
GNU Bayonne: telephony application server of the GNU
project

David Sugar
Open Source Telecom.
Somerset, NJ, 08873

sugar@gnu.org

http://www.gnu.org/software/bayonne

Abstract

GNU Bayonne is a middleware telephony
server that can be used to create and deploy
script driven telephony application services.
These services interact with users over the pub-
lic telephone network. GNU Bayonne can be
used to create carrier applications like Voice
Mail and calling card systems, as well as enter-
prise applications such as unified messaging.
It can be used to provide voice response for e-
commerce systems and has been used in this
role in various e-gov projects. GNU Bayonne
can also be used to telephony enable existing
scripting languages such as perl and python.

1 Introduction

Our goal in GNU Bayonne was to make tele-
phony services as easy to program and deploy
as a web server is today. We choose to make
this server easily programmable thru server
scripting. We also desired to have it highly
portable, and allow it to integrate with exist-
ing application scripting tools so that one could
leverage not just the core server but the entire
platform to deliver telephony functionality and
integrate with other resources like databases.

GNU Bayonne, as a telephony server, also im-
poses some very real and unique design con-

straints. For example, we must provide inter-
active voice response in real-time. “realtime”
in this case may mean what a person might tol-
erate, or delay of 1/10th of a second, rather
than what one might measure in milliseconds
in other kinds of real-time applications. How-
ever, this still means that the service cannot
block, for, after all, you cannot flow control
people speaking.

Since each vendor of telephony hardware has
chosen to create their own unique and substan-
tial application library interface, we needed
GNU Bayonne to sit above these and be able to
abstract them. Ultimately we choose to create a
driver plugin architecture to do this. What this
means is that you can get a card and api from
Aculab, for example, write your application in
GNU Bayonne using it, and later choose, say,
to use Intel telephony hardware, and still have
your application run, unmodified. This has
never been done in the industry widely because
many of these same telephony hardware manu-
facturers like to produce their own middleware
solutions that lock users into their products.

2 GNU Common C++

To create GNU Bayonne we needed a portable
foundation written in C++. I wanted to use
C++ for several reasons. First, the highly ab-



Ottawa Linux Symposium 2002 522

stract nature of the driver interfaces seemed
very natural to use class encapsulation for. Sec-
ond, I found I personally could write C++ code
faster and more bug free than I could write C
code.

Why we choose not to use an existing frame-
work is also simple to explain. We knew we
needed threading, and socket support, and a
few other things. There were no single frame-
work that did all these things except a few
that were very large and complex which did
far more than we needed. We wanted a small
footprint for Bayonne, and the most adaptable
framework that we found at the time typically
added several megs of core image just for the
runtime library.

GNU Common C++ (originally APE) was cre-
ated to provide a very easy to comprehend and
portable class abstraction for threads, sockets,
semaphores, exceptions, etc. This has since
grown into its own and is now used as a foun-
dation of a number of projects as well as being
a part of GNU.

3 GNU ccScript

In addition to having portable C++ threading,
we needed a scripting engine. This script-
ing system had to operate in conjunction with
a non-blocking state-transition call processing
system. It also had to offer immediate call
response, and support several hundred to a
thousand instances running concurrently in one
server image.

Many extension languages assume a separate
execution instance (thread or process) for each
interpreter instance. These were unsuitable.
Many extension languages assume expression
parsing with non-deterministic run time. An
expression could invoke recursive functions or
entire subprograms for example. Again, since
we wanted not to have a separate execution in-

stance for each interpreter instance, and have
each instance respond to the leading edge of
an event callback from the telephony driver as
it steps thru a state machine, none of the ex-
isting common solutions like tcl, perl, guile,
etc, would immediately work for us. Instead,
we created a non-blocking and deterministic
scripting engine, GNU ccScript.

GNU ccScript is unique in several ways. It
is step executed, and is non-blocking. State-
ments either execute and return immediately,
or they schedule their completion for a later
time with the executive. A given “step” is ex-
ecuted, rather than linearly. This allows a sin-
gle thread to invoke and manage multiple in-
terpreter instances. While GNU Bayonne can
support interacting with hundreds of simulta-
neous telephone callers on high density carrier
scale hardware, we do not require hundreds of
native “thread” instances running in the server,
and we have a very modest cpu load.

Another way GNU ccScript is unique is in sup-
port for memory loaded scripts. To avoid delay
or blocking while loading scripts, all scripts
are loaded and parsed into a virtual machine
structure in memory. When we wish to change
scripts, a brand new virtual machine instance
is created to contain these scripts. Calls cur-
rently in progress continue under the’ old vm
and new callers are offered the new vm. When
the last old call terminates, the entire old vm is
then disposed of. This allows for 100% uptime
even while services are modified.

Finally, GNU ccScript allows direct class ex-
tension of the script interpreter. This allows
one to easily create a derived dialect specific
to a given application, or even specific to a
given GNU Bayonne driver, simply by deriv-
ing it from the core language thru standard C++
class extension.



Ottawa Linux Symposium 2002 523

4 TGI support and plugins

While GNU Bayonne offers a ccScript virtual
interpreter for creating telephony applications,
we wanted to be able to integrate support for
databases and other things. There are sys-
tems and scripting environments such as Perl
which already offer database connectivity. So
we created a concept called “TGI,” which, like
CGI, allows external executables to be invoked
from within a call flow script, and the results to
be recorded so that information can be passed
both to and from the user.

The TGI model for GNU Bayonne is very sim-
ilar to how CGI works for a web server. In
TGI, a separate process is started, and it is
passed information on the phone caller thru
environment variables. Environment variables
are used rather than command line arguments
to prevent snooping of transactions that might
include things like credit card information and
which might be visible to a simple “ps” com-
mand.

The TGI process is tethered to GNU Bayonne
thru stdout and any output it generates is used
to invoke server commands. These commands
can do things like set return values, such as
the result of a database lookup, or they can do
things like invoke new sessions to perform out-
bound dialing. A “pool” of available processes
are maintained for TGI gateways so that it can
be treated as a restricted resource, rather than
creating a gateway for each concurrent call ses-
sion. It is assumed gateway execution time rep-
resents a small percentage of total call time,
so it is efficient to maintain a small process
pool always available for quick TGI startup and
desirable to prevent stampeding if say all the
callers hit a TGI at the exact same moment.

TGI does involve a lot of overhead, and so in
addition we have the ability to create direct
command extensions to the native GNU Bay-

Xlib

X Server Printer

Application

Toolkit

Pango Pango Core

PS rendering backend X rendering backendLanguage Module

Arabic X Shaper PS X Shaper

Figure 1: Architecture of GNU Bayonne

onne scripting languages. These command ex-
tensions can be processed thru plugin modules
which can be loaded at runtime, and offer both
scripting language visible interface extensions,
and, within the plugin, the logic necessary to
support the operation being represented to the
scripting system. These are much more tightly
coupled to the internal virtual machine envi-
ronment and a well written plugin could make
use of thread pools or other resources in a very
efficient manner for high port capacity applica-
tions.

5 Architecture

As can be seen, we bring all these elements to-
gether into a GNU Bayonne server, which then
executes as a single core image. The server it-
self exports a series of base classes which are
then derived in plugins. In this way, the core
server itself acts as a “library” as well as a sys-
tem image. One advantage of this scheme is
that, unlike a true library, the loaded modules
and core server do not need to be relocatable,
since only one instance is instantiated in a spe-
cific form that is not shared over arbitrary pro-
cesses.

When the server comes up, it creates gateways



Ottawa Linux Symposium 2002 524

and loads plugins. The plugins themselves use
base classes found in the server and derived ob-
jects that are defined for static storage. This
means when the plugin object is mapped thru
dload, its constructor is immediately executed,
and the object’s base class found in the server
image registers the object with the rest of GNU
Bayonne. Using this method, plugins in ef-
fect automatically register themselves thru the
server as they are loaded, rather than thru a sep-
arate runtime operation.

The server itself also instantiates some objects
at startup even before main() runs. These are
typically objects related to plugin registration
or parsing of the config file.

6 Hardware Requirements

Since GNU Bayonne has to interact with tele-
phone users over the public telephone network
or private branch exchange, there must be hard-
ware used to interconnect GNU Bayonne to the
telephone network. There are many vendors
that supply this kind of hardware and often as
PC add-on cards. Some of these cards are sin-
gle line telephony devices such as the Quicknet
LineJack card, and others might support multi-
ple T1 spans. Some of these cards have exten-
sive on-board DSP resources and TDM busses
to allow interconnection and switching.

GNU Bayonne tries to abstract the hardware
as much as possible and supports a very broad
range of hardware already. GNU Bayonne of-
fers support for /dev/phone Linux kernel tele-
phony cards such as the Quicknet LineJack, for
multiport analog DSP cards from VoiceTronix
and Dialogic, and digital telephony cards
including CAPI 2.0 (CAPI4Linux) compli-
ant cards, and digital span cards from In-
tel/Dialogic and Aculab. We are always look-
ing to broaden this range of card support.

At present both voice modem and OpenH323

support is being worked on. Voice modem
support will allow one to use generic low cost
voice modems as a GNU Bayonne telephony
resource. The openh323 driver will actually re-
quire no hardware but will enable GNU Bay-
onne to be used as an application server for
telephone networks and softswitch equipment
built around the h323 protocol family. At the
time of this writing I am not sure if either or
both of these will be completed in time for the
1.0 release.

7 GNU Bayonne and XML Script-
ing

Some people have chosen to create telephony
services thru web scripting, which is an ad-
merable ambition. To do this, several XML
dialects have been created, but the idea is es-
sentially the same. A query is made, typi-
cally to a web server, which then does some
local processing and spits back a well formed
XML document, which can then be used as
a script to interact with the telephone user.
These make use of XML to generate applica-
tion logic and control much like a scripting lan-
guage, and, perhaps, is an inappropriate use of
XML, which really is designed for document
presentation and inter- exchange rather than as
a scripting tool. However, given the popular-
ity of creating services in this manner, we do
support them in GNU Bayonne.

GNU Bayonne did not choose to be designed
with a single or specific XML dialect in mind,
and as such it uses a plugin. The design is
implimented by dynamically transcoding an
XML document that has been fetched into the
internal ccScript virtual machine instructions,
and then execute the transcoded script as if it
were a native ccScript application. This allows
us to transcode different XML dialects and run
them on GNU Bayonne, or even support mul-
tiple dialects at once.



Ottawa Linux Symposium 2002 525

Since we now learn that several companies
are trying to force thru XML voice browsing
standards which they have patent claims in,
it seems fortunate that we neither depend on
XML scripting nor are restricted to a specific
dialect at this time. My main concern is if
the W3C will standardize voice browsing itself
only to later find out that the very process of
presenting a document in XML encoded script-
ing to a telephone user may turn out to have a
submarine patent, rather than just the specific
attempts to patent parts of the existing W3C
voice browsing standard efforts.

8 Current Status

At the time of this paper’s publication, the 1.0
release of GNU Bayonne should already be in
active distribution. This release represents sev-
eral years of active development and has been
standardized in how it operates and how it is
deployed. Even before this point, and for the
past 6 months, active development has hap-
pened on a second generation GNU Bayonne
server, and snapshots of this new server are
currently available for download. Where GNU
Bayonne is evolving will be explained further
on.

9 GNU Bayonne the Meta Projects

GNU Bayonne does not exist alone but is
part of a larger meta-project, “GNUCOMM.”
The goals of GNUCOMM is to provide tele-
phony services for both current and next gen-
eration telephone networks using freely li-
censed software. These services could be
defined as services that interact with desk-
top users such as address books that can dial
phones and softphone applications, services
for telephone switching such as the IPSwitch
GNU softswitch project and GNU oSIP proxy
registrar, services for gateways between cur-

rent and next generation telephone networks
such as troll and proxies between firewalled
telephone networks such as Ogre, realtime
database transaction systems like preViking In-
fotel and BayonneDB, and voice application
services such as those delivered thru GNU
Bayonne.

10 Transactional Databases

BayonneDB is mentioned briefly for transac-
tional services. When we conceived of the
need for a transactional database server, we
considered that database queries might be slow.
The telephony server does not want to do
nothing while a transaction is completing, es-
pecially if it takes many seconds to happen.
Maybe the caller needs to be played music on
hold or given other options.

To accomplish non-blocking transactions that
allow the telephony server to continue call pro-
cessing, we choose a peer messaging architec-
ture. A request would be sent to an external
server for a transaction, and when the trans-
action completes, a result message would be
sent to the server. There can be time-out and
retransmission controls which allow this to be
conduced thru UDP packets rather than poten-
tially blocking TCP sessions. This set of proto-
cols and specifications was created initially by
Zaheer Milari and myself and published early
last year.

BayonneDB was an attempt to implement the
concepts in an operational server. Like Bay-
onne, BayonneDB offers abstraction thru plug-
ins and is based on GNU Common C++. In the
case of BayonneDB, it is designed to abstract
the interface to the underlying database server
used to complete the transaction request. Being
threaded, BayonneDB can maintain a persis-
tent threadpool of database connections to op-
timize overall query performance. A short di-



Ottawa Linux Symposium 2002 526

Figure 2: Architecture of BayonneDB

Figure 3: Enterprise Applications Today

agram of BayonneDB architecture is presented
below:

11 Enterprise Applications

In our broadest view of enterprise telephony
applications, we can see using GNU Bayonne
as a part of an overall solution. GNU Bayonne
must be able to interact with enterprise data,
whether thru transaction monitors such as Bay-
onneDB or thru perl scripts executed via TGI.
It may need to interact with other services such
as email when delivering voice messages to a
unified mailbox, or the local phone switch thru

Figure 4: Carrier Applications Today

a resource such as Babylon. We will explain
Babylon a bit later.

Our view of GNU Bayonne and telephony ap-
plication services are that it is a strategic and
integral part of the commercial enterprise. Pro-
prietary solutions that are in common use today
have often been designed from the question of
how to lock a user into a specific OEM product
family and control what a user or reseller can
do or integrate such products, rather than from
the question of what the enterprise user needs
and how to provide the means to enable it. This
has often kept telephony separate and walled
off from the rest of the enterprise. We do not
wish to see it separate but a natural extension,
whether of web services, of contact manage-
ment, of customer relations, etc.

12 Carrier Applications

When we look at carrier class applications for
GNU Bayonne today, we typically consider
applications like operator assistance systems,
prepaid calling platforms, and service provider
voice mail. Each of these has different require-
ments. What they have in common is that a
front end central office switch might be used,
such as a Lucent Excel or even a full ESS



Ottawa Linux Symposium 2002 527

5 switch. Application logic and control for
voice processing would then be hosted on one
or more racks of GNU Bayonne servers most
likely interconnected with multiple T1 spans.
If database transactions are involved, such as in
pre-paid calling, perhaps we would distribute
a BayonneDB server to provide database con-
nectivity for each rack. A web server may also
exist if there is some web service component.

Operator assist services are probably the eas-
iest to understand. Very often a carrier might
need to provide directory assistance or some
other form of specialized assist service. A call
will come in from the switching center to a
GNU Bayonne server, which will then decide
what to do with the call. If the caller is from
a location that is known, perhaps the call will
be re-routed by GNU Bayonne thru an out-
going span to a local service center. Online
operator assistance might be done by creating
an outgoing session to locate an operator and
then bridge the callers, all on a GNU Bayonne
server.

In service provider voice mail one doesn’t have
to bridge calls. Service provider voice mail is
typically much simpler than enterprise voice
mail; there is no company voice directory,
there is no forwarding or replying between
voice mailboxes, there may be no external mes-
sage notification. All these things make it an
easy to define application on first apperance.
What it must be is reliable, and ideally scal-
able.

The problem with service provider voice mail
is where to store the potentially large pool of
message boxes. We don’t know what callers
might call in for messages or when. If the
call capacity is larger than a single server can
handle even with multiple T1 spans, then we
might need to deal with a reliable message
store hosted on a machine outside the GNU
Bayonne servers. We could also scatter mail-

boxes over multiple machines by hashing the
mailbox address into a GNU Bayonne server
address, and load balance over multiple servers
that way.

If we have a common external message store,
perhaps we can have it on a fibre channel bus.
GNU Bayonne doesn’t like blocking, and tradi-
tional network file systems, like NFS, can have
long timeout and blocking intervals. Messages
can also be transported from a central store
over different procotols. One thought I had was
a UDP based transport protocol for voice mes-
saging. Since the need is not for full duplex
voice, many of the issues in regard to latency
and packet size can be relaxed for transporting
a voice stream over what is typically required
to make VoIP systems work. With a network
addressable message store, GNU Bayonne can
provide a reliable platform for service provider
voice mail.

Many applications carriers wish to deploy do
not nessisarly require “carrier grade” Linux to
appear before they can be used. In fact, IDT
Corp, a major provider of prepaid calling in the
world today, uses over 500 rack mounted com-
modity PC’s running things including a stan-
dard distribution of “RedHat” GNU/Linux to
reliably service over 20 million call minutes
per day in their main switching center. This
does not mean there is no value in the carrier
grade kernel work, just that it is not nessisary to
create and sell some types of GNU/Linux voice
processing solutions for carriers today. We
have looked at the issues involved in high re-
liability/carrier grade enhanced Linux and we
intend to address those as described a little fur-
ther.

13 GNU Bayonne clustering

In England one enterprising fellow is working
on GNU Bayonne tandem switching nodes. A



Ottawa Linux Symposium 2002 528

tandem switching node essentially routes call
traffic between spans based on various rules,
perhaps to achieve a low interconnection count
or to find the least cost available route in a tele-
phone network. This touches upon an interest-
ing and unique feature of GNU Bayonne which
we have not yet talked about; GNU Bayonne
servers talk to each other.

When Bayonne servers talk with each other,
they do two things. Each node elects a “buddy”
node to act as a failover for itself. Elections
are held every few minutes and the design of
this is that a single node will only elect it-
self to buddy up to two additional nodes in the
network. Buddies are useful in failover, since
they are aware of all transactions and the state
of each GNU Bayonne server, and can com-
plete transactions if a given machine (node)
goes down. By having a limited set of buddies
chosen thru election, we assure there is no net-
work stampede when a node goes down on the
part of other nodes wishing to complete trans-
actions for it.

Since global call state is shared among GNU
Bayonne servers, each server knowns what the
other one is doing and what its current utiliza-
tion is like. This can be very useful in a tandem
switching application where one needs to know
where available endpoints are and if there are
ports available at each end point for a given
call request. GNU Bayonne cluster network-
ing is still in its infancy, and we are looking for
ways to express networking thru the applica-
tion scripting language.

The main use of clustering at the moment is to
overcome the inherit limits of system reliability
for acceptance of GNU Bayonne in developing
carrier class applications. Over time, this need
will be lessened as we take advantage of the
work being done on carrier grade GNU/Linux.

14 The NG Server

Even before GNU Bayonne 1.0 had been final-
ized, work had been started by late last year on
a successor to GNU Bayonne. This successor
attempts to simplify many of the architectural
choices that were made early on in the project
to make it easier to adept and integrate GNU
Bayonne in new ways.

One of the biggest challegnes in the current
GNU Bayonne server is the creation of tele-
phony card plugins. These often involve the
implementation of a complete state machine
for each and every driver, and very often the
code is duplicated. GNU Bayonne “2” solves
this by pushing the state machine into the core
server and making it fully abstract thru C++
class extension. This allows drivers to be sim-
plified, but also enabled us to build multiple
servers from a single code base.

Another key difference in GNU Bayonne “2”
is much more direct support for carrier grade
Linux solutions. In particular, unlike GNU
Bayonne, this new server can take ports in and
out of service on a live server, and this allows
for cards to be hotplugged or hot swapped. In a
carrier grade platform, the kernel will provide
notification of changeover events and applica-
tion services can listen for and respond to these
events. GNU Bayonne is designed to support
this concept of notification for management of
resources it is controlling.

Finally, GNU Bayonne “2” is designed from
the ground up to take advantage of XML in var-
ious ways. It uses a custom XML dialect for a
configuration language. It also acts as a web
service with both the ability to request XML
content that describe the running state of GNU
Bayonne services and the ability to support
XMLRPC. This fits into our vision for making
telephony servers integrate with web services,
and will be described further in a seperate pa-



Ottawa Linux Symposium 2002 529

per.

15 Acknowledgments

There are a number of contributors to GNU
Bayonne. These include Matthias Ivers who
has provided a lot of good bug fixes and
new scheduler code. Matt Benjamin has pro-
vided a new and improved tgi tokeniser and
worked on Pika outbound dialing code. Wilane
Ousmane helped with the French phrasebook
rulesets and French language audio prompts.
Henry Molina helped with the Spanish phrase-
book rulesets and Spanish language audio
prompts. Kai Germanschewski wrote the CAPI
2.0 driver for GNU Bayonne, and David Kerry
contributed the entire Aculab driver tree. Mark
Lipscombe worked extensivily on the Dialogic
driver tree. There have been many additional
people who have contributed to and partici-
pated in related projects like GNU Common
C++ or who have helped in other ways.



Proceedings of the
Ottawa Linux Symposium

June 26th–29th, 2002
Ottawa, Ontario

Canada



Conference Organizers

Andrew J. Hutton,Steamballoon, Inc.
Stephanie Donovan,Linux Symposium
C. Craig Ross,Linux Symposium

Proceedings Formatting Team

John W. Lockhart,Wild Open Source, Inc.

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.


