
ct_sync : state replication of ip_conntrack

Harald Welte
netfilter core team / Astaro AG / hmw-consulting.de

laforge@gnumonks.org

Abstract

With traditional, stateless firewalling (such as
ipfwadm, ipchains) there is no need for spe-
cial HA support in the firewalling subsystem.
As long as all packet filtering rules and rout-
ing table entries are configured in exactly the
same way, one can use any available tool for
IP-Address takeover to accomplish the goal of
failing over from one node to the other.

With Linux 2.4/2.6 netfilter/iptables, the Linux
firewalling code moves beyond traditional
packet filtering. Netfilter provides a modular
connection tracking susbsystem which can be
employed for stateful firewalling. The con-
nection tracking subsystem gathers informa-
tion about the state of all current network flows
(connections). Packet filtering decisions and
NAT information is associated with this state
information.

In a high availability scenario, this connection
tracking state needs to be replicated from the
currently active firewall node to all standby
slave firewall nodes. Only when all connection
tracking state is replicated, the slave node will
have all necessary state information at the time
a failover event occurs.

Due to funding by Astaro AG, the netfil-
ter/iptables project now offers act_sync ker-
nel module for replicating connection tracking
state accross multiple nodes. The presentation
will cover the architectural design and imple-
mentation of the connection tracking failover

sytem.

1 Failover of stateless firewalls

There are no special precautions when in-
stalling a highly available stateless packet fil-
ter. Since there is no state kept, all information
needed for filtering is the ruleset and the indi-
vidual, separate packets.

Building a set of highly available stateless
packet filters can thus be achieved by using any
traditional means of IP-address takeover, such
as Heartbeat or VRRPd.

The only remaining issue is to make sure the
firewalling ruleset is exactly the same on both
machines. This should be ensured by the fire-
wall administrator every time he updates the
ruleset and can be optionally managed by some
scripts utilizing scp or rsync.

If this is not applicable, because a very dy-
namic ruleset is employed, one can build a
very easy solution using iptables-supplied tools
iptables-save and iptables-restore. The out-
put of iptables-save can be piped over ssh to
iptables-restore on a different host.

Limitations

• no state tracking

• not possible in combination with iptables
stateful NAT



538 • Linux Symposium 2004 • Volume Two

• no counter consistency of per-rule
packet/byte counters

2 Failover of stateful firewalls

Modern firewalls implement state tracking
(a.k.a. connection tracking) in order to keep
some state about the currently active sessions.
The amount of per-connection state kept at the
firewall depends on the particular configuration
and networking protocols used.

As soon asany state is kept at the packet fil-
ter, this state information needs to be replicated
to the slave/backup nodes within the failover
setup.

Since Linux 2.4.x, all relevant state is kept
within the connection tracking subsystem. In
order to understand how this state could pos-
sibly be replicated, we need to understand the
architecture of this conntrack subsystem.

2.1 Architecture of the Linux Connection
Tracking Subsystem

Connection tracking within Linux is im-
plemented as a netfilter module, called
ip_conntrack.o (ip_conntrack.ko
in 2.6.x kernels).

Before describing the connection tracking sub-
system, we need to describe a couple of defini-
tions and primitives used throughout the con-
ntrack code.

A connection is represented within the
conntrack subsystem usingstruct ip_
conntrack , also calledconnection tracking
entry.

Connection tracking is utilizingconntrack tu-
ples, which are tuples consisting of

• source IP address

• source port (or icmp type/code, gre key,
...)

• destination IP address

• destination port

• layer 4 protocol number

A connection is uniquely identified by two tu-
ples: The tuple in the original direction (IP_

CT_DIR_ORIGINAL) and the tuple for the re-
ply direction (IP_CT_DIR_REPLY).

Connection tracking itself does not drop pack-
ets1 or impose any policy. It just associates
every packet with a connection tracking entry,
which in turn has a particular state. All other
kernel code can use this state information2.

2.1.1 Integration of conntrack with netfil-
ter

If the ip_conntrack.[k]o module is reg-
istered with netfilter, it attaches to theNF_

IP_PRE_ROUTING, NF_IP_POST_ROUTING,
NF_IP_LOCAL_IN , and NF_IP_LOCAL_OUT

hooks.

Because forwarded packets are the most com-
mon case on firewalls, I will only describe how
connection tracking works for forwarded pack-
ets. The two relevant hooks for forwarded
packets areNF_IP_PRE_ROUTING and NF_

IP_POST_ROUTING.

Every time a packet arrives at theNF_IP_

PRE_ROUTINGhook, connection tracking cre-
ates a conntrack tuple from the packet. It
then compares this tuple to the original and re-

1well, in some rare cases in combination with NAT it
needs to drop. But don’t tell anyone, this is secret.

2State information is referenced via thestruct
sk_buff.nfct structure member of a packet.



Linux Symposium 2004 • Volume Two • 539

ply tuples of all already-seen connections3 to
find out if this just-arrived packet belongs to
any existing connection. If there is no match,
a new conntrack table entry (struct ip_
conntrack ) is created.

Let’s assume the case where we have al-
ready existing connections but are starting
from scratch.

The first packet comes in, we derive the tu-
ple from the packet headers, look up the
conntrack hash table, don’t find any match-
ing entry. As a result, we create a new
struct ip_conntrack . This struct
ip_conntrack is filled with all necessarry
data, like the original and reply tuple of the
connection. How do we know the reply tuple?
By inverting the source and destination parts
of the original tuple.4 Please note that this new
struct ip_conntrack is not yet placed
into the conntrack hash table.

The packet is now passed on to other callback
functions which have registered with a lower
priority atNF_IP_PRE_ROUTING. It then con-
tinues traversal of the network stack as usual,
including all respective netfilter hooks.

If the packet survives (i.e., is not dropped
by the routing code, network stack, firewall
ruleset, . . . ), it re-appears atNF_IP_POST_

ROUTING. In this case, we can now safely as-
sume that this packet will be sent off on the
outgoing interface, and thus put the connec-
tion tracking entry which we created atNF_

IP_PRE_ROUTINGinto the conntrack hash ta-
ble. This process is calledconfirming the con-
ntrack.

The connection tracking code itself is not
monolithic, but consists of a couple of separate

3Of course this is not implemented as a linear search
over all existing connections.

4So why do we need two tuples, if they can be de-
rived from each other? Wait until we discuss NAT.

modules5. Besides the conntrack core, there
are two important kind of modules: Protocol
helpers and application helpers.

Protocol helpers implement the layer-4-
protocol specific parts. They currently exist
for TCP, UDP, and ICMP (an experimental
helper for GRE exists).

2.1.2 TCP connection tracking

As TCP is a connection oriented protocol, it is
not very difficult to imagine how conntection
tracking for this protocol could work. There
are well-defined state transitions possible, and
conntrack can decide which state transitions
are valid within the TCP specification. In re-
ality it’s not all that easy, since we cannot as-
sume that all packets that pass the packet filter
actually arrive at the receiving end. . .

It is noteworthy that the standard connection
tracking code doesnot do TCP sequence num-
ber and window tracking. A well-maintained
patch to add this feature has existed for almost
as long as connection tracking itself. It will
be integrated with the 2.5.x kernel. The prob-
lem with window tracking is its bad interaction
with connection pickup. The TCP conntrack
code is able to pick up already existing connec-
tions, e.g. in case your firewall was rebooted.
However, connection pickup is conflicting with
TCP window tracking: The TCP window scal-
ing option is only transferred at connection
setup time, and we don’t know about it in case
of pickup. . .

5They don’t actually have to be separate kernel mod-
ules; e.g. TCP, UDP, and ICMP tracking modules are all
part of the linux kernel moduleip_conntrack.o .



540 • Linux Symposium 2004 • Volume Two

2.1.3 ICMP tracking

ICMP is not really a connection oriented pro-
tocol. So how is it possible to do connection
tracking for ICMP?

The ICMP protocol can be split in two groups
of messages:

• ICMP error messages, which sort-
of belong to a different connection
ICMP error messages are associ-
ated RELATED to a different con-
nection. (ICMP_DEST_UNREACH,
ICMP_SOURCE_QUENCH, ICMP_TIME_

EXCEEDED, ICMP_PARAMETERPROB,
ICMP_REDIRECT).

• ICMP queries, which have a
request-reply character. So
what the conntrack code does, is let
the request have a state ofNEW, and
the reply ESTABLISHED. The reply
closes the connection immediately.
(ICMP_ECHO, ICMP_TIMESTAMP,
ICMP_INFO_REQUEST, ICMP_ADDRESS)

2.1.4 UDP connection tracking

UDP is designed as a connectionless datagram
protocol. But most common protocols using
UDP as layer 4 protocol have bi-directional
UDP communication. Imagine a DNS query,
where the client sends an UDP frame to port 53
of the nameserver, and the nameserver sends
back a DNS reply packet from its UDP port 53
to the client.

Netfilter treats this as a connection. The first
packet (the DNS request) is assigned a state of
NEW, because the packet is expected to create
a new ‘connection.’ The DNS server’s reply
packet is marked asESTABLISHED.

2.1.5 conntrack application helpers

More complex application protocols involving
multiple connections need special support by
a so-called “conntrack application helper mod-
ule.” Modules in the stock kernel come for
FTP, IRC (DCC), TFTP, and Amanda. Netfil-
ter CVS currently contains patches for PPTP,
H.323, Eggdrop botnet, mms, DirectX, RTSP,
and talk/ntalk. We’re still lacking a lot of pro-
tocols (e.g. SIP, SMB/CIFS)—but they are un-
likely to appear until somebody really needs
them and either develops them on his own or
funds development.

2.1.6 Integration of connection tracking
with iptables

As stated earlier, conntrack doesn’t impose any
policy on packets. It just determines the re-
lation of a packet to already existing connec-
tions. To base packet filtering decision on this
state information, the iptablesstatematch can
be used. Every packet is within one of the fol-
lowing categories:

• NEW: packet would create a new connec-
tion, if it survives

• ESTABLISHED : packet is part of an al-
ready established connection (either di-
rection)

• RELATED : packet is in some way related
to an already established connection, e.g.
ICMP errors or FTP data sessions

• INVALID : conntrack is unable to derive
conntrack information from this packet.
Please note that all multicast or broadcast
packets fall in this category.



Linux Symposium 2004 • Volume Two • 541

2.2 Poor man’s conntrack failover

When thinking about failover of stateful fire-
walls, one usually thinks about replication of
state. This presumes that the state is gathered
at one firewalling node (the currently active
node), and replicated to several other passive
standby nodes. There is, however, a very dif-
ferent approach to replication: concurrent state
tracking on all firewalling nodes.

While this scheme has not been implemented
within ct_sync , the author still thinks it is
worth an explanation in this paper.

The basic assumption of this approach is: In
a setup where all firewalling nodes receive ex-
actly the same traffic, all nodes will deduct the
same state information.

The implementability of this approach is to-
tally dependent on fulfillment of this assump-
tion.

• All packets need to be seen by all nodes.
This is not always true, but can be
achieved by using shared media like tra-
ditional ethernet (no switches!!) and
promiscuous mode on all ethernet inter-
faces.

• All nodes need to be able to process
all packets. This cannot be univer-
sally guaranteed. Even if the hardware
(CPU, RAM, Chipset, NICs) and software
(Linux kernel) are exactly the same, they
might behave different, especially under
high load. To avoid those effects, the
hardware should be able to deal with way
more traffic than seen during operation.
Also, there should be no userspace pro-
cesses (like proxies, etc.) running on the
firewalling nodes at all. WARNING: No-
body guarantees this behaviour. However,
the poor man is usually not interested in

scientific proof but in usability in his par-
ticular practical setup.

However, even if those conditions are fulfilled,
there are remaining issues:

• No resynchronization after reboot. If a
node is rebooted (because of a hardware
fault, software bug, software update, etc.)
it will lose all state information until the
event of the reboot. This means, the state
information of this node after reboot will
not contain any old state, gathered before
the reboot. The effects depend on the
traffic. Generally, it is only assured that
state information about all connections
initiated after the reboot will be present.
If there are short-lived connections (like
http), the state information on the just re-
booted node will approximate the state in-
formation of an older node. Only after
all sessions active at the time of reboot
have terminated, state information is guar-
anteed to be resynchronized.

• Only possible with shared medium. The
practical implication is that no switched
ethernet (and thus no full duplex) can be
used.

The major advantage of the poor man’s ap-
proach is implementation simplicity. No state
transfer mechanism needs to be developed.
Only very little changes to the existing con-
ntrack code would be needed in order to be able
to do tracking based on packets received from
promiscuous interfaces. The active node would
have packet forwarding turned on, the passive
nodes, off.

I’m not proposing this as a real solution to
the failover problem. It’s hackish, buggy, and
likely to break very easily. But considering it
can be implemented in very little programming



542 • Linux Symposium 2004 • Volume Two

time, it could be an option for very small instal-
lations with low reliability criteria.

2.3 Conntrack state replication

The preferred solution to the failover problem
is, without any doubt, replication of the con-
nection tracking state.

The proposed conntrack state replication
soltution consists of several parts:

• A connection tracking state replication
protocol

• An event interface generating event mes-
sages as soon as state information changes
on the active node

• An interface for explicit generation of
connection tracking table entries on the
standby slaves

• Some code (preferrably a kernel thread)
running on the active node, receiving state
updates by the event interface and gener-
ating conntrack state replication protocol
messages

• Some code (preferrably a kernel thread)
running on the slave node(s), receiving
conntrack state replication protocol mes-
sages and updating the local conntrack ta-
ble accordingly

Flow of events in chronological order:

• on active node, inside the network RX
softirq

– ip_conntrack analyzes a for-
warded packet

– ip_conntrack gathers some new
state information

– ip_conntrack updates con-
ntrack hash table

– ip_conntrack calls event API

– function registered to event API
builds and enqueues message to send
ring

• on active node, inside the conntrack-sync
sender kernel thread

– ct_sync_send aggregates multi-
ple messages into one packet

– ct_sync_send dequeues packet
from ring

– ct_sync_send sends packet via
in-kernel sockets API

• on slave node(s), inside network RX
softirq

– ip_conntrack ignores packets
coming from thect_sync inter-
face via NOTRACK mechanism

– UDP stack appends packet to socket
receive queue ofct_sync_recv
kernel thread

• on slave node(s), inside conntrack-sync
receive kernel thread

– ct_sync_recv thread receives
state replication packet

– ct_sync_recv thread parses
packet into individual messages

– ct_sync_recv thread cre-
ates/updates localip_conntrack
entry

2.3.1 Connection tracking state replication
protocol

In order to be able to replicate the state be-
tween two or more firewalls, a state replica-
tion protocol is needed. This protocol is used



Linux Symposium 2004 • Volume Two • 543

over a private network segment shared by all
nodes for state replication. It is designed to
work over IP unicast and IP multicast trans-
port. IP unicast will be used for direct point-to-
point communication between one active fire-
wall and one standby firewall. IP multicast will
be used when the state needs to be replicated to
more than one standby firewall.

The principal design criteria of this protocol
are:

• reliable against data loss, as the under-
lying UDP layer only provides checksum-
ming against data corruption, but doesn’t
employ any means against data loss

• lightweight, since generating the state up-
date messages is already a very expensive
process for the sender, eating additional
CPU, memory, and IO bandwith.

• easy to parse, to minimize overhead at
the receiver(s)

The protocol does not employ any security
mechanism like encryption, authentication, or
reliability against spoofing attacks. It is as-
sumed that the private conntrack sync network
is a secure communications channel, not acces-
sible to any malicious third party.

To achieve the reliability against data loss, an
easy sequence numbering scheme is used. All
protocol messages are prefixed by a sequence
number, determined by the sender. If the slave
detects packet loss by discontinuous sequence
numbers, it can request the retransmission of
the missing packets by stating the missing se-
quence number(s). Since there is no acknowl-
edgement for sucessfully received packets, the
sender has to keep a reasonably-sized6 backlog
of recently-sent packets in order to be able to
fulfill retransmission requests.

6reasonable sizemust be large enough for the round-
trip time between master and slowest slave.

The different state replication protocol packet
types are:

• CT_SYNC_PKT_MASTER_ANNOUNCE:
A new master announces itself. Any still
existing master will downgrade itself to
slave upon reception of this packet.

• CT_SYNC_PKT_SLAVE_INITSYNC:
A slave requests initial synchronization
from the master (after reboot or loss of
sync).

• CT_SYNC_PKT_SYNC: A packet con-
taining synchronization data from master
to slaves

• CT_SYNC_PKT_NACK: A slave indi-
cates packet loss of a particular sequence
number

The messages within aCT_SYNC_PKT_SYNC

packet always refer to a particularre-
source(currentlyCT_SYNC_RES_CONNTRACK

andCT_SYNC_RES_EXPECT, although support
for the latter has not been fully implemented
yet).

For every resource, there are several message
types. So far, onlyCT_SYNC_MSG_UPDATE

andCT_SYNC_MSG_DELETEhave been imple-
mented. This means a new connection as well
as state changes to an existing connection will
always be encapsulated in aCT_SYNC_MSG_

UDPATEmessage and therefore contain the full
conntrack entry.

To uniquely identify (and later reference) a
conntrack entry, the only unique criteria is
used:ip_conntrack_tuple .

2.3.2 ct_sync sender thread

Maximum care needs to be taken for the imple-
mentation of the ctsyncd sender.



544 • Linux Symposium 2004 • Volume Two

The normal workload of the active firewall
node is likely to be already very high, so gen-
erating and sending the conntrack state replica-
tion messages needs to be highly efficient.

It was therefore decided to use a pre-allocated
ringbuffer for outboundct_sync packets.
New messages are appended to individual
buffers in this ring, and pointers into this ring
are passed to the in-kernel sockets API to en-
sure a minimum number of copies and memory
allocations.

2.3.3 ct_sync initsync sender thread

In order to facilitate ongoing state synchroniza-
tion at the same time as responding to initial
sync requests of an individual slave, the sender
has a separate kernel thread for initial state syn-
chronization (andct_sync_initsync ).

At the moment it iterates over the state ta-
ble and transmits packets with a fixed rate of
about 1000 packets per second, resulting in
about 4000 connections per second, averaging
to about 1.5 Mbps of bandwith consumed.

The speed of this initial sync should be config-
urable by the system administrator, especially
since there is no flow control mechanism, and
the slave node(s) will have to deal with the
packets or otherwise lose sync again.

This is certainly an area of future improvement
and development—but first we want to see
practical problems with this primitive scheme.

2.3.4 ct_sync receiver thread

Implementation of the receiver is very straight-
forward.

For performance reasons, and to facilitate
code-reuse, the receiver uses the same pre-

allocated ring buffer structure as the sender. In-
coming packets are written into ring members
and then successively parsed into their individ-
ual messages.

Apart from dealing with lost packets, it
just needs to call the respective conntrack
add/modify/delete functions.

2.3.5 Necessary changes within netfilter
conntrack core

To be able to achieve the described con-
ntrack state replication mechanism, the follow-
ing changes to the conntrack core were imple-
mented:

• Ability to exclude certain packets from
being tracked. This was a long-wanted
feature on the TODO list of the netfilter
project and is implemented by having a
“raw” table in combination with a “NO-
TRACK” target.

• Ability to register callback functions to
be called every time a new conntrack en-
try is created or an existing entry modi-
fied. This is part of the nfnetlink-ctnetlink
patch, since the ctnetlink event interface
also uses this API.

• Export an API to externally add, modify,
and remove conntrack entries.

Since the number of changes is very low, their
inclusion into the mainline kernel is not a prob-
lem and can happen during the 2.6.x stable ker-
nel series.

2.3.6 Layer 2 dropping andct_sync

In most cases, netfilter/iptables-based firewalls
will not only function as packet filter but also



Linux Symposium 2004 • Volume Two • 545

run local processes such as proxies, dns relays,
smtp relays, etc.

In order to minimize failover time, it is helpful
if the full startup and configuration of all net-
work interfaces and all of those userspace pro-
cesses can happen at system bootup time rather
then in the instance of a failover.

l2drop provides a convenient way for this goal:
It hooks into layer 2 netfilter hooks (imme-
diately attached tonetif_rx() and dev_
queue_xmit ) and blocks all incoming and
outgoing network packets at this very low
layer. Even kernel-generated messages such as
ARP replies, IPv6 neighbour discovery, IGMP,
. . . are blocked this way.

Of course there has to be an exemption for the
state synchronization messages themselves. In
order to still facilitate remote administration
via SSH and other communication between the
cluster nodes, the whole network interface used
for synchronization is subject to this exemption
from l2drop.

As soon as a node is propagated to master state,
l2drop is disabled and the system becomes vis-
ible to the network.

2.3.7 Configuration

All configuration happens via module parame-
ters.

• syncdev : Name of the multicast-
capable network device used for state syn-
chronization among the nodes

• state : Initial state of the node (0=slave,
1=master)

• id : Unique Node ID (0..255)

• l2drop : Enable (1) or disable (0) the
l2drop functionality

2.3.8 Interfacing with the cluster manager

As indicated in the beginning of this paper,
ct_sync itself does not provide any mech-
anism to determine outage of the master node
within a cluster. This job is left to a cluster
manager software running in userspace.

Once an outage of the master is detected, the
cluster manager needs to elect one of the re-
maining (slave) nodes to become new mas-
ter. On this elected node, the cluster man-
ager will write the ascii character1 into the
/proc/net/ct_sync file. Reading from
this file will return the current state of the lo-
cal node.

3 Acknowledgements

The author would like to thank his fellow net-
filter developers for their help. Particularly
important toct_sync is Krisztian KOVACS
<hidden@balabit.hu> , who did a proof-
of-concept implementation based on my first
paper onct_sync at OLS2002.

Without the financial support of Astaro AG, I
would not have been able to spend any time on
ct_sync at all.



546 • Linux Symposium 2004 • Volume Two



Proceedings of the
Linux Symposium

Volume Two

July 21st–24th, 2004
Ottawa, Ontario

Canada



Conference Organizers

Andrew J. Hutton,Steamballoon, Inc.
Stephanie Donovan,Linux Symposium
C. Craig Ross,Linux Symposium

Review Committee

Jes Sorensen,Wild Open Source, Inc.
Matt Domsch,Dell
Gerrit Huizenga,IBM
Matthew Wilcox,Hewlett-Packard
Dirk Hohndel,Intel
Val Henson,Sun Microsystems
Jamal Hadi Salimi,Znyx
Andrew Hutton,Steamballoon, Inc.

Proceedings Formatting Team

John W. Lockhart,Red Hat, Inc.

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.


