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Abstract

In 2004 IBM® is releasing new systems based
on the POWER5™ processor. There is new
support in both the hardware and firmware for
virtualization of multiple operating systems on
a single platform. This includes the ability to
have multiple operating systems share a pro-
cessor. Additionally, a hypervisor firmware
layer supports virtualization of I/O devices
such as SCSI, LAN, and console, allowing
limited physical resources in a system to be
shared.

At its extreme, these new systems allow 10
Linux images per physical processor to run
concurrently, contending for and sharing the
system’s physical resources. All changes to
support these new functions are in the 2.4 and
2.6 Linux kernels.

This paper discusses the virtualization capabil-
ities of the processor and firmware, as well as
the changes made to the PPC64 kernel to take
advantage of them.

1 Introduction

IBM’s new POWER5∗∗ processor is being used
in both IBM iSeries® and pSeries® systems
capable of running any combination of Linux,
AIX®, and OS/400® in logical partitions. The
hardware and firmware, including ahypervisor
[AAN00], in these systems provide the ability
to create “virtual” system images with virtual

hardware. The virtualization technique used on
POWER™ hardware is known as paravirtual-
ization, where the operating system is modified
in select areas to make calls into the hypervi-
sor. PPC64 Linux has been enhanced to make
use of these virtualization interfaces. Note that
the same PPC64 Linux kernel binary works
on both virtualized systems and previous “bare
metal” pSeries systems that did not offer a hy-
pervisor.

All changes related to virtualization have been
made in the kernel, and almost exclusively in
the PPC64 portion of the code. One chal-
lenge has been keeping as much code common
as possible between POWER5 portions of the
code and other portions, such as those support-
ing the Apple G5.

Like previous generations of POWER proces-
sors such as the RS64 and POWER4™ fami-
lies, POWER5 includes hardware enablement
for logical partitioning. This includes features
such as a hypervisor state which is more priv-
ileged than supervisor state. This higher priv-
ilege state is used to restrict access to system
resources, such as the hardware page table, to
hypervisor only access. All current systems
based on POWER5 run in a hypervised envi-
ronment, even if only one partition is active on
the system.
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Figure 1: POWER5 Partitioned System

2 Processor Virtualization

2.1 Virtual Processors

When running in a partition, the operating
system is allocated virtual processors (VP’s),
where each VP can be configured in either
shared or dedicated mode of operation. In
shared mode, as little as 10%, or 10process-
ing units, of a physical processor can be al-
located to a partition and the hypervisor layer
timeslices between the partitions. In dedicated
mode, 100% of the processor is given to the
partition such that its capacity is never multi-
plexed with another partition.

It is possible to create more virtual processors
in the partition than there are physical proces-
sors on the system. For example, a partition al-
located 100 processing units (the equivalent of
1 processor) of capacity could be configured to
have 10 virtual processors, where each VP has
10% of a physical processor’s time. While not
generally valuable, this extreme configuration
can be used to help test SMP configurations on
small systems.

On POWER5 systems with multiple logical
partitions, an important requirement is to be
able to move processors (either shared or ded-

icated) from one logical partition to another.
In the case of dedicated processors, this truly
means moving a CPU from one logical parti-
tion to another. In the case of shared proces-
sors, it means adjusting the number of proces-
sors used by Linux on the fly.

This “hotplug CPU” capability is far more in-
teresting in this environment than in the case
that the covers are going to be removed from a
real system and a CPU physically added. The
goal of virtualization on these systems is to dy-
namically create and adjust operating system
images as required. Much work has been done,
particularly by Rusty Russell, to get the archi-
tecture independent changes into the mainline
kernel to support hotplug CPU.

Hypervisor interfaces exist that help the operat-
ing system optimize its use of the physical pro-
cessor resources. The following sections de-
scribe some of these mechanisms.

2.2 Virtual Processor Area

Each virtual processor in the partition can cre-
ate avirtual processor area(VPA), which is a
small (one page) data structure shared between
the hypervisor and the operating system. Its
primary use is to communicate information be-
tween the two software layers. Examples of
the information that can be communicated in
the VPA include whether the OS is in the idle
loop, if floating point and performance counter
register state must be saved by the hypervi-
sor between operating system dispatches, and
whether the VP is running in the partition’s op-
erating system.

2.3 Spinlocks

The hypervisor provides an interface that helps
minimize wasted cycles in the operating sys-
tem when a lock is held. Rather than simply
spin on the held lock in the OS, a new hypervi-
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sor call,h_confer , has been provided. This
interface is used to confer any remaining vir-
tual processor cycles from the lock requester
to the lock holder.

The PPC64 spinlocks were changed to iden-
tify the logical processor number of the lock
holder, examine that processor’s VPAyield
countfield to determine if it is not running in
the OS (even values indicate the VP is running
in the OS), and to make theh_confer call
to the hypervisor to give any cycles remaining
in the virtual processor’s timeslice to the lock
holder. Obviously, this more expensive leg of
spinlock processing is only taken if the spin-
lock cannot be immediately acquired. In cases
where the lock is available, no additional path-
length is incurred.

2.4 Idle

When the operating system no longer has ac-
tive tasks to run and enters its idle loop, the
h_cede interface is used to indicate to the hy-
pervisor that the processor is available for other
work. The operating system simply sets the
VPA idle bit and callsh_cede . Under this
call, the hypervisor is free to allocate the pro-
cessor resources to another partition, or even to
another virtual processor within the same par-
tition. The processor is returned to the operat-
ing system if an external, decrementer (timer),
or interprocessor interrupt occurs. As an alter-
native to sending an IPI, the ceded processor
can be awoken by another processor calling the
h_prodinterface, which has slightly less over-
head in this environment.

Making use of the cede interface is especially
important on systems where partitions config-
ured to rununcappedexist. In uncapped mode,
any physical processor cycles not used by other
partitions can be allocated by the hypervisor to
a non-idle partition, even if that partition has
already consumed its defined quantity of pro-

cessor units. For example, a partition that is
defined as uncapped, 2 virtual processors, and
20 processing units could consume 2 full pro-
cessors (200 processing units), if all other par-
titions are idle.

2.5 SMT

The POWER5 processor provides symmetric
multithreading (SMT) capabilities that allow
two threads of execution to simultaneously ex-
ecute on one physical processor. This re-
sults in twice as many processor contexts be-
ing presented to the operating system as there
are physical processors. Like other processor
threading mechanisms found in POWER RS64
and Intel® processors, the goal of SMT is to
enable higher processor utilization.

At Linux boot, each processor thread is dis-
covered in the open firmware device tree
and a logical processor is created for Linux.
A command line option,smt-enabled =

[on, off, dynamic] , has been added to al-
low the Linux partition to config SMT in one
of three states. Theon and off modes indi-
cate that the processor always runs with SMT
either on or off. The dynamic mode allows
the operating system and firmware to dynam-
ically configure the processor to switch be-
tween threaded (SMT) and a single threaded
(ST) mode where one of the processor threads
is dormant. The hardware implementation is
such that running in ST mode can provide ad-
ditional performance when only a single task is
executing.

Linux can cause the processor to switch be-
tween SMT and ST modes via theh_cede hy-
pervisor call interface. When entering its idle
loop, Linux sets the VPAidle state bit, and af-
ter a selectable delay, callsh_cede . Under
this interface, the hypervisor layer determines
if only one thread is idle, and if so, switches
the processor into ST mode. If both threads are
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idle (as indicated by the VPAidle bit), then the
hypervisor keeps the processor in SMT mode
and returns to the operating system.

The processor switches back to SMT mode
if an external or decrementer interrupt is pre-
sented, or if another processor calls theh_
prod interface against the dormant thread.

3 Memory Virtualization

Memory is virtualized only to the extent that all
partitions on the system are presented a con-
tiguous range of logical addresses that start
at zero. Linux sees these logical addresses
as its real storage. The actual real memory
is allocated by the hypervisor from any avail-
able space throughout the system, managing
the storage inlogical memory blocks(LMB’s).
Each LMB is presented to the partition via
a memory node in the open firmware device
tree. When Linux creates a mapping in the
hardware page table for effective addresses, it
makes a call to the hypervisor (h_enter ) in-
dicating the effective and partition logical ad-
dress. The hypervisor translates the logical ad-
dress to the corresponding real address and in-
serts the mapping into the hardware page table.

One additional layer of memory virtualization
managed by the hypervisor is areal mode off-
set(RMO) region. This is a 128 or 256 MB re-
gion of memory covering the first portion of the
logical address space within a partition. It can
be accessed by Linux when address relocation
is off, for example after an exception occurs.
When a partition is running relocation off and
accesses addresses within the RMO region, a
simple offset is added by the hardware to gen-
erate the actual storage access. In this manner,
each partition has what it considers logical ad-
dress zero.

4 I/O Virtualization

Once CPU and memory have been virtualized,
a key requirement is to provide virtualized I/O.
The goal of the POWER5 systems is to have,
for example, 10 Linux images running on a
small system with a single CPU, 1GB of mem-
ory, and a single SCSI adapter and Ethernet
adapter.

The approach taken to virtualize I/O is a co-
operative implementation between the hypervi-
sor and the operating system images. One op-
erating system image always “owns” physical
adapters and manages all I/O to those adapters
(DMA, interrupts, etc.)

The hypervisor and Open Firmware then pro-
vide “virtual” adapters to any operating sys-
tems that require them. Creation of virtual
adapters is done by the system administrator
as part of logically partitioning the system. A
key concept is that these virtual adapters do not
interact in any way with the physical adapters.
The virtual adapters interact with other operat-
ing systems in other logical partitions, which
may choose to make use of physical adapters.

Virtual adapters are presented to the operating
system in the Open Firmware device tree just
as physical adapters are. They have very sim-
ilar attributes as physical adapters, including
DMA windows and interrupts.

The adapters currently supported by the hyper-
visor are virtual SCSI adapters, virtual Ether-
net adapters, and virtual TTY adapters.

4.1 Virtual Bus

Virtual adapters, of course, exist on a virtual
bus. The bus has slots into which virtual
adapters are configured. The number of slots
available on the virtual bus is configured by
the system administrator. The goal is to make
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the behavior of virtual adapters consistent with
physical adapters. The virtual bus isnot pre-
sented as a PCI bus, but rather as its own bus
type.

4.2 Virtual LAN

Virtual LAN adapters are conceptually the sim-
plest kind of virtual adapter. The hypervisor
implements a switch, which supports 802.1Q
semantics for having multiple VLANs share
a physical switch. Adapters can be marked
as 802.1Q aware, in which case the hypervi-
sor expects the operating system to handle the
802.1Q VLAN headers, or 802.1Q unaware, in
which case the hypervisor connects the adapter
to a single VLAN. Multiple virtual Ethernet
adapters can be created for a given partition.

Virtual Ethernet adapters have an additional at-
tribute called “Trunk Adapter.” An adapter
marked as a Trunk Adapter will be delivered
all frames that don’t match any MAC address
on the virtual Ethernet. This is similar, but
not identical, to promiscuous mode on a real
adapter.

For a logical partition to have network connec-
tivity to the outside world, the partition own-
ing a “real” network adapter generally has both
the real Ethernet adapter and a virtual Ether-
net adapter marked as a Trunk adapter. That
partition then performs either routing or bridg-
ing between the real adapter and the virtual
adapter. The Linux bridge-utils package works
well to bridge the two kinds of networks.

Note that there is no architected link between
the real and virtual adapters, it is the responsi-
bility of some operating system to route traffic
between them.

The implementation of the virtual Ethernet
adapters involves a number of hypervisor inter-
faces. Some of the more significant interfaces
are h_register_logical_lan to establish

the initial link between a device driver and
a virtual Ethernet device,h_send_logical_

lan to send a frame, andh_add_logical_

lan_buffer to tell the hypervisor about a
data buffer into which a received frame is to be
placed. The hypervisor interfaces then support
either polled or interrupt driven notification of
new frames arriving.

For additional information on the virtual Ether-
net implementation, the code is the documen-
tation (drivers/net/ibmveth.c ).

4.3 Virtual SCSI

Unlike virtual Ethernet adapters, virtual SCSI
adapters come in two flavors. A “client” vir-
tual SCSI adapter behaves just as a regular
SCSI host bus adapter and is implemented
within the SCSI framework of the Linux ker-
nel. The SCSI mid-layer issues standard SCSI
commands such as Inquiry to determine de-
vices connected to the adapter, and issues reg-
ular SCSI operations to those devices.

A “server” virtual SCSI adapter, generally in a
different partition than the client, receives all
the SCSI commands from the client and is re-
sponsible for handling them. The hypervisor
is not involved in what the server does with
the commands. There is no requirement for
the server to link a virtual SCSI adapter to any
kind of real adapter. The server can process
and return SCSI responses in any fashion it
likes. If it happens to issue I/O operations to a
real adapter as part of satisfying those requests,
that is an implementation detail of the operat-
ing system containing the server adapter.

The hypervisor provides two very primitive
interpartition communication mechanisms on
which the virtual SCSI implementation is built.
There is a queue of 16 byte messages referred
to as a “Command/Response Queue” (CRQ).
Each partition provides the hypervisor with a
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page of memory where its receive queue re-
sides, and a partition wishing to send a message
to its partner’s queue issues anh_send_crq
hypervisor call. When a message is received
on the queue, an interrupt is (optionally) gen-
erated in the receiving partition.

The second hypervisor mechanism is a facil-
ity for issuing DMA operations between par-
titions. Theh_copy_rdma call is used to
DMA a block of memory from the memory
space of one logical partition to the memory
space of another.

The virtual SCSI interpartition protocol is
implemented using the ANSI “SCSI RDMA
Protocol” (SRP) (available athttp://www.
t10.org ). When the client wishes to issue a
SCSI operation, it builds an SRP frame, and
sends the address of the frame in a 16 byte
CRQ message. The server DMA’s the SRP
frame from the client, and processes it. The
SRP frame may itself contain DMA addresses
required for data transfer (read or write buffers,
for example) which may require additional in-
terpartition DMA operations. When the oper-
ation is complete, the server DMA’s the SRP
response back to the same location as the SRP
command came from and sends a 16 byte CRQ
message back indicating that the SCSI com-
mand has completed.

The current Linux virtual SCSI server de-
codes incoming SCSI commands and issues
block layer commands (generic_make_
request ). This allows the SCSI server to
share any block device (e.g.,/dev/sdb6 or
/dev/loop0 ) with client partitions as a vir-
tual SCSI device.

Note that consideration was given to using pro-
tocols such as iSCSI for device sharing be-
tween partitions. The virtual SCSI SRP de-
sign above, however, is a much simpler design
that does not rely on riding above an existing
IP stack. Additionally, the ability to use DMA

operations between partitions fits much better
into the SRP model than an iSCSI model.

The Linux virtual SCSI client (drivers/

scsi/ibmvscsi/ibmvscsi.c ) is close, at
the time of writing, to being accepted into the
Linux mainline. The Linux virtual SCSI server
is sufficiently unlike existing SCSI drivers that
it will require much more mailing list “discus-
sion.”

4.4 Virtual TTY

In addition to virtual Ethernet and SCSI
adapters, the hypervisor supports virtual serial
(TTY) adapters. As with SCSI adapter, these
can be configured as “client” adapters, and
“server” adapters and connected between par-
titions. The first virtual TTY adapter is used as
the system console, and is treated specially by
the hypervisor. It is automatically connected to
the partition console on the Hardware Manage-
ment Console.

To date, multiple concurrent “consoles” have
not been implemented, but they could be. Sim-
ilarly, this interface could be used for kernel
debugging as with any serial port, but such an
implementation has not been done.

5 Dynamic Resource Movement

As mentioned for processors, the logical par-
tition environment lends itself to moving re-
sources (processors, memory, I/O) between
partitions. In a perfect world, such movement
should be done dynamically while the operat-
ing system is running. Dynamic movement of
processors is currently being implemented, and
dynamic movement of I/O devices (including
dynamically adding and removing virtual I/O
devices) is included in the kernel mainline.

The one area for future work in Linux is the dy-
namic movement of memory into and out of an
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active partition. This function is already sup-
ported on other POWER5 operating systems,
so there is an opportunity for Linux to catch
up.

6 Multiple Operating Systems

A key feature of the POWER5 systems is the
ability to run different operating systems in
different logical partitions on the same phys-
ical system. The operating systems currently
supported on the POWER5 hardware are AIX,
OS/400, and Linux.

While running multiple operating systems, all
of the functions for interpartion interaction de-
scribed above must work between operating
systems. For example, idle cycles from an AIX
partition can be given to Linux. A proces-
sor can be moved from OS/400 to Linux while
both operating systems are active.

For I/O, multiple operating systems must be
able to communicate over the virtual Ethernet,
and SCSI devices must be sharable from (say)
an AIX virtual SCSI server to a Linux virtual
SCSI client.

These requirements, along with the archi-
tected hypervisor interfaces, limit the ability to
change implementations just to fit a Linux ker-
nel internal behavior.

7 Conclusions

While many of the basic virtualization tech-
nologies described in this paper existed in the
Linux implementation provided on POWER
RS64 and POWER4 iSeries systems [Bou01],
they have been significantly enhanced for
POWER5 to better use the firmware provided
interfaces.

The introduction of POWER5-based systems

converged all of the virtualization interfaces
provided by firmware on legacy iSeries and
pSeries systems to a model in line with the
legacy pSeries partitioned system architecture.
As a result much of the PPC64 Linux virtual-
ization code was updated to use these new vir-
tualization interface definitions.
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