
Cebolla: Pragmatic IP Anonymity

Zach Brown
zab@zabbo.net

Abstract

Cebolla is an intersection of cryptographic mix
networks and the environment of the public In-
ternet. Most of the history of cryptographic
mix networks lies in academic attempts to pro-
vide anonymity of various sorts to the users of
the network. While based on strong crypto-
graphic principles, most attempts have failed
to address properties of the public network
and the reasonable expectations of most of its
users. Cebolla attempts to address this gulf
between the interesting research aspects of IP
level anonymity and the operational expecta-
tions of most uses of the IP network.

1 Introduction

The core concept of providing anonymity of
commendations through intermediary relays
dates back to the early days of the public net-
work. As initially described by Chaum for
email [1], anonymity of the sender can be
achieved by sending the message to an agent
who encapsulates the email and relays it to a
second agent, who relays it to a third, who
finally delivers the message. Imagining the
communication as a conventional paper letter
would conjure an image of each agent open-
ing their letter to discover another letter des-
tined for the next agent. The final agent sees
the proper letter destined to the recipient. The
response travels in the reverse direction, with
each agent putting the incoming letter into a
new envelope and addressing it to the previous
agent. The sender, upon receiving this large

envelope, opens as many layers of envelopes
as there were intermediate agents to find the
original response.

This anonymizing theory can easily be applied
to networks when forwarding instructions are
included with each datagram. The included in-
structions increase the size of the datagrams
and verifying the instructions can be very ex-
pensive. The common solution to these prob-
lems is to negotiate and verify the instructions
and require that datagrams reference this exist-
ing negotiated state. In Cebolla, this negotiated
state is asymmetrical. The initiating sender of
all the messages negotiates individual instruc-
tions with all the forwarding agents. Each for-
warding agent only negotiates state with its im-
mediate neighbours in the path.

Cebolla builds on many previous implementa-
tions of anonymizing mix networks:

Wei Dai describes an asymmetric anonymizing
network, dubbed PipeNet [2]. While very re-
silient to attack, it is infeasible to run over the
public network. Constant cover traffic makes
link usage inefficient and prohibitively expen-
sive. Random path selection punishes users
with moderate threat expectations that could
tolerate narrowing their traffic to topologically
close networks. Finally, rampant frame re-
ordering would confuse popular networking
protocols. It has never been publicly imple-
mented.

D. Goldschlag and company at the Navy Re-
search Lab have done much work on Onion
Routing [3]. While providing much of the



Ottawa Linux Symposium 2002 56

ground work in the field, the implementation
is not publicly available, and is covered by US
patents.

Zero Knowledge productized a mix network
with their Freedom product line. The pro-
ductized nature of the network motivated Zero
Knowledge to remain some amount of cen-
tralized control of the network, which turned
off some potential users. It was never pub-
licly documented fully, nor were comprehen-
sive sources made available, which prevented
any third-party implementations of the proto-
cols to conceivably increase the user-base. It
has since been discontinued.

Mike Freedman and company push the enve-
lope by introducing a very scalable peer-to-
peer anonymizing network with Tarzan [4]. As
it happened, Cebolla and Tarzan were devel-
oped at about the same time, with different ob-
jectives.

Xor-Trees [5] take the concept to an extreme
by describing a network with a fully utilized
mesh of dedicated links and synchronized key
material generators that can be used to mask
both the source and destination of messages
between command and control centers. The re-
quirements for fully utilized links and synchro-
nized key material make it infeasible for use on
the public network.

Cebolla is an attempt to gel these efforts into
an implementation that can be readily used by
a group of people on the Internet to efficiently
protect their communications. The remainder
of the paper will focus on defining the envi-
ronment that Cebolla considers reasonable, and
the methodology behind the implementation.

2 Overview

Cebolla is a unix daemon that maintains UDP
connections to a set of peers. Many of these

peers connecting together builds an overlay
network. Through these UDP connections,
called links, peers are able to exchange mes-
sages which maintain crypto state, discover
the topology of the network, negotiate tunnels
on behalf of nodes, and transit encapsulated
frames through these tunnels.

Tunnels are the construct that allow messages
to be forwarded in a way that masks the iden-
tity of the sender. A tunnel is a set of forward-
ing rules that a client gives to nodes that make
up the path of the tunnel. The client also shares
keys with each node in the path of the tunnel.
Clients and servers run the same software; it is
initiating the tunnel that makes us call a node a
client.

Like other IP tunnels, Cebolla tunnels have net-
working devices on the nodes at either end of
the tunnel. When a frame is routed into a de-
vice, the frame is encapsulated and sent down
the tunnel. At the other end, frames exit the
tunnel and are received by the device at the end
of the tunnel.

The steps performed by a client in a typical Ce-
bolla session might look something like:

• A node in the network is discovered.
From this node, the client receives a list
of all the nodes in the network.

• The client decides on nodes in the network
that a tunnel should include.

• The client establishes a UDP link with the
first node in the tunnel.

• With this first node, the client negotiates
the first part of a tunnel.

• Through the first part of the tunnel, the
client negotiates the second part of the
tunnel with the second hop. And so on,
until the client only has one hop left.



Ottawa Linux Symposium 2002 57

• Through the tunnel, the client finalizes the
tunnel.

• By routing through a local device, the
client sends frames down the tunnel.

• Headers on the encapsulated frame tell
each hop which tunnel to go down, and
the headers are re-written at each hop.
Crypto may be performed at each hop, if
the client so desired.

• As the frame reaches the final hop, it exits
the tunnel and is forwarded out the Inter-
net as a normal IP frame.

3 Threat Model

When describing the threats that Cebolla tries
to address, we’ll adopt some names for roles
that are played out on the network:

• Alice – the initiator of the communica-
tion, who wishes to remand anonymous.

• Bob – the intended recipient of the Alice’s
communication.

• Neville – A corrupt node in the Cebolla
path who has honestly participated in the
protocol with Alice, but who is trying to
leverage that to monitor communications.

• Patrick – An attacker who controls the
flow of encapsulated frames between Al-
ice and Bob, who can conceivably alter
them as they pass.

• Kiddie – An attacker with connectivity to
the same network as the mesh, but with
no control of the path that messages take
between Alice and Bob.

• Smith – An attacker who is able to mon-
itor communications in the mesh at mul-
tiple points and perform deep analysis in
real-time.

With these participants in mind, Cebolla at-
tempts to make the following guarantees:

• Alice should be able to determine that she
is actually communicating with Bob.

• A Neville working alone should not be
able to determine the identities of both Al-
ice and Bob.

• Only Alice and Bob should have access to
the actual contents of messages.

• Kiddie should not be allowed to degrade
Alice and Bob’s communication through
trivial a expenditure of resources.

Cebolla also makes the following explicit ad-
missions about its lack of privacy guarantees,
as well:

• Two or more Nevilles at the right points in
the path may collude, with the help of traf-
fic analysis, to discover many things – the
identity of both Alice and Bob, the path
that their communication takes, and in
unbelievably specific circumstances, even
the contents of their communication.

• Patrick may sever communication be-
tween Alice and Bob at any time.

• Neville can associate frames that probe
the edge with streams he transits, possibly
giving rise to the ability to find the node at
the edge that terminates a particular com-
munication.

• Smith must to be assumed to be the super-
set of all possible Nevilles – always know-
ing which Bobs all Alices are currently in
communication with.



Ottawa Linux Symposium 2002 58

4 Secret Negotiation

The Cebolla protocols make heavy use of a
four-step secret negotiation that builds shared
secrets and negotiates optional features. The
message exchange is inspired by Photuris [6].
Following the asymmetric nature of Cebolla’s
anonymity guarantee, more emphasis is given
to protecting the information sent by the client
initiating a negotiation than by the server re-
sponding to it.

4.1 negotiation phases

The negotiation is split up into four phases:

• initiation . The initiator sends an initial
negotiation request to the server. The re-
quest contains a large random initiator ID
and lists of the authentication and shared-
secret negotiation schemes that the initia-
tor is willing to use during the negotia-
tion. The entirety of the request is sent
in the clear and is readable to those who
can monitor the channel it is sent over.

• response. The responder parses the re-
quest and prepares a response packet. The
initiator’s random ID is echoed back in
the response, and the server provides a
responder ID as well. The pairing of
these, between the responder and initiator,
uniquely defines this negotiation instance.
The server parses the lists of offered au-
thentication and shared-secret schemes,
and chooses one of each to use for the
negotiation. Should it not find any suit-
able, it can return errors. The response in-
cludes authentication data and the respon-
der’s half of the secret negotiation, as de-
fined by their respective chosen schemes.
The entire response is sent in the clear,
but the server appends a signature work-
a-like, which the initiator may validate us-
ing the chosen authentication scheme.

• configuration request. The initiator val-
idates the responder’s authentication and
prepares a packet containing the IDs that
identify the exchange. The initiator ap-
pends its half of the shared-secret negoti-
ation to the packet, then combines its half
with the responder’s half in the incom-
ing packet to calculate the shared-secret.
From this secret it derives keys that are
used to encrypt the initiator’s authentica-
tion data and a list of negotiable options
that are appended to the packet. The ini-
tiator then signs its half of the shared-
secret and the encrypted data, appending
the clear-text signature material to outgo-
ing packet.

• configuration acknowledgment. The re-
sponder prepares the final packet in the
exchange by parsing the incoming con-
figuration request. After the responder
verifies the initiator’s signature, it com-
bines the halves of the shared secret and
decrypts the initiator’s authentication data
and option list. The responder choses op-
tions from the incoming list and puts them
in a list in the outgoing packet. The ac-
knowledgment packet is encrypted with
the shared secret.

4.2 negotiation state

An important aspect of the negotiation is that
the responder does not maintain state for a
negotiation until the configuration request has
been successfully parsed. The initiator is re-
sponsible for issuing retransmissions until it
gives up or the negotiation ends in success or
error.

The responder must assume that the initiator
will receive the sent configuration acknowledg-
ment because it is the last packet in the ex-
change. The responder must be careful to deal
with the possibility of receiving a retransmitted



Ottawa Linux Symposium 2002 59

configuration request from the initiator when
the acknowledgment is lost in transit.

4.3 negotiation verification

While the initiator ID is simply a large stream
of random bytes, the responder ID is built to
provide similar functionality for the responder
as syn-cookies [7] do for the TCP handshake.

The responder maintains two private secrets
that are alternately replaced at regular inter-
vals. The responder ID is calculated by tak-
ing a hash of the most recent private secret and
the address of the initiator in the medium of
the negotiation. An incoming configuration re-
quest must have a responder ID that matches
the hash of one of the private secrets and the
initiator’s address for the responder to be sure
that it sent a response to this initiator within the
interval that the secrets are updated in.

4.4 negotiation resource consumption

Denial of Service are said to occur when an
attack drains resources to the point of exclud-
ing others from using those resources. Cebolla
doesn’t address attacks that exhaust incoming
bandwidth because they are best addressed up-
stream, out of Cebolla’s reach.

An attacker wishing to exhaust the CPU re-
sources of the responder is more troubling. The
attack comes when an attacker overloads the
responder with negotiation packets that look
valid based on the responder ID. The respon-
der ID’s validity is tied to the source IP of the
packets. If the attacker generates the stream of
packets through legitimate participation in the
protocol the responder can limit the attacker’s
CPU use based on the IP. Limiting can also be
used if the attacker resends an infinite stream of
identical packets, all of which must still have
a valid IP address to pass the responder ID
test. An attacker in the path of regular negotia-

tion traffic can resend packets that it observes,
throwing disrupting all negotiation on the path.

It would be generous to describe this protec-
tion as incomplete. An attacker is still able
to use significant resources on the responder
through little effort. Mechanisms like hashcash
[8] should be employed to require significant
expenditure on the part of the attacker to pro-
ceed with the negotiation and convince the re-
sponder to spend CPU cycles.

5 Links

Links are the backbone of the Cebolla mesh.
All communications between nodes, which in-
clude clients, occur over these links. Links
use symmetric ciphers to guarantee confiden-
tiality of communications and employ message
digests to ensure that communications haven’t
been tampered with.

Link negotiation occurs between nodes over
UDP. Link state is associated with a neigh-
bour’s source IP address and UDP port. This
association builds the concept of a unique link.

The IP address and UDP port of the respon-
der are assumed to be reachable by all clients.
The address of the initiator is never used in
the protocol. Initiators may build links from
behind routers performing NAT without harm.
As is expected, the NAT changing its IP and
port mapping will confuse the association of
that IP-port pair with its link state.

The primary result of the negotiation is a set of
dual transmit and receive keys that the partners
of the link use to encrypt and verify frames sent
to each other. Separate sets of transmit and re-
ceive keys are used to prevent attackers from
reflecting frames sent from a node back to the
node itself.



Ottawa Linux Symposium 2002 60

5.1 link encapsulation

All messages between link partners are de-
scribed by a link header. It contains a sequence
number, a message type, some flags, and a
generic ID field that is used by certain message
types. The sequence number, described later,
protects attackers from replaying valid frames.
No flags are currently defined, and the type is
obviously used to decide what to do with the
frame.

5.2 dueling link headers

This link header is kept at the size of the block
cipher used in the link to enable nodes in the
middle of the path to save packet space and
CPU time under the right threat assumptions.
A client may decide that its traffic is adequately
protected by a single-layer full-frame encryp-
tion and a MAC check only at the end of the
path. The routing process in all transit nodes
then simply involves decrypting the header,
rewriting the ID, encrypting the header, and
forwarding the packet.

A single decryption of the block the header re-
sides in wouldn’t be enough to give confidence
in the resulting header – it could have been
modified in transit. Instead of spending bytes
and CPU time on a MAC covering the header,
we instead maintain a second key that encrypts
and decrypts a second copy of the link header.
The recipient decrypts the two copies with the
two keys, and if they match it has high confi-
dence that either header has not been modified.

6 Tunnel Negotiation

Cebolla builds up tunnels in an iterative pro-
cess. The first stage is done between the client
and its immediate neighbour who it already has
negotiated a link with. A tunnel negotiation
builds up similar cryptographic state as is built

up in a link negotiation. It also assigns tunnel
IDs to each participant. The negotiation can in-
clude assigning an IP address to the initiator’s
endpoint on the final hop negotiation. The ne-
gotiation of intermediate hops includes a nego-
tiation parameter that specifies the IP address
of the next hop to be negotiated.

Tunnel IDs are used by pairs of nodes to as-
sociate frames with a tunnel. Each node has
a local ID for a hop that connects to another
node. This local ID is uniquely generated by
each node and transmitted to the other node
during the negotiation. When sending frames
down a tunnel the sender uses the remote ID to
specify the tunnel to the receiver.

If a multi-hop tunnel is being negotiated, the
initiator will include an option in the negotia-
tion that will specify the next hop in the path.
The negotiated tunnel is not yet ready to be
used with real encapsulated frames. The re-
sponder in the negotiation will establish tunnel
state and mark it as embryonic and store the
next hop. The initiator negotiates an additional
hop through the embryonic tunnel by building
messages intended for the additional hop. The
initiator sends these message down the embry-
onic tunnel as encapsulated negotiation pack-
ets. The embryonic tunnel will unencapsulate
the messages and forward them over a link that
is established to the additional hop.

This process can be repeated for as many hops
as the initiator wishes to build.

As of this writing there are no provisions to
stop an initiator to a long time building a tun-
nel that passes through nodes in the network
many, many, times. Such a tunnel allows an
initiator to send a single packet down the tun-
nel, resulting in excessive bandwidth and CPU
expenditure by the network.

Preventing this behaviour with a simple time-
to-live packet header, as used in IP, would



Ottawa Linux Symposium 2002 61

give intermediate nodes information about the
length of tunnels. This knowledge can be com-
bined with knowledge of the network graph
and measurements of streams to gain a very ed-
ucated guess as to the actual nodes that make
up the tunnel.

6.1 tunnel encapsulation

Tunnel headers communicate details of the en-
capsulated frame between the initiator and the
final hop of the tunnel. The current implemen-
tation only contains a type field, which is lim-
ited to specifying encapsulated IPv4 frames, an
unused flags field, and a sequence number.

The level of protection offered by the tunnel is
under full control of the negotiator. Each hop
negotiation specifies whether block ciphers or
MAC digests are applied to payloads passing
through that hop.

7 Keying

Cebolla relies heavily on symmetric ciphers to
speed up encryption and decryption. Link and
tunnel negotiation both build up a shared secret
associated with that link or tunnel. Symmetric
keys are derived by hashing the shared secret
with a known value for each line of keys that
will be used. Further keys in a line are derived
by hashing the existing keys with the shared se-
cret. For example, the link payload encryption
and decryption keys would differ from the dual
link header keys by the known value they were
hashed with.

Peers must be sure to derive their encryption
and decryption keys so that they match their
peers’. The initiator’s encryption key must
match the responder’s decryption key. The cur-
rent implementation achieves this by requiring
the responder to swap its key sets after both
peers derive their keys with the same code.

7.1 re-keying

Trust in symmetric keys diminishes the longer
they are used in the wild. Key rotation, or
re-keying, must be done at regular intervals to
lessen the success attackers can have at crypt-
analyzing the keys. The rotation must be syn-
chronized between either ends of a resource,
allowing for dropped messages, to prevent the
keys from becoming out of phase.

Cebolla does this by adopting a protocol for
rotating the keys that depends on minimal re-
keying messages , knowledge of the role of ei-
ther end in negotiating the initial resource, and
feedback based on which keys succeeded in de-
crypting incoming frames.

The party who decides to start the re-keying
protocol first is dubbed the initiator, the late-
comer the responder. Both parties maintain
two sets of keys for a given resource, primary
and secondary. In the quiescent state the pri-
mary keys are in use and the secondary keys
are undefined. When re-keying is active, the
primary keys are used to send messages and
to decrypt messages. Decryption is attempted
with the secondary keys only when the primary
fail.

• The initiator decides to start re-keying. It
derives its secondary keys from the first,
and sends a re-keying request to the re-
sponder.

• The responder sees the re-keying request
and derives its secondary keys from the
first, and swaps its primary and secondary
keys. Its now primarily encrypting and
decrypting with the next generation keys.
It sends a dummy message, usually im-
plemented as some form of echo request,
over the medium.

• The initiator fails to decrypt the message
with its primary keys, but succeeds with



Ottawa Linux Symposium 2002 62

the secondary keys. It takes this to mean
that the responder has derived the next
generation keys. The initiator swaps its
primary and secondary keys, and destroys
its secondary keys. It is now only using
the next generation keys. It sends another
dummy message over the medium.

• The responder succeeds in decrypting the
message with its primary keys, and takes
this to mean that the initiator has com-
pleted the re-keying and destroys its sec-
ondary keys.

This mechanism is simple to implement and
lets traffic flow during the time it takes the re-
keying messages to make the round trips be-
tween nodes, which may be particularly impor-
tant over long, fat pipes. There is always a win-
dow during which messages will be doubly de-
crypted by a mismatch in the primary keys of
the sender and receiver.

Initiators can cross the streams. If both par-
ties decide to re-key at the same time, their re-
key requests can cross in flight. Both will no-
tice this when they go to process a re-keying
request and find that they have initiated a re-
keying request themselves. Both initiators
know the role they played in negotiating the
higher level resource (link or tunnel) and fall
back to that role when they discover concurrent
re-keying negotiation.

As with negotiation, it is the responsibility of
the initiator to re-send re-key requests if it
thinks that re-keying is not progressing at a rea-
sonable pace.

8 Sequence Numbers

Cebolla uses sequence numbers in a few places
to empower the receiver to discard duplicate
frames. A typical advancing window approach

is used, implemented almost verbatim from the
one specified in RFC 2402. We’ll briefly sum-
marize.

The sender always increments the sequence
number of frames it transmits. There is only
one instance of a sequence number in the life-
time of the sequence, which starts at 1. The
receiver maintains a window of sequence num-
bers that will be accepted. As sequence num-
bers arrive in that window they are marked off.
If that sequence number arrives again its frame
will be discarded. If a sequence number arrives
that is past the window, the window is shifted
so that the largest acceptable sequence number
is that of the new arrival. This scheme is simple
to implement with bitfields and can withstand
reordering and large periods of packet loss on
the network.

Care must be taken so that the sequence num-
bers do not wrap. In the case of tunnel and
link payload sequence numbers, the sequence
is bound to a key context. When the key con-
texts are cycled, the sequence is reset to 1. This
can be forced when the sequence gets close to
wrapping before policy would otherwise dic-
tate that key contexts would be cycled.

9 Network Discovery and Topology
Flooding

Cebolla uses a topology flooding scheme
which is based on OSPF. Clients must be able
to discover nodes in the mesh to communicate
through. The clients may wish to make compli-
cated decisions about which nodes to trust, and
should be able to trust the information they use
in making this decision.

At regular intervals, each node broadcasts a
Link State Announcement to each neighbour it
has an established link with. These announce-
ments describe the node’s static attributes, as



Ottawa Linux Symposium 2002 63

well as its current connectivity information.
These announcements are signed and contain
a sequence number.

As a neighbour receives an announcement, it
stores the announcement if it is newer than the
previous announcement from that neighbour,
and sends back an acknowledgment. If the an-
nouncement was new, the neighbour then sends
the announcement to all its neighbours. The
announcement is not forwarded to the neigh-
bour it was just received from. Announcements
are re-sent until their receipt is acknowledged.

The announcement collections of each node
are sorted and served via the rsync protocol[9],
which allows clients to receive deltas of the
largely static information efficiently.

The mechanism can be boot strapped by nearly
any out-of-band medium that can communicate
IP addresses: email, web pages, DNS, etc.

9.1 topology attacks and accountability

Topology discovery raises many risks. A cor-
rupt node could induce bad announcements
into the network. A corrupt node could al-
ter the flow of announcements it transits to
the rest of the network. A corrupt node could
participate honestly with the rest of the nodes
in topology flooding and feed bad information
only to clients.

Public key signatures bring a simple first layer
of confidence to the system. Announcements
can be confirmed to come from the same agent
as last time, and trust can be established be-
tween that agent and any existing public key
trust metric system.

The distributed publication of the connectivity
announcements gives multiple views into the
announcement circulation at multiple points.
This lets clients audit the veracity of the an-
nouncements, possibly anonymously. Dis-

tributed trust metrics can be adopted by using
the sequence numbers to check that all views
of the mesh are consistent with others. The rate
that sequence numbers advance can be checked
to make sure that a node isn’t delaying an-
nouncements. This lets a mesh permit a node’s
entry into the mesh without centralized admis-
sion. Low initial trust increases over time as
behavioral audits confirm that the new node is
honest.

The announcements can be extended so nodes
can describe themselves. Clients can use pa-
rameters like software types, administrative
domains, underlying network connectivity, and
such, to decide which nodes to build a tunnel
with.

10 Acknowledgments

Jerome Etienne should rightfully be consid-
ered an author of any document describing
these protocols—when he didn’t outright de-
sign them they’re only minimally deviating
from his work.

Phil Schwan and Mike Shaver’s contributions
are treasured, as always.

Special thanks are due to Dr. Adam Back, who
never fails to make taking on an interesting
challenge entertaining.

Ulf Moeller, Mike Freedman, Anton Siglic,
Ian Goldberg, and Adam Shostack were kind
enough to humour me by explaining crypto-
graphic principles using small words.

11 Availability

Cebolla should be available under the GPL
from

http://www.zabbo.net/cebolla/



Ottawa Linux Symposium 2002 64

References

[1] David Chaum. Untraceable electronic
mail, return addresses, and digital
pseudonyms.Communications of the
ACM (USA), 24(2), 1981.

[2] Wei Dai. Pipenet. http://www.eskimo.com
/˜weidai/pipenet.txt.

[3] D. Goldschlag, M. Reed, and P. Syverson.
Onion routing for anonymous and private
internet connections.Communications of
the ACM (USA), 42(2):39–41, 1999.

[4] Michael J. Freedman, Emil Sit, Josh
Cates, and Robert Morris. Introducing
tarzan, a peer-to-peer anonymizing
network layer. InProceedings of the 1st
International Workshop on Peer-to-Peer
Systems (IPTPS02), Cambridge, MA,
March 2002.

[5] Shlomi Dolev and Rafail Ostrovsky.
Xor-trees for efficient anonymous
multicast and reception. Technical Report
98-54, 23 1998.

[6] P. Karn and W. Simpson. [rfc 2522]
photuris: Session-key management
protocol, March 1999.

[7] Dan Bernstein. Syn cookies.
http://cr.yp.to/syncookies.html.

[8] Adam Back. Hashcash.
http://www.cypherspace.org/hashcash/,
May 1997.

[9] Andrew Tridgell. Efficient algorithms for
sorting and synchronization.
http://citeseer.nj.nec.com
/tridgell99efficient.html.



Proceedings of the
Ottawa Linux Symposium

June 26th–29th, 2002
Ottawa, Ontario

Canada



Conference Organizers

Andrew J. Hutton,Steamballoon, Inc.
Stephanie Donovan,Linux Symposium
C. Craig Ross,Linux Symposium

Proceedings Formatting Team

John W. Lockhart,Wild Open Source, Inc.

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.


