
Build your own Wireless Access Point

Erik Andersen
Codepoet Consulting

andersen@codepoet.org

Abstract

This presentation will cover the software, tools,
libraries, and configuration files needed to
construct an embedded Linux wireless access
point. Some of the software available for con-
structing embedded Linux systems will be dis-
cussed, and selection criteria for which tools to
use for differing embedded applications will be
presented. During the presentation, an embed-
ded Linux wireless access point will be con-
structed using the Linux kernel, the uClibc C
library, BusyBox, the syslinux bootloader, ipt-
ables, etc. Emphasis will be placed on the
more generic aspects of building an embed-
ded Linux system using BusyBox and uClibc.
At the conclusion of the presentation, the pre-
senter will (with luck) boot up the newly con-
structed wireless access point and demonstrate
that it is working perfectly. Source code, build
system, cross compilers, and detailed instruc-
tions will be made available.

1 Introduction

When I began working on embedded Linux,
the question of whether or not Linux was small
enough to fit inside a particular device was a
difficult problem. Linux distributions1 have

1The term “distribution” is used by the Linux com-
munity to refer to a collection of software, including
the Linux kernel, application programs, and needed li-
brary code, which makes up a complete running system.
Sometimes, the term “Linux” or “GNU/Linux” is also
used to refer to this collection of software.

historically been designed for server and desk-
top systems. As such, they deliver a full-
featured, comprehensive set of tools for just
about every purpose imaginable. Most Linux
distributions, such as Red Hat, Debian, or
SuSE, provide hundreds of separate software
packages adding up to several gigabytes of
software. The goal of server or desktop Linux
distributions has been to provide as much value
as possible to the user; therefore, the large
size is quite understandable. However, this
has caused the Linux operating system to be
much larger then is desirable for building an
embedded Linux system such as a wireless ac-
cess point. Since embedded devices repre-
sent a fundamentally different target for Linux,
it became apparent to me that embedded de-
vices would need different software than what
is commonly used on desktop systems. I knew
that Linux has a number of strengths which
make it extremely attractive for the next gen-
eration of embedded devices, yet I could see
that developers would need new tools to take
advantage of Linux within small, embedded
spaces.

I began working on embedded Linux in the
middle of 1999. At the time, building an ‘em-
bedded Linux’ system basically involved copy-
ing binaries from an existing Linux distribution
to a target device. If the needed software did
not fit into the required amount of flash mem-
ory, there was really nothing to be done about
it except to add more flash or give up on the
project. Very little effort had been made to
develop smaller application programs and li-

34 • Linux Symposium 2004 • Volume One

braries designed for use in embedded Linux.

As I began to analyze how I could save space,
I decided that there were three main areas that
could be attacked to shrink the footprint of an
embedded Linux system: the kernel, the set of
common application programs included in the
system, and the shared libraries. Many people
doing Linux kernel development were at least
talking about shrinking the footprint of the ker-
nel. For the past five years, I have focused on
the latter two areas: shrinking the footprint of
the application programs and libraries required
to produce a working embedded Linux system.
This paper will describe some of the software
tools I’ve worked on and maintained, which are
now available for building very small embed-
ded Linux systems.

2 The C Library

Let’s take a look at an embedded Linux system,
the Linux Router Project, which was available
in 1999. http://www.linuxrouter.org/

The Linux Router Project, begun by Dave
Cinege, was and continues to be a very com-
monly used embedded Linux system. Its self-
described tagline reads “A networking-centric
micro-distribution of Linux” which is “small
enough to fit on a single 1.44MB floppy disk,
and makes building and maintaining routers,
access servers, thin servers, thin clients,
network appliances, and typically embedded
systems next to trivial.” First, let’s download
a copy of one of the Linux Router Project’s
“idiot images.” I grabbed my copy from
the mirror site atftp://sunsite.unc.edu/

pub/Linux/distributions/linux-router/

dists/current/idiot-image_1440KB_FAT_

2.9.8_Linux_2.2.gz .

Opening up the idiot-image there are several
very interesting things to be seen.

gunzip \

idiot-image_1440KB_FAT_2.9.8_Linux_2.2.gz
mount \

idiot-image_1440KB_FAT_2.9.8_Linux_2.2 \
/mnt -o loop

du -ch /mnt/*
34K /mnt/etc.lrp
6.0K /mnt/ldlinux.sys
512K /mnt/linux
512 /mnt/local.lrp
1.0K /mnt/log.lrp
17K /mnt/modules.lrp
809K /mnt/root.lrp
512 /mnt/syslinux.cfg
1.0K /mnt/syslinux.dpy
1.4M total

mkdir test
cd test
tar -xzf /mnt/root.lrp

du -hs
2.2M .
2.2M total

du -ch bin root sbin usr var
460K bin
8.0K root
264K sbin
12K usr/bin
304K usr/sbin
36K usr/lib/ipmasqadm
40K usr/lib
360K usr
56K var/lib/lrpkg
60K var/lib
4.0K var/spool/cron/crontabs
8.0K var/spool/cron
12K var/spool
76K var
1.2M total

du -ch lib
24K lib/POSIXness
1.1M lib
1.1M total

du -h lib/libc-2.0.7.so
644K lib/libc-2.0.7.so

Taking a look at the software contained in
this embedded Linux system, we quickly no-
tice that in a software image totaling 2.2
Megabytes, the libraries take up over half the
space. If we look even closer at the set of
libraries, we quickly find that the largest sin-
gle component in the entire system is the GNU
C library, in this case occupying nearly 650k.
What is more, this is a very old version of
the C library; newer versions of GNU glibc,

Linux Symposium 2004 • Volume One • 35

such as version 2.3.2, are over 1.2 Megabytes
all by themselves! There are tools available
from Linux vendors and in the Open Source
community which can reduce the footprint of
the GNU C library considerably by stripping
unwanted symbols; however, using such tools
precludes adding additional software at a later
date. Even when these tools are appropriate,
there are limits to the amount of size which can
be reclaimed from the GNU C library in this
way.

The prospect of shrinking a single library that
takes up so much space certainly looked like
low hanging fruit. In practice, however, re-
placing the GNU C library for embedded Linux
systems was not easy task.

3 The origins of uClibc

As I despaired over the large size of the GNU
C library, I decided that the best thing to do
would be to find another C library for Linux
that would be better suited for embedded sys-
tems. I spent quite a bit of time looking around,
and after carefully evaluating the various Open
Source C libraries that I knew of2, I sadly
found that none of them were suitable replace-
ments for glibc. Of all the Open Source C li-
braries, the library closest to what I imagined
an embedded C library should be was called
uC-libc and was being used for uClinux sys-
tems. However, it also had many problems at
the time—not the least of which was that uC-
libc had no central maintainer. The only mech-
anism being used to support multiple architec-

2The Open Source C libraries I evaluated at
the time included Al’s Free C RunTime library
(no longer on the Internet); dietlibc available from
http://www.fefe.de/dietlibc/ ; the minix C
library available from http://www.cs.vu.nl/
cgi-bin/raw/pub/minix/ ; the newlib library
available from http://sources.redhat.com/
newlib/ ; and the eCos C library available fromftp:
//ecos.sourceware.org/pub/ecos/ .

tures was a complete source tree fork, and there
had already been a few such forks with plenty
of divergant code. In short, uC-libc was a mess
of twisty versions, all different. After spending
some time with the code, I decided to fix it, and
in the process changed the name touClibc
(no hyphen).

With the help of D. Jeff Dionne, one of the cre-
ators of uClinux3, I ported uClibc to run on
Intel compatible x86 CPUs. I then grafted in
the header files from glibc 2.1.3 to simplify
software ports, and I cleaned up the resulting
breakage. The header files were later updated
again to generally match glibc 2.3.2. This ef-
fort has made porting software from glibc to
uClibc extremely easy. There were, however,
many functions in uClibc that were either bro-
ken or missing and which had to be re-written
or created from scratch. When appropriate, I
sometimes grafted in bits of code from the cur-
rent GNU C library and libc5. Once the core
of the library was reasonably solid, I began
adding a platform abstraction layer to allow
uClibc to compile and run on different types of
CPUs. Once I had both the ARM and x86 plat-
forms basically running, I made a few small
announcements to the Linux community. At
that point, several people began to make reg-
ular contributions. Most notably was Manuel
Novoa III, who began contributing at that time.
He has continued working on uClibc and is
responsible for significant portions of uClibc
such as the stdio and internationalization code.

After a great deal of effort, we were able to
build the first shared library version of uClibc
in January 2001. And earlier this year we were
able to compile a Debian Woody system using
uClibc4, demonstrating the library is now able

3uClinux is a port of Linux designed to run on micro-
controllers which lack Memory Management Units
(MMUs) such as the Motorolla DragonBall or the
ARM7TDMI. The uClinux web site is found athttp:
//www.uclinux.org/ .

4http://www.uclibc.org/dists/

36 • Linux Symposium 2004 • Volume One

to support a complete Linux distribution. Peo-
ple now use uClibc to build versions of Gentoo,
Slackware, Linux from Scratch, rescue disks,
and even live Linux CDs5. A number of com-
mercial products have also been released using
uClibc, such as wireless routers, network at-
tached storage devices, DVD players, etc.

4 Compiling uClibc

Before we can compile uClibc, we must first
grab a copy of the source code and unpack it
so it is ready to use. For this paper, we will just
grab a copy of the daily uClibc snapshot.

SITE=http://www.uclibc.org/downloads
wget -q $SITE/uClibc-snapshot.tar.bz2

tar -xjf uClibc-snapshot.tar.bz2
cd uClibc

uClibc requires a configuration file,.config ,
that can be edited to change the way the li-
brary is compiled, such as to enable or dis-
able features (i.e. whether debugging support
is enabled or not), to select a cross-compiler,
etc. The preferred method when starting from
scratch is to runmake defconfig followed
by make menuconfig . Since we are going
to be targeting a standard Intel compatible x86
system, no changes to the default configuration
file are necessary.

5 The Origins of BusyBox

As I mentioned earlier, the two components
of an embedded Linux that I chose to work
towards reducing in size were the shared li-
braries and the set common application pro-
grams. A typical Linux system contains a vari-
ety of command-line utilities from numerous

5Puppy Linux available from http://www.
goosee.com/puppy/ is a live linux CD system built
with uClibc that includes such favorites as XFree86 and
Mozilla.

different organizations and independent pro-
grammers. Among the most prominent of these
utilities were GNU shellutils, fileutils, textutils
(now combined to form GNU coreutils), and
similar programs that can be run within a shell
(commands such assed , grep , ls , etc.).
The GNU utilities are generally very high-
quality programs, and are almost without ex-
ception very, very feature-rich. The large fea-
ture set comes at the cost of being quite large—
prohibitively large for an embedded Linux sys-
tem. After some investigation, I determined
that it would be more efficient to replace them
rather than try to strip them down, so I began
looking at alternatives.

Just as with alternative C libraries, there were
several choices for small shell utilities: BSD
has a number of utilities which could be used.
The Minix operating system, which had re-
cently released under a free software license,
also had many useful utilities. Sash, the stand
alone shell, was also a possibility. After quite
a lot of research, the one that seemed to be
the best fit was BusyBox. It also appealed to
me because I was already familiar with Busy-
Box from its use on the Debian boot flop-
pies, and because I was acquainted with Bruce
Perens, who was the maintainer. Starting ap-
proximately in October 1999, I began enhanc-
ing BusyBox and fixing the most obvious prob-
lems. Since Bruce was otherwise occupied and
was no longer actively maintaining BusyBox,
Bruce eventually consented to let me take over
maintainership.

Since that time, BusyBox has gained a large
following and attracted development talent
from literally the whole world. It has been
used in commercial products such as the IBM
Linux wristwatch, the Sharp Zaurus PDA, and
Linksys wireless routers such as the WRT54G,
with many more products being released all the
time. So many new features and applets have
been added to BusyBox, that the biggest chal-

Linux Symposium 2004 • Volume One • 37

lenge I now face is simply keeping up with all
of the patches that get submitted!

6 So, How Does It Work?

BusyBox is a multi-call binary that combines
many common Unix utilities into a single exe-
cutable. When it is run, BusyBox checks if it
was invoked via a symbolic link (asymlink),
and if the name of the symlink matches the
name of an applet that was compiled into Busy-
Box, it runs that applet. If BusyBox is invoked
as busybox , then it will read the command
line and try to execute the applet name passed
as the first argument. For example:

./busybox date
Wed Jun 2 15:01:03 MDT 2004

./busybox echo "hello there"
hello there

ln -s ./busybox uname
./uname
Linux

BusyBox is designed such that the developer
compiling it for an embedded system can select
exactly which applets to include in the final bi-
nary. Thus, it is possible to strip out support for
unneeded and unwanted functionality, result-
ing in a smaller binary with a carefully selected
set of commands. The customization granu-
larity for BusyBox even goes one step further:
each applet may contain multiple features that
can be turned on or off. Thus, for example, if
you do not wish to include large file support,
or you do not need to mount NFS filesystems,
you can simply turn these features off, further
reducing the size of the final BusyBox binary.

7 Compiling Busybox

Let’s walk through a normal compile of Busy-
Box. First, we must grab a copy of the Busy-
Box source code and unpack it so it is ready to
use. For this paper, we will just grab a copy of
the daily BusyBox snapshot.

SITE=http://www.busybox.net/downloads
wget -q $SITE/busybox-snapshot.tar.bz2
tar -xjf busybox-snapshot.tar.bz2
cd busybox

Now that we are in the BusyBox source di-
rectory we can configure BusyBox so that it
meets the needs of our embedded Linux sys-
tem. This is done by editing the file.config
to change the set of applets that are compiled
into BusyBox, to enable or disable features
(i.e. whether debugging support is enabled or
not), and to select a cross-compiler. The pre-
ferred method when starting from scratch is
to runmake defconfig followed bymake
menuconfig . Once BusyBox has been con-
figured to taste, you just need to runmake to
compile it.

8 Installing Busybox to a Target

If you then want to install BusyBox onto a
target device, this is most easily done by typ-
ing: make install . The installation script
automatically creates all the required directo-
ries (such as/bin , /sbin , and the like) and
creates appropriate symlinks in those directo-
ries for each applet that was compiled into the
BusyBox binary.

If we wanted to install BusyBox to the direc-
tory /mnt, we would simply run:

make PREFIX=/mnt install

[--installation text omitted--]

38 • Linux Symposium 2004 • Volume One

9 Let’s build something that
works!

Now that I have certainly bored you to death,
we finally get to the fun part, building our own
embedded Linux system. For hardware, I will
be using a Soekris 4521 system6 with an 133
Mhz AMD Elan CPU, 64 MB main memory,
and a generic Intersil Prism based 802.11b card
that can be driven using thehostap 7 driver.
The root filesystem will be installed on a com-
pact flash card.

To begin with, we need to create toolchain with
which to compile the software for our wire-
less access point. This requires we first com-
pile GNU binutils8, then compile the GNU
compiler collection—gcc9, and then compile
uClibc using the newly created gcc compiler.
With all those steps completed, we must fi-
nally recompile gcc using using the newly
built uClibc library so thatlibgcc_s and
libstdc++ can be linked with uClibc.

Fortunately, the process of creating a uClibc
toolchain can be automated. First we will go
to the uClibc website and obtain a copy of the
uClibcbuildroot by going here:

http://www.uclibc.org/cgi-bin/

cvsweb/buildroot/

and clicking on the “Download tarball” link10.
This is a simple GNU make based build system
which first builds a uClibc toolchain, and then
builds a root filesystem using the newly built
uClibc toolchain.

For the root filesystem of our wireless access

6http://www.soekris.com/net4521.htm
7http://hostap.epitest.fi/
8http://sources.redhat.com/

binutils/
9http://gcc.gnu.org/

10http://www.uclibc.org/cgi-bin/
cvsweb/buildroot.tar.gz?view=tar

point, we will need a Linux kernel, uClibc,
BusyBox, pcmcia-cs, iptables, hostap, wtools,
bridgeutils, and the dropbear ssh server. To
compile these programs, we will first edit the
buildroot Makefile to enable each of these
items. Figure 1 shows the changes I made to
the buildroot Makefile:

Runningmake at this point will download the
needed software packages, build a toolchain,
and create a minimal root filesystem with the
specified software installed.

On my system, with all the software packages
previously downloaded and cached locally, a
complete build took 17 minutes, 19 seconds.
Depending on the speed of your network con-
nection and the speed of your build system,
now might be an excellent time to take a lunch
break, take a walk, or watch a movie.

10 Checking out the new Root
Filesystem

We now have our root filesystem finished and
ready to go. But we still need to do a little
more work before we can boot up our newly
built embedded Linux system. First, we need
to compress our root filesystem so it can be
loaded as an initrd.

gzip -9 root_fs_i386
ls -sh root_fs_i386.gz
1.1M root_fs_i386.gz

Now that our root filesystem has been com-
pressed, it is ready to install on the boot media.
To make things simple, I will install the Com-
pact Flash boot media into a USB card reader
device, and copy files using the card reader.

ms-sys -s /dev/sda
Public domain master boot record
successfully written to /dev/sda

Linux Symposium 2004 • Volume One • 39

--- Makefile
+++ Makefile
@@ -140,6 +140,6 @@

Unless you want to build a kernel, I recommend just using
that...

-TARGETS+=kernel-headers
-#TARGETS+=linux
+#TARGETS+=kernel-headers
+TARGETS+=linux

#TARGETS+=system-linux

@@ -150,5 +150,5 @@
#TARGETS+=zlib openssl openssh
Dropbear sshd is much smaller than openssl + openssh

-#TARGETS+=dropbear_sshd
+TARGETS+=dropbear_sshd

Everything needed to build a full uClibc development system!
@@ -175,5 +175,5 @@

Some stuff for access points and firewalls
-#TARGETS+=iptables hostap wtools dhcp_relay bridge
+TARGETS+=iptables hostap wtools dhcp_relay bridge

#TARGETS+=iproute2 netsnmp

Figure 1: Changes to the buildroot Makefile

mkdosfs /dev/sda1
mkdosfs 2.10 (22 Sep 2003)

syslinux /dev/sda1

cp root_fs_i386.gz /mnt/root_fs.gz

cp build_i386/buildroot-kernel /mnt/linux

So we now have a copy of our root filesystem
and Linux kernel on the compact flash disk. Fi-
nally, we need to configure the bootloader. In
case you missed it a few steps ago, we are us-
ing the syslinux bootloader for this example.
I happen to have a ready to use syslinux con-
figuration file, so I will now install that to the
compact flash disk as well:

cat syslinux.cfg
TIMEOUT 0
PROMPT 0
DEFAULT linux
LABEL linux

KERNEL linux

APPEND initrd=root_fs.gz \
console=ttyS0,57600 \
root=/dev/ram0 boot=/dev/hda1,msdos rw

cp syslinux.cfg /mnt

And now, finally, we are done. Our embedded
Linux system is complete and ready to boot.
And you know what? It is very, very small.
Take a look at Table 1.

With a carefully optimized Linux kernel
(which this kernel unfortunately isn’t) we
could expect to have even more free space.
And remember, every bit of space we save is
money that embedded Linux developers don’t
have to spend on expensive flash memory. So
now comes the final test; it is now time to boot
from our compact flash disk. Here is what you
should see.

[----kernel boot messages snipped--]

40 • Linux Symposium 2004 • Volume One

ll /mnt
total 1.9M
drwxr-r- 2 root root 16K Jun 2 16:39 ./
drwxr-xr-x 22 root root 4.0K Feb 6 07:40 ../
-r-xr-r- 1 root root 7.7K Jun 2 16:36 ldlinux.sys*
-rwxr-r- 1 root root 795K Jun 2 16:36 linux*
-rwxr-r- 1 root root 1.1M Jun 2 16:36 root_fs.gz*
-rwxr-r- 1 root root 170 Jun 2 16:39 syslinux.cfg*

Table 1: Output ofls -lh /mnt .

Freeing unused kernel memory: 64k freed

Welcome to the Erik’s wireless access point.

uclibc login: root

BusyBox v1.00-pre10 (2004.06.02-21:54+0000)
Built-in shell (ash)
Enter ’help’ for a list of built-in commands.

du -h / | tail -n 1
2.6M

#

And there you have it—your very own wire-
less access point. Some additional configura-
tion will be necessary to start up the wireless
interface, which will be demonstrated during
my presentation.

11 Conclusion

The two largest components of a standard
Linux system are the utilities and the libraries.
By replacing these with smaller equivalents a
much more compact system can be built. Us-
ing BusyBox and uClibc allows you to cus-
tomize your embedded distribution by strip-
ping out unneeded applets and features, thus
further reducing the final image size. This
space savings translates directly into decreased
cost per unit as less flash memory will be re-
quired. Combine this with the cost savings of
using Linux, rather than a more expensive pro-
prietary OS, and the reasons for using Linux
become very compelling. The example Wire-
less Access point we created is a simple but

useful example. There are thousands of other
potential applications that are only waiting for
you to create them.

Proceedings of the
Linux Symposium

Volume One

July 21st–24th, 2004
Ottawa, Ontario

Canada

Conference Organizers

Andrew J. Hutton,Steamballoon, Inc.
Stephanie Donovan,Linux Symposium
C. Craig Ross,Linux Symposium

Review Committee

Jes Sorensen,Wild Open Source, Inc.
Matt Domsch,Dell
Gerrit Huizenga,IBM
Matthew Wilcox,Hewlett-Packard
Dirk Hohndel,Intel
Val Henson,Sun Microsystems
Jamal Hadi Salimi,Znyx
Andrew Hutton,Steamballoon, Inc.

Proceedings Formatting Team

John W. Lockhart,Red Hat, Inc.

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.

