
Low-level Optimizations in the PowerPC Linux
Kernels

Paul Mackerras
IBM Linux Technology Center OzLabs

paulus@au1.ibm.com

Abstract

We examine three low-level optimizations
in the Linux® kernel for 32-bit and 64-bit
PowerPC®, relating to cache flushing, mem-
ory copying, and PTE (page table entry) man-
agement. Benchmarking and profiling were
used to identify areas where optimizations
could be performed and to identify whether the
optimizations actually improved performance.
The cache flushing and memory copying opti-
mizations improved performance significantly,
whilst the PTE management optimization did
not.

1 Introduction

The optimizations presented in this paper rep-
resent some of the results of the continuing ef-
fort to make the Linux kernel run better and
faster on PowerPC processors, both 32-bit and
64-bit. The optimizations here are low-level
optimizations that are specific to PowerPC pro-
cessors, aimed at decreasing the overhead of
some of the fundamental operations relating
to maintaining the consistency of the instruc-
tion cache with memory, copying memory, and
managing page table entries.

Subsequent sections present measurements of
performance using benchmarking and kernel
profiling. Benchmarking is the process of
measuring performance by running a specific

program or set of programs to measure how
quickly certain operations are performed. Two
different benchmarks of different styles are
used here:

• LMBench™ is a micro-benchmark suite
originally written by Larry McVoy. It
measures the speed of a broad range
of individual kernel operations such as
forking processes, reading and writ-
ing data to/from disk, transferring data
over a socket, etc. Seehttp://
www.bitmover.com/lmbench/ for
details.

• For an application-level benchmark to
measure the overall speed of a process that
involves a range of kernel activities, we
use the process of compiling the Linux
kernel, and measure the time taken us-
ing the time(1) command. We used
the same source tree (from Linux version
2.5.25) and configuration for all tests so
that the results are comparable with each
other. A kernel compilation tends to ex-
ercise a range of kernel functions includ-
ing forking processes, starting new pro-
cesses, reading and writing files, mapping
in pages of memory on demand, and so
on.

Profiling measures the time spent in individual
kernel procedures while the kernel is perform-
ing some tasks. The form of profiling used in



Linux Symposium 305

this paper is that where a periodic interrupt is
used to obtain a statistical sample of the to-
tal time spent executing each instruction in the
kernel. When the periodic interrupt is taken,
the handler examines the instruction pointer
where the interrupt occurred, uses that to in-
dex into an array, and increments that array el-
ement. Over time this builds up a histogram of
where the kernel is spending its time. A post-
processing tool converts that histogram into a
total count for each procedure in the kernel.

This can be a very powerful tool for analysing
kernel performance provided that its limita-
tions are kept in mind. First, because the data is
a statistical sample, it can be quite noisy. Sec-
ondly, it does not measure the execution time
for code that runs with interrupts disabled (un-
less some kind of non-maskable interrupt can
be used). Instead, time spent with interrupts
disabled tends to get attributed to the point
where interrupts are re-enabled.

Three machines were used for the measure-
ments reported here:

1. An Apple® PowerBook® G3 laptop with a
400MHz PowerPC 750™ processor, sep-
arate 32kB level 1 data and instruction
caches, unified 1MB level 2 data cache,
and 192MB of RAM. This is a 32-bit ma-
chine.

2. An IBM® pSeries™ model 650 computer
with eight 1.45GHz IBM POWER4+™
processors, 32kB level 1 data cache and
64kB level 1 instruction cache per proces-
sor, 1.5MB level 2 cache per 2 processors,
and 8GB of RAM. This is a 64-bit ma-
chine.

3. An IBM “Walnut” embedded evalua-
tion board with a 200MHz IBM Pow-
erPC 405GP processor, 8kB level 1 data
cache, 16kB level 1 instruction cache and
128MB of RAM. This is a 32-bit machine.

2 Cache flushing optimizations

In the PowerPC architecture, the instruction
cache is not required to snoop changes to the
contents of memory, either by stores from this
or another CPU, or by DMA from an I/O de-
vice. Instead, software is required to maintain
the coherency of the instruction cache, using
thedcbst —data cache block store instruction
and theicbi —instruction cache block invali-
date instruction. These instructions can be ex-
ecuted at user level, and self-modifying code
is required to use them after it has written in-
structions to memory before those instructions
are executed.

The kernel uses these instructions extensively
to make sure that pages that are mapped into
a user process’s address space can be executed
safely. User code assumes that the instruction
cache is consistent with memory for pages that
are supplied by the kernel on demand. Thus
it is the kernel’s responsibility to perform the
cache flushing instructions on a page of mem-
ory before mapping it into a process’s address
space if there is a possibility that the instruc-
tion cache is incoherent with memory for that
page. If this is not done properly, the symptom
is usually that the process will get a segmen-
tation violation or illegal instruction exception,
since it is not executing the instructions that it
should.

Note that almost all PowerPC implementa-
tions have caches that are effectively physically
addressed—usually virtually indexed, physi-
cally tagged, set associative, with the set size
no greater than the page size, so no aliasing
occurs. The IBM POWER4™ processor has
a virtually indexed direct-mapped instruction
cache, but obviates the potential problems that
this could cause by having theicbi instruc-
tion clear all 16 cache blocks where a given
block of memory could be cached. There are
also some embedded PowerPC implementa-



Linux Symposium 306

tions that have virtually indexed and tagged in-
struction caches, and these require quite differ-
ent cache management and are not considered
in this paper.

2.1 Initial implementation

The Linux generic virtual memory (VM) sys-
tem provides a number of hooks that ar-
chitecture code can define in order to do
architecture-specific cache and TLB man-
agement where necessary. One of these
is called flush_page_to_ram , and it is
called at several points in the VM code
when pages are mapped into a user pro-
cess’s address space (e.g.,do_no_page ,
do_anonymous_page etc.). In older ker-
nels the flush_page_to_ram hook was
used on PowerPC to perform the cache flush
on the page in order to ensure that the in-
struction cache was consistent for the page.
This reliably ensured that the instruction cache
did not contain stale data for the pages that
processes see, but had a considerable perfor-
mance penalty. The “Original” column of Ta-
ble 1 shows the results of a kernel profile
on a kernel which usesflush_page_to_
ram to ensure instruction cache coherency.
These results were obtained on the 400MHz
G3 PowerBook machine compiling a kernel (3
times over). The kernel spends more time in
flush_dcache_icache , which performs
the flushing function offlush_page_to_
ram, than any other kernel procedure. Clearly
flush_page_to_ram is a good candidate
for optimization.

2.2 Optimized implementation

A large part of the reason why the kernel is
spending so much time inflush_dcache_
icache is that it is doing unnecessary flushes.
If the same program is executed many times
in different processes, the kernel will call

Procedure Original Optimized
flush_dcache_icache 6763 2974
ppc6xx_idle 2238 2468
do_page_fault 857 667
copy_page 537 390
clear_page 523 509
copy_tofrom_user 356 299
do_no_page 231 129
add_hash_page 220 92
flush_hash_page 195 191
do_anonymous_page 194 224

Table 1: Kernel profiles before and after cache-
flush optimization

flush_page_to_ram on each page of the
program executable each time it is mapped into
a process’s address space. However, once the
flush has been done, the instruction cache is
consistent for that page (provided that the page
is not modified), and the flush doesn’t need to
be done when the page is subsequently mapped
into other processes’ address spaces.

A solution to this problem was suggested
by David Miller. He suggested using a bit,
called PG_arch_1 , in the flags field of
thepage_struct structure for each page, to
indicate whether the instruction is consistent
with memory for the page. This bit is cleared
when the page is allocated. We use this to in-
dicate that the instruction cache may be incon-
sistent. When the flush is done on the page, we
set the bit, indicating that the instruction cache
is now consistent for the page. Subsequently,
if the bit is already set, the flush does not need
to be done.

David Miller also requested that we use the
flush_dcache_page andupdate_mmu_
cache hooks rather thanflush_page_to_
ram, since more information is provided to
the architecture code in the calls toflush_
dcache_page and update_mmu_cache ,
and flush_page_to_ram is deprecated.
The VM system calls flush_dcache_



Linux Symposium 307

page when a page which may be mapped
into a process’s address space is modified by
the kernel. update_mmu_cache is called
when a page is mapped into a process’s ad-
dress space. In our implementation,flush_
dcache_page clears thePG_arch_1 bit,
and update_mmu_cache does the flush
(by calling flush_dcache_icache ) if the
PG_arch_1 bit is clear, and then sets it.

The results are shown in the “Optimized” col-
umn in Table 1. Clearly the time spent flush-
ing the cache has decreased dramatically, al-
though it is still significant. The system time
for the compilation decreased from 46.0 sec-
onds to 29.9 seconds. The user time was
not significantly different (301.9 seconds vs.
300.2 seconds). The overall speedup was
5.1%. (Note that kernel profile measurements
are quite noisy, and the other differences be-
tween the columns in Table 1 are not necessar-
ily significant.)

Table 2 shows an excerpt from the
before-and-after LMBench results. (See
ftp://ftp.samba.org/pub/paulus/
ols2003/lmb-argo-flush for the full
summary of results.) The optimization has
produced worthwhile improvements in the
fork, exec and shell process items. The first
line shows the unoptimized results, and the
second line shows the optimized results.

2.3 Further optimizations

The implementation in the previous section
aimed at minimizing the number of flushes
while still making sure that the instruction
cache was consistent with memory for each
page mapped into the process’s address space.
This includes anonymous pages and pages that
are copied as a result of a write to a copy-on-
write page, as well as page-cache pages. (A
copy-on-write page is one which is mapped
with a private writable mapping, including

anonymous pages which are shared after a
fork.)

Part of the reason that it is necessary to en-
sure consistency of the instruction cache is
that the PowerPC architecture, as originally de-
fined, doesn’t provide any way to prevent a
process from executing code from a readable
page. That is, there is no execute permission
bit in the page table entries (PTEs). If there
was a way to trap attempts to execute from a
page, it would be possible to defer the flush un-
til a process first executed instructions from the
page. That way, it would be possible to avoid
the flush altogether on anonymous pages which
are only used for data, not for code.

Embedded PowerPC implementations, such as
the IBM PPC405, don’t follow the original
PowerPC memory management unit (MMU)
architecture, but instead have a software-
loaded TLB with a unique PTE format. The
PTE format for the PPC405 includes an
execute-permission bit. Also, the POWER4
processor uses one of the previously-unused
bits in the PTEs as a no-execute bit.

We implemented an optimization on the
PPC405 where the pages are not flushed in
update_mmu_cache . Instead, if thePG_
arch_1 bit is clear, we clear the execute-
permission bit in the PTE mapping the page.
There is an added check indo_page_fault
for an attempt to execute from a page with
the execute-permission bit clear. In that case,
we do the flush on the page and then set the
execute-permission bit.

The kernel profiles shown in Table 3 show
that the number of counts recorded inflush_
dcache_icache while compiling the test
kernel twice dropped from 1685 to 31. Thus
the time spent doing cache flushes for instruc-
tion cache consistency has become negligible.
The system time for a kernel compile was re-
duced by 147.7 seconds to 139.0 seconds, a de-



Linux Symposium 308

Processor, Processes - times in microseconds - smaller is better
----------------------------------------------------------------
Host OS Mhz null null open selct sig sig fork exec sh

call I/O stat clos TCP inst hndl proc proc proc
------ ------------- ---- ---- ---- ---- ---- ----- ---- ---- ---- ---- ----
argo Linux 2.5.66 400 0.35 0.76 3.90 5.34 39.1 1.67 6.64 795. 5065 23.K
argo Linux 2.5.66 400 0.35 0.76 3.88 5.33 40.3 1.67 6.13 659. 2254 11.K

Table 2: LMBench results before and after cache-flush optimization

Procedure Orig. Optim.
ProgramCheckException 4766 4685
do_mathemu 4475 4526
ide_intr 1745 1729
flush_dcache_icache 1685 31
record_exception 1369 1448
copy_tofrom_user 1357 1325
do_page_fault 1027 1035
ret_from_except_full 774 775
fmul 731 721
fsub 658 629

Table 3: Kernel profiles before and after
execute-permission optimization

crease of 5.9%. The user time was not signif-
icantly different: 1460.6 seconds for the opti-
mized kernel vs. 1457.9 seconds for the unop-
timized kernel. The overall time for the kernel
compilation was reduced by 0.37%. The re-
duction is less than might have been expected
because a significant amount of the system
time was spent in the kernel floating-point em-
ulation routines (the PPC405 does not imple-
ment floating point instructions in hardware).

3 Memory copying

Copying memory is a fundamental operation in
the kernel, used for:

• Copying data to or from a user process
(e.g., for aread or write system call)

• Copying pages of memory, in particular
for write faults on copy-on-write pages

• Copying other data structures within the
kernel.

Separate procedures are used for these three
operations: copy_tofrom_user , copy_
page and memcpy respectively. The pro-
files in Table 1 show thatcopy_tofrom_
user andcopy_page are among the top ten
most time-consuming operations in the kernel.
These routines are thus a candidate for opti-
mization.

However, these routines are already well opti-
mized in the 32-bit PowerPC kernel for most
32-bit PowerPC implementations. In the 64-
bit kernel, it becomes possible to use 64-byte
loads and stores to move more data per instruc-
tion. This is easy in thecopy_page case,
since the source and destination addresses are
page-aligned. However, incopy_tofrom_
user andmemcpy, where the source and des-
tination are not necessarily 8-byte aligned, it
becomes more complicated.

PowerPC processors generally handle most 2-
byte and 4-byte unaligned loads and stores
in hardware, without generating an exception.
Older processors would generate an exception
if the access crossed a page boundary, whereas
most newer processors handle even that case
in hardware. However, 64-bit PowerPC pro-
cessors typically generate an exception on an
8-byte load or store if the address is not 4-byte
aligned. The kernel has an alignment excep-
tion handler that emulates the load or store and
allows the program to continue.



Linux Symposium 309

When copying memory and the source and/or
destination addresses are misaligned, we gen-
erally copy a small number of bytes, one at
a time, in order to get to an aligned destina-
tion address. If the source address is then mis-
aligned (that is, the bottom 2 bits of the address
are non-zero), there are two alternative strate-
gies to handling the misalignment:

1. Use 32-bit or 64-bit loads and stores, ig-
noring the misalignment. In this case we
will have misaligned load addresses and
aligned store addresses.

2. Do loads with aligned addresses and use
shift and OR instructions to shuffle the
bytes into the correct positions to be
stored to an aligned address.

For current PowerPC implementations, it turns
out that while misaligned 32-bit loads are
slower than aligned 32-bit loads, they are still
faster than aligned 32-bit loads plus the extra
instructions needed to shuffle the bytes into po-
sition. For this reason,copy_tofrom_user
andmemcpyin the 32-bit kernel use unaligned
loads in a relatively simple loop. However, the
situation is different for 64-bit loads. Since ev-
ery misaligned 64-bit load will cause an excep-
tion, it is much faster to do the aligned loads
and shuffle the bytes.

In fact, the behaviour of the processor on un-
aligned loads and stores is only one of many ar-
chitectural and implementation characteristics
that affect how an optimum memory copying
routine should be written. Some of the others
are:

• The number of levels in the storage hier-
archy and the latency to each level;

• Presence or absence of automatic hard-
ware prefetch mechanisms;

• Presence or absence of instructions to pro-
vide cache prefetch hints to the processor;

• Load-use penalty, that is, how many other
instructions should be placed between a
load and the store (or other operation)
which uses the data from the load, so that
the processor does not need to stall the
store until the data from the load is avail-
able;

• Ability of the processor to issue instruc-
tions out of order, so that later instruc-
tions are not blocked by earlier instruc-
tions which do not have all their operands
available;

• The penalty incurred for conditional
branches (if this is large then there is an
advantage to unrolling loops);

• Extended instruction sets such as Altivec
on PowerPC, MMX/SSE on x86, or the
VIS instructions on SPARC64, which pro-
vide the ability to operate on larger units
of data (typically 128 bits).

Given how many factors can affect memory
copying performance, it is not surprising that
memory copy routines can become quite large
and complicated, reaching tens of thousands of
lines of assembly code on some architectures.
Other factors that affect the performance of a
memory copy routine include the size of the
region to be copied, and whether the source
and/or destination regions are already present
in the processor’s caches. Some optimizations,
such as loop unrolling, might improve perfor-
mance dramatically for larger copies (i.e., sev-
eral cache lines or larger) but hurt performance
for small copies by increasing the setup costs.
Similarly, some optimizations, such as using
extended instruction sets, might improve per-
formance dramatically when all the source data
is present in the level-1 data cache, but have no



Linux Symposium 310

effect or actually reduce performance when the
data has to be brought in from main memory.

Thus it is interesting to know whether the ker-
nel routinely does large copies, and whether
they are misaligned or not. To test this,
we added histogramming functions tocopy_
tofrom_user andmemcpy in a 64-bit ker-
nel. The results can be summarized as follows:

• 98% of calls tomemcpy were for less
than 128 bytes (one cacheline).

• 13% of calls tomemcpywere not 8-byte
aligned.

• 84% of calls tocopy_tofrom_user
were for less than 128 bytes, and 95%
were for less than 512 bytes. Of the
remainder, most were page-sized (4096
bytes) and page-aligned.

• 43% of calls tocopy_tofrom_user
were not 8-byte aligned.

These results indicate that it is important to op-
timize for the small-copy case, particularly for
memcpybut also forcopy_tofrom_user ,
and that performance on unaligned copies is
important for copy_tofrom_user . The
one large-copy case which is worth optimizing
for is the case of copying a whole page, both
in copy_page and also to a lesser extent in
copy_tofrom_user .

3.1 Optimized POWER4 memory copy

On POWER4 the factors that need to be taken
into account include the following:

• POWER4 aggressively executes instruc-
tions out of order and uses register renam-
ing to avoid false dependencies between
instructions.

• POWER4 includes automatic prefetch
hardware which detects sequential mem-
ory accesses and prefetches cache lines
which are likely to be needed in the near
future.

• Correctly predicted conditional branches
incur a one cycle penalty.

• The level-1 data cache on POWER4 is
a write-through cache, thus all stores go
through to the level-2 cache. The L2
cache is organized as three interleaved
banks. Each bank has its own store queue.

The effect of the first three points is that while
some degree of loop unrolling is beneficial, it
is not necessary to aggressively unroll the main
copy loop or to make sure that many instruc-
tions intervene between a load and the instruc-
tion that uses the result.

Because of the interleaved nature of the L2
cache, the optimum pattern of stores is one
where stores go successively to each bank of
the level 2 cache. In fact the best perfor-
mance for large copies is obtained with a loop
that works on six cachelines at a time, so that
the loads and stores are interleaved across six
cachelines.

Based on these considerations, the author
developed optimizedcopy_tofrom_user ,
copy_page and memcpy implementations
for POWER4, with the following characteris-
tics:

• copy_tofrom_user detects page-
sized page-aligned copies and calls a
routine similar tocopy_page for them.
For other copies, it proceeds with an
algorithm similar to memcpy below.
(The main difference betweencopy_
tofrom_user and copy_page or
memcpy is that copy_tofrom_user



Linux Symposium 311

has to cope gracefully in the case where
the source or destination address cannot
be accessed, for example if a bad address
is given to a system call.)

• The main loop ofcopy_page works on
6 cachelines at once, and contains 18 load
and 18 store instructions, in three groups
of 6 stores followed by 6 loads.

• memcpy has three main loops, each of
which do two aligned 64-bit loads and two
aligned 64-bit stores. One loop is for the
case where the source and destination are
8-byte aligned with respect to each other,
and the other two are for the misaligned
case. These two loops are slightly differ-
ent to handle an even or odd number of
64-bit doublewords to be transferred (ex-
cluding any bytes copied initially to get
the destination 8-byte aligned).

These routines were tested on the 1.45GHz
POWER4+ system using the same kernel com-
pile test used in the previous section. The op-
timized copy routines were compared with the
copy_tofrom_user andmemcpyroutines
from the ppc32 kernel (thus using only 32-bit
loads and stores) and a simplecopy_page
implementation which has two 64-bit loads and
stores per iteration in its main loop.

Figure 1 shows selected LMBench re-
sults in graphical form. (Seeftp:
//ftp.samba.org/pub/paulus/
ols2003/lmb-power4-copy for the full
summary of results.) From these it is evident
that the optimized version is indeed noticeably
faster than the unoptimized versions.

However, the results from the kernel compile
test were more equivocal: the system time was
reduced from 8.30 seconds to 8.19 seconds
(a 1.3% improvement). When the user time
(78.84 seconds in both cases) is added in, the
overall improvement was only 0.13%.

Figure 1: Results of memory copy optimiza-
tion on 64-bit POWER4+.

4 PTE management

4.1 Introduction

In the PowerPC architecture, page table en-
tries (PTEs) are stored in a hash-table structure
which is accessed by the memory management
unit (MMU) hardware. The hash table is di-
vided into groups of 8 entries. Each group has
an index between 0 andN − 1, whereN is
the number of groups in the table (N must be a
power of 2). When the MMU needs to find the
PTE for a given virtual address, it first com-
putes a hash index using an XOR-based hash
function on the virtual address. The hash index
identifies one group, called the primary group
for the virtual address, which is fetched and
searched for a PTE which matches the virtual
address. The PTE includes part of the virtual
address so that a match can be verified. If no
matching PTE is found, a secondary hash value
is formed by subtracting the original hash value
fromN−1. This identifies the secondary group
for the virtual address, which is also searched



Linux Symposium 312

for a matching PTE.

In contrast, the Linux virtual memory (VM)
system uses a two-level or three-level tree
structure for storing PTEs. It is the responsibil-
ity of the PowerPC-specific parts of the kernel
to keep the MMU hash table accessed by the
hardware synchronized with the Linux page ta-
ble trees. Essentially, the MMU hash table
is used as a large level-2 translation lookaside
buffer (TLB).

To avoid confusion, we use the term HPTE
(Hashtable PTE) to refer to a PTE in the MMU
hash table, and LPTE (Linux PTE) to refer to a
PTE in the Linux page table trees. The HPTE
and LPTE formats are different, although re-
lated.

When a new LPTE is created, a corresponding
HPTE must be created before the page can be
accessed. This can be done in theupdate_
mmu_cache hook or on demand when the
page is first accessed.

Similarly, when an existing LPTE is invali-
dated, the corresponding HPTE (if any) must
be found and invalidated. One reasonable
approach is to do the HPTE invalidation in
the TLB flushing routines. There are four
TLB flushing routines called by the Linux
VM code: flush_tlb_page , flush_
tlb_range , flush_tlb_mm andflush_
tlb_kernel_range . In addition, there
are the__tlb_remove_tlb_entry and
tlb_flush routines which are used in con-
junction with themmu_gather structure used
when destroying page tables.

Of these, flush_tlb_page is relatively
easy to implement efficiently since it only op-
erates on a single page, whose address is given.
The flushing routine just needs to search one
primary HPTE group and possibly one sec-
ondary group, and invalidate the HPTE if it is
found.

Implementing flush_tlb_range and
flush_tlb_mm efficiently is more difficult,
since the information about precisely which
LPTEs have been changed or invalidated is
not readily available. Searching the MMU
hash table for every address in the range (for
flush_tlb_range ) or in the whole address
space for a process (flush_tlb_mm ) would
be very time-consuming, and would be par-
ticularly inefficient if there were not actually
HPTEs present for most of the addresses, as is
typically the case forflush_tlb_mm .

Instead, we use a bit in the LPTE, called
_PAGE_HASHPTE, to indicate whether a
HPTE corresponding to this LPTE has been
created. Then,flush_tlb_range and
flush_tlb_mm can scan the Linux page
tables looking for LPTEs with the_PAGE_
HASHPTEbit set and only search the MMU
hash table for the corresponding addresses.
This scheme does however require some care
in handling the_PAGE_HASHPTEbit:

• It must remain valid even if the LPTE
is invalidated or used for a swap en-
try. Thus an atomic read-modify-write se-
quence must be used to invalidate or up-
date an LPTE rather than a normal store
instruction.

• The page holding the LPTE must still be
allocated and present in the page table tree
at the time that any of the TLB flush rou-
tines are called.

The 64-bit PowerPC kernel uses an additional
4 bits in the LPTE to indicate whether the
HPTE is in the primary or secondary group,
and which of the 8 slots in the group it is
in. With this information, the TLB flush rou-
tines can invalidate the HPTE directly with-
out having to search the primary and secondary
groups. This approach isn’t used in the 32-bit



Linux Symposium 313

PowerPC kernel since there are not 4 free bits
in the LPTE.

4.2 Optimized implementation

Instead of having to scan the Linux page ta-
bles in flush_tlb_range and flush_
tlb_mm , it would potentially be more effi-
cient to invalidate the HPTE at the time that
the LPTE is changed. Alternatively, it would
be possible to make a list of virtual addresses
when LPTEs are changed and then use that list
in the TLB flush routines to avoid the search
through the Linux page tables.

This approach was not possible in ear-
lier kernels because there was not enough
information supplied in the calls to the
functions that update LPTEs (set_pte ,
ptep_get_and_clear , etc.) to deter-
mine the address space (represented by the
mm_struct structure) and virtual address for
the LPTE being modified. However, the infras-
tructure added for the reverse-mapping (rmap)
support in the Linux VM system allows us
to determine this information efficiently, since
a pointer to themm_struct for the address
space and the base virtual address mapped
by the LPTE page are now stored in the
page_struct structure for each LPTE page.

The results for the 32-bit kernel are shown in
Table 4. The times shown are the system and
user times in seconds for the kernel compila-
tion test on the 400MHz PPC750 (G3) system,
and are averages of at least two repetitions. The
first row is for the original unoptimized kernel,
the second row (“Immediate update”) is for a
kernel which invalidates the HPTE at the time
when the LPTE is modified, and the third row
(“Batched update”) is for a kernel that records
the virtual addresses when LPTEs are modified
and invalidates the HPTEs in the TLB flush
routines.

Kernel version System User Total
time time time

Original 32.09 303.71 335.80
Immediate update 32.28 302.93 335.21
Batched update 32.40 303.22 335.62

Table 4: PTE optimizations, 32-bit kernel

Kernel version System User Total
time time time

Original 8.51 78.13 86.64
Batched update 8.44 78.04 86.48

Table 5: PTE optimizations, 64-bit kernel

Clearly, neither optimization gives a significant
increase in performance. The differences in to-
tal time of less than 0.6s are less than the stan-
dard deviation of the total time measurement
for the original kernel, which was 1.42s (from
7 measurements).

The results in Table 5 for the 64-bit kernel on
the 1.45GHz POWER4+ system paint a similar
picture. The table compares the original ker-
nel with one that records the virtual addresses
when LPTEs are modified and invalidates the
HPTEs in the TLB flush routine (the “Batched
update” row). The times are in seconds and are
averages of 6 measurements. Previous experi-
ence has shown that it is important to batch up
changes to the MMU hash table in the ppc64
kernel, particularly on SMP systems. Conse-
quently we did not test the variant which inval-
idates the HPTE at the time that the LPTE is
modified.

The difference in total time is 0.16 seconds,
about 0.2% of the total time. Even if the dif-
ference were statistically significant, it hardly
represents an important optimization. How-
ever, the optimized code is actually simpler and
shorter (by 66 lines) than the original code, and
may be worth adopting for that reason alone.



Linux Symposium 314

5 Conclusions

The previous sections demonstrated perfor-
mance improvements of varying magnitudes
from the optimizations considered. Some of
the individual LMBench numbers were more
than doubled by the first optimization, that
of avoiding the instruction cache flush on
pages which had already been flushed. The
64-bit memory copy optimizations improved
the unix-domain socket bandwidth by over
60%, with smaller improvements on other
bandwidth-related measurements.

The overall improvements for the kernel com-
pile benchmark were more modest. This is to
be expected since the time spent in the kernel
is only about a tenth of the time spent in user
processes for this benchmark, and the opti-
mizations considered here only reduce the time
spent in the kernel.

In sum, the optimizations presented here pro-
vide a substantial performance boost for the
Linux kernel on PowerPC machines.

The results illustrate some general principles
about optimization work:

• Kernel profiling is a useful tool for de-
termining what a profitable target for op-
timization is, and whether a given opti-
mization is effective. However, the ker-
nel profile results are usually quite noisy,
and care must be exercised in interpreting
them.

• Some optimizations may produce dra-
matic improvements on benchmarks but
have almost no effect on the speed of ac-
tual application programs.

• Measurement is key; some optimizations
might seem like an extremely good idea
but not produce any significant perfor-
mance gains, either because of unfore-

seen side-effects or because the thing be-
ing optimized doesn’t consume a signifi-
cant amount of time.

Acknowledgements

The author would like to thank Anton Blan-
chard for assistance with implementing and
benchmarking the cache-flushing optimiza-
tions presented here.

Legal statements

This work represents the view of the author and
does not necessarily represent the view of IBM.

IBM, pSeries, PowerPC, PowerPC 750, POWER4
and POWER4+ are trademarks or registered trade-
marks of International Business Machines Corpo-
ration in the United States and/or other countries.

Linux is a registered trademark of Linus Torvalds.

LMBench is a trademark of BitMover, Inc.

Apple and PowerBook are trademarks of Apple
Computer, Inc., registered in the U.S. and other
countries.

Other company, product, and service names may be
trademarks or service marks of others.



Proceedings of the
Linux Symposium

July 23th–26th, 2003
Ottawa, Ontario

Canada



Conference Organizers

Andrew J. Hutton,Steamballoon, Inc.
Stephanie Donovan,Linux Symposium
C. Craig Ross,Linux Symposium

Review Committee

Alan Cox,Red Hat, Inc.
Andi Kleen,SuSE, GmbH
Matthew Wilcox,Hewlett-Packard
Gerrit Huizenga,IBM
Andrew J. Hutton,Steamballoon, Inc.
C. Craig Ross,Linux Symposium
Martin K. Petersen,Wild Open Source, Inc.

Proceedings Formatting Team

John W. Lockhart,Red Hat, Inc.

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.


