
e100 Weight Reduction Program
Writing for Maintainability

Scott Feldman
Intel Corporation

scott.feldman@intel.com

Abstract

Corporate-authored device drivers are
bloated/buggy with dead code, HW and
OS abstraction layers, non-standard user
controls, and support for complicated HW
features that provide little or no value. e100
in 2.6.4 has been rewritten to address these
issues and in the process lost 75% of the lines
of code, with no loss of functionality. This
paper gives guidelines to other corporate driver
authors.

Introduction

This paper gives some basic guidelines to cor-
porate device driver maintainers based on ex-
periences I had while re-writing the e100 net-
work device driver for Intel’s PRO/100+ Eth-
ernet controllers. By corporate maintainer, I
mean someone employed by a corporation to
provide Linux driver support for that corpora-
tion’s device. Of course, these guidelines may
apply to non-corporate individuals as well, but
the intended audience is the corporate driver
author.

The assumption behind these guidelines is that
the device driver is intended for inclusion in
the Linux kernel. For a driver to be accepted
into the Linux kernel, it must meet both tech-
nical and non-technical requirements. This pa-
per focuses on the non-technical requirements,

specifically maintainability.

Guideline #1: Maintainability over
Everything Else

Corporate marketing requirements documents
specify priority order to features and per-
formance and schedule (time-to-market), but
rarely specify maintainability. However, main-
tainability is themost important requirement
for Linux kernel drivers.

Why?

• You will not be the long-term driver main-
tainer.

• Your company will not be the long-term
driver maintainer.

• Your driver will out-live your interest in it.

Driver code should be written so a like-skilled
kernel maintainer can fix a problem in a rea-
sonable amount of time without you or your re-
sources. Here are a few items to keep in mind
to improve maintainability.

• Use kernel coding style over corporate
coding style

• Document how the driver/device works, at
a high level, in a “Theory of Operation”
comment section

204 • Linux Symposium 2004 • Volume One

old driver v2 new driver v3

VLANs tagging/
stripping

use SW VLAN sup-
port in kernel

Tx/Rx checksum of
loading

use SW checksum
support in kernel

interrupt moderation use NAPI support in
kernel

Table 1: Feature migration in e100

• Document hardware workarounds

Guideline #2: Don’t Add Features
for Feature’s Sake

Consider the code complexity to support the
feature versus the user’s benefit. Is the de-
vice still usable without the feature? Is the de-
vice performing reasonably for the 80% use-
case without the feature? Is the hardware of-
fload feature working against ever increasing
CPU/memory/IO speeds? Is there a software
equivalent to the feature already provided in
the OS?

If the answer is yes to any of these questions, it
is better to not implement the feature, keeping
the complexity in the driver low and maintain-
ability high.

Table 1 shows features removed from the driver
during the re-write of e100 because the OS al-
ready provides software equivalents.

Guideline #3: Limit User-Controls—
Use What’s Built into the OS

Most users will use the default settings, so be-
fore adding a user-control, consider:

1. If the driver model for your device class
already provides a mechanism for the
user-control, enable that support in the

old driver v2 new driver v3

BundleMax not needed – NAPI
BundleSmallFr not needed – NAPI
IntDelay not needed – NAPI
ucode not needed – NAPI
RxDescriptors ethtool -G
TxDescriptors ethtool -G
XsumRX not needed – check-

sum in OS
IFS always enabled
e100_speed_duplex ethtool -s

Table 2: User-control migration in e100

driver rather than adding a custom user-
control.

2. If the driver model doesn’t provide a user-
control, but the user-control is potentially
useful to other drivers, extend the driver
model to include user-control.

3. If the user-control is to enable/disable a
workaround, enable the workaround with-
out the use of a user-control. (Solve
the problem without requiring a decision
from the user).

4. If the user-control is to tune performance,
tune the driver for the 80% use-case and
remove the user-control.

Table 2 shows user-controls (implemented as
module parameters) removed from the driver
during the re-write of e100 because the OS
already provides built-in user-controls, or the
user-control was no longer needed.

Guideline #4: Don’t Write Code
that’s Already in the Kernel

Look for library code that’s already used by
other drivers and adapt that to your driver.
Common hardware is often used between ven-
dors’ devices, so shared code will work for all
(and be debugged by all).

Linux Symposium 2004 • Volume One • 205

For example, e100 has a highly MDI-
compliant PHY interface, so usemii.c for
standard PHY access and remove custom code
from the driver.

For another example, e100 v2 used/proc/
net/IntelPROAdapter to report driver
information. This functionality was replaced
with ethtool , sysfs , lspci , etc.

Look for opportunities to move code out of the
driver into generic code.

Guideline #5: Don’t Use OS-
abstraction Layers

A common corporate design goal is to reuse
driver code as much as possible between OSes.
This allows a driver to be brought up on one OS
and “ported” to another OS with little work.
After all, the hardware interface to the device
didn’t change from one OS to the next, so
all that is required is an OS-abstraction layer
that wraps the OS’s native driver model with a
generic driver model. The driver is then written
to the generic driver model and it’s just a mat-
ter of porting the OS-abstraction layer to each
target OS.

There are problems when doing this with
Linux:

1. The OS-abstraction wrapper code means
nothing to an outside Linux maintainer
and just obfuscates the real meaning be-
hind the code. This makes your code
harder to follow and therefore harder to
maintain.

2. The generic driver model may not map 1:1
with the native driver model leaving gaps
in compatibility that you’ll need to fix up
with OS-specific code.

3. Limits your ability to back-port contribu-
tions given under GPL to non-GPL OSes.

Guideline #6: Use kcompat Tech-
niques to Move Legacy Kernel Sup-
port out of the Driver (and Kernel)

Users may not be able to move to the lat-
est kernel.org kernel, so there is a need
to provide updated device drivers that can be
installed against legacy kernels. The need is
driven by 1) bug fixes, 2) new hardware sup-
port that wasn’t included in the driver when the
driver was included in the legacy kernel.

The best strategy is to:

1. Maintain your driver code to work against
the latest kernel.org development
kernel API. This will make it easier to
keep the driver in thekernel.org ker-
nel synchronized with your code base as
changes (patches) are almost always in
reference to the latestkernel.org ker-
nel.

2. Provide a kernel-compat-layer (kcompat)
to translate the latest API to the supported
legacy kernel API. The driver code is void
of anyifdef code for legacy kernel sup-
port. All of the ifdef logic moves to the
kcompat layer. The kcompat layer is not
included in the latestkernel.org ker-
nel (by definition).

Here is an example with e100.

In driver code, use the latest API:

s = pci_name(pdev);
...
free_netdev(netdev);

206 • Linux Symposium 2004 • Volume One

In kcompat code, translate to legacy kernel
API:

#if (LINUX_VERSION_CODE < \
KERNEL_VERSION(2,4,22))

#define pci_name(x) ((x)->slot_name)
#endif

#ifndef HAVE_FREE_NETDEV
#define free_netdev(x) kfree(x)
#endif

Guideline #7: Plan to Re-write the
Driver at Least Once

You will not get it right the first time. Plan on
rewriting the driver from scratch at least once.
This will cleanse the code, removing dead code
and organizing/consolidating functionality.

For example, the last e100 re-write reduced the
driver size by 75% without loss of functional-
ity.

Conclusion

Following these guidelines will result in more
maintainable device drivers with better accep-
tance into the Linux kernel tree. The basic
idea is to remove as much as possible from the
driver without loss of functionality.

References

• The latest e100 driver code is available at
linux/driver/net/e100.c (2.6.4
kernel or higher).

• An example of kcompat is here:
http://sf.net/projects/
gkernel

Proceedings of the
Linux Symposium

Volume One

July 21st–24th, 2004
Ottawa, Ontario

Canada

Conference Organizers

Andrew J. Hutton,Steamballoon, Inc.
Stephanie Donovan,Linux Symposium
C. Craig Ross,Linux Symposium

Review Committee

Jes Sorensen,Wild Open Source, Inc.
Matt Domsch,Dell
Gerrit Huizenga,IBM
Matthew Wilcox,Hewlett-Packard
Dirk Hohndel,Intel
Val Henson,Sun Microsystems
Jamal Hadi Salimi,Znyx
Andrew Hutton,Steamballoon, Inc.

Proceedings Formatting Team

John W. Lockhart,Red Hat, Inc.

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.

