
Embedding Linux

David Woodhouse
Red Hat, Inc.

dwmw2@cambridge.redhat.com

Abstract

Linux is becoming widely accepted in the em-
bedded systems arena. This paper will give a
brief overview of the applications for which it
is currently being used and new applications
for which development is in progress, and will
discuss the requirements and problems which
are unique to such embedded applications.

Some discussion will also be given to situa-
tions in which Linux isnot the most appro-
priate tool for the task at hand, and in which
a smaller, more application-specific operating
system such as eCos may be more useful.
[eCos]

1 Introduction

Linux was developed as a general-purpose op-
erating system. A single kernel is intended to
scale usefully from handheld devices such as
the Compaq iPAQ and Sharp Zaurus to “Big
Iron” such as the IBM zSeries mainframes.

For many years, Linux has commonly been
used on PC machines as a router. More re-
cently, Linux has been used by many com-
panies in embedded “black box” products in-
tended for applications such as network rout-
ing and firewalling, file and print serving,
web serving, and in one well-known case for
recording to hard disk and playback of tele-
vision programmes. These applications typi-
cally use PC-class or similarly powerful hard-

ware, and make no particular requirements on
the kernel that traditional desktop and server
applications do not.

Linux is also becoming widespread on smaller
hardware such as Personal Digital Assistants
(PDAs), especially the Compaq iPAQ and now
the Sharp Zaurus, which is one of the first
PDAs to be shipped with Linuxinstead of
Windows CE, rather shipping with Windows
CE but having Linux available for installation.
These devices have limited battery capacity,
very limited amounts of flash memory avail-
able for storage, and small displays with touch
screens. Therefore, the use of Linux on such
devices has motivated much development in
the areas of power management, flash storage
and code size reduction, and user interfaces tar-
getted at such displays — all of which are dis-
cussed later.

2 Scaling down

A significant criterion affecting decisions re-
garding embedded applications is the cost per
unit. Significant up-front costs and develop-
ment time will be borne in order to reduce the
per-unit cost of hardware and software by pen-
nies. This is partly why Linux in the embed-
ded space is so attractive to many developers
of such products — the per-unit licensing cost
of Linux and most Linux applications is zero.

The importance of per-unit cost means that
hardware resources are often strictly limited.



Ottawa Linux Symposium 2002 595

The cost of extra RAM and storage space
which may be required is equally important
when comparing Linux against alternative op-
erating systems; any wastefulness of resources
cannot be tolerated in mass-production. There-
fore, there is significant effort required to en-
sure that Linux remains “lean and mean,” with-
out gratuitous increases in the demands made
from hardware.

Although Linus is fairly good at guarding
against the introduction of gratuitous bloat, this
is still not a particularly easy task. Figure 1
shows the size of the Linux source tarball since
the first releases1. Since Linux v0.01 with a
gzipped tarball size of 73091 bytes, the Linux
kernel has grown exponentially over time to
reach roughly 32 MiB at the time of writing,
with the 2.5.12 kernel.

0

5

10

15

20

25

30

35

1990 1992 1994 1996 1998 2000 2002 2004

So
ur

ce
 T

ar
ba

ll 
Si

ze
 (

M
iB

, g
zi

pp
ed

)

Time of Release

Figure 1: Growth of the Linux kernel.

Thankfully, this exponential increase in source
code size does not translate linearly to an in-
crease in object code size. Much of the in-
crease in the source code size is optional fea-
tures and new architectures and subsystems.

Nevertheless, the kernelis growing steadily.
The transition of theµClinux code base from
the 2.0 series of kernels to 2.4 was delayed sig-
nificantly when it was realised that the result-
ing kernel images woulddoublein size. This

1Graph thanks to James Smaby.
http://virgo.umeche.maine.edu/misc
/kernel_size/

is largely due to expansion in code which has
not been made conditional. Especially in the
networking parts of the kernel, new features
are often added unconditionally, without much
consideration for situations where they will be
unrequired.

There has been a great deal of work recently
on “scalability” of Linux, with a lot of pub-
licity and large companies getting involved.
Mostly, attention has been concentrated on
scalingup to large multi-processor and NUMA
boxes; reducing lock contention and bouncing
of shared cache lines, dealing efficiently with
large amounts of memory and storage space,
etc.

However, there has also been less visible work
on scaling Linuxdown — reducing the stor-
age and RAM footprint of both userspace and
the kernel, and to a certain extent keeping the
other developers honest by ensuring that opti-
misations made for larger boxes are not pes-
simisations for the embedded targets.

Inevitably, there have been some trade-offs re-
quired to accommodate the vast range of tar-
get hardware supported by Linux, but the most
important such choices have been made con-
figurable by the user at compilation time, so
features can be included or omitted at will.

One area which is currently receiving atten-
tion is the support for block devices. Many
embedded boxes have no block devices of any
kind, and do not require any of the support for
block I/O which is currently built into each ker-
nel image. Significant size savings could be
made by stripping this code out. However, the
task is complicated; the block I/O subsystem
has always been present in the Linux kernel
and a large amount of code is written with the
assumption that this will remain true. Large
amounts of file system core (VFS) code need
attention, but mostly to separate the block-
related functions from generic file system code



Ottawa Linux Symposium 2002 596

to allow conditional compilation. More com-
plex is the virtual memory subsystem, which is
littered with assumptions about the presence of
block I/O, which is required for paging.

3 µClinux

µClinux, mentioned above, is a port of Linux
to microcontrollers without memory manage-
ment units. In embedded single-user and
single-application boxes, a memory manage-
ment unit serves little purpose. If the whole
point of the box is to run a single application,
it matters little whether a crash of that applica-
tion can scribble over kernel memory and kill
the kernel too, or whether the application will
take a page fault and be killed — if the applica-
tion dies, the game is over already. Hardware
watchdogs to reset the board in the event of a
malfunction are just as effective as a script to
restart an individual application if it crashes;
and of course neither are a suitable substitute
for ensuring that the application doesn’t crash
in the first place.

The MMU, therefore, is a prime candidate for
removal when counting the pennies which are
being spent for each unit shipped.

Surprisingly, the Linux kernel code is not par-
ticularly intrusive. Most driver, networking
and file system code does not need modifi-
cation to accomodate the lack of MMU sup-
port. The memory management code in the
mm/directory is replaced with equivalent rou-
tines in a parallelmmnommu/directory, and
the architecture-specific code is also replaced
with a new version.

Of course, most kernel code is designed to run
in a single address space with no protection
on memory accesses anyway. In userspace,
the distinction is far more important. Be-
cause applications mustalsoshare a single ad-
dress space, a drastic rearrangement of how

user space programs are loaded was required.
µClinux uses a new type of binary, known as
’flat’ format. µClinux executables contain Po-
sition Independent Code (PIC) and hence the
text segment containing the program instruc-
tions can be loaded anywhere inside the avail-
able address space, as can the data segment.

Although µClinux is not merged with the
mainstream Linux kernel, the unintrusive na-
ture of the port means it remains a possibility,
and key kernel developers have repeatedly ex-
pressed a desire to do so.

µClinux supports a wide range of platforms
and CPUs including Motorola m68k-based
CPUs, ARM, Axis’ ETRAX and the Intel
i960. It is used in a number of products using
µClinux including MP3 players, voice-over-IP
telephones, Network Cameras, routers, etc.

4 Low-fat libraries and utilities

After the kernel, the next obvious large object
in a Linux system is usually the C libraries.
The GNU C library, glibc, is a multi-megabyte
monster which can account for a large propor-
tion of the available storage and RAM space
on a small device. The maintainer of GNU
libc, Ulrich Drepper, has clearly stated that
GNU libc is not targetted at embedded sys-
tems: “...glibc is not the right thing for [an
embedded OS]. It is designed as a native li-
brary (as opposed to embedded). Many func-
tions (e.g., printf) contain functionality which
is not wanted in embedded systems.” [Drepper]

Thankfully, there are alternatives to glibc. The
older Linux libc5, the endpoint of the branch
which was originally taken from GNU libc
1.07.4 to add Linux support, is still maintained
and is significantly smaller than glibc. Also,
there at least two C library implementations
specifically designed for a small footprint.



Ottawa Linux Symposium 2002 597

As mentioned above, theµClinux kernel re-
quired drastic changes to userspace libraries.
A new C library, µClibc, was developed for
use with µClinux. After it became appar-
ent that there was a need for a bloat-free C
library in full MMU-capable Linux systems
too, support for such systems was added to
µClibc. µClibc supports most target architec-
tures on which embedded Linux is found, in-
cluding ARM, MIPS, PowerPC and Hitachi
Super-H.µClibc is licensed under the GNU
Lesser General Public License, and is available
athttp://www.uclibc.org/ .

There is also diet libc, which claims to achieve
even better code size reduction thanµClibc by
rewriting far more routines rather than copy-
ing them intact from other sources. The diet
libc is licensed under the GNU General Pub-
lic License, not the LGPL, and is available at
http://www.fefe.de/dietlibc/ .

Both µClibc and diet libc have multifunction
binaries associated with them which can re-
place a large number of standard utilities such
as cat , mv, cp , ln , etc. By using a single
multifunction binary such as these to replace
a multitude of overly feature-laden GNU utili-
ties, further dramatic improvements in required
space can be achieved.

BusyBox works with both µClibc
and glibc, and is available at
http://www.busybox.net/ .

The set of utilities which works with diet
libc is called “embutils” and is available at
http://www.fefe.de/embutils/ .

5 Power management

Another area which has received much atten-
tion in Linux, and still requires further devel-
opment, is power management. Traditionally,
Linux would power up and initialise devices

at boot time or when the driver module was
loaded, and would keep them powered at all
times thereafter, often not even powering them
down when a driver module was unloaded.
This is extremely wasteful of power, which is
extremely important on battery-powered com-
puters such as laptops and handheld devices.

Obvious improvements are achieved by mod-
ifying drivers to remove power from unused
circuits while devices are inactive. Often, this
precise control over the application of power is
very platform-specific, but hooks are required
in generic code such as UART drivers so that
the platform-specific code can be called at ap-
propriate times when the port becomes active
or inactive.

A great deal of work has therefore been done
on extending the device driver APIs to accom-
modate power management facilities.

Suspend modes

Many battery-powered systems support a mode
where all circuits except the RAM can be dis-
abled and even the CPU can be placed into a
low-power state until woken by an interrupt.

In order to enter this state and correctly return
from it, it is necessary to maintain information
about bus connectivity so that devices can be
powered down before the busses which con-
nect them, and the resumption of power can be
performed in the opposite order.

Once all devices have been powered down,
the entire CPU state can be stored in memory,
the RAM can be switched into a self-refresh
mode and even the CPU can be placed into
an extremely low-powered state, to be woken
only by a specially-configured interrupt. Of-
ten, only a single 32-bit register is retained over
such a sleep state, and the CPU will start to
execute the boot loader from the reset vector
when it wakes just as it would after a normal



Ottawa Linux Symposium 2002 598

power up cycle. The boot loader must then
check the contents of the register and behave
appropriately if it detects that it’s waking from
a sleep state, not a hard reset. Usually, the
value in the register is a return address, and the
boot loader will switch the RAM back to its
normal state and jump back to the kernel code
at the specified address.

This mechanism is used on PDA devices to im-
plement the “instant-on” power mode which is
reached by pressing the power button. A com-
plete reset and reboot is rare, and usually re-
quires pushing or switching a recessed reset or
battery disconnect switch.

Frequency scaling

A CPU will consume less power when running
at slower speeds, and many current CPUs can
dynamically scale their clock speed under soft-
ware control.

In addition to removing power to individual de-
vices and circuits and shutting down the CPU
completely, it is also possible to achieve power
savings by utilising this facility to reduce the
speed at which the CPU runs to match the cur-
rent requirements of the running system.

Scaling CPU speed dynamically requires care-
ful changes to timing-related functions and
CPU-external bus timing. Basic support for
management of CPU clock scaling is being de-
veloped and is present in the 2.4 version of
the kernel for the ARM architecture. CPUs
which are supported include ARM Integra-
tor, SA1100 and SA1110. The various Intel
IA32 clone manufacturers each have their own
method of clock scaling, and CPUFreq con-
tains support for AMD PowerNOW and VIA
Cyrix Longhaul technologies.

Support for the Intel SpeedStep method of
clock scaling is lagging far behind the rest, be-
cause Intel have so far refused to give suffi-

cient documentation; preferring to push ACPI
as their preferred method of accessing such
functionality. Essentially, ACPI provides con-
trol methods in a form of interpreted byte-
code similar in concept to Java, which must
be trusted by the Linux kernel and run in priv-
ileged mode. This is no substitute for true
GPL’d Linux drivers for the hardware in ques-
tion.

Another power-saving feature which is not yet
implemented but which is planned is the pos-
sibility of removing the system timer inter-
rupt. Currently, Linux systems have a fixed-
frequency interrupt, often at a frequency of 100
Hz, which is used for keeping system time and
for running timers. If the CPU is entering a
low-power state during idle periods, it must
wake up and run the interrupt service routine
every 10 ms — usually to find it has nothing
to do but go immediately back to sleep again.
This causes a significant power drain which
should be unnecessary. Therefore, it is planned
to develop code which allows Linux to abolish
the fixed-frequency timer interrupt and instead
use a one-shot timer to set a wake-up time each
time the low-power idle state is entered. The
CPU will be woken either by the first pending
timed event or by interrupts from other sources
such as I/O devices.

This improvement will be useful not only for
embedded devices where power consumption
is paramount, but also at the opposite end of the
spectrum; on mainframe hardware where many
hundreds of Linux kernels may run inside vir-
tualised machines, and the overhead of a timer
interrupt oneveryvirtual Linux machine each
few milliseconds quickly starts to take a signif-
icant proportion of the available CPU time.



Ottawa Linux Symposium 2002 599

6 Hotplug capabilities

Linux has for a long time supported PCM-
CIA and CardBus peripherals; 16-bit PCMCIA
being significantly more common on hand-
held devices than CardBus. The Linux PCM-
CIA code is based heavily on the architecture
laid out in the PCMCIA specification, which
seems to be overly complicated and designed
for legacy drivers and MS-DOS. This level of
complexity appears to be overkill for Linux,
and work has started on a rewrite of the PCM-
CIA support based solely on the reality of
PCMCIA hardware rather than the intricacies
of the PCMCIA specification. This work has
yet to reach a state in which it can be an-
nounced to the public for further development.

In networking and control applications, Linux
is also often required to support hot-swapping
of PCI and CompactPCI peripherals. Basic
support for dynamic addition and removal of
PCI devices is present in the Linux kernel —
each device driver must be individually up-
graded to the new PCI driver API to be capable
of supporting hot-swappable devices, and this
has not yet happened for all drivers.

Support for physical insertion and removal of
devices, probing of new devices and notifica-
tion of drivers is implemented. Recently, some
support for correct handling of the Compact-
PCI procedures for device insertion and re-
moval, involving notification of the opening of
the removal handle, lighting of the appropriate
LED to signal that the system is ready for de-
vice removal etc.

One severe problem currently faced by the
existing PCI hotswap code is the assignment
of address space resources to newly-inserted
cards. There is a limited amount of physi-
cal address space which may be assigned to
BARs of PCI devices, and this space is fur-
ther subdivided by having to configure ranges

for each PCI bridge in the system, with each
bus getting a single range of each type of ad-
dress space. The current approach is to reserve
some address space for each PCI bus which
may accept hot-swap cards, in the hope that
it will be enough. Yet if multiple PCI busses
are present, then by repeatedly inserting and
removing cards on different busses it is pos-
sible to fragment the allocation of resources to
the extent that a newly-inserted card cannot be
assigned a range of address space on the bus
into which it has been introduced. Therefore,
it is being proposed that another addition to the
Linux PCI driver API be considered, which al-
lows supporting drivers to have the BARs of
their devices moved by the core PCI code to
make room for other devices in the address
space.

In many cases, it should be sufficient for the
driver to momentarily quiesce the card, to pre-
vent interrupts from occurring during the re-
location, change the BARs to the new address
range given by the PCI code, and reenable the
device. Virtual mappings of memory BARs
will need to either torn down and set up again
for the new location, hence the need to quiesce
the hardware rather than simply disabling in-
terrupts while performing the move.

If accepted and implemented, this enhance-
ment will allow for more reliable manage-
ment of resources, assuming that the drivers for
all hot-swapped cards provide support for this
method of relocation.

7 Storage

The storage requirements of embedded devices
differ significantly from traditional Linux in-
stallations. Often, the only storage available
will be flash memory. Flash is a form of solid-
state storage which provides persistant stor-
age with low power requirements and relatively



Ottawa Linux Symposium 2002 600

low cost.

The most common form of flash is NOR flash.
This can be connected directly to the CPU’s ad-
dress and data busses and for reading is treated
as ROM. As with ROM, each bit of storage can
be in one of two states — either it contains a
zero or a one.

Each bit of storage in NOR flash chip will start
containing a one, and by a predefined sequence
of writes of magic numbers to magic addresses,
the contents of each bit can be individually
changed to zeroes.

However, bits which have been cleared can-
not be individually reset to contain ones again.
Bits can only be reset to ones, or “erased,” in
large blocks of typically 64 or 128 KiB in size,
known as “erase blocks.” Furthermore, the life-
time of a flash chip is measured in erase cycles;
typically each block can be erased 100,000
times before it is expected to fail.

It is important to note that the lifetime of flash
chips is measured in erase cyclesper block, not
total erase cycles. Individual erase blocks can
be erased to the point of destruction without
affecting other erase blocks in the chip.

Therefore, by repeatedly erasing a few blocks
it is possible to destroy them while the remain-
der of the chip is still usable — however, even
with appropriate detection of bad blocks this
reduces the storage capacity of the device, and
as the storage available is unlikely to have ex-
ceeded therequiredamount by any significant
margin, would quickly lead to the device being
unusable.

Therefore, it is necessary to perform “wear
levelling” on flash devices, to ensure that the
block erases are evenly distributed over the en-
tire range of the chips rather than concentrated
in particular areas. This is particularly impor-
tant because the normal use of permanent stor-

age will be precisely the opposite of what is
required — typically a device with 16 MiB of
available flash would have 14 MiB of static
data, programs and libraries, 1 MiB of dynamic
data and 1 MiB of space; without wear level-
ling the 14 MiB of static data would never be
moved and the remaining 2 MiB of the chip
would be destroyed very quickly.

In addition to the need for wear levelling, the
large block size of flash means that traditional
file systems cannot easily be used, as they rely
on being able to replace data blocks in-place,
which is not possible on flash without also
erasing and replacing the surrounding data in
the rest of the same block. There is an ex-
tremely naïve driver available for Linux which
does present a flash device to file systems as
a block device with 512-byte sectors, then on
writes will read the whole erase block, mod-
ify the contents as desired and then write back
the new version. This is obviously extremely
unsafe, but can be useful for setting up file sys-
tems which are going to be read-only in pro-
duction.

The traditional approach to using flash has
been to use a form of pseudo-filesystem on
the raw flash to emulate a normal block device
with smaller sectors. This solution evolved in
the days of DOS, where providing an INT 13h
disk service interrupt was sufficient.

In practice, this is very suboptimal. To ensure
reliability, the pseudo-filesystem used must be
a journalling one - it must be able to revert to a
consistent state if power is lost or a crash oc-
curs during a write. Furthermore, the tradi-
tional file system used on the emulated block
device mustalso be a journalling file system,
for precisely the same reasons. The result is
a journalling file system running atop another
journalling file system, which is inefficient in
terms of both speed and wear on the flash de-
vices.



Ottawa Linux Symposium 2002 601

A better approach is that taken by the Jour-
nalling Flash File Systems, which are designed
to operate directly on the underlying flash de-
vice rather than through an intermediate emu-
lation layer.[JFFS]

These file systems are log-structured, writing
packets of data to the flash describing each
changeto the file system, and requiring a com-
plete playback of those logs on remounting
of the file system to recreate the current con-
tents of the file system. As the log progresses,
older log entries (or “nodes”) will be obsoleted
by newer entries which overwrite the old data,
delete files, etc.

When the medium becomes close to full, the
system must perform garbage collection to re-
claim the space taken by such obsoleted nodes.
An erase block is selected for garbage collec-
tion and the nodes which are still relevant are
copied into the remaining empty space, before
the victim block is erased. More details of the
operation of these file systems are given in the
referenced paper.

Since its development in the first quarter of
2001, JFFS2 has rapidly become extremely
common in the deployment of embedded
Linux devices with flash storage.

In addition to the common NOR flash, support
has recently been added to JFFS2 for NAND
flash. NAND differs from NOR flash in that
it is not directly accessible as if it were ROM;
instead data, addresses and commands are ex-
changed a byte at a time over a single 8-bit
bus. NAND flash is smaller erase block sizes
than NOR, typically around 8 KiB, and is fur-
ther subdivided into “pages” of typ. 512 bytes,
each of which is associated with a further range
of “out-of-band” data, used for ECC and meta-
data. NAND flash chips are cheaper than NOR
flash, and tend to have higher production toler-
ances, leading to higher incidence of bit errors
and bad erase blocks.

Execute in place

A feature which is not implemented in Linux is
“execute in place” (XIP). This refers to the ar-
rangement where data are not copied from the
flash medium into RAM, but are used directly
by entering pages of the flash chip directly into
the page tables of user space processes.

In many situations, XIP is not desirable. For
obvious reasons, XIP and compression are mu-
tually exclusive — if data are compressed, they
cannot simply be used in-place. In terms of
cost per byte, flash is generally more expen-
sive than DRAM, hence the cost savings from
using compression and reducing flash require-
ments are more than the cost savings from us-
ing XIP and reducing RAM.

However, XIP becomes a more sensible op-
tion in situations where low power consump-
tion is an extremely important criterion. In this
situation, static RAM may be used instead of
DRAM, and this is normally more expensive
than flash.

The implementation of XIP presents some in-
teresting problems which have yet to be prop-
erly solved. Obviously, it can only work with
NOR flash technology, as NAND flash cannot
be directly accessed. The problem with NOR
flash is that the write and erase commands are
performed by writing magic numbers to magic
addresses within the chip and then reading sta-
tus words back from the chip. When the flash
chip is in a command mode, the values returned
on read accesses are not necessarily valid data.
The flash drivers handle this by keeping a state
machine and ensuring that the chip is always
in the correct mode by sending the appropri-
ate commands before performing any opera-
tion, including any reads from the device.

However, if pages of the flash chip are sim-
ply mapped into user space processes using
the MMU, it is not possible to ensure that the



Ottawa Linux Symposium 2002 602

proper sequences are followed; either schedul-
ing must be disabled during the entirety of each
period for which the flash chip is placed in a
mode other than read mode, or every mapping
of a flash page to user space must be found
and torn down before each such access. As
erase and write operations may take an ex-
tremely long time, the former option is not par-
ticularly feasible. Until recently, the latter was
not possible either — only with the advent of
the memory managment code based on reverse
mappings of physical addresses to virtual was
it possible to find all the mappings of a given
page without scanning the entire address space
of every process in the system.

Now that the rmap VM has made XIP at least
technically feasible, there are plans to adapt the
flash drivers to accommodate this form of map-
ping. However, there remains the problem of
designing a file system which can make use of
this facility. In order for XIP to be used, each
page of file data must be page-aligned in the
flash chip, because no common MMU hard-
ware allows for the remapping of arbitrary byte
ranges. This effectively means that the JFFS2
mode of operation, writing a node header fol-
lowed immediately by a payload, is extremely
suboptimal. An ideal file system designed for
XIP would separate metadata from pages of
data, yet still perform in a broadly similar man-
ner to JFFS2. However, designs for such a file
system have yet to come any closer to comple-
tion than the above.

Removable storage

There are a multitude of forms of removable
solid state storage. The best supported by
Linux is CompactFlash, which presents itself
to the system as an IDE device. It uses a trans-
lation layer as described above to emulate a
block device, but this is performed internally
to the device, and the host computer treats it
exactly as if it were a normal IDE drive. Some

CompactFlash devices perform wear levelling
internally, but some do not. It is often not
easy to tell whether a particular device per-
forms wear levelling or not.

Another common form of removal storage is
SmartMedia. SmartMedia is effectively just
a NAND flash device, and the host computer
must implement a similar translation layer in
software. Linux does not currently support the
SmartMedia translation layer, although there
are drivers under development. However, there
exist USB devices which perform the neces-
sary transformations in their own firmware,
presenting an interface to the host computer
which is a simple USB storage device.

8 User Interface

With the advent of handheld devices running
Linux, the user interface has become extremely
important. Once the initial excitement of
reaching a shell prompt over the serial con-
sole has passed, it rapidly becomes apparent
that traditional Linux graphical user interfaces
based on X Windows are not ideally suited for
use on a 320x200 pixel display.

9 Alternatives

10 Conclusion

Linux has come a long way since Linus first
played with multitasking by making a ker-
nel which would interleave his two processes
printing ‘AAAAAA’ and ‘BBBBBB’. Linux is
becoming widely accepted in the embedded
market, and there has been a great deal of good
work on improving its applicability to these
targets.

Still more development is currently under way
and being planned, and it is clear from the dis-



Ottawa Linux Symposium 2002 603

cussions above that there remains a lot more
work to be done in these areas in the future;
certainly there’s plenty to keep us from getting
bored.

References

[eCos] Red Hat, Inc.,eCos — Embedded
Configurable Operating System.
http://sources.redhat.com/ecos/

[Drepper] Ulrich Drepper
<drepper@cygnus.com> , posting to
bug-glibc@gnu.org mailing list, 24
May 1999.
http://sources.redhat.com/ml

/bug-glibc/1999-05

/msg00039.html

[JFFS] David Woodhouse, Red Hat, Inc.
JFFS: The Journalling Flash File
System, May 2001.
http://sources.redhat.com

/jffs2/jffs2.pdf



Proceedings of the
Ottawa Linux Symposium

June 26th–29th, 2002
Ottawa, Ontario

Canada



Conference Organizers

Andrew J. Hutton,Steamballoon, Inc.
Stephanie Donovan,Linux Symposium
C. Craig Ross,Linux Symposium

Proceedings Formatting Team

John W. Lockhart,Wild Open Source, Inc.

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.


