
Linux IPv6 Networking
Past, Present, and Future

Hideaki Yoshifuji
The University of Tokyo

yoshfuji@linux-ipv6.org

Kazunori Miyazawa
Yokogawa Electric Corporation

miyazawa@linux-ipv6.org

Yuji Sekiya
The University of Tokyo

sekiya@linux-ipv6.org

Hiroshi Esaki
The University of Tokyo
hiroshi@wide.ad.jp

Jun Murai
Keio University

jun@wide.ad.jp

Abstract

In order to deploy high-quality IPv6 proto-
col stack, we, USAGI Project[13], have ana-
lyzed and addressed issues on Linux IPv6 im-
plementation. In this paper / in our talk in
OLS2003, we describe the analysis of Linux
IPv6 protocol stack, improvements and imple-
mentation of the IPv6 and IPsec protocol stack
and patches which are integrated into the main-
line kernel. We will explain the impacts of our
API improvements on network applications.

We want to discuss on missing pieces and di-
rection for future development.

As a demonstration we would like to provide
IPv6 network connectivity to the OLS2003
meeting venue.

1 Introduction

Establishment of IPv6, as a next-generation In-
ternet protocol to IPv4, started from the be-
ginning of the 1990’s. The aspect of IPv6 is
on providing the solution to the protocol scal-
ability, the greatest problem IPv4 facing as the
Internet growing larger. In detail, IPv6 differ
from IPv4 in following ways.

• 128bit address space.

• Forbidding of packet fragmentation in in-
termediate routers.

• Flexible feature extension using extension
headers.

• Supporting security features by default.

• Supporting Plug & Play features by de-
fault.

Currently, IPv6 is at the final phase of standard-
ization. Fundamental specifications are almost
fixed and commercial products with IPv6 sup-
port are being deployed in the market. Inter-
national leased lines for IPv6 are out as well.
IPv6 has expanded the existing Internet by pro-
viding solutions to protocol scalability and be-
ginning to grow as a standard for connecting
everything, not just existing computers.

2 The Dawn of Linux IPv6 Stack

Linux IPv6 implementation was originally de-
veloped by Pedro Roque and integrated into
mainline kernel at the end of 1996 in early 2.1
days and this was the one of the earliest imple-
mentation of IPv6 stack in the world.

Linux Symposium 508

In 1998, Linux IPv6 Users JP, which is a group
of Linux IPv6 users in Japan, examined the sta-
tus of IPv6 implementation in Linux and rec-
ognized the several grave issues1.

• lack of scope in socket API; for example
Linux does not havesin6_scope_id
member insockaddr_in6{} .

• So many bugs (Table 1), found by the
TAHI [11] IPv6 Conformance Test Suite,
especially in Neighbor Discovery and
Stateless Address Auto-configuration.

• "default routes" are ignored on routers

• many missing features such as IPsec, Mo-
bile IP.

These were because the stack had not been
well-maintained / developed since 2.1 because
there were not so widely used by Linux hack-
ers. Thus, there had been few new features.
Implementation had not followed the specifica-
tion even the spec had been changed, and then,
conformity to Specification became very low.

In 2.3 days, they, the Linux IPv6 Users JP,
developedsin6_scope_id support. Their
code was integrated into mainline kernel.
There, however, were very few change in 2.3
days other than this.

Considering above circumstances, USAGI
Project was lunched in October, 2000. US-
AGI Project is a project which aims to pro-
vide improved IPv6 stack on Linux; It seems to
be required (almost) full-time task-force which
commits Linux IPv6 development. There are
similar organization called KAME [6], which
provides IPv6 stack on BSD Operating sys-
tems such as FreeBSD, NetBSD, OpenBSD,
and BSD/OS. However, KAME Project does
not target their development on Linux. It is

1We will discuss them later.

important to provide high-quality IPv6 stack
on Linux, which is one of the most popu-
lar free open-source operating systems in the
world, and widely used in embedded systems,
for IPv6 to propagate.

Table 1: Summary of TAHI Conformance Test
(linux-2.2.15, %)

Test Series Pass Warn Fail

Spec. 94 6 0
ICMPv6 100 0 0

Neighbor Discovery 34 0 66
Autoconf 4 0 96
PMTU 50 0 50

IPv6/IPv4 Tunnel 100 0 0
Robustness 100 0 0

3 USAGI Challenges in Linux IPv6
Stack

Since USAGI Project started, we have contin-
ued analyzing issues we faced. In this section,
we describes issues we found and our chal-
lenges to solve them.

3.1 ND and Addrconf

Neighbor Discovery (ND [8]) and Stateless
Address Auto-configuration (Addrconf, [12])
are ones of the core features of IPv6. They take
very important role to keep stable communica-
tion. However, the results of the Conformance
Tests of Linux IPv6 stack were bad.

We’ve tried to fix the problems in the following
way.

• Reinforcing checking illegal ND Mes-
sages

• Improving control times for ND state tran-
sition and address validation.

Linux Symposium 509

���������
	���

���������
	���

���������
	���

���������
	���

����� ���������

��� ��!#"
���������
	���

���������
	���

���������
	���

���������
	���

����� ���������

��� ��!#"

����� ���	��

�

�������������
�

�������������
�

�������������
�

�������������
�

��� �"!$#&%

��� �"!$#('

��� �"!$#*)

��� �"!$#(+

����� ���	��

�

�������������
�

�������������
�

�������������
�

�������������
�

��� �"!$#&%

��� �"!$#('

��� �"!$#*)

��� �"!$#(+

Figure 1: NDP Table: Linux vs USAGI

• Fixing ND state transition

3.1.1 Improving Timers for ND

The state of a neighbor is changed by events
such as incoming Neighbor Advertisement
message and timer expiration. It is required to
manage timer accurately.

However, the existing Linux IPv6 protocol
stack checks reachability of neighbor nodes
with a single kernel timer(Figure 1 (Left)).
Consequently, reachability were checked in
constant intervals, regardless of the status for
each node.

Therefore, USAGI Project improved this ker-
nel timer to check each NDP entry indepen-
dently as shown in Figure 1 (Right). Thus, re-
source management for a neighbor including
mutual exception is simplified, and it is pos-
sible to enable and disable timer separately for
each NDP entry, and prevent check made to un-
necessary NDP entries. Moreover, it is possi-
ble to exchange messages correspondent to the
status of each NDP entry as defined in the NDP
specifications.

now

tstamp

tstamp

Figure 2: Dynamic Address Validation Timer

3.1.2 Improving Timers for Address Vali-
dation

As ND is, the state of an address is changed by
events such as incoming Router Advertisement
and time expiration. It is required to manage
timer accurately, especially for Privacy Exten-
sions [7].

However, the existing Linux IPv6 protocol
stack performs validity checks with a long-
term, constant, single kernel timer.

USAGI Project introduced new dynamic timer.
When the timer expires, the timeout function
visits each address for validation and deter-
mining the next timeout (Figure 2) with mini-
mum and maximum interval between timeouts.
Thus, accuracy of timer is improved. It is usual
that several addresses request next timeout at
(almost) the same time, introducing minimum
interval between operations aggregates them
and suppresses load of timer events.

Table 2 shows the results of these improve-
ments and other minor fixes. Neighbor Discov-
ery and Autoconf are significantly improved.

3.2 Routing Restructuring

3.2.1 Default Route Support on Routers

In routing table using radix tree[9], the top
of the tree is the host which possesses the
information regarding “default route.” How-
ever, as shown in Figure 3, Linux IPv6

Linux Symposium 510

Table 2: Summary of TAHI Conformance Test
(usagi24-s20020401, %)

Test Series Pass Warn Fail

Spec. 100 0 0
ICMPv6 100 0 0

Neighbor Discovery 79 5 15
Autoconf 98 2 0
PMTU 50 0 50

IPv6/IPv4 Tunnel 100 0 0
Robustness 100 0 0

���������
	���
��

����������	���
�� ���������
	���
��

����������� �"!

#�$ �����%	���� #&$ �'�(�%	����

�)+*,�'��	�-�./.0�1�2	 $/#43
�5��62798/8;:�<=798>:@?A���48B����C�DE8
�6

���������
	���
�����������
	���
��

����������	���
�� ���������
	���
��

����������� �"!

#�$ �����%	���� #&$ �'�(�%	����

�)+*,�'��	�-�./.0�1�2	 $/#43
�5��62798/8;:�<=798>:@?A���48B����C�DE8
�6

Figure 3: Linux IPv6 Routing Table Structure

protocol stack has a radix tree with fixed
node information on top and it points to
ipv6_null_entry . Therefore, when de-
fault route is added, the information is attached
next to thert6_info{} structure which con-
tains ipv6_null_entry . This causes de-
fault route not to be referred.

In USAGI implementation, we replace the
ipv6_null_entry with the new entry
when adding a new routing entry on the top
level root of the tree (Figure 4). When
the last route is being deleted from the
the top level root of the tree, we re-insert
ipv6_null_entry . Thus, we can insert
and remove the “default route” entries properly
to/from the routing table.

3.3 Improvements on Router Selection

We pick one default router from the de-
fault router list and round-robin the de-

���������
	���
��

���������������

��� ��� �!	"�#�

�$� �%� �&	'���

� (*)+�%�,	�-/.0.1���2	 �0�43

�&�65279808;:�</7 8;:>=*�?�48@�A��BDCE8
'5

�#�&�"���
	F��
�� �A�&�"����	G��
��

���������
	���
�����������
	���
��

���������������

��� ��� �!	"�#�

�$� �%� �&	'���

� (*)+�%�,	�-/.0.1���2	 �0�43

�&�65279808;:�</7 8;:>=*�?�48@�A��BDCE8
'5

�#�&�"���
	F��
���#�&�"���
	F��
�� �A�&�"����	G��
���A�&�"����	G��
��

Figure 4: USAGI IPv6 Routing Table Structure

metrics
::/0

fib6_node

rt6_info

RTN_INFO

rt6_dflt_ptr

Figure 5: Default Routers in Linux

fault router list when it becomes unreach-
able. The default router is pointed by the
rt6_dflt_pointer , which is guarded by
rt6_dflt_lock , and default routers are
stored on the top level root node of the routing
tree (Figure 5). In this implementation, there
were several issues.

• rt6_dflt_pointer is reset when
routing is modified; this happens very of-
ten and routers are not equally selected.

• We did not regard the metrics; we could
not force using routes with smaller met-
rics (which is probably added manually.)

“Default Router Preferences, More-Specific
Routes, and Load Sharing” [1] improves the
ability of hosts to pick an appropriate router,
especially when the host is multi-homed and
the routers are on different links, and mandates
load-share between routers with same "prefer-
ences."

To implement this specification, we stores pref-
erence (2 bits) of routes into the flags of the

Linux Symposium 511

metrics
::/0

fib6_node

rt6_info

RTN_INFO

same metrics

Figure 6: New Method for Route Round-robin

routing informations instead of reflecting it to
the metrics; We would have to fix up routing
table when receiving RA.

We also make a new generic round-robin
code for the routes with same metrics
(Figure 6). We use this for all routes
and the rt6_dflt_pointer and
rt6_dflt_lock are eliminated. Now
we are free from above issues.

4 Linux IPv6 in 2.6

In this section, we describes key changes of
IPv6 networking code between 2.4 and 2.62

Then we try to describes how IPsec works.

4.1 Key Changes in 2.6.x

We have been developing IPv6 actively since
end of 2.3.x era. However, only several se-
lected changes were integrated into the main-
line tree. One reason was that we were obscure
and novice on kernel development.

After experiencing about two years of kernel
development, we started integrating our efforts
to the mainline kernel from the fall of 2002
more aggressively than before.

We have been being fixing several bugs such
as:

• Verify ND options properly

2Some changes will be appeared in 2.4.21 (or later
2.4.x series).

• Refine IPv6 Address Validation Timer

• Fixing source address of MLD messages

• Avoiding garbage sin6_scope_id for
MSG_ERRQUEUE message

In addition to these bug fixing, we’ve inte-
grated following new features:

IPsec for IPv6
This is based on IPsec for IPv4, developed
by David S. Miller et.al. See section 4.2.

Default route support on router
See section 3.2.1.

IPV6_V6ONLY support
See section 5.2.4.

ICMP6 rate limit support
Added rate-limit sysctl for ICMPv6 like
for ICMP.

Privacy Extensions [7]
Assign randomized interface identifier to
improve privacy.

AF-independent XFRM Infrastructure
Split up XFRM subsystem into af-
independent portion and af-specific por-
tion. Section 4.2.3.

Per-interface Statistics Infrastructure
Make a new infrastructure to provide per-
interface statistics information.

4.2 IPsec

IP security provides security functionality for
IP layer. An implementation of IPv4 IPsec by
FreeS/WAN is available for years, however, the
code was never merged into the mainline ker-
nel. In 2000, IABG Project provided IPv6 sup-
port patch for FreeS/WAN. It, however, was
“patched” and also unlikely to be merged into
the mainline kernel.

Linux Symposium 512

We redesigned the architecture for multi-
protocol, both IPv4 and IPv6, extensible IPsec.
In our design, IPv4 and IPv6 share the Security
Policy Database (SPD) and Security Associa-
tion Database (SAD). CryptoAPI and its vari-
ants are used for cryptographic, digesting and
compression/decompression algorithms.

4.2.1 Stackable Destination and XFRM

A new framework for processing IP packets
has been introduced into linux-2.5.x. It is
called “stackable destination” and XFRM.

Stackable destination is like a linked list of
dst{} , which is made temporally and cached.
We are able to insert anotherdst{} to orig-
inal dst{} and make a stack of thedst{}
structure. dst{} normally has a pointer
to xfrm_state{} , whose output provides
some functionality, i.e. transformation, for the
packet.

XFRM stands for transformer.
xfrm_policy{} and xfrm_state{}
represent IPsec policy and IPsec SA respec-
tively. xfrm_state{} is associated with
xfrm_policy{} by xfrm_tmpl{} . SPD
consists ofxfrm_policy{} . SAD also
consist ofxfrm_state{} .

4.2.2 Packet Processing

The output process of IPsec fully uses this
architecture. The order of primal func-
tions arexfrm_lookup() , xfrm_tmpl_
resolve() , xfrm_bundle_create()
and dst_output() . xfrm_lookup()
looks up xfrm_policy{} in SPD after
routing resolution. At the moment the pa-
rameterdst{} in the stack points original
dst{} structure.xfrm_tmpl_resolve()
is called in xfrm_lookup() to resolve

xfrm_tmpl{} in xfrm_policy{} which
represents how the packet is processed and find
xfrm_state{} matched up withxfrm_
tmpl{} . This process is equivalent to looking
up IPsec SA or IPsec SA bundle matched with
IPsec policy. xfrm_bundle_create()
creates the stackable destination and IPsec SA
bundle if multiple SA are needed. These func-
tions are called at routing resolution.dst_
output() is called after building up the
packet. Each output routine specified by the
function pointer in thedst{} is called along
with the chain ofdst{} . This pointer points
e.g esp6_output() . The output function
is able to usexfrm_state{} from dst{}
pointer insk_buff{} .

Output Packet Processing

Lookup Routing Table

Find xfrm_policy as IPsec policy

Look up xfrm_state with comparing
with xfrm_tmpl in the policy

xfrm_policy xfrm_tmpl
xfrm_tmpl
xfrm_tmpl

dstsk_buff

xfrm_tmpl
xfrm_tmpl
xfrm_state

ip6_route_output

xfrm_lookup

xfrm_tmpl_resolv

xfrm_bunele_create
Connect xfrm_state with the dst and
create stackable destination

dstsk_buff

xfrm_statedst

dstoriginal dst

xfrm_state

Figure 7: IPsec output process

The input process for IPsec is more simple
than output. AH and ESP process routines
are registered toinet6_protos[] at ini-
tiation. The kernel parse a packet and call
the routines when protocol is AH or ESP.
To unified extension header processing, all
header types and handlers are registered in
inet6_protos[] like upper layer proto-
col. IPsec packet process is looking up
xfrm_state{} and process it. When it
succeeds, usedxfrm_state{} pointer keep
in sec_path{} in sk_buff{} which con-
tains the packet. After processing IPsec,
the kernel call xfrm_policy_check()
at entrance of upper layer process. In
xfrm_policy_check() the kernel match
up xfrm_tmpl{} in xfrm_policy{} and

Linux Symposium 513

Input Packet Processing

Comparing xfrm_tmpl in xfrm_policy
and xfrm_state used for header processing

xfrm6_rcv

ip6_input_finish

IP Layer Process

xfrm6_policy_check

xfrm_state looking up
Used xfrm_states are connect with skb

Call header processing functions registered
with ip_proto

xfrm_policy xfrm_tmpl
xfrm_tmpl
xfrm_tmpl

sec_pathsk_buff
xfrm_tmpl
xfrm_tmpl
xfrm_state

Compare

Figure 8: IPsec input process

xfrm_state{} kept insec_path{} .

4.2.3 AF Indenendent XFRM Infrastruc-
ture

Since core functionality of the XFRM engine is
common among address families, AF indepen-
dent XFRM infrastructure has been introduced.

Address family specific XFRM functions are
registered via address family information ta-
bles, e.g. xfrm_policy_afinfo{} and
xfrm_state_afinfo{} . Common vari-
ables are also passed via the tables.

4.2.4 Key And Policy Management Inter-
face

PF_KEYandnetlink(7) interface are pro-
vided as IPsec interfaces.PF_KEY provides
interface to maintain SAD and SPD.PF_KEY
protocol is defined in RFC2367 but it is not so
enough to maintain IPsec that implementation
of PF_KEY is ordinary extended. The exten-
sion is different each implementation. Linux-
2.5.xPF_KEYis compatible with KAME.

4.2.5 Test Results

On 24th April, 2003, Tom Lendacky reported
to netdev mailing list that Test results of Linux-
2.5 IPsec are very excellent(Table 3).

We have tried to fix the bugs in IPv6 IPsec frag-
mentation, and they should be fixed for now.

Test Series Pass Warn Fail

ipsec 95 2 3
ipsec4 98 2 0

ipsec4-udp 96 4 0

Table 3: Summary of TAHI Conformance Test
(linux-2.5.58, %)

5 Modern Programming Style for
Network Applications

It is requested that applications should support
both IPv4 and IPv6. In this section, we try
to describe modern programming style for net-
work applications.

5.1 Socket API and Protocol Independency

The Socket API is the framework of program-
ming for communication including networking
via the Internet. It was designed to be proto-
col independent. Communication is abstracted
by the socket descriptor, and endpoint informa-
tion, which is protocol dependent, is passed via
opaque pointers to the generic socket address
structuresockaddr .

IPv6 networking is also supported in
this framework. New address family
AF_INET6 and IPv6 socket address structure
sockaddr_in6 are defined.

Linux Symposium 514

5.2 Protocol Independent Programming

The framework of the Socket API between the
kernel and the user space is basically proto-
col independent. However, since the socket
address structure and the naming space of
the protocol depend on the protocol (or ad-
dress), it was protocol dependent to lookup the
name/address and to setup the protocol specific
socket address structure. This prevented appli-
cation from the protocol independency.

In RFC2133[3], new two name-lookup func-
tions are defined: getaddrinfo() and
getnameinfo() . It abstracts translation be-
tween name/service representation and socket
address structure.

5.2.1 getaddrinfo(3)

getaddrinfo(3) [2] is the protocol inde-
pendent function for forward lookup (name
to address). This function looks up the
“node” and “service” on condition that is
specified by the “hints.” It returns dynami-
cally allocated linked list ofaddrinfo{} .
Eachaddrinfo{} includes information for
socket(2) , connect(2) (orbind(2) , if
AI_PASSIVE flag is specified in hints).

Thus, application is not required to know the
details of socket address structure, now. A
client application walks though the list trying
to create a socket and trying to connecting re-
mote host until one of the attempt succeeds.
Likewise, a server application walks through
the list trying to create a socket and trying to
binding local address.

5.2.2 getnameinfo(3)

getnameinfo(3) [2] is the protocol inde-
pendent function for reverse lookup (address

to name). This function takes socket address
structure and looks up node name and ser-
vice name on condition specified by the flags.
By using this function, application is not re-
quired to know the details of each socket ad-
dress structure for extracting addresses and / or
port number.

For example, to extract numeric ser-
vice number from the socket address
structure, use getnameinfo(3) with
NI_NUMERICSERV, and convert the resulting
service number usingatoul(3) .

Sample programs usinggetaddrinfo(3)
andgetnameinfo(3) are provided in Ap-
pendix.

5.2.3 getifaddrs(3)

Other issue to support IPv6 in application how
we know addresses on the node on which it
is running. SIOCGIFADDR is used for IPv4,
however,ifreq{} is not enough to store IPv6
socket address structure. There might be pos-
sibility to introduce newioctl(2) to man-
age lager addresses, however, it is nasty to get
information via buffer of fixed length. Thus,
getifaddrs(3) was invented.3 This func-
tion grubs network address information includ-
ing netmask etc. on the node. MAC, IPv4 and
IPv6 are supported for now. Application walks
through the linked list returned from this func-
tion, looking for appropriate information using
the family, flags etc.

Sample programs usinggetifaddrs(3) is
provided in Appendix.

3BSDI’s invention; this is not standardized yet.

Linux Symposium 515

5.2.4 IPV6_V6ONLY Socket Option

IPv6 sockets may be used for both IPv4 and
IPv6 communications. IPv4-mapped IPv6 ad-
dress is defined [5] to enable IPv6 application
IPv4 address of an IPv4 node is represented as
an IPv4-mapped IPv6 address in such applica-
tions.

Linux supports this feature and port space of
TCP (or UDP) has been completely shared be-
tween IPv4 and IPv64.

However, some applications may want to re-
strict their use of an IPv6 socket to IPv6
communication only. For these applications,
IPV6_V6ONLY is defined in RFC3493 [2].

In 2.6, IPV6_V6ONLY socket option is sup-
ported. In this implementation, the ‘IPv4-
mapped” feature is enabled by default as be-
fore, and as spec says. If theIPV6_V6ONLY
socket option is set to the IPv6 socket, the
socket will not care about IPv4 address space
at all.

As mentioned before, spec says this “IPv4-
mapped” feature is enable by default. How-
ever, there are OSes, such as NetBSD, which
do not enable that feature by default, or even
which do not support that feature at all. These
OSes are not RFC compliant, but, unfortu-
nately, it is the real. So, application would need
to take care of this situation. For example:

• Try to setup both IPv6 and IPv4 sockets.

• Set IPV6_V6ONLY socket option to the
IPv6 socket, prior to performbind(2) .

• It is not fatal to failed to set
IPV6_V6ONLY socket option.

4In some OSes, such as FreeBSD 4.x, IPv4 socket
can override IPv6 socket of the same port. We believe
that this fashion is vulnerable to "binding closer" type
attacks.

• Don’t take it fatal unless all socket cre-
ation resulted in error.

The sample server provided in the Appendix is
written in this manner.

6 Future Plans

Finally, we list our future plans. Here’s our fu-
ture plan, especially for this year.

• stabilizing IPv6 IPsec

• introducing IP Mobility to mainline

• completing porting ND fix to (pre-)linux-
2.6 and submitting patches to mainline

• introducing generic IPv4,6 tunnel inter-
face

• examining and stabilizing IPv6 Netfilter

• completing Prefix Delegation

• improving API support [2, 10]

• implementing IPv6 Multicast Routing

As of writing this paper, we’re working hard
stabilizing IPv6 and IPv6 IPsec stack in (pre-
)linux-2.6.

We’re also discussing how the Mobile IP
should be implemented with the maintainers
and HUT [4] people.

XFRM is flexible and promising framework in
netwroking. We are able to and going to imple-
ment Mobile IP, generic tunnel etc.

We have been waiting for new documents for
the APIs. It has taken long time to publish
the new documents for APIs, however, new
version are (about to) available. We’ll follow
them.

Linux Symposium 516

Multicast routing is probably the biggest miss-
ing piece; we will try to implement this, too.

References

[1] R. Drave and R. Hinden. Default router
preferences, more-specific routes, and
load sharing. Work in Progress, June
2002.

[2] R. Gilligan, S. Thomson, J. Bound,
J. McCann, and W. Stevens. Basic
Socket Interface Extensions for IPv6.
RFC3493, March 2003.

[3] R. Gilligan, S. Thomson, J. Bound, and
W. Stevens. Basic Socket Interface
Extensions for IPv6. RFC2133, April
1997.

[4] GO Project. MIPL Mobile IPv6 for
Linux. http://www.mipl.mediapoli.com/.

[5] R. Hinden and S. Deering. Ip version 6
addressing architecture. RFC2373, July
1998.

[6] KAME Project. KAME Project Web
Page. http://www.kame.net.

[7] T. Narten and R. Draves. Privacy
extensions for stateless address
autoconfiguration in ipv6. RFC3041,
January 2001.

[8] T. Narten, E. Nordmark, and
W. Simpson. Neighbor Discovery for IP
Version 6 (IPv6). RFC2461, December
1998.

[9] Keith Sklower. A tree-based packet
routing table for berkeley unix. In
USENIX Winter, pages 93–104, 1991.

[10] W. Stevens, M. Thomas, E. Nordmark,
and T. Jinmei. Advanced sockets api for
ipv6. Work in Progress, March 2003.

[11] TAHI Project. Test and Verification for
IPv6. http://www.tahi.org.

[12] S. Thomson and T. Narten. IPv6
Stateless Address Autoconfiguration.
RFC2462, December 1998.

[13] USAGI Project. USAGI Project Web
Page. http://www.linux-ipv6.org.

Linux Symposium 517

7 Appendix: Sample Application Written in Modern Manner

7.1 Client

/*
* Sample Modern Client
*
* Usage:
* % ./modern-client host.example.com daytime
*
* $Id: modern-client.c,v 1.1 2003/05/13 20:06:58 yoshfuji Exp $
*/

#include <stdio.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <netdb.h>
#include <string.h>

int main(int argc, char **argv) {
char *host, *port;
struct addrinfo hints, *ai0, *ai;
int s;
int gai;

/* check arguments */
if (argc != 2 && argc != 3) {

fprintf(stderr, "Usage: %s [host] portnum\n", argv[0]);
exit(1);

}

if (argc == 3) {
host = argv[1];
port = argv[2];

} else {
host = NULL; /* loopback address */
port = argv[1];

}

/* look-up name */
memset(&hints, 0, sizeof(hints));
hints.ai_family = AF_UNSPEC;
hints.ai_socktype = SOCK_STREAM;
hints.ai_protocol = IPPROTO_TCP;
hints.ai_flags = 0;

gai = getaddrinfo(host, port, &hints, &ai0);
if (gai) {

fprintf(stderr,
"getaddrinfo(): %s port %s: %s\n",
host, port, gai_strerror(gai));

Linux Symposium 518

exit(1);
}

/* loop connecting remote entity */
s = -1;
for (ai = ai0; ai; ai = ai->ai_next) {

/* create a socket */
s = socket(ai->ai_family, ai->ai_socktype, ai->ai_protocol);
if (s == -1)

continue;

/* connect */
if (connect(s, ai->ai_addr, ai->ai_addrlen) == 0)

break;

close(s);
s = -1;

}

/* free address information */
freeaddrinfo(ai0);

/* check if we have failed */
if (s == -1) {

fprintf(stderr, "Cannot connect to %s port %s\n",
host != NULL ? host : "(null)",
port);

exit(1);
}

/* process loop */
while (1) {

ssize_t cc;
char buf[1024];

/* read from remote host */
cc = read(s, buf, sizeof(buf));
if (cc == -1) {

perror("read");
close(s);
exit(1);

} else if (cc == 0) {
break;

}

/* output response */
if (write(STDOUT_FILENO, buf, cc) == -1) {

perror("write");
close(s);
exit(1);

}
}

close(s);

Linux Symposium 519

exit(0);
}

7.2 Server

/*
* Sample Modern Server
*
* Usage:
* % ./modern-server :: 12345
*
* $Id: modern-server.tex,v 1.1 2003/05/15 03:54:13 yoshfuji Exp $
*/

#include <stdio.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <netdb.h>
#include <string.h>
#include <stdlib.h>
#include <sys/select.h>

#ifndef MAX_SOCKNUM
define MAX_SOCKNUM FD_SETSIZE
#endif

static const char *message = "Hello, world!\n";

int main(int argc, char **argv) {
char *host, *port;
struct addrinfo hints, *ai0, *ai;
int gai;
int socknum = 0, *socklist = NULL;
int maxfd = -1;
fd_set fds_init, fds;
int i;

/* check arguments */
if (argc != 2 && argc != 3) {

fprintf(stderr, "Usage: %s [host] portnum\n", argv[0]);
exit(1);

}

if (argc == 3) {
host = argv[1];
port = argv[2];

} else {
host = NULL; /* unspecified address */
port = argv[1];

}

Linux Symposium 520

/* resolve address */
memset(&hints, 0, sizeof(hints));
hints.ai_family = AF_UNSPEC;
hints.ai_socktype = SOCK_STREAM;
hints.ai_protocol = IPPROTO_TCP;
hints.ai_flags = AI_PASSIVE;

gai = getaddrinfo(host, port, &hints, &ai0);
if (gai) {

fprintf(stderr,
"getaddrinfo(): %s port %s: %s\n",
host != NULL ? host : "(null)",
port,
gai_strerror(gai));

exit(1);
}

/* initialize fd_set for select(2) */
FD_ZERO(&fds_init);

/* loop waiting for connection */
for (ai = ai0; ai; ai = ai->ai_next) {

int s;
int *newlist;

#ifdef IPV6_V6ONLY
int on = 1;

#endif

/* create a socket */
s = socket(ai->ai_family, ai->ai_socktype, ai->ai_protocol);
if (s == -1)

continue;

#ifdef IPV6_V6ONLY
if (ai->ai_family == AF_INET6 &&

setsockopt(s,
IPPROTO_IPV6, IPV6_V6ONLY,
&on, sizeof(on)) == -1) {

perror("setsockopt(IPV6_V6ONLY)");
/*

* Some systems do not support his option;
* This error should no be fatal.
*/

}
#endif

/* listen */
if (bind(s, ai->ai_addr, ai->ai_addrlen) == -1) {

close(s);
continue;

}

if (listen(s, 5) == -1) {
close(s);

Linux Symposium 521

continue;
}

if (s >= FD_SETSIZE || socknum >= MAX_SOCKNUM) {
close(s);
fprintf(stderr, "too many file/socket descriptors\n");
break;

}

/* re-allocate list of socket */
newlist = realloc(socklist, sizeof(int)*(socknum+1));
if (newlist == NULL) {

perror("realloc");
close(s);
break; /* XXX: terminate immidiately? */

}

socklist = newlist;
socklist[socknum++] = s;

/* set fd_set */
FD_SET(s, &fds_init);

if (maxfd < s)
maxfd = s;

}

/* free address information */
freeaddrinfo(ai0);

/* check if we have failed */
if (socknum == 0) {

fprintf(stderr,
"Cannot allocate any listen sockets on %s port %s\n",
host != NULL ? host : "(null)",
port);

exit(1);
}

while (1) {
int i;

fds = fds_init;

if (select(maxfd + 1, &fds, NULL, NULL, NULL) == -1) {
perror("select");
continue;

}

for (i = 0; i < socknum; i++) {
int sock = socklist[i];

/* look up listener.
* XXX: this is not fair between listers

Linux Symposium 522

*/
if (FD_ISSET(sock, &fds)) {

int newfd;
struct sockaddr_storage ss;
socklen_t sslen;
ssize_t cc;
char hostbuf[NI_MAXHOST];
int gni;

sslen = sizeof(ss);
newfd = accept(sock, (struct sockaddr *)&ss, &sslen);
if (newfd == -1) {

perror("accept");
continue;

}

gni = getnameinfo((struct sockaddr *)&ss, sslen,
hostbuf, sizeof(hostbuf),
NULL, 0,
NI_NUMERICHOST);

if (gni)
strcpy(hostbuf, "???"); /*FIXME!*/

printf("accept from %s\n", hostbuf);

cc = write(newfd, message, strlen(message));
if (cc == -1) {

perror("write");
} else if (cc != strlen(message)) {

fprintf(stderr,
"write returned %d "
"while %d is expected.\n",
cc, strlen(message));

}

close(newfd);
}

}
}

/* we should not reache here */
for (i = 0; i < socknum; i++)

close(socklist[i]);
free(socklist);

exit(0);
}

7.3 getifaddrs(3)

#include <stdlib.h>
#include <ifaddrs.h>

Linux Symposium 523

int main() {
struct ifaddrs *ifa0, *ifa;
int ret;

ret = getifaddrs(&ifa0);
if (ret) {

perror("getifaddrs()");
exit(1);

}

for (ifa = ifa0; ifa; ifa = ifa->ifa_next) {
if (!ifa->ifa_addr)

continue;
switch(ifa->ifa_addr->sa_family) {

case AF_INET:
/* ifa->ifa_addr points sockaddr_in{} */
/* ... */
break;

case AF_INET6:
/* ifa->ifa_addr points sockaddr_in6{} */
/* ... */
break;

#if defined(AF_PACKET)
case AF_PACKET:

/* ifa->ifa_addr points sockaddr_ll{} */
/* ... */
break;

#endif
#if defined(AF_LINK)

case AF_LINK:
/* ifa->ifa_addr points sockaddr_dl{} */
/* ... */
break;

#endif
default:

/* not supported */
;

}
}
freeifaddrs(ifa0);
exit(0);

}

Proceedings of the
Linux Symposium

July 23th–26th, 2003
Ottawa, Ontario

Canada

Conference Organizers

Andrew J. Hutton,Steamballoon, Inc.
Stephanie Donovan,Linux Symposium
C. Craig Ross,Linux Symposium

Review Committee

Alan Cox,Red Hat, Inc.
Andi Kleen,SuSE, GmbH
Matthew Wilcox,Hewlett-Packard
Gerrit Huizenga,IBM
Andrew J. Hutton,Steamballoon, Inc.
C. Craig Ross,Linux Symposium
Martin K. Petersen,Wild Open Source, Inc.

Proceedings Formatting Team

John W. Lockhart,Red Hat, Inc.

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.

