Maintaining the Correctness of the Linux Security
Modules Framework

Trent Jaeger Xiaolan Zhang Antony Edwards
IBM T. J. Watson Research Center
Hawthorne, NY 10532 USA
Email: {jaegert,cxzhang}@us.ibm.com

Abstract 1 Introduction

The Linux Security Modules (LSM) project

aims to provide a generic framework from

In this paper, we present an approach, SUfhich a wide variety of authorization mech-
ported by software tools, for maintaining the 5nisms and policies can be enforced. Such
correctness of the Linux Security Modules, framework would enable developers to im-
(LSM) framework (the LSM community iS yiement authorization modules of their choos-
aiming for inclusion in Linux 2.5). The LSM ing for the Linux kernel. System administra-
framework consists of a set of function call tors can then select the module that best en-
hooks placed at locations in the Linux kernelsy ceg their system’s security policy. For exam-
that enable greater control of user-level Prople, modules that implement mandatory access
cesses’ use of kernel functionality,

such as iggnirol (MAC) policies to enable containment
necessary to enforce mandatory access contrglg compromised system services are under de-
However, the placement of LSM hooks within velopment.

the kernel means that kernel modifications may

inadvertently introduce security holes. Funda-The LSM framework is a set of authorization
mentally, our approach consists of complemenhooks (i.e., generic function pointers) inserted
tary static and runtime analysis; runtime analinto the Linux kernel. These hooks define the
ysis determines the authorization requirementsypes of authorizations that a module can en-
and static analysis verifies these requirement®rce and their locations. Placing the hooks in
across the entire kernel source. Initially, the fo-the kernel itself rather than at the system call
cus has been on finding and fixing LSM errors,boundary has security and performance advan-
but now we examine how such an approachages. First, placing hooks where the opera-
may be used by kernel development commutions are implemented ensures that the autho-
nity to maintain the correctness of the LSMrized objects are the only ones used. For ex-
framework. We find that much of the verifica- ample, system call interposition is susceptible
tion process can be automated, regression ted time-of-check-to-time-of-use (TOCTTOU)
ing across kernel versions can be made resilierdttacks [2], where another object is swapped
to several types of changes, such as source lirfer the authorized object after authorization,
numbers, but reduction of false positives re-because the kernel does not necessarily use
mains a key issue. the object authorized by interposition. Sec-

Ottawa Linux Symposium 2002 224

ond, since the authorizations are at the point oérated'. Also, some tasks are very difficult for
the operation, there is no need to redundantlgtatic analysis. However, runtime analysis re-
transform system call arguments to kernel ob-quires benchmarks that provide sufficient cov-
jects. erage and also creates false positives that must
_) o) be managed. Thus far, our experience has been
While placing the authorization hooks in the iyt rntime analysis provides a useful comple-
kernel can improve security, it is more difficult \ant for static analysis, so both types of anal-

to determine whether the hooks mediate andses need to be performed to obtain effective
authorize all controlled operations. The system,qyification.

call interface is a nice mediation point because

all the kernel’s controlled operations (i.e., oper-While our initial results have been positige
ations that access security-sensitive datast ultimately, we believe that it is necessary that
eventually go through this interface. Insidesuch analysis become part of the kernel de-
the kernel, there is no obvious analogue forvelopment process to really maintain the ef-
the system call interface. Any kernel functionfectiveness of the LSM framework. As the
can contain accesses to one or more security-inux kernel is modified, the LSM authoriza-
sensitive data structures. Thus, any mediatiotion hooks may become misplaced. That is,
interface is at a lower-level of abstraction (e.g.,some security-sensitive operations that were
inode member access). Also, it is necessarpreviously executed only after authorization
to link these operations with their access conmay now become accessible without proper au-
trol policy (e.g., write data) to ensure that thethorization. Since the subtleties of authoriza-
correct authorizations are made for each contion may be non-trivial, the kernel developers
trolled operation. If there is a mismatch be-need a tool that enables them to verify that the
tween the policy enforced and the controlledauthorization hooks protect the system as they
operations that are executed under that policydid before or identify the cases that need ex-
unauthorized operations can be executed. Wamination. Further, kernel developers need a
believe that manual verification of the correctway of communicating changes that need to be
authorization of a low-level mediation inter- examined by the LSM community.

face is impractical. _ _ _)
In this paper, we outline the analysis capabil-

We have examined both static and runtimeties of our static and runtime tools and de-
analysis techniques for verifying LSM autho- scribe how they are used together to perform
rization hook placement [6, 20]. Our static LSM verification. We do not provide a detailed
analysis approach identifies kernel variables ofliscussion of the analysis tools, so interested
key data types (e.g., inodes, tasks, sockets, etag@aders are directed elsewhere for that infor-
that are accessed prior to authorization. Thenation [6, 20]. We would also like to make
advantage of static analysis is that its comsuch tools available and practical for the ker-
plete coverage of execution paths (both datmel development community, so we examine
and control) enables it to find potential errorshow effectively the analysis steps can be au-
more easily. Many successes with static analtomated and what issues the users of the analy-
ysis have been reported recently [7, 11, 16].

The effectiveness of StatIC. analysis is “m'.ted 1Static analysis is overly conservative because some
by the manual effort required for annotationimpossible paths are considered which can lead to some
and the number of false positives that are genfalse positives.

2Five LSM authorization hooks have been added or
revised due to the results of our analysis tools.

Ottawa Linux Symposium 2002 225

sis tools must resolve in order to complete thdists (ACL)). Second, the UNIX access con-
analysis. We find that much of the verificationtrol model provides discretionary access con-
process can be automated, regression testirigpl (DAC) whereby the owner of the objects
across kernel versions can be made resilient toontrols the distribution of access. Thus, users
minor changes, such as source line numbergan accidentally give away rights that they did
but reduction of false positives remains a keynot intend, and the all-powerful usesot, as
issue. While the analysis tools are not yet availwhich a wide variety of diverse programs run,
able as open source, we are working to obtaitan change access control policy in the system
such approval. arbitrarily. Third, with the advent of new pro-

) _ gramming paradigms, such as mobile code, the
The remainder of the paper is structured as foly;nx assumption that every one of the users’

lows. In Section 2, we review the goals and Sta'processes should always have all of the users’

tus of the LSM project. In Section 3, we define jjghis hecame flawed [3], and it was found that
the general hook placement problem. In Secye yNiIX access control model was too lim-

tion 4, we review the static and runtime anal-jiaq 1o enable the necessary level of flexibil-
yS|s_ verification appr(_)qchgs. In Section 5, wqty [10, 1, 9]. Fourth, controlling access to a
outline how LSM verification experts use the ariety of other objects besides files was also
static and runtime analysis tools in a comple+qnq 1o be necessary, and, in some cases, re-
mentary fashion to perform a complete LSMgyicting the relationships that objects may en-
verlflcza_ttlon. In Section 6, we examine how theer is necessary [17]. For example, the ability
analysis tools can be made practical for use by, mount one file system on another is a con-

the kernel development community. In SeC-qjled operation on the establishment of that
tion 7, we conclude and describe future work. relationship between the two file systems.

)] Initially, the authorization mechanisms pro-
2 Linux Security Modules posed to address these limitations were in-
serted at the user-system boundary (e.g., by
wrapping system calls [1] or callbacks [9]). By
not integrating the authorization mechanisms
within the kernel, the authorization mechanism
lacks the kernel state at the time that the oper-
gle authorization mechanism and policy modeftion is performed. Attacks have been found
that can take advantage of the interval between

for controlling file system access. This ap- - A :
proach has been found to be lacking for a vathe time of the authorization and the time at

fiety of reasons, and these inadequacies hayihich the operation is invoked [2]. Further,
been exacerbated by emerging technologiedn® Performance of the system is degraded be-
First, the UNIX policy model lacks the ex- cause the kernel state must be computed twice

pressive power necessary for some security rdf the authorization mechanism is placed at the
quirements. UNIX file mode bits enable con- System call interface. Recent research work on
trol of file accesses based on three types of rdMProving the UNIX authorization mechanism
lationships that the subject may have with thd" Linux has focused on inserting hooks to
file: file owner, file group owner, and others. the authorization mechanism in the kernel di-
Some reasonable access control combinatiod§Cty [4, 13, 14, 15, 18]. However, the variety
cannot be expressed using this approach, so o@f authorization hook placements and styles re-
tension have been created (e.g., access contrgi!t€d in ad hoc modifications to the Linux ker-

The Linux Security Modules (LSM) frame-
work is being developed to address insuffi-
ciencies in traditional UNIX security. Histor-
ically, UNIX operating systems provide a sin-

Ottawa Linux Symposium 2002 226

nel. semaphores, tasks, modules, skbuffs, devices,

) and various global kernel variables. Authoriza-
Another major advancement has been the SeRion modules for SELinux. SubDomain. and

aration betw_een the authorization mechanisrrbpenWALL have been built for LSM, so LSM
and the policy model used. The work on;

_ _ is capable of enforcing MAC policies already.
DTOS and Flask security architectures demon-

strated how the authorization policy server can

be separated from the authorization mecha3 General Hook Placement Prob-
nism [12, 17]. Thus, a variety of access control |ems

policies can be supported. In particular, a va-

riety of mandatory access control (MAC) poli-
cies can be explored. An advantage of MAC
policies is that provable containment of overt _ _ _
process actions is possible, so protection of th¥Ve identify the following key concepts in the
TCB and key applications can be implementedPO”StrUCt'O” of an authorization framework:
Various flavors of MAC policy models have

been examined, but no one approach has been , A qrization Hooks: These are the au-
shown to be superior. The design of effective i, ation checks in the system (e.g., the
policy models and_poI|C|es themselves remains LSM-patched Linux kernel).

an open research issue.

3.1 Concepts

 Policy Operations: These are the oper-
ations for which authorization policy is
defined in the authorization hooks. Be-
cause we would like to identify code that
is representative of the policy operation,
they are practically defined as the first
controlled operation (see below) requiring
this policy.

The LSM project includes several of the par-
ties working on independent Linux kernel au-
thorization mechanisms, in particular Security-
Enhanced Linux (SELinux) and Immunix Sub-
Domain, to create a generic framework for call-
ing authorization modules from within the ker-
nel. Motivation to unite these mechanisms
came when Linus Torvalds outlined his goals
for such a framework [19] Linus stated that Security_sensitive Operations: These
he wants authorization to be implemented by are the operations that impact the security
a module accessible via generic hooks. The of the system.

hope that an acceptable authorization frame-

work would be integrated with the mainline ¢ Controlled Operations: A subset of
Linux kernel has resulted in a comprehensive security-sensitive operations that mediate

LSM implementation. access to all other security-sensitive oper-
_) ations. These operations definenadia-
As of Linux 2.4.16, LSM consists of 216 au- tion interface

thorization hooks inserted in the kernel that can

call 153 distinct authorization functions de-

fined by the authorization modules (i.e., load-The definition of these concepts is made clear

able kernel modules). The authorization hookdy a comparison between system call media-

enable authorization of a wide variety of op-tion and the in-kernel mediation used by LSM

erations, including operations on files, inodesshown in Figure 1. When authorization hooks

sockets, IPC messages, IPC message queue@se placed at the system call interface, the pol-
icy operations (e.g., the conceptual operation

Ottawa Linux Symposium 2002 227

System Call Approach LSM Approach

ANz

Syscall Trap l l

Kernel

H: Authorization Hook

P: Policy Operation

C: Controlled
Operation

S: Security-sensitive @ @ @

Operation

Figure 1:Comparison of concepts between system call interposition framework and LSM.

write) and controlled operations (e.g., whereGiven the breadth and variety of security-
mediation of all file opens for write access oc-sensitive operations, we would like to iden-
cur at the system caflys _open with the ac- tify a higher-level interface for verifying their
cess flagwWRONL)vare effectively the same. proper LSM authorization. This interface
This is because policy is specified at the sysmust mediate all access from the authorization
tem call interface, and the system call inter-hooks to the security-sensitive operation. This
face also provides complete mediation. Thenterface is referred to as theediation inter-
security-sensitive operations in both cases artaceand is defined by a set of controlled oper-
the data accesses made to security-relevant keations.

nel data, such as files, inodes, mappings, and

pages. 3.2 Relationships to Verify

When authorization hooks are inserted in the_. . .

kernel, the level of complete mediation is the':Igure 2 shows the relationships between the
kernel source code, so the policy operationgoncepts'

and controlled operations are no longer nec-

essarily the same. For example, rather than 1. Identify Controlled Operations: Find

verifying file open for write access at the sys- the set of operations that define a medi-
tem call interface, the LSM authorizations for ation interface through which all security-
directory (exec), link (follow link), and ulti- sensitive operations are accessed.

mately, the file open are performed at the time _ o _
these operations are to be done. This elimi- 2- Determine Authorization ~ Require-
nates susceptibility to TOCTTOU attacks [2] ments: For each controlled operation,
and redundant processing. The kernel source identify the policy operations that must
is complex, however, so it is no longer clear ~ D€ authorized by the LSM hooks.

that all security-sensitive operations are actu-

3. Verify Complete Authorization: For
ally authorized properly before they are run. fy P

each controlled operation, verify that
the policy operations (i.e., authorization

Ottawa Linux Symposium 2002 228

requirements) are authorized by LSM controlled operations is a tedious task. We
hooks. must develop an approach by which controlled
operations can be selected from the set of
4. Verify Hook Placement Clarity: Pol- security-sensitive operations. Once this ap-
icy operations should be easily identifi- nroach has been determined automated tech-
able from their authorization hooks. Oth- pjgues are needed to extracted these operations
erwise, even trivial changes to the sourcerom the kernel source. Second, because the
may render the hook inoperable. controlled operations are at a lower level than
the policy operations, we need to determine the
The basic idea is that we identify the con-pOIiCy operations (i.e., authori_zation _require-
ments) for a controlled operation. Since we

trolled operations and their authorization re- .
expect a large number of controlled operations,

guirements, then we verify that the authoriza- . :

: : .t is necessary to develop an approach to sim-
tion hooks mediate those controlled operations lify the means for identifying their authoriza-
properly. This verifies, that the LSM hook " g

placement is correct with respect to this settIon requirements.

of controlled operations and authorization re-|_astly, to ensure maintainability of the autho-
qUirementS. When the mediation interface i&ization hooks we can Verify that the po||Cy op-
shown to be correct, it verifies LSM hook erations can be easily determined from the au-
placement with respect to all security-sensitivethorization hook locations. This work is has
operations. These tasks are complex, so it ieen done, but in interest of focus it is outside
obvious that automated tools are necessary. the scope of this paper. This is work is pre-

sented elsewhere [6].

‘ Authorization Hook ‘

3.3 Related Work

| Policy Operation | © We are not aware of any tools that perform any
i

of the tasks outlined above. While static analy-

©) sis has had some promising results lately [7,

,?

7 11, 16], the problems upon which they have
[Controlled Operation | been applied have been different and narrower
¥ in scope (e.g., buffer overflow detection). We
@ believe that static analysis tools will eventually
! provide some important improvements in the
| Security-sensitive Operation | verifications described above, but some analy-

ses will be easier to do with runtime tools (e.g.,

Figure 2: Relationships between the authorization §,,e to reduced specification for comprehensive
concepts. The verification problems are to: (1) iden—tests)

tify controlled operations; (2) determine authorization
requirements; (3) verify complete authorization; and (4)
verify hook placement clarity.

4 Solution Background

In addition, we found that additional auto-

mated support is necessary to identify the conin this section, we review the approaches we
trolled operations and their authorization re-devised for using static and runtime analysis
quirements. First, manual identification of theto verify the placement of LSM authorization

Ottawa Linux Symposium 2002 229

hooks. In order to do this analysis, CQUAL requires
that the target source be annotated with the type
4.1 CQUAL Static Analysis qualifiers. This is an arduous and error-prone

task for a program like the Linux kernel, so we

We use the CQUAL type-based static analy-Use GCC analysis to automate the annotation
sis tool as the basis for our static analysis [8]Process. There are three GCC analyses we per-
CQUAL supports user-defineype qualifiers form to prepare the source code for CQUAL
that are used in the same way as the standard RfOC€SSINg.

type qualifiers such asonst . We define two

type qualifiers,checked andunchecked . 1. All controlled object must be initialized to
The idea is that a variable withumchecked unchecked .

qualifier cannot be used when a variable with a
checked qualifier is expected. This simulates
the need to authorize variables before they are
used in controlled operations.

2. All function parameters that are used in
a controlled operation must be marked as
checked .

. 3. Authorizations must upgrade the autho-
The following code segment demonstrates the rized object's qualified type tohecked .

type of violation we want to detect. Function

func_a expects &hecked file pointer as its

parameter, but the parameter passed is of typl order to ensure that static analysis is sound
unchecked file pointer. (i.e., no type errors are missed by the analy-

sis), we perform some additional GCC analy-
ses. For example, we verify no reassignments
of variables and check for intra-procedural type
errors. These analyses are sometimes primi-
void func_b(void) tive, but they have limited the amount of man-
{ ual work required sufficiently. We are work-

struct file * unchecked filp; ing with the CQUAL community and others to
improve the effectiveness of static analysis for
this purpose. For a more detailed description
} of our static analysis, see our paper [20].

void func_a(struct file
*checked filp);

func_a(filp);

)) With our static analysis, we have identified
As input to CQUAL, we define type rela- some LSM vulnerabilities in Linux 2.4.9, but
tions between thehecked andunchecked gjnce the runtime analysis tool was done first

type qualifiers that represent the requiremen{e have found only one new, exploitable vul-
that achecked type cannot be used when norapijity. It has since been fixed in later ver-

anunchecked is expected. Using its infer- gjons of LSM [5]. Figure 3 shows the vulnera-
ence rules, CQUAL performgualifier infer- bility.

enceto detect violations against these type re-

lations. These violations are callgge errors The code fragment demonstrates a time-of-
CQUAL reports both the variables involved in check-to-time-of-use [2] (TOCTTOU) vulner-
the type errors and the shortest paths to typability. In this case, thélp variable is au-
error creation for these variables. For a morghorized insys_fcntl . However, a new ver-
detailed description of CQUAL, please refer tosion offilp is extracted from the file descrip-
the original paper on CQUAL [8]. tor and used in the functiofcntl_getlk

Ottawa Linux Symposium 2002 230

Since a user process can modify its mapping
between its file descriptors and the files they

reference this error is exploitable.
[* from fs/fcntl.c */

long sys_fentl(unsigned int fd,
unsigned int cmd,
unsigned long arg)

4.2 Vali Runtime Analysis

We have developed a tool, called Vdifor {

collecting key kernel runtime events (Vali run- struct file * filp;
time) and analyzing this runtime data (Vali .

analysis) to determine whether LSM authoriza- filp = fget(fd);
tion hooks are correctly placed [6]. The key -
insight of the Vali analysis is that most of the €T
LSM authorization hooks are correctly placed,
So it is anomalies in the authorization results
that enables us to identify errors. Using this
approach, we have found 5 significant anoma-
lies in LSM authorization hook placement, 4 of
which have been identified as bugs and fixed.

security_ops->file_ops
->fentl(filp, cmd, arg);

do_fentl(fd, cmd, arg,
filp);

err

static long

do_fentl(unsigned int fd,
unsigned int cmd,
unsigned long arg,
struct file * filp) {

Vali consists of kernel instrumentation tools,
kernel data collection modules, and data anal-
ysis tools. The kernel instrumentation tools
build a Linux kernel for which kernel events
(e.g., system calls and interrupts), function en- gyitch(cmd){

try/exits, LSM authorizations, and controlled

operations can be logged by the data collection case F_SETLK:

modules. We use the same kind of GCC analy- err = fentl_setlk(fd, ...);
sis as we did for the static analysis to find con-

trolled operations in the kernel. Other events }

are easily instrumented through GCC instru-

mentation (functions), breakpoints on entry ad+

dresses (kernel events), and the LSM autho.” from fs/locks.c */

rization hooks themselves (authorizations). fentl_getlk(fd, ..) {
struct file * filp;

Loadable kernel modules for each type of in- ...

strumentation collect these events. The main filp = fget(fd);

problem with data collection is not the perfor- /* operate on filp */

mance overhead, but the data collection band- -

width. The performance overhead of instru-}

mentation is only about 10%, and since the

analysis kernel is not a production kernel thisFigure 3: Code path from Linux 2.4.9 contain-
is quite acceptable. However, the rate at whiching an exploitable type error.

data is generated can exceed the disk through-

3vali is the Norse God of Justice and the first four
letters in “Validate.”

Ottawa Linux Symposium 2002 231

open for read access
1 = (+,id_type,CONTEXT)
(+,di_cfm_eax,sys_open)
(+,co_ecx,RDONLY)

2 (D,1) = (+,ALL,0,0)

open for read-write

1 = (+,id_type,CONTEXT)
(+,di_cfm_eax,sys_open)
(+,co_ecx,RDWR)

2 (D,1) = (+,ALL,0,0)

cause the filters enable focusing on a small set
of operations, we have had more success find-
ing problems using the runtime analysis than
the static analysis. We have found errors rang-
ing from missing authorizations for an obscure
system callgetgroupsl6 to a missing au-
thorization for resetting the fowner of a file us-
ing one of the flag variants éntl (see Fig-
ure 5).

The runtime analysis also does something that

. o the static analysis does not: it identifies the ex-
Figure 4: Flltgrlng rules for open sygtem call yocted authorizations for an object in a system
(sys_open) with read and read-write accesga”_ Cases that are consistent identify a be-
flags. The (D,1) means that the rule Sr_‘OUIdIiefinthe set of authorizations that are required
use only_the records that have matched _th's rulgn an object. These authorization requirements
numb_er In the second argument. There is a.l‘?’o fan be used as input to the static analysis tool
negation counterpart (N,x) where the SIOec'f'(':'QNhich can then be used to verify the correct

records are excluded. authorizations, not just the existence of an au-
thorization. While most of the controlled oper-

o ations require just one authorization, the error

put rate, so we enable event filtering. Cur-j, yhafontl case above was in the lack of a

rently, this is simply collecting 1 out ok gocqnd authorization to check the permission

events yvherm can be tuned. Ultimately, we (J <at the owner.

would like to be able to control the types of

events collected to ensure that rarer events are

not missed. 5 LSM Community Analysis Ap-

The logged data identifies the objects used in proach

controlled operations and the authorizations

made upon those objects. While different ob-As might be gathered by the previous section,
ject instances are used in different system caive find that the two analysis approaches are
instances, objects referenced by the same var@iuite complementary. In this section, we out-
able (i.e., used in the same controlled operaline the approach intended for use by LSM ver-
tions) should normally have the same authoification experts to verify LSM authorization
rizations. This is not entirely true as some syshook placement using our analysis tools. We
tem calls (e.g.open, ioctl ,etc.) mayimply discuss how the kernel development commu-
different authorizations based on the flags thafity might use the analysis tools to maintain
are sent. Therefore, we have defined a simpleSM correctness in the following section.

filtering language to identify the ker_nel .eventSVerification of LSM authorization hook place-
that should have the same authorizations for . : _
all objects (see Figure 4 for examples). Perment involves the following steps:
filter, all objects should have the same autho-

rizations. Therefore, we can identify anoma- 1. Checked/Unchecked Static Analysis
lous cases that do not have the expected autho- We first apply our static analysis approach

rizations, and these cases are often errors. Be- to find variables for which no authoriza-

Ottawa Linux Symposium 2002

232

[* from fs/fentl.c */

static long

do_fentl(unsigned int fd,
unsigned int cmd,
unsigned long arg,
struct file * filp) {

;Witch(cmd){

case F_SETOWN:
[* set fowner is authorized
for filp */
err = LSM->file_ops->set_fowner(
filp);

filp->f_owner.pid = arg;

case F_SETLEASE:
err = fentl_setlease(fd, filp,

arg);

}

/* from fs/locks.c */
fentl_setlease(unsigned int fd,
struct file *filp,

long arg) {
struct file_lock *my_before;

if (my_before '= NULL) {
error = lease_modify(my_before,

arg, fd, filp);
}
lease_maodify(struct file_lock
**pefore,
int arg, int fd,

struct file *filp) {

if (arg == F_UNLCK) {
/* ERROR: could set active
fowner to 0 */
filp->f_owner.pid = 0O;

tions are performed. Since there are a
significant number30 for the VFS layer
alone for250 controlled variables) of type
errors, these must be further classified to
eliminate all those that are known not to
be areal error.

2. Runtime Analysis for Authorization
Requirements Using benchmarks that
cover as much of the kernel source as pos-
sible plus potential exploits derived for
testing the remaining static analysis type
errors, perform the runtime analysis to
derive the kernel authorization require-
ments.

3. Static Analysis Using the Authorization
Requirements More complete coverage
of the kernel is possible using static anal-
ysis, so repeat the static analysis using the
authorization requirements.

4. Runtime Verification Using All Ex-
ploits: Repeat the runtime analysis using
any newly derived exploits from the sec-
ond static analysis.

5.1 Checked/Unchecked Analysis

In the first step, the static analysis is applied to
the kernel source, and some number of type er-
rors are identified by CQUAL. We have fully
automated this process, but the problem of ex-
amining type errors and determining whether
they are exploitable must ultimately be done by
an expert. The type error rate (type errors per
variable of a controlled data type) varies from
subsystem to subsystem, but it is 12% for the
VFS layer (higher than usual) in Linux 2.4.9.
Therefore, we have 30 variables in the VFS
layer that are not explicitly authorized before

Figure 5: Code path from Linux 2.4.16 con- they are used in a controlled operation.

taining an exploitable error for the system call

fentl(fd, F_SETLEASE, F_UNLCK)

Many of these type errors are not exploitable

whereby thepid of an active lock can be setto 0. errors, however. In the VFS layer, these type

Ottawa Linux Symposium 2002 233

errors come in three kinds: (1) use in initial- matically, so we do not detail them further here
ization or other “safe” functions; (2) extraction (see the detailed static analysis paper [20] for
of inodes from checked dentries; and (3) unthe program that exploits the vulnerability in

known type errors. The first two kinds of er- Figure 3). We discuss anomaly identification
rors are not exploitable errors, so we need t@and the determination of authorization require-
change our analysis to prevent them from bements here.

ing generated. In the first case, we can rela-

bel these functions, so they no longer require 4 he Vali runtime analysis identifies the autho-
checked variable. Since some functions arefizations that are made on each object in a ker-

not obviously “safe,” so there is some possibil-N€l event (i.e., system call with the same ex-
ity for error here. When these functions arePected authorizations). Any variations in the
modified, some re-evaluation is necessary t@uthorizations signal either a miss definition

maintain is status. In the second case, we necd kernel event (i.e., the authorizations really
to change CQUAL to infer @hecked vari- change when we did not expect) or an anomaly
able if it comes from @hecked field. and no N @uthorization. Recall that kernel events are

user process can modify this relationship. Fodefined by filter rules. Since writing these rules
example, if we check a dentry then later extracf€Pends on deep knowledge of the kernel and
the inode from this dentry, the LSM hooks be--SM authorization, we expect that the LSM
lieve that the inode is authorized also. This isverification experts will write such filter rules

because the dentry inode relationship is fixed® COrreéctly generate anomalies. For example,
(i.e., not modifiable by user processes). For site defined rules for open read-only and read-

uations of this type, we can infer the variableWrte cases in Figure 4.

Eche;:ked) _CQUAL does not skl_Jppor_t;hlhs An authorization anomaly is a case where
ind of reasoning, but we are working with the ;.\ 5thorization only occurs in some of the

CQUAL community to do this. cases of the kernel event. In Figure 5, the

For other type errors, we need to find otherS€L_OWner —authorization was missing even
means to distinguish whether they are real erthough the inode fielédl owner ~was accessed
rors or not. For many of these cases, we dell afcntl system call. While different flags
velop exploit programs to try to find vulnera- t_o fcntl may result in different authorlz_a-
bilities with respect to the LSM authorizations. ions, we found that because the same fields
At present, this is a manual process, but wVere accessed with different authorizations,
would like to automate some aspects of thighere could be a potential problem. Thus, this
process based on the nature of the type errofTOr was found in trying to write an appropri-

Ultimately, some degree of manual effort will ate filter for the different variants é€ntl in-
always be required in processing type errors. vocations. A complete discussion of the differ-
ent types of anomalies and their use in the clas-

sification of kernel events is provided in our

5.2 Authorization Requirements Generation))
runtime analysis paper [6].

Second, we then perform the runtime analysi©nce the filters are written, they can be used by
given the benchmark and exploit programs tahe Vali analysis tool to generate the object au-
discover vulnerabilities, identify anomalies in thorizations and any anomalous authorizations.
authorizations, and determine the authorizationn general, an object’s authorizations may vary
requirements of the controlled operations. Thelepending on the operations performed (i.e.,
exploit programs identify vulnerabilities auto-

Ottawa Linux Symposium 2002 234

DFN d 0 0 384 -1 DFN f 0 0 320 -1
DFN d 0 0 384 1 SFN(ALWAYS) f 0 0x37
DFN d 0 0 400 -1

DFN f 1 0 1152 1
SFN(ALWAYS) d 0 Oxc SFN(ALWAYS) f 1 0x13

DFN i 0 0 1216 1 ext2_lookup
Figure 6: Vali analysis output aggregating all ...
inode and file operations with the same authoSFN(ALWAYS) i 0 Oxla
rization. The DFN fields indicate: (1) “d” is DEN i 1 0 1216 -1 find_inode
datatype-insensitiveneaning all operations on spnaLWAYS) i 1 0x37
the datatype have the same requirements; (2)
first O is aggregate id; (3) second O is the class
id for “inode”; (4) next number is the member Figure 7: Vali analysis output showing

id accessed; (5) last is the access type code. four groups offunction-insensitive(*f”) and
function-internals-sensitive(“i”) operations

for stat64. Function-insensitive accesses have

the same authorizations regardless of the func-
field and access type) and the functions irtion in which the dangerous operation appears.
which the operations are performed. The ValiFunction-internals-insensitive operations have
analysis tool aggregates the common authodifferent authorizations as accesses to member
rizations first by operation type, if their autho- 1216 in the two functionsxt2_lookup and
rizations are always the same, then by funcfind_inode identify.
tion. That is, we hope that all operations in an
event have the same authorizations. If not, the
other operation attributes are used to aggrega
when the authorizations are the same for o
erations with the same attribute value. We us
operation datatype, object, member access, argcg
access+function as the aggregation attribute

When all anomalies have been resolved, then
?ﬁe output defines the authorization require-
IOments for the controlled operations in the ker-
| events in which they are run. Of course,
me authorizations could be missing entirely

Fi 6 sh datat tion f Tor all runs, but we expect that the aggregated
'gure © Snows a gatatype aggregation Tor Inrequwements will make it possible to verify

odes in theead system call (files are also ag- this with reasonable effort.

gregated). Figure 7 shows that authorizations

may vary depending on the member access or

the function in which the access is performed 2-3 Static Analysis Using Requirements

The aggregation attributes are totally-ordered,

so we try to aggregate at the attribute that yieldg'he authorization requirements found using

the largest aggregate. the Vali runtime analysis can be used as input
to the CQUAL static analysis. Three changes

Maximizing aggregation also has the positivemyst hbe made to use the authorization require-
outcome that it reduces the number of regresments:

sion differences. For example, if a controlled
operation has the same authorization require-
ments regardless of the function in which itis 1. Authorizations must result in variables of

run, then moving or adding the operationto a a qualified type of the authorization made.
new function does not signal a regression dif-

ference. 2. Functions annotations must be changed to

Ottawa Linux Symposium 2002 235

" DFN(namei.c, 207)(OT_INODE, 1152, -1)
expect parameters of qualified types de-ge i \ways): scN_INODE_PERMISSION_EXEC
pending on the authorizations expected. sen(ALWAYS): SCN_INODE_PERMISSION_WRITE

3 _ _ SFN(ALWAYS): SCN_INODE_UNLINK_DIR

3. A type qualifier lattice must be built that SEN(NEVER): SCN_INODE_UNLINK_FILE

represents the legal relationships betwee®FN(NEVER): SCN_INODE_DELETE
type qualifiers.

Figure 8: Vali runtime output for the authoriza-
In the first case. we must now changetion requirements for a controlled operation in
theunlink system call. The DFN indicates

unchecked variables to a qualified type)) :
commensurate with the authorization (e.g.[ne line number, variable type, operation, and

read_authorized). Given that a variable 2CC€SS which can be used to identify the vari-

can have multiple authorizations that depend@b!€ in most cases. The ALWAYS SFNs indi-

on the kernel’s control flow, such annotation it- Cat€ the authorization requirements.

self is a subject of static analysis. CQUAL does

not help with annotation (i.e., it is an input to is only necessary ifarg == F_UNLCK) .

CQUAL), so we must devise another techniqueVhere a combination of authorizations to a

for proper annotation. Fortunately, objects al-function are of the formd v (A A B) where

most always have only one check, and no morei and B are authorization types, then we may

than three, so this problem is handled manuallyneed to manually annotate the code whére

at present. B is required. We can do this by creating a
dummy function call that required A B. Ul-

Thﬁ :j/a“ authorization reqtgrfemen:]s forl,con'timately, better intra-procedural analysis is re-
trolled operations generated from the Vali run'quired to find blocks of code within functions

time analysis are used to identify the type qual‘that require different authorizations, however,

ifier requirements of funct|ons._ Figure 8_d|s- because such manual annotation limits regres-
plays the output data from Vali used as inputo testing (see Section 6.1)

to this process. Variables are identified by their

line number, da.\ta ty.pe., member access, and ag-.4 Further Exploit Verification
cess type. While this is not completely unam-
biguous, it is sufficient for the kernel currently) .
and we can identify ambiguities that cannot beAny_ exploit programs derived from th? secqnd
resolved automatically. The SFNs identifiedStatic analysis are added to the Vali runtime

as ALWAYSS indicate the authorization require- 2nlysis benchmarks, and runtime analysis is
ments to be enforced on this variable. rerun. Since these programs are mainly look-
ing for vulnerabilities, rather than anomalies,

Since multiple kernel events may use the samihe output will be largely unchanged from step
functions, the type qualifiers are, in general,2.

the OR of these cases. This is represented us-

ing CQUAL's type qualifier lattice [8]. Since

CQUAL's granularity is a function, code within

a function that is called only when different au-
thorization requirements are expected will notAs the kernel evolves, the placement of the
necessarily be handled properly by CQUAL.LSM authorization hooks may be invalidated.
An example of thisigease_modify inFig- Since the kernel development community at
ure 5 where the authorization feet_owner large will modify the kernel, we need an ap-

6 Kernel Community Approach

Ottawa Linux Symposium 2002

236

proach in which the kernel modifications canrently required. We list these cases and exam-
proceed while maintaining the verification sta-ine their implications.

tus of the LSM authorization hooks. Clearly,
the kernel development community will not be

The build process for static analysis consists of

inclined to perform the verification process of the following steps:

the LSM community as described above. How-
ever, it is possible for the kernel development
community to leverage this work to maintain
LSM verification.

Basically, we envision that kernel developer’s
task in maintaining the LSM authorization
hook verification will involve regression test-
ing on the static and runtime analyses. As part
of an extended kernel build, the static analysis
process can be run as in step 3 of the LSM com-
munity process above. The type errors gen-
erated above can be compared to the existing
classifications to verify that no new type errors
or type error paths are created.

Since some unresolved type errors are likely to
remain for a while, it is ultimately necessary to
perform runtime regression testing. While this
task requires more work because the new ker-
nel must be run, much, if not all, of this task
can also be automated. In this case, the goal of
the kernel development community is to iden-
tify any new anomalies or new authorization
requirements (e.g., if a new object is added)
to the LSM community. As described below,
the Vali runtime analysis tool can identify such
differences automatically.

6.1 Static Regression Testing

Since the GCC annotation process, CQUAL
analysis, and output classification can be per-
formed automatically, static LSM regression

testing can be integrated as an extension to the

automated build process. We first describe the
tasks that are necessary to automate static anal-
ysis as part of the build process. While the
analysis will generate the output automatically,
some situations arise in manual analysis is cur-

* GCC analysis Our extended GCC com-

piler must be used to build the kernel. The
compiler creates a log of controlled op-
erations, controlled variable declarations,
and LSM authorization hooks. The fol-

lowing Makefile modifications are neces-
sary:

CC = $(CROSS_COMPILE)\
$(VALI_GCC)/gcc \
--param ae-analyses=8243

The parameteae-analyses indicates
the types of information that our extended
GCC compiler gathers.

Perl annotation: Perl scripts have been

written to pre-process the GCC analysis
output into a form that is then used by
a second set of Perl scripts to automati-
cally annotate the Linux source code with
CQUAL type qualifiers.

The GCC analysis generates output for
each controlled operation, such as seen in
Figure 9.

The first set of Perl scripts processes such
output into the form:

lusr/src/linux-2.4.9-\
..[fs/attr.c:61 \
inode_setattr *inode

CQUAL Linux build : CQUAL requires
some pre-processing of the Linux source
code before it can perform the analysis
(e.g., removal of blanks and comments).
The standard GCC compiler can be used
for this step.

Ottawa Linux Symposium 2002

237

DEBUG_ACCESS: controlled operation:
file = /usr/src/linux-2.4.9.../fs/attr.c
current_function = inode_setattr.
function_line = 63.
current_line_number = 66
access_type = write
name = (*inode)
member = i_uid (384)
is_parameter = 1.

DEBUG_ACCESS: controlled operation:
file = /usr/src/linux-2.4.9.../fs/attr.c
current_function = inode_setattr.
function_line = 63.
current_line_number = 68
access_type = write
name = (*inode)
member = i_gid (416)
is_parameter = 1.

Figure 9: The GCC analysis output.

$(CC) $(CFLAGS) -E $< | \
$(CQUALBINDIR)/remblanks >$*.ii

* CQUAL analysis: CQUAL can then be
used to perform the static analysis. Thet
first step runs the CQUAL analysis. The
second step generates the type error pat
information. See Figure 10.

 Authorization requirement annotation:

Vali runtime analysis generates authoriza-
tion requirements per controlled operation
as shown in Figure 8. We are in the pro-
cess of writing Perl scripts to apply these
requirements to the annotation of autho-
rizations specific to the requirements de-
scribed above. We hope to be able to re-
port on this at the symposium.

While we have not done detailed time measure-
ments, we have found that the entire analysis
adds about 10 minutes to the build time. GCC
analysis adds little overhead to the kernel build.

kernel. CQUAL analysis takes approximately
another 5 minutes for the kernel.

The current static analysis process verifies that
he LSM authorization hook placement is cor-
rect, but some situations need further, manual
ﬁxamination. These cases are listed below:

1. Changes to “safe” functions The GCC

analysis identifies the addition of a new
controlled operation to a function for-
merly classified as “safe,” see Section 5.1.

. Changes to manually annotated func-

tions: A source comparison detects a
change to a function with any manual
annotation (e.g., the addition of dummy
functions for ORed authorization require-
ments, see Section 5.3).

. New type error variables. The CQUAL

analysis identifies any new variables that
have type errors.

Perl processing takes about 5 minutes for the 4. New shortest type error paths The

Ottawa Linux Symposium 2002 238

$(CQUALBINDIR)/cqual -prelude \
$(CQUALDIR)/config/prelude.i.security -config
$(CQUALDIR)/config/lattice.security attr.ii 2>attr.path

Figure 10: Performing static analysis with CQUAL.

CQUAL analysis identifies any new short- 6.2 Runtime Regression Testing
est type error path for a variable with an

existing type error. Since we expect that there will always be some

number of type errors for which exploits can
become possible and some tasks that are more

easily or better done by runtime analysis, we

The first two situations are cases where th%trongly recommend performing the runtime
dependencies of the analysis have changegegression analysis. However, this analysis is
such that the analysis may no longer be soungynore time-consuming than the static analysis
While we hope to eliminate such dependencieg, two key ways: (1) the instrumented ker-
through further analysis, we expect the analyne| must be built and (2) the runtime analy-

sis will always be subject to some number Ofsjs henchmarks must be executed on the instru-
dependencies. In fact, as the analysis becomggented kernel.

more elaborate, the complexity of dependen-

cies increases, so the current set may prove t&t present, the build process for a Vali-

be the best option. instrumented kernel, runtime logging modules,
and analysis tools is completed automated.

The second two situations are the identificatiorowever, the execution of the analysis is not

of a new type error that may indicate a realgytomated at present. The main tasks that are
vulnerability. In order to reduce the number ot automated are: (1) the collection of in-
of false positives, secondary analyses are neGgryction pointer locations for kernel entry/exit
essary to identify them. These analyses mayints used to identify the kernel events and (2)
have dependencies (e.g., that is the cause @he runtime execution. The first task only in-
case 1), so the cost of managing the dependeRy|yes “grepping” the generated object dump
cies must be less than the value of removingoy g few well-known instruction, so it appears
the false positives. straightfoward to automate this. We are look-
ing into how to automate the runtime data col-

While it is not completely clear where the bal- ,)
pietely Jection using VMwaré'.

ance between manual effort on the part of th

kernel developer and LSM community isin this |n order to enable regression testing, the Vali
process, we anticipate the following. Our goalyntime analysis tool generates output that
is that most notifications of case 1 and 2 carypes not include line number or instruction

be handled trivially by the kernel developmentpointer information, so that regression can be
community and the LSM community can ver- gone across minor kernel modifications. Fur-
ify. Errors of case 3 and 4 may also be hanner, aggregation of controlled operations that
dled by the development community in manygre not function-sensitive enables regression

cases, but again the LSM community may doacross kernel modifications regardless of func-
deeper verifications and develop classifiers to

eliminate identifiable false positives. 4VMware is a trademark of VMware, Inc.

Ottawa Linux Symposium 2002 239

tions executed in a kernel event. 7 Conclusions and Future Work

Figures 6 and 7 give an idea of how the output _)))

from the Vali runtime tool enables regression.!n this paper, we outline static and runtime
The output shows the controlled operationg?N@lysis tools that we have developed to ver-
with the same authorization requirements. InfY the correctness of LSM authorization hook

cases where the authorization requirements dylacement. These tools have been used to find

controlled operations are sensitive to the funcflVe: Since fixed, errors in LSM hook place-
tion in which the operation is run, more in- ments. We believe that such verification should

formation is displayed. In this case, if the not be a one-time process, but rather it should
controlled operation is moved from one func-Practical for kernel developers to perform re-

tion to another, the regression test identifies th@'€SSion testing as the kernel is modified. The
change. problem is to automate the analysis process

as much as possible and only provide test re-
Given aggregation, the following types of sults that really require examination by the de-
changes between regression tests are possiblgelopment community, as much as possible.
We demonstrate that static analysis process and
« New controlled operation in an aggre- most of the runtime analysi_s process are au-
gate An operation has been added, and ittomated glready. We also |dent|f)_/ the types
has been classified with an existing aggre-of analysis results t_hat_ t_he t.OO|S W”.l report to
gate. the developers: Whlle itis nice to ellmlna}telas
many false positives as possible, we are limited
« Remove controlled operation from an by the Halting Problem as to how many can be
aggregate An operation has been removed in general and the means for identi-
deleted, so it no longer appears. fying false positives introduces dependencies
_ that also must be verified. At present, we
* Move controlled operation to another yq pot eliminate most false positives automati-
aggregate Either an authorization or an .41y byt expect that the LSM community will
operation has been moved such that gjentify them as such and regression over these
different set of authorizations are active i pe sufficient (i.e., as long as few, new false
when the operation is performed. positives are introduced little effort will be re-

. Create a new aggregate A new set of quired to handle them). The generated output
authorizations has been created or a ne® 10W-level which enables quick comparison,

sensitivity has been triggered such that Jut still makes is difficult for developers. Inter-
new aggregate of operations and permisfaces for handling this information are a signif-
sions has been created. icant area of future work.

The addition and removal of controlled opera-References

tions is not a major change if they adhere to the

existing aggregates. However, it is always wise [1] A. Berman, V. Bourassa, and E. Selberg.
to verify that the operations are consistent with TRON: Process-specific file protection
the aggregations assigned to them. The move for the UNIX operating system. In

of operations to other aggregates or the cre- Proceedings of the 1995 USENIX Winter
ation of new aggregates are significant changes Technical Conferen¢gages 165-175,
that warrant review. 1995.

Ottawa Linux Symposium 2002 240

[2] M. Bishop and M. Dilger. Checking for [10] T. Jaeger and A. Prakash. Support for the
race conditions in file accesses. file system security requirements of
Computing System8(2):131-152, 1996. computational e-mail systems. In

Proceedings of the 2nd ACM Conference

on Computer and Communications

Security pages 1-9, 1994.

[3] N. S. Borenstein. Computational mail as
a network infrastructure for
computer-supported cooperative work.
In Proceedings of the Fourth ACM [11] D. Larochelle and D. Evans. Statically
CSCW Conferencpages 67—74, 1992. detecting likely buffer overflow

vulnerabilities. InProceedings of the

10th USENIX Security Symposium

pages 177-190, 2001.

[4] Wirex Corp. Immunix security
technology. Available at
http://www.immunix.com/Immunix

findex.html . [12] S. Minear. Providing policy control over
[5] A Edwards. [PATCH] add lock hook to object operations in a Mach-based

prevent race, January 2002. Linux system. InProceedings of the Fifth

Security Modules mailing list at USENIX Security Symposiut995.

http://mail.wirex.com
/pipermail
/llinux-security-module
/2002-January/002570.html

[6] A. Edwards, T. Jaeger, and X. Zhang. [14] LIDS organization. Linux intrusion
Verifying authorization hook placement detection system. Available at
for the Linux Security Modules http:/fwww.lids.org

IrBaI\r/]r e[\;vé)cr:.rn-[)iihzncl)((z)il Report 22254, [15] A. Ott. Rule set-based access control
' ' (RSBAC) for Linux. Available at
[7] D. Engler, B. Chelf, A. Chou, and http://www.rsbac.org

S. Hallem. Checking system rules using
system-specific, programmer-written [16] U. Shankar, K. Talwar, J.S. Fosf[er, and
D. Wagner. Detecting format string

compiler extensions. IRroceedings of - : -
vulnerabilities with type qualifiers. In

the Fourth Symposium on Operation :
System Design and Implementation Proceedings of the 10th USENIX

[13] NSA. Security-Enhanced Linux
(SELinux). Available at
http://www.nsa.gov/selinux

(OSDI), October 2000, gg(():;rity Symposiumpages 201-216,

[8] J. Foster, M. Fahndrich, and A. Aiken. A
theory of type qua"fiers_ IACM [17] R. Spencer, S. Sma”ey, P. Loscocco,
SIGPLAN Conference on Programming M. Hibler, and J. Lepreau. The Flask
Language Design and Implementation security architecture: System support for
(PLDI '99), pages 192—-203, May 1999. diverse policies. IfProceedings of the

Eighth USENIX Security Symposium
[9] I. Goldberg, D. Wagner, R. Thomas, and August 1999,

E. Brewer. A secure environment for

untrusted helper applications. Tine [18] Argus Systems. Argus PitBull LX.
Sixth USENIX Security Symposium Available at

Proceedingspages 1-12, 1996. http://www.argus-systems.com

Ottawa Linux Symposium 2002

[19] L. Torvalds and C. Cowan. Greetings,

[20]

April 2001. Linux Security Modules
mailing list at
mail.wirex.com/pipermail
/linux-security-module
/2001-April/000005.html

X. Zhang, A. Edwards, and T. Jaeger.

Using CQUAL for static analysis of
authorization hook placement. In
Proceedings of the 11th USENIX
Security Symposiur2002. To appear.

241

Proceedings of the
Ottawa Linux Symposium

June 26th—29th, 2002
Ottawa, Ontario
Canada

Conference Organizers
Andrew J. HuttonSteamballoon, Inc.
Stephanie Donovar,inux Symposium
C. Craig Rossl.inux Symposium

Proceedings Formatting Team
John W. LockhartWild Open Source, Inc.

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.

