
The Long Road to the Advanced Encryption
Standard

Jean-Luc Cooke
CertainKey Inc.

jlcooke@certainkey.com, http://www.certainkey.com/˜jlcooke

Abstract

This paper will start with a brief background
of the Advanced Encryption Standard (AES)
process, lessons learned from the Data Encryp-
tion Standard (DES), other U.S. government
cryptographic publications and the fifteen first
round candidate algorithms. The focus of the
presentation will lie in presenting the general
design of the five final candidate algorithms,
and the specifics of the AES and how it dif-
fers from the Rijndael design. A presentation
on the AES modes of operation and Secure
Hash Algorithm (SHA) family of algorithms
will follow and will include discussion about
how it is directly implicated by AES develop-
ments.

Intended Audience

This paper was written as a supplement to a
presentation at the Ottawa International Linux
Symposium. The reader should have at least
first year university level knowledge of alge-
bra and physics. Someone with no knowledge
of mathematics can still benefit from this paper
and its associated presentation. This topic of
cryptography is covered lightly. Care is taken
to present enough useful technical information
to be interesting to a technical audience and
beneficial to others.

1 Introduction

Two decades ago the state-of-the-art in
the private sector cryptography was—we
know now—far behind the public sector.
Don Coppersmith’s knowledge of the Data
Encryption Standard’s (DES) resilience to
the then unknown Differential Cryptanaly-
sis (DC), the design principles used in the
Secure Hash Algorithm (SHA) in Digital
Signature Standard (DSS) being case and
point[NISTDSS][NISTDES][DC][NISTSHA1].

The selection and design of the DES was
shrouded in controversy and suspicion. This
very controversy has lead to a fantastic acceler-
ation in private sector cryptographic advance-
ment. So intrigued by the NSA’s modifica-
tions to the Lucifer algorithm, researchers—
academic and industry alike—powerful tools
in assessing block cipher strength were devel-
oped. Some of these tools proved useful in un-
derstanding more about the changes made by
the NSA.

Taking an objective look at the standardization
practices of the USA NSA and NIST organi-
zations, one can make broad assumptions on
where the American state is focusing its crypt-
analytic resources.

Ottawa Linux Symposium 2002 74

1.1 What the NSA/NIST has Taught Us

By the mid-1970’s the private sector began
having an interest in digital cryptography.
Even if the clearly false IBM statement “global
market for computers estimated at 10” had
been proven correct, most of the computers
in operation at the time were terminal servers.
The terminals connected to these servers were
carrying progressively more sensitive data. Fi-
nancial records, payroll information, trade se-
crets, and intellectual property; all crucial to
the success of a business were exposed to the
hot new hobby of wire tapping with gator clips.

Before the US government moved to create
a single encryption standard the private sec-
tor was taking its first steps into design cryp-
tographic algorithms. In what would become
crypto folklore, the NSA quietly send out let-
ters of solicitation to a few hand picked cryp-
tographic experts and laboratories. It is im-
portant to realize that previous to this the only
communication a mathematician would have
with the NSA was in the form of a “cease and
desist or be thrown in jail for conspiracy” let-
ters.

Of the few responses received by the NSA,
only one had actually met the minimum stan-
dards set out by the NSA in their solicita-
tion. The Lucifer block cipher designed by
Don Coppersmith, Horst Fiestel and company
at IBM was the winner practically by default.

There were two distinct differences between
the Lucifer algorithm submitted by IBM and
the final DES design.

• The effective key space was reduced by
several orders of magnitude.

• The core substitution boxes were re-
designed.

These changes were made without comment

from IBM or the NSA. Reducing the effec-
tive key strength of the algorithm and the omi-
nous change to possibly the single most crucial
sub-component of the algorithm had everyone
second-guessing the DES.

In the subsequent years after the 1976 DES
announcement, Shamir and Biham published
their paper on Differential Cryptanalysis (DC)
(1994, ISBN-0387979301). In this paper, the
two cryptographers of RSA fame (‘S’ to be pre-
cise), outlined how to correlate input changes
to the output of several variants of the DES. At
then end of the day, the Lucifer algorithm fell
to the attack of DC while DES remained unbro-
ken. To the shock of sceptics, the NSA appears
to have not weakened the DES for their evil
purposes but in fact made it impervious to an
attack not to be publicized for another eighteen
years.

After the announcement of DC, the Lucifer
co-designer Don Coppersmith confessed to
knowledge of DC at the time of DES standard-
ization. This kept the sky from falling on the
heads of the crypto sceptics as you can well
imagine.

2 Obsolescence of the DES

A 56bit key space did not provide sufficient
protection in lieu of the personal computer ex-
plosion of the late 1980’s and 1990’s. The
threat of attack was no longer from a sin-
gle powerful computer, but from thousands of
commodity computers coordinating their ef-
forts. In comes the Triple-DES. Encrypting the
data with three distinct keys resulted in a three-
fold increase in key material, a three-fold in-
crease in computational effort required for en-
cryption, and a5.2 × 1033 increase in the key
space.

Ottawa Linux Symposium 2002 75

Figure 1: The DES Cipher

E = 3DESk1,k2,k3(D)
E = DESk1(DES−1

k2 (DESk3(D)))
(1)

By the mid 1990’s, TripleDES was no longer
sufficient. The security of the algorithm was
assumed to be good, but there were other short-
comings with TripleDES.

TripleDES was too slow. The private sector’s
obsession with higher digital communication
bandwidths had made the integration of en-
cryption at the data link layer far too costly.
Economic conditions then predicted that all
data would be encrypted at least once by 2006.
Current economic conditions make this predic-
tion conservative.

Private sector dependence on secure data com-
munication was going to continue to grow be-
yond the capabilities of DES/TripleDES. A
new standard with greater security and a long

Figure 2: The 3DES Cipher

Figure 3: The OSI Network Stack

Ottawa Linux Symposium 2002 76

lifetime needed to be decided to mitigate the
impact of migrating to a new standard. “We
need to act fast before we’re in serious trou-
ble.”

Another issue with DES and subsequently
TripleDES, was a design limitation. DES
was not designed to be efficient in software.
The ubiquity of software in modern computer
and communication technology dictated an ef-
ficient hardware as well as software implemen-
tation for this new standard.

3 AES Round One

Contrasting the algorithm solicitation process
used in selecting the DES, a very public an-
nouncement was made by the NSA/NIST for
cipher designs. Appearing at private sector
security and cryptography tradeshows, it was
made very clear this time the standard was go-
ing to be a very public affair.

The NSA/NIST set out minimum requirements
for block cipher submission[NISTAESWWW]

AESCD1

AESCD2

AESCD3

.

• Size efficiency of hardware/software im-
plementation

• Speed efficiency of hardware/software
implementation

• M inimum 128bit block sizes

• Key sizes up to 256 bits

• Resilience to all known modern attacks.

Fifteen algorithms met these requirements.

• CAST-256 - Entrust Technologies Ltd.

http://www.entrust.com/

AESCD1

AESCD2

– The Communications Security
Establishment (CSE)—Canadian
equivalent to the US NSA—has
adopted the CAST5 algorithm as
their confidential government data
encryption algorithm.
CSE website:
http://www.cse.dnd.ca/

– CAST5 is synonymous with CAST-
128

– CAST-256 is an extension to
CAST5 for inclusion to the AES

• Crypton - Future Systems

http://www.future.co.kr/

AESCD1

AESCD2

– At the time of AES, this algorithm
submission would be allowed to
ENTER the US, but not leave. Is
something wrong here?

• DEAL - Outerbridge, Knudsen

Ottawa Linux Symposium 2002 77

http://www.ii.uib.no/˜larsr/newblock.html

AESCD1

AESCD2

– This is one of two submission co-
authored by Knudsen. See also Ser-
pent!

– At the time of AES, this algorithm
submission would be allowed to EN-
TER the US, but not leave. Is some-
thing wrong here?

• DFC - Centre National pour la Recherche
Scientifique - Ecole Normale Superieure

http://www.dmi.ens.fr/˜vaudenay/dfc.html

AESCD1

AESCD2

– Vive la resistance!

– At the time of AES, this algorithm
submission would be allowed to EN-
TER the US, but not leave. Is some-
thing wrong here?

• E2 - Nippon Telegraph and Telephone

http://info.isl.ntt.co.jp/e2/

AESCD1

AESCD2

– At the time of AES, this algorithm
submission would be allowed to EN-
TER the US, but not leave. Is some-
thing wrong here?

• FROG - TecApro

http://www.tecapro.com/aesfrog.htm

AESCD1

AESCD2

– Georgoudis is an amateur cryptogra-
pher, the only one in Puerto-Rico in
all likelihood! FROG was the first
cipher he ever designed, and it was
accepted to the AES process!

– At the time of AES, this algorithm
submission would be allowed to EN-
TER the US, but not leave. Is some-
thing wrong here? Or is Puerto-
Rico’s special status with the US ex-
empt them for this? Isn’t it nice we
live in the “free world” and don’t
have to worry about such ugliness?

• HPC - Schroeppel

http://www.cs.arizona.edu/˜rcs/hpc/

AESCD1

AESCD2

– An academic’s block cipher.
Schroeppel’s paper goes into great
detail on the theoretical advantages
of his Hasty Pudding Cipher. Not a
very practical cipher, underlines the
‘openness’ of the AES submission
process.

– Bonus question: Hasty Pudding and
Harvard University - what’s the con-
nection?

Ottawa Linux Symposium 2002 78

• LOKI97 - Brown, Pieprzyk, Beberry

http://www.unsw.adfa.edu.au/˜lpb
/research/loki97/

AESCD1

AESCD2

– At the time of AES, this algorithm
submission would be allowed to EN-
TER the US, but not leave. Is some-
thing wrong here?

• MAGENTA - Deutsche Telekom

no url available

AESCD1

AESCD2

– Author unknown . . . and for good
reason! At the first AES conference,
the presenter from DT had night-
mare of nightmares happen. The
MAGENTA cipher was cracked in
real-time! Discussions in the au-
dience between Biham and others
led to a mountable attack before the
presentation was even over! A pa-
per was written and published within
twenty-four hours. And the kicker
of it all was there were rumours that
MAGENTA had been used in pro-
duction DT equipment for years but
the algorithm was never published.
Chalk one up to security though non-
obscurity.

– At the time of AES, this algorithm
submission would be allowed to EN-
TER the US, but not leave. Is some-
thing wrong here?

• MARS - IBM

http://www.research.ibm.com/security
/mars.html

AESCD1

AESCD2

– The Lucifer/DES design team (most
of it) returns. A lot was expected
from this team.

• RC6 - RSA Laboratories

http://www.rsasecurity.com/rsalabs/aes/

AESCD1

AESCD2

– RC6, based on RC5, based on
RC4. Principle designer Ron
Rivest, the R in RSA, the man
behind MD1/2/3/4/5, RC1/2/3/4/5/6
and many other publications. If
there ever was a crypto rock star, this
is he.

• Rijndael - Daeman, Rijman

http://www.esat.kuleuven.ac.be/˜rijmen
/rijndael/

AESCD1

AESCD2

Ottawa Linux Symposium 2002 79

– Two Flemish Belgians (as apposed
to the French Belgians) designed Ri-
jndael. Cinderella story: no big
names, modest track record, and Eu-
ropean nationalities.

– At the time of AES, this algorithm
submission would be allowed to EN-
TER the US, but not leave. Is some-
thing wrong here?

• Safer+ - Cylink Corporation

mailto:williams.chuck@cylink.com

AESCD1

AESCD2

– Based on the Safer cipher.

• Serpent - Anderson, Biham, Knudsen

http://www.cl.cam.ac.uk/˜rja14
/serpent.html

AESCD1

AESCD2

– Strong cipher, big name authors. Bi-
ham co-authored the famous paper
on Differential Cryptanalysis. This
is one of two ciphers Knudsen co-
authored in the AES—see DEAL.

• TwoFish - Counterpane (Schneier,
Kelsey, Whiting, Wagner, Hall, Ferguson)

http://www.counterpane.com/twofish.html

AESCD1

AESCD2

– Based loosely on BlowFish. B.
Schneier we know from his seminal
introductory work on cryptography
“Applied Cryptography” and his au-
thoring of the most widely analyzed
private sector cipher BlowFish.

4 AES Round Two

The finalists are:

• MARS

– Stands for: Multiplication Addition
Rotation Subtraction. These are the
primitive operations used by the ci-
pher.

– No surprise the cipher made it this
far. Don Coppersmith and team have
the longest track record and the dis-
tinction of designing the DES.

• RC6

AESCD3

– No surprise here.

– Stands for: Ron’s Cipher number
6. Ron Rivest has written many
ciphers the entire world uses daily.

Ottawa Linux Symposium 2002 80

Remember Distributed.net had a dis-
tributed effort to crack RC5? Well
RC6 makes RC5 look easy to crack,
and difficult to implement.

– The frightening simplicity of the
RC6 encryption operation can be
summed up in 10 lines of ANSI-C
code for a 32-bit computer:

rc6_encrypt() {
{A,B,C,D} = plaintext
B=B + S[0];
D=D + S[0];
for (i=0; i<r; i++) {

t=ROL(B * (2*B + 1), 5);
u=ROL(D * (2*D + 1), 5);
A=ROL(A^t, u) + S[2*i];
C=ROL(C^u, t) + S[2*i+1];
{A,B,C,D}={B,C,D,A};

}
A=A + S[2*r + 2];
C=C + S[2*r + 3];

}

And the decryption operation:

rc6_decrypt() {
{A,B,C,D} = ciphertext
C=C - S[2*r + 3];
A=A - S[2*r + 2];
for (i=r; 0<=i; i--) {

{A,B,C,D} = {D,A,B,C};
u=ROL(D * (2*D + 1), 5);
t=ROL(B * (2*B + 1), 5);
C=ROR(C - S[2*r +1],t)^u;
A=ROR(A - S[2*r],u)^t;

}
D=D - S[1];
B=B - S[0];

}

– Now don’t go off and use this. This
cipher is trademarked and patented!
The AES process demanded the
winning cipher be unencumbered by
intellectual property restrictions in
all world markets (US export laws
don’t count?). RSA Labs explained
in their submission that if and only if
RC6 were to be selected as the AES

would they wave royalties, other-
wise they only allow use of RC6 for
research and educational purposes.

• Rijndael

AESCD3

– The cipher name is a play on words
and the author’s names. If you’re
Flemish I’d like to hear the explana-
tion. Many people can’t pronounce
the cipher properly and are happy
they won so they can just call it
“AES.” A Canadian wrote to the au-
thors early in the AES process and
suggested renaming the cipher to
“Bob.”

– Unlike RC6 Rijndael was developed
in academia. There were never any
IP restrictions.

• Serpent

AESCD3

– No surprise here.

– The Linux encrypted file system
loop back device had jumped the gun
and chose Serpent as the cipher of
choice. Newer versions of the en-
crypted file system support the Rijn-
dael cipher.

• TwoFish

AESCD3

Ottawa Linux Symposium 2002 81

Figure 4: High level design of all AES finalists

– No surprise here.

– Those who know Bruce know he
doesn’t have a good chance of win-
ning a seat on the United Nations if
he ever chose to run. But still, cryp-
tographers respect his abilities more
than his tact and Two Fish made it
this far on its own merits.

All five finalist algorithms were of excellent
design. At a high level, they were all very sim-
ilar.

• Employed a strong key expansion algo-
rithm

• Pre- and post-whitening to protect the in-
ner cipher rounds from “unfolding”

• Judicial combinations of linear and differ-
ential operations to thwart any differential
or linier cryptanalysis

• Constructed from sound mathematical
principles

5 The Winner - Rijndael

A Flemish cipher chosen to be an
American standard, what is the world coming
to? After the last AES conference where the
five finalists presented their closing comments,
the NSA/NIST distributed a questionnaire:

Figure 5:2nd AES Conference Survey

• ‘ ‘If only one algorithm were to be selected
as the AES, which should it be?”

• ‘ ‘If a back-up algorithm were to be se-
lected, which should it be?”

Results from question one showed a clear pref-
erence for Rijndael, Serpent coming in a dis-
tant second, and MARS, RC6 and TwoFish ac-
cumulating few votes combined than Serpent.

The four finalists were not as favoured to be-
come the AES for several reasons.

• RC6’s simplicity in software came at an
unacceptable cost to hardware. In smart-
cards, efficient 32bit multiplication con-
sumes far too much surface area.

• MARS was a strong cipher, with a very
complex structure that was not conducive
to straightforward analysis. Like RC6, it
also used 32bit multiplies.

• Serpent’s popularity was justified, their
design used the DES s-boxes so hotly con-
tested for the past two decades. These S-
boxes have been so heavily analyzed (sig-
nificantly by one of the Serpent authors)
that it would simply be unwise to create a

Ottawa Linux Symposium 2002 82

whole new net of S-boxes. And for you
Ditributed.Net people, the cracking effort
which brute forced a DES key in 22 hours
used an optimization technique called “bit
slicing.” This technique performed 32
parallel 4x4 DES S-box substitutions in
only a few instructions. Reducing each S-
Box to a Karnough map of bit-wise oper-
ators and performing transformations on
four 32bit words is how the optimization
was accomplished. Effectively transform-
ing a 32bit Single Instruction Single Data
(SISD) processor into a Single Instruction
Multiple Data (SIMD) processor. Serpent
used this “bit slicing” technique on its
128bit (4 x 32bit) blocks. They overcame
the speed limitation of DES by using the
AES block size requirement and a modern
optimization technique. Quite clever!

• TwoFish’s limitations lay in the extra
overhead required for full speed optimiza-
tion. A key and block dependent set of
lookup tables are created at the start of the
encryption/decryption operation.

Rijndael’s design was very tight. Not as sim-
ple to implement in software as RC6, but the
overall simplicity of its sub-components made
it the clear favourite. Hardware implementa-
tions could be made so small, that two parallel
implementations of the Rijndael algorithm can
fit on a single 8-bit smart card!

5.1 One Plus One Equals Zero

The cipher achieves its small footprint and sim-
plicity from its use of Galois Field (GF) the-
ory. Also known as “primitive polynomials”
or linier feedback shift registers (LFSR), arith-
metic in GF requires a minimum of hardware
resources—the principal motivation for their
use in cell phone and network telecommunica-
tions.

To understand how GF works, start by forget-
ting everything you learned in grade school—
for many of us this is easily done. Next, under-
stand that arithmetic in GF is undefined unless
you specify the field. In Rijndael this field is
calledGF (28). Meaning, there are 256 possi-
ble values, each value represented by 8 bits, no
7 or 9 bit values exist inGF (28).

There are several ways of representing values
in GF below we demonstrate a few:

01010101 = ′55′

= x6 + x4 + x2 + 1
10101010 = ′AA”

= x7 + x5 + x3 + x
11110001 = ′F1′

= x7 + x6 + x4 + x5 + 1

(2)

We define the addition operation. InGF (28)
this is what we commonly know as the
explosive-or (XOR) operation.

C = A + B
00000000 = 00000001 + 00000001
00010001 = 00010000 + 00000001

(3)

Notice addition and subtraction are identical in
this “new math.”

1 + 1 − 1 = 1
1 XOR 1 XOR 1 = 1

(4)

Next, we define the “multiply by x” operation.
This is where things get a bit strange. To keep
closure inGF (28) we need to define a primi-
tive polynomial (analogous to prime numbers
in an integer field) to “divide” our result by to
extract our “remainder.”

Multiplying a GF (28) polynomial by x is as
simple as sifting the bits to the left by one.

Ottawa Linux Symposium 2002 83

C = A • x
x3 + x2 + x = x2 + x + 1 • x

00001110 = 00000111 • 00000010
′0D′ = ′07′ • ′02′

(5)

In the case where A’s most significant bit(x7)
is high, we immediately know the value will
no longer be inGF (28). We perform a modulo
operation with our primitive polynomial on this
new C value to return it toGF (28).

P = x8 + x4 + x3 + x + 1
= 100011011
= ′11B′

(6)

Notice that ‘00’ will always map itself back to
‘00’ and only after 255 multiplications by ‘02’
will a value return to its starting value. (Equa-
tions 6 and 7.)

Using Knuth’s binary exponentiation tech-
nique where successive squaring of B are used
to calculateab in log2(b) loops.

Knuth_modExp(a,b) {
rslt = 1;
while (b != 0) {

if (b & 1) rslt = rslt * a;
a = a * a;

}
return rslt;

}

Using this same technique of binaryGF (28)
multiplication where successive multiplica-
tions by x are used to calculatea • b.

xtime(x) {
if (x & 0x80)

return (x << 1) ^ 0x1b;
else

return (x << 1);

Figure 6: The Rijndael ByteSub Layer

}
gf8_mult(a,b) {

rslt = 1;
while (b != 0) {

if (b & 1) rslt = rslt ^ a;
a = xtime(a);

}
return rslt;

}

You now know how to do math in the crazy
world of Galois Fields.

5.2 Inside Rijndael

The Rijndael algorithm’s round function con-
sists of 4 layers:

• ByteSub(data)

• ShiftRow(data)

• M ixColumn(data)

• BlendKey(data,exp)

5.2.1 ByteSub

This operation performs a byte level substitu-
tion. Unlike DES, this substitution is based on
a single bijective transformation defined below.
See Figure 6 and Equation 8.

5.2.2 ShiftRow

This layer does not alter the value of the data,
it simply moves it about in preparation for later

Ottawa Linux Symposium 2002 84

C = A • x mod P
= 10000001 • x mod P
= ′81′ • ′02′ mod ′11B′

= 100000010 mod 100011011
= 100000010 − 100011011
= 100000010 XOR 100011011
= 00011001

(7)



y0

y1

y2

y3

y4

y5

y6

y7


=



1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1
1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1





x0

x1

x2

x3

x4

x5

x6

x7


+



1
1
0
0
0
1
1
0


(8)

Figure 7: The Rijndael ShiftRow Layer

encryption rounds. It is required to have every
bit of input effect every bit of output. See Fig-
ure 7.

5.2.3 MixColumn

This operation is a bit more complex. Defin-
ing a column as a polynomial ofGF (28) co-
efficients, a cross product of this value by a
constant polynomial co-prime tox4 + 1 is per-
formed. What did I mean by that?

A column of Rijndael data contains 4 bytes.
Each byte represents a polynomial inGF (28).
The column however represents a polynomial
of polynomials. When two numbers are co-
prime, they do not share any factors other than
1, this applies to all number fields, not just inte-

gers. The requirement of co-primality tox4 +1
is required to make this transformation invert-
ible. Invertible operations are nice to have if
you ever want to recover the data you’re en-
crypting! See Figure 8 and Equations 9, 10,
11, 12, 13, and 14.

c(x) = ′03′x3 +′ 01′x2 +′ 01′x1 +′ 02′x0

(9)

b(x) = c(x)⊗ a(x) (10)


b0

b1

b2

b3

 =


02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02




a0

a1

a2

a3

 (11)

d(x) = ′0B′x3 +′ 0D′x2 +′ 09′x1 +′ 0E ′x0

(12)

b(x) = d(x)⊗ a(x) (13)

Ottawa Linux Symposium 2002 85

Figure 8: The Rijndael MixColumn Layer

Figure 9: The Rijndael BlendKey Layer


a0

a1

a2

a3

 =


0E 0D 0B 09
09 0E 0D 0B
0B 09 0E 0D
0D 0B 09 0E




b0

b1

b2

b3


(14)

5.2.4 BlendKey

An XOR operation with the expanded key is
performed on each byte in the cipher’s block
of data. See Figure 9 and Equation 15.


b0

b1

b2

b3

 =


e0

e1

e2

e3

 ⊕


a0

a1

a2

a3

 (15)

5.3 The Sub-Round Function

These operations are combined to create the
Rijndael sub-round transformation (see Equa-
tion 16). This sub-round operation is per-
formed anywhere from four to eight times each
round depending on the block size specified.
The Round function is performed any where
from 10 to 14 times depending on the key and
block sizes specified.

5.4 Implementation

Efficient implementation of the Rijndael algo-
rithm lies in efficient implementation of the
Rijndael sub-round transformation. The sub-
round transformation has several layers. The
ByteSub layer is best implemented as a lookup
table, the ShiftRow layer by cyclic array offsets
and the BlendKey layer is a trivial matter.

The MixColumn operation requires a bit more
thought. The following code segment demon-
strates how to mix a single column. This oper-
ation would be performed several times though
a single sub-round which is itself executed sev-
eral times in a single round, which in turn is ex-
ecuted several times in a single block encryp-
tion operation. This procedure will net you a
nice (!) O(n3) time complexity if implemented
in serial!

void MixOneColumn(char a[4]) {
char Tmp, T;
Tmp = a[0] ^ a[1] ^ a[2] ^ a[3];
T = a[0] ^ a[1]; T = xtime(T);

a[0] ^= T ^ Tmp;
T = a[1] ^ a[2]; T = xtime(T);

a[1] ^= T ^ Tmp;
T = a[2] ^ a[3]; T = xtime(T);

a[2] ^= T ^ Tmp;
T = a[3] ^ a[0]; T = xtime(T);

a[3] ^= T ^ Tmp;
}

There is room for a significant increase in
speed if the implementer is willing to sacrifice
size. Collapsing the ByteSub and MixColumn
operations into a single 8x32 lookup table and
a little coaxing of the equations, the entire sub-
round transformation can be reduced to four
lookups, four 32bit XORs, and three cyclic bit
rotations by 8.

Ottawa Linux Symposium 2002 86


b0,j

b1,j

b2,j

b3,j

 =


02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02




S [a0,j]
S [a1,j−C1]
S [a2,j−C2]
S [a3,j−C3]

 ⊕


e0,j

e1,j

e2,j

e3,j

 (16)

T0 [v] =


S [v] •′ 02′

S [v]
S [v]

S [v] •′ 03′

 (17)

bj = kj ⊕ T0[a0,j]⊕
ROR8(T0[a1,j−C1]⊕
ROR8(T0[a2,j−C2]⊕
ROR8(T0[a3,j−C3])))

(18)

At a cost of 4 kilobytes of lookup tables, this
can be further reduced to four lookups and four
32bit XORs.

bj = kj ⊕ T0[a0,j]⊕ T1[a1,j−C1]
⊕T2[a2,j−C2]⊕ T3[a3,j−C3]

(19)

At first glance, this seems far too simple a
transformation to be secure. One is left search-
ing for a backdoor but can find no place to hide
it.

5.5 What did/can the NSA do?

Unlike the DES, the AES publication has no
changes to the Rijndael algorithm other than
limiting the block size from any one of 128,
192 or 256bits to 128bits. I have written an-
other paper suggesting that block sizes and key
sizes be identical or the possibility of multiple
keys mapping one plaintext input to another
ciphertext output would exist. Don Copper-
smith took the time to explain there are circum-
stances where having a larger key to block size
would be preferable.

The question remains, did the NSA/NIST do
their job? Was the AES a success? The NSA’s
responsibility to monitor domestic and interna-
tional communication would naturally lead to
developing a backdoor into such a widely used
algorithm.

However, the NSA also has the responsibility
of protecting American interests for the pub-
lic as well as private sectors. A strong algo-
rithm would be conducive to one goal but not
the other.

The winning block cipher design was not of
American origin. It is strange how an Amer-
ican standard came from Belgium. Still, it
would appear as though the best cipher won the
day. Rijndael is fast (30Mbit/sec ANSI-C, P3
450), simple (see Equation 19), and efficient in
hardware as well as software, and widely con-
sidered to be secure.

How are these the contradictions in the respon-
sibilities of the NSA reconciled by the AES
standard? The answer is simple; an impervi-
ous block cipher is insufficient to insure the to-
tal security of transmitted data.

There are three broad classes of digital encryp-
tion algorithms:

• Message digest or hash algorithms such as
MD5 and SHA-1 operate without the use
of a key. These algorithms are ‘blenders,’
they reduce input data to a fixed length bi-
nary sequence. These sequences are con-
structed such that any minute change to
the input significantly changes the output.

• Block ciphers such as TripleDES and

Ottawa Linux Symposium 2002 87

AES operate with a single key. With this
key, data is encrypted in such a way that it
can only be decrypted with the same key.

• Public-key algorithms operate using two
distinct but mathematically related keys.
An operation performed by one key can
only be undone by its complement. This
facilitates the confidential exchange of
small pieces of data and the authentication
of data origin.

The laws of thermodynamics state the energy
in a closed system remains constant. The con-
nection of matter, energy, information and en-
tropy are well understood. Extending these
laws to the realm of system-level security as
applied by cryptography one can come to three
conclusions:

• Message digest algorithms The laws per-
mits the existence of a perfect message di-
gest algorithm. A hash algorithm with no
mountable attack other then brute force;
in this case the parallel collision attack.

• Block ciphers The laws permits the exis-
tence of a perfect block cipher. A cipher
with no mountable attach other than brute
force.

• Public-key algorithms The laws do not
permit the existence of a perfect public-
key algorithm. Looking purely at the flow
of information required to conserve con-
fidentiality of key pieces of data, the re-
strictions the law places on reality forbids
such an algorithm to exist.

To demonstrate this we consider two scenar-
ios, confidential exchange with a block ci-
pher/shared secret and with a public-key.

• Block Cipher
Consider two closed systemsA and B

communicating over channelC using in-
formationk only known toA andB.

– Assume a symmetric algorithmc =
Ek(d) exists with no possible crypt-
analytic attack. That is,d cannot be
recovered fromc unlessk is known.

– SystemA opens and communicates
c = Ek(d) with n = H(c) bits of
information thoughC to B.

– SystemC cannot recoverd since
only c is known.

– SystemB can recoverd sincec and
k are known.

– B now obtains informationd pos-
sessed byA and notC.

– This information or entropy was
communicated toB though channel
C using entropy held only byA and
B.

We have not contradicted ourselves, thus
we cannot disprove the existence of a per-
fect block cipher.

• Public-Key
Now consider our two closed systemsA
and B with channelC communicating
with no shared secret.

– Assume a perfect public-key algo-
rithm c = Ppub(d), d = Ppri(c). That
is, d cannot be recovered fromc un-
lesspri is known.

– SystemA opens and communicates
c = Ppub(d) with n = H(c) bits of
information thoughC to B.

– SystemC cannot recoverd since
only c andpub are known.

– SystemB can recoverd sincec and
pri are known.

– B now obtains informationd pos-
sessed byA and notC.

Ottawa Linux Symposium 2002 88

– This information or entropy was
communicated toB though channel
C using entropy common to allA, B
andC.

Here we have our contradiction,A gave B
more entropy than was ever transmitted though
C and possessed byA. So this tells us at least
one of our assumptions was flawed, either no
entropy was transmitted or there can be no per-
fect public-key algorithm.

What does this mean for RSA, ElGamal,
Diffie-Hellman, Elliptic curve systems, and
other public-key algorithms? The strength of
public-key algorithms stem from our ignorance
of their underlying mathematics. Any amateur
cryptographer could have told you that, this
was just a loose formalization proving it.

Will quantum cryptography come to the res-
cue? Simply replacing our ignorance of math-
ematics with our ignorance of physics is not a
lasting solution. The Standard Model of sub-
atomic particles explains the communication
of force (Gravity, Electro-weak and Strong nu-
clear forces) as an exchange of virtual particles.

Fixating a quantum-coupled photon will cause
its complement to fixate in the opposite spin.
The communication between these two pho-
tons is suspected to be in the form of some sort
of virtual particle. The key in usurping the in-
formation between these two parties would lie
in detecting the energy state of the virtual par-
ticles exchange between the two coupled pho-
tons.

It doesn’t matter how many ways you skin
Schrödinger’s Cat. At the end of the day even
his feline must obey the laws of thermodynam-
ics.

6 Modes of Operation

Equally important to the good design of a block
cipher is how it is used to encrypt data. In
1980 the NSA/NIST published a set of stan-
dard modes of operation for the DES.

The publication detailed 4 modes of operation.
There are three characteristics that differ from
each mode: the primitive data unit, the prop-
erty of memory and the property of state. S
e modes operate at the bit level, others at the
block level. Some modes operate with a mem-
ory of all data previously encrypted and others
are memoryless. Some modes operate with a
state variable, which is altered after each en-
cryption operation while others are completely
stateless.

• Encrypted Cipher Block (ECB)

– Data unit: block.

– Memoryless: yes.

– Stateless: yes.

• Cipher Block Chaining (CBC)

– Data unit: block.

– Memoryless: no.

– Stateless: no.

• Output Feed Back (OFB)

– Data unit: bit.

– Memoryless: yes.

– Stateless: yes.

• Cipher Feed Back (CFB)

– Data unit: bit.

– Memoryless: no.

– Stateless: no.

Ottawa Linux Symposium 2002 89

Figure 10: The CBC Mode of Operation

These modes of operation are sound and math-
ematically provable. However, security is not
the only concern in today’s cryptosystem de-
ployments. There are serious performance re-
strictions when using the stronger CBC and
CFB modes versus the ECB and OFB modes.

The memoryless modes of operation make par-
allelism possible. A stateless and memory-
less cipher mode leaves an attacker with many
opportunities for attacks that do not require
breaking any encryption algorithms. The ex-
change was clear, security for performance.

The CBC mode of operation is the most com-
monly used, in file and network encryption.
The CFB mode is commonly used by network
encryption protocols such as SSH where trans-
mitting an entire 128bit block to communicate
a single byte of data would be wasteful.

The author of this paper has another publica-
tion where he recommends a ‘tweak’ to the
classic CBC mode of operation. The Tweaked-
CBC mode proposed reduces the format pars-
ing and API requirements by implicitly en-
crypting the CBC initialization vector (IV) in
the ciphertext payload. While the decryption
operation will implicitly assign the IV after the
first block is processed and discarded.

The core requirements of the AES were high
security and high throughput. A new mode of
operation was needed to accommodate the pri-

Figure 11: The Tweaked CBC Mode of Opera-
tion

Figure 12: The CTR Mode of Operation

vate sector’s security and speed requirements.

The counter (CTR) mode of operation—
designed by Diffie and Hellman in 1979—
provides protection from the kinds of attacks
mountable against ECB and OFB modes as
CBC does, but with high parallelism.

The NSA/NIST has also made known their in-
tention of standardizing on another mode of
operation to be used not for confidentiality
but for authentication. Message Authentica-
tion Codes (MAC) exist today using the mem-
ory/state based modes of operation mentioned
above. However, confidentiality and authen-
tication are always viewed as orthogonal to
each other. One should not assume authentic-
ity when dealing with confidentiality and visa
versa.

Ottawa Linux Symposium 2002 90

7 Message Digest Algorithms

Message digest algorithms have followed a his-
tory of their own. Hash algorithms are suscep-
tible to a statistical attack known as the Birth-
day Paradox.

How many people do you need in room before
the probability of two people having the same
birthday is over 50%? The answer is 20.

Reword the question to “If two random 128bit
values are being generated in parallel, how
many 128bit number generations are required
before the probability of two values match-
ing?” The answer is2

128
2 or 264.

In 1994, van Oorschot and Weiner published
a design for an MD5 collision machine that
could produce a collision in less than 30 days
at a cost of $10M. Assuming that Moore’s law
was obeyed from 1994 to 2002 (which is in fact
a conservative assumption), the cost of such a
machine by the time this paper was written was
less than $200,000. Suffice it to say, 128bit
message digest algorithms should no longer be
considered cryptographically secure.

The digest size of MD5 was not the only weak-
ness in it design. The NSA in its Digital
Signature Standard (DSS) published what it
called the Secure Hash Algorithm (SHA). SHA
was highly criticized by the private sector and
academia, so an enhanced SHA-1 was pub-
lished in its place.

SHA-1 digest size was 160bit,2
160−128

2 or
65,536 times more secure than MD5’s 128bit
digest. Also, the SHA-1 algorithm was con-
structed in such a way that bit input into the
algorithm effected every possible output digest
bit. This is not a characteristic of MD5. For
this reason, research into digest algorithms has
stagnated. The private sector feels the NSA has
done as good a job as conceivably possible.

With the publication of the AES however,
a 160bit hash algorithm with an effective
strength of 80bits is mismatched with the 128,
192 and 256 bit key strengths of AES. The
NSA has stepped up and published new al-
gorithms to SHA family in a draft processing
standard. These algorithms are named SHA-
256, SHA-384 and SHA-512 with 256, 384
and 512bit digests and effective strengths of
128, 192, 256bits respectively. These hash al-
gorithms posses effective strengths equal to the
AES key sizes.

The SHA-384 algorithm is simply the SHA-
512 algorithm with a truncated digest. Many
of the SHA-512 core operations are 64bit addi-
tion, 64bit rotation and 64bit shifts. The SHA-
512 and SHA-384 were not designed with soft-
ware implementations on 32bit machines in
mind.

8 Summary

The Flemish Rijndael block cipher has been
chosen as the Advanced Encryption Standard
out of an international group of 15 modern al-
gorithms obsoleting the decades old Data En-
cryption Standard. The AES can be heavily
optimized for speed or size in either hardware
or software forms. The cipher represents the
state-of-the-art in private sector cryptography.
This possibility of backdoors for government
agencies is negligible due to the simplistic de-
sign of the AES.

There are five approved modes of operation for
the AES, 4 were adopted from the DES. The
new mode of operation is called CTR and is
highly parallelizable. Another mode of opera-
tion for authentication is still to be announced.

The new Secure Hash Algorithms support 256,
384 and 512bit digests, taking the Birthday
Paradox into account their effective strengths
are 128, 192 and 256 bits respectively. The new

Ottawa Linux Symposium 2002 91

Secure Hash Algorithms represent the state-of-
the-art in message digest algorithms.

References

[CertKeyRes] CertainKey Online Resources,
http://www.certainkey.com

/resources/

[CertKeyOLS2002] CertainKey At OLS
2002,http://www.certainkey.com

/ols2002/ , (2002)

[Cooke2001] Functionally Equivalent Keys in
the Advanced Encryption Standard,
http://jlcooke.ca/aes

/aes_fek.pdf , (2001)

[Cooke2001b] Plaintext Dependency of
Functionally Equivalent Keys in the
Advanced Encryption Standard,
http://jlcooke.ca/aes

/aes_fek2.pdf , (2001)

[Thermo] Wolfram Research: World of
Physics Online Reference,
http://scienceworld.wolfram.com

/physics/ThermodynamicLaws.html

[NISTDES] The Data Encryption Standard,
http://csrc.nist.gov

/publications/fips/fips46-3

/fips46-3.pdf , (1976-1999)

[NISTMODEOP] DES Modes of Operation,
http://www.itl.nist.gov

/fipspubs/fip81.htm , (1980)

[NISTAES] The Advanced Encryption
Standard, http://csrc.nist.gov

/publications/fips/fips197

/fips-197.pdf , (2001)

[NISTAESMODEOPS]Recommendation for
Block Cipher Modes of Operation,
http://csrc.nist.gov

/publications/nistpubs/800-38a

/sp800-38a.pdf , (2001)

[NISTAESWWW] The Advanced Encryption
Standard Website,
http://www.nist.gov/aes/ , (a)

[MD5] The MD5 Message Digest Algorithm,
http://www.faqs.org/rfcs

/rfc1321.html , (1992)

[NISTSHA1] The Secure Hash Standard,
http://www.itl.nist.gov

/fipspubs/fip180-1.htm , (1995)

[NISTSHA2] The Secure Hash Standard,
http://csrc.nist.gov

/encryption/shs

/dfips-180-2.pdf , (2001)

[NISTDSS] The Digital Signature Standard,
http://csrc.nist.gov

/publications/fips/fips186-2

/fips186-2.pdf , (2000)

[CAST128] The CAST-128 Encryption
Algorithm, http://www.faqs.org

/rfcs/rfc2144.html , (1997)

[CAST256] The CAST-256 Encryption
Algorithm, http://www.faqs.org

/rfcs/rfc2612.html , (1999)

[AESCD1] AES CD-1: Documentation

[AESCD2] AES CD-2: Source Code

[AESCD3] AES CD-3: Finalists

[DC] Differential Cryptanalysis of the Data
Encryption Standard,
ISBN-0387979301, Shamir Biham,
(1994)

[DEAL] A 128-bit Block Cipher,
http://www.ii.uib.no/˜larsr

/newblock.html , (1998)

[E2] The 1280bit Block Cipher E2,
http://info.isl.ntt.co.jp/e2/ ,
(1999)

Ottawa Linux Symposium 2002 92

[HPC] The Hasty Pudding Cipher,
http://www.cs.arizona.edu/˜rcs

/hpc/ , (1998)

[LOKI97] The LOKI97 Block Cipher,
http://www.unsw.adfa.edu.au

/˜lpb/research/loki97/ , (1997)

[MARS] MARS - a candidate cipher for AES,
http://www.research.ibm.com

/security/mars.html , (1999)

[RC6] RC6 Block Cipher,
http://www.rsasecurity.com

/rsalabs/aes/ , (1998)

[Rijndael] The Block Cipher Rijndael,
http://www.esat.kuleuven.ac.be

/˜rijmen/rijndael/ , (1999)

[Serpent] Serpent,
http://www.cl.cam.ac.uk/˜rja14

/serpent.html , (1998)

[TwoFish] TwoFish: A 128-bit Block Cipher,
http://www.counterpane.com

/twofish.html , (1998)

Proceedings of the
Ottawa Linux Symposium

June 26th–29th, 2002
Ottawa, Ontario

Canada

Conference Organizers

Andrew J. Hutton,Steamballoon, Inc.
Stephanie Donovan,Linux Symposium
C. Craig Ross,Linux Symposium

Proceedings Formatting Team

John W. Lockhart,Wild Open Source, Inc.

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.

