-
tation I’m working on took advantage of the
work presented in my OLS 2004 talk (“TCP-
fying the poor cousins”) and ideas about plu-
gabble congestion control algorithms in DCCP,
taking advantage of recent work by Stephen
Hemminger on having a IO scheduller like in-
frastructure for congestion control algorithms
in TCP.

1 What is DCCP?

The Datagram Congestion Control Protocol is a
new Internet transport protocol to provide unre-
liable, congestion controlled connections, pro-
viding a blend of characteristics not available
in other existing protocols such as TCP, UDP,
or SCTP.

There has been concern that the increasing use
of UDP in application such as VoIP, stream-
ing multimedia and massively online games can
cause congestion collapse on the Internet, so
DCCP is being designed to provide an alterna-
tive that frees the applications from the com-
plexities of doing congestion avoidance, while

providing a core protocol that can be extended
with new congestion algorithms, called CCIDs,
that can be negotiated at any given time in
a connection lifetime, even with different al-
gorithms being used for each direction of the
connection, called Half Connections in DCCP
drafts.

This extensibility is important as there are dif-
ferent sets of requirements on how the conges-
tion avoidance should be done, while some ap-
plications may want to grab as much bandwidth
as possible and accept sudden drops when con-
gestion happens others may want not to be so
greedy but have fewer oscillations in the av-
erage bandwidth used through the connection
lifetime.

Currently there are two profiles defined for
DCCP CCIDs: CCID2, TCP-Like Conges-
tion Control[3], for those applications that
want to use as much as possible bandwidth
and are able to adapt to sudden changes in
the available bandwidth like those that hap-
pens in TCP’s Additive Increase Multiplica-
tive Decrease (AIMD) congestion control; and
CCID3, TCP Friendly Congestion Control
(TFRC)[4], that implements a receiver-based
congestion control algorithm where the sender
is rate-limited by packets sent by the receiver
with information such as receive rate, loss inter-
vals, and the time packets were kept in queues
before being acknowledged, indented for appli-
cations that want a smooth rate.

• 305 •

306 • DCCP on Linux

There are a number of RFC drafts covering
aspects of DCCP to which interested people
should refer for detailed information about the
many aspects of this new protocol, such as:

• Problem Statement for DCCP[1]

• Datagram Congestion Control Protocol
(DCCP)[2]

• Profile for DCCP Congestion Control ID 2[3]

• Profile for DCCP Congestion Control ID 3[4]

• Datagram Congestion Control Protocol
(DCCP) User Guide[5]

• DCCP CCID 3-Thin[6]

• Datagram Congestion Control Protocol Mo-
bility and Multihoming[7]

• TCP Friendly Rate Control (TFRC) for Voice:
VoIP Variant and Faster Restart[8]

This paper will concentrate on the the current
state of the author’s implementation of DCCP
and its CCIDs in the Linux Kernel, without
going too much into the merits of DCCP as a
protocol or its adequacy to any application sce-
nario.

2 Implementations

DCCP has been a moving target, already in its
11th revision, with new drafts changing proto-
col aspects that have to be tracked by the imple-
mentators, so while there has been several im-
plementations written for Linux and the BSDs,
they are feature incomplete or not compliant
with latest drafts.

Patrick McManus wrote an implementation for
the Linux Kernel version 2.4.18, Implement-
ing only CCID2, TCP-Like Congestion Con-
trol, but has not updated it to the latest specs

and also has bitrotted, as the Linux kernel net-
working core has changed in many aspects in
2.6.

Another implementation was made for
FreeBSD at the Luleå University of Tech-
nology, Sweden, that is more complete,
implementing even the TFRC CCID. This
implementation has since been merged in the
KAME Project codebase, modified with lots of
ifdefs to provide a single DCCP code base for
FreeBSD, NetBSD, and OpenBSD.

The WAND research group at the University
of Waikato, New Zealand also has been work-
ing on a DCCP implementation for the Linux
kernel, based on the stack written by Patrick
McManus, combining it with the the Luleå
FreeBSD CCID3 implementation.

The DCCP home page at ICIR also mentions a
user-level implementation written at the Berke-
ley University, but the author was unable to find
further details about it.

The implementation the author is writing for
the Linux Kernel is not based on any of the
DCCP core stack implementations mentioned,
for reasons outlined in the “DCCP on Linux”
section later in this paper.

3 Writing a New Protocol for the
Linux Kernel

Historically when new protocols are being writ-
ten for the Linux kernel existing protocols are
used as reference, with code being copied to ac-
celerate the implementation process.

While this is a natural way of writing new code
it introduces several problems when the ref-
erence protocols and the core networking in-
frastructure is changed, these problems were

2005 Linux Symposium • 307

discussed in my “TCPfying the poor Cousins”
[10] paper presented in 2004 at the Linux Sym-
posium, Ottawa.

This paper will describe the design principles
and the refactorings done to the Linux kernel
networking infrastructure to reuse existing code
in the author’s DCCP stack implementation to
minimise these pitfalls.

4 DCCP on Linux

The next sections will talk about the design
principles used in this DCCP implementation,
using the main data structures and functions
as a guide, with comments about its current
state, how features were implemented, some-
times how missing features or potential DCCP
APIs that are being discussed in the DCCP
community could be implemented and future
plans.

5 Design Principles

1. Make it look as much as possible as TCP,
same function names, same flow.

2. Generalise as much as possible TCP stuff.

3. Follow as close as possible the pseu-
docode in the DCCP draft[2], as long as
it doesn’t conflicts with principle 1.

4. Any refactoring to existing code (TCP,
etc.) has to produce code that is as
fast as the previous situation—if possi-
ble faster as was the case with TCP’s
open_request generalization, becom-
ing struct request_sock . Now
TCP v4 syn minisocks use just 64 bytes,
down from 96 in stock Linus tree; lm-
bench shows performance improvements.

Following these principles the author hopes
that the Linux TCP hackers will find it easy
to review this stack, and if somebody thinks
that all these generalisations are dangerous for
TCP, so be it, its just a matter of reverting the
TCP patches and leaving the infrastructure to
be used only by DCCP and in time go on slowly
making TCP use it.

6 Linux Infrastructure for Internet
Transport Protocols

It is important to understand how the Linux ker-
nel internet networking infrastructure supports
transport protocols to provide perspective on
the refactorings done to better support a DCCP
implementation.

A AF_INET transport protocol uses theinet_

add_protocol function so that the IP layer
can feed it packets with its protocol identifier as
present in the IP header, this function receives
the protocol identifier and astruct net_
protocol where there has to be a pointer for
a function to handle packets for this specific
transport protocol.

The transport protocol also has to use the
inet_register_protosw function to tell
the inet layer how to create new sockets for this
specific transport protocol, passing astruct
inet_protosw pointer as the only argu-
ment, DCCP passes this:

struct inet_protosw

dccp_v4_protosw = {
.type = SOCK_DCCP,
.protocol= IPPROTO_DCCP,
.prot = &dccp_v4_prot,
.ops = &inet_dccp_ops,
};

So when applications usesocket(AF_

INET, SOCK_DCCP, IPPROTO_DCCP) the

308 • DCCP on Linux

inet infrastructure will find this struct and
set socket->ops to inet_dccp_ops and
sk->sk_prot to dccp_v4_prot .

Thesocket->ops pointer is used by the net-
work infrastructure to go from a syscall to the
right network family associated with a socket,
DCCP sockets will be reached through this
struct:

struct proto_ops inet_dccp_ops = {
.family = PF_INET,
.owner = THIS_MODULE,
.release = inet_release,
.bind = inet_bind,
.connect = inet_stream_connect,
.socketpair= sock_no_socketpair,
.accept = inet_accept,
.getname = inet_getname,
.poll = sock_no_poll,
.ioctl = inet_ioctl,
.listen = inet_dccp_listen,
.shutdown = inet_shutdown,
.setsockopt=

sock_common_setsockopt,
.getsockopt=

sock_common_getsockopt,
.sendmsg = inet_sendmsg,
.recvmsg = sock_common_recvmsg,
.mmap = sock_no_mmap,
.sendpage = sock_no_sendpage,
};

Looking at this struct we can see that the DCCP
code shares most of the operations with the
other AF_INET transport protocols, only im-
plementing the.listen method in a different
fashion, and even this method is to be shared, as
the only difference it has withinet_listen ,
the method used for TCP is that it checks if
the socket type isSOCK_DGRAM, while inet_
listen checks if itsSOCK_STREAM.

Another point that shows that this stack is still
in development is that at the moment it doesn’t
supports some ot thestruct proto_ops

methods, using stub routines that return appro-
priate error codes.

One of these methods,.mmap, is implemented
in the Waikato University DCCP stack to pro-
vide transmission rate information when using
the TFRC DCCP CCID, and can be used as
well to implement an alternative sending API
that uses packet rings in an mmaped buffer as
described the paper “A Congestion-Controlled
Unreliable Datagram API” by Junwen Lai and
Eddie Kohler[12].

To go from the commonstruct proto_
ops AF_INET methods to the DCCP stack the
sk->sk_prot pointer is used, and in DCCP
case it is set to this struct:

struct proto dccp_v4_prot = {
.name = "DCCP",

.owner = THIS_MODULE,

.close = dccp_close,

.connect = dccp_v4_connect,

.disconnect = dccp_disconnect,

.ioctl = dccp_ioctl,

.init = dccp_v4_init_sock,

.setsockopt = dccp_setsockopt,

.getsockopt = dccp_getsockopt,

.sendmsg = dccp_sendmsg,

.recvmsg = dccp_recvmsg,

.backlog_rcv = dccp_v4_do_rcv,

.hash = dccp_v4_hash,

.unhash = dccp_v4_unhash,

.accept = inet_csk_accept,

.get_port = dccp_v4_get_port,

.shutdown = dccp_shutdown,

.destroy =

dccp_v4_destroy_sock,

.max_header = MAX_DCCP_HEADER,

.obj_size = sizeof(struct

dccp_sock),

.rsk_prot =

&dccp_request_sock_ops,

.orphan_count= &dccp_orphan_count,

};

2005 Linux Symposium∼∼•∼∼309

Two of these methods bring us to a refactoring
done to share code with TCP, denounced by the
.accept method,inet_csk_accept , that
previously was namedtcp_accept , and as
will be described in the next section could be
made generic because most of the TCP infras-
tructure to handle SYN packets was generalised
so as to be used by DCCP and other protocols.

7 Handling Connection Requests

DCCP connection requests are done sending
a packet with a specific type, and this shows
an important difference with TCP, namely that
DCCP has an specific field in its packet header
to indicate the type of the packet, whereas TCP
has a flags field where one can use differenc
combinations to indicate actions such as the be-
ginning of the 3way handshake to create a con-
nection, when a SYN packet is sent, while in
DCCP a packet with type REQUEST is sent.

Aside from this difference the code to process
a SYN packet in TCP fits most of the needs
of DCCP to process a REQUEST packet: to
create a mini socket, a structure to represent a
socket in its embryonic form, avoiding using
too much resources at this stage in the socket
lifetime, and also to deal with timeouts waiting
for TCP’s SYN+ACK or DCCP’s RESPONSE
packet, synfloods (requestfloods in DCCP).

So thestruct open_request TCP spe-
cific data structure was renamed tostruct
request_sock , with the members that are
specfic to TCP and TCPv6 were removed, ef-
fectively creating a class hierarchy similar to
the struct sock one, with each protocol
using this structure creating a derived struct that
has astruct request_sock as its first
member, so that the functions that aren’t proto-
col specific could be moved to the networking
core, becoming a new core API usable by other

protocols, not even necessarily anAF_INET
protocol.

Relevant parts ofstruct request_sock :

struct request_sock {
struct request_sock ∗dl_next;
u8 retrans;
u32 rcv_wnd;
unsigned long expires;
struct request_sock_ops ∗rsk_ops;
struct sock ∗sk;
};

The struct request_sock_ops data
structure is not really a new thing, it already ex-
ists in the stock kernel sources, within the TCP
code, named asstruct or_calltable ,
introduced when the support for IPv6 was
merged. At that time the approach to make this
code shared among TCPv6 and TCPv4 was to
add an union tostruct open_request ,
leaving this struct with this layout (some fields
suppressed):

/ ∗ this structure is too big ∗ /
struct open_request {
struct open_request ∗dl_next;
u8 retrans;
u32 rcv_wnd;
unsigned long expires;
struct or_calltable ∗class;
struct sock ∗sk;
union {

struct tcp_v4_open_req v4_req;
#if defined(CONFIG_IPV6) || defined

(CONFIG_IPV6_MODULE)
struct tcp_v6_open_req v6_req;

#endif
} af;

};

So there is no extra indirection added by this
refactoring, and now the state that TCPv4 uses
to represent syn sockets was reduced signif-
icantly as the TCPv6 state is not included,

310 • DCCP on Linux

being moved tostruct tcp6_request_
sock , that is derived in an OOP fashion
from struct tcp_request_sock , that
has this layout:

struct tcp_request_sock {
struct inet_request_sock req;
u32 rcv_isn;
u32 snt_isn;
};

That is, derived from another new data struc-
ture, struct inet_request_sock , that
has this layout:

struct inet_request_sock {
struct request_sock req;
u32 loc_addr;
u32 rmt_addr;
u16 rmt_port;
u16 snd_wscale:4,

rcv_wscale:4,
tstamp_ok:1,
sack_ok:1,
wscale_ok:1,
ecn_ok:1;

struct ip_options ∗opt;
};

Which bring us back to DCCP, where sockets
in the first part of the 3way handshake, the ones
created when a DCCP REQUEST packet is re-
ceived, are represented by this structure:

struct dccp_request_sock {
struct inet_request_sock

dreq_inet_rsk;
u64 dreq_iss;
u64 dreq_isr;
};

This way TCP’sstruct open_request
becomes a class hierarchy, with the common
part (struct request_sock) becoming
available for use by any connection oriented
protocol, much in the same waystruct
sock is common to all Linux network proto-
cols.

References

[1] Sally Floyd, Mark Handley, and Eddie
Kohler, 2002 “Problem Statement for
DCCP” draft-ietf-dccp-problem-00.txt

[2] Eddie Kohler, Mark Handley and Sally
Floyd, 2005 “Datagram Congestion
Control Protocol (DCCP)”
draft-ietf-dccp-spec-11.txt

[3] Sally Floyd, Eddie Kohler, 2005 “Profile
for DCCP Congestion Control ID 2:
TCP-like Congestion Control”
draft-ietf-dccp-ccid2-10.txt

[4] Sally Floyd, Eddie Kohler and Jitendra
Padhye, 2005 “Profile for DCCP
Congestion Control ID 3: TFRC
Congestion Control”
draft-ietf-dccp-ccid3-11.txt

[5] Tom Phelan, 2005 “Datagram Congestion
Control Protocol (DCCP) User Guide”
draft-ietf-dccp-user-guide-04.txt

[6] Eddie Kohler, 2004 “DCCP CCID
3-Thin” draft-ietf-dccp-ccid3-thin-01.txt

[7] Eddie Kohler, 2004 “Datagram
Congestion Control Protocol Mobility
and Multihoming”
draft-kohler-dccp-mobility-00.txt

[8] Sally Floyd, Eddie Kohler, 2005 “TCP
Friendly Rate Control (TFRC) for Voice:
VoIP Variant and Faster Restart”
draft-ietf-dccp-tfrc-voip-01.txt

[10] Arnaldo Carvalho de Melo, 2004
“TCPfying the Poor Cousins” Ottawa
Linux Symposium, 2004

[11] Patrick McManus DCCP implementation
for Linux 2.4.18

2005 Linux Symposium • 311

[12] Junwen Lai and Eddie Kohler, “A
Congestion-Controlled Unreliable
Datagram API”
http://www.icir.org/kohler/

dcp/nsdiabstract.pdf

312 • DCCP on Linux

Proceedings of the
Linux Symposium

Volume One

July 20nd–23th, 2005
Ottawa, Ontario

Canada

Conference Organizers

Andrew J. Hutton,Steamballoon, Inc.
C. Craig Ross,Linux Symposium
Stephanie Donovan,Linux Symposium

Review Committee

Gerrit Huizenga,IBM
Matthew Wilcox,HP
Dirk Hohndel,Intel
Val Henson,Sun Microsystems
Jamal Hadi Salimi,Znyx
Matt Domsch,Dell
Andrew Hutton,Steamballoon, Inc.

Proceedings Formatting Team

John W. Lockhart,Red Hat, Inc.

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.

