
Linux Support for NUMA Hardware

Matthew Dobson, Patricia Gaughen, Michael Hohnbaum
IBM LTC, Beaverton, Oregon, USA

colpatch@us.ibm.com, gone@us.ibm.com, hohnbaum@us.ibm.com

Erich Focht

NEC HPCE, Stuttgart, Germany
efocht@hpce.nec.com

Abstract

New large CPU-count machines are being de-
signed with non-uniform memory architecture
(NUMA) characteristics. The 2.5 Linux® ker-
nel includes many enhancements in support of
NUMA machines. Data structures and macros
are provided within the kernel for determin-
ing the layout of the memory and processors
on the system. These enable the VM subsys-
tem to make decisions on the optimal place-
ment of memory for processes. This topology
information is also exported to user-space via
sysfs . In addition to items that have been
incorported into the mainline Linux kernel,
there are NUMA features that have been de-
veloped that continue to be supported as patch-
sets. These include NUMA enhancements to
the scheduler, multipath I/O, and a user-level
API that provides user control over the alloca-
tion of resources in respect to NUMA nodes.

1 Introduction

1.1 Non-Uniform Memory Architecture

Demand for greater computing capacity has
lead to the increased use of multi-processor
computers. Most multi-processor computers
are considered Symmetric Multi-Processors

(SMP) as each processor is equal and has equal
access to all system resources (e.g., memory
and I/O busses). SMP systems generally are
built around a system bus that all system com-
ponents are connected to, and is used to com-
municate between the components. As SMP
systems have increased their processor count,
the system bus has increasingly become a bot-
tleneck. One solution that is gaining in use by
hardware designers is Non-Uniform Memory
Architecture (NUMA).

NUMA systems co-locate a subset of the
system’s overall processors and memory into
nodes, and provide a high speed and high band-
width interconnect between the nodes, see Fig-
ure 1. Thus there are multiple physical re-
gions of memory, but all memory is tied to-
gether into a single cache-coherent physical
address space. The resulting system has the
property such that for any given region of phys-
ical memory, some processors are closer to it
than other processors. Conversely, for any pro-
cessor, some memory is considered local (i.e.,
it is close to the processor) and other memory
is remote. Similar characteristics may also ap-
ply to the I/O busses—that is, I/O busses may
be associated with nodes.

While the key characteristic of NUMA systems
is the variable distance of portions of memory
from other system components, there are nu-



Linux Symposium 170

merous NUMA system designs. At one end of
the spectrum are designs where all nodes are
symmetrical—they all contain memory, CPUs,
and I/O busses. At the other end of the spec-
trum are systems where there are different
types of nodes—the extreme case being sepa-
rate CPU nodes, memory nodes, and I/O nodes.
All NUMA hardware designs are characterized
by regions of memory being at varying dis-
tances from other resources, thus having dif-
ferent access speeds.

To maximize performance on a NUMA plat-
form, Linux must take into account the way the
system resources are physically laid out. This
includes information such as which CPUs are
on which node, which range of physical mem-
ory is on each node, and what node an I/O bus
is connected to. This type of information de-
scribes the topology of the system.

There are several challenges Linux must ad-
dress to provide NUMA support. These in-
clude:

• discovery and internal representation of
the system topology

• minimization of traffic over the intercon-
nect between nodes

• localization of memory references

• fair access to locks

• I/O locality

• synchronization of time between nodes

• the location of low address memory (e.g.,
memory with physical address under 4
GB) all on the first node, on i386™ pro-
cessor (and potentially other 32-bit pro-
cessor architectures) based machines

• scheduling of processes and groups of
processes on the same node.

Figure 1: Simple view of NUMA system

Figure 2: NUMA system with supernodes

Linux running on a NUMA system obtains
optimal performance by keeping memory ac-
cesses to the closest physical memory. For ex-
ample, processors benefit by accessing mem-
ory on the same node (or closest memory
node), and I/O throughput gains by using mem-
ory on the same (or closest) node to the bus the
I/O is going through. At the process level, it
is optimal to allocate all of a process’s mem-
ory from the node containing the CPU(s) the
process is executing on. However, this also re-
quires keeping the process on the same node.

This paper looks at how Linux addresses these
NUMA challenges, focusing on the NUMA
support that is available in the 2.5 develop-
ment kernel. In addition, some discussion is
included about additional NUMA support that
is under development for future Linux releases.

1.2 Hardware Implementations

There are many design and implementation
choices that result in a wide variety of NUMA
platforms. This variety creates additional chal-



Linux Symposium 171

lenges for the Linux OS developer, as a single
solution is desired to support the many types of
NUMA hardware. This section discusses hard-
ware implementations, and provides examples
and descriptions of NUMA hardware imple-
mentations.

Types of nodes

The most common implementation of NUMA
systems consists of interconnecting symmetri-
cal nodes. In this case, the node itself is an
SMP system that has some form of high speed
and high bandwidth interconnect linking it to
other nodes. Each node contains some num-
ber of processors, physical memory, and I/O
busses. Typically, there is a node-level cache.
This type of NUMA system is depicted in Fig-
ure 1.

A variant on this design is to only put the pro-
cessors and memory on the main node, and
then have the I/O busses separate. Another de-
sign option is to have separate nodes for pro-
cessors, memory, and I/O busses which are all
interconnected.

It is also possible to have nodes which contain
nodes, resulting in a hierarchical NUMA de-
sign. This is depicted in Figure 2.

Types of interconnects

There is no standardization of interconnect
technology. More relevant to Linux is the
topology of the interconnect. NUMA ma-
chines exist that use the following interconnect
topologies:

• ring topology – each node is connected to
the node on either side of it. Memory ac-
cess latencies can be non-symmetric; that
is, accesses from node A to node B might

take longer than accesses from node B to
node A.

• crossbar interconnect – all nodes connect
into a common crossbar.

• point to point – each node has a number of
ports to connect to other nodes. The num-
ber of nodes in the system is limited to the
number of connection ports plus one, and
each node is directly connected to each
other node.

• mesh topologies – more complex topolo-
gies that, like point to point topologies,
are built upon each node having a number
of connection ports. But unlike point to
point topologies, there is not a direct con-
nection between each node. Hypercube
and torus topologies are examples of mesh
topologies.

The topology provided by the interconnect af-
fects the distance between nodes. This distance
needs to be accounted for when Linux is mak-
ing resource placement decisions.

Latency ratios

One important measurement for determining
the “NUMA-ness” of a system is the latency
ratio. This is the ratio between memory la-
tency for on-node memory access versus off-
node memory accesses. Depending upon the
topology of the interconnect, there might be
multiple off-node latencies. This latency can
be used to analyze the cost of memory refer-
ences to different parts of the physical address
space, and thus be used to influence decisions
affecting memory usage.



Linux Symposium 172

Specific NUMA implementations

Several hardware vendors are building NUMA
machines that run the Linux operating system.
This section briefly describes some of these
machines, but is not an all inclusive survey of
the existing implementations.

One of the earlier commercial NUMA ma-
chines is the IBM® NUMA-Q® box. This
machine is based upon nodes which contain
4 processors (i386), memory and PCI busses.
Each node also contains a management module
to coordinate booting, monitor environmen-
tals, and communicate with the system con-
sole. The nodes are interconnected using a ring
topology. Up to 16 nodes can be connected
for a maximum of 64 processors and 64 GB
of memory. Remote to local memory latency
ratios range from 10:1 to 20:1. Each node has
a large remote cache which helps compensate
for the large remote memory latencies. Much
of the Linux NUMA development has been on
these boxes due to their availability.

NEC builds NUMA boxes using Intel™ Ita-
nium™ processors. The most recent system in
this line is the NEC TX7. The TX7 supports up
to 32 Itanium2 processors in nodes of 4 pro-
cessors each. The nodes are connected by a
crossbar and grouped in two supernodes of four
nodes each. The crossbar provides fast access
to non-local memory with low latency and high
bandwidth (12.8 GB/second per node). The
memory latency ratio for remote to local mem-
ory in the same supernode is 1.6:1. The re-
mote to local memory latency ratio for outside
the supernode is 2.1:1. There is no node level
cache. I/O devices are connected through PCI-
X busses to the crossbar interconnect and thus
are all the same distance to any CPU/node.

The large IBM xSeries® boxes use Intel pro-
cessors and the IBM XA-32™ chipset. This
chipset provides an architecture that supports

four processors, memory, PCI busses, and
three interconnect ports. These interconnect
ports allow point to point connection of up to
4 nodes for a 16 processor system. Also sup-
ported is a connection to an external box with
additional PCI slots to increase the I/O capac-
ity of the system. The IBM x440 is built on this
architecture with Intel Xeon™ processors.

2 Linux NUMA Support

The basic infrastructure for supporting NUMA
hardware has been incorporated into the Linux
2.5 development kernel. This support in-
cludes topology discovery and internal repre-
sentation, memory allocation, process schedul-
ing, and timer support. In addition there are
kernel extensions in support of NUMA that
are not yet included in the mainline kernel,
but are being maintained as separate patchsets.
These include NUMA-aware multi-path I/O,
application-level directed binding of memory
to nodes, and scheduler extensions.

2.1 CONFIG Options

Most NUMA support options within the ker-
nel are enabled by the CONFIG_NUMA op-
tion. This includes the scheduler extensions,
NUMA memory allocation, and topology sup-
port. There is also an option, CONFIG_
DISCONTIGMEM, that is used for enabling a
portion of the NUMA memory support.

2.2 Linux Architecture Support

Linux supports many types of processors and
many hardware architectures. Within Linux,
when reference is made to an architecture it
typically refers to the processor type (e.g.,
i386, Power4™, alpha, etc.). Subarchitectures
are used to refer to a substantially different
hardware implementation of a particular archi-
tecture. Also, within an architecture there are



Linux Symposium 173

platforms which are an implementation of the
architecture.

For example, the x440 is part of the i386 archi-
tecture within Linux. However, the x440 is also
a unique subarchitecture within the i386 archi-
tecture. Another example is the IA64 architec-
ture which has DIG-64 and HP platforms, and
SGI-SN1 subarchitecture.

Throughout this paper references are made to
architecture which are more correctly subarchi-
tectures. References to architectures are meant
to refer to a specific hardware implementation
of a NUMA system.

3 Topology

There are performance penalties involved in
accessing hardware devices (CPUs, memory,
disks, network cards, etc.) that are remote to
the currently executing CPU. These can be sig-
nificantly reduced by having a knowledge of
the system’s topology, and using that informa-
tion to make good scheduling, allocation, mi-
gration, and I/O decisions. Topology informa-
tion is crucial to the kernel for making good
decisions on a NUMA machine, but this infor-
mation is also important to some user-space ap-
plications as well.

Topology information is currently used in the
kernel to schedule processes and allocate mem-
ory. This has contributed to performance im-
provements for NUMA architectures through-
out the 2.3, 2.4, and 2.5 kernel series.

3.1 Topology Elements

The topology of a system includes all hardware
components that make up the system. How-
ever, for the context of this paper, topology
is restricted to those physical elements which
are directly affected by the NUMA character-
istics of the system. These elements are nodes,

processors, memory, and I/O busses. Physical
components not considered here consist of the
actual I/O devices which are connected into the
system through the I/O busses.

CPUs provide the computing power in the
system. The location of the individual CPUs
in the overall topology is extremely impor-
tant for scheduling decisions. The current
in-kernel topology API exposes 4 CPU related
functions: cpu_to_node() , node_to_
cpumask() , node_to_first_cpu() ,
andpcibus_to_cpumask() . Information
about these functions is provided in the next
section. The two-node system in Figure 1,
contains 8 CPUs, 4 on node 0, and 4 on node
1.

A Memory Block, or memblk for short, repre-
sents a physically contiguous piece of memory.
It is typically used to represent all the mem-
ory in a particular memory bank on a particular
node. A node is permitted to have either 0 or 1
memory blocks. For example, in Figure 1, we
have a two-node system. Its total memory is
split into two memblks, one on node 0, one on
node 1. In UP/SMP systems, all the memory in
the system is represented by a single memory
block.

I/O bus elements represent physical I/O busses
in the underlying system. These are important
elements for operations like scheduling disk
I/O, networking tasks, or any I/O intensive pro-
cess. By utilizing knowledge about I/O local-
ity, processes can ensure they run efficiently by
constraining themselves to CPUs and memory
blocks on or close to the I/O bus they utilize.

When discussing NUMA, the word node is of-
ten overloaded. For the purposes of a Linux
topology discussion, a node is solely an ab-
stract container. Nodes are not meant to rep-
resent any physical element of the underlying
architecture. All elements, including nodes
themselves, are children of a node in the sys-



Linux Symposium 174

tem. The node element is designed to be a
medium through which queries can be made.
For example, in Figure 1, we see a simple il-
lustration of a two node system. Each node has
4 CPUs in it, as well as a block of memory.
To find out which memory block is closest to
CPU 3, a process can determine that CPU 3 is
a child of node 0, and that memblk 0 is also a
child of node 0. Thus, for efficiency, a process
running on CPU 3 would want to be sure that
its memory is allocated from memblk 0.

On some systems nodes can be nested, as seen
in Figure 2. This is important with things like
hyperthreading and multi-core processors be-
coming more available, which can be easily
represented as a small node with processors,
but no memory or I/O busses. Another usage
of nested nodes is for hierarchical NUMA sys-
tems, such as the NEC TX7, which is built with
supernodes that contain nodes.

There exists a strong possibility that there will
be a need to introduce new topology elements
in the future. Due to the simplicity of the de-
sign of the topology subsystem, adding new el-
ements is a straightforward procedure. As long
as there is a parent-child relationship between
the new element and nodes, the new element
should drop right in to the existing infrastruc-
ture.

3.2 Topology Kernel Functions

The following is a list of topology-related ker-
nel calls that form the basis of the current
topology framework. Along with the descrip-
tion of the call is a default return value for
the non-NUMA case. Architecture specific
definitions of these kernel calls are provided
for each architecture that has NUMA topol-
ogy support. Most architectures simply use the
default asm-generic/topology.h version, usu-
ally because the architecture does not support
NUMA.

• cpu_to_node(int cpu) – Returns
the number of the node containing CPU
cpu . For non-NUMA, defaults to 0.

• memblk_to_node(int memblk) –
Returns the number of the node contain-
ing memory blockmemblk . For non-
NUMA systems, defaults to 0.

• parent_node(int node) – Returns
the number of the node containing node
node . If the node number returned is
node , node is a top-level node. For non-
NUMA, defaults to 0.

• node_to_cpumask(int node) –
Returns a bitmask of the cpus on Node
node . For non-NUMA, defaults tocpu_
online_map .

• node_to_first_cpu(int node)
– Returns the number of the first CPU on
Nodenode . For non-NUMA, defaults to
the lowest-numbered CPU in the system.

• node_to_memblk(int node) –
Returns the number of the Memory
Block, if any, on Nodenode . For
non-NUMA, defaults to 0.

• pcibus_to_cpumask(int bus) –
Returns a bitmask of the CPUs closest to
PCI busbus . For non-NUMA, defaults
to cpu_online_map .

• numa_node_id() – Returns the num-
ber of the node containing the current
CPU. For non-NUMA systems, defaults
to 0.

3.3 Closest Element versus Distance Matrix

The current implementation of the topology
system is very helpful if the caller is look-
ing for information relating to the closest el-
ement. This choice was made primarily be-
cause this made the code small and compact,



Linux Symposium 175

but also because the majority of consumers of
this information simply want the closest ele-
ment. The other option, and possible future
method, is to use a distance matrix approach.
Using this approach, each machine type would
build a latency matrix representing the distance
from element X to element Y. The distance
matrix approach allows us much more flexi-
bility when retrieving information, and much
more complicated queries can be satisfied. We
decided against this approach, however, be-
cause it was determined that the added com-
plexity did not offer that much benefit, and
likely would have few consumers. However,
in hierarchical NUMA systems this type of ap-
proach is more likely to be required for optimal
performance benefits.

Exporting Topology Information to User Space

Topology information is important to multi-
threaded user-space applications. With a large
parallel NUMA machine, threads can be co-
ordinated across, but more importantly within,
nodes. This can yield significant speedups over
a standard SMP version run on the same ma-
chine. There is also a proposal to facilitate
the sharing of memory regions by establishing
bindings for those regions. This would allow
multi-threaded applications to specify memory
blocks close to the set of CPUs the group of
threads is executing on, and guarantee pages
faulted into specific memory regions (likely
shared) come from those memory blocks.

User-space applications currently have ac-
cess to NUMA topology information through
sysfs . The information is laid out follow-
ing the normal directory structure. Node di-
rectories contain CPU and memory block di-
rectories, as well as other node directories on
machines that take advantage of nested nodes.
Each of these directories have files in them,
with those files containing various bits of in-
formation that can be read and/or written. For

example, the nodes contain acpumap file that
contains a bitmap of CPUs on that node.

Currently I/O busses are not represented in the
topology directory ofsysfs . Adding this is a
future work item.

There is currently no way for a user-space ap-
plication to determine the CPU it is currently
executing on. This data is inherently volatile,
as it requires going into kernel-space to get it,
and while returning from the kernel it is pos-
sible for the process to be switched to another
CPU thus invalidating the information that is
about to be returned. There are other ways to
give user-space access to this information; for
example, by mapping a page that is shared be-
tween user-space and kernel-space and having
the kernel store the CPU that the process is cur-
rently executing on at a set location within that
page.

4 Memory

This section describes some of the issues en-
countered during the development of 2.5 to
support NUMA memory allocation, and the
Linux implementation to address the issues.
The purpose of this section is not to pro-
vide an in depth look at the Linux memory
subsystem—there is documentation available
on the net for that [1].

4.1 Discontiguous Memory Support

Each architecture needs to describe its physi-
cal layout to the kernel. This includes spec-
ifying which address ranges belong to which
node, and whether there are holes in between
those ranges (a hole is a physical address range
for which there is no real memory). CONFIG_
DISCONTIGMEM is currently used to repre-
sent a solution to some of these problems. The
name of the config option is a bit of a misnomer



Linux Symposium 176

because the memory may not be discontiguous.
In the case of the IBM x440 the memory is
contiguous, except for a large hole on the first
node.

The core data structure for describing the phys-
ical layout is thepg_data_t . This data struc-
ture currently has a 1:1 mapping to nodes. For
each node in the system, there exists onepg_
data_t . Thepg_data_t describes the start
and end of memory for the node, a pointer to
the zones for the node, and related information.
Support for multiplepg_data_t ’s have been
in the kernel since 2.4 (although several fixes
and optimizations have occured since then). It
is up to each architecture to populate these cor-
rectly for their system.

The config option, CONFIG_
DISCONTIGMEM turns on the function-
ality for creating multiple pg_data_t ’s.
CONFIG_NUMA turns on the code (i.e.
scheduling decisions, allocation decisions)
that makes use of the per nodepg_data_t ’s.

Zone Normal Memory on 32-bit Systems

During the setup of memory in system initial-
ization a special allocator is used—the boot-
mem allocator. This allocator only allo-
cates memory out of what will later become
ZONE_NORMAL. Once memory is setup the
bootmem allocator is no longer used. The
bootmem_data_t represents the address
range used by the bootmem allocator. The
pg_data_t for the node containing the mem-
ory has a pointer to thebootmem_data_t
(bdata ).

One of the early issues ran into dur-
ing the development of i386 CONFIG_
DISCONTIGMEM support was the idea that
not all pg_data_t ’s will have a portion of
ZONE_NORMAL, or abootmem_data_t .

On i386, ZONE_NORMAL is limited to the
first 896 Mb of physical memory because of
limitations of the 32-bit architecture. So, a sys-
tem populated with 1GB of RAM per node will
only have a ZONE_NORMAL (and ZONE_
DMA) on node 0, the rest of the nodes will only
contain ZONE_HIGHMEM. Because the slab
allocator only allocates memory from ZONE_
NORMAL, and the kernel uses the slab alloca-
tor to allocate memory for internal data struc-
ture, most kernel related memory will be on
node 0. This also means that during early boot
only the first node’s memory will be used by
the bootmem allocator.

Two changes were made to make ZONE_
NORMAL only on node 0 work: (1) a deref-
erencing a null pointer bug was fixed in
__alloc_pages() that didn’t check that
the node had ZONE_NORMAL before us-
ing it. (2) alloc_bootmem_node() and
friends needed to be made to only use the
first node’spg_data_t , because the other
nodes would not have abootmem_data_t .
Since alloc_bootmem_node() is archi-
tecture independent, it was important to not
put arch specific requirements in the code,
so the changes were made in the header
files. Thus the creation of CONFIG_HAVE_
ARCH_BOOTMEM_NODE.

Page to Node Translation

Finding the node a memory address belongs to
is used throughout the kernel. The core routine
doing the translation from address to node id,
is pfn_to_nid() . Because it is called often,
it is important that the translation is fast. On
some architectures, the physical layout is such
that the first 64GB of address space belongs
to the first node (whether or not there really
is 64GB of RAM), second 64GB for the sec-
ond, and so on. This makes the algorithm for
figuring out what node an address belongs to



Linux Symposium 177

very simple, and very fast: if the address is be-
tween 0-64GB it’s node 0. But on i386 NUMA
architectures that have been tested, it is not as
clear. Because the memory is contiguous, there
isn’t a nice GB to node translation. The solu-
tion was to create a mapping of addresses to
node IDs on 256MB address ranges. The map
is created during memory setup and allows for
fast translations.

4.2 Node Aware Memory Allocation

One of the features enabled by CONFIG_
NUMA is that the system makes NUMA-aware
memory allocation decisions. The current pol-
icy is when memory is allocated, the kernel
tries to allocate from the local node. If that
fails, the allocator will allocate from the other
nodes. The exception is in the case of a system
with ZONE_NORMAL only on the first node;
in an i386 NUMA box for example, memory
allocated from ZONE_NORMAL will only be
allocated from the first node.

The allocation policies only apply to new
memory. Should a process migrate across
node, the memory related to the process will
not be migrated. Although if the memory is
swapped out, when the pages are swapped back
in they will be swapped to the node the process
has migrated to. One thing to keep in mind, is
that migrating the memory is expensive; how-
ever, if a page is being accessed often, it would
be a performance benefit to move it to the local
node.

When the kernel is attempting to allocate mem-
ory, and the system is low on pages,kswapd
will be woke to address the low memory is-
sue. Without NUMA awarenesskswapd may
free up lots of memory by swapping pages out,
but it may not make available memory local to
the node that is in need of memory. The solu-
tion was to makekswapd per node.kswapd
monitors the memory on the local node. When

memory needs to be freed, it’s freed from the
local node. Rmap [3] made this change to
kswapd possible, because of the ability to find
the virtual address(es) associated with a physi-
cal address (local to the node).

4.3 Node Local Kernel Data Structures

For kernel data structures that are frequently
accessed and have node specific information,
it makes sense to have their data structures in
node local memory. On most architectures,
when the bootmem allocator is available, it
is possible to allocate memory on a specific
node through the use ofalloc_bootmem_
node() . However, on i386 the bootmem al-
locator only allocates from node 0, soalloc_
bootmem_node() doesn’t work for allocat-
ing per node and all memory is allocated from
node 0. Because of the limited lifespan of
the bootmem allocator,alloc_bootmem_
node() is not a complete solution. No other
generic mechanism is available at this time for
allocating data structures on a per node basis.
A possible solution for a generic mechanism is
currently in development by Bill Irwin [2].

To work around this 32-bit architecture limi-
tation, for the specific case of themem_map
and pg_data_t , Martin Bligh has success-
fully made these two types of data structures
reside in node local memory. That is, these
structures are located on the node for the mem-
ory that they are describing.

The first phase was to makemem_mapper
node. This was done by reserving pages at the
top of the node and decrementing the size of
the address space by the size ofmem_map, and
then making use of that reserved space when
mem_mapwas set up. Nothing special had to
be done for node 0, because it is where the
bootmem allocator gets it memory for node 0’s
data. So, for node 0 the the normal bootmen
allocator can be used. Phase two was to make



Linux Symposium 178

pg_data_t per node. This was done using
the same method as for themem_map.

4.4 Replication

Since kernel text is read-only on production
systems, there is little downside to replicat-
ing it and placing a copy on each node. This
does consume extra memory, but kernel text
is relatively small and memories of NUMA
machines relatively large. Kernel-text replica-
tion requires special handling from debuggers
when setting breakpoints and from/dev/mem
in cases where users are sufficiently insane to
modify kernel text on the fly. In addition,
kernel-text replication means that there is no
longer a single “well-known” offset between a
kernel-text virtual address and the correspond-
ing physical address.

This functionality is present in some architec-
tures (e.g., sgi-ip27) in the 2.4 kernel. Also, the
IA64 discontigmem patch provides kernel text
replication support for IA64. It is not likely to
show up in the i386 tree because of the limita-
tions of the architecture.

4.5 Memory Binding

As mentioned in other sections of this paper,
writing code to run on a NUMA machine can
require changes to take advantage of the inter-
esting hardware configurations these machines
offer. Memory Binding is one API that we
feel large user-space programs will be able to
use to make significant performance improve-
ments for NUMA. The idea behind Memory
Binding is that processes can selectively bind
ranges of their virtual memory space to par-
ticular blocks of memory, according to differ-
ent allocation policies. For example, a large
database program that has many threads could
bind its threads to CPUs on two nodes, and also
bind a large section of its shared memory to the
memory that belongs on those two nodes. By

setting a policy that enforces an equal distribu-
tion of pages, the database could be sure that
all its shared pages are at least on the same set
of nodes as its processes, and that the memory
is evenly spread across those nodes. The Mem-
ory Binding API is available as a patch from:

http://www-124.ibm.com/linux/

patches/?patch_id=753

http://www-124.ibm.com/linux/

patches/?patch_id=754

5 NUMA scheduler

5.1 Introduction

As explained in the introductory section, ac-
cessing the memory of a remote node implies
taking penalties in memory access latency and
bandwidth. Therefore, it is desirable to keep
processes on or near the node on which their
memory (or most of it) is allocated.

The old (pre 2.5) Linux scheduler wasn’t aware
of the NUMA structure of a machine. Pro-
cesses could migrate to any CPU in the sys-
tem if the CPU was less loaded. On NUMA
machines with many CPUs, two scalability
problems were additionally limiting the per-
formance: the CPUs were competing for the
runqueue lock and the time needed for select-
ing the task to be scheduled next was linearly
growing with the length of the runqueue.

The scalability problems were mostly solved
by the O(1) scheduler[4]. Like other ap-
proaches [5, 6] it implements per CPU run-
queues1 avoiding the lock starvation problem.
Additionally it implements anO(1) search al-
gorithm for the task to be scheduled next.
The scalability problems for SMP machines
were solved, but theO(1) scheduler was not

1There are actually two runqueues per priority level
per CPU.



Linux Symposium 179

NUMA-aware, either. An idle CPU could eas-
ily steal a task from the node where its mem-
ory was allocated letting it run with degraded
memory performance.

5.2 NUMA scheduler approaches

The first notable Linux NUMA scheduler was
the one Andrea Arcangeli made on top of the
old Linux scheduler[7]. It implemented per
node runqueues and scheduled across node
boundaries only after failing to find an optimal
CPU within the same node. Being built on top
of the old Linux scheduler this approach suf-
fered of very similar scalability limitations.

Another approach was the extension of the
IBM MQ scheduler [5] to allow rescheduling
only inside pools of CPUs [8]. A loadbalanc-
ing module was added which allowed periodic
rebalancing across the pool boundaries.

The first NUMA scheduler on top of theO(1)
scheduler was designed and implemented by
Erich Focht [9]. Tasks were assigned a home
node at creation time (either atfork() or at
exec() , selectable for each task), allocated
their memory on (or near) the home node, and
were attracted by the home node CPUs. The
tasks were node-affine. Because the scheduler
changes were too complex for inclusion into
the 2.5 kernel baseline, Erich Focht, Michael
Hohnbaum, Martin Bligh, and Andrew Theurer
collaborated with the target to strip down and
rewrite the node-affine scheduler to a slim
NUMA variant acceptable for inclusion. The
result was included into the 2.5.59 kernel and
is described in the following section.

5.3 NUMA scheduler in the 2.5 kernel: imple-
mentation

When stripping down the node-affine sched-
uler, the goals were to keep the changes to the
O(1) scheduler as small as possible, and to add

NUMA awareness by making it difficult for a
task to change the node while trying to keep the
node load well-balanced. This was achieved by
three patches.

Initial load balancing at exec()

The NUMA support for the memory subsys-
tem described in section 4 ensures that mem-
ory pages are allocated from the node on which
the page-faulting task is running2. Normally
processes allocate most of their memory right
after creation; therefore, the choice of the ini-
tial node and CPU is very important for getting
well-balanced nodes.

Initial load balancing implies some over-
head because it involves scanning the cur-
rent node loads and determining the best
CPU on which the freshly created task should
be scheduled. This can be done either at
fork() or atexec() . Doing it at fork()
(andclone() ) has the advantage that multi-
threaded jobs lead to a balanced machine as
well. This might be desireable on machines
with good latency ratios between the nodes.
On the other hand, every small and short living
thread picks up the initial balancing overhead,
unnecessarily migrates pages to other nodes by
copy on write (COW), and finds a cold instruc-
tion cache.

Doing initial balancing atexec() avoids the
COW problem because all pages are dropped
at that stage. Short-living threads which
don’t exec() benefit from a warm instruc-
tion cache. But long running memory intensive
multi-threaded programs might pick up perfor-
mance penalties due to the unbalanced nodes.

The implementation adds the arraystatic
atomic_t node_nr_running[MAX_
NUMNODES]to keep track of the num-

2If the current node has sufficient free memory.



Linux Symposium 180

ber of tasks running on each node.
kernel/sched.h is extended by three
functions:

• sched_best_cpu() : Finds the least
loaded CPU on the least loaded node us-
ing the current runqueue lengths.

• sched_migrate_task() : Migrates
a task to a certain CPU.

• sched_balance_exec() : Called by
do_execve() , it moves the current task
to the least loaded CPU.

Intra-node load balancing

The load_balance() and find_
busiest_queue() functions of the
O(1) scheduler have been modified to restrict
the search for the busiest CPU to the set
given by the newcpumask argument. In the
NUMA scheduler this mask uses topology
information and usually limits the search to
the current node. To be precise: all calls to
load_balance() except the one from the
timer interrupt are balanced only within the
current node.

Cross-node load balancing

Even with a perfect initial load balancing, a
machine can easily end up with poorly bal-
anced nodes, e.g. nodes with more running
tasks than available CPUs and idle nodes. In
such cases, it is preferrable to use the idle
CPUs for doing real work even if the tasks
running on them need to access memory from
other nodes. It is better if a task runs slower on
a remote node instead of waiting for the CPU
on its own node. The cross-node balancing
occurs periodically during the timer interrupt,
with the current settings (kernel 2.5.67) this

means: an idle CPU will try node-rebalancing
every 5 ticks (5ms on aHZ=1000 system); a
busy CPU will do it every 20s.

There continues to be debate as to the fre-
quency of the busy rebalance, with some be-
lieving the busy rebalance is occuring much
too infrequently. It is felt that the current fre-
quency, while showing advantages on simple
benchmarks is not optimal for real world con-
ditions.

Node rebalancing is achieved by a change in
scheduler_tick() and three additional
routines:

• rebalance_tick() : Decides when to
balance within the node and when across
the node boundaries. In the later case it
will first try an intra-node rebalance.

• balance_node() : Calls load_
balance() with cpumask set to the
least-loaded node plus the current CPU.

• find_busiest_node() Finds busi-
est node and uses a geometrically decay-
ing weight for the load measure:loadt =
loadt−1/2 + nr_node_runningt. This
flattens out sudden load peaks.

5.4 Current limitations and future develop-
ments

The NUMA scheduler currently implemented
in the Linux kernel is far from being complete.
The degree of NUMA-awareness of the sched-
uler gives clear performance boosts for “sim-
ple” load situations like parallel kernel com-
piles or an arbitrary but more or less constant
number of similar and long runningexec ’d
processes. The limitations are shown in envi-
ronments with long running jobs, and in sud-
denly varying loads, or with long running mul-
tithreaded applications like OpenMP.



Linux Symposium 181

The stripped down version of the node-affine
scheduler strongly reflects the influence of for-
mer IBM work [8]. Some of the useful features
of [9] were lost, among them the capability of
a process to remember the node on which its
memory resides and to return to that node. A
scheduler with such features is in production
on NEC TX7 IA64 servers and shows signifi-
cant benefits in production environments. Thus
possible extensions of the 2.5 NUMA sched-
uler could be:

• An option to allow particular tasks to ini-
tially balance their children atfork() .

• A method of keeping track of where one
task’s memory is.

• A method of pushing tasks to the node
where most of their memory resides.

6 Locking

In contrast to much of the other NUMA work,
NUMA-aware locking is not about making a
per-node lock, but rather it is about prevent-
ing lock starvation on highly-contended locks.
Lock starvation occurs when the contention on
a given lock is so high that by the time a CPU
releases the lock, at least one other CPU on
that same node is requesting it again. NUMA
latencies mean that these local CPUs can ac-
quire the lock when it becomes available faster
than remote CPUs can. On some architectures,
the CPUs on the node where the lock is located
can monopolize the lock, completely starving
CPUs on other nodes.

The best solution is to reduce lock contention,
but NUMA-aware locks can be an interim fix
while the locking design is reworked.

Two fair locking primitives are:

• mcs locks [10]

mcs locks are queued locks. The primi-
tive enforces fairness because requesters
are queued. The queuing ensures that the
local CPU does not have an advantage
on getting the lock. It’s first come, first
served.

• NUMA-aware locks [11]

NUMA-aware locks enforce fairness by
using a round-robin system amongst
nodes waiting for a lock. The implemen-
tation was written so that the fairness al-
gorithm could be modified to fit the need.
This means, if round robin proves ineffi-
cient, another method can be inserted.

The work in the area of NUMA-aware lock-
ing is currently not active. As previously
mentioned, the Linux solution for a highly-
contended lock is to break the lock up, and so
far lock starvation has not been seen to be a
problem. Therefore a need for a NUMA-aware
lock has not been established.

7 I/O

As with many aspects of writing software to
run efficiently on NUMA platforms, I/O code
benefits from fine-tuning for these machines.
The following section goes into more detail
about: why I/O subsystems require NUMA
considerations, the current state of Linux sup-
port of I/O on NUMA hardware, and where it
might be going.

7.1 I/O Locality

As discussed in the topology section, on
NUMA machines I/O busses are ususally
spread across nodes. When scheduling I/O
we attempt to ensure that the memory being
used for the I/O is close to the specific I/O
bus we are using. Cross-node I/O requests



Linux Symposium 182

suffer a performance penalty when compared
to I/O requests that are constrained to a sin-
gle node. Cross-node I/O travels across the
node interconnect busses and has the potential
to consume interconnect bandwidth, thus de-
grading the performance of other processes. If
the memory buffers used for I/O are physically
located in memory far from the I/O bus, there
will also be delays for cross-node memory ac-
cess. Ideally, the requesting process executes
on a CPU on the node with the memory and I/O
bus, thus eliminating any inter-node accesses.

7.2 Multi-Path I/O

While Multi-Path I/O, or MPIO for short, is not
a new concept, it can be a particularly powerful
tool on a NUMA platform. MPIO involves us-
ing multiple I/O adaptors (i.e., SCSI cards, net-
work cards) to gain multiple paths to the under-
lying resource (i.e., hard disks, the network),
thus increasing overall bandwidth. On SMP
platforms, potential speedups due to MPIO are
limited by the fact that all CPUs and mem-
ory typically share a bus, which has a maxi-
mum bandwidth. On NUMA platforms, how-
ever, different groups of CPUs, memory, and
I/O busses have their own distinct busses. This
allows potentially achieving larger aggregrate
I/O throughput by allowing each node to inde-
pendently reach its maximum bandwidth. An
ideal MPIO on NUMA setup consists of an I/O
card (SCSI, Network, etc.) on each node con-
nected to every I/O device, so that no matter
where the requesting process runs, or where
the memory is, there is always a local route to
the I/O device. With this hardware configura-
tion, it is possible to saturate several PCI busses
with data. This is even further assisted by the
fact that many machines of this size will be us-
ing RAID or other MD devices, thus further in-
creasing the potential bandwidth by using mul-
tiple disks.

There is a patch, currently against 2.5.59, that

implements MPIO for the SCSI Mid-Layer in
Linux. The SCSI layer is in the midst of many
changes right now, some of which affect algo-
rithms this patch was based on. This patch [12]
is maintained by Patrick Mansfield, and is be-
ing discussed in vastly more detail at another
presentation at OLS.

7.3 Interrupt Routing and Balancing

Interrupt handling is another area where ig-
noring NUMA locality issues can be costly.
When dealing with interrupts, it is important
that they are handled locally. Some architec-
tures and APIC setups prevent interrupts from
being handled remotely by their design, but for
those that don’t, we must make sure that inter-
rupts are kept local. What this means is that if,
for example, an I/O device raises an interrupt,
it should be handled by a CPU on the same
node as the I/O device. At the same time, we
don’t want every interrupt occurring on a par-
ticular node to be handled by the same CPU.
Currently the Linux kernel takes advantage of
the balance IRQ functionality, which changes
the destination of individual IRQs to a differ-
ent CPU after a certain number of ticks. This
code is not aware of NUMA topology, though,
and thus may sometimes make poor IRQ des-
tination decisions. There is significant work to
be done still in this area for NUMA support.

On some chipsets, IRQ balancing is provided
by the hardware, for example the 460GX re-
alted chipsets (used by the NEC TX7). This
chipset provides either a fixed redirection or
can redirectable within a target node based on
priorities.

8 Timers

On UP systems, the processor has a time source
that is easily and quickly accessible, typically
implemented as a register. On SMP systems,



Linux Symposium 183

the processors’ time source is usually synchro-
nized as all of the processors are clocked at
the same rate, and thus synchronization of the
time register between processors is a straight
forward task.

On NUMA systems synchronization of the
processors’ time source is not practical as not
only does each node have its own crystal pro-
viding the clock frequency, but there tend to
be minute differences in the frequencies that
the processors are driven at which thus leads
to time skew.

On multi-processor systems it is imperative
that there is a consistent system time. Other-
wise time stamps provided by different proces-
sors cannot be relied upon for ordering and if a
process is dispatched on a different processor it
is possible that there can be unexpected jumps
(backward or forward) in time.

Ideally, the hardware provides one global time
source with quick access times. Unfortunately,
global time sources tend to require off-chip ac-
cess and often off-node access which tend to be
slow. Clock implementations are very architec-
ture specific, with no clear leading implemen-
tation amongst the NUMA platforms. On the
x440, for example, the global time source is
provided by node 0 and all other nodes must
go off-node to get the time.

In Linux 2.5, the i386 timer subsystem has an
abstraction layer that simplifies the addition of
a differnt time source provided by a specific
machine architecture. For standard i386 archi-
tecture machines, the TSC is used which pro-
vides a very quick time reference. For NUMA
machines, a global time source is used (e.g., on
the x440 the cyclone timer).

9 Summary

Much work has been done to provide NUMA
support for the Linux kernel. At this point, the
basic infrastructure is in place. Performance
testing has shown measureable improvements,
though they tend to be widely variable depen-
dent upon the workload and the NUMA hard-
ware. As Linux gets used on more NUMA
hardware platforms, there are bound to be ad-
ditional areas exposed which will benefit from
additional NUMA optimizations.

Some areas that are actively being worked on
or considered for future work are:

• I/O busses insysfs topology

• MPIO

• scheduler enhancements

• interrupt routing and balancing

• kernel data structure placement

• memory binding

• page migration

• timers

Legal Statement

This work represents the view of the authors and
does not necessarily represent the view of IBM.

IBM, NUMA-Q, Power4, and xSeries are trade-
marks or registered trademarks of International
Business Machines Corporation in the United
States and/or other countries.

Intel, i386, Itanium and Xeon are trademarks of In-
tel Corporation in the United States, other coun-
tries, or both.

Linux is a registered trademark of Linus Torvalds.



Linux Symposium 184

Other company, product, and service names may be
trademarks or service marks of others.

References

[1] M. Gorman: “Understanding the Linux
Virtual Memory Manager,” April 2003,
http://www.csn.ul.ie/~mel/
projects/vm/guide/html/
understand/

[2] W. Irwin, March 2003
http://marc.theaimsgroup.
com/?l=linux-kernel&m=
104660383911943&w=2

[3] LWN.net, “Speeding up reverse
mapping”http:
//lwn.net/Articles/9555/

[4] Ingo Molnár,
http://people.redhat.com/
mingo/O(1)-scheduler/

[5] M. Kravetz, H. Franke: “Implementation
of a Multi-Queue Scheduler for Linux,”
April 2001,
http://lse.sourceforge.net/
scheduling/mq1.html

[6] Davide Libenzi, October 2001,
http://www.xmailserver.org/
linux-patches/lnxsched.html

[7] Andrea Arcangeli, “NUMA,”
presentation at the UKUUG Manchester,
June 2001,
http://www.ukuug.org/
events/linux2001/papers/
html/AArcangeli-numa.html

[8] H. Franke et al, “PMQS: Scalable Linux
Scheduling for High-End Servers,”
http://lse.sourceforge.net/
scheduling/als2001/pmqs.ps

[9] Erich Focht: “Node-Affine NUMA
Scheduler,” Feb. 2002,http://home.
arcor.de/efocht/sched

[10] John Stultz: “Nodeless MCS Lock,”
http://www-124.ibm.com/
linux/patches/?patch_id=218

[11] “NUMA AWARE LOCKS,”
http://lse.sourceforge.net/
numa/locking

[12] Patrick Mansfield: “SCSI Mid-Level
Multi-path/port storage,”
http://www-124.ibm.com/
storageio/multipath/
scsi-multipath/index.php .



Proceedings of the
Linux Symposium

July 23th–26th, 2003
Ottawa, Ontario

Canada



Conference Organizers

Andrew J. Hutton,Steamballoon, Inc.
Stephanie Donovan,Linux Symposium
C. Craig Ross,Linux Symposium

Review Committee

Alan Cox,Red Hat, Inc.
Andi Kleen,SuSE, GmbH
Matthew Wilcox,Hewlett-Packard
Gerrit Huizenga,IBM
Andrew J. Hutton,Steamballoon, Inc.
C. Craig Ross,Linux Symposium
Martin K. Petersen,Wild Open Source, Inc.

Proceedings Formatting Team

John W. Lockhart,Red Hat, Inc.

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.


