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PCI Express Port Bus Driver Support for Linux

Tom Long Nguyen, Dely L. Sy, & Steven Carbonari
Intel® Corporatior
{tom.l.nguyen, dely.l.sy, steven.carbonari}@intel.com

Abstract Port Bus Driver and specific service drivers like
the advanced error reporting root service driver

1. , and the native hot-plug root service driver.
PCIl Expres®- is a high performance gen-

eral purpose 1I/O Interconnect defined for a
wide variety of computing and communication
platforms. It defines PCI Express Ports andL  Introduction
switches to provide a fabric based point-to-

point topology.. PCI Express 9ategorlzes IDCI'I'he Linux PCI Driver Model restricts a device
Express Ports into three types: the Root Port : : . o
0 a single driver. Drivers in Linux are loaded

the Switch Upstream Ports, and the SW'tCIXJased off the PCI Device ID and function. Once
Downstream Ports. Each PCI Express Port =~ . .
a driver is loaded, no other drivers for that de-

can provide up to four distinct services: Na- . o can be loaded[2]. Referring to Figure 1,
tive hot-plug, power management, advanced er;

. . if the Root Port hot-plug driver is loaded first,
ror reporting, and virtual channels[1](3]. To it claims the Root Port device. The Linux PCI
fit within the existing Linux®? PCI Driver |

Model but provide a clean and modular SOIu_Dnver Model therefore prevents the support of

tion, in which each service driver can be built.mu.ltl.IDIe servpes p‘?“ PCI Express Port using
individual service drivers.

and loaded independently, requires the PCI Ex-

press Port Bus Driver architecture. The PCI Ex-

press Port Bus Driver initializes all services and _
distributes them to their corresponding service Root o i Root < AER Drver
drivers. This paper is targeted toward kernel NG - X _
developers and architects interested in the de:
tails of enabling service drivers for PCl Express

Ports. The i386 Linux implementation will be <
used as a reference model to provide insighP”Ver Model
into the implementation of the PCI Express

Figure 1: Service Drivers under the Linux PCI

A PCI Express Port may have multiple distinct

*Intel is a trademark or registered trademark of Intelservices operating independently. A PCIl Ex-
Corporation in the United States, other countries, or bothpress Port is not required to support all ser-
This work represents the view of the authors and does NQices. so some PCI Express Ports within a PCI

necessarily represent the view of Intel. .
1PCI Express is a trademark of the Peripheral Com—EXpress hierarchy may support none, some or

ponent Interchange Special Interest Group (PCI-SIG)  all the services. A possible solution is to im-
2Linux is a registered trademark of Linus Torvalds  plement a single driver to handle all services

o]l oe



2 e PCI Express Port Bus Driver Support for Linux

per PCI Express Port. However, this solution P e
would lack the ability to have each service built 4 g , p—1 .

and loaded independently from each other, pre- son Moo | | Port| I
venting extensibility for addition of future ser- g+

vices and the ability to have a service driver
loaded on more than one PCI Express Port. Figyre 2: Service Drivers under the PBD
Separate service drivers are required to support

addition of new features and loading of services ) )
based on the PCI Express Port capabilities. work with the port bus architecture. The second

example is the hot-plug service driver that was

To support multiple drivers per device without originally designed as an independent driver
changing the existing Linux PCI Driver Model then converted to a service driver to operate
requires a new architecture that fits withinWith the Port Bus Driver. Lastly, an overview
the existing Linux PCI Driver Model but pro- of the impact to device drivers and future ser-
vides the flexibility required to support multi- Vice drivers is outlined.

ple service drivers per PCI Express Port. As

shown in Figure 2, the PCI Express Port Bus

Driver (PBD)[5] fits into the existing Linux PCI .

Driver Model while providing an interface to 2 PCl Express Port Bus Driver

allow multiple independent service drivers to

be loaded for a single PCI Express Root Port

The PBD acts as a service manager that own%'1 PCI Express Port Topology
all services implemented by the Ports. Each of

these services is then distributed and handlegly ynderstand the Port Bus Driver architecture,
by a unique service driver. The PBD achievest he|ps to begin with the basics of PCI Express
the following key advantages: Port topology. Figure 3 illustrates two types of
PCI Express Port devices: the Root Port and
the Switch Port. The Root Port originates a
PCI Express Link from a PCIl Express Root
Complex. The Switch Port, which has its sec-
%ndary bus representing switch internal rout-
ing logic, is called the Switch Upstream Port.
Allows service drivers to be designed and ! N€ Switch Port which is bridging from switch
implemented in a modular fashion. internal routing buses to the b_us representlng

the downstream PCI Express Link is called the
e Centralizes management and distributionSwitch Downstream Port[1].

of resources of the PCI Express Port de-
vices to requested service drivers. Each PCI EXpreSS Port device can be imple-

mented to support up to four distinct services:

native hot plug (HP), power management event
This paper describes the PCI Express Port BUlPME), advanced error reporting (AER), virtual
Driver architecture. Following the port bus channels (VC). The PCI Express services dis-
driver architecture are two examples of servicecussed are optional, so in any given PCI Ex-
drivers. The first example is the advanced erpress hierarchy a port may support none, some,
ror reporting service driver that was designed toor all of the services.

e Allows multiple service drivers to run
simultaneously and independently from
each other and to service more than on
PCI Express Port.
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BET Exprens found, the PCI Express Port Bus Driver creates
Root Complex a corresponding service device, named pcieXY
ol Reut Forts where X indicates the PCI Express Port type
Port Port and Y indicates the PCI Express service type

! ! Switch Upstream as described in Table 1, and then registers this

P%Fr’t Ports service device into a system device hierarchy.

PCI Express Switch Switch Downstream Figure 5 shows an _example of how the PCI I_EX-
T Ports press Port Bus Driver creates service devices
Port [ | Port on a system populated with two Root Port de-

| | vices, one Switch Upstream Port device, and

two Switch Downstream Port devices.

Figure 3: PCI Express Port Topology

Port | Service | Service Entity Description (pcieXY)
Type | Type
X) )
B B 0 0 PME service on PCI Express Root Port (PMErs)
2'2 PCI Express Port Bus Drlver ArChIteC- 0 1 AER service on PCI Express Root Port (AERrs)
tu re 0 2 HP service on PCI Express Root Port (HPrs)
0 3 VC service on PCI Express Root Port (VCrs)
1 0 PME service on PCI Express Switch Upstream Port (PMEus)
1 1 AER service on PCI Express Switch Upstream Port (AERus)
. . 1 2 Not a supported PCI Express configuration
The des|gn Of the PCI Express Port Bus Dr|Ver 1 3 VC service on PCI Express Switch Upstream Port (VCus)
. . . . 2 0 PME service on PCI Express Switch Downstream Port (PMEds)
aCh leves a Clean and m Od u Iar SO | Utlon N Wh | Ch 2 1 AER service on PCI Express Switch Downstream Port (AERds)
. . . . 2 2 HP service on PCI Express Switch Downstream Port (HPds)
eaCh SerV|Ce drlver Can be bU | |t a.nd |Oad6‘d n- 2 3 VC service on PCI Express Switch Downstream Port (VCds)

dependently from each other. The PCI Express
Port Bus Driver serves as a service manager  Table 1: Service Entity Description
that loads and unloads the service drivers ac-

cordingly, as illustrated in Figure 4. PCI Express

Root Complex %
‘ Operating System - Kernel ‘ Port Port PMErs|
| PMErs
Service Drivers /\ II y

[ Existing rrese s B

PB|

D
HPrs VCrs

HPrs VCrs

PBD

[ InReview : ’ PCI Express Port Bus Driver ‘ H
[] Provided by : [rootasr | [ swupasr | [ swownam Service Drivers y
SW services Root HP SW Up PME | SW Down HP PBD

I:‘ Existing

SW Up VC

) [
Bl 1 Review pMEds| | AERds| | Heds | [ veas |
R R R R R ; El Future PMEdsHAERdSH HPds L‘ VCds

\/ H ‘:I Provided by SW Services

‘ Hardware ‘

Figure 5: Service Devices in a PCl Express Port

Figure 4: PCI Express Port Bus Driver SystemBUs Driver Architecture

view Once service devices are discovered and added
The PCI Express Port Bus Driver is a PCI-in the system device hierarchy, a service driver
PCI Bridge device driver, which attaches to PClis loaded accordingly if it registers its ser-
Express Port devices. For each PCI Expressice with the PCI Express Port Bus Driver.
Port device, the PCI Express Port Bus DriverThe PCl Express Port Bus Driver provides
searches for all possible services, such as nan interface, namegkcie _port_service_

tive HP, PME, AER, and VC, implemented by register , to allow a service driver to register
PCI Express Port device. For each servicets service[4]. The registration enables the user
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to configure services during kernel configura- driver data structure. The pointer to the
tion regardless of HW support. It enables de- pci_dev data structure is replaced with a
bugging and adding of new services ina modu-  pointer to thepcie_device  data struc-

lar fashion. When a service driver cafisie_ ture in each callback function.
port_service_register , the PCI Ex-

press Port Bus Driver loads a service driver e Call pcie_port_service_register
by invoking the PCI subsystem, which walks insteadpci_register_driver

through a system device hierarchy for a service
match. If the port bus finds a match, it loads a

service driver for that service device. . ) . ) .
Once a service driver is loaded, a service driver

In addition, the PCI Express Port Busshould always configure and initialize its own

Driver  provides pcie_port_service capability structure and required 10s to oper-
unregister , to undo the effects of calling ate normally without any support from the PCI

[4]. Note that a service driver should alwaysdriver is prohibited from doing the following:
call pcie_port_service_unregister
when a service driver is unloading.

e Switch the interrupt mode on a device.
2.3 The Service Driver The interrupt mode can be INTx legacy,
MSI or MSI-X. A service driver should al-
ways use the assigned service IRQ to call
request _irq to have its software in-
terrupt service routine hookup. Note that
the assigned service IRQ may be shared
among service drivers; therefore, a service
driver should always treat this assigned
service IRQ as shared interrupt.

To maintain modularity in the PCI Express Port
Bus Driver design, individual service drivers
are required. In some cases a driver may al-
ready exist for a PCI Express Port. In these in-
stances the driver must be ported to the service
driver to allow other service drivers to load on
the PCI Express Port. To port drivers to service
drivers, the following three basic steps are re-
quired. Refer to Sections 3.1.1 to 3.1.3 for a
specific example.

e Access resources that are not directly re-
quired by the service. For example, the
advanced error reporting service driver is
prohibited from accessing any configura-
tion registers other than the Advanced Er-
ror Reporting Capability structure. A ser-
vice driver uses thport pointer, a mem-
ber of thepcie_device  data structure
defined by PBD, to access PCI configura-
tion and memory mapped IO space.

e Specify service ID. The PCI Express Port
Bus Driver defines the data structure of
service ID similar to the data structure
of pci_device_id except with two
additional fields: theport type  and
service_type fields as described in
Table 1. Note that failure to specify a cor-
rect service ID will prevent the port bus

from loading a service driver. » Call pu_enable_de\{lce an_d el
set_master  functions. This is no
e Initialize service driver. The PCI Express longer necessary because these functions
Port Bus Driver defines the data struc- now get called by the PCI Express Port

ture of service driver similar to theci_ Bus Driver.
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2.4 Resource Allocation and Distribution driver. The PCI Express Port Bus Driver is re-
sponsible for determining the interrupt mode
Service drivers must adhere to the guidelines irt]ra}nsparent o the service drivers. A service
: ) - driver must use its service vector when calling
this document to deal with resource allocation
and distribution. Since all service drivers of a
PCI Express Port device are allowed to run si-
multaneously, a decision of which driver (Port!f @ PCI Express Port device supports MSI-X,
Bus Driver vs. service driver) owns which re- the PCI Express Port Bus Driver will request
source is described in Sections 2.4.1 to 2.4.3he number of MSI-X messages equal to the
These resources include the MSI capabilityhumber of supported services for the device.

structure, the MSI-X capability structure, and This allows each service to have it own hard-
PCI 10 resources. ware interrupt resource independently gener-

ated from other services.

request_irg  /free_irq

2.4.1 The MSI Capability Structure

The MSI capability structure enables a device2.4.3 PCI 10 Resources

software driver to calpci_enable_msi  to

request an MSI based interrupt. Once MSI is

enabled on a device, it stays in this mode unPCl 10 resources include PCI memory/IO
til a device driver callpci_disable_msi ranges and PCI configuration registers are as-
to return to INTx emulation. Since each ser-signed by BIOS during boot. For PCI mem-
vice driver runs independently from each otherory/lIO ranges, the service driver is responsible
changing the interrupt mode on the PCI Ex-for initializing its PClI memory/IO maps during
press Port by an individual service driver mayservice startup. There is possibly where the PCI
result in unpredictable behavior. Each sermemory/IO ranges are shared. If this occurs,
vice driver is therefore prohibited from call- each service driver is responsible for mapping
ing these APIs. The PCI Express Port Bugts PClI memory/IO regions without overstep-
Driver is responsible for determining the in- ping on resources of others. The PCI Express
terrupt mode and assigning the service IRQPort Bus Driver does not arbitrate access to the
to each service device accordingly. A serviceregions and assumes service drivers to be well
driver must use its service vector when callingbehaved.

request_irq /free_irq

For PCI configuration registers, each service
runs PCI configuration operation on its own ca-
pability structure except the PCI Express ca-
pability structure, in which the Device Con-
Similar to MSI a device driver for an MSI-X ca- trol register and the Root Control register have
pable device can cafici_enable_msix to unique control bits assigned to AER service
request MSI-X interrupts. The key difference and PME service. A read-modify-write should
is that the MSI-X capability structure enablesalways be handled by the AER/PME service
a PCI Express Port device to generate multidriver. Again this paper assumes that all service
ple messages. Managing multiple MSI-X vec-drivers are responsible for not overstepping on
tors is handled by the PCI Express Port Bugesources of others.

2.4.2 The MSI-X Capability Structure
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3 PCI Express Advanced Error Re- —
porting Root Service Driver Root Complex

Root oot
Port Port

PCI Express error signaling can occur on the
PCI Express link itself or on behalf of trans-
actions initiated on the link. PCI Express de-
fines the Advanced Error Reporting capability,
which is implemented with the PCI Express Figure 6: AER Root Service Driver
Advanced Error Reporting Extended Capabil-

ity Structure, to allow a PCI Express compo-3.1 Register AER Service

nent (agent) to send an error reporting message

to the Root Port. The Root Port, a host receiver

of all error messages associated with its hierarThe advanced error reporting service driver is
chy, decodes an error message into an error typgemplemented based on the service driver frame-
and an agent ID and then logs these into its PClvork as defined in Section 2.3. Sections 3.1.1
Express Advanced Error Reporting Extendedo 3.1.3 below illustrate how the advanced er-
Capability Structure. Depending on whether arror reporting service driver follows three basic
error reporting message is enabled in the Rodgteps as required.

Error Command Register, the Root Port device

generates an interrupt if an error is detected[1].

The PCI Express advanced error reporting sers 1.1 Specify AER Service ID

vice driver is implemented to service AER in-

terrupts generated by the Root Ports[6].

Since the PCI Express advanced error reporting

Once the PCI Express advanced error reportservice driver is implemented to serve only the
ing service driver is loaded, it claims all AER Root Ports, the data structure of AER service
Root service devices in a system device hierarlP is defined below[7]:
chy, as shown in Figure 6. For each AERrs ser-
vice device, the advanced error reporting ser-__ . o .
. . . . . R static struct pcie_port_service_id aer_id[]={{

vice driver configures its service device to gen- .vendor = PCI_ANY_ID,

; H .device = PCI_ANY_ID,
erate an interrupt when an error is detected. For /""" = T sl o ogr
each detected error, the advanced error report- .service_type = PCIE_PORT_SERVICE_AER,

ing service driver performs the followings[6]: . * ©

e Gather comprehensive error information. 312 |Initialize AER Service Driver

e Guide error recovery associated with the
hierarchy in question based on the com-Once the AER service ID is defined, the ad-
prehensive error information gathered.  vanced error reporting service driver initial-
izes the service callbacks as defined in the
e Report error to user in a format with more pcie_port_service_driver data struc-
precise what error type and severity. ture. The data structure of service callbacks is
defined below[7]:
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static struct pcie_port_service_driver aerdrv={ 4
.name = "aer", PBD
.id_table = &aer_id[0],

.probe = aer_probe, m
femove = aer_remove,
(1) )

| aer_id

<~ MATCH

(&aerdrv)

.suspend = aer_suspend,
.resume = aer_resume,

pcie_port_service_register

3.1.3 Calling pcie_port_service

register
Figure 7: State Diagram of Registering AER

The final step in initialization of the advanced Service with PBD

error reporting service driver is calling func- _ _
tion pcie_port_service_register toreg- Mmodel defined in the PCI Standard Hot-Plug

ister AER service with the PBD. During driver Controller and Subsystem Specification, Rev.
initialization, the module routine is called for 1.0[8].

initialization when the kernel calls the ad-
vanced error reporting service driver. Call-
ing pcie_port_service_register Ipcie_
port_service_unregister should always

be done imodule_init  /module_exit as  pCJ Express Native Hot-Plug features are:
depicted below[7]:

4.1 PCI Express Native Hot Plug Features

static int __init aer_service_init(void) e Root ports and downstream ports of
{ . _ .
return pcie_port_service_register(&aerdrv); switches _are hot pluggable ports in PCI
} Express hierarchy.
fta“c void _exit aer_service_exit(void) e Interrupt driven hot plug events will result
pcie_port_service_unregister(&aerdrv); in hot_p|ug interrupts_
}
module_init(aer_service_init); e Hot plug registers are part of the PCI Ex-
module_exit(aer_service_exit) press Capability register set; hot-plug op-

erations are invoked by writing to these
Figure 7 depicts the state diagram once the ad-  registers.
vanced error reporting service driver's module

routine is called. e Based on SHPC usage model, but not the

bus centric SHPC register set.

4 PCl Express Native Hot-Plug 4.2 Porting the PCl Express Hot-Plug
Service Driver Driver to a Service Driver

The PCIl Express Hot-Plug standard usagés mentioned in Section 2.2, the PCI Express
model is derived from the standard usagePort Bus Driver provides a mechanism for a
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service driver to register its service. If the re-changes that need to be made in porting the PCI
guested service is found in a service devic&xpress hot-plug driver to a service driver[9].
hierarchy, the service driver can successfully

load. This section focuses on showing what the

changes are required to port the PCl EXpress static struct pcie_port_service_driver

. . . . hpdri tdrv =
native hot-plug driver to a service driver. : _npar:\éer—-_p"(;lrpdrr\i/ver",{
+ .id_table = &port_pci_ids[0],
+ .probe = pciehp_probe,
+ .-remove = pciehp_remove,
4.2.1 Registering the Hot Plug Service * .suspend = pciehp_suspend,
. + .resume = pciehp_resume,
Driver Y
- static struct pci_driver pcie_driver = {
i i i - .name = "pciehp",
The. pC|e.hp driver calls pme_pprt_ | mble = moid pi thl
service_register (struct pcie_ - .probe = pcie_probe,
port_service_driver *driver ) to y -femove = pcie_remove,
register its hot-plug service with the PBD.
The pciehp driver is responsible for set-
ting up the data structures before calling
pcie_port_service_register . Below 4.2.3 Calling  pcie_port_service_
shows the difference in the data structures used register  API

when the driver is used as a standard driver or

as a service driver(9]. The final step in initialization of the HP ser-

vice driver is callingpcie_port_service

N Staggrtsggfti dzaiezp?{ft-se“’ice-id register  toregister HP service with the PBD.
+ .vendor = PCI_ANY_ID, The following shows the changes that need to
+ .device = PCI_ANY_ID, be made in the standalone driver to port it to a
+ .port_type = PCIE_ANY_PORT, . i
+  .service_type = PCIE_PORT_SERVICE_HP, service driver[9].
+ .driver_data = 0,
+ }, { I* end: all zeroes */ }
+ 1
. . . ) . static int __init pcied_init(void)
- static struct pci_device_id pcied_pci_tbI[]={ {
-{ :
- .class = ((PCI_CLASS_BRIDGE_PCI << 8) | +  retval = pcie_port_service_register(
- 0x00), +  &hpdriver_portdrv);

- .class_mask = ~0,

- .vendor = PCI_ANY_ID,

- .device = PCI_ANY_ID,

- .subvendor = PCI_ANY_ID, }
- .subdevice = PCI_ANY_ID,

-} { /* end: all zeroes */ } static void __exit pcied_cleanup(void)

_}’ {

retval = pci_register_driver(
&pcie_driver);

+ .pcie_port_service_unregister(
+  &hpdriver_portdrv);
4.2.2 Initialize the Hot-Plug Service Driver - pci_unregister_driver(&pcie_driver);
}
Once the HP service ID is defined, the ser-
vice driver initializes the service callbacks as
defined in thepcie_port_service_driver Figure 8 depicts the state diagram once HP ser-
data structure. The following shows thevice driver's module routine is called.
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The PCI Express Port Bus Driver claims all PCI
Express Ports in a system device hierarchy, in-
cluding ports in a PCl Express switch. Switch
service drivers must follow the port bus driver

gm\r}_&ci_ms framework. Switch vendors can use existing
root service drivers as a reference while writ-
ing their own service drivers.

»
>

pcie_port_service_register
(&hpdriver_portdrv)

®
v : : . .
[ pcienp_probe| When developing a switch service driver the
HP Service Driver usage model at each level in the PCI Express

hierarchy needs to be considered. A service
Figure 8: State Diagram of Registering HP Serdriver for a downstream switch port may be

vice with PBD required to provide different functionality than
a similar root port service driver. For exam-
4.2.4 Available Resources ple, the AER Root service driver cannot be

reusedas-is . The usage model is differ-

. . _ . ent. AER Switch service driver should pro-
As a service driver, dev->irq is provided by thevide error-handling callbacks and AER initial-

PCl E>.<press Eort Bus Driver and 'S passed t?zation of the switch, while the AER Root ser-
the pciehp driver. Whether dev->irq is a reg-

ular system interrupt, MSI or MSI-X, the PCI vice driver provides the primary mechanism t(_)
. . handle the error recovery process. However, in
Express Port Bus Driver assigns the value t

: : . . he case of the hot-plug driver, the same service
it. The pciehp service driver does not need, .

: . driver may be used for both the Root Ports and
to call pci_enable_msi to request use of

MSI/MSI-X if the OS supports that. the Switch Downst_re_am P_orts because the hot-
plug usage model is identical.

5 Impacts to PCI Express Drivers 6 Conclusion

The Port Bus Driver design does not directly The design of the PCI Express Port Bus Driver
impact existing PCI Express endpoint devicedelivers a clean and modular solution to sup-
drivers. However, a service driver may impactPort the multiple features of PCI Express while
a PCI Express endpoint driver. Additional PC|émaining compatible with the Linux Driver
Express services may require endpoint driveModel. Each feature can have its own soft-
Changes to take full advantage of the new funcWware service driver that can be built and loaded
tionality. For example, to take full advantage ofas & separate module. In addition when/if fu-
AER error recovery will require drivers to sup- ture PCl Express features come available or are
port the AER callback API. Driver writers for added to future specification revisions, the PCI
PCI Express components should be well verse§Xpress Port Bus architecture is extensible to
with this architecture and evaluate driver im-Support those additions. The PCI Express Port

pacts as new services (VC or PME) becomd3us Driver and changes to port the native PCI
available. Express hot-plug driver has been incorporated

Linux kernel version 2.6.11. The advanced er-
The Port Bus perspective impacts deviceror reporting service driver is currently under
drivers for PCI Express Switch components.review on the LKML.
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Abstract use of pktgen requires root access. The packet
stream generated by pktgen can be used as in-
_ _ _ _ put to other network devices. Pktgen also exer-
pkigen is a high-performance testing tool in-cises other subsystems such as packet memory
cluded in the Linux kernel. pkigen is currently gjjgcators and I/0 buses. The author has done
the best tool to test the TX process of devicgests sending packets from memory to several
driver and NIC. pktgen can also be used to 9engGE interfaces on different PCl-buses using

erate ordinary packets to test other network degeyeral CPU's. Aggregate Rates > 10 GBit/s
vices. Especially of interest is the use of pkt-pave been seen.

gen to test routers or bridges which often also
use the Linux network stack. Because pktgen is
“‘in-kernel,” it can generate high bandwith and1.1 Other testing tools
very high packet rates to load routers, bridges,

or other network devices. .
There are lots of good testing tools for network

and TCP testing. netperf and ttcp are probably
among the most widespread. Pktgen is not a
1 Introduction substitute for those tools but complements for
some types of tests. The test possibilities is de-

scribed later in this paper. Most importantly,

This paper describes the novel rework of pktgerpktgen cannot do any TCP testing.
in Linux 2.6.11. Much of the rework has been

focused on multi-threading and SMP support.

The main goal is to have one pktgen thread per

CPU which can then drive one or more NICs.2 Pktgen performance

An in-kernel pseudo driver offers unique pos-

sibilities in performance and capabilities. The

trade-off is additional responsibility in terms of Performance varies of course with hardware

robustness and avoiding kernel bloat (vs use@nd type of test. Some examples follow. A

mode application). single flow of 1.48 Mpps is seen with a XEON
2.67 GHz using a patched 1000 driver (64 byte

Pktgen is not an all-in-one testing tool. It offers packets). High numbers are also reported with

a very efficient direct access to the host systerlhcm5703 with tg3 driver. Aggregated perfor-

NIC driver/chip TX-process and bypasses mostmance of >10 Gbit/s (1500 byte packets) comes

of the Linux networking stack. Because of this,from using 12 GIGE NIC’s and DUAL XEON
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2.67 MHz with hyperthreading enabled (moth-3  Getting pktgen to run
erboard has 4 independent PCI-X buses). Sim-

ilarly, DUAL 1.6aGHz Opterons can generate
2.4 Mpps (64 byte packets). Tests involving
lots of alloc’s results in lower sending perfor-
mance (seelone_skb() ).

EnableCONFIG_NET_PKTGENM the .config,
compile and build pktgen.o either in-kernel or
as module, insmod pktgen if needed. Once run-
Many other things also affect performance: pcining, pkigen creates a kernel thread_and binds
bus speed, PCI vs PCI-X, PCI-PCI Bridge,thread to that CPU. One can the reglgter aple-
vice to exactly one of those threads.This to give
full control of the device to CPU relationship.
Modern platforms allow interrupts to be as-
signed to a CPU (aka IRQ affinity) and this is
Figure 1 compares performance of Intel'snecessary to minimize cache-line bouncing.
DUAL Port NIC (2 x 82546EB) with Intel's

QUAD NIC (4 x 82546EB; Secondary PCI-X Generally, we want the same CPU that gener-
Bus runs at 120 Mhz). on a Dual Opteron 242ates the packets to also take the interrupts given
(Linux 2.6.7 32-bit). a symmetrical configuration (CPU:NIC is 1:1).

CPU speed, memory latency, DMA latency,
number of MMIO reads/writes per packet or
per interrupt, etc.

The graph shows a faster I/O bus gives highe
performance as this probably lowers DMA la-
tency. The effects of the PCI-X bridge are also

evident as the bridge is the difference between ) ] ]
the DUAL and QUAD boards. pktgen is controlled and monitored via the

/proc file system. To help document a test con-

It's interesting to note that even bus bandwidthfiguration and parameters, shell scripts are rec-
is much faster than 1 Gbit/s it degrades theommended to setup and start a test. Again
small packet performance as seen from the exeferring to our dual system, at start up the
periment. 133 MHz would theoretically cor- files below are created i@ /proc/net/
respond to 8.5 Gbit/s. The patched version oPktgen/  kpktgend_0, kpktgend_1, pgctrl
€1000 driver adds data prefetching and skb re-
fill at hard_xmit() . Assigning devices (e.g. ethl, eth2) to kpkt-
gend_X thread, makes new instances of the de-
TX performance with Intel 82546EB vices show up in’proc/net/pktgen/ to

t differnt PCI-b d : :
1500- at drmern us speeds be further configured at the device level.

Dn a dual system we see two pktgen threads:
[pktgen/Q], [pktgen/1]

1250

1000 A test can be configured to run forever or ter-
[ 133 MHz

ol o minate after a fixed number of packets. Ctrl-C
aborts the run.

25:7 m pktgen sends UDP packets to port 9 (discard
apor T 4por T 2portpotched port) by default. IP, MAC addresses, etc. can be

_ configured. Pktgen packets can hence be iden-
Figure 1: PCI Bus Topology vs TX perf  tified within the kernel network stack for pro-
filing and testing.
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4 Pktgen ve rS|On|nfo TX performance IRQ affinty w. tulip

PIl 2x350 MHz

[ Correct Affinity
[l Incorrect Affin-
ity

The pktgen version is printed in dmesg when
pktgen starts. Version info is also iproc/
net/pktgen/pgctrl .

X in Kpps

L. Figure 2: Effects of irq affinity
5 Interrupt affinity

When adding a device to a specific pktgen5'1 clone_skb: limiting memory allocation

thread, one should also s#droc/irg/X/

smp_affinity to bind the NIC to the same pktgen uses a trick to increment the skb’s refcnt
CPU. This reduces cache line bouncing in sevto avoid full path of kfree and alloc when send-
eral areas: when freeing skb’s and in the NICing identical skb’s. This generally gives very
driver. Theclone_skb parameter can in high sending rates. For Denial of Service (DoS)
some cases mitigate the effect of cache linend flow tests this technique can not be used as
bouncing as skb’s are not fully freed. One musieach skb has to be modified.

experiment a bit to achieve maximum perfor-
mance. The parametetlone_skb controls this func-

tionality. Think ofclone_skb as the number
The irqg numbers assigned to particular NICsof packet clones followed by a master packet.

can be seen ifproc/interrupts . Inthe ex- Settingclone_skb=0 gives no clones, just

ample below, ethO uses irq 26, ethl uses irq 2Master packets, anclone_skb=1000000

etc. givs 1 master packet followed by one million
clones.

26: 933931 0 10-APIC-level ethO clone_skb does not test normal use of a

27: 936392 0 10-APIC-level ethl NIC. While the kfree and alloc are avoided by

28: 8 936457 10-APIC-level eth2 using clone_skb , one also avoids sending

29: 8 939310 I0-APIC-level eth3

packets from dirty cachelines. The clean cache
can contribute as much as 20% in performance

The example below assigns eth0, eth1 to CPUO‘E,lS shown in Table 1.

and eth2, eth3 to CPUL: Data in Table 1 was collected on HP rx2600-
Itanium2 with BCM5703 (PCI-X) NIC running
2.6.11 kernel. The difference in performance

echo 1 > /procl/irg/26/smp_affinity

echo 1 > /procfirg/27/smp._affinity betweer_l columns (RC on vs. off) shows how
echo 2 > /proclirg/28/smp_affinity mugh dirty cache can affect DMA. Numbers.
echo 2 > /proc/irg/29/smp_affinity are in packets per second. Read Current (RC) is

a Mckinley bus transaction that allows the CPU
to respond to a cacheline request directly from
The graph below illustrates the performance efeache and retain ownership of the dirty cache-
fects of affinity assignment of PIl system. line. l.e., the cacheline can stay dirty-private
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clone_skbj RCon| RCoff | % Drop using a crossover cable connected to another
on 947315| 913768 —-3.54% NIC in the same box. If generated packets
off 630736| 506711| —19.66% should be seen (i.e. Received) by the same host,

set dstmac to match the NIC on the cross over
cable as shown in Figure 4. Using a “fake” dst-
mac value (e.g. 0) will cause the other NIC to

just ignore the packets.
and the CPU can write the same cacheline again

without having to acquire ownership first. -%l
ethO

It's likely cache effects contribute to the differ-

ence in performance between rows too (with Figure 4: RX/TX in one Host

and withoutclone_skb ). But it’'s just as

likely clone_skb reduces the CPU’s use of

memory bus bandwidth and thus contends les§n SMP systems, it’s better if the TX flow (pk-
with DMA. This data is contributed by Grant tgen thread) is on a different CPU from the RX
Grundler. flow (set IRQ affinity). One way to test Full

Duplex functionality is to connect two hosts
and point the TX flows to each other’s NIC.

Table 1: clone_skb and cache effects (pps)

5.2 Delay: Decreasing sending rate
Next, the box with pktgen is used just a packet
pktgen can insert an extra artificial delay pe-Source to inject packets into a local or remote

tween packets. The unitis specified in nanosec2yStem. Note you need to configure dstmac of

onds. For small delays, pktgen busywaits belocalhost or gateway appropriate.

fore putting this skb on the TX-ring. This
means traffic is still bursty and somewhat H
hard to control. Experimentation is probably ot

needed.
Figure 5: Send to other

6 Setup examples Below pktgen in a forwarding setup. The sink
host receives and discards packets. Of course,

forwarding has to be configured on all boxes.

Below a very simple example of pkigen send-t might be possible to use a dummy device in-
ing on eth0. One only needs to bring up thestead of sink box.

link.
m
eth0

Figure 6: Forwarding setup
Figure 3: Just send/Link up

Forwarding setup using dual devices. Pktgen
pktgen can send if the device is UP but manycan use different threads to achieve high load
derives also requires that link is up can be donén terms of small packets or concurrent flows.
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J1-1 #1 CPU 1 dev
.1-2 #1 CPU 2 dev

.2-1 #2 CPU’s 1 dev
; . : .2-2 #2 CPU’s 2 dev
Figure 7: Parallel Forwarding setup " L-1-rdos 41 OPU 1 dev route DoS
..1-1-ip6 #1 CPU 1 dev ipv6
o ..1-1-ip6-rdos| # 1 CPU 1 dev ipv6 route Do$
7 Viewing pktgen threads .1-1flows | #1 CPU 1 dev multiple flows

Table 2: Script Filename Extensions

Thread information as which devices are han-

dled by this thread as actual status for each de-

vice is seenmax_before_softirq isusedto ftp://robur.slu.se/pub/Linux/

avoid pktgen to avoid pktgen monopolize ker-net-development/pktgen-testing/

nel resources. This will probably be removedexamples/

as this of less problem with the threaded de-

sign. Result: is the “return” code “from the last Additional examples have been con-

/proc write. tributed by Grant Grundler<grundler@
parisc-linux.org>

/proc/net/pktgen/kpktgend_0O ftp://gsyprf10.external.hp.com/
pub/pktgen-testing/

Name: kpktgend_0 See Appendix A for a quick-reference guide for

max_before_softirq: 10000 currently implemented commands. It’s divided

Running: into three parts: Pgcontrol, Threads, and De-

Stopped: ethl . . . .
Respuﬁt; OK: max_before_softirg=10000 vice. Each part has corresponding files in the

/proc file system.

A collection of small tutorial scripts for pktgen
are in examples dir. The file name extension is
described in Table reffilename-ext.

‘Parm’ sections holds configured info. ‘Cur-
rent’ holds running stats. Result is printed afte
run or after interruption for example: See Ap-

7.1 Viewing pktgen devices

[Runin shell: ./pktgen.conf-X-Y

It does all the setup and then starts/stops TX

pendix. thread. The scripts will need to be adjusted
based on which NICs one wishes to test.
8 Configuring 8.1 Configuration examples

Configuring is done via the /proc interface thisBelow is concentrated anatomy of the example

is easiest done via scripts. Select a suitablgcripts. This should be easy to follow.
script and customize. This paper includes one

full example in Section 8. Additional example pktgen.conf-1-2 A script fragment assigning
scripts are available from: ethl, eth2 to CPU on single CPU system.
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PGDEV=/proc/net/pktgen/kpktgend_0 pktgen.conf-1-1-ipv6 Setting device ipv6 ad-
pgset "rem_device_all" dresses.
pgset "add_device ethl"
pgset "add_device eth2"
PGDEV=/proc/net/pktgen/ethl
pgset "dst6 fecO::1"
pktgen.conf-2-2 A script fragment assigningpgset "srcé fec0::2"

ethl to CPUO respectivly eth2 to CPUL.

pktgen.conf-1-1-ipv6-rdos
PGDEV=/proc/net/pktgen/kpktgend_0
pgset "rem_device_all"

pgset "add_device ethl" PGDEV=/proc/net/pktgen/ethl
pgset "clone_skb 0"

PGDEV=/proc/net/pktgen/kpktgend_1 # pgset "flag IPDST_RND"

pgset "rem_device_all" pgset "dst6_min fecO::1"

pgset "add_device eth2" pgset "dst6_max fecO::FFFF:FFFF"

pktgen.conf-2-1 A script fragment assigningpktgen.conf-1-1-flows A script fragment for
ethl and eth2 to CPUO on a dual CPU system.route flow testing. Note clone_skb 0

PGDEV=/proc/net/pktgen/kpktgend_0 PGDEV=/proc/net/pktgen/ethl
pgset "rem_device_all" pgset "clone_skb 0"
pgset "add_device ethl" # Random address within the
pgset "add_device eth2" # min-max range

# pgset "flag IPDST_RND"
PGDEV=/proc/net/pktgen/kpktgend_1 pgset "dst_min 10.0.0.0"
pgset "rem_device_all" pgset "dst_ max 10.255.255.255"

# 8k Concurrent flows at 4 pkts
pgset "flows 8192"

pktgen.conf-1-2 A script fragment assigningpgset “flowlen 4
ethl, eth2 to CPU on single CPU system.

2x4+2 script
PGDEV=/proc/net/pktgen/kpktgend_0

pgset ::rem_dev_ice_all" ) #Script contributed by Grant Grundler
pgset "add_dev!ce eth1" # <grundler@parisc-linux.org>
pgset "add_device eth2 # Note! 10 devices

] PGDEV=/proc/net/pktgen/kpktgend_0
pktgen.conf-1-1-rdos A script fragment for pgset "rem_device_all"
route DoS testing. Note clone_skb O pgset "add_device eth3"
pgset "add_device eth5"
pgset "add_device eth7"

PGDEV=/proc/net/pktgen/ethl pgset "add_device eth9"

pgset "clone_skb 0" pgset "add_device eth11"

# Random address with in the pgset "max_before softirg 10000"
# min-max range

# pgset "flag IPDST_RND" PGDEV=/proc/net/pktgen/kpktgend_1
pgset "dst_min 10.0.0.0" pgset "rem_device_all"

pgset "dst_max 10.255.255.255" pgset "add_device eth2"
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pgset "add_device eth4" Multiple devices are trickier since one needs to
pgset "add_device eth6" know I/O bus topology. Typically one tries to
pgset "add_device eths balance 1/0 loads by installing the NICs in the

set "add_device ethl0" . e s .
Egset "max_before_softirq 10000" “right” slots or utilizing built-in devices appro-

priately.
# Configure the individual devices
foriin23456789 10 11 9.1 Multiple Devices
do
PGDEV=/proc/net/pktgen/eth$i
echo "Configuring $PGDEV" With multiple devices, it is best to use CTRL-

C to stop a test run. This prevents any pktgen

pgset “clone_skb 500000" thread from stopping before others and skew-

pgset "min_pkt size 60"

pgset "max_pkt_size 60" ing the test results. Sometimes, one NIC will
pgset "dst 192.168.3.10$i" TX packets faster than another NIC just be-
pgset "dst_mac 01:02:03:04:05:08i" cause of bias in the DMA latency or PCI bus
donsgset “count 0" arbiter (to name only two of several possibili-
echo "Running... CTRL-C to stop" ties). Using CTRL-C to stopgtest run gborts all
PGDEV=/proc/net/pktgen/pgctrl pktgen threads at once. This results in a clean
pgset "start" snapshot of how many packets a given configu-
ration could generate over the same period of

tail -2 /proc/net/pkigen/eth” time. After the CTRL-C is received, pktgen

will print the statistics the same as if the test
had been stopped by a counter going to zero.
9 Tips for driver/chip testing

9.2 Other testing aspects
When testing a particular driver/chip/platform,

start with TX. Use pktgen on the host system
P9 y Lo isolate driver/chip from other parts of ker-

to get a sense of which ptkgen parameters ar
J Pegen b nel stack, pktgen packets can be counted and

optimal and how well a particular NIC can per- q q : . .
form TX. Try with a range of packet sizes from 9'°PP€ at various points. See Section 9.3 on
detecting pktgen packets.

64 bytes to 1500 bytes or jumbo frames.

If the tested system only has one interface, the

Then start looking at the RX on the target plat- -
dummy interface can be setup as the output de-

form by using pktgen to inject packets either™ _
direct via crossover cable or via pktgen fromVice. The advantage is we can test the system
another host. at very high load and the results are very re-

produceable. Of course, other variables such
Again, vary the packet size etc To isolateas different types of offload and checksumming
driver/chip from other parts of kernel stack pkt- should be tested as well.

gen packets can be counted and dropped at var-

ious points. See section on detecting pktger?€sides knowing the hardware topology, one
packets. should know what workloads are expected to

be present on the target system when placed in
Depending on the purpose of the test repeat thproduction (i.e. real world use). An FTP server
process with additional devices, one at a timecan see quite a different workload than a web
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server, mail handler, or router, etc. Roughlyuseful insights. This paper covers several years
160 Kpps seems to fill a Gigabit link when run- of work and conversations with all of the above.
ning an FTP server. While this can vary, it gives

an useful estimate of required packet per secRelevant site:

ond (pps) versus bandwidth for this type of pro-ftp://robur.slu.se://pub/Linux/
duction system. net-development/pktgen-testing/

For routers the number of routes in the rout-Good luck with the linux net-development!
ing table is also an issue as lookup times and

other behaviour may be affected. The author

has taken snapshots from current Internet rout-

ing table IPV4 and IPV6 (BGP) and formed

into scripts for this purpose. The routes are

added via the ip utility so the tested system does

not need any routing connectivity nor routing

daemon. Some scripts are available from:

ftp://robur.slu.se/pub/Linux/
net-development/inet_routes/

At last use your fantasy when testing, elaborate
with new setups try to understand how things
are functioning, monitor interested and related
variables add printouts etc. Testing understand-
ing and development are closely related.

9.3 Detecting pktgen packets in kernel

Sometimes it's very useful to monitor/drop pk-
tgen packets within the driver/network stack ei-
ther atingress or egress. The technique for both
is essentially the same. The patchlet in Sec-
tion 13.1 drops pktgen packets at ingress and
uses an unused counter.

Also it should be possible to capture pktgen

packets via the tc command and the u32 clas-
sifier which might be a better solution in most

cases.

10 Thanks to...

Thanks to Grant Grundler, Jamal Hadi Salim,
Jens L&as, and Hans Wassen for comments and
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11 Appendix A

Table 3: Command Summary

| Commands

Pgcontrol commands

start Starts sending on all threads

stop

Threads commands

add_device Add a device to thread i.e ethO

rem_device_all Removes all devices from this thread

max_before_softirq do_softirq() after sending a number of packets

Device commands

debug

clone_skb Number of identical copies of the same packet 0 means alloc for each skb.
For DoS etc we must alloc new skb’s.

clear_counters normally handled automatically

pkt_size Link packet size minus CRC (4)

min_pkt_size Range pkt_size setting If < max_pkt_size, then cycle through the |port
range.

max_pkt_size

frags Number of fragments for a packet

count Number of packets to send. Use zero for continious sending

delay Artificial gap inserted between packets in nanoseconds

dst IP destination address i.e 10.0.0.1

dst_min Same as dst If < dst_max, then cycle through the port range.

dst_max Maximum destination IP. i.e 10.0.0..1

src_min Minimum (or only) source IP. i.e. 10.0.0.254 If < src_max, then cycle
through the port range.

Src_max Maximum source IP.

dst6 IPV6 destination address i.e fec0::1

src6 IPV6 source address i.e fec0::2

dstmac MAC destination adress 00:00:00:00:00:00

srcmac MAC source adress. If omitted it's automatically taken from source device

src_mac_count Number of MACs we’ll range through. Minimum’ MAC is what you set
with srcmac.

dst_mac_count Number of MACs we’ll range through. Minimum’ MAC is what you sgt
with dstmac.

Flags

IPSRC_RND IP Source is random (between min/max),

IPDST_RND Etc

TXSIZE_RND

UDPSRC_RND
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] Commands continuefl
UDPDST_RND
MACSRC_RND
MACDST_RND
udp_src_min UDP source port min, If <udp_src_mayx, then cycle through the port range.
udp_src_max UDP source port max.
udp_dst_min UDP destination port min, If < udp_dst_max, then cycle through the port

range.
udp_dst_max UDP destination port max.
stop Aborts packet injection. Ctrl-C also aborts generaiote; Use count O

(forever) and stop the run with Ctrl-C when multiple devices are assigned
to one pktgen thread. This avoids some devices finishing before others and
skewing the results. We are primarily interested in how many packets all
devices can send at the same time, not absolute number of packets each

NIC sent.
flows Number of concurrent flows
flowlen Length of a flow

12 Appendix B
12.1 Sample pktgen output

/proc/net/pktgen/eth@utput after run

Params: count 10000000 min_pkt size: 60 max_pkt size: 60

frags: 0 delay: 0 clone_skb: 1000000 ifname: ethl

flows: O flowlen: 0

dst min: 10.10.11.2 dst max:

src_min: src_max:

src_mac: 00:00:00:00:00:00 dst_mac: 00:07:E9:13:5C:3E
udp_src_min: 9 udp_src_ max: 9 udp_dst_ min: 9 udp_dst max: 9
src_mac_count: 0 dst_mac_count: 0

Flags:

Current:

pkts-sofar: 10000000 errors: 39192

started: 1076616572728240us stopped: 1076616585502839us idle: 1037781us
seq_num: 11 cur_dst_mac_offset: 0 cur_src_mac_offset: 0
cur_saddr: Ox10a0a0a cur_daddr: 0x20b0Oa0a

cur_udp_dst: 9 cur_udp_src: 9

flows: 0

Result: OK: 12774599(c11736818+d1037781) usec, 10000000 (64byte)
782840pps 382Mb/sec (400814080bps) errors: 39192

Results show 10 millon 64 byte packets were sent on ethl to 10.10.11.2
with a rate at 783 kpps



\section{Appendix C}
\subsection{pktgen.conf-1-1 script}

Below is the full pktgen.conf-1-1 script

\begin{footnotesize}
\begin{verbatim}
#l/bin/sh

#modprobe pktgen

function pgset() {
local result

echo $1 > $PGDEV

result="cat $PGDEV | fgrep "Result: OK:™
if [ "$result" = "™ ]; then
cat $PGDEV | fgrep Result:
fi
}

function pg() {
echo inject > $PGDEV
cat $PGDEV

}

# Config Start Here

# thread config

# Each CPU has own thread. Two CPU exammple.

# We add ethl, eth2 respectively.

PGDEV=/proc/net/pktgen/kpktgend_0
echo "Removing all devices"
pgset "rem_device_all"
echo "Adding ethl"
pgset "add_device ethl"
echo "Setting max_before_softirg 10000"
pgset "max_before softirg 10000"

# device config

# delay is inter packet gap. 0 means maximum speed.

CLONE_SKB="clone_skb 1000000"
# NIC adds 4 bytes CRC
PKT_SIZE="pkt_size 60"

# COUNT 0 means forever
#COUNT="count 0"
COUNT="count 10000000"
delay="delay 0"
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PGDEV=/proc/net/pktgen/ethl
echo "Configuring $PGDEV"
pgset "$COUNT"
pgset "$CLONE_SKB"
pgset "$PKT_SIZE"
pgset "$delay"
pgset "dst 10.10.11.2"
pgset "dst mac 00:04:23:08:91:dc"

# Time to run
PGDEV=/proc/net/pktgen/pgctrl

echo "Running... ctrl*C to stop"
pgset "start"
echo "Done"

# Result can be vieved in /proc/net/pktgen/ethl

13 Appendix D
13.1 Patchlettoip_input.c

Below is the patchlet to count and drop pktgen packets.

--- linux/net/ipv4/ip_input.c.orig Mon Feb 10 19:37:57 2003
+++ linux/net/ipv4/ip_input.c Fri Feb 21 21:42:45 2003
@@ -372,6 +372,23 @@

IP_INC_STATS_BH(IpInDiscards);

goto out;

__u8 *data = (__u8 *) skb->data+20;
[* src and dst port 9 --> pktgen */

if(data[0] == 0 &&
data[l] == 9 &&
data[2] == 0 &&
data[3] == 9) {
netdev_rx_stat[smp_processor_id()].fastroute_hit+

goto drop;

++++ 4+t
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if (pskb_may_ pull(skb, sizeof(struct iphdr)))
goto inhdr_error;
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TWwIN: A Window System for ‘SulrDA’ Devices

Keith Packard

HP Cambridge Research Laboratory
keithp@keithp.com

Abstract (200vHz, fixed point, 384B on-chip RAM),
8mB of flash memory, an AgilenraDNS-2030
_ . _ Optical mouse sensor, a Zigbee (802.15.4)
With embedded systems gaining high resoluyireless networking interface and an Epson
tion displays and powerfutpus, the desire for | or50176r00 Lcp screen (1.17, 120 x 160
sophisticated graphical user interfaces can bgy|or). At 200vHz, this processor is capable of

realized in even the smallest of systems. Whileignificant computation, but 384 holds little
the cpu power available for a given power gia.

budget has increased dramatically, these tiny
systems remain severely memory constrainedy, contrast, early graphical user interfaces for

This unique environment presents interestingjesktop platforms was more constrained by
challenges in graphical system design and imz5ijaple cpu performance than by memory.
plementation. To explore this particular spacegapy workstations had at least a million pixels
a new window systemywiN, has been de- 5nq°3 megabyte of physical memory but only
veloped. Using ideas from modern window gpqut 1mips of processing power. Software
systems in larger environmentswiN Offers iy this environment was much more a matter

overlapping translucent windows, anti-aliasedyf \what could be made fast enough than what
graphics and scalable fonts in a total memory,,.id fit in memory.

budget of 10@B.
While the X window system[7] has been ported
to reasonably small environments[2], a mini-
Motivation mal combination of window system server, pro-

tocol library and application toolkit consumes
on the order of 4 to @B of memory, some ten

Researchers at the HP Cambridge Researdhnes more than is available in the target plat-

Laboratory are building a collection of sma  form.

sized general purpose networked computers as

platforms for dissociated, distributed comput-Given the new challenge of providing a graph-

ing research. These devices include smalb  ical user interface in these tiny devices, it

or OLED screens, a few buttons and occasionseemed reasonable to revisit the whole graph-

ally some kind of pointing device. ical architecture and construct a new system
from the ground up. ThewIN window sys-

One of the hardware platforms under de-tem (for Tiny wiNdow system) is the result of

velopment consists of ams320 seriesDspP  this research.
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Assumptions means thatrwIN need support only one gen-
eral performance class of drawing operations.
For example,TWIN supports only anti-aliased

at!i'rawing; non-antialiased drawing would be

faster, but thecpus supported by twin are re-
quired to be fast enough to make this irrelevant.

The hardware described above can be gener
ized to provide a framework within which the
TWIN architecture fits. By focusing on specific
hardware capabilities and limitations, the win-
dow system will more completely utilize those The combined effect of these environmental
limited resources. Of course, over-constrainingimitations means thatwin can provide sig-

the requirements can limit the potential targetificant functionality with little wasted code.

environments. Given the very general nature ofyjindow systems designed for a range of tar-
existing window systems, it seems interestingyet platforms must often generalize functional-
to explore what happens when less variation igy and expose applications to variability which
permitted. will not, in practice, ever been experienced by
them. For example, X provides six different

X and static color displays. In practice, only True-
frame buffer, and that the frame buffer is at- play P y

) Color (separate monotonic red, green, blue ele-
tached to thecpu through a relatively slow (sep g

) , L ments in each pixel) will ever be used by the
link. This combination means that most draw pixel) y

. hould be d ith thepuin local “majority of X users. Eliminating choice has
INg shoulid be done wi puInlocal Mem- o1 efits beyond the mere reduction of window
ory, and not directly to the frame buffer. This

" o . system code, it reflects throughout the applica-
has an additional benefit in encouraging syn- y g PP

chronized screen updates where intermediattéOn stack.
rendering results are never made visible to the

user. If thecpu has sufficient on-chip storage,

this design can also reduce power consumptioWindowing

by reducing off-chip data references.

The second limitation imposed was to require aVindowing can be thought of as the process of
color screen with fixed color mapping. While simulating multiple, separate, two-dimensional
this may appear purely beneficial to the usersurfaces sharing the same display. These virtual
the software advantages are numerous as weBurfaces, or ‘windows,’” are then combined into
Imprecise rendering operations can now genem single presentation. Traditional window sys-
ate small nearly invisible errors instead of vis-tems do this by presenting a¥2 dimensional
ibly incorrect results through the use of anti-user interface which assigns different constant
aliased drawing. With smooth gradations ofZ values to each object so that the windows ap-
color available, there is no requirement thatpear to be stacked on top of one another.

the system support dithering or other color- _ _ N
approximating schemes. TwIN provides this traditional metaphor

through an architecture similar to the X
Finally, TWIN assumes that the target machinewindow system Composite extension in that
provides respectablepu performance. This all applications draw to off-screen image
reduces the need to cache intermediate rendédpuffers which are then combined and placed
ing results, like glyph images for text. Hav- in the physical frame buffer. This has many
ing a homogeneously performant target markeadvantages:
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- Rendering performance is decoupled fromany section* of the window overlapping the
frame buffer performance. As the embeddedscanline is painted into the intermediate scan-
frame buffer controllers include a private frameline. When complete, the scanline is sent to
buffer, the bandwidth available to tlePu for  the frame buffer. This single scanline provides
that memory is quite restricted. Decouplingthe benefits of a double buffered display with-
these two operations means that rendering caout the need for a duplicate frame buffer.
operate at full main memory speed instead of

the reduced video controller memory speed

- Rendering operations needn’t clip to over- _

lapping windows. Eliminating the need to per- Graphics

form clipping reduces the complexity and size

of the window system by eliminating the code o . .
y y g The availability of small color screens using ei-

needed to construct and maintain the clip Iistth technoloa bined with
data structures. erLcD or OLED technologies combined wi

- Applications need not deal with damagesluﬁ'.c'enthPUpoger. have gnlcgurggeddt[]etlnl;
events. In a traditional clipping-based window ©'USION of a rendering modet designed fo 1ake

system, applications must be able to reconstru ?X|mal qld\ﬁntag: ,?.f tlhe _I|m|ted dplxebl “?S°|'
their presentation data quickly to provide data/1on avaliable. - Anti-aliasing and sub-pixe
for newly visible portions of windows. addressing is used to produce higher fidelity

- Multiple window image formats can be sup- :endepr.lngs. w:tinn t?e I|m|tgd .sclregnd rtes‘olu-
ported, including those with translucency in- lon. Fer-pixel transiucency s inclided to see

formation. By constructing the physical frame.throth’ objects as well as permit arbitrary ob-

buffer data from the combination of various ECt Shapes to minimize unused space on the
window contents, it is possible to perform ar- screen.

bitrary image manipulation operations on those].he complete drawing stack provides a
window contents, including translucency ef'simacrulum of thePDF 1.4 drawing environ-

fects. ment, complete with affine transforms, color

nth del tedin the X wind ‘ image blending and PostScript path construc-
nthe model supported in the A WInAow SyStem;,, 5 drawing tools. Leveraging this classic

by the Composite extension, an external aIOpllIemd well known environment ensures both that

_catlon Its ret_spo?hs |bf|_e flor dlrect!ng thef SySt,?hmdevelopers will feel comfortable with the tools
In constructing the final screen Image from e, 14t the system is ‘complete’ in some infor-
off-screen window contents. WIN has a sim- mal sense

pler model where window contents are com-
posited together through a fixed mechanism.
This, of course, eliminates significant complex-
ity but at the cost of also eliminating significant pjxe| Manipulation
generality. WIN does not, and is not likely to,
support immersive 8 environments.

TwIN uses the rendering operational model
TwiIN tracks rectangular regions of modified from 8¥2[5], the window system developed for
pixels within each window. When updating thethe Plan 9 operating system by Cox and Pike,
screen, a single scanline of intermediate storthe same as used in the X render extension[4].
age is used to compute new screen content3his three-operand rendering operator forms
The list of displayed windows is traversed andthe base upon which all drawing is built:
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dst = (srcIN mask) OVER|SOURCE The application interface includes an affine

dst transformation from an arbitrary 16.16 fixed
point coordinate space to 12.4 fixed point pixel

space. The 16.16 fixed point values provide
The IN, OVER and SOURCE operators are as reasonable dynamic range for hardware which
defined by Porter and Duff.[6] By manipulat- does not include floating point acceleration.
ing the operands, this single operator performshe 12.4 fixed point pixel coordinates provide
all of the rendering facilities in thewIN sys-  sufficient resolution to accurately reproduce
tem. Geometric operations are performed byopject geometry on the screen. Note that the

constructing a suitable mask operand based oscreen is therefore implicitly limited to 4096
the shape of the geometry. pixels square.

Pixel data are limited imwIN to three formats,

8 bit alpha, 32 biarRGB and 16 bitRGB. Lim-

iting formats in this way along with the lim- Glyph Representation

ited number of operators in the rendering equa-

tion provided an opportunity to instantiate each L . .

combination in custom compositing code. With Providing text at multiple sizes allows the user
three formats for each operand and two Opera!_nterfac:e to take maximal advantage of the lim-

tors, there are 54 different rendering functiondt€d screen size. This can either be done by
in 13«8 of code. storing pre-computed glyphs at multiple sizes

or preparing glyphs at run-time from scalable
data. Commercial scalable font formats all rep-
resent glyphs in outline form. The resulting
Geomedtric Objects glyph is constructed by filling a complex shape
constructed from lines and splines. The out-
line data for one face for thescii character
For geometric operationswIN uses the model get could be compressed to less thas Z sig-

from PostScript as implemented in the cairopjficantly smaller than the storage needed for a
graphics system.[8] ‘Paths’ are constructedoitmap face at a single size.

from a sequence of lines and Bézier splines. An

arbitrary path can be convolved with a convexHowever, a straightforward rasterization of an
path to construct a new path representing theutline does not provide an ideal presentation
original path as stroked by the convex path. Then the screen. Outline fonts often include hint-
convolution operation approximates the outlineing information to adjust glyph shapes at small
of the Minkowski sum of the two paths. pixel sizes to improve sharpness and readabil-

ity. This hinting information requires signif-

A path can then be drawn by scan convertingcantly more code and data than the outlines

it to @ mask for use in the rendering operationthemselves, making it impractical for the target
described above. Because the rendering opergevice class.

tion can handle translucency, this scan conver-

sion operation does anti-aliasing by samplingAn alternative representation for glyphs is as
the path in a 44 grid over each pixel to com- stroke data. With only the path of the pen
pute approximate coverage data. This samplingecorded, the amount of data necessary to rep-
grid can be easily adjusted to trade quality forresent each glyph is reduced. More signifi-
performance. cantly, with the stroke width information iso-
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lated from the stroke path, it is possible to auto-
matically adjust the stroke positions to improve

the presentation on the screen. A secondary ad
justment of the pen shape completes the hinting
process. The results compare favorably with
fully hinted outline text.

An additional feature of the stroke representa- _ _ _ _
tion is that producing oblique and bold variants ~ Figure 1: Converting Lines To Splines
of the face are straightforward; slanting the text

without changing the pen shape provides a conGlyph Hinting

vincing oblique while increasing the pen width

r I Id. : : .
produces a usable bold Given the desire to present text at a variety

of sizes, the glyph shapes need to undergo a
. scaling transformation and then be rasterized

tory. The shapes come from work done b;to create an image. Unless this scaling is re-

Dr A.V. Hershey for the US National Bureau stricted to integer values, the edges of the re-
of S_tandards. Those glyphs were designed 1Eotrhe pixel grid. The resulting glyphs will appear
period pen plotters and were constructed fror‘r}uzz and will be hard to read

straight line segments on a relatively low reso- y '

lution grid. The complete set of glyphs containsg jmprove the appearance of the glyphs on the
many different letterforms from simple gothic gcreen, a straightforward mechanism was de-
shapes to letters constructed from multiple paryg|oped to reposition the glyph control points
allel strokes that provide an illusion of vary- tg improve the rasterized result. The glyph data
ing stroke widths. Many additional decorative 55 augmented to include a list of X and a list
glyphs were also designed. of Y coordinates. Each ‘snap’ list contains val-
ues along the respective axis where some point

within the glyph is designed to lie on a pixel

From this set of shapes, a simple gothic set ohoyndary. These were constructed automati-
letters, numbers and punctuation was choser|ly by identifying all vertical and horizon-
Additional glyphs were designed to provide ag) segments of each glyph, including splines

completeascii set. The curves within the Her- \hose ends are tangent to the vertical or hori-
shey glyphs, designed as sequences of shojhtq).

line segments, were replaced by cubic splines.

This served both to improve the appearance of he glyph coordinates are then scaled to the de-
the glyphs under a variety of transforms as welkired size. The two snap lists (X and Y) are
as to reduce the storage required for the glyphased to push glyph coordinates to the nearest
as a single cubic spline can replace many lingixel grid line. Coordinates between points on
segments. Figure 1 shows a glyph as originallya snap list are moved so that the relative dis-
designed with 33 line segments and the samtance from the nearest snapped coordinates re-
glyph described as seven Bézier splines. Stomain the same. The pen width is snapped to the
age for this glyph was reduced from 99 to 52nearest integer size. If the snapped pen width
bytes. is odd, the entire glyph is pushek a pixel

sulting strokes will not necessarily align with
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in both directions to align the pen edges withforms the sole geometry management mecha-
the pixel edges. Figure 2 shows a glyph beinghism within the toolkit and is reasonably com-
hinted in this fashion. petent at both constructing a usable initial lay-
out and adapting to externally imposed size
changes.
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Process & Thread Model

TwiIN was initially developed to run on a cus-
tom embedded operating system. This operat-
ing system design initially included simple co-
operative threading support, amd/IN was de-
signed to run different parts of the window sys-
tem in different threads:
« Input would run in one thread, events were
The effect is to stretch or shrink the glyph to dispatched without queuing directly to the re-
align vertical and horizontal strokes to the pixelceiving object.
grid. Glyphs designed with evenly spaced ver-. Each window would have a thread to redis-
tical or horizontal stems (like ‘m’) may end up play the window contents. These threads would
unevenly spaced; a more sophisticated hintinglock on a semaphore awaiting a change in ap-
systems could take this into account by preservplication state before reconstructing the win-
ing the relative spacing among multiple strokesdow contents. Per window locks could block
updates until the application state was consis-
tent.
« The window system had a separate thread
User Interface Objects to compose the separate window contents into
the final screen display. The global redis-
play thread would block on a semaphore which
With the window system supporting a singlethe per-window redisplay threads would signal
screen containing many windows, the toolkitwhen any window content changed. A global
extends this model by creating a single top-system lock could block updates while any ap-
level widget. This top-level widget contains a plication state was inconsistent.
single box for layout purposes. Each box can
contain a number of widgets or other boxes. This architecture was difficult to manage as
it required per-task locking between input and
Layout within each box is done either hori- output. The lack of actual multi-tasking of the
zontally or vertically with an algorithm which application processing eliminated much of the
comes from the Layout Widget[3] that the au-value of threads.
thor developed for Xt[1] library. Each wid-
get has a natural size and stretch in both diOnce this was working, support for threading
rections. The natural size and stretch of a boxvas removed from the custom operating sys-
is computed from the objects it contains. Thistem.

Figure 2: Hinting A Glyph
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With no thread support at alfwiN was re- window. The active window is set under ap-

designed with a global event loop monitoring plication control, such as when a mouse button
input, timers and work queues. The combi-press occurs within an inactive window. The

nation of these three mechanisms replaced thactive window need need not be the top-most
collection of threads described above fairly easwindow.

ily, and the complexities of locking between in- o _
put and output within a single logical task wereUnder both the original multi-threaded model
removed. and the current single-threaded model, there is

no event queueing within the window system;
Of course, once this was all working, theevents are dispatched directly upon being re-
custom operating system was replaced wittceived from a device. This is certainly easy to
ucLinux. manage and allows motion events to be easily

discarded when the system is too busy to pro-
While the single thread model works fine in cess them. However, with the switch to multi-
ucLinux, it would be nice to split separate outple independent processes running on ucLinux,
tasks into processes. nght now, all of the task& may become necessary to queue events be-

are linked into a monolithic executable. ThiStween the input collection agent and the appli-
modularization work is underway. cation processing them.

Within the toolkit, events are dispatched
through each level of the hierarchy. Within
each box, keyboard events are statically routed
to the active box or widget while mouse events

A window system is responsible for collecting &€ routed to the containing box or widget. By
raw input data from the user in the form of but- explicitly dispatching down each level, the con-
ton, pointer and key manipulation and distribut-t@ining widgets and boxes can enforce whatever

ing them to the appropriate applications. policy they like for event delivery, including
mouse or keyboard grabs, focus traversal and

TwiIN takes a simplistic approach to this pro-event replay.

cess, providing a single immutable model. _ o _

Pointer events are delivered to the window conYVhile this mechanism is fully implemented,
taining the pointing device. Transparent area&§"Uch investigation remains to be done to ex-
of each window are excluded from this contain-Plore what kinds of operations are useful and

ment, so arbitrary shapes can be used to sele@€ther portions of what is now application-
for input. defined behavior should be migrated into com-

mon code.
TwIN assumes that any pointing device will
have at least one associated signal — a mouse
button, a screen touch or perhaps somgthinwindow Management
else. When pressed, the pointing device is
‘grabbed’ by the window containing the pointer
at that point. Motion information is delivered TWIN embeds window management right into

only to that window until the button is released. the toolkit. Support for resize, move and min-
imization is not under the control of an exter-

Device events not associated with a pointernal application. Instead, the toolkit automat-
such as keyboards, are routed to a fixed ‘activeically constructs suitable decorations for each

Input Model
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window as regular toolkit objects and the nor-The current source code is available from via
mal event dispatch mechanism directs windowcvs, follow the link from http://keithp.com.
management activities. The code is licensed with awiT-style license,

permitting liberal commercial use.
While external management is a valuable archi-

tectural feature in a heterogeneous desktop en-
vironment, the additional space, time and COMReferences
plexity rules this out in today’s SubbA world.
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Figure 3: Sample Screen Image
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Abstract arbitration mechanism is required to determine
which participant owns the bus for purposes of
. ) . o asserting an address-data cycle onto the bus.
RapidlO is a switched fabric interconnect stan-gther participants will decode the address-data
dard intended for embedded systems. Providzycle and latch data locally if the address cycle
ing a message based interface, it is currentlys jnended for them. In the shared memory bus

capable of speeds up to 10Gb/s full duplexychitecture, there is one global address space
and is available in many form factors includ- gph5red amongst all participants.

ing ATCA for telecom applications. In this pa-
per, the author introduces a RapidlO subsystem
for the Linux kernel. The implementation pro-
vides support for discovery and enumeration of
devices, management of resources, and a con-

sistent access mechanism for drivers and othe\yitched fabric interconnect technology has
kernel facilities. As an example of the use Ofbeen around for some time with proprietary im-
the subsystem feature set, the author presenfementations like StarFabric. In recent years
a Linux network driver implementation which though, standardized switched fabrics like Hy-
communicates via RapidlO message packets. perTransport, Infiniband, PCI Express, and Ra-
pidlO have become more familiar names. A
switched fabric interconnect is usually mod-
eled much like a switched network architecture.
However, it provides features that a chip to
chip or intra-chassis conventional shared mem-
1.1 Busses and Switched Fabrics ory bus standard would provide. Each node

has at least one link that can be connected

point to point or into a switch element. An
To date, most well known system interconnecimplementation-specific routing method deter-
technologies have been shared memory bus desines packet routing in the network. Typi-
signs. ISA, PCI, and VMEDbus are all examplescally, a switched fabric interconnect incorpo-
of shared memory bus systems. A shared menrates some method of sending messages and
ory bus interconnect will have a specific busevents through the network. In some cases,
width which is measured by the number of datahe switched fabric will implement memory
lines routed to each participant on the bus. Armapped 1/O over the network.

1 Introduction to RapidlO

e 35 @
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hardware port which can send and receive
messages up to 4KB in size. A doorbell
is a specialized message port which can be
MMIO Messaging used for event notifications similar to mes-
sage signaled interrupts.

Logical Layer

Transport Layer

2. Transport Layer

Implements the device ID routing method-
ology. In RapidlO, packets are routed by
a unique device ID. Two different sizes of
device IDs are defined , either a small (8-
bit) or large (16-bit) device ID. The small
device ID allows a maximum of 256 de-
vices whereas the large device ID allows a
maximum of 65536 devices.

8-bit Device ID 16-bit Device ID

Figure 1: RapidlO Layers

3. Physical Layer

_ ) Offers either parallel or serial implemen-
1.2 RapidlO Overview tations for the physical interconnect. The
parallel version is available in 8-bit or 16-

The RapidlO interconnect technology was bit configurations with full duplex speeds
originally created by Motorola for use in em- up to 8 Gb/s and 16 Gb/s, respectively.
bedded computing systems. Motorola (now  The serialimplementation offers lane con-
Freescale Semiconductor) later created the Ra- ~ figurations of x1 or x4. In the x1 config-

pidlO Trade Association (RTA) to guide future uration, the single lane offers up to 3.125
development of the specification. A number of ~ Gb/s full duplex data throughput. In the
embedded silicon vendors are active members X4 configuration, each lane offers up to

The RapidlO specification is divided into three _
distinct layers. These layers are illustrated inl-3 RapidlO versus PCI Express
Figure 1.

RapidlO is often compared to PCI Express be-

1. Logical Layer cause of the popularity of PCI Express in the
Provides methods for memory mapped I/Ocommodity PC workstation/server market. On
(MMIO) and message-based access to dethe surface, both seem very similar, offering
vices. MMIO allows for accesses within a features that improve upon the use of conven-
local memory space to generate read/writdional PCI as a system interconnect. RapidlO,
transactions within the address space of &owever, is designed with some features tar-
remote device. Each device has a uniqugeted at specific embedded system needs that
RapidlO address space that can range fronwill likely facilitate its inclusion in many appli-
34-bits to 66-bits in size. RapidlO pro- cations. There are now embedded processors
vides a messaging model with mailbox available which include both PCI Express and
and doorbell facilities. A mailbox is a RapidlO support on the chip.
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PCI Express and RapidlO have similar data ratsupport up to 8Gb/s full duplex data through-

capabilities. PCI Express offers lane configuraput. The first RapidlO processor elements
tions of x1 through x32 where each lane offers(endpoints with a processor) are Freescale’s
2 Gb/s full duplex data throughput. In a typical MPC8540 and MPC8560 Systems-on-a-Chip
PC implementation there is a single x16 slot for(SoC). The first RapidlO switch is the Tundra

graphics that handles 32 Gb/s full duplex andTsi500.

multiple x1 slots which can handle 4 Gb/s full
duplex. The first commercially available system with

_ o _ these parts is the STx GP3 HIPPS2 de-
Both interconnects also have similar discoveryelopment platform.  This system includes
models. A separate set of transactions is use@ne or more STx GP3 boards containing the
to access configuration space registers. Conypcgs60 processor and a HIPPS2 RapidlO
figuration space accesses are used to determip@ckplane with two Tsi500 switches. The
existence of nodes in the system and additionglinyx RapidlO subsystem is being developed
information about those nodes. using this platform with two STx GP3 boards

A major difference between PCI Express anoDlugged into the HIPPS2 backplane.

RapidIO is in system topology capability. PCI
Express is backward compatible with PCI and
therefore depends on the host and multiple3
slave device model. RapidlO is designed for
multiple hosts in the system performing redun-
dant discovery. In addition, it can be configureds 4 Subsystem Overview
in any network topology allowing direct node

to node communication.

Linux RapidlO Subsystem

Due to the discovery mechanism similarities

Device addressing is very different as well. lnbetween PCI and RapidIO, the RapidiO sub-
PCI Express, the globally shared address space S

N : . . System has a structure which is similar to that
with hierarchical windows of address space is

retained from PCI. This is important for back- of the PCI subsystem. The subsystem hooks

o into the standard Linux Device Model (LDM)
ward compatibility of software and allows rout- . L ) .
. . : in a similar fashion to other busses in the ker-
ing of packets via base address assignments

RapidlO’s device ID based routing simplifies nel. RapidlO specific device and bus types

- . are defined and registered with the LDM. The
changes to the network due to device failure or . : :

core subsystem is designed such that there is
hot plug events.

a clear separation between the generic subsys-
PCI Express does not offer a standardized medem interfaces and architecture specific inter-
saging facility. Most modern distributed appli- faces which support RapidlO. Finally, a set of

cations are based on message passing architeg!bsystem device driver interfaces is defined to
tures. abstract access to facilities by device drivers.

2 RapidlO Hardware 3.2 Subsystem Core

The current generation RapidIO parts use an 8Fhe core of the Linux RapidlO subsystem re-
bit wide parallel physical layer. These parts carnvolves around four major components.
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1. Master Port. A master port is an inter- of the RapidlO system. Fields are present to
face which allows RapidIO transactions tocache many common configuration space reg-
be transmitted and received in a systemisters.

A master port provides a bridge from a

processor running Linux into the switched struct rio_net (Figure 5) contains in-

fabric network. formation about a specific RapidlO network
) ) o . known to the system. It defines a list of all

2. Device. A RapidIO device is any endpoint yeices that are part of the network. Another
or switch on the network. list tracks all of the local processor master ports

3. Switch. A RapidlO switch is a special that can access this network. Theort field

class of device which routes packets peloints to the default master port which is used
tween point to point connections to reacht© communicate with devices within the net-

their final destination. work.

4. Network. A RapidlO network comprises a
set of endpoints and switches that are in-3.3 Subsystem Initialization
terconnected.

Each of th : di In order to initialize the RapidlO subsystem, an
ach ofthese components Is mappe Intoasuktljl'rchitecture must register at least one master

system structure. The RapidlO subsystem US&Sort to send and receive transactions within the
these structures as the root handle for manip apidlO network. Asubsys._initcall()

I";]‘t'ng the hardware components abstracted by o istered which is responsible for any arch-
the structures. specific RapidlO initialization. This includes
hardware initialization and registration of ac-

struct rio_mport Figure 2) contains in- | : .
-mp (Fig ) tive master ports in the system. The final

formation regarding a specific master port. o . L
Master port specific resources such as inboung <P of the |n|t_caII 'S to execuheo_lnlt__
mailboxes and doorbells are contained in thié’n_ports() which performs enumeration and
structure. If a master port is defined as a enug'SCOVery on all registered master ports.
merating host, then the structure will contain
a unique host device ID. The host device ID
is used for multi-host locking purposes during
enumeration.

3.4 Enumeration and Discovery

struct rio switch (Figure 3) contains The enumeration and discovery process is im-

information about a RapidlO switch device. Plemented to comply with the multiple host
The structure is populated during enumeratiorfgnumeration algorithm detailed in tikapidlO
and discovery of the system with information Interconnect Specification: AnneX1]. Enu-
such as the number of hops to the switch andneration is performed by a master port which
the routing table present in the switch. In ad-iS designated as a host port. A host port is de-
dition, pointers to switch specific routing table fined as a master port which has a host device

operations reside here. ID greater than or equal to zero. A host device
ID is assigned to a master port in a platform
struct rio_dev (Figure 4) contains infor- specific manner or can be passed on the com-

mation about an endpoint or switch that is partmand line.
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struct rio_mport {
struct list_head dbells; / * list of doorbell events x/
struct list_head node; / x node in global list of ports x/
struct list_head nnode; / x node in net list of ports x/
struct resource iores;
struct resource riores[RIO_MAX_ _MPORT_RESOURCES];
struct rio_msg inb_msg[RIO_MAX_MBOX];
struct rio_msg outb_msg[RIO_MAX_MBOX];
int host_deviceid,; / * Host device ID */
struct rio_ops *0pS; / * maintenance transaction functions x/
unsigned char id; / x port ID, unique among all ports x/
unsigned char index; / x port index, unique among all port
interfaces of the same type */
unsigned char name[40];
b
Figure 2: struct rio_mport
struct rio_switch {
struct list_head node;
ulé switchid;
ulé hopcount;
ulé destid;
ulé route_table[RIO_MAX_ROUTE_ENTRIES];
int ( *add_entry)(struct rio_mport smport, ul6é destid, u8 hopcount,
ul6é table, ul6 route_destid, u8 route_port);
int ( xget_entry)(struct rio_mport «mport, ulé destid, u8 hopcount,
ulé table, ul6 route_ destid, u8 xroute_port);
b

Figure 3: struct rio_switch
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struct rio_dev {
struct list_head global list;  / x node in list of all RIO devices x/
struct list_head net_list; / x node in per net list */
struct rio_net *net; | % RIO net this device resides in x*/
ul6 did;
ul6 vid;
u32 device rev;
ulé asm_did;
ulé asm_vid;
ulé asm_rev;

ulé efptr;
u32 pef;
u32 swpinfo; |/ x Only used for switches */
u32 src_ops;
u32 dst_ops;
struct rio_switch xrswitch; /% RIO switch info x/
struct rio_driver «driver; | % RIO driver claiming this device x*/
struct device dev; / x LDM device structure x/
struct resource riores[RIO_MAX DEV_RESOURCES];
ulé destid;
b
Figure 4: struct rio_dev
struct rio_net {
struct list_head node; / x node in list of networks */
struct list_head devices; / x list of devices in this net */
struct list_head mports; / x list of ports accessing net x/
struct rio_mport «xhport; |« primary port for accessing net x/
unsigned char id; / * RIO network ID x/
b

Figure 5: struct rio_net
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During enumeration, maintenance transactionsn the switch. For each active link, a route to
are used to access the configuration space of da-fake device ID (OxFF for 8-bit systems and
vices. A maintenance transaction has two comOxFFFF for 16-bit systems) is written to the
ponents to address a device, a device ID andbute table. The algorithm recurses by calling
a hopcount. The device ID is normally useditself with hopcount + 1 and the fake device ID
for endpoint devices to determine if they shouldin order to access the device on the active port.
accept a packet. It is a requirement for all deWhile traversing the network, the current allo-
vices to ignore the device ID and accept anycated device ID is tracked. When the depth first
transaction during enumeration. Switches are &raversal completes, the recursion unwinds and
different case, however, as they do not implepermanent routes are written into the switch
ment a device ID. Transactions which reach aouting tables. The device IDs that were found
switch device must have their hopcount set apbeyond a switch port are assigned route entries
propriately. If a maintenance transaction with apointing to the port which they were found be-
hopcount of 0 reaches a switch, then the switchind.
will process the packet against its own configu-
ration space. If a maintenance transaction has@When the host has completed enumeration
hopcount greater than 0, then the switch decresf the entire network it callgio_clear
ments the hopcount in the packet and forward$ocks()  to clean up. For each device in the
it along according to the route set for the corressystem, it writes a magic "enumeration com-
sponding device ID in the packet. plete" value to the Component Tag Register.
This register is essentially a scratch pad register
The enumeration process walks the networkeserved for enumeration housekeeping. After
depth first. Like PCI enumeration, this is eas-ijs process, all Host Device ID Lock Registers
ily implemented by recursion. When a devicegre cleared. Remote nodes that are to initiate

is found, the Host Device ID Lock Register is passive discovery of the network wait for the
written to ensure that the enumerator has eXC'“magic value to appear in the Component Tag

sive enumeration ownership of the device. Th&register and then begin discovery.
device’s capabilities are then queried to deter-

mine if it is a switch or endpoint device. The discovery process is similar to the enumer-

If the device is an endpoint, itis allocated a newatlon process that has already been described.

unique device ID and this value is written to However, the discovery process is performed

the endooint. Anewio dev s allocated and passively. This means that all devices in the
initializepd ' - network are traversed without modifying de-

vice IDs or routing tables. This is necessary
If the device is a switch, its vendor and de-in the case where there are multiple enumer-

vice ID are queried against a table of knownation capable endpoints in the system. Typ-
RapidIO switches. A switch table entry has alcally, only one or two processors with end-
set of switch routing operations which are spePoints will be designated as enumerating hosts.
cific to the located switch. The routing opera-Out of the competing enumeration hosts, only
tions are used to read and write route entries i®N€ host can win. The losing hosts and other
the switch. Newio dev andrio switch non-enumerating processors are forced to wait
structures are then allocated and initialized.  Until enumeration is complete. At that point,
they may traverse the network to find all de-
Enumeration past a switch device is accomvices without disturbing the network configu-
plished by iterating over each active switch portration. When discovery completes, the Linux
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3.5 Enumeration and Discovery Example

(Host)

Processor
Element
0

Figure 6 illustrates a typical RapidlO system.
There are four processor elements (PES) num-
bered zero through three. Each PE provides Ra-
pidlO endpoint functionality and is connected
to each of four ports on the switch in the center.
PE 0O is the only designated enumerating host in
the system and is assigned a host device ID of O.
PEs 1-3 do not perform enumeration, but rather
Re—— wait for the signal indicating that enumeration
Element has been completed by PE 0.

2

0

Processor
Element
g

Processor
Element
1

3 Switch 1

2

PE 0 begins enumeration by attempting to ob-
Figure 6: Example RapidlO System tain the host device ID lock on the adjoining
device. The transaction to configuration space
is issued with a hopcount of 0 and a device ID
of OxFF. Since the hopcount of the transaction
is 0, the switch will process the request and al-
low PE O to obtain the lock. Once the lock
is obtained, PE 0 queries the device to learn
that it is a switch and allocate®o_dev and
rio_switch structures.

RapidlO subsystem will have a complete view
of all RapidlO devices in the network.

In the passive discovery process, the network i§'E O queries the switch to determine that there
walked depth first as with enumeration. How-are 4 ports with active links present. PE 0 then
ever, the existing route table entries are uti?€gins a loop to iterate over the 4 active ports,
lized to generate transactions that pass throug$KiPRIng the input port which it is using to ac-
a switch. When an endpoint device is discov-C€SS the switch device. For each active switch
ered, ario_dev s allocated but the device Port, PE 0 performs the following:

ID is retrieved from the value written in the

Base Device ID Register. When a switch de-

vice is found, discovery iterates over each ac- 1. Writes aroute entry that assigns device 1D
tive switch port as with enumeration. How- OXFF to the current active switch port.
ever, in order to generate transactions for de- ) _ _
vices beyond that switch port, the routing ta- 2 |SSues configuration space transactions
ble is scanned for an entry which is routed out ~ With @ hopcount of 1 to access the devices
that switch port. Using the device ID associ-  thatare one hop from PE 0:

ated with the switch port, discovery issues a

transaction with the associated device ID and e Obtains the host device ID lock for

a hopcount equal to the number of hops into each device.
the network. The process continues in a similar e Queries the device to determine that
manner as described with enumeration until all it is an endpoint and allocates a

devices have been discovered. rio_dev structure.
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e Assigns the next available device ID
to the endpoint. PEs 1-3 are assigned
device IDs 0x01-0x03, respectively.

3. Assigns route entries corresponding to the
switch ports where the PEs were discov-
ered. Route entries for device IDs 0x01-

rio_local_config_write 16()
rio_local_config_write_32()

Read or write a specific size at an off-
set of the local master port’'s configuration
space.

0x03 are assigned to switch ports 1-3, ré-geyeral calls handle the ownership and initial-

spectively.

ization of mailbox and doorbell resources on a

master port or remote device.

After this process completes, PE O writes the
magic "enumeration complete" value into the

Component Tag Register on each device. This
is followed by PE 0O releasing the host device ID

lock on each device in the system. Once PEs 1-
3 detect that enumeration is complete, they are
free to begin their discovery process.

3.6 Driver Interface

RapidlO device drivers are provided a specific
set of functions to use in their implementation.
In order to guarantee proper functioning of the
subsystem, drivers may not access hardware re-
sources directly.

Configuration space access is managed similar

to configuration space access in the PCl sub-

system.

e rio_config_read_8()
rio_config_read_16()
rio_config_read_32()
rio_config_write_8()
rio_config_write_16()
rio_config_write_32()

Read or write a specific size at an offset of
a device.

e rio_local_config_read_8()
rio_local_config_read _16()
rio_local_config_read 32()
rio_local_config_write_8()

e rio_request_outb_mbox()

rio_request_inb_mbox()

Claim ownership of an outbound or in-
bound mailbox, initialize the mailbox for
processing of messages, and register a no-
tification callback. The outbound mailbox
callback provides a interrupt context event
when a message has been sent. The in-
bound mailbox callback provides an event
when a message has been received.

rio_release_outb_mbox()
rio_release_inb_mbox()

Give up ownership of an outbound or in-
bound mailbox and unregister notification
callback.

rio_request_outb_dbell()

Claim ownership of a range of doorbells
on a remote device. Ownership is only
valid for the local processor.

rio_request_inb_dbell()

Claim ownership of a range of doorbells
on the inbound doorbell queue, initialize
the doorbell queue, and register a call-
back. The doorbell callback provides an
event when a doorbell within the regis-
tered range is received.

rio_release_outb_dbell()

Give up ownership of a range of doorbells
on a remote device.
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e rio_release_inb_dbell() low-level operations are used by the driver
interface configuration space access rou-

Give up ownership of a range of doorbells )
tines.

on the inbound doorbell queue.

e rio_ops.dsend()
Several calls provide access to doorbell and  Hargware specific implementation for

message queues. generation of a doorbell write transaction.
This master port specific routine is as-
e rio_send_doorbell() signed to asj[ruct rio_mport and
-~ used by therio_send_doorbell()
Send a doorbell message to a specific de- 5|

vice.
. e rio_hw_open_outb_mbox()
e rio_add_outb_message() rio_hw_open_inb_mbox()
Add a message to an outbound mailbox

queue.

e rio_add_inb_buffer() .
. _ e rio_hw_close_outb_mbox()
Add an empty buffer to an inbound mail- rio_hw_close_inb_mbox()

box queue.

Hardware specific initialization for out-
bound and inbound mailbox queues.

Hardware specific cleanup for outbound
e ri0_get_inb_message() and inbound mailbox queues.

Get the ne.xt available message from an in- e rio_hw_add_outb_message()
bound mailbox queue.
Hardware specific implementation to add

_ a message buffer to the outbound mailbox
3.7 Architecture Interface queue.

. . e rio_hw_add_inb_buffer()

Every architecture must provide implementa- — _
tions for a set of RapidlO functions. These = Hardware specific implementation to add
functions manage hardware-specific features ~an empty buffer to the inbound mailbox
of configuration space access, mailbox access, queue.
and doorbell access. _ _
e rio_hw_get_inb_message()

Hardware specific implementation to get

* rio_ops.lcwrite() the next available inbound message.

rio_ops.lcread()
rio_ops.cwrite()

rio_ops.cread() An architecture must also implement inter-

Hardware specific implementations for rupt handlers for mailbox and doorbell queue
generation of read and write transac-events. Typically, inbound doorbell and mail-
tions to configuration space. These masbox hardware will generate a hardware inter-
ter port specific routines are assigned tarupt to indicate that a message has arrived. Out-
a struct rio_ops which is in turn  bound doorbell hardware will typically gener-
bound to astruct rio_mport . These ate a hardware interrupt when a message has
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been successfully sent. The architecture interio_dev  structure to sysfs. In addition to the
rupt handler must process the event in an apstandarddev_attrs  sysfs support, &onfig
propriate manner for the message type and agiode is exported similar to the same node in the
knowledge the hardware interrupt. PCI subsystem. It provides userspace access to

the 2MB configuration space on each RapidlO
For inbound doorbell messages, the handlegevice.

must extract the doorbell message info and

check for a callback that has been regisRRapidlO  specific  implementations  of
tered for the doorbell message it has reProbe() , remove() , and driver register/
ceived. If a callback has been registered (usingnregister are also provided.
rio_request_inb_dbell() ) for a door-

bell range that includes the received doorbell

message, the callback is executed. The cald RapidlO Messaging Network
back indicates the source, destination, and 16-  Driver (rionet)

bit info field (the doorbell message) that was

received. ) )
4.1 rionet Overview

A mailbox interrupt handler must execute the
registered callback for the mailbox that gen-With the subsystem in place, a driver is still
erated the hardware interrupt. It may be reneeded to make use of the new functional-
quired to do some hardware-specific ring bufferity.  Since the first RapidlO parts available
management and must acknowledge the hardare processors with RapidlO interfaces, a net-
ware interrupt. The callback is registered us-work driver to provide communication over the
ing rio_request_inb_mbox() or rio_ RapidlO switched fabric makes good sense.
request_outb_mbox() The RapidlO messaging model makes this
easy since managing outbound and inbound
messages is much like a managing a modern
3.8 Device Model descriptor-based network controller.

The RapidlO subsystem ties into the Linux De-4.2 rionet Features

vice Model in a similar way to most other de-

vice subsystems. A RapidlO bus is registeredionet has the following features:

with the device subsystem and each RapidIlO

device is registered as a child of that bus. Ra- o Ethernet driver model for simplicity

pidlO specifianatch anddev_attrs  imple-
mentations are provided. e Dynamic discovery of network peers using

doorbell messages
rio_match_bus() implementation is a
simple device to driver matching implementa-
tion. It compares vendor and device IDs of
a candidate RapidlO device to determine if a ¢ Maximum MTU of 4082
driver will claim ownership of the device.

e Unique MAC address generation based on
RapidlO device ID

e Uses standard RapidlO subsystem mes-

Therio_dev_attrs[] implementation ex- sage model to work on any RapidlO end-
ports all of the common register fields in the  Points with mailboxes and doorbells
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4.3 rionet Implementation rionet is designed such that it defaults to the
maximum allowable MTU size. With a maxi-
mum RapidlO message payload of 4096 bytes,

The rionet driver is initialized with ario_ the default MTU size is 4082 after allowing for
register_driver() call. The id_  the 14 byte Ethernet header overhead. Due to
table is configured to match all RapidlO de- the inclusion of the RapidlO device ID in the
vices so that theionet_probe() call will  generated MAC address, Ethernet packets in

qualify rionet devices. The probe routine ver- this driver contain all the information required
ifies that the device has mailbox and doorbello send the packets over RapidIO.
capabilities. If the device is mailbox and door-
bell capable, then it is added to a list of poten-The hard_start_xmit() implementation
tial rionetpeers. If at least one potential peer isiN rionet is similar to any standard Ethernet
found, the local RapidlO device is queried fordriver except that it must verify that a desti-
its device ID. The MAC address is generated byation node is active before queuing a packet.
concatenating 3 bytes of a well known Ethernet! he active peer list that was created during the
test network address with a 1 byte zero pad anfonetdiscovery process is used for this verifi-
finally the 2 byte device ID of the local device. cation. The least significant 2 bytes of the des-
tination MAC address are used to index into
Whenrionet is opened, it requests a range ofthe active peer list to verify that the node is
doorbell messages and registers a doorbell calfctive. If the node is active, then the packet
back to process doorbell events. Two mesiS queued for transmission usin_add_
sagesRIONET_JOIN andRIONET_LEAVE Outb_message() . Housekeeping for free-
are defined to manage the active peer discoveid of completed skbs is handled using the out-
process. For each device in the potential pegpound mailbox transmission complete event.
list, theRIONET_JOIN andRIONET _LEAVE Thisis similar to how a standard Ethernet driver
outbound doorbell resources are claimed. AftetSes a direct hardware interrupt event for TX
verifying that the potential peer device has ini-complete events.
tialized inbound doorbell service, RIONET _

) ) Ethernet packet reception is also very similar
JOIN doorbell is sent to it. b P y

to standard Ethernet drivers. In this case, it is
driven from the inbound mailbox event handler.
The doorbell event handler processes A .

. his callback is executed when the hardware
RIONET_JOIN doorbell by doing the follow- . . : o
ina- mailbox receives an inbound message in its

g gueue.rio_get_inb_message() is used

to retrieve the next inbound Ethernet packet
from the inbound mailbox queue. As skbs are
consumed, a ring refill function adds additional
empty skbs to the inbound mailbox queue using
rio_add_inb_buffer()

1. Adds the originating device ID to the ac-
tive peer list.

2. Sends &KIONET_JOIN doorbell as a re-
ply to the originator. The result is an Ethernet compatible driver
which can be used to leverage the huge set
of TCP/IP userspace applications for develop-
If a RIONET_LEAVEdoorbell is received, the ment, testing, and deployment. The Ether-
originating device ID is removed from the ac- net implementation allows routing betwegn
tive peer list. onetand wired Ethernet networks, opening up
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many interesting application possibilities. 1t6 Conclusion

is possible to provide the root file system to

nodes via NFS over RapidlO. Coupling this ) , )
with firmware support for booting over Ra- 10day, the Linux RapidlO subsystem provides
pidIO, it is possible to boot an entire network & COMPplete layer for initialization of a Ra-

of RapidlO processor devices over the Rapidid?'d!O network and a driver interface for mes-
network. sage passing based drivers. The message pass-

ing network driver,rionet, provides a simple
mechanism for application developers to take
advantage of RapidlO messaging. As new Ra-
pidlO devices are releasedpnet will serve as

5 Going Forward a reference driver for authors of new RapidlO
device drivers.

Although the Linux RapidlO subsystem encap-
sulates much of the hardware functionality of
RapidlO, a few areas have been left incompleteReferences

The following features are in development or _ o )
planned for development. [1] RapidlO Trade Association. RapidlO

Interconnect Specification.
http://www.rapidio.org

e In the future, the Linux RapidlO sub-
system will add an interface for man-
aging MMIO regions which are mapped
to per-device address spaces. As a part
of this effort, mmapable sysfs nodes for
each region will be exported for use from
userspace.

e Although parallel RapidlO provided the
first available RapidlO hardware, 16-bit
device ID addressable serial RapidlO is
the direction where all future hardware is
heading. The subsystem is being extended
to handle 16-bit device IDs and the serial
RapidIO physical layer.

e In order to make use of the standardized
error reporting facilities in RapidlO, an in-
terface will be required to register and pro-
cess Port Write Events. These are unso-
licited transactions which are reported to a
specified host in RapidlO Typically, they
will be used for error reporting.
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Abstract modify-build-test loop often required for un-

derstanding details of Linux kernel behavior.
SystemTap is designed to be sufficiently ro-

Dmgr}osmg complex performgnce or kernel q(_ebust and efficient to support applications in pro-
bugging problems often requires kermnel mOdIfI‘duction environments. Our broad goals are to

cations with multiple rebuilds and reboots. Th'sreduce the time and complexity for analyzing

IS :edlous, twr;g-cor;sumlng_ v_vo_rk that most Ole'problems that involve kernel activity, to greatly

velopers would prefer to minimize. expand the community of engineers to which

Systemtap uses the kprobes infrastructure tSUCh analysgs are avallgble, and to reduce the
need to modify and rebuild the kernel as a trou-

dynamically instrument the kernel and user ap-

plications. Systemtap instrumentation incurs,bl(:"ShO(y[Ing technique.

low overhead when enabled, and zero overheagoday identifying functional problems in

when disabled. SystemTap provides faCiIitieﬁ_inux systems often involves modifying kernel

to define instrumentation points in a h'gh'leve_lsource with diagnostic print statements. The
language, and to aggregate and analyze the |§-

; tation data. Details of the SvstemT. rocess can be time-consuming and require de-
strumentation data. Detalls ot tn€ Systemiaf ;o g knowledge of multiple subsystems. Sys-
architecture and implementation are presente

: : o emTap uses dynamic instrumentation to make
along with an example of its application. this same level of data available without the
need to modify kernel source or rebuild the ker-
nel. It delivers this data via a powerful scripting
1 Introduction facility. Interesting problem-analysis tools can

be implemented as simple scripts.

This paper introduces SystemTap, a new perSystemTap is also designed for analyzing
formance and kernel troubleshooting infras-system-wide performance problems. While ex-
tructure for Linux. SystemTap provides aisting Linux performance tools likeostat
scripting environment that can eliminate thevmstat , top , andoprofile are valuable

o 49 o
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for understanding certain types of performance Kprobes
problems, there are many kinds of problems

that they don't readily expose, including: Kprobes, a new feature in the Linux 2.6 kernel,

allows for dynamic, in-memory kernel instru-
. o mentation. To use kprobes, the developer cre-
Interactions between applications and theates a loadable kernel module with calls into

operating system the kprobes interface. These calls specify a
kernel instruction address, tipeobe point and
¢ Interactions between processes an analysis routine gurobe handler Kprobes

arranges for control flow to be intercepted by
Interactions between kernel subsystems patching the probe point in memory, with con-

trol passed to the probe handler. Kprobes has
Problems that are obscured by ordinarybeen carefully designed to allow safe inser-
behavior and require examination of an action and removal of probes and to allow in-
tivity trace strumentation of almost any kernel routine. It
lets developers add debugging code into a run-
ning kernel. Because the instrumentation is dy-
enamic, there is no performance penalty when
probes are not used.

Often these problems are difficult to reproduc
in a test environment, making it desirable to

have a t90| that is sufﬁqently erx!bIe, rOF’“St The basic control flow interception facility of
and efficient to be used in production enV'ron'kprobes has been enhanced with a number of
ments. These scenarios further motivate OUufqgitional facilities. Jprobesmakes it easy to
work on SystemTap. trace function calls and examine function call

_ parameters. Kretprobesis used to intercept
SystemTap builds on, and extends, the capgynction returns and examine return values. Al-

bilities of the kprobes  [6, 7] kernel debug- hoygh it is a powerful system for dynamic in-
ging infrastructure. SystemTap has been influyyymentation, a number of limitations prevent
enced by a number of earlier systems, 'nC|Udkprobes from broader use:

ing kerninst [9], Dprobes [6], the Linux Trace
Toolkit (LTT) [10], the Linux Kernel State
Tracer (LKST) [1], and Solaris DTrace [5, 8]. e Kprobes does very little safety checking
of its probe parameters, making it easy to
This paper starts with a brief discussion of the ~ crash a system through accidental misuse.
existing dynamic instrumentation provided by
Kprobes in the Linux 2.6 kernel, and explains
the disadvantages of this approach. Next we de-
scribe a few key aspects of the SystemTap de-
sign, including the programming environment,
the tapset abstraction, and safety in SystemTap. ¢ Due to references to kernel addresses
We continue with an example that illustratesthe  and specific kernel symbols, the porta-
power of SystemTap for troubleshooting per- bility of the instrumentation code using
formance problems that are difficult to address  the kprobes interface is poor. This lack
with existing Linux tools. We close the paper of portability also limits re-usability of
with conclusions and future work. kprobes-based instrumentation.

e Safe use of kprobes often requires detailed
knowledge of the code path to be instru-
mented. This limits the group of develop-
ers who will use kprobes.
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e Kprobes does not provide a convenient

mechanism to access a function’s local v orots St
variables, except for a jprobe’s access to parse
the arguments passed into the function. v
elaborate |«

e Although using kprobes doesn’t require a v tapset Tbrary
kernel build-install-reboot, it does require vansate 0.0, comple
knowledge to build a kernel module and
lacks the support library routines for com- v >D ‘
mon tasks. This is a significant barrier for load moduie, startprope (A Prove Kemeteblect
potential users. A script-based system that v
provides the support for common opera- extract output, unload _>_'1

tions and hides the details of building and
loading a kernel module will serve a much
larger community. Figure 1: SystemTap processing steps

probe output

These limitations are part of our motivation for 3.1 SystemTap processing steps
creating SystemTap.

The steps SystemTap uses to convert an instru-
mentation script into executable instrumenta-
tion and extract collected data are shown in Fig-
3 SystemTap ure 1. SystemTap takes a compilation approach
to generate instrumentation code, unlike the in-
terpreter approach other similar systems have
SystemTap [2] is being designed and develiaken [6, 5, 8]. A compiler converts the in-
oped to simplify the development of system in-strumentation script and tapset library into C
strumentation. The SystemTap scripting lan-code for a kernel module. After compilation
guage allows developers to write custom in-and linking with the SystemTap runtime, the
strumentation and analysis tools to address thkernel module is loaded to start the data collec-
performance problems they are examining. Ition. Data is extracted from module into user-
also improves the reuse of existing instrumenspace via reliable and high performance trans-
tation. Thus, people can build on the expertisgort. Data collection ends when the module
of other developers who have already createds unloaded from the kernel. The elaboration,
instrumentation for specific kernel subsystemstranslation, and execution steps are described
in greater detail in the following subsections.
Portability is a concern of SystemTap. The in-
tent is to provide SystemTap on all architec-
tures to which kprobes has been ported. 3.2 Probe language
Safety of the SystemTap instrumentation is anThe SystemTap input consists of a script, writ-
other major concern. The tools minimize theten in a simple language described in Section 4.
chance that the SystemTap instrumentation willThe language describes an association of han-
cause system crashes or corruption. dler subroutines with probe points. probe
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point may be a particular place in kernel/userand declarations beyond what are ordinarily ex-

code, or a particular event (timers, countersported to kernel modules. It enables place-

that may occur at any time. Aandleris a ment of probe points in the interior of func-

subroutine that is run whenever the associatetions. However, the lack of debug data in some

probe point is hit. user programs (for example, stripped binaries)
will limit SystemTap’s ability to place probes

The SystemTap language is inspired by then such code.

UNIX scripting languageawk [4] and is sim-

ilar in capabilities toDTrace’s “D” [5]. It

uses a simplified C-like syntax, lacking types,3.4 Translation

declarations, and most indirection, but adding

associative arrays and simplified string process-

ing. The language includes some extensions t®nce a script has been elaborated, it is trans-

interoperate with the target software being in-ated into C.

strumented, in order to refer to its data and pro-

gram state. Each script subroutine is expanded to a block
of C that includes necessary locking and safety
checks. Looping constructs are augmented

3.3 Elaboration with checks to prevent infinite loops. Each vari-
able shared by multiple probes is mapped to an
appropriate static declaration, and accesses are

Elaboration is a processing phase that analyzgwotected by locks. To minimize the use of ker-

the input script and resolves references to theel stack space, local variables are placed in a

kernel or user symbols andpsets Tapsets are synthetic call frame.

libraries of script or C code used to extend the

capability of a basic script, and are described irProbe handlers are registered with the kernel

Section 5. Elaboration resolves external referusing one of th&probes [6, 7] family of reg-

ences in the script file to symbolic information istration APIs. For location-type probe points

and imported script subroutines in preparationin the kernel, probe points are inserted in ker-

for translation to C. In this way, it is analogous nel memory. For user-level locations, the probe

to linking an object file with needed libraries. point is inserted in the executable code loaded
into user memory while the probe handler is ex-

References to kernel data such as function pacuted in the kernel.

rameters, local and global variables, functions,

and source locations all need to be resolved he translated script includes references to a

to actual run-time addresses. This is done bgommon runtime that provides routines for

processing the DWARF debugging informationgeneric associative arrays, constrained memory

emitted by the compiler during the kernel build, management, startup, shutdown, I/O, and other

as is done in a debugger. All debug data profunctions.

cessing occurs prior to execution of the result-

ing kernel module. When translation is complete, the generated C
code is compiled and linked with the runtime

Debugging data contains enough information tanto a stand-alone kernel module. The final

locate inlined copies of functions (very com- module may be cryptographically signed for

mon in the Linux kernel), local variables, types, safe archiving or remote use.
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3.5 Execution By default, SystemTap output will be processed
in batches and written stdout  at script exit.

o _ The output will also be automatically saved to a
After linking, the SystemTap driver program fjle, SystemTap can optionally produce a real-

simply loads the kernel module usiimsmod . time stream as required by the application.
The module will initialize itself, insert the

probes, then wait for probe points to be hit.In user-space, SystemTap can report data as

When a probe is hit, the associated handler rousimple text, or in structured computer-parsable

tine is invoked, suspending the thread of exeforms for consumption by applications such as

cution. When all handlers for that probe pointgraphics generators.

have been executed, the thread of execution re-

sumes. Because thread of execution is sus-

pended, handlers must not block. Probe hang SystemTap Programming Lan-

dlers should hold locks only while manipulat-

ing shared SystemTap variables, or as neces- guage

sary to access previously unlocked target-side

data. A SystemTap script file is a sequence of top-
level constructs, of which there are three types:

The SystemTap script concludes when the usgfrobe definitions, auxiliary function defini-

sends an interrupt to the driver program, oftions, and global variable declarations. These

when the script callexit . At the end of the may occur in any order, and forward references
run, the module is unloaded and its probes argre permitted.

removed.
A probe definition identifies one or more probe
points and a body of code to execute when any
3.6 Data Collection and Presentation of them is hit. Multiple probe handlers may ex-
ecute concurrently on a multiprocessor. Mul-

_ tiple probe definitions may end up referring to
Data collected from SystemTap in the kemele same event or program location: all of them

must be transmitted to user space. This ranSyre ryn in an unspecified sequence when the
port must provide high throughput and low 1a- 5 -ohe noint is hit. For tapset builders, there is

tency, and impose minimal performance impach s, 4 probe aliasing mechanism discussed in
on the monitored system. Two mechanisms argaction 5.1

currently being tested: relayfs and netlink.

An auxiliary function is a subroutine for probe
Relayfs provides an efficient way to move largenhandlers and other functions. In order to con-
blocks of data from the kernel to user spaceserve stack space, Systemtap limits the number
The data is sent via per-cpu buffers. Relayfsof outstanding nested or recursive calls. The
can be compiled into the kernel or built as atranslator provides a number of built-in func-
loadable module. tions, which are implicitly declared.

Netlink allows a simple stream of data to beA global variable declaration lists variables that
sent using the socket APIs. Performance testingre shared by all probe handlers and auxiliary
suggests that netlink provides less bandwidthiunctions. (If a variable is not declared global,

than relayfs for transferring large amounts ofitis assumed to be local to the function or probe
trace data. that references it.)
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A script may make references to an identi-variables within the scopes of the active func-
fier defined elsewhere in the library of scripttions to the script.

tapsets. Such a cross-reference causes the en-

tire tapset file providing the definition to be

merged into the elaborated script, as if it was4.1.1 Functions

simply concatenated. See Section 5 for more

information about tapsets. To identify a function, théunction("fn")
element does so by name. If the function is in-

ineable, all points of inlining are included in
bl Il poi f inlini included i
he set. The function name may be suffixed by

Fatal errors that occur during script executio
cause a cleanup of activity associated with th
SystemTap script, and an early abort. Running_~, : _
out of memory, dividing by zero, exceeding @filename —or even@filenametlineno

an operation count limit and calling too many © identify a source-level scope within which

nested functions are a few types of errors thaih€ identifiers should be searched. The func-
will terminate a script. tion name may include wildcard charactérs

and? to refer to all suitable matching names.

These may expand to a huge list of matches,
4.1 Probe points and therefore must be used with discretion. The

optional elementeturn may be added to re-

A probe definition specifies one or more probefer to the moment of each function’s return
points in a comma-separated list, and an asi@ther than the defaudintry . Below are some
sociated action in the form of a statementsample specifications for function probe points:
block. A trigger of any of the probe points
will run the block. Each probe point spec-
ification has a “dotted-functor” syntax such
askernel.function("foo").return :
The core SystemTap translator recognizes a
family of these patterns, and tapsets may definemodule("ext3").function("*@fs/

new ones. The basic idea of these patternsis to  ext3/inode.c")

provide a variety of user-friendly ways to refer Every function in the named source file,
to program spots of interest, which the transla-  which is part of ext3fs.

tor can map to a kprobe on a particular PC value

or an event.

kernel.function("sys_read")
return
A return probe on the named function.

] ) 4.1.2 Events
The first group of probe point patterns re-

lates to program points in the kernel and ker- ' .
nel modules. The first elemenkernel  or Probe points may be defined on abstract events,

module("foo") identifies the probe’s tar- which are not associated with particular loca-

get software as kernel or a kernel modulelions in the target program. Therefore, the
namedfoo.ko . This first element is used to translator cannot expose much symbolic infor-

find the symbolic debug information to resolve Mation about the context of the probe hit to
the rest of the pattern. the script. Examples of probes that would fall

in this category include probes that perform
For a probe point defined on a statically knownsampling based on timers or performance mon-
symbol or other program structure, the translaitoring hardware, and probes that watch for
tor can use debug information to expose locathanges in a variable’s value.
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SystemTap defines special events associatede Associative arrays are as in awk. A given

with initialization and shutdown of the instru- array may be indexed by any consistent
mentation. The special elemebegin trig- combination of strings and numbers, and
gers a probe handler early during SystemTap may contain strings, numbers, or statisti-
initialization, before normal probes are en- cal objects.

abled. Similarly,end triggers a probe dur-
ing late shutdown, after all normal probes have
been disabled.

e Statistics.  These are special objects
that compute aggregations (statistical av-
erages, minima, histograms, etc.) over
numbers.

4.2 Language Elements

The language has traditionédthen-else
_ statements and expressions of C and awk. The

Function and probe handler bodies are writianguage also allows structured control state-
ten using standard statement/expression syntgxents such afor andwhile loops. Unstruc-

that borrows heavily from awk and C. The Sys-yred control flow operations such as labels and
temTap language allows the C, C++, and awkyao  statements are not supported. The trans-
style comments. White space and commentgyqr inserts runtime checks to bound the num-
are treated as in C. ber of procedure calls and backward branches.

SystemTap identifiers have the same syntax &fo support associative arrays, the SystemTap
C identifiers, except th& is also a legal char- |anguage has iterator amtblete  statements.
acter. ldentifiers are used to name variables antlhe iterator statement allows the programmer
functions. Identifiers that begin with are in-  to specify an operation to perform on all the el-
terpreted as references to variables in the targeiments in the associative array. The delete op-
software, rather than to SystemTap script varieration can remove one or all the elements in
ables. the associative array. The associative arrays al-
low selection of an item by one or more keys.
The language includes a small number of datahein operation allows the code to determine
types, but no type declarations: a variable'syhether an entry exists in the associative array.
type is inferred from its use. To support this, the
translator enforces consistent typing of func-The typical set of arithmetic, bit, assignment,
tion arguments and return values, array indexegnd unary operations in C are available in the
and values. Similarly, there are no implicit type SystemTap language, but they operate on 64-
conversions between strings and numbers.  bit quantities. The assignment and comparison
operations are overloaded for strings.

The SystemTap statistic type allows script writ-

* Numbers are 64-bit S|g.ned |n.tegers. I'Iter_ers to keep track of the typical statistics such as
als can be expressed in decimal, octal, or

: : . minimum, maximum, and average. Tk&<
hexadecimal, using C notation. Type suf- : . .
: operator updates a variable storing statistics in-
fixes (e.g.L or U) are not used.

formation as shown in the example below:

e Strings. Literals are written as in C. Over-
all lengths are limited by the runtime sys- global avg(s)
tem. probe kernel.syscall("read") {
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process->s <<< $size probes, auxiliary functions, and global vari-

} ables, for invocation by an end-user script or
probe end { another tapset. One can use this mechanism
trace (s) to define commonly useful auxiliary functions

} like stp_print() for special purpose for-

matting of output data. This facility can also be
SystemTap does not support type castsused to create global variables that can be ref-
address-of operations, or following of arbitrary erenced in the end user scripts as built-in func-

pointers through structures. However, macraions. In Figure 2 &gid_history global
operations will allow access to elements of avariable is created that gives a history of the last
particular structure. few scheduled tasks.

In addition, a script tapset can defingoebe
alias. Aliasing is a way of synthesizing a higher
level probe from a lower level one. The exam-
An auxiliary function in SystemTap has es-pje tapset shown in Figure 3 defines aliases for
sentially the same syntax and semantics as ifheread system call, so that a SystemTap user

awk. Specifically, an auxiliary function defini- goes not have to know the name of the corre-
tion consists of the keywordinction , a for- sponding kernel function.

mal argument list and a brace-enclosed state-
ment block. SystemTap deduces the types oflliasing consists of renaming a probe point,
the function and its arguments from the expresand may include some script statements. These
sions that refer to the function. An auxiliary statements are all executdmkfore the oth-
function must always return a value even if itisers that are within the user’s probe definition
ignored. (which referenced the alias), as if they were
simply transcribed there. This way, they can
prepare some useful local variables, or even
5 Tapsets conditionally reject a probe hit using timext
statement.

When diagnosing systemic problems, one is\jizses can also be used to define a new “event”

faced with tracing various subsystems of the,y gnply some local variables for use by its
operating system and applications. To facili-p,oqlers as in Figure 4.

tate such diagnosis, SystemTap includes a li-

brary of instrumentation modules for VariOUSAn end-user Script that uses the probe alias in
subsystems known aapsets The list of avail-  Figure 4 may look like Figure 5.

able tapsets is published for use in end-user

scripts. There are two ways to create tapsets:

via the SystemTap scripting language and vi&.2 C language tapsets

the C language.

4.3 Auxiliary functions

To allow kernel developers to work in a fami-

lar programming language, SystemTap sup-
ports a C interface for creating tapsets. A C
The simplest kind of tapset is one that usesapset is a set of data-collection functions for
the SystemTap script language to define neva given subsystem. Data collection functions

5.1 Script tapsets
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global tgid_history # the last few tgids scheduled
global _histsize

probe begin {
_histsize = 10

}

probe kernel.function("context_switch") {
# rotate array
for (i=_histsize-1; i>0; i--
tgid_history [i] = tgid_history [i-1];
tgid_history [0] = $prev->tgid;
}

Figure 2: SystemTap script using global variable.

probe kernel.syscall.read = kernel.function("sys_read")

{}

Figure 3: SystemTap script using probe alias.

probe kernel.resource.oom.nonroot =
kernel.statement("do_page_fault").label("out_of memory") {
if ($tsk->uid == 0) next;

victim_tgid = $tsk->tgid;
victim_pid = $tsk->pid;
victim_uid = $tsk->uid;

victim_fault_addr = $address

Figure 4. SystemTap script for new out of memory event.

probe kernel.resource.oom.nonroot {
trace ("OOM for pid " . string (victim_pid))
}

Figure 5. SystemTap script using out of memory event.
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in the tapset are called tapset functions. TapséDur basic approach to safety is to design a safe
functions export data using one or more vari-scripting language, with some safety properties
ables. The C API requires a tapset writer tosupported by runtime checks. Table 1 provides
register each probe point, corresponding datasome details of our basic approach. System-
collection function, and the data exported byTap compiles the script file into native code and
the function. When an end-user script refers tdinks it with the SystemTap runtime library to
the data exported by the corresponding tapsetreate a loadable kernel module. Version and
function in the action block, SystemTap callssymbol name checks are applied ingmod .

the associated tapset function in the probe harFhe elaborator generates instrumentation code
dler. The resultis that local variables in the usetthat gracefully terminates loops and recursion,
script are initialized with values from the tapsetif they run beyond a configurable threshold. We
function. avoid privileged and illegal kernel instructions
by excluding constructs in the script language
for inlined assembler, and by using compiler

53 System call tapset options used for building kernel modules.

SystemTap provides tapsets for various Subsy§__ystemTap incorporates several additional _dg-
tems of the kernel: the system call tapset is a5'd" features that enhance safety. Explicit
example of one such tapset. As system calls afdynamic memory allocation by scripts is not
the primary interface for applications to interact®/!owed. and dynamic memory allocation by
with the kernel, understanding them is a power!€ runtime is avoided. SystemTap can fre-
ful diagnostic tool. The system call tapset pro-duéntly use explicitly synthesized frames in

vides a probe handler for each system call epstatic memory for local variables, avoid_ing us-
try and exit. A system call entry probe gives29€ of kernel stack. Language and runtime sys-

the values of the arguments to the system Ca|F’ems ensure that SystemTap-generated code for

and the exit probe gives the return value of thd®™0P€ handlers is strictly terminating and non-
system call. blocking.

SystemTap safety requires controlling access to
kernel memory. Kernel code cannot be invoked
6 Safety directly from a SystemTap script. SystemTap
language features make itimpossible to express
_ _ ) kernel data writes or to store a pointer to ker-
SystemTap is designed for safe use in produGae| gata. Additionally, a modified trap handler
tion systems. One implication is that it should;q \;sed to safely handle invalid memory ref-
be extremely difficult, if not impossible, to dis- orances. SystemTap supports a “guru” mode
able or crash a system through use or misUSgare certain of these constraints can be re-
of SystemTap. Problems like infinite loops, di- 1,oved (e.g., in a tapset), allowing a tradeoff

vision by zero, and illegal memory references,qiveen safety and kernel debugging require-
should lead to a graceful failure of a SystemTapants.

script without otherwise disrupting the moni-

tored system. At the same time, we'd like to

compile extensions to native machine code, t§-1 Safety Enhancements

benefit from the stability of the existing tool

chain, minimize new kernel code, and approactA number of options are planned that extend
native performance. the safety and flexibility of SystemTap to match
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language design
insmod checks
memory portal

infinite loops
recursion
division by zero
resource constraints X X

locking constraints X X

array bounds errors X X X 0
invalid pointers o] o] 0
heap memory bugs X 0
illegal instructions X o]
privileged instructions X o]
memory r/w restrictions X X 0 O
memory execute restrictions X X 0 O
version alignment 0 X

end-to-end safety X X
safety policy specification facility X

o o o] funtime checks

«< x x| translator
o o o] Static validator

Table 1. SystemTap safety mechanisms. An “X” indicates that an aspect of the implementation
(columns) is used to implement a particular safety feature (rows). An “0” indicates optional func-
tionality.
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and exceed that of other systems. A memorynclude illegal or privileged instructions or to
and code “portal” directs references to kernelinvoke code outside of the DTrace execution
memory outside the loadable module througlrenvironment. The interpreter can also catch
a special-purpose interpeter or “portal.” Thisinvalid pointer dereferences, division by zero,
provides a single point of control for related and other run-time errors.

safety issues, and facilitates a desireable sep-

aration of safety policy from mechanism. Triv- SystemTap will support kernel debugging fea-
ial policies would support “guru mode” (no re- tures in guru mode that DTrace does not, in-
strictions) and default mode (read restrictionscluding the ability to write arbitrary locations
to I/O memory, restricted write and code ac-in kernel memory and the ability to invoke ar-
cess). Other simple policies expand accesbitrary kernel subroutines.

incrementally, for example, allowing external _

calls to an explicit list of kernel subroutines. Bécause the language infrastructure used by
Eventually, the policy could be extended to sup-SystemTap is common to all C programs, it
port security goals such as secure non-root exdends to be better tested and more robust than

cution and restricting memory access based oi{1€ special-purpose interpreter used by DTrace.

user credentials. , , , i
The embedding of an interpreter in the Solaris

An optional static analyzer examines a dis-kernel represents significant additional kernel
assembled kernel module and confirms thafunctionality. This introduces an increased risk
it satisfies certain safety properties. SimpleOf kernel bugs that could lead to security or re-
checks include disallowing privileged instruc- liability issues.

tions, locking primitives and instructions that
are illegal in kernel mode. In the future, more Dprobes and Dtrace have many safety features

elaborate checks may be included to confirn{? common. Both use an interpreted language.

that loop counters, memory portals and otheJ‘ike SystemTap, both use a modified kernel
safety features are used. trap-handler to capture illegal memory refer-

ences. Like kprobes, dprobes is intended for
use primarily by kernel developers. Conse-
6.2 Comparision to Other Systems quently, it exposes the kprobes layer in such a
way that it is not crashproof. SystemTap seeks

_ _ to address these safety issues.
Solaris DTrace includes a number of unusual

features intended to enhance the safety and se-
curity of the system. These features include5.3 Security
a very restricted scripting language and the

scripts being interpreted rather than compiled.
It is important that SystemTap can be used

DTrace’s D language does not support proceWithOUt significantly impacting the overall se_—
dure declarations or a general purpose loopin§urity of the system. Given that SystemTap is
construct. This avoids a number of safety is-only available to privileged users, our initial se-

sues in scripts including infinite loops and infi- curity concerns are that the system be crash-
nite recursion. proof by design, and that its implementation

is of sufficient quality and simplicity to protect
Because D scripts are interpreted rather thaosers from unintentional lapses. A specific con-
executed directly, it is impossible for them to cern is the security of the communication layer;
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that the kernel-to-user transport is secured fronsmp_call_function is called, the appro-
non-privileged users. priate associative array entry is incremented.
The $pid provides the process id number,
Future versions of SystemTap may provide feathe $pname provides the name of the pro-
tures that support secure use of SystemTap byess, andstack()  the back trace in the ker-
non-privileged users.  Specific features thahe|. This data is recorded in an associative ar-
might be required include: raytraces . When the data collection is over
and the instrumentation is removed, the “end

e Protection of kernel memory based on useiProbe” prints out information.
credentials.

Figure 7 shows the beginning of the data gen-
erated from a dual processor x86-64 machine
when a DVD has just been loaded on the ma-
e Recognition of a restricted subset of thechine. From the samples listed below, we see
SystemTap language that is permissiblghat process 4010, hald, has caused a number of
for non-privileged users. interprocessor interrupts. With the stack back-
trace as part of the hash key, we can see that the
first entry has to do with the disk change in the

A se_curlty scheme based on a V|rtu_al mac_hln DROM drive, and the second entry is caused
monitor such as Xen [3] might provide a sim-
by sys close

pler and general solution to secure SystemTap
use by non-privileged users.

e Protection of kernel-to-user transport
based on user credentials.

7 Example SystemTap Script 8 Conclusions and Future Work

The SystemTap scripting language lends itself

to writing compact instrumentation. The fol- . o

|0wing examp|e demonstrates a simp|e Scripwe have described current dynamlc Instrumen-
to collect information. On SMP machines, thetation facilities in the Linux kernel and the need

interprocessor interrupt is an expensive operfor improvements. These motivate the Sys-
ation. One can find how many interproces-temTap architecture and salient features of its
sor interrupts are performed on an SMP mascripting language. We described the tapset li-
chine by examining theOC: entry of/proc/ brary and its importance in SystemTap. Safety
interrupts . However, this entry does not iS @ very important consideration of SystemTap

give a complete picture of what is causing thedesign and we described how safety considera-
interprocessor interrupts. tions impacted our SystemTap design. We pre-

sented an example of how SystemTap is used to
A developer would like to know the process gather interesting data to diagnose a problem.
(PID), the process name, and the backtrace tdhe Systemtap project is still in development.
get a better context of what is triggering theln our continuing work, we plan to implement
interprocessor interrupts. Figure 6 shows theapset libraries for various kernel subsystems,
SystemTap script used to accumulate that inand expand SystemTap to trace user-level ac-
formation into an associative array. Each timetivity.
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global traces

probe kernel.function("smp_call_function") {
traces[$pid, $pname, stack()] += 1;
}

probe end {
print(traces);

}

Figure 6: SystemTap script to collect interprocessor interrupt information.

root# stp scf.stp

Press Control-C to stop.

All kprobes removed

traces[4010, hald, trace for 4010 (hald)
Oxffffffff8011a551 : smp_call_function+0x1/0x70
Oxffffffff80182c0c : invalidate bdev+0x1c/0x40
Oxffffffff8019bc48 : _ invalidate device+0x58/0x70
Oxffffffff80188f89 : check_disk _change+0x39/0xa0
Oxfffffff80133c90 : default_wake_function+0x0/0x10
Oxffffffff802abeef : cdrom_open+0xa0f/0xa60
Oxffffffff80133c90 : default_wake_ function+0x0/0x10
Oxffffffff80132650 : finish_task switch+0x40/0x90
Oxffffffff80346bb9 : thread return+0x54/0x8b
Oxffffffff801419cd : _ mod_timer+0x13d/0x150

] = 18

traces[4010, hald, trace for 4010 (hald)
Oxffffffff8011a551 : smp_call_function+0x1/0x70
Oxffffffff80182c0Oc : invalidate bdev+0x1c/0x40
Oxffffffff8018856e : kill_bdev+0xe/0x30
Oxfffffff801890d6 : blkdev_put+0x76/0x1c0O
Oxffffffff80181leb2 : _ fput+0x72/0x160
Oxffffffff801806de : filp_close+0x7e/0xa0
Oxffffffff80180793 : sys_close+0x93/0xc0
Oxffffffff8010e51a : system_call+0x7e/0x83

] = 27

Figure 7. Run of SMP call instrumentation.
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Abstract they serve. Bypre-copyingVM state to the

destination host while it is still running, relo-

The Xen Virtual Machine Monitor will soon be Cation down-time can be made very small—
undergoing its third major release, and is ma£xperiments relocating a running Quake server
turing into a stable, secure, and full-featuredh@ve achieved repeatable relocation times with

virtualization solution for Linux and other op- Outages of less than 100ms.

erating systems. Xen has attracted consider-

able development interest over the past yeall,n the following subsections we describe some
the implementation details of our pre-

and consequently the 3.0 release includes ma ) _
exciting new features. This paper provides arf©PYIng approach. We describe how we use dy-

overview of the major new features, includ- namic network rate-limiting to effectively bal-
ing VM relocation, device driver isolation, sup- 2N¢€ Network contention against OS downtime.
port for unmodified operating systems, and newVe then proceed to describe how we ameliorate

hardware support for both x86/64 and IA-64 e effects of rapid page dirtying, and show re-
processors. sults for the relocation of a running Quake 3

server.

1 VM Relocation 1.1 Managing Relocation

While many server applications may be very

long-lived, the hardware that it runs on will in- Relocation is performed by daemons running in
variably need service from time to time. A ma-the management VMs of the source and desti-
jor benefit of virtualization is the ability to relo- nation hosts. These are responsible for creating
cate arunning operating system instance from a new VM on the destination machine, and co-
one physical host to another. Relocation allowsrdinating transfer of live system state over the
a physical host to be unloaded so that hardwareetwork.

may be serviced, it allows coarse-grained load-

balancing in a cluster environment, and it al-When transferring the memory image of the
lows servers to move closer to the users thastill-running OS, the control software performs

e 65 o



66 e Xen 3.0 and the Art of Virtualization

roundsof copying in which it performs a com- OS to prepare for resumption on the destina-
plete scan of the VM’s memory pages. Al-tion machine; Xen informs the control software
though in the first round all pages are trans-once the OS has done this. The dirty bitmap is
ferred to the destination machine, in subsequergcanned one last time for remaining inconsis-
rounds this copying is restricted to pages thatent memory pages, and these are transferred to
were dirtied during the previous round, as indi-the destination together with the VM’s check-
cated by airty bitmapthat is copied from Xen pointed CPU-register state.
at the start of each round. o _ o _

Once this final information is received at the
During normal operation the page tables mandestination, the VM state on the source ma-
aged by each guest OS are the ones that afdine can sz_;lfel)_/ be d|sca_rded. Control software
walked by the processor's MMU to fill the ON the destlna_ttlon machine scans the memory
TLB. This is possible because guest OSes ar'aP and rewrites the guest's page tables to re-
exposed to real physical addresses and so tH{iCt the addresses of the memory pages that it

page tables they create do not need to paas been allocated. Execution is then resumed
mapped to physical addresses by Xen. by starting the new VM at the point that the old
VM checkpointed itself. The OS then restarts

To log pages that are dirtied, Xen insertsits Virtual device drivers and updates its notion

shadow page tablasderneath the running 0s. ©f wallclock time.

The shadow tables are populated on demand

by translating sections of the guest page tabled..2 Dynamic Rate-Limiting
Translation is very simple for dirty logging: all

page-table entries (PTEs) are initially read-only; is not always appropriate to select a single

mappings in the shadow tables, regardless Qatyork bandwidth limit for relocation traffic.

what is.permitted.by the guest tables. If theAIthough a low limit avoids impacting the per-
guest tries to modify a page of memory, the réyomance of running services, analysis showed

sulting page fault is trapped by Xen. If write y,o¢ \ve must eventually pay in the form of an

access is permitted by the relevant guest PTE,anded downtime because the hottest pages
then this permission is extended to the shadow, yhe writable working set are not amenable to
PTE. At the same time, we set the appropriatey e _copy relocation. The downtime can be re-
bitin the VM's dirty bitmap. duced by increasing the bandwidth limit, albeit

_ _ ) at the cost of additional network contention.
When the bitmap is copied to the control soft-

ware at the start of each pre-copying roundOur solution to this impasse is to dynami-
Xen’s bitmap is cleared and the shadow pageally adapt the bandwidth limit during each
tables are destroyed and recreated as the relpre-copying round. The administrator selects
catee OS continues to run. This causes all writa minimum and a maximum bandwidth limit.
permissions to be lost: all pages that are subséFhe first pre-copy round transfers pages at the
guently updated are then added to the now-cleaninimum bandwidth. Each subsequent round
dirty bitmap. counts the number of pages dirtied in the pre-
vious round, and divides this by the duration
When it is determined that the pre-copy phasef the previous round to calculate th@tying
is no longer beneficial, the OS is sent a contate. The bandwidth limit for the next round
trol message requesting that it suspend itself ims then determined by adding a constant incre-
a state suitable for relocation. This causes thenent to the previous round’s dirtying rate—we
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_Iterative Progress of Live Migration: Quake 3 Server

“* 76 Clients, 64MB VM o181
ients, - - — - 02 MB
Total Data Transmitted: 88MB (x1.37) The f/ngl lteratloq in this case leaves oqu 148KB of dgta fo OSMB:]
400 4 transmit. In addition to the 20ms required to copy this last CEI
Area of Bars: round, an additional 40ms are spent on start-up overhead. The
350 || [E] VM memory transfered total downtime experienced is 60ms.
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Figure 1: Results of relocating a running Quake 3 server VM.

have empirically determined that 50Mbit/seccurrent round’s dirty bitmap and transfer only
is a suitable value. We terminate pre-copyinghose pages dirtied in the previous round that
when the calculated rate is greater than the adiave not been dirtied again at the time we scan
ministrator’s chosen maximum, or when lessthem.
than 256KB remains to be transferred. During
the final stop-and-copy phase we minimize serWe further observed that page dirtying is often
vice downtime by transferring memory at the physically clustered—if a page is dirtied then
maximum allowable rate. it is disproportionally likely that a close neigh-
bour will be dirtied soon after. This increases
USing this adaptive scheme results in the band['he likelihood that’ if our peeking does not de-
width usage remaining low during the transfertect one page in a cluster, it will detect none.
of the majority of the pages, increasing only atTo avoid this unfortunate behaviour we scan

the end of the relocation to transfer the hottesihe \/M's physical memory space in a pseudo-
pages in the WWS. This effectively balances;agndom order.

short downtime with low average network con-
tention and CPU usage.

1.4 Low-Latency Server. Quake 3
1.3 Rapid Page Dirtying

A representative application for hosting envi-
Analysis shows that every OS workload hasronments is a multiplayer on-line game server.
some set of pages that are updated extremelfo determine the effectiveness of our approach
frequently, and which are therefore not goodin this case we configured a virtual machine
candidates for pre-copy relocation even wherwith 64MB of memory running a Quake 3
using all available network bandwidth. We server. Six players joined the game and started
observed that rapidly-modified pages are veryo play within a shared arena, at which point
likely to be dirtied again by the time we attempt we initiated a relocation to another machine. A
to transfer them in any particular pre-copyingdetailed analysis of this relocation is shown in
round. We therefore periodically ‘peek’ at the Figure 1.
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Packet interarrival time during Quake 3 migration
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Figure 2: Effect on packet response time of relocating a running Quake 3 server VM.

We were able to perform the live relocationthat Xen runs. Each guest implements an ide-
with a total downtime of 6ths To determine alized disk and network device, which are ca-
the effect of relocation on the live players, wepable of connecting to the hardware specific
performed an additional experiment in whichdriver in an isolatedlevice domain This ap-
we relocated the running Quake 3 server twicgroach has the added benefit of making drivers,
and measured the inter-arrival time of packetsvhich are a major source of bugs in operating
received by clients. The results are shown irsystems, more reliable. By running a driver in
Figure 2. As can be seen, from the client pointts own VM, driver crashes are limited to the
of view relocation manifests itself as a transientdriver itself—other applications may continue
increase in response time ofrB@ In neither to run. Device domains can even be rebooted
case was this perceptible to the players. to recover failed drivers, and result in down-
times on the order of hundreds of miliseconds
in cases where the entire machine would previ-
2 Device Virtualization ously have crashed completely.
This approach will no doubt sound familiar
Xen’s strong isolation guarantees have provedo anyone who has worked with microkernels
very useful in solving two major problems with in the past—Xen’s isolation achieves a similar
device drivers: driver availability and reliabil- fragmentation ofOS subsystems. One major
ity. Xen is capable of allowing individual vir- difference between Xen and historical work on
tual machines to have direct access to specifimicrokernels is that we have forgone the archi-
pieces of hardware. We have taken the aptecturally pure fixation on IPC mechanisms in
proach of using a single virtual machine to runfavour of a generalized, shared-memory ring-
the physical driver for a device (such as a diskbased communication primitive that is able to
or network interface) and then export a virtu-achieve very high throughputs by batching re-
alized version of the device to all of the otherquests.
guestOSes that are running on the host. This
approach means that a device need only b&o achieve driver isolation, we restrict ac-
supported on a single platform (Linux, for in- cess privileges to device I/O registers (whether
stance), and may be available to all the OSememory-mapped or accessed via explicit I/O
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ports) and interrupt lines. Furthermore, wherenterrupt service routine (ISR). Taking the in-
it is possible within the constraints of existing terrupt in Xen also allows a timely acknowl-
hardware, we protect against device misbehavedgement response to the interrupt controller
ior by isolating device-to-host interactions. Fi- (which is always managed by Xen) and allows
nally, we virtualize the PC’s hardwarmnfig- the necessary address-space switch if a differ-
uration spacerestricting each driver’s view of ent domain is currently executing. When the
the system so that it cannot see resources thatébrrect domain is scheduled it is delivered an
cannot access. asynchronougvent notificationwhich causes
execution of the appropriate ISR.

2.1 /O Registers Xen notifies each domain of asynchronous
events, including hardware interrupts, via a
general-purpose mechanism cal®dnt chan-

Xen ensures memory isolation amongst OIO-nels Each domain can be allocated up to 1024

mains by checking the validity of address-spac(;eevent channels, each of which comprises a pair
updates. Access to a memory-mapped hargsg ., flags in @ memory page shared between
ware device Is permitted by extending thes%e domain and Xen. The first flag is used by

checks to allow access to non-RAM Pagey i to signal that an eventjgending When an

frames that contain memory-mapped registergvent becomes pending Xen schedules an asyn-
belonging to the device. Page-level protection

. - o . chronous upcall into the domain; if the domain
is sufficient to provide isolation because reg-

ister blocks belonaing to different devi ; is blocked then it is moved to the run queue.
ISte ct)_c S I € OI' g % o d ele thewces a eUnnecessatry upcalls are avoided by triggering
Egﬂ‘;%g;;na y aligned on no [ess than a page, ,qfication only when an event first becomes

pending: further settings of the flag are then ig-

In addition to memory-mapped /O, many pro_nored until after it is cleared by the domain.

cessor families provide an explicit I/O-accessT

primitive. For example, the x86 architecture omain tomaskthe event. No notification

provides a 16-bit I/O port space to which acces§1 tr'al rod a hen \r/n k q 0 ntl Ib ! m

may be restricted on a per-port basis, as spec%‘f’ '9gered when a masked eve ecomes
ending: no asynchronous upcall occurs and

fied by an access bitmap that is interpreted b)p blocked domain is not woken. By setting

the processor on each port-access attempt. Xe

uses this hardware protection by rewriting thet e mask before clearing the pending flag, a

port-access bitmap when context-switching pedomain can prevent unnecessary upcalls for

tween domains partially-handled event sources.

he second event-channel flag is used by the

To avoid unbounded reentrancy, a level-
2.2 Interrupts triggered interrupt line must be masked at the

interrupt controller until all relevant devices

have been serviced. After handling an event re-
Whenever a device’s interrupt line is assertedating to a level-triggered interrupt, the domain
it triggers execution of a stub routine within must calldowninto Xen to unmask the inter-
Xen rather than causing immediate entry intorupt line. However, if an interrupt line is not
the domain that is managing that device. Inshared by multiple devices then Xen can usu-
this way Xen retains tight control of the sys- ally safely reconfigure it as edge-triggering, ob-
tem by schedulingexecution of the domain’s viating the need for unmask downcalls.
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When an interrupt line is shared by multiple of host memory. For example, although a de-
hardware devices, Xen must delay unmaskingice driver is prevented from using the CPU
the interrupt until a downcall is received from to write to a particular page of system mem-
every domain that is managing one of the deory (perhaps because the page does not belong
vices. Xen cannot guarantee perfect isolatiorto the driver), it may instead program its hard-
of a domain that is allocated a shared interruptware device to perform a DMA to the page.
if the domain never unmasks the interrupt therinfortunately there is no good method for pro-
other domains can be prevented from receivtecting against this problem with current hard-
ing device notifications. However, shared in-ware as it is infeasible for Xen to validate the
terrupts are rare in server-class systems whicphrogramming of DMA-related device registers.
typically contain IRQ-steering and interrupt- Not only would this require intimate knowl-
controller components with enough pins for ev-edge of every device’s DMA engine, it also
ery device. The problem of sharing is set towould not protect against bugs in the hardware
disappear completely with the introduction of itself: buggy hardware would still be able to ac-
message-based interrupts as part of PCl Exgess arbitrary system memory.
press [1].

A full implementation of this aspect of our de-

sign requires integration of an IOMMU into
2.3 Device-to-Host Interactions the PC chipset—a feature that is expected to
be included in commodity chipsets in the very
As well as preventing a device driver from cir- near future. Similar to the processor's MMU,

this translates the addresses requested by a de-

cumventing its isolated environment, we must . . . .
vice into valid host addresses. Inappropriate

also protect against possible misbehavior of th%ost addresses are not accessible to the de-

hardware itself, whether due to inherent design . L : .
. : : . vice because no mapping is configured in the
flaws or misconfiguration by the driver soft-

. OMMU. In our design, Xen would be respon-
ware. The two general types of device-to-host . L :
. . . .~ Sible for configuring the IOMMU in response
interaction that we must consider are assertion

of interrupt lines, and accesses to host memong |caUests from domains. The required val-
space P ’ Ydation checks are identical to those required

for the processor's MMU; for example, to en-

Protecting against arbitrary interrupt assertiorp""® that the reql_Je_stlng domain owns th? page

is not a significant issue because, except fofram_e_, apd tha_t it is safe to permit arbitrary

shared interrupt lines, each hardware device hd&edification of its contents.

its own separately-wired connection to the in-

terrupt controller. Thus itis physically impossi- 2 4 Hardware Configuration

ble for a device to assert any interrupt line other

than the one that is assigned to it. Furthermore,

Xen retains full control over configuration of The PCI standard defines a genecienfigu-

the interrupt controller and so can guard againsfation spacethrough which PC hardware de-

problems such as ‘IRQ storms’ that could bevices are detected and configured. Xen restricts

caused by repeated cycling of a device’s intereach domain’s access to this space so that it can

rupt line. read and write registers belonging only to a de-
vice that it owns. This serves a dual purpose:

The main ‘protection gap’ for devices, then, isnot only does it prevent cross-configuration of

that they may attempt to access arbitrary rangesther domains’ devices, but it also restricts the
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domain’s view so that a hardware probe detects | Guest Requests DMA: _
. .. . 1. Grant Reference for Page P2 placed on device channel
only devices that it is permitted to access. 2. IDD removes GR

3. Sends pin request to Xen

The method of access to the configuration
space is system-dependent, and the most com-

Isolated
- . _Device Driver

Guest OS

mon methods are potentially unsafe (either 2,  (bD)
protected-mode BIOS calls, or a small 1/O- /Zz‘ |a_ﬁ|-§
port ‘window’ that is shared amongst all device \5 Vo

) ) Xen = 4 [
spaces). Domains are therefore not permitted o N ) I I
direct access to the configuration space, but are — '

. ) g Y ’ Device Device Device
forced tousea virtualized interface provided by 3y iooks up GR in active grant table
Xen. This has the advantage that Xen can per- 5. GR validatedkagair;s(tj GL:jest (if necessary)

. . . . 6. Pinning is acknowledged to IDD

form arbitrary validation and transla_tlon of aC- |7 Ipp sends DMA request to device
cess requests. For example, Xen disallows any
attempt to change the base address of an I/Geigure 3: Using device channel to request a
register block, as the new location may conflictyata transfer.

with other devices.

memory in two key respects: shared mappings
are asymmetricand transitory. Each page of
memory is owned by at most one domain at any
Guest OSs access devices dievice channel time and, with the assistance of Xen and the
links with isolated driver domains (IDDs). The device manager, that owner may force reclama-
channel is a point-to-point communication link tion of mappings from within other misbehav-
through which each party can asynchronouslyng domains.

send messages to the other. Channels are estab- . ] ]
lished by using a privilegedevice manageto To add a foreign mapping to its address space,

introduce an IDD to a guest OS, and vice versa® domain must present a valgrant refer-

To facilitate this, the device manager automati€Ncet0 Xen in lieu of the page number. A

cally establishes an initial control channel with 9rant reference comprises the identity of the

each domain that it creates. Figure 3 shows §0main that is granting mapping permission,
guest OS requesting a data transfer through @nd an index into that domain’s privageant

device channel. The individual steps involvedt@bleé This table contains tuples of the form
are discussed later in this section. (grant D, PR U) which permit domainD to
map pageP into its address space; asserting

Xen itself has no concrete notion of a controlthe boolean flagr restrictsD to read-only map-
or device channel. Messages are communipings. The flag) is written by Xen to indicate
cated via shared memory pages that are allowhetherD currently map<P (i.e., whether the
cated by the guest OS but are simultaneouslgrant tuple isn use.

mapped into the address space of the IDD or de- _ _

vice manager. For this purpose, Xen permits reWhen Xen is presented with a grant reference

strictedsharingof memory pages between do- (A G) by a domainB, it first searches for in-
mains. dexG in domainA’s active grant tablgAGT),

a table only accessible by Xen. If no match is
The sharing mechanism provided by Xen dif-found, Xen reads the appropriate tuple from do-
fers from traditional application-level shared main A's grant table and checks that=grant

2.5 Device Channels
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andD=B, and thatR=falseif B is requesting a updates are based around two pairs of producer-
writable mapping. Only if the validation checks consumer indexes: the guest OS places service
are successful will Xen copy the tuple into therequests onto the ring, advancing a request-
AGT and mark the grant tuple as in use. producer index, while the IDD removes these
requests for handling, advancing an associated
Xen tracks grant references by associating a Usequest-consumer index. Responses are queued
age count with each AGT entry. When a foreignonto the same ring as requests, albeit with the
mapping is created with reference to an existingDD as producer and the guest OS as consumer.

AGT entry, Xen increments its count. The grantA unique identifier on each request/response al-
reference cannot be reallocated or reused by thews reordering if the IDD so desires.

granting domain until the foreign domain de-
stroys all mappings that were created with ref-The guest OS and IDD use a sharieter-
erence to it. domain event channel to send asynchronous
o _ _ notifications of queued descriptors. An inter-
Although itis clear that this mechanism allows 4o main event channel is similar to the interrupt-
strict checking of foreign mappings when they atached channels described in Section 2.2. The
are created, it is less obvious how these mapyain differences are that notifications are trig-
pings might be revoked. For example, if agereq by the domain attached to the opposite
faulty IDD stops responding to service request$ng of the channel (rather than Xen), and that
then guest OSs could end up owning unusablg,e channel igidirectionat each end may in-
memory pages. We handle the possibility Ofdependently notify or mask the other.
driver failure by taking a deadline-based ap-
proach: if a guest observes that a grant tablgye gecouple the production of requests or re-
entry is still marked as in use when it deter-snonses on a descriptor ring from the notifica-
mines that it ought to have been relinquishedion of the other party. For example, in the case
(e.g., because it requested that the device chags requests, a guest may enqueue multiple en-
nel should be destroyed), then it signals a poyries before notifying the IDD; in the case of
tential domain failure to the device manager. egponses, a guest can defer delivery of a noti-
The device manager checks whether the specgﬁggg::s :;_b)./ri?:gm,r\}g ae;r;fj:)?:]da?nugﬁir_

f|eo! Qra”t reference_: exists in the not|fy|_ng CIO'dependently balance its latency and throughput
main’s AGT and, if so, sets a deadline byrequirements

which the suspect domain must relinquish the
stale mappings. If a registered deadline passes

but stal_e mappings still eX|§t thep Xen notlfl_esz_7 Data Transfer
the device manager. At this point the device

manager may choose to destroy and restart the

driver, thereby forcibly reclaiming the foreign

! Although storing I/0O data directly within ring
mappings.

descriptors is a suitable approach for low-
bandwidth devices, it does not scale to high-
2.6 Descriptor Rings performance devices with DMA capabilities.
When communicating with this class of de-
vice, data buffers are instead allocated out-of-
I/O descriptor rings are used for asynchronousand by the guest OS and indirectly referenced
transfers between a guest OS and an IDD. Ringyithin I/O descriptors.
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When programming a DMA transfer directly to describe below how our block-device and net-
or from a hardware device, the IDD must firstwork IDDs support multiplexing of service re-
pin the data buffer. We enforce driver isolation quests from different clients.

by requiring the guest OS to pass a grant ref-

erence in lieu of the buffer address: the IDDWithin our block-device driver we service
specifies this grant reference when pinning thdatchesof requests from competing guests in
buffer. Xen applies the same validation rules to@ simple round-robin fashion; these are then
pin requests as it does for address_space mapassed to a standard elevator scheduler be-
pings. These include ensuring that the memfore reaching the disc controller. This bal-
ory page belongs to the correct domain, andnces good throughput with reasonably fair ac-
that it isn’t attempting to circumvent memory- cess. We take a similar approach for network

management checks (for example, by requestransmission, where we implement a credit-
ing a device transfer directly into its page ta_based scheduler a”OW|ng each device channel

bles). to be allocated a bandwidth share of the form
X bytes everyy microseconds. When choosing

Returning to the example in Figure 3, theda p.aCket to queue for transmission, we round-
guest's data-transfer request includes a grarfebin schedule amongst all the channels that
referenceGRfor a buffer page®. The request have sufficient credit.

is dequeued by the IDD which sends a pin re-

quest, incorporating GR, to Xen. Xen reads thd* Sharéd high-performance network-receive
appropriate tuple from the guest's grant table,path requires careful design because, without

checks thaP, belongs to the guest, and copiesd€Multiplexing packets in hardware [2], itis not
the tuple into the AGT. The IDD receives the POSSIPIe to DMA directly into a guest-supplied

address oP, in the pin response, and then pro-PUffer- Instead of copying the packet into a
grams the device’'s DMA engine. guest buffer after performing demultiplexing,
we insteadexchange ownershipf the page
On systems with protection support in theContaining the packet with an unused page pro-
chipset (Section 2.3), pinning would trigger al- Vided by the guest OS. This avoids copying but
location of an entry in the IOMMU. This is eauires the IDD to queue page-sized buiffers

the only modification required to enforce safedt the network int(_arface._ When a pa(_:ket Is
DMA. Moreover, this modification affects only "€C€ived, the IDD immediately checks its de-

Xen: the IDDs are unaware of the presence ofnultiplexing rules to determine the destination

an IOMMU (in either case pin requests returnchannel—if the guest has no pages queued to

a bus address through which the device can di€ceive the packet, itis dropped.

rectly access the guest buffer).

_ _ 3 Supporting Unmodified OSes
2.8 Device Sharing

Xen’s original goal was to provide fast virtu-
Since Xen can simultaneously host many guesalization, which was achieved by ‘paravirtual-
OSs it is essential to consider issues arisingging’ guest OSes. The downside of paravirtu-
from device sharing. The control mechanismsalization is that it requires modification of the
for managing device channels naturally sup-guest OS source code—an approach which is
port multiple channels to the same IDD. Weuntenable for closed-source operating systems.
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The alternative, full virtualization of the hard- ture (VMCS) that manages VM entries and ex-
ware platform, has traditionally been very diffi- its and defines processor behavior during non-
cult on the x86 processor architecture. How-root execution.

ever, new processor extensions promised by

AMD and Intel provide hardware assistanceProcessor behavior changes substantially in

which makes full virtualization much easier to VMX non-root operation. Most importantly,
provide. many instructions and events cause VM exits.

Some instructions cannot be executed in VMX
Preliminary support for Intel Virtualization non-root operation because they cause VM
Technology for x86 processors (VT-x) is al- exits unconditionally; these include CPUID,
ready checked into the Xen repository. ThisMOV from CR3, RDMSR, and WRMSR.
provides a ‘virtual processor’ abstraction to theOther instructions, interrupts, and exceptions
guest OS which, for example, can transparentlgan be configured to cause VM exits condition-
notify Xen of any attempt to execute instruc- ally, using VM-execution control fields in the
tions that would modify privileged processor VMCS.
state. While these hardware extensions make
transparent virtualization easier, Xen still bearsVM entry loads processor state from the guest-
responsibility for device management and enstate area of the VMCS. Xen can optionally

forcing isolation of shared resources such a§onfigure VM entry to inject an interrupt or ex-
CPU time and memory. ception. The CPU effects this injection using

the guest IDT, just as if the injected event had

occurred immediately after VM entry. This fea-
3.1 VT-xarchitecture overview ture removes the need for Xen to emulate de-
livery of these events. VM exits save processor
state into the guest-state area and load proces-
sor state from the host-state area. All VM exits
use a common entry point into Xen. To sim-
plify the design of Xen, every VM exit saves

VT-x augments the x86 architecture with two
new forms of CPU operation: VMX root opera-
tion and VMX non-root operation. Xen runs in

VMX root operation, while guests run in VMX into the VMCS detailed information specifying

non-root operation. Both forms of operation " )
support all four privilege levels (rings 0 through the reason for the exit; many exits also record
an exit qualification, which provides further de-

3), allowing a guest OS to appear to run at itstails
usual ‘most privileged’ level. VMX root oper- '

ation is similar to x86 without VT-x. Software

running in VMX non-root operation is depriv- 3.2 vT-x Support in Xen
ileged in certain ways, regardless of privilege

level.
The three major components for adding support

VT-x defines two new transitions: ¥M en- of VT-x and running unmodified OS in Xen are:
try that transitions from Xen root operation to
guest non-root operation, andvdl exitwhich
does the opposite transition. Both VM entries
and VM exits load CR3 (the base address of 5 peyice models that emulate the PC plat-
the page-table hierarchy) allowing Xen and the 5/

guest to run in different address spaces. VT-

x also defines a virtual-machine control struc- 3. Administrator control panel

1. Extensions to the Xen hypervisor
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The hypervisor extensions involve adding sup4 New Architectures
port for the specific hardware features and in-
struction opcodes added by VT-x, and exten-

sions to the user-space control tools for build-Xen was originally designed and implemented

ing and controlling fully-virtualized guests. ;t()iurr])por_tntr}e x86darch|terct|ur(re. '?]‘S |r:_terr]es:]|n
Device models provide emulation of the PC en has Increased, several organisations nave

platform devices for a VMX domain. The expressed interest in using Xen as a common

software models emulate all the hardware-leverypervisor for other hardware platforms. The

programming interfaces that a normal deviceaSt year has seen fervent development of ar-

driver uses to perform I/O operation, and Sub_chitectural support for both x86/64 and 1A-64.

mit requests to a physical device on the VMX |, aqdition to x86/64 and 1A-64, ports of Xen

domain’s behalf. are underway to the IBM Power platform and
to both of the upcoming fully virtualized ver-
QEMU and Bochs are two open source PC platsions of x86, Intel's VT (described in the pre-
form emulators that provided most of the func-vious section) and AMD’s Pacifica/SVM. Our
tionality we needed for I/O emulation for VMX  experience with 1A-64 supports our belief that
domains. Our basic design has been to run th&en will successfully accommodate these new

device models in domain 0 user space and ruarchitectures and any others that come along in
one process for each VMX domain. We neededhe future.

to remove all CPU emulation code from these
emulators and modify the code that emulated
physical memory (RAM). Normally, they allo- 4.1
cate a large array to emulate the physical mem-

ory. We modified the code to map all the phys-\when extending Xen to support the x86/64 ar-
ical memory allocated to the VMX domain.  chjtecure, we kept in mind that the platform
is largely identical to x86/32, differing only in

An example of I/O request handling from VMX some of the details of the processor architec-
guest is as follows: ture. For example, processor registers are ex-
tended to 64 bits and the page-table format is
extended to support the larger address space.
Fortunately, the hardware platfrom is largely
identical: for example, sharing the same 1/O
bus and chipset implementations.

x86/64

1. VM exit due to an I/O access.

2. Xen decodes the instruction.
This led us to implement x86/64 support as
3. Xen constructs an /O request describing® sub-architecture of the existing x86 target.
the event. Large swathes of code are shared between sub-
architectures, with the main differences being

4. Xen sends the request to the device-modelp:r?tsembly'wde stubs and page-table manage-

) i m
process in domain 0.

From a guest perspective, the most interest-

5. When reading from a device register, theing change presented by x86/64 is the modi-
VMX domain is blocked until a response fied protection model. x86/64 provides very

is received from the device model. limited segment-level protection which makes
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it impossible to protect the hypervisor, running
in ring 0, from a guest kernel running in ring 1.
This architectural change necessitates running
both the guest kernel and applications in ring 3,
and raises the problem of protecting one from
the other.

The solution is to run the guest kernel in a dif-
ferent address space (i.e., on different page ta-
bles) from its applications. When forking a
new process, the guest kernel creates two new
page tables: one that is used in application
context, and the other in kernel context. The
kernel page table contain all the same map-
pings as the application page table but also in-
clude a mapping of the kernel address space.
All transitions between application and guest-
kernel contexts must pass via Xen, which au-
tomatically switches between the two page ta-
bles.

4.2 1A-64
As of this writing, Xen/ia64 is between its al-
pha release and beta release. All basic hy-

pervisor capability is present: Domain O runs
solidly as a ‘demoted’ guest OS, utilizing all
devices while booting to a full graphical con-
sole and executing all Linux/ia64 applications
unchanged. Multiple guest domains can be
launched, but virtual 1/0O functionality is not
finished so any unprivileged domain boots to
the point where init fails to find a root disk, then
panics and reboots in an infinite cycle. SMP
support is not yet present, either in the hypervi-
sor itself or in the guest.

Full functionality in Xen/ia64 is expected later
this year, but the port is sufficiently complete to
illustrate some similarities and differences that
establish credibility that Xen will prove widely
portable:

1. Hardware-walked page tables must be

carefully managed in Xen/x86 and, in-

deed, handling page tables is one of the
most complex parts of Xen, requiring a

fair amount of code in the hypervisor and

non-trivial changes in the paravirtualiza-

tion of guests. On ia64, hardware page-
table walking is still necessary for per-

formance, but can be much more easily
diverted to hypervisor-managed page ta-
bles. The difference is completely hidden
from common code and implemented in
the arch-specific layer.

2. Like the x86 architecture, ia64 is not

3.

fully virtualizable—certain instructions
have different results when executed at
different privilege levels. Both Xen archi-
tectures ‘demote’ the guest OS and pro-
vide an interface to handle these privilege-
sensitive operations.

While the x86 has a small state vector, the
ia64 architecture has well over 500 regis-
ters and two stacks that must be carefully
managed for each thread. Linux solves
this elegantly with multiple state staging
areas and lazy save/restore to optimize
kernel entry and exit and thread switching.
Recognizing the similarity between Linux
threads and Xen domains allows most of
the Linux code to be directly reusable.

The page size on x86 is 4kB. Modern ver-
sions of x86 chips support a larger page
size, but its use is limited. 1A-64 sup-
ports nine different page sizes and a guest
OS may use all of them simultaneously.
Thus, Xen/ia64 must manage this addi-
tional complexity. Again, this is safely
hidden in Xen through asm macros and
arch-specific modules.



5 Conclusion

In this paper, we have presented a brief
overview of the major new features in Xen 3.0
including VM relocation, device driver isola-
tion, support for unmodified operating systems,
and new hardware support for both x86/64 and
IA-64 processors. Xen is quickly maturing into
an enterprise-class VMM and is currently be-
ing used in production environments around the
globe.
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Abstract from or writes to a file, takes a page fault, or
is paged out, the page cache becomes involved.
_ o Hence, the performance of the page cache has
Given the current trends towards ubiquitous, rather dramatic impact on the performance of
64-bit server/desktop computing with largehe system. As a particular page is referenced,

amounts of cheap system memory, the perforge page cache has to be able to locate the page,
mance and structure of the Lin@page-cache o has to determine that the page is not in the

will undoubtedly become more importantin thecache, in as efficient and effective way as possi-

future. An empirical and analytical examina- pje \ith a focus on minimal memory overhead.
tion of performance will be valuable in guiding

future development.
1.1 Evolution of the Page Cache

The current 2.6 radix-tree based design repre-

sents a huge leap forward from the old global ) ) -

hash-table design, but there may be some issudd older versions the Linux kernel utilized a

with the current radix-tree structure itself. global hash-table based approach to maintain
the pages in the cache. The hash based ap-

The main goal is to understand performancéroach had some performance issues:

of the current implementation, examine per-

formance with respect to other potential data-

structures, and look at ways to improve concur-

rency.

1. A hash key is normally not unique; hence
the system has to resolve collisions. A
hash chain had to be built to hold entries
(each entry used up 8 bytes per referenced
page).

1 The Radix-Tree based Page 2. A single global lock governed the page

Cache in Linux 2.6 cache; causing scalability issues on SMP
based systems.

The Linux 2.6 page cache is basically a collec-

tion of pages that normally belong to files. TheThe radix-tree based page cache solution ad-

pages are kept in memory for performance reagresses the issues discussed above.
sons. As on other UNI®) operating systems,

the page cache may take up the majority of th&echnically, the Linux 2.6 system consists of
available memory. Whenever a thread readsnany smaller page cache subsystems, or more

A
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specifically, one for each open file in the sys+ Shift | through-| delta | profile | delta
tem. put
6| 4.61 N/A | 13.21 N/A
, 8| 4.745 (+3)% | 12.09| (-8.7)%
Segregating page caches has a few advantages: 7577705 (+2)% | 12.40| (=6.14)%
12| 4.695 | (+1.8)%| 12.31| (-6.72)%
First, each page cache can have its own lock, 4| 4.683 (+1.6)% | 17.22| (+30.4)%

avoiding the global page cache lock that was

necessary in older versions. Table 1. Sequential read throughput and
percent of profile ticks forradix_tree

Second, search operations work on a smalldPokup results for different values dfIAP_

address space, and complete more quickly. SHIFT. The units for throughput are GB/sec,
and the profile column represents time spent in

. . . radix_tree_lookup . These values repre-
Third, as there is one page cache per open f'lesent the average of four runs

the only index required to look up a specific
page is the offset within the file.

height| maximum | maximum
_ _ o pages file

In the radix-tree, the 32-bit or 64-bit file off- offset
set is divided into subsets whose size is based 0 0 0
on the value ofMAP_SHIFT as defined in 1 641 256 KB
lib/radix.c. The current implementation uses 5 2096 16 MB
a MAP_SHIFT of Six for 6-bit _|nd|ces. The 3 560144 1GB
highest-order sub-field (or set) is used to branch
) . ) 4 16777216 64 GB
into a 64-entry table in the root of the radix- 5 1073741823 178
tree. An entry in that sub-table serves as a 6 1994967296 16 TB
pointer to the next node in the tree. The next

lower sub-field (from the index) is used to in- _
dex that particular node, yielding a third ab- 1able 2. Max number of pages by radix-tree

straction. Eventually, the algorithm will reach N€ight with a 32-bit key anMAP_SHIFTof 6,
the bottom of the tree and obtain the actual paggIe offset assumes 4k pages

pointer or finds an empty entry, signifiying that 5, gptimization criterion was to ensure that
the page is not present. Table 2 shows maXig,e radix-tree would only be as deep as nec-

mum file offset and number of pages versus tré@gqary  |n the case where the system operates
height for the shift value of six. on small files (smaller than 65 pages), only one

level of abstraction (one node) will be used. In
There is some precedent for using a value othesther words, only the least significant sub-field
than six for theMAP_SHIFT. Originally, seven of the offset is being utilized. This property of
was used for th&AP_SHIFTwhen the struc- the current implementation allows the normally
ture was first introduced [7]. Larger valuesdetrimental effects of a large key on a radix-
mean smaller trees in terms of height and thdree to be minimized. The only potential down-
possiblity of shorter search times. This possiside is in the case of a sparse file where nodes
bility comes at the expense of bigger nodes ifocated at relatively large offsets will force a
the slab cache, which means that there is morbigher tree depth than might otherwise be nec-
potential for wasted entries. essary.
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1.2 Newer Featuresin 2.6 worker threads reading from n separate files,
hence the locking is distributed over the set of
One of the newer features incorporated irfiles being accessed. Table 3 shows the sever-
Linux revolves around ‘tagging’ dirty pages in ity of thg locking problems of.the current spin-
the radix-tree. In other words, a dirty page islock designvs th_e rwlock des!gn and shows that
only flagged in the radix-tree, and not moved€Ven the rwiock implementation spends a good
to a separate list as in the pre 2.6.6 designqeal of time overall CPU time in locking func-

Along the same lines, pages that are being writtOns-

ten back to disk are flagged as well. A new
set of radix-tree functions was implemented toTable 3 shows throughput on an 1BM p650 8-

locate these pages as necessary. Searching gPU POWERA4+ server with 16GB of RAM

n
entire tree structure for these pages is not a

nd two 7GB files fully cached with differing
efficient as just traversing trough a dedicatecpumbers of threads attempting to sequentially
list, but based on the feedback from the Linux

read the files. Throughput is in GB/sec and

community, the performance delta is not Con_the profile columns show the percentage of time

sidered a big issue. There is some concern i;}rom the profile spent in locking functions.
the Linux community that with very large files

) 4 Threads|| Spinlock| Profile | Rwlock | Profile
the 2.6 lock-per-file based approach will be as 1 1111 0.10% 1.041 0.80%
bad as the global lock based 2.4 implementa- a 526 12.4% 2 471 4.33%
tion. The tagging of these pages in the new 3 2011 54.1% 282 9.75%
design required a lot of changes to the page 12 220! 51.6% 298| 9.86%
cache and the VM subsystems, respectively. 14 231| 49.3% 3.03| 9.74%
One implication of the changes is that the dirty 16 234 48.9% 3.13| 9.52%

pages are now always written in file offset or-Table 3. Read throughput and time spent in

der out to disk. As the Linux community re- |ock functions for spinlock and rwlock kernels.
ports, this may cause some performance issues

involving parallel write() operations on large There has been some ongoing debate over
SMP systems. The tagging of all these pagewhether a rwlock solution would be more ac-
in the radix-tree contributes to the complexity ceptable, however as of this writing it has been
of switching from a radix-tree based approachheld out of mainline due to specific concerns
to another data structure (if needed). Basedver the performance of the rwlock solution on
on the current implementation, improving the Pentium-4 machines [9, 10]. Although the cost
radix-tree seems more feasible than a completef locking is substantial on all architectures,
re-design and should therefore be explored firsthis architecture seems to exhibit particularly
The MAP_SHIFTparameters in the radix code high latency on the unlock operation. This also
reveal some potential for performance work. seems to indicate that the radix-nodes tend to

_ e _ . be cached and that search times are small [8].
There is a scalability issue when dealing with

only a small amount of very large files and a

workload that consists of many concurrent read

operations on the files. The single lock govern2  Alternative Data-Structures

ing the radix-tree will basically eliminate any

potential scalability on SMP systems while ex-

posed to such a workload. Scalability of courseGiven the unique nature of the radix implemen-
is achieved when the workload consists of ntation in the Linux kernel, comparative analysis
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of the radix-tree with alternative data-structureshis without costly re-hashing of the entire data-
should provide insights into its strengths andset. Conversely, the extendible hash-table can
weaknesses. In general, for the application obe implemented to contract itself as elements
page-cache lookup, speed should be paramouate removed. Naturally, these characteristics
since in the case of a cache hit, the entire read are not free and represent a trade-off for the
write operation should occur at memory speedfixed number of memory dereferences in the
Inserts, on the other hand, will typically be fol- lookup path.

lowed by disk I/0, and that I/O should become _ _ o

the limiting factor for the operation rather than Th€ extendible hash-table typically is imple-
the cache update. Deletes are initiated from &'€nted using two structures: buckets, which
truncate operation or by the page-scanner Wheﬁor_]taln the [_)omters tq the data, and a directory,
the system is under memory pressure. Thié"’_h'Ch conta_lns the pointers to the buckets. The
case of memory pressure is performance critdireCtory is just a large array with a power-of-
ical since the VM wants to release the page§W° sSize. T.he logarithm of the current size is
selected as soon as possible, and updates tg/€d the directory depth.

the caching structures represent pure overheagyements are inserted by computing a hash key
Operations such as *tagging” pages as dirty;nq taking the n most-significant bits of that
are also interesting _b_eca_use they involve bottp(ey’ where n is equal to the directory depth. Us-
a lookup and a modification to the state of thejg this value to index into the directory yields
data structure. However this operation is Spey pointer to the bucket where the new element
cific to the Linux 2.6 radix-tree implementation .| reside. Different strategies exist for plac-
and is not available on all data-structures. ang an element into a bucket. Depending on the
some cases it may be possible to graft these ad; ¢ of the bucket, the object’s hash value can
ditional pieces of state information onto otherp, \;seq again to place the item, or if the bucket

standard data-structures, but it is not practicajg fairly small, a simple linear insert can be ef-
in all cases. fective.

Given these qualities, it seemed appropriate tgach pointer in the directory is not necessarily
test the Linux kernel implementation of radix- unique’ and there can be mu“tple pointers to
trees against a number of other data-structureg certain bucket. For this reason, the buckets
each with slightly different design trade-offs.  keep a local-depth value, which can be used to
compute the number of pointers to it in the di-
rectory. When a bucket becomes full, it must
be split into two separate buckets in an oper-
ation called a bucket-split. After the bucket-
One idea suggested was that of extendiblesplit, each new bucket will get half of the old
hashing, which is a technique developed fomointers in the directory, and the local depth of
optimizing lookup operations in database systhe buckets will increase by one. If the bucket
tems [6]. Among other interesting properties,has a local depth equal to the directory depth,
extendible hashing guarantees that data can liken the directory must be first doubled in size
accessed in just two “page-faults” in databasdefore the bucket can be split. In this case,
terminology, which translates to two pointerthere is only one pointer in the directory to this
dereferences for our purposes. As the nameparticular bucket before the directory doubling
suggests, it is capable of extending itself as theperation, and afterwards there are two point-
amount of data stored increases, and it can ders and the bucket-split can proceed. When a

2.1 Extendible-Hashing
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bucket-split occurs, the elements in the originak significant cost because the flags should typ-
bucket are redistributed into the new buckets irically have reasonable spatial locality with the
such a way that their hash-keys will lead to theother pointers in the node and would be kept in
correct bucket from the directory. In this way, the same cache-line.

the extendible hash-table avoids having to ever
globally re-hash and instead limits redistribu-AS With regular red-black trees, performance of

tion to bucket-splits while retaining the original NS€rts and deletes is traded off to keep the tree
hash function. balanced and keep average lookup times down.

In the case of the threaded version this is even
One additional characteristic of the extendibleimore true as thread information must be kept
hashing is its ability to handle random se-consistent through rebalancing operations.
guences of keys equally as well as sequential

sequences. Though many typical applicationérhe implementation tested was similar to the

will primarily use sequential I/O patterns, some-"uX kerneL; rp])resent redr-]blaclé tree imple-
applications might find this characteristic ben-MeNtation which assumes the node contents are

eficial embedded into another object and passes off re-
' sponsibility for memory allocation and imple-

menting lookups onto the tree’s user.
2.2 Threaded Red-Black Tree

2.3 Treap
Threaded red-black trees are a twist on the no-

tion of a traditional red-black tree, which try to
optimize for sequential access sequences by u
ing normally NULL leaf pointers as “threads”

A treap is the basic data structure (BST) under-
ﬁ7ing randomized search trees [3]. The name
. . . _itself refers to the synthesis of a tree and a heap
which keep track of nodes with neighboring structure. More specifically, a treap represents

keys [12.]' So, i one already has a refere_ncea set of items where each item has associated
to a particular leaf node, access to the Previoug . it o key and a priority. In general a pri-

nodg (thertms gf }((alyf?‘r‘?ﬁr ) grlly requires aC'ority Is randomly assigned to a given key by
cessing that nodes fe read. the implementation. A treap represents a spe-

The regular red-black tree properties still ap-Cial case of a binary search tree, in which the
ply [1,2], but since almost all child pointers node set is arranged in order (with respect to

are used in some way, additional state informath€ keys) as well as in heap fashion with re-
tion must be kept in the nodes to differentiate9ards to the priority. The procedure for lookup
children from threads. Luckily, red-black trees,in @ treap is the same as for a normal binary
such as the one in the Linux kernel, already us§€arch-tree and the node priorities are simply
an extra word per node to keep track of color/gnored. In a treap, the access time is propor-
This extra word can be overloaded to keep tracikional to the depth of an elementin the tree. An

of thread information as well with no additional INSert of a new item basically consists of a two
space cost. step process. The first step consists of utiliz-

ing the item’s key to attach to the treap at the
Since one cannot simply test for NULL during appropriate leaf position, and second to use the
lookups, one must also alter any open-codegriority of the new element to rotate the new en-
lookup sequences to be thread-aware, which 8y up in the structure until the item locates the
to say such code must examine the state inforparent node that has a larger priority. Interest-
mation in the node. Ideally, this should not beingly, it can be shown in the general case that
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an insert will only cause two rotations, which in the worst case all but one of those pointers
means updates are much less costly then in the wasted from the root all the way down to the
case of a strictly balanced tree such as an AVlleaf. The height is directly related to the offset
tree or red-black tree. of the last object inserted into the tree.

The implementation tested used a simple polyThe kernel implementation also supports tag-
nomial hash function on the key to generate thging which means each node not only consists
priority. This approach was used instead of theof an array of pointers but a set of bit-fields for
kernel’s random number generator to keep the@ach pointer which can be used somewhat ar-
implementation as self-contained as possible. bitrarily by the subsystem utilizing the tree. In
the case of the page-cache, these tags are used
Again, the implementation tested follows theto keep track of whether a page is dirty or un-
Linux kernel's convention of assuming the userdergoing writeback.
must allocate the nodes and open-code the
lookup sequences. The meaning of these tags is clear at the leaf
nodes, but at higher levels, tags are used to refer
_ _ to the state of any objects in or below the child
2.4 Linux Radix-Tree node at the corresponding offset.

) ) , . . For example, given a three level radix-tree, and
T_he Llnux_lmplementatlon of t_he radix-tree IS the page at offset one is dirty, then the dirty-tag
highly optimized and customized for use Nty it one on the leaf node is set and the tags
the kernel and differs signifcantly from what ¢, i ;61 are setin the two nodes above. This

is corr_lmonly_referred to as a radix-tree [1_’4’5]way, gang-lookups searching for tagged nodes
It avoids paying the memory cost of explictly can be optimized to skip over subtrees without

kegping keys, child-.pointers., and separaf[e d"’_‘t_aalny tagged descendants.
pointers on each object but instead uses implicit

ordering along with node height to determine

the meaning of these pointers. For example, iP5 Analysis

the tree has a global height of three, then the

pointers on the first two levels only point to

child nodes and the lowest level uses its pointin all three operations tested, there was no sig-

ers for data objects. Data pointers only exist atificant difference between the data structures

the lowest level. until roughly 128K elements where the differ-
ences begin and are highlighted by the remain-

By aggressively conserving memory and reducing data points.

ing the tree’s overall size, the radix-tree has an

extremely small cache footprint which is vital The extendible-hashing results were initially

to its success at larger tree sizes. very surprising as it seems to perform much
worse than the tree structures at high object

The main disadvantage of using implicit or- counts. After analyzing performance counter

dering in the implementation is that a highly information, it was determined that the ex-

sparse file will force the use of more tree-levelstremely poor spatial and temporal locality of

across the entire tree for all offsets. The curthe the hash directory and buckets were causing

rent implementation usesMAP_SHIFTof six ~ TLB and similar translation cache misses and

which means sixty-four pointers per node, andhus large amounts of time were spent doing
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Deletes
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Figure 3: Sequential Delete Performance

page-table walk operations. Also, the poor spatial or temporal locality with respect to the ini-
tial locality caused a great deal of data-cacheial lookup.

misses which compounded the problems. On

the other hand, for the tree structures, the se-

guential nature of the test yielded significant

benefits to their cache interactions.
This result has also been observed under a

The two binary-tree structures offer mixed per-‘real’ data-base workload where thedix_
formance with generally worse performance ortree_delete call shows up higher in ker-
lookups and inserts with only the treap nar-nel profiles than theadix_tree_lookup op-
rowly beating the radix-tree in deletes. Theerations, which was initially rather confus-
threaded red-black tree also seems to do wordag, as it was expected that most of the time
than expected in lookups which will require in the radix-tree code would be spent doing
some further analysis. lookup operations. Table 4 shows this ef-
fect, wheregadix_tree_delete shows up as
The radix-tree scales extremely well into thethe third highest kernel function anddix_
very large numbers of pages because the tree itree_lookup ~ is humber ten. Overall, this
self fits into processor caches much better thaparticular database query is heavily 1/0 bound,
the alternative designs. In the case of the deletas dedicated_idle represents time spent
operations the radix-tree still does well, but iswaiting on 1/0 to complete, and the rest of the
beaten in some cases by the treap. Most likelyfunctions indicate memory pressuriink
this is because of the extensive updates whiclist , shrink_cache , refill_inactive_
must occur to the tagging information up thezone, andradix_tree_delete ) and other
tree which typically would not have good spa-filesystem activity find_get_block ).
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2.6 Continuing Work

In the interests of time, all of these results
were collected in userspace. As time permits,
the tests can be re-done using kernel-space im-
plementations to keep user-space biases to a
minium and to avoid any bias due to the mem-
ory allocator.

These tests also represent best-case cache-

DB Workload: Top 10 Kernel Functions behavior, because actual data pages were not
. . being moved through the memory sub-system.
dedicated_idle Again, these structures should be re-examined
__Ccopy_tofrom_user in the future with a mixed workload with sub-
radix_tree_delete optimal caching behaviors.
_spin_lock _irq
__find_get_block
shrink_list
refill_inactive_zone 3 Going Forward with Improve-
__might_sleep ments to the Page-Cache

shrink_cache

radix_tree_lookup . _ _
As far as improving the radix-tree, there does

not appear to be any reason to outright replace
. _ the current implementation, however perfor-
Table 4: Kernel functions reported by OProfile ance could probably be improved for the class
from a standard commercial database benchsg orkioads desiring concurrent access to the
mark which simulates a business decision supq,gix-tree structure by improving the locking
port workload. The tests were run on IBM papaviors for the radix-tree. As an example,
OpenPower 720 4-CPU machine running o, qatahase system using large files for storing

Ext3 with 92% of time spent in the kemnel (o 65 and using the page-cache could run into
for this query. Other querys in the work- this issue.

load showed similar results where in all cases
radix_tree_delete was ordered higher
thanradix_tree_lookup . 3.1 A Lockless Design

Ultimately, it would be beneficial to imple-
ment a fully lockless design (for readers) us-
ing a Read-Copy-Update (RCU) approach [11].
This would allow the tree to better scale with
many concurrent readers, and should not cause
any difference in performance for a writers.
This could cause a number of issues and race-
conditions where readers seeing “stale” data
could cause problems, and these issues must be
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fully explored and understood before an imple-including the height and a pointer to the root.
mentation can be attempted. For the RCU design to work, it must be able to

_ atomically update a single field for the readers
Of the data-structures mentioned above, the, |oqk at, however both the height and the root
radix-tree and the extendible hash-table Woulq)ointer require updates. The solution to this is

be the best structures suited for a lockless det-0 add another level of indirection and simply

sign, while the binary-tree structures are Someggep, that information in a separate dynamic ob-
what more difficult to modify for RCU. ject.

In the case of the extendible hash-table, there

are two cases to consider: bucket-splits and )

directory-expansion. In the case of bucket-3-2 An Evolutionary Improvement

splits, two new buckets are typically allocated

to replace the original, so the original could be _ _

left in place for other readers, while the writing AN altérnative approach using gang-lookups,
thread copied the data from the original bucketVhich is more evolutionary with respect to the
to the new ones and then updated the pointcurrent locking design, was suggested by Su-
ers in the directory. The race between readerBarna Bhattacharya

looking at the directory and seeing the origi-

nal bucket and seeing one of the new buckets i§he current locking design works one page at
not problematic, since in either case, the appro@ time where the radix-tree lock is acquired
priate data will be in whichever bucket is seen.@nd released for each page locked. This is one
The release of the memory for the old bucket€ason why the rwlock approach may not be
would simply have to wait until all processors faster, since it uses an atomic operation both
had reached a quiescent state. In the case 8f acquisition and release whereas a spin-lock
the directory expansion (or contraction) a sim-Only uses one atomic operation on a success-
ilar technique would apply, where the writing ful lock acquisition. Her suggestion was to in-
thread works to update the new directory whileStéad use a gang-lookup and lock each page re-
leaving the old one in place. Then it can updau;guested one after the other before releasing the
the pointer to the directory after it finishes and{ree-lock. This approach would drastically re-

use a deferred release for the old directory. ~ duce the number of costly atomic operations.
This would come at the cost of increased lock

For the radix-tree, the main update case isold times for the tree, but this could be mit-

radix-tree extension, where a new offset is in-gated somewhat by going back to the rwlock
serted which requires an increase in the heighdipproach. Further, in this case the rwlock be-
of the tree. Luckily, the radix-tree is fairly sim- comes a more effective solution since the num-

ple and does not require complex restructuringyer of unlock operations is drastically reduced.
in this case, but instead merely adds new levels

ontop of the exisiting tree. So, in this case the
writer thread creates these new nodes and sets
them up while letting concurrent readers see
the pre-exisiting tree, then when all of the new
radix-nodes are set up, the height of the tree can
be incremented and a new root installed. There IThis idea was suggested in a private email to the au-

is one problem with doing this today, the radix- thors, where she is working on converting the write-path
tree root object currently consists of three fieldso do something similar

method| spin-lock | rwlock
page by page 2n 3n
gang-lookup n+1l| n+2
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Table 5. Table showing number of atomic operdaboratory conditions. Results will not be realized
ations required to lock n pages for the differentin all computing environments.

locking strategies.
This document is provied “AS IS,” with no express

or implied warranties. Use the information in this

document at your own risk.
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Abstract 1 Introduction

The Trusted Computing Group (TCG) released
the first set of hardware and software specifi-
cations shortly after the creation of that group
in 20031 This year, a short two years later,

While Trusted Computing and Lin@® may 20 million computers will be sold containing a
seem antithetical on the surface, Linux userd rusted Platform Module (TPM) [Mohamed],
can benefit from the security features, includingvhich will largely go unused. Despite the
system integrity and key confidentiality, pro- controversy surrounding abuses potentially en-
vided by Trusted Computing. The purpose ofabled by the TPM, Linux has the opportunity
this paper is to discuss the work that has beeff build controls into the enablement of the
done to enable Linux users to make use of theif fusted Computing technology to help the end
Trusted Platform Module (TPM) in a non-evil USer control the TPM and take advantage of se-
manner. The paper describes the individuafurity gains that can be made by exercising the
software components that are required to en] PM properly. This paper will cover the pieces
able the use of the TPM, including the TPM heeded for a Linux user to begin to make use of
device driver and TrouSerS, the Trusted Softihe TPM.

ware Stack, and TPM management. Key con-_ ) _ _ ) )
cerns with Trusted Computing are highlighted T IS Paper is organized into sections covering

along with what the Trusted Computing Groupthe 9°a's of Trusted Computing, a brief intro-
has done and what individual TPM owners Canductlon to Trusted Computing, the components
do to mitigate these concerns. Example benf€duiréd to make an operating system a trusted
eficial uses for individuals and enterprises ardPerating system from the TCG perspective,
discussed including eCryptfs and GnuPG us.agg.|e current state_ 9f Trusted Computing, uses
of the TPM. There is a tremendous opportunityOf the_ TPM, cl_arn‘lcatlon _Of common techn!-
for enhanced security through enabling projecté.:al misperceptions, and finally concludes with
to use the TPM so there is a discussion on the 1gee [Fisher] and [TCGFAQ] for more history of the

most promising avenues. Trusted Computing Group.

e 91 o
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a section on future work.

2 Goals of Trusted Computing

The Trusted Computing Group (TCG) has cre-
ated the Trusted Computing specifications in
response to growing security problems in the
technology field.

“The purpose of TCG is to develop, define, and
promote open, vendor-neutral industry specifi
cations for trusted computing. These includg
hardware building block and software inter-
face specifications across multiple platforms
and operating environments. Implementatior]
of these specifications will help manage data
and digital identities more securely, protecting
them from external software attack and phys
ical theft. TCG specifications can also pro-
vide capabilities that can be used for more
secure remote access by the user and enal
the user’'s system to be used as a securit
token.”[TCGBackground]

NVRAM
RNG
PCRs SHA-1
(Min 16)
EK RSA
OPTIONAL
Opt-In DSA,
Eliptic Curve
Cryptographic
Co-Processor
Program
Code
[ | DIR
(Deprecated in 1.2)
Execution
Engine Power.
Detection
/0

Fundamentally, the goal of the Trusted Com-

puting Group’s specifications is to increase as-

surance of trust by adding a level of verifiability

Figure 1: Trusted Platform Module

beyond what is provided by the operating sys-

tem. This does not reduce the requirement fo
a secure operating system.

3 Introduction to Trusted Comput-
ing

The Trusted Computing Group (TCG) has re-

r
a logical view of a TPM. The TCG has also
released a specification for APIs to allow pro-
grams to interact with the TPM. The next sec-
tion details the components needed to create
a completely enabled operating system. The
interaction between the components is graph-
ically shown in Figure 2.

leased specifications about the Trusted Plat-

form Module (TPM), which is a “smartcard-
like device,” one per platform, typically real-

For a rigorous treatment of Trusted Comput-
ing and how it compares to other hardware se-

ized in hardware that has a small amount otturity designs, please read Sean W. Smith’s
both volatile and non-volatile storage and cryp-“Trusted Computing Platforms Design and Ap-
tographic execution engines. Figure 1 showgplications” [Smith:2005].
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3.1 Key Concepts The root of trust for storage is the area where
the keys and platform measurements are stored.

Itis trusted to prevent tampering with this data.
There are a few key concepts that are essential

to understanding the Trusted Computing SpeCiThe root of trust for reporting is the mechanism

fications. by which the measurements are reliably con-
veyed out of the root of trust for storage. This

is the execution engine on the TPM.[TCGArch]
3.1.1 Measurement

A measurement is a SHA-1 hash that is therg 1 3 chain of Trust

stored in a Platform Configuration Register

(PCR) within the TPM. Storing a value in a

PCR can only be done through what is knownThe chain of trust is a concept used by trusted
as an extend operation. The extend operatiogomputing that encompasses the idea that no
takes the SHA-1 hash currently stored in thecode other than the root of trust for measure-
PCR, concatenates the new SHA-1 value to itment may execute without first being measured.
and performs a SHA-1 hash on that concateThis is also known as transitive trust or induc-
nated string. The resulting value is then storedive trust.

in the PCR.

3.1.4 Attestation
3.1.2 Roots of Trust

Inthe Trusted C ina G , del. t tAttestation is a mechanism for proving some-
nthe frusted .omputing 5roup's modet, trus “thing about a system. The values of the PCRs

ing the operating system is replaced by trustingare signed by an Attestation Identity Key and

the roots of trust. There are three roots of trUStéent to the challenger along with the measure-

ment log. To verify the results, the challenger
e root of trust for measurement must verify the signature, then verify the values

of the PCRs by replaying the measurement log.
e root of trust for storage

e root of trust for reporting
3.1.5 Binding Datato a TPM

The root of trust for measurement is the code

that represents the “bottom turtfe” The root Bound data is data that has been encrypted by a

of trust for measurement is not itself measuredTPM using a key that is part of the root of trust

it is expected to be very simple and immutable for storage. Since the root of trust of storage

It is the foundation of the chain of trust. It per- is different for every TPM, the data can only be

forms an initial PCR extend and then the per-decrypted by the TPM that originally encrypted

forms the first measurement. the data. If the key used is a migratable key,
2This is an allusion to the folk knowledge of how however, then it can t_)e migrated to the_ root of

the universe is supportedttp://en.wikipedia. trust for storage of a different TPM allowing the

org/wiki/Turtles_all_the_way_down data to be decrypted by a different TPM.
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Appl more secure storage of data through asymmet-
TPM Mgmt ric key operations that include on-chip key gen-
oKCSH App eration (using a hardware random number gen-
erator), and public/private key pair encryption
o8 and signature operations. The TPM provides
hardware-based protection of data because the
[ Kemel 10D private key used to protect the data is never ex-
Kernel LMeasurement posed in the clear outside of the TPM. Addi-
tionally, the key is only valid on the TPM on
Boot BIOS/Firmware which it was created unless created migratable
Loader and migrated by the user to a new TPM.
Hardware TPM
Platform

The TPM provides functionality to securely
store hash values that represent platform con-
figuration information. The secure reporting
of these values, if authorized by the platform
owner, enables verifiable attestation of a plat-
form configuration. Data can also be protected
under these values, requiring the platform to be

_ N in the same configuration to access the data as

records the values of selected PCRs at the time

the data is encrypted. In addition to the restric-

tions associated with bound data, sealed dathhe owner of the platform controls the TPM.
can only be decrypted when the selected PCREhere are initialization and management func-

have the same values they had at the time dfons that allow the owner to turn on and off
encryption. functionality, reset the TPM, and take owner-

ship of the TPM. There are strong controls to
protect the privacy of an owner and usefhe
platform owner must opt-in. Any user, even if
different from the owner, may opt-out.

Figure 2: Trusted Computing Enabled Operat
ing System

3.1.6 Sealing Datato a TPM

4 Components of Trusted Comput-
ing on Linux

_ Each TPM contains a unique Endorsement
Several components are required to enable aiQey This key can be used by a TPM owner

operating system to use the Trusted Computing, znonymously establish Attestation Identity
concepts. These components are described Weys (AIKs). Since privacy concerns prevent

this section. the Endorsement Key from being used to sign
data generated internally by the TPM, an AIK

41 TPM is used. An AIK is an alias to the Endorsement
Key. The TPM owner controls the creation and

The Trusted Platform Module (TPM) is a hard- activati_on of an AIK as weI_I as the data associ-

ware component that provides the ability to Se_ated with the AIK.[TCGMain],[TPM]

curely protect and store keys, certificates, pass-

words, and data in general. The TPM enables 3See Section 7.1 for more details.
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4.1.1 A Software-based TPM Emulator for 4.2 TPM Device Driver
Linux

The TPM device driver is a driver for the Linux

If you don’t have a machine that has a TPM butkernel to communicate TPM commands and
you'd like to start experimenting with Trusted their results between the TCG Software Stack
Computing and the TSS API, a software TPM(TSS) and the TPM device. Today’s TPMs are
emulator can provide a development environconnected to the LPC bus. The TPM hardware
ment in which to test your program. While a is located by the driver from the PCI device for
software TPM will provide you with a develop- the LPC bus and attempts to read manufacturer
ment environment, it can’t provide you with the specific information at manufacturer specific
“trust” that a hardware TPM can provide. offsets from the standard TPM address. Since

the TPM device can only handle one command
gata time and the result must be cleared before
another command is issued, the TPM device
driver takes special care to provide that only

This is the start of the “chain of trust.” By mea- one c_ommand is in-flight at a time and that the
suring as early in the boot cycle as possibledata is returned to only the requester. Rather

you lessen the chance that an untrusted comp(than tie up aII.system resources with an ioctl,
nent (hardware or software) can be introduce(ﬁhe command is transmitted and the result gath-
without being noticed. There must be an ini_ered into a driver buffer on a write call. Then
tial “trusted” measurement established, knowthe result is copied to the same user on a sub-

as the root of trust for measurement, and th&€duent read call. This coupling of write and

measurement “chain” must not be interruped read calls is enforced by locks, the file struc-
ture’s private data pointer and timeouts. At

i the direction of the Trusted Computing Group
With a software TPM emulator, you have de-gpecification, the TSS is the only interface al-

layed the initial measurement long into the boot,ved to communicate with the TPM thus. the
cycle of the system. Many measurements havgyiver only allows one open at a time, which is
not occurred and so the trust of the system caggne by the TSS at boot time. The driver al-
not be fully validated. So while you would not |oys canceling an in-flight command with its
want to rely on a software TPM to validate the gy sts filecancel . Other sysfs files provided
trust of your systemm, it does provide you with by the driver argocrs for reading current pcr

a development environment to begin preparing,5jyes caps for reading some basic capability
to take advantage of trusted computing. information about the TPM such as manufac-
turer and version angubek for reading the
Mario Sasser, a student at the Swiss Federalublic portion of the Endorsement Key if al-
Institute of Technology has created a TPM emdowed by the device. The current driver sup-
ulator that runs as a kernel module.[Strasserports the Atmel and National Semiconductor
It is not a full implementation of the version 1.1 TPMs, which are polled to deter-
specification and it is still under develop- mine when the result is available. The com-

The advantage of having the TPM be a har
ware component is the ability to begin measur
ing a system almost immediately at boot time.

ment. It is available fromhttp://www. mon functionality of the driver is in thgpm
infsec.ethz.ch/people/psevinc/ kernel module, and the vendor specifics are
or https://developer.berlios.de/ in a separate module. The driver is available

projects/tpm-emulator . on Sourceforge dtttp://sourceforge.
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net/projects/tpmdd/ under the project
name tpmdd and has been in Linux kernel ver-
sions since 2.6.12.

RSA key pair generation

e RSA encryption and decryption using
PKCS v1.5 and OAEP padding

4.3 TSS e RSA Slgnlverlfy

e Extend data into the TPM’s PCRs and log

The TCG Software Stack (TSS) is the APIthat ~ these events
applications use to interface with the TPM. e Seal data to arbitrary PCRs

e RNG
4.3.1 TSS Background
e RSA key storage

The TCG Software Stack (TSS)[TSS] is the set

of software components that supports an apApplications will link with the TSP library,
plication’s use of a platform’s TPM. The TSS Which provides them the TSS API and the un-
is composed of a set of software modules andlerlying code necessary to connect to local and

components that allow applications to commutemote TCS daemons, which manage the re-
nicate with a TPM. sources of an individual TPM.

The goals of the TSS are:
4.3.2 The TrouSerS project

e Supply one entry point for applications to
the TPM'’s functionality. (Provided by the The TrouSerS project aims to release a fully

TSS Service Provider Interface (The TSSTSS 1.1 specification compliant stack, follow-
API)). ing up with releases for each successive release
_ _ of the TSS spec. TrouSerS is released under
e Provide synchronized access to the TPMne terms of the Common Public License, with
(Provided by the TSS Core Services Daey fy|| API compliance test suite and example
mon(TCSD)). code (both licensed under the GPL) and docu-
C|”nentation. TrouSerS was tested against the At-
mel TPM on i386 Linux and a software TPM on
PPC64. TrouSersS is available in source tarball

e Hide issues such as byte ordering an
alignment from the application. (Pro-
vided by the TSS Service Provider Inter-

face (TSPI)). form and from CVS ahttp://trousers.
sf.net/
e Manage TPM resources. (Provided by the
TCSD).

4.3.3 Technical features not in the TSS

L specification
All components of the TSS reside in user space, P

interfacing with the TPM through the TPM de-
vice driver. By utilizing udev.permissions for the TPM de-

vice file and creating a UID and GID just for
TPM services provided through the TSS APIthe TSS, the TrouSerS TCS daemon runs with-
are: out root owned resources.
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For machines with no TPM support in the load a key, and seal data. By default, all func-
BIOS, TrouSerS supports an application levekionality is available to local users and denied
interface to the physical presence command® remote users.

when the TCS daemon is executing in sin-

gle user mode. This allows administrators to

enable, disable, or reset their TPMs where &4 TPM Management

BIOS/firmware option is not available. This in-

terface is automatically closed at the TCS Ieveg : . .
. N ome TPM management functionality was im-
when the TCS daemon is not running in single

) Plemented in the tpm-mgmt package and the
user mode, or cannot determine the run level o .
the system. openCryptoki package. The tpm-mgmt pack-

age contains support for controlling the TPM

In order to maintain logs of all PCR extend (enabling, activating, and so on) and for initial-
operations on a machine, TrouSerS supports &ing and utilizing the PKCS#11 support that is
pluggable interface to retrieve event log datapProvided in the openCryptoki package.
Presumably, the log data would be provided by

the Integrity Measurement Architecture (IMA)

(see Section 4.6 below). As executable contet.4.1 Controlling the TPM

is loaded and extended by the kernel, a log of

each extend event is recorded and made aval{he owner of the platform has full control of

he TPM residing on that platform. A TPM
maintains three discrete states: enabled or dis-
abled, active or inactive, and owned or un-

To maintain the integrity of BIOS and ker- owned. The platform owner controls setting
nel controlled PCRs, TrouSerS supports conthese states. These states, when combined,
figurable sets of PCRs that cannot be extendetPrm eight operational modes. Each opera-
through the TSS. This is useful; for example intional mode dictates what commands are avail-
keeping users from extending BIOS controlled@ble.

PCRs or for blocking access to an IMA con-__ _ . . '
trolled PCR. Typically, a TPM is shipped disabled, inac-

tive and unowned. In this operational mode,
TCP/IP sockets were chosen as the interfaca very limited set of commands is available.
between TrouSerS’ TSP and TCS daemon, fofhis limited set of commands consists mainly
both local and remote access. This makes coref self-test functions, capability functions and
necting to a TCSD locally and remotely essen-non-volatile storage functions. In order to take
tially the same operation. Access control to thefull advantage of the TPM, the platform owner
listening socket of the TCSD should be con-must enable, activate, and take ownership of the
trolled with firewall rules. Access controls to TPM. Enabling and activating the TPM is typ-
the TCSD’s internal functionality was imple- ically performed using the platform BIOS or
mented as a set of ‘operations,” each of whichfirmware. If the BIOS or firmware does not
enable a set of functions to be accessible to grovide this support, but the TPM allows for
remote user that will enable that user to accomthe establishment of physical presence through
plish the operation. For instance, enabling thesoftware, then TrouSerS can be used to estab-
seal operation allows a remote user to open anlish physical presence and accomplish the task
close a context, create authorization session®f enabling and activating the TPM. Taking

able through sysfs. The data is then retrieve
by the TCS Daemon on the next GetPcrEven
API call.
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ownership of the TPM sets the owner password, ¢ PKCS#1 RSA signature with SHA-1 or
which is required to execute certain commands.  MD5

The tpm-mgmt package contains the com- . .
mands that are used to control the TPM as deThe following mechanisms are supported

scribed above, as well as perform other tasks. AES, 3DES, and DES (as defined in the
PKCS#11 Cryptographic Token Interface

Standard[PKCS11]):
4,42 PKCS#11 Support

e Key generation
The PKCS#11 standard defines an API inter-
face used to interact with cryptographic de- ® Encryption and decryption in ECB, CBC
vices. Through this API, cryptographic devices ~ ©f CBC with PKCS padding modes
are represented as tokens, which provide appli-

_cations acommon way of view?ng and aCCeSSThe RSA mechanisms utilize the TSS to per-
ing the functionality of the device. Providing ¢, 1o required operations. By utilizing the
a PKCS#11 interface allows applications that SS, all RSA private key operations are per-
support the PKCS#11 API to take advantage o orm,ed securely in the TPM. The symmetric

the TPM immediately. mechanisms are provided to allow for the pro-

The TPM PKCS#11 interface is implementedteCtion of datg through symmetric encryption'.

in the openCryptoki package as the TPM to_The symmetric key used to prptect the data is
ken. Each user defined to the system has the eated on the .TPM token ar_ld Is thus, protected
own private TPM token data store that can hol y the TPM. S|_nce the key is protected by the

both public and private PKCS#11 objects. All TPM, the data is protected by the TPM.

priva’te PKCS#L11 objects are protected by theBefore any PKCS#11 token is able to be used
TPM’s root of trust for storage. A symmet-

: . . it must be initialized. Since each user has their
rlc.key is used to encrypt all pr!vate IDKCS#llown TPM token data store, each user must per-
objects. The symmetric key is protected by

. form this intialization step. Once the data store
an asymmetric TPM key that uses the user’s P

PKCS#11 user login PIN as the key's autho-ls |n!t|aI|zed it can be used by applications sup-
o orting the PKCS#11 API.
rization data. A user must be able to successp

fully Iogi‘n to the PKCS#l} token in order t0 The tpm-mgmt package contains commands to
use a private PKCS#11 object. The TPM tokenyitialize the TPM token data store as well as

provides key generation, encryption and signagertorm other tasks. Some of the other tasks
ture operations through the RSA, AES, triple g .

DES (3DES), and DES mechanisms.

The following RSA mechanisms are supported ¢ Import X509 certificates and/or RSA key
(as defined in the PKCS#11 Cryptographic To- pairs

ken Interface Standard[PKCS11)):

Existing certificates and/or key pairs
can be stored in the data store to be

e PKCS#1 RSA used by applications.

e PKCS#1 RSA key pair generation
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e Listthe PKCS#11 objects in the data storeLab have instrumented Grub v.0.94 and v.0.96

In addition to any objects that you im-
port, applications may have created
or generated objects in the data store.
tpm-mgmt lets you get a list of all
the PKCS#11 objects that exist in the
data store.

to perform the required measurements. Since
Grub is a multi-stage boot loader, each stage
measures the next before it transfers control.
This is a slight simplification. Stage 1 is mea-

sured by the BIOS. Stage 1 measures the first
sector of stage 1.5, which then measures the
rest of stage 1.5 and stage 2. The configuration
file is measured early with additional measure-
ments of files referred to in configuration files

Protect data using the “User Data Protectaken in sequence. If stage 1.5 is not loaded,

tion Key”

Protect data by encrypting it with a
random 256-bit AES key. The key is
created as a PKCS#11 secret key ob-
ject with an label attribute of “User
Data Protection Key.” This label at-
tribute is used to obtain a PKCS#11
handle to the key and perform en-
cryption, or decryption operations on
the data.

Change the PKCS#11 PINs (Security Of-

ficer and User)

PKCS#11 tokens have security offi-
cer and a user PINs associated with
them. It may be necessary or desir-
able to change one or both of these
PINs at some point in time.

45 Boot Loader

stage 1 measures the first sector of stage 2 in-
stead and that sector measures the rest of stage
2. The grub measurements are stored in PCR
4, the grub configuration file measurement is
stored in PCR 5, and the kernel measurement
is stored in PCR 8. The PCRs used are config-
urable but the defaults meet the requirements
of the TCG PC Specific Implementation Speci-
fication Version 1.1[TCGPC].

Lilo has also been instrumented to take the
measurements by the Dartmouth Enforcer
team. (See more detail about this project in
Section 6.1.1).

46 Kernel Measurement Architecture—
IMA

Reiner Sailer, and others of the IBM T.J. Wat-
son Research Center have extended the chain
of trust to the Linux kernel by implementing

a measurement architecture for the kernel as
a LSM.[SailerIMA] (Note: To effectively pre-
serve the chain of trust, the LSM must be com-
piled into the kernel rather than dynamically

To preserve the chain of trust beyond the bootoaded.) Thefile_mmap hook is used to
loader, the boot loader must be instrumented tperform the measurement on anything that is
measure the kernel before it passes over comnapped executable before it is loaded into vir-
trol. The root of trust for measurement mea-tual memory. Kernel modules are measured
sured the BIOS before it transferred control, thgust before they are loaded. The measurement
BIOS measured the boot loader. Now the boots used to extend one of the PCRs numbered
loader must measure the kernel. Seiji Munebetween 7-16, as configured in the kernel to
toh and Y. Yamashita of IBM’s Tokyo Research allow for somewhat flexible PCR use. PCR 9
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is the default. Other files that are read and in-

terpreted, such as bash scripts or Apache con-

figuration files, require application modifica- / l \

tions to measure these files. Measurements are (s103egpery)
cached to reduce performance impact. Perfor- \
mance, usability, and bypass-protection are all J

addressed in the Sailer, et al. report. Enforce- (Operanngsysrem] @perammgsystemD
. i . PCR extend support) \boot loader suppor
ment is not part of this architecture. The mea- \

surements (and measurement log) are intended () suporedicn \

to be used by the challenger during remote at- () suporcaonsome
testation to determine the integrity of the sys- @ Remote Attestation
tem, rather than by the system to enforce a se-

curity policy.

Figure 3: Dependencies for Full Trusted Com-
puting Deployment

5 Trusted Computing on Linux
Now and in the Future As long as the platform vendor has included
TPM support in the BIOS, a corporate envi-
ronment can work around the lack of the other

Although version 1.1 TPMs provide many fea-€lements by recording the PUbEK as machines
tures usable today, significant hurdles exist t@re deployed and maintaining a PKl internally.
deploying the full capabilities of Trusted Com- However, in order to enable remote attestation
puting outside a structured or corporate envifor general use by the public, a new infras-
ronment. Software that exists today basicallytructure among hardware and software vendors
enables the use of a TPM as one would use Bwust be created. This infrastructure would pro-
smartcard. Other features, such as remote atte¥ide the credentials and a hash of the PUbEK
tation, have more extensive requirements. Thef shipping systems to Privacy CAs. The Pri-

components required to implement remote attevacy CAs differ from existing CAs in the key
sation can be seen in Figure 3. creation, certificate application, and certificate

delivery mechanism, so new CAs are needed or
In order to implement remote attestation, TPMexisting CAs must implement the required soft-

and Platform Vendor Support is required to:  ware and procedures. At best, shipping plat-
forms that fully support remote attestation are

years away. Because of the lack of this infras-
e Put TPM support in the BIOS of shipping tructure, no currently shipping platforms will
platforms (currently shipping). have the capability to provide remote attesta-

tion for general use.

e Record the Public Endorsement Key in
some way (SUCh as make a Cryptographic-ro make use of the more advanced features the

hash) in order to |dent|fy whether a p|at_ TPM can pI‘OVide, in add|t|0n to the infl‘aStI‘UC-
form has a true TPM. ture element listed above, a Linux distro would
need to:

e Create and ship the TPM credential and
the platform credential. e Incorporate the measurement architecture
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into the kernel. TPM in Enterprise Security”’[Sailer] for more
. discussion around this topic. Anonymous notes
e Ship measurement support for the booty, the first article “Before wide-scale use of TC
loader. for DRM, it will be necessary for the manufac-
turers, software vendors and content providers
to get past a few tiny details, like setting up
a global, universal, widely trusted and secure
e Include attestation software. PKI. Hopefully readers . .. will understand that
this is not exactly a trivial problem.” The uses
e Include software for safe handling of the discussed below do not depend on full deploy-
TPM and Platform credentials. ment of a complete Trusted Computing infras-
tructure but only on existing capabilities.

e Include TrouSerS or some TCG Software
Stack.

When this level of TPM hardware support is

achieved, the groundwork will be laid to enableg 1 Beyond Measurement —Enforcement
the software that will be used for attestation.

Ideas for an interoperable attestation interface

include a stand-alone attestation daemon and & couple of examples of how the Trusted Com-

Until one of these solutions is specified and im-gecyrity policy exist and are described in this
plemented, attestation solutions are ad hoc algction.

best.

Finally, before general purpose remote attesta-
tion can be widely used, tools and best practicé.1.1 Dartmouth’s Enforcer
guidelines are needed to help define valid poli-
cies and maintain policy currency. Depending
on the.measureme.\nt architectures mplgmenteas it is opened.[MacDonald] The measure-
by various operating systems, the policy be- . : ;
comes quite complex very quickly. ”.‘em 's compared agam;t a dgtabase ot pre-
vious measurements. File attributes (mtime,
inode number, and so on) are also inspected.
If the file has changed, the system will ei-
6 Example Uses of the TPM ther log the condition, deny access to the file,
panic the kernel, or “lock” the TPM (by ex-
tending the PCR used by Enforcer with ran-
Given the passive nature of the TPM device, thelom data, which makes decrypting data sealed
decision about its usefulness rests almost erto this PCR fail) based on the setting se-
tirely on how one will use the device. Many of lected by the administrator. Enforcer does
the doomsday scenarios surrounding the TPMot require a TPM, but can optionally use the
device are based on scenarios involving softTPM to protect the database and configura-
ware that Linux users will never agree to runtion files. Enforcer also providekelper
on their hardware. In this section, some of thewhich allows encrypting a loopback file system
most promising uses of the TPM device are adwith a key protected by the TPM. Enforcer is
dressed. See also “Interesting Uses of Trustedvailable athttp://sourceforge.net/
Computing’[Anonymous] and “The Role of projects/enforcer/

Enforcer is an LSM that measures each file
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6.1.2 Trusted Linux Client employees to take mobile computing devices
on the road and connect to non-protected net-

The IMA kernel measurement architecture de-WorkS' Viruses very often use unprotected mo-

scribed previously provides no direct enforce-b'l_e devices as a gateway device through .Wh'Ch
ment mechanisms. Dave Safford of IBM's [0 invade corporate networks. To defeat viruses

T.J. Watson Research Center has proposed'd WOrms that come in this way, more inter-

an extension to the concept that includes en[1al firewalls and choke points are architected

forcement. The idea is to provide a Se_into the network. A few vendors are now of-

fies of LSMs that provide authenticated boot’fering compliance checking software that chal-

encrypted home directories and file attributeIenge mobile _dewces when they _attgmpt to re-
checking. The first module validates the in-attach to the internal network; this is to prove
tegrity of initrd and the kernel, and releasesi@t they meet corporate guidelines before al-
a TPM based kernel symmetric key. The keyIowmg them to attach. This is typically done

is used to derive keys for encrypted home dithrough agent software running on the mobile

rectories via loopback file system and authengev'ce' The_agent software becomes the logi-
ticated file attribute checking. The next mod-Cal attack point.

ule deals with extended attributes that are ap-

plied to every file including a file hash, MAC Trusted Computing can make this compliance
label, and others. The derived symmetric key ishecking stronger. The Trusted Network Con-
used to HMAC these attributes, and the value i$]ect (TNC) Subgroup of the Trusted Computing
checked and cached once at open/execute. Afroup has released a specification[TNC] for
nal module provides LOMAC style mandatory client and server APIs that allow development
access control. See the presentation 'Puttlngf p|ugins for existing network attach products
Trust into Computing: Where does it Fit? tg do client integrity measurement and server-
—RSA Conference 2005’ for an overview of side verification of client integrity. The plug-
this concept.[TCGRSA] ins add remote attestation capabilities to exist-
ing network attach products. The products con-
tinue to operate in their normal manner with the
assurance that the client agents have not been
subverted.

Since the Trusted Computing Group is an in-

dustry led standards organization it is ho sur-

prise that compelling use cases exist for the en-

terprise.

6.2 Enterprise Uses

6.2.2 Systems management

6.2.1 Network attach

Remote attestation is extremely useful when
Enterprise networks are often described asombined with systems management software.
'hard and crunchy on the outside, but soft andSystem integrity of the managed system is ver-
chewy on the inside’ reflecting the fact that theyified through remote attestation periodically, or
typically have very good perimeter defensespn demand. Tied into the intrusion detection
but are less well protected from the inside. Thissystem, systematic integrity checking ensures
poses a problem for enterprises that allow theithat compromises can be quickly detected.
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6.2.3 Common Criteria Compliance You can imagine usingpm_keyring itself,
or the concepts presented tpm_keyring

. ) to create private and secure peer-to-peer net-
Common Criteria evaluations are based on a P b b

well-defined and usually strict Security Target.Works'
Installing new software may cause the system
to flip to an unevaluated mode. Remote attes-
tation can be emplqyed to confirm that a".sys.'Creating a New Keyring tpm_Keyring
tems that are required to be Common Criteria laintext RSA Kev bair in memor
compliant, retain adherence to the Security _I_ar_generates a plain yPp y

get. This is one of the simpler uses of remoteanOI wraps the private key of that key with the

attestation since the policy to which the cIientpeli(tt)“FgSk:igf ?;Otl;re-;zz/lcsr rotc(;t dkve\)/?;.hzheaz!se\lflvr:)-r d
must adhere is so static, strict, and WeII-defineci y yp P

that it eliminates the need for much policy man- that you are prompt(_ad fc_)r), and written to disk.
agement Once the new key ring is created, you should

move the encrypted software generated key to
a safe place off your machine.

6.3 Uses by Individuals

The TPM can also be used to secure individAdding Membersto a Keyring After you've
ual's computer and data. created a keyring, you'll probably want to add

members so that you can start exchanging data.
You'll need to bring your encrypted key file out
of retirement from off-site backup in order to
wrap it with your friend’s TPM’s root key. Con-
tact this person and ask for their IP address or
The TPM Keyring application illustrates us- hostname. The public portion of your friend’s
age of the TSS API, and some of the properfoot key will be pulled out of their TCS dae-
ties of keys created with a TPM. TPM Keyring mon’s persistent storage and used to wrap your
is licensed under the GPL and contains explaintext key. The resulting encrypted key is
amples of how to wrap a software generatedstored in your friend’s persistent storage, with
key with a TPM key, connect to local and re- a UUID generated by hashing the name of the
mote TCS daemons, store and retrieve keys ankkyring you created. Let your friend know the
encrypt and decrypt data using the TSS APIname you gave the keyring so that they can im-
The source is available from CVS ahttp: port the key.

/ltrousers.sf.net/ . TPM Keyring will

wrap a software generated OpenSSL key with

the Storage Root Key (SRK) of an arbitrary

number of users. Once each user has a cogynporting a Key Once a friend has stored
of this wrapped key, all users of the keyringtheir key in your persistent store, you can im-
can send secure messages to one another, lpdrt it so thattpm_keyring  can use it. Run
no user can give the key to anyone else, excefhe import command with the same name of the
the owner of the original OpenSSL key. Scriptskey ring that your friend created and some host-
are also provided to easily encrypt a symmetrimame and alias pair to help you remember the
key and use OpenSSL to encrypt large files. friend who's keyring you're joining.

6.3.1 TPM Keyring
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6.3.2 eCryptfs 6.3.5 OpenSSH

The need for disk encryption is often over_Similarly, as the mod_ssl use case mentioned

looked but well motivated by security events above, the TPM can be used_t_o provide secure
in the news; for example, this article at storage for SSH keys. In addition to the server

http://sanjose.bizjournals. key being protected, individuals can use their
com/sanjose/stories/2005/04/04/ own TPM key to protect their SSH keys.

daily47.html about a physical theft com-

promising 185,000 patients’ medical records.

eCryptfs [Halcrow:2005], being presented at7 Pros and Cons of Trusted Com-
OLS 2005 by Michael Halcrow, offers as an puting

option, file encryption using TPM keys. In

the case mentioned, if the information on disk ] _

had been encrypted with a TPM key, the data>® Much emotionally charged material has
would not have been recoverable by the thief._bee” written about Trusted Computing that it

Hot swappable drives and mobile storage beind® difficult to separate the wheat from the chaff.

So easy to remove, in particular, benefit fromyy, o gominal anti-TCG commentary is available

encryption tied to a TPM key. from [Anderson], [RMS], [Schoen:2003], and
[Moglen] with the seminal pro-TCG commen-
tary available from [Safford].

6.3.3 mod_ssl Seth Schoen has written an excellent paper

“EFF Comments on TCG Design Implementa-
Another use for the TPM is to provide securetion and Usage Principles 0.95” with thought-
storage for SSL private keys. Many system adful, informed criticism of Trusted Computing.
ministrators face a problem of securely protect-This paper makes the point “Many [criticisms]
ing the SSL private key and still being able todepend on what platform or operating system
restart a web server as needed without humavendors do.” [Schoen:2004]

interaction. With the TPM, the private key can

be bound, or optionally, sealed to a certain Sepatherlne Flick has written a comprehensive

of PCRs allowing it to be unsealed as necessary' V&Y of the criticisms of Trusted Computing

for starting SSL in a trusted environment on the'! her honor's thesis entitled “The Controversy

expected platform. over Trusted Computing.” [Flick:2004]

This paper will address and attempt to clarify
only the few technical issues that seem to come

6.3.4 GnuPG up repeatedly.

Project Aegypten Hitp://www.gnupg. 7.1 Privacy

org/aegypten/ ) has extended GnuPG and

other related projects so that GhuPG can us&here were many valid privacy concerns sur-
keys stored on smartcards. This can be exrounding the 1.1 version of the TPM specifica-
tended to enable GnuPG to use keys stored otion requiring ‘trusted third parties’ (PKI ven-
the TPM. dors) to issue AlKs. The concern was that the
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trusted third party is able to link all pseudony-you can import the key on a new TPM, restore
mous AlKs back to a single Platform Creden-the encrypted data from a backup, and use the
tial. To address this concern, v. 1.2 now pro-key on the new TPM to access the data. If the
vides a new way for requesting AlKs called Di- key was not created as a migratable key or the
rect Anonymous Attestation. DAA is beyond data was sealed to the TPM, then the data will
the scope of this paper, more information carbe lost.* Note that a backup of the migratable
be found in [Brickell]. In the v.1.1 timeframe, key must be made and stored in a safe place.
privacy concerns are mitigated by the fact that

no manufacturer records a hash of the EK be-

fore shipping the TPM. 7.3 Secure Boot

The measurement log, as maintained by the

IMA kernel measurement architecture contains

an entry about every executable that has rufVill trusted computing help me be able to per-
since boot. Like systems management datdOrm secure boot as described by Arbaugh, and
this measurment log data may be considere@thers[Arbaugh:1997] Arbaugh and others de-
sensitive data that should not be shared bescribed “A Secure and Reliable Bootstrap Ar-
yond the confines of the system, or perhapé}hitecture" that is W|de|y believed to be an in-
the local network. A couple of solutions have SPiration for Trusted Computing. This paper
been proposed for this problem. One verydescribes the AEGIS architecture for establish-
interesting solution calls for a compact veri-iNg & chain of trust, driving the trust to lower
fier which verifies the targeted system and relevels of the system, and, based on those ele-

ports the results back to the challenger with-ments, secure boot. Trusted Computing sup-
out leaking data. The verifier is a stockPlies some elements of this architecture, but

small entity with no private attributes. In the TPM cannot completely replace the PROM

this solution, the verifier would ideally be board described in the paper. Commercially
a small neighboring partition or part of the available TPMs currently do not have enough
hypervisor[Garfinkel:2003]. Another solution Storage to contain the secure recovery code.
calls for attestation based on abstract propertieddditionally, the infrastructurat and procedu-
rather than complete knowledge of the systenf@l hurdles, described in Section 5, would still

attributes. See [SadStu:2004] arfi [ have to be overcome. Trusted Computing en-
hanced BIOSes do not currently perform the

_ verfication described in the paper, so the secure
7.2 TPM Malfunction recovery has to be added to the BIOS imple-
mentation or enforced at a higher level than de-

What happens to my encrypted data if the TPMEC"0€d in the paper.

on my motherboard dies? This depends on how
Y P " “Thisisa slight simplification. If the PCR(s) selected

the data was encrypted and what type of ke)for the seal operation on the new machine are exactly
was used to encrypt the data-_ When TPM keYSientical to the ones that the data was sealed to, then you
are created, you have the option of making thean migrate the sealed data. Depending on the PCR cho-
key migratab|e. This |mp||es a trade-off be-sen, to have the PCRs be the same the system, kernel,
tween security and availability so you are en_boot loader, and patch level of the two systems would

dt ider thei | f h indi have to be identical.
couraged to consider their goal for each Indi- 5The assumption of “the existence of a cryptographic

vidual key. If the key was created migratablecertificate authority infrastructure” and the assumption
and the data is bound but not sealed to the TPMhat “some trusted source exists for recovery purposes.”
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7.4 Kernel Lock-out with many people and organizations who
have expressed concern with the group’s

D rusted tina lock t of bei specifications. Several of the concerns have
glest rgset compl: mgkoc ITeNoutr?' fe'ngresulted in changes to the TPM specifica-
abie to boot my custom Kernels INo, thiS TUNC=,, - gor example, the introduction of Direct

tionality does not exist. The technical, 'nfraS'Anonymous Attestation, which solves many

tructural, and procedural hurdles, described iQ)f the privacy problems that the BSI and

Section 5, would have to be overcome to eny, yiquals expressed. The Trusted Computing

force this technology on a global basis. Wil Group invites serious comments to be sent to

this technology ever exist? There are CU|tura5dmin@trustedcomputinggroup.org or entered
and political forces barring adoption of te(:h-into their comment web page El‘l,ttpS'

nology that takes aways the individual’'s right//www.trustedcomputinggroup.
to run their operating system of cho_lce on the'_rorg/about/contact us/
general purpose computer. There is economic -
disincentive to forcibly limiting general pur-

pose computing. The realization of this sce-

nario depends more on political factors thang Conclusion

technical capabilities.

This paper has quickly covered a great deal
of ground from Trusted Computing definitions
and components to uses and common concerns;

Will I still be able to replace my computer's No discussion about Trusted Computing and
BIOS with a free BIOS? Trusted Computing Linux is complete without citing Linus Tor-
does not prevent you from replacing your sys-vald's _far_nous ema_ul 'Flame Linus to a_crisp!’
tem BIOS with one of the free BIOS replace-gmda'm'ng 'DRM is perfectly ok with Linux.
ments, however, doing so currently violates the' Even though Linus considers DRM okay,
chain of trust. The TPM on the system canthe hope is that this paper makes clear that the
be used as a smartcard, but attestation wouldses of Trusted Computing are not limited to
be broken. Free BIOS replacements can imPRM, and that individual Linux users can use
plement the relevant measurement architecturé1® TPM to improve their security. The Trusted
and maintain the chain of trust, if the boot Computing Group has shown itself willing to
block remains immutable and measures th&vork with serious critiques and the Linux com-
new BIOS before it takes control of the sys-munity is capabable of defending itself from
tem. The challenger during attestation would@busive technologies being adopted. With es-
see that a different BIOS is loaded and carfimates that more than 20 million computers

choose to trust the system, or not, based on thelfave been sold containing a TPM, and the ex-
level of trust in the free BIOS. istence of open source drivers and libraries,

let's put this technology to productive use in
ways that are compatible with free and open
7.6 Specific Additional Concerns source philosophies. While the infrastructure
and software for complete support are future
work items, that does not prevent users from

7.5 Free and Open Source BIOS

Is the Trusted Computing Group taking
comments about specific concerns?  The 6hitp://marc.theaimsgroup.com/?I=
Trusted Computing Group has interactedinux-kernel&m=105115686114064&w=2




2005 Linux Symposium e 107

utilizing their TPM to gain secure storage for [Anonymous] Anonymou#nteresting Uses of

their personal keys and data through projects  Trusted Computing2004,

already available or proposed by this and other  http://invisiblog.com/

papers. 1c801df4aeed49232/article/
0df117d5d9b32aea8bc23194ecc270ec
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Abstract 1 Introduction

NPTL library was first released on September
2002 and merged with the glibc about sixteen
months later. It was meant from the begin-
ning to replace the LinuxThreads implementa-

Our project is a stabilization effort on the
GNU libc thread library NPTL—Native POSIX

Threading Library. To achieve this, we focusedtion, and therefore become the standard thread

our work on exten_d?ng the pool of open-sou_rce”brary in GNU systems. The new library pro-
tests and on providing a tool for tracing the IN- " des full conformance to the POShxequire-

ternal mechanisms of the library. ments, including signal support, very good per-
formance and scalability.

This paper introduces our work with a short sta-

tus on test coverage of NPTL at the beginning”0rting from LinuxThreads to NPTL was in-

of the project (February 2004). It explains howteénded to be transparent, howe_ver, there are
we built the prioritized list of NPTL routines Several cases where software using NPTL must
to be tested. It then describes our methodologp® modified.  There are some documented
for designing tests in the following areas: con-changes, such as signal handlingetpid()
formance to POSIX standard, scalability, andpehawor. T_here are also changes in the applica-
stress. It also explains how we have simplifiedion dynamics, such as those caused by threads

the use of the tests and the analysis of the re2€ing created more quickly. A user applica-
sults. Finally, it provides figures about our re-tion coded with incorrect assumptions about

sults, and it shows how NPTL has evolved dur-Multi-threaded programming can fail because
ing year 2004. of some of the semantic changes; such prob-
lems are very difficult to debug. We had the
opportunity to work with IBM on some of their
The paper goes on to explain how this NPTLinternalBugZillareports, and in many cases the
Trace Tool can help NPTL users, and hackersproblem appeared because of changes in appli-
to understand and fix problems. It describes -
the features of the tool and presents our cho- The POSIX® standard refers to the IEEE Std 1003.1,

sen architecture. Finallv. it shows the curren a.k.a. Single UNIX Specification [1] v3. The current
) Y; t\/ersion is the 2004 Edition and includes Technical Cor-

status of the project and the possible future eXrigendum 1 and 2. POSIX is a registered trademark of
tensions. the IEEE, Inc.
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cation dynamics. Last but not least, NPTL iswhen it runs outside the debugger. These bugs
still under development. New features are be€an also depend on the machine load, on a de-
ing added from time to time. Fixes and op-vice access slowing only one of the threads, or
timizations are also frequent. All these codea multitude of factors, resulting in weeks of re-

modifications have the potential to introducesearch and testing for an application developer.
new bugs. Moreover, many POSIX standard interfaces are

_ _ quite intricate, and many programmers do not
Before NPTL could be used reliably in complex et 4)f return codes from NPTL routines. At

applications on production systems, it needegagt an application which receives an unex-
more substantial testing and validation. Anypected error code may crash: at worst, the ap-
production system providing reliable applica'plication may corrupt data silently.

tions should not crash or hang simply because

the threading library is not stable. On the othefry go1ve these issues, we have developed a
hand, the new library provides very good per-yace (ool for NPTL, called POSIX Threads

formance and therefore is of great interest forr5.e Tool (PTT). This tool keeps track of all
these same systems. NPTL related events, such as thread creation,

To continuously improve the stability and qual- 1°CK @cquisition, with little impact on the appli-
ity of NPTL as it evolves, as well as to shortenCalion. By tracing the library internals, we can
the stabilization period after each change, wé!nderstand the chain of events which lead to a
developed a robust set of regression and strednd Or strange behavior in the application. We
tests. Ideally, these tests would be run frecan @lso understand how the application is re-
quently during NPTL development to look for @lly using NPTL functions, measure lock con-
regressions and the tests can be augmented &htion, and optimize both the NPTL imple-
new features are added. These tests shoul@€ntation and the application’s use of NPTL.
cover as many APIs, arguments to the Ap|sFinally, these traces can prove that a bug is in

and threading semantics as possible. The tesNPTL or in the kemel, rather than in the appli-

must remain independent of the implementa-cation' The third chapter of this paper is dedi-

tion of the threading library so that the testscated to this trace tool. It attempts to show the

will not need to be changed each time the imJimitations of existing tools, then describes the

plementation changes. We will see in the nexfeatures of our tool and how these features can
chapter how were specified and developed a lidpe used efficiently to solve real situations. It

of tests. how we tried to make these tests run§|S° shows the tool internals and its current lim-

as simple and user-friendly as possible, and filtations and future directions.

nally we will show NPTL evolution, from the _ )
test results point of view, through year 2004. 1h€ paper concludes with an overview of the
remaining work to do on NPTL, NPTL tests,

As we have seen previously, many of the proband NPTL trace tool, in order to obtain a pro-
lems developers have to face when they portiuction quality level in this open-source prod-
an application from LinuxThreads to NPTL are uct. It shows the current use of the tests in the
due to bugs located in their application, not inlibrary and kernel development process. It also
NPTL. Bugs dealing with multi-threading are shows that this testing effort is necessarily not a
particularly difficult to isolate and reproduce "one-shot" project, and that more people should
most of the time. As an example, when yoube involved in projects like this one. As for
run the program step-by-step in a debuggenthe trace, it shows how the trace tool can be
the thread creation time is totally different thanextended into a dynamic code checker, or into
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a profiling tool, with a minimal effort. It also more maintenance when the library implemen-
deals with how this modified NPTL can be settation changes. These tests are useful for the
up in a production environment, and why peo-glibc developers, but are by design too closely

ple should use this tool. linked to testing implementation specifics to be
usable as a proof of reliability or indicator of
conformance.

2 NPTL Tests The second project we focused on is pen

POSIX Test SuitfOPTS]. This is a pure test
The first part of our project consisted of im- project, with a lite harness—the only constraint

proving the test coverage for the NPTL library. on a test case Is its return value—and a simple

Our goal was to be as exhaustive as possible?‘,trucwre’ at least for the regression tests. For

at least as far as POSIX requirements are Con(gach library routine, an XML file contains a set

cerned. We focused on the POSIX standarc?f assertions that describe the POSIX standard
[1] améng all standards the NPTL is S.uIoposedrequirements for this routine, and then the test
to conform to, because it is largely used oncases are named according to the assertion they

other platforms, and so is important for ensur-2'€ testing. Extracting the coverage informa-

ing portability of an application, and becauselion is quite straightforward from this structure.

reference is made in the library name—nNative' N€ test cases are also often well documented,

POSIXThread Library—which means it is the with few exceptions where the comments do
first standard one would expect NPTL to con-nOt match the content.

form to. The third project we considered is thénux

Test Projec{LTP]. This is the most used open-
2.1  Situation on March 2004 source test project for Linux, but it appeared

that it provides very few test cases for NPTL,

aside from those of the OPTS which is in-
When we started our project in early 2004, wecjyded. Moreover, the structure is more com-

isolated three open-source projects which proplex and the format for test cases is more rigid
vided test cases for NPTL. than in the OPTS.

The first one is the&GNU lib C project [glibc]  After this analysis, we decided to release our
itself. NPTL source tree contains test cases thakst cases to the OPTS, as they would later be
can be run against the freshly compiled glibcincluded in LTP with the complete OPTS new
by issuing thenake check command. These release. In situations where we would have
tests—about 160 files at that time—are not docto write implementation-dependent test cases,
umented at all and hardly commented. Theithey would be submitted to the glibc project
naming convention is the only hint to guessdirectly, but we did our best to avoid NPTL-

what each test is supposed to do. We had a haiiternals dependent code, as it would require
time reading each test case and writing a sholihore maintenance.

abstract on what the test is really doing. As a
synthesis, these tests are mostly regression tests — .
which test for very specific features, and tes -2 Prioritized lst

coverage for each library routine is far from ad-

equate or complete. Moreover, the tests are ofour next step was to find what to test. NPTL
ten very close to NPTL internals, which meanscontains more than 150 routines, so we had to
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establish our priority list based on the following problems. At this time, only groups 1 and 2
criteria: have been completely tested. There is still a
great amount of work remaining to complete
the test coverage—this will be detailed later in

1. functions which are used the most fre- .
this paper.

quently;

2. funct_ions whic_h are complex enoug_h to, 3 Methodology
possibly contain bugs, based on their al-
gorithm; and

We had to design a method for test writing. We
3. functions which are not just a wrapper topased it on the OPTS method.

the kernel—as we are not testing the ker-

nel. For each library routine to test, the first step was
to analyze the POSIX standard and extract each
assertion that the function has to verify to be

To find out which functions are the most compliant. For some functions the standard a
used, we chose seven multi-threaded applica: b ' . P
eared to be unclear or contradictory. In these

tions representative of several computer scienc S
cases, we opened requests for clarification in

domains where multi-threading is frequently . -
used. The selected software were: two differen he Au.stln Rev!5|on Group [3], so that the next
echnical Corrigendum for the standard would

Java Virtual Machins; JOnAS an open-source larifv the ob '
Java application server, compiled wigigj; the ~ © arify the obscure parts.

Apacheweb server; thesquidweb cache and |, the next step, these assertions were com-

proxy; theMySQLdatabase server; a@lLu-  pared to those already present in the OPTS, and
cas a scientific software described in the nextine assertions.xmfile was updated according
chapter. Each application was analyzed withg the differences we found. Most of the dif-
thenmutility to find out which NPTL routines - farences we encountered so far were due to the

were used. We also included a personal opiniobos|x standard evolution since the OPTS was
based on our past experience with each routingy st released.

to establish the list.

The third step in the design was to check each
This work has resulted in a complete list of gyjsting test case for a given assertion, find out
functions split into 4 groups, from the most possible errors, try to check that all situations
important to test to the less important. Theyere tested, and list the missing cases which
first group (most important) contains 15 func-pa( to be written. For some assertions, we also
tions, dealing withthreads mutexesandcond-  ha( to specify stress tests to be written in order
vars The second group contains 27 functions;q he exhaustive, or when we could not figure
dealing withthreads signals cancellationand  gnother way to test a particular feature. We also
semaphoresThe complete list is available on gpecified scalability tests to be written for some
our website [2]. The remaining functions be-fynctions where scalability is important, even if

long to groups three and four. Even if NPTL this js more a quality of implementation issue
contains 150+ functions, many of those func-than part of the POSIX standard.

tions are only used to change a value in a struc-

ture (attribute), so the bug probability is re- At each step of this process, for each function,
ally small. With groups 1, 2 and 3 we cover we posted an article in our project forum, pub-
almost all the functions which can encounterlicly available and accessible from our website
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[2]. This allowed other people to check how ‘ oo
they could help or see the rationale for a partic-
ular test.

0.5

0.4

(L

Once our design was complete, we had to write
the test cases and submit them to the OPTS ™|
project. We wrote three kinds of test cases: ot
conformancestressandscalability.

0.1

A conformance test runs for a short period of o

0 10000 20000 30000 40000 50000 60000 70000

time and returns a value representing its result: e b
PASSED, FAILED, UNRESOLVED, etc. See
the OPTS documentation for a detailed expla- Figure 1: Graphical output sample

nation of return codes.

A stress test runs forever until it is interrupted :
. compare with other runs (references). Whereas
with SIGUSR1 (means success) or a probleny = : . . :
running the tests is quite straightforward with

occurs (means failure). qut of the stress teStE)PTS (just set up the flags and mmake), the
are very resource-consuming and are meant to

: . . ._analysis can be a real pain. As an example, af-
be run alone in the system. In this way, it is o .
ter we completed the test writing for our first

possible to identify the cause of a failure, when .

ANV oceurs group of functions, we ran a complete test cam-
y ’ paign on several Linux distributions with sev-

eral hardware architectures—i686, PowerPC,

A scalability test loops on a given operation un- X X
Y P g P ia64. We got a total of nine different con-

til the number of iterations is reached or un-f_ _ 4 th h 6
til failure, and saves the duration of each iter-'9Urations, and three runs on each configura-

ation. Then, measures are parsed with a mattion: which resulted in a total of about 50,000
ematical algorithm which tells if the function test case results to digest. Needless to say, we

is scalable (constant duration) or not (duratiorpeeded automated tools to extract the useful in-

depends on the changing parameter). The aformation!

gorithm is based on the least squares metho d an mparin ral runs and
to model the results. The table of measure any £eses, comparyg several runs a

can also be output and used to generate a gra 'IQd.mg quickly what the differences are in de-

of the results with thgnuplottool. Figure 1 te_ul is all we need. That supposes we have an ar-
gives an example of such a graphical output.bltrary referenge, o compare new code results
It shows the duration osem_open() and to. But comparing huge log files is far from be-

sem_close()  operations with an increasing ing easy. Using thdiff tool is not a solution,

number of opened semaphores in the systenﬁ’l.S there dare ?t(petcted dlffererlf:es tb etvv(ien the
Other examples can be found in our forum. runs—order ot test case execution, imestamps,

random values— and a long time can be spent
doing the analysis.
2.4 TSLogParser tool
Another approach is to first make a synthesis of
each run, and then only compare the synthesis.
To be useful, the tests must be run frequentlyThis is quite easy to achieve with tools such as
and the results must be easy to analyze andrepandwc. The Scalable Test Platform (dis-
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cussed in the next section), for example, usebardware—to run complete test campaigns fre-
this kind of summary tool. Anyway, this ap- quently. This can be solved, thanks to ®eal-
proach has some drawbacks. When a new failable Test Platforn{STP] andPatch Lifecycle
ure appears, it is not possible to find out whichManager [PLM] projects from Open Source
test is failing. Also, if the success/failure dis- Development Lab@SDL).

tribution remains constant, while not involving
the same individual tests, you won't see any-PLM tracks the official kernel patches and al-

thing with your tool. lows uploading of new patches (either manu-
ally or automatically). STP allows people to re-
To address all these issues, we have deSignE,‘Ch@est runs against tests, against any PLM patch,
new tool: TSLogParsef4]. The main idea is with a choice of Linux distributions and ma-
to parse the log file of a test suite run and savehine hardware. Our project contributed to STP
the results and detailed information about eaclyy making the OPTS runnable through its inter-
test into a database; and then be able to accefgce. There is also a work in progress to bring
all this information through a web interface. It the same patch feature that PLM provides for
allows filtering of results, to show only partial the glibc of the test system.
information or to access all details in just a few
clicks. It also makes comparing several rungOnce the requested test run completes, an email
quite easy. is sent to the requester with a summary of the

] ) results, and the complete log file is available for
The structure of this tool has been designed tQownload. There is another work in progress to

allow several kinds of test suites to be parsednake the results available through the TSLog-
and displayed the same way. The parser modsarser interface, because as we already dis-

is written as a plug-in. The visualization and enough information.

administration interfaces are not dependent on

the test suite format. The current implementaa very interesting feature of the PLM project
tion is written in PHP and has been used withis the ability to automatically pull new ker-
Apache and MySQL. It is able to compare upnel patches and run a bunch of tests in STP—
to 10 OPTS runs at once on a standard workincluding the OPTS—against the new patched

station. It also extracts statistical informationkernel. This allows very quick detection when
from each run and allows filtering according tonew problems appear.

test status—for example one may want to hide

all the successful tests or show only tests that o
end with a segmentation fault. 2.6 Situation on March 2005

This tool has made the analysis of OPTS run _ _ _
results a fast and easy operation. It is a mustAfter sixteen months of active work on this

have—in our opinion—for anyone who is using Project, we are reaching the end of our credits.
the OPTS. During this period, we were able to analyze and

write test cases for all our 42 most important
NPTL functions. A total of 246 conformance
tests, 9 scalability tests and 16 stress tests have
been written. These 42 functions correspond
Another frequent issue in testing is that the acto 283 distinct assertions in POSIX, of which
tive developers often lack the resources—time246 (90%) are now covered by the OPTS and

2.5 Scalable Test Platform
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135 (55% of OPTS) were contributed within tionsem_close() , the duration of which de-
our project. Figure 2 shows the evolution ofpends on the number of opened semaphores.
the number of test cases (upper plot) and func-

tions tested (lower plot) during our project. It In the meantime, 5 enhancement requests
only refers to our contribution, not to the com-have been issued to the Austin Revision
plete OPTS project. The horizontal step dur-Group, about obscure or incomplete points
ing November 2004 corresponds to our firstin the POSIX standard. These requests ad-
test campaign. The vertical step on Februargressed issues ipthread_mutex_lock() :
2005 is due to semi-automated test generatiopthread_cond_wait() . pthread_cond_

for some signal-related functions. Itis interest-timedwait() ~, sigaction() , and sem_

ing to note that both plots are almost identical.open() . All have been accepted or are still
This means that the amount of work requiredeending.

for each function to complete the OPTS work is _ o

almost the same for all functions. This needed! "€ Mostimportant part of our projectis not the

work can be due to POSIX evolutions, as wellnumber of bugs we have found, but the num-
as incomplete or invalid OPTS test cases. ber of assertions which are now tested. For

42 functions we analyzed, almosll of what

can be testeds now tested in OPTS. The test
kb ek 2% cases for these 42 functions cover all the cur-
S e rent POSIX requirements.

2.7 NPTL Evolution over year 2004

As an example, we have run the current OPTS
,//_/ release withFedora Core FC1),Fedora Core
0B/04 07404 09404 1104 0105 0305 2 (FC2) andredora Core JFC3) distributions,
as well as an 'unstable’ Fedora Core 3 update.
Figure 2: Project progression After analyzing the results with the TSLog-

Parser tool, we have come to find some inter-
esting conclusions, detailed in the next para-
graphs. This kind of analysis is very easy to
Thanks to these test cases, a total of 22 deychieve and can help tracking new bugs very
fect reports have been issued—21 in the g|lb@u|ck|y Anyway, as the TSLogParser tool is
and 1 in the kernel—most of which have beeninteractive, we cannot reproduce its output in
fixed in recent releases. The kernel defecthis document, and encourage the reader to
deals with the scheduler and tR&CHED_RR check the tool web site [4] for examples, in-
policy behavior on SMP machines. The glibccluding the data discussed here.
defects are either conformance bugs (wrong
error code returned, ba#iinclude files or AIO operations Some test cases related to
symbol requirements), or functional bugs (flagsAsynchronous /O operations, such a®
role in sigaction() , behavior of timeouts read() or aio_write() , returned PASS
with condvars), or else just bugs (segmentationvith FC1 and FC2 and return FAIL or hang
faults, hangs, unexpected behaviors). We'vavith the more recent distributions. This may
also found a scalability issue with the func-indicate a bug in the new kernels or in the glibc.
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Clock routines Some tests related to the clock Variable, Semaphore, Spinlock, Timer, Read-

routines €lock_settime() ,hanosleep() )  Write lock, Message queues, and TLD (Thread
did not pass in FC1, but things have been fixed.ocal Data). These objects are available under
since FC3. eighteen optionsBAR, CS, MSG, PS RWL,

SEM, SPI, SS,TCT, THR, TMO, TPI, TPP,
Message queueFhe message queues routinestps TSA, TSH, TSP, TSS2 that may be sup-
were not implemented in FC1, so the relatedyorted or not by Operating Systems. (See [1]
tests reported a ’build failure’ status. Every-for the meaning of each option). NPTL pro-
thing is fine since FC2. vides about 150 different routines to manage

) the POSIX objects.
Sched routines A few test cases related

to the sched routines¢hed_setparam() ., Also, “anything can occur at any time: a

sched_setscheduler() ) won't compile  program must not assume that an Event A al-
in the latest FC3 update, whereas they passeglays occurs before—or afte—Event B. That
in the previous releases. may be true on a small machine; but it will cer-

_ tainly be untrue some day on a bigger and faster
There are some other test cases which woulg, ‘hine 4t 4 customer site. That makes writ-

be worth a deeper investigation, but we Won'ty, . nti-threaded application more complex
enter into the details here. Reproducing thesg - initially expected

results is quite easy, and it would be valuable
for Linux and the glibc that more people carry on Linux, NPTL is quite perfectly compliant
on this kind of work. with the POSIX Threads standard. Since sev-
eral parts of the POSIX Threads standard are
unspecified, they can be provided differently
3 NPTL Trace by two .POSIX Threads libraries. So porting
an application from another Operating System
(though providing the same POSIX Threads
The second part of our work was dedicated tgbjects and routines) to Linux may lead to bad
tracing NPTL. surprises. Being able to quickly understand
why an application behaves badly (hang, unex-
pected behavior, etc.) is critical for customers.
3.1 Why Tracing? Often, reproducing the problem in support labs
is not possible since it may appear after days of

Since more and more HyperThreaded or Multi_computation. This may_require sending a Lin_ux
Core processors are available, it is expectegu.ru to .the customer S‘.'te.' Also, undergtandmg
that the design of many new applications will quickly if Fhe proplem IS n th.e appllcatlon, n

use multi-threading for running several tasks siNPTL, orinthe Linux Kermel is critical.

mult_aneously and concurrgntly, in order to takeAnaIyzing a multi-threaded application show-
profit of nearly all the available power of the

hi ing a race condition or a hang with a debug-
machine. ger is not the right approach because it will

Writing a portable multi-threaded application is C(l—:‘rfjalnly m_8|d|fy the_ Wa)(q threatc)jls are Sg_hed'
a complex task: the POSIX Thread standard j4led, possibly causing the problem to disap-
not easy to understand. It provides ten kinds 2the options provided by recent GNU libc are high-
of objects: Thread, Mutex, Barrier, Conditional lighted inbold.
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pear. The right approach is by using a less into students from French Universities to study
trusive method, such as a trace tool. A NPTLthe architecture of the tool and to build it.
trace tool enables recording of the most impor-
tant multi-threading operations of an applica-The POSIX Threads NPTL Trace ToptTT]
tion or the main steps of NPTL with a min- has been designed to provide a solution to the
imal impact to the app”cation (performancesreqUirements discussed preViOUS|y. It addresses
and flow of execution of threads). The trace carthe three kinds of users described hereafter.
be analyzed once the problem has appeared and
the application has stopped: itRost-Mortem
Analysis. If the impact on a critical application 3.2.1 Users
is acceptable, one can even continuously record
the last few thousand traces so that analyzing @/e have studied the needs of three different
failure can be done when it occurs for the firstkinds of users:
time: it is First Failure Data Capture.

A developerin charge of writing, porting or
Why not use Linux Trace Toolkit [LTT]? First, maintaining a multi-threaded application. He
LTT is designed to trace events in the kern8|main|y needs to see when his program calls
and not to trace programs in the user spaceNPTL routines and when it exits from them,
Second, LTT uses functions (likerite() )  with details about the parameters. He wants
that cannot be used when tracing NPTL. (Sego be able to easily and quickly switch from
section 3.3.1 on page 120). a fast untraced NPTL to a traced NPTL, and

vice-versa, without recompiling his applica-
Why not simply use somerapper enabling  on, \When using the traced NPTL, the maxi-

trace of only the calls of the application 10 yym acceptable decrease in the performances
NPTL routines? Because such a tool does naks pis application is 10%.

enable to analyze both the behavior of NPTL

and that of the application. And, since it alsoA member of asupport team that provides

requires to put in place a complex mechanisminux skills to other people who write, test or

for collecting and storing traces, it is worth use applications. This kind of user has skills

also tracing the behavior of NPTL routines, byabout the Linux kernel and the GNU libc and

adding traces inside its code. he needs to see what is happening inside NPTL.
Also he is very interested in generating traces at

So, as explained hereafter, we finally decide¢ystomer sites and to analyze them in his own
to design our own NPTL tracing tool. offices.

A hacker of NPTL. Since analyzing why
NPTL does not perform as expected is not an
easy task, it is crucial to provide help. This

At the beginning of 2004, when we started tovay, more people could contribute to analyzing
the behavior of NPTL and fix problems.

add new tests for NPTL, we also started to
study a NPTL trace tool. After discussing the
design of such a tool with people involved in
thread technology and in the glibc (IBM: F. 3.2.2 Features

Levine, E. Farchi; HP: J. Harrow; Intel: I.

Perez-Gonzalez; etc.), we decided to proposEsing PTT is a four step process:

3.2 Goals
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1. build or get a traced NPTL library; 3.3 Architecture

2. trace the application and build a binary
trace; The main idea is to handle a buffer in shared

memory: the threads of the application write
3. translate the binary file into a text file thatthe traces in the buffer, while a daemon
will be parsed by another program or that(launched as a separate process) concurrently
will be read manually; and periodically reads the traces in the buffer
and writes them into the binary file. Traces
4. analyze the trace, possibly with a toolare concurrently added by the threads into the
helping to handle many objects and tracesbuffer at the time the events occur. Figure 3
provides a simplified description of the archi-

_ tecture of PTT.
Several features are required:
] Buffer
e do not break the POSIX conformance . ‘ A
rules (mainly cancellation). | Th < ‘ ;
« enable several people to trace differentap- ' | | [, > |Taw | |text] | Pajé
plications at the same time. ‘ . NG
| ‘ ptt
« handle large volumes of traces due to an | ' !

! Th3 |
application running days and weeks before Binary

the problem occurs: keep only last traces ‘ File
or manage very large trace files.

« give meaningful names to NPTL objects Figure 3: Architecture

rather than hexadecimal addresses, since
the application may create hundreds or
thousands of objects of each kind.

. _ _ 3.3.1 POSIX Constraints
» dynamically switch from a light trace to a

richer or full trace. . _
The architecture must take into account the fol-

« filter the decoded trace based on varioudowing constraints.
criteria (hame or kind of object, etc).

« start/stop the trace while the application ¢ First, thePOSIX Threads standard de-
is running, and provide solutions for han- fines which routines can be @ancella-
dling incomplete traces. tion Point(CP)’. POSIX defines three cat-
egories: the routines that shall be a CP,

* handle applications that fork new pro-

3 . . .
cesses that must be traced. A Cancellation Point is a place where a thread can

be canceled by means pthread_cancel() . Such

. ) . places appear when the cancellatgtateis set toen-
« handle bad situations (hang, crash, Kill).  apied andtypeis deferred
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those that cannot, and those that are unnism: only one call is done instead of two or
defined (free). It means that adding a CPmore.
into a routine that cannot have a CP is
forbidden: routines likeprintf() can- A circular buffer allocated in shared memory
not be called by trace code from insideis used for storing the traces. If the buffer is not
NPTL routines. In few words, a NPTL appropriately sized (too small for a given num-
trace mechanism can almost only writeber of threads and processors), there is a risk of
into memory ! overflow: new traces are written over the oldest
_ o traces that the daemon is attempting to copy to
* Second, tracing an application must havéne pinary file. Buffer overflow is managed and
a minimumimpact It means that the ap- ,rqquces a clear message. But its probability is
plication must not run significantly slower nearly null, as explained hereafter.
and must not behave very differently than
without the trace: the application must A daemonis in charge of continuously mon-
produce the same results and its threadgoring the filling rate of the buffer. When
should continue executing in the same 0r-4 threshold is crossed, the daemon copies the
der so that problems do not disappear.  traces to the binary file. One instance of the
daemon is launched per application and be-
haves as the parent process of the application

3.3.2 Components process.

Events are written into a buffer. Then a daemorOne binary file is filled with traces for each
copies them to a binary file. traced application. It can be converted to text

_ _ by means of a decoding tool. And its size can
The basic component of the trace is @rent be greater than 2 Gigabytes

An event shows either a change in an attribute
(state, owner, value, ...) of a NPTL object,
or the calls (in / out) to any NPTL routine :

by the application. Sixty events have been?"?"3 Managing the Buffer
defined for the four objects: Threads, Mutex,
Barrier, CondVar. About 200 different events Correctly and efficiently managing the trace
are expected to be defined when all routineguffer was a quite complex task. Since using
are traced. As an example, eleven events|PTL objects and routines (mutex) is forbid-
have been defined for the Thread objectden, we used the atomic macros provided by
THREAD_JOIN, _DETACH, _STATE_DEAD,  the glibc.

_STATE_WAIT, _STATE_WAKE, _INIT,

_CREATE_IN, _CREATE_OUT, _JOIN_IN, We considered several solutions for managing
_JOIN_OUT, _SET PD. Each event is the trace buffer:

recorded in the buffer with useful data:
time-stamp (for computing the elapsed time
between two events), process Id, thread Id, and
parameters. Events contain various amounts
and kinds of data.

* use two buffers: when one is full the
buffers are switched and the threads write
traces in the other one, enabling the dae-
mon to save the traces to file without

Adjacent events are grouped asace point in blocking the application threads, but with

order to reduce the impact of the trace mecha-  the risk of loosing traces.
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» the same, but with blocking the threadsin the buffer. Then the daemon writes the filled
and with no risk of loosing traces. part of the buffer into the binary file. The goal

_ IS not to lose traces.
 use one buffer per processor in order to re-

duce the contention between traces. The figure 4 exp|ains the main Steps:

 use one buffer per thread, suppressing all

contention. written:0 . beg-read written:0 . beg-read
reserved end-read Thi I end-read
* use one buffer per process launched by the a

Th2

command to be traced.

I Th3
* use one buffer for all processors, all pro- mark .
cesses and all threads launched by the reserved
command to be traced.
Each of these solutions has drawbacks and ben- . beg-read ‘ beg-read
efits about complexity, reliability and perfor- end-read
mance. We started looking in detail at the last Th2
solution. It appeared to be reliable, efficient, . »
and not too complex, based on experiments we written
. . — - — -
made on bi- and quad-processor machines.  reserved reserved end-read
Th4 | blocked Th4

The solution is based on the following two
mechanisms:

. beg-read .
- =—

1) When a thread needs to store trace data
into the buffer, it firstreservesthe appropri-

ate amount of space by increasing thserved =¥ File
pointer in oneatomic operation. Then it writes .
the trace data in the reserved space. And finally — *
it increases thevritten pointer with the amount Tha
of written bytes by means of anothatomic S
operation. With this approach, the buffer is ™™
never locked when threads reserve space and

write traces. Figure 4: Buffer management

written beg-read

-~ —> -
end-read end-read
Th4
—»

reserved

2) The daemon continuously monitors the per-

centage of buffer already filled with traces.

When the daemon decides that it is time to sava) Start: No space has been reserved.

the filled and reserved parts of the buffer, the

daemon blocks all threads attempting to reserv@) Threads 1, 2 and 3 have successively re-
more space in the buffer. Once all threads haveerved the space they need for writing their
completed writing events in the buffer (whentrace. The reserved space has crossed the High-
written has reachedeserve(, the daemon re- Water mark: the daemon now blocks the other
leases the threads which restart reserving spat¢kereads attempting to reserve space. Threads
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1 and 3 have started writing the trace datastopped by the daemon.

whereas thread 2 has not started yet.

Other problems may also occur when a thread

3) Threads 1 and 3 have finished writing: an
amount ofa+c bytes of data has already been
written. Thread 2 has started writing. Thread 4
is blocked.

4) Thread 2 has finished writing. Now the
written spaced+c+b) is equal to the reserved
space. The daemon knows which area must be
saved to disk: Thread 4 is released.

5) The daemon is writing the trace data to the
binary file. Thread 4 has reserved the needed
space.

6) The daemon has finished writing the trace
data. Thread 4 is writing its trace data.

An overflow may occur when threads write data
in the buffer faster than the daemon empties
it. Experiments have shown that it may appear
only if the buffer is very small (let’s say: 1 MB
for one fast processor) and if the application is
continuously writing traces due to many com-
peting threads. Using a larger buffer is a good
solution. By default, the threshold (indicating
when it is time to empty the buffer) is set to
half the size of the buffer. The size of the buffer
for small and medium machines is computed
as: (MemSize: NberO fProcessongK where

K =128 by default. Thus, with a 1GB machine
with 2 processors, the size of the buffer is 16
MB. We monitored the maximum usage of the
buffer with various applications and the con-
clusion is that even an unrealistic application
designed for writing PTT traces as fast as pos-
sible cannot overflow the buffer when K is 64.

is canceled, hangs or dies.

» A thread can be canceled by means of

the pthread_cancel() routine. The
POSIX standard defines that an applica-
tion can switch from and to two differ-
ent cancellation modes: asynchronous or
deferred (synchronous). In asynchronous
mode, the thread can be canceled any-
where (if the cancellation stateesabled.

In deferred mode, the thread can only be
canceled in Cancellation Points.

In order to guarantee that the trace data
written in the buffer are always complete,
the execution of the PTT trace mechanism
is done in deferred mode (the previous
cancellationmodeis stored and then re-
stored).

A hang of the application can lead to 2
different cases. If an application thread
hangs after it has reserved space in the
trace buffer and before it has written its
trace data, the daemon saves the last traces
after waiting a time-out. If a thread hangs
elsewhere, one must kill the application.

When a thread runs into a Segmentation
Fault or receives a kill signal, the dae-
mon is warned and saves the last unsaved
traces.

The applications we used never fill the bufferMoreover—as expected—once the application
more than 60% before the daemon empties ifnas completed its task and has returned, the
If needed, the user is able to use a more adélaemon saves the last unsaved traces.

guate buffer size, as a parameter given to the
PTT launcheptt-view

In order to simplify the design and to speed up

the writing of traces into the buffer, all informa-
If an overflow occurs, the threads of the appli-tion to be stored within each event are a multi-
cation hang. After a time-out, the application isple of 32 bits.
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Using syscalls like gettimeofday() to execve() . So one cannot simply use
time-stamp the event introduces too much over-  |d.so

head. We must directly read a register of the  There are 3 solutions:

machine whenever it is possible. This has been

done on IA32 by using the TSC register. This 1. If your system glibc is the same ver-
will need to be studied for other architectures sion as the patched one, then you can
(PPC, IA64, ...) and for NUMA machines useLD_PRELOAD

where each node may have its own counter. 2. You can edit the ELF header in

order to change the library loader
name/path. Not so easy. ..

3.3.4  Using the patched NPTL 3. Or you can build achroot environ-
ment with the patched library as de-
PTT is made of three parts: fault glibc.

If the patched NPTL is delivered with a

» Apatch that adds the PTT trace pointsinto  distribution, then thé D_PRELOA[olu-
the NPTL routines. tion seems appropriate.

» Apatch that adds into NPTL the PTT code
that writes the traces into the buffer. 3.3.5 Measures and Performances

* The code of the daemon and the four PTT\ye have measured the impact of PTT on sev-
commands. eral applications: GLucas, Volaridark® and
SPECjbb2009for Java, and an unrealistic pro-
PTT is delivered with instructions explaining 9r@m performing only calls to the tracing mech-

how a version of NPTL can be patched and®niSm. We have also compared the impact of

compiled. As explained above, no modificationPTT With that of thestrace  command. All
or recompilation of the application is required. results are done with the subset of traced NPTL

routines that were available in April: Threads,
There are two cases for using the patcheMUteXGS, Barriers and CondVars. This means

NPTL: that the following results are preliminary and
will probably be different once PTT is final-
ized.

» For simple programs, itis easy to force the
library loader to use the appropriate NPTLON average, one call to the PTT trace mecha-
library. A script is delivered with PTT. nism leads to 30 bytes of trace data.

« For complex programs like JVMs, it is ® GlLucas [5] is an HPC program dedicated
a bit more complex. Thgava com- 10 proving the primality of Mersenne num-
mand acts as a library loader: it looksbers (2 —1). It is an open-source C pro-

at /proc/selflexe in order to find gram thatimplements a specific FFdy means
its Path qnd name, then it loads li-  Sygjang™ is a trademark of Volano LLC. [6]
braries (bjava.so , ...) based on 6SPECbB is a registered trademark of the Standard

its path, and finally it reloads itself with Performance Evaluation Corporation (SFBJ7]
"High Performance Computing

4Non-Uniform Memory Access 8Fast Fourier Transform
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of threads. This is a perfect tool for mea-peared that the three main JVMs available on
suring the impact of PTT: its consumption of ia32 do not use NPTL in the same way (this
multi-threading is much higher than a simplemay also be due to the fact that only a subset of
producer-consumeanodel, it can be configured NPTL routines were traced at that time), lead-
to use as many threads as wanted and it can bieg to quite different results. First, the impact
launched for a variable amount of time, of using the patched NPTL with tracing dis-
- abled compared to using the original NPTL is
e Volano "Mark  [6] was designed for com- nearly negligible: less than 2% with the fastest
paring JVMs when used by the Volanochat 3y, and less thar- 5% with the slowest one.
product. It is a pure Java server benchmarksecond, the impact of running the bench with
characterized by long-lasting network connecthe patched NPTL with full tracing compared
tions and high thread counts. It is an unofficialig the original NPTL was about 16% with the
Java benchmark that can be configured to usgstest JVM and about 47% with the slowest
many (thousands) threads for exchanging datgne. Leading to a volume of traces (client +

between one client and one server by means Qferver) that depends on the JVM: from 215 MB
sockets. It creates client connections in groupgs 1,000 MB.

of 20 (aroom). Itis a stress Java program which

often makes a JVM crash or hang and whichwhen runningSPECjbb®200065 times with
has been used by several studies of Linux perto warehouses on a bi-processors machine, the
formances in the past [9]. impact of PTT could not be measured since it

L ® . - was lower than the precision of the measure.
e SPECjbb®2000[7] is an official SPEC Java

benchmark simulating a 3-tier system, mainIyWe used the strace tool for tracing
the middle tier (business logic and object ma~ 513n0™Mark in two ways.  First, when

nipulatign). It uses a small number of threadstracing all system calls and only the Volaho
(2 to 3 times the number of processors). server, the performances were divided by6l4

We have made measures on a 2x IA32 machin econd, when tracing only the caI.Is to the
with 2.8 GHz processors. We observed tha utex  system call a_nq only the client, the
the maximum throughput before buffer over- performances were divided by2 Although

flow was obtained with the unrealistic applica—Strace and PTT trace (_jlfferent t_hlngs, this
tion running one thread: ~1,800,000 traces pe?IearIy shows that PTT is much lighter than
second. Due to contention, using more threadgtrace'

led to a lower throughput.

When.runningGLucas with 1000 iterations  33.6 Testing

and with small (2x 10°) to medium (16x 10°)

values for the exponerg , we measured that

the system and user CPU cost of the daemoRTT is delivered with a set of tests.

was negligible, less than%o of the CPU time

consumed by GLucas. The throughput of trace&irst, there are tests verifying that the features
ranged between 5,000 and 50,000 traces pdovided by PTT work fine. Examples: a pro-

second: 40 times lower than the maximum. gram checks that thferk()  is correctly han-
dled; another one checks in detail concurrent

When runningVolano™Mark with 10 rooms, accesses to the buffer; and a program checks
the results depended greatly on the JVM. It apthat overloading the buffer and the daemon
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leads to a nice message warning the end-us@nay simply help the user to navigate through
that he may loose traces. the traces (filter information, find interacting

o ) objects, follow the status and the activity of
Second, there are tests verifying in detail thabbjects, etc.): or it may also display traces in

the traces generated by each patched NPTLy easjer-to-understand graphical way. Both
routine are correct. directions are useful, but we decided to focus
only on the second one, because we found a
Isophisticated open-source tool named Pajé that
provides nearly all required features without
the pain of designing and coding a tool dedi-
GLucas and Java (Volandark) are used for cated to PTT.

verifying that PTT does not modify the behav-
ior of a large and complex application.

Third, two versions of gproducer-consumer
model have been written, using condvars o
semaphores.

Pajé[8] was designed for visualizing the traces
of a parallel and distributed language (Athapas-

Also theOPTSis run in order to check that the ¢an) and was developed in a laboratory of the

PTT-patched NPTL is still compliant with the French Research Center IMAG in Grenoble.
POSIX Threads standard. Pajé is flexible and scalable and can be used

quite easily for visualizing the traces of any par-
allel or distributed system. It can provide views
at different scales with different levels of de-
tails and one can navigate back and forth in a
3.4.1 Commands large file of traces. It is built on the GNUstep
[11] platform: an object-oriented framework
for desktop application development, based on
the OpenStep specification originally created
ptt-trace for launching the application and by NeXT—now Apple. Several important com-
generating a binary trace file panies (France Telecom, ...) have already used
Pajé for visualizing complex traces. Pajé is now
ptt-view  for translating the binary trace file ayajlable in thesid (unstable) Debian distribu-

into a human or machine readable text format—jon and soon in thearge(stable) Debian dis-
see Figure 5. (It will enable the end-user to fil-tipution.

ter the trace. Filters can be applied on: Process
Id, Thread Id, name of POSIX Thread Objects We have done preliminary studies and exper-
name of Events.) iments with Pajé, showing that it seems quite

o o easy to produce traces in the format expected
ptt-stat for providing statistics about the py pajé.

use of POSIX Threads objects, etc

3.4 User Interface

Several commands are delivered:

The figure 6 is an example of how a trace could
ptt-paje  for translating the binary trace file pe visualized: the objects (threads, barriers,
into a Pajé trace file. ...) appear as horizontal bars, with different

colors according to their status; and the inter-

actions between objects (when a thread creates
3.4.2 GUI or cancels other threads, etc.) are displayed as

vertical arrows. The scenario of the example is:
The analysis of the trace may be very difficultthe main thread initializes a barrier (count=2)
without the help of a graphical tool. Such a tooland creates a thread. Then the two threads call
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Raw machine format:

0.001724:START_USER_FUNC : 29336 : 0xb7ecb6b0
0.001908:BARRIER_INIT_IN : 29336 : Oxb7ecb6b0 : 0x8049d28 : (nil) : 2
0.001909:BARRIER_INIT : 29336 : Oxb7ech6b0 : 0x8049d28 : 2
0.001909:BARRIER_INIT_OUT : 29336 : Oxb7ech6b0 : 0

Text human format:

0.001724 : Pid 29336, Thread Oxb7ecb6b0 starts user function

0.001908 : Pid 29336, Thread Oxb7ecb6b0 enters function pthread_barrier_init.
0.001909 : Pid 29336, Thread Oxb7ecb6b0 initializes barrier 0x8049d28, left=2
0.001909 : Pid 29336, Thread Oxb7ecb6b0 leaves function pthread_barrier_init.

Figure 5: An example of a trace written in human or machine readable text formats.

Figure 6: An example of visualizing a PTT trace with Pajé.
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pthread_barrier_wait : the two threads 3.5.2 Expected Status in July
are freed by the barrier. Finally, the main thread
calls pthread_thread_join on the sec-

At the end of July, PTT should provide the fol-

ond thread and destroys the barrier. lowing:
owing:

The Pajé tool will enable the user of PTT to
clearly see the interactions between the objects . ge reliable, efficient, and scalable;
involved in his program. Pajé will help the de-
veloper of a multi-threaded application to see « be available on 3 architectures: 1A32,
how his code executes in reality. He will be PPC, IA64; handle the most important
able to find possible dead-locks, understand  NPTL objects and routines; provide basic
which lock is blocking threads thus reducing filtering;
the performances, and analyze bugs. For ana-
lyzing large traces, specific tools (naming, fil- ¢ and enable use of Pajé for visualizing
tering, ...) must be designed and added in or-  Small and medium volumes of traces.
der to manage hundreds of objects and millions
of events.

3.5.3 Known Limitations

3.5 Status & Future work _
In order to know how much time has elapsed

between two events, a time-stamp is recorded
Two students work on PTT up to mid July this within each event. Since this time-stamp is ob-
year. Hereafter, we describe: the status of theitained before the event space is reserved in the
work end of April; what they plan to provide in buffer, it may occur that an event appears in the
mid July; known limitations; and future poten- buffer before older events. Although this could
tial tasks. be fixed at the time of decoding the binary trace
file, we consider that the error is negligible.

3.5.1 Statusin April Time-stamping the events on NUMA ma-
chines: the actual solution does not take into

_ _ account the time difference that may appear on
At the end of April, PTT already provides the gych machines.

following:

« User and Internal documentations are3-9-4 NextSteps
available.

The main concern when tracing multi-threaded
applications is to be able to link the informa-
« Apatch is available for the glibc 2.3.4 (and 1on shown by the trace tool with the traced
soon for 2.3.5). program. Even with only a dozen threads and
mutexes, it is not easy for the user to link the
traced thread he is looking at through PTT with
The patch and the sources under CVS are avaithe thread managed by his code. Being able to
able on SourceForge.net [10]. give a name to each instance of NPTL objects

» PTT is quite reliable and efficient.
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is very important. Several ways should be studsupport teams, and it simplifies the analysis of
ied and provided in order to replace the internathe behavior of NPTL when a misfunction is
names (like:0x401598c0 ) by easily under- suspected.
standable names (lik&ocketThread_1 ):

Then PTT could be integrated into Linux Dis-

tros. The final goal is to have PTT accepted

* automatically give the thread the namepy the community and then integrated into the
of the routine that was started when thegnu Jibe.

thread was created,

 enable the user to iteratively give names to _
objects as the user recognizes the objects3-9.5 Contributors

» enable reuse of some existing name tabl

(JVMs). %TT has been designed by Sébastien Decugis,

Mayeul Marguet, Tony Reix and the devel-
opers. The developers are: Nadége Griesser
PTT should be ported on other popular archi{ENSIMAG-Telecom, Grenoble), Laetitia
tectures. On machines using several time couriKkameni-Djinou (UTC, Paris) and Matthieu
ters, like NUMA machines, the current version Castet (ENSIMAG, Grenoble).

would deliver dates that sometimes could lead

to mistakes. This needs to be solved.

Optimizations should be studied: manage th&l Conclusion

buffer differently; reduce the amount of data

stored with each event. More work must be

done in order to check the usability and scalaAS We demonstrated in this document, our
bility of PTT when used with big and complex Project has completed some of its objectives,
applications on large machines with many and?ut more work remains pending.

fast processors. _ _
Our testing effort is not complete yet. We

We expect people facing complex problemshave tested only 42 functions of the 150 NPTL
with multi-threaded applications to experimentcontains.  Some of the remaining functions
with PTT, in order to find and fix remaining May contain bugs or at least are worth testing
bugs, and to provide requirements for new feadeeply. The remaining domains aread-write

tures making PTT easier to use and more prOLocks barriers, spinlocks thread-specific data
ductive. timers andmessage queues

PTT could also be a basis for dynamicallyAnticipating future problems by writing test
checking if the application is compliant with cases before someone runs into a bug usually
the POSIX Thread standard. It is so easy nosaves a lot of money for everybody. For this

to fulfill all the constraints of the standard. ~ reason, we're calling for volunteers to continue
our work and complete the testing. This work

The next step of the project is to prove thatshall be a continued effort, because the POSIX
PTT is really a useful tool: it shortens the Standard is changing regularly, therefore if the
time needed for understanding a multi-threadedest suite is not updated regularly it will be dep-

problem, it speeds up the work of Linux or Javarecated sooner or later. To avoid this situation
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for the OPTS, the best bet is to have many peo-[4] TSLogParser project:

ple use it.

http://tslogparser.
sourceforge.net/

The targeted users are mostly developers of

POSIX-compliant implementations. Automat-

ing the use of OPTS is easy and, thanks to the
TSLogParser tool, collecting and analyzing the

GLucas:
http:
/lwww.oxixares.com/glucas/

[5]

results is also quite simple. The next step to-

wards quality for NPTL is to have a real testing
process integrated into its development cycle.

The glibc addition to the STP project may be a [7]
good solution to solve this, as it is already used
for the kernel development and has proved to

be useful by detecting new bugs very early in
the process.

As we've already told about our Trace Tool, we
need more beta testers to try it and give us thei

comments. This way, we should be able to de-
velop smart tools to use the traces, for example

by parsing them in order to find possible prob-

lems in threads synchronization or locks con-

tention.

We will also be able to propose our tool to dis-
tribution makers, the final goal being that this

trace tool be present on all systems. This way,

debugging and profiling multi-threaded soft-
ware will be much easier than it is currently.
Is it a utopia? We don't think so...
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Abstract may require help from the community for re-

finement and implementation.

Networking performance is a popular topic in

Linux and is becoming more critical for achiev-

ing good overall system performance. This paintroduction

per takes a look at what was done in the e1000

driver to improve performance by (a) increas-

ing throughput and (b) reducing of CPU utiliza- This paper will recount the history of 1000
tion. A lot of work has gone into the e1000 Eth- Ethernet device driver regarding performance.
ernet driver as well into the PRO/1000 Giga-The e1000 driver has a long history which
bit Ethernet hardware in regard to both of thesencludes numerous performance enhancements
performance attributes. This paper covers thahich occurred over the years. It also shows
major things that were done to both the driverhow the Linux community has been involved
and to the hardware to improve many of the aswith trying to enhance the drivers’ perfor-
pects of Ethernet network performance. Themance. The notable ones will be called out
paper covers performance improvements due talong with when new hardware features be-
the contribution from the Linux community and came available. The paper will also point out
from the Intel group responsible for both thewhere more work is needed in regard to perfor-
driver and hardware. The paper describes optimance testing. There are lots of views on how
mizations to improve small packet performanceto measure network performance. For various
for applications like packet routers, VoIP, etc.reasons we have had to use an expensive, closed
and those for standard and jumbo packets ansource test tool to measure the network perfor-
how those modifications differs from the small mance for the driver. We would like to engage
packet optimizations. A discussion on the toolswith the Linux community to try to address this
and utilities used to measure performance andnd come up with a strategy of having an open
ideas for other tools that could help to measureource measurement tool along with consistant
performance are presented. Some of the idedssting methods.
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This paper also identifies issues with the systenbut did nothing to help normal or small sized
and the stack that hinder performance. The pefframes. It also was a feature which required
formance data also indicates that there is roometwork infrastructure changes to be able to
for improvement. use, e.g. changes to switches and routers to sup-
port jumbo frames. Jumbo frames also required
the system stacks to change. This took some
time to get the issues all worked out but they
do work well for certain environments. When
used in single subnet LANs or clusters, jumbo

The first generation of the Int@ PRO/1000 frames work well.
controllers demonstrated the limitation of the

32-bit 33MHz PCI bus. The controllers were N€Xt came the more interesting offload of
able to saturate the bus causing slow respon ecksumming for TCP and IP. The IP offload

times for other devices in the system (like slowdidnthelp much asitis only a checksum across
video updates). To work with this PCI bus tWenty bytes of IP header. However, the TCP
bandwidth limitation, the driver team worked checksgm offload real!y d'_d show some perforf
on identifying and eliminating inefficiencies. Mance INCreases and is widely used today. This
One of the first improvements we made wasc@me with little change to the stack to support
to try to reduce the number of DMA transac- it. The stack interface was designed with the
tions across the PCI bus. This was done usingeXibi"ty for a feature like this. Kudos to the
some creative buffer coalescing of smaller fragd€velopers that worked on the stack back then.
ments into larger ones. In some cases this was

a dramatic change in the behavior of the conNAPI was introduced by Jamal Hadi, Robert

troller on the system. This of course was a IongO|SS°n’ et al at j[his time. The €1000 driver
time ago and the systems, both hardware aniy2S ©ne of the first drivers to support NAPI.

0S have changed considerably since then. It is still used as an example of how a driver
should support NAPI. At first the development

The next generation of the controller was a 64i€am was unconvinced that NAPI would give
bit 66MHz controller which definitely helped Us much of a benefit in the general test case.
the overall performance. The throughput in-The performance benefits were only expected
creased and the CPU utilization decreased judpr some edge case situations. As NAPI and
due to the bus restrictions being lifted. This wasour driver matured however, NAPI has shown
also when new offload features were being in10 be a great performance booster in almost all
troduced into the OS. It was the first time thatcases. This will be shown in the performance
interrupt moderation was implemented. Thisdata presented later in this paper.
implementation was fairly crude, based on a
timer mechanism with a hard time-out time set.Some of the last features to be added were
but it did work in different cases to decreaseT CP Segment Offload (TSO) and UDP frag-
CPU utilization. ment checksums. TSO took work from the
stack maintainers as well as the e1000 develop-
Then a number of different features like de-mentteam to get implemented. This work con-
scriptor alignment to cache lines, a dynamictinues as all the issues around using this have
inter-frame gap mechanism and jumbo framesot yet been resolved. There was even a rewrite
were introduced. The use of jumbo frames re-of the implementation which is currently un-
ally helped transferring large amounts of datader test (Dave Miller's TSO rewrite). The UDP

A brief history of the e1000 driver
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fragment checksum feature is another that rePerformance
quired no change in the stack. It is however

little uged due to the lack of use of UDP Chec’k'As stated above the definition of performance
summing. varies depending on the user. There are a lot of

different ways and methods to test and measure

The use of PCI Express has also helped Qe ok driver performance. There are basi-

reduce the bottleneck seen with the PCI bus.,y 1 elements of performance that need to

The significantly larger data bandwidth of be looked at, throughput and CPU utilization.
P_Cle helps overcome limitations due to 'ate”'Also, in the case of small packet performance,
C'e_S/ ov_erhea(_js compared to PCI/ PC'_'X buse?/\/here packet latency is important, the packet
This will continue to get better as devices SUP~ate measured in packets per second is used as
port more lanes on the PCI Express bus furthegl third type of measurement. Throughput does
reducing bandwidth bottlenecks. a poor job of quantifying performance in this

case.
There is a new initiative called Int® 1/0 Ac-

celeration Technology (I/OAT) which achieves One of the problems that exists regarding per-
the benefits of TCP Offload Engines (TOE)formance measurements is which tools should
without any of the associated disadvantagese used to measure the performance. Since
Analysis of where the packet processing cycleshere is no consistent open source tool, we use
are spent was performed and features designegiclosed source expensive tool. This is mostly
to help accelerate the packet processing. Thesedemand from our customers who want to be
features will be showing up over the next six toable to measure and compare the performance
nine months. The features include Receive Sidef the Intel hardware against other vendors on
Scaling (RSS), Packet Split and Chipset DMA.different Operating Systems. This tool, IxChar-
Please see the [Leech/Grover] paper “Acceleriot by IXIAL, is used for this reason. It does
ating Network Receive Processing: I@®I/O  a good job of measuring throughput with lots
Acceleration Technolgy” presented here at theof different types of traffic and loads but still
symposium. RSS is a feature which identifiesdoes not do a good job of measuring CPU uti-
TCP flows and passes this information to theization. It also has the advantage that there are
driver via a hash value. This allows packetsendpoints for a lot of different OSes. This gives
associated with a particular flow to be placedyou the ability to compare performance of dif-
onto a certain queue for processing. The featuréerent OSes using the same system and hard-
also includes multiple receive queues which arevare. It would be nice to have and Open Source
used to distribute the packet processing onteool which could do the same thing. This is
multiple CPUs. The packet split feature splitsdiscussed in Section , “Where do we go from
the protocol header in a packet from the pay-here.”

load data and places each into different buffers. . '

This allows for the payload data buffers to pe There is an open source tool which can be us_ed
page-aligned and for the protocol headers to b& test small packet performance. The tool is
placed into small buffers which can easily beth® packet generator or ‘pkigen’ and is a ker-
cached to prevent cache thrash. All of thesé€l module which is part of the Linux kernel.
features are designed to reduce or eliminate th&he tool is very useful for sending lots of pack-
need for TOE. The main reason for this is that€ts With set timings. It is the tool of choice for
all of the I/OAT features will scale with proces-  1other brands and names may be claimed as the prop-
sors and chipset technologies. erty of others.
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anyone testing routing performance and routindong time and nobody noticed it. The bug was
configurations. causing the driver to exit NAPI mode back into

interrupt mode fairly often instead of staying in
All of the data for this section was collected us-NAPI mode. Once corrected the number of in-
ing Chariot on the same platform to reduce theerrupts taken was greatly reduced as it should
number of variables to control except as notedpe when using NAPI.

The test platform specifications are:

Comparison of Different Frames Sizes

¢ Blade Server verses the Competition

e Dual 2.8GHz Pentiu® 4 Xeon™ CPUs,

512KB cache 1GB RAM Frame size has a lot to do with performance.
_ _ Figure 2 shows the performance based on frame
e Hyperthreading disabled size against the competition. As the chart

shows, frame size has a lot to do with the to-

tal throughput that can be reached as well as

the needed CPU utilization. The frame sizes

e Competition Network Interface Card in a used were normal 1500 byte frames, 256 bytes
PCI-X slot frames and 9Kbyte jumbo frames.

e IntelR) 80546EB LAN-on-motherboard
(PCI-X bus)

: L _ NOTE: The competition could not accept a 256
The client platform specifications are: byte MTU so 512 bytes were used for perfor-
mance numbers for small packets.

e Dell? PowerEdg® 1550/1266

e Dual 1266MHz Pentiu® Ill CPUs, Comparison of OS Versions
512KB cache, 1GB RAM,

e Red Haf Enterprise Linux 3 with 2.4.20-

Figure 3 shows the performance comparison
8smp kernel, v P b

between OS versions including some different
e Intel® PRO/1000 adapters options for a specific kernel version. There was
no reason why that version was picked other
than it was the latest at the time of the tests.
Comparison of Different Driver Versions As can be seen from the chart in Figure 3, the
2.4 kernels performed better overall for pure
. . throughput. This means that there is more im-
The driver performance is compared for a nums, ., ement to be had with the 2.6 kernel for net-
ber of different e1000 driver versions on thework performance. There is already new work
same 0S version and the same hardware. Théh the TSO code within the stack which may
difference in performance Seen in Figure 1 Watave improved the performance already as the
due to the NAPI bug that Linux community t5q code has been known to hurt the overall
found. It turns out that the bug was there for anetwork throughput. The 2.4 kernels do not
20ther brands and names may be claimed as the progtave TSO which could be accounting for at
erty of others. least some of the performance differences.
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Driver Version Performance
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Figure 2: Frame Size Performance Against the Competition

Results of Tuning NAPI Parameters eliminate the problem of dropped packets. Fur-
ther reduction of the weight value, even to

Initial testing showed that with default NAPI very srr?all valhu_es_,, Wr? uld gont_lnue to increase
settings, many packets were being dropped offiroughput. This is shown in Figure 4.

receive due to lack of buffers. It also showed

that TSO was being used only rarely (TSO was! e explanation for these dropped packets is
not being used by the stack to transmit). simple, because the weight is smaller, the driver
iterates through its packet receive loop (in

It was also discovered that reducing the driver'se1000_clean_rx_irq ) fewer times, and
weight setting from the default of 64 would hence writes the Receive Descriptor Tail regis-
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OS Version Performance
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Figure 3: OS Version Performance

ter more often. This notifies the hardware thato do. This is a bad situation to get into as the
descriptors are available more often and elimi-driver has to take a very high number of inter-
nates the dropped packets. rupts to get the work done. Both of these situ-
ations need to be avoided and possibly have a
It would be obvious to conclude that the in- gifferent NAPI tuning parameter to set a mini-

crease in throughput can be explained by thenum poll time. It could even be calculated and
dropped packets, but this turns out to not be thgised dynamically over time.

case. Indeed, one can eliminate dropped pack-

ets by reducing the weight down to 32, but the

real increase in throughput doesn’t come until

you reduce it further to 16. Where the Community Helped

The answer appears to be latency. With the

higher weights, the NAPI polling loop runs The Linux community has been very helpful

longer, which prevents the stack from runningover the years with getting fixes back to cor-

its own timers. With lower weights, the stack rect errors or to enhance performance. Most re-

runs more often, and processes packets moently, Robert Olsson discovered the NAPI bug

often. discussed earlier. This is just one of countless
fixes that have come in over the years to make

We also found two situations where NAPI the driver faster and more stable. Thanks to all
doesn’t do very well compared to normal in- to have helped this effort.

terrupt mode. These are 1) when the NAPI poll

time is too fast (less than time it takes to getAnother area of performance that was helped
a packet off the wire) and 2) when the procesby the Linux community was the 1000 small
sor is very fast and 1/O bus is relatively slow. packet performance. There were a lot of com-
In both of these cases the driver keeps entements/discussions in netdev that helped to get
ing NAPI mode, then dropping back to inter- the driver to perform better with small packets.
rupt mode since it looks like there is no work Again, some of the key ideas came from Robert
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Throughput vs Weight

1380

1360

1340 - —

1320 —1

1300 —1

1280 -
1260 -

Throughput (Mbps)

1240 -
1220 -

1200

4 5 6 7 8 12 16 20 24 32 48 64
. Dropped packets seen
Weight at weights 48 and 64.

Figure 4: NAPI Tuning Performance Results

Olsson with the work he has done on packeSupport the new I/OAT features which give
routing. We also added different hardware feamost if not all the same benefits as TOE with-
tures over the years to improve small packebut the limitations and drawbacks. There are
performance. Our new RSS feature should helgome kernel changes that need to be imple-
this as well since the hardware will be bettermented to be able to support features like this
able to scale with the number of processor irand we would like for the Linux community to
the system. It is important to note that e1000be involved in that work.

benefitted a lot from interaction with the Open

Source Community.

Where do we go from here Conclusions

There are a number of dllfferent things tha.t theI\/Iore work needs to be done to help the net-
community could help with. A test tool which

rk performance get better on the 2.6 kernel.
can be used to measure performance across : : : .
: : S . is won’t happen overnight but will be a con-
versions is needed. This will help in compar-

. ) . finuing process. It will get better with work
ing performance under different OSes, dlfferentfrom g"pof us. Also wor?< should continue to
network controllers and even different versions ’ '

of the same driver. The tool needs to be able ténake NAPI work better in all cases. If it's in

: . your business or personal interest to have better
use all packet sizes and OS or driver features. o
network performance, then it's up to you help
Another issue that should be addressed is th&ake it better.
NAPI tuning as pointed out above. There are
cases where NAPI actually hurts performancelhanks to all who have helped make everything
but with the correct tuning works much better. perform better. Let us keep up the good work.
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Abstract 1 Testing Netfilter Code

The netfilter simulation environmemf§im )

allows netffilter developers to build, run, and ! . . )
P The netfilter code is complicated. Technically,

test their code without having to touch areal .. ~—~— .. . :
. . netfilter is just the packet-interception and man-
network, or having superuser privileges. On top

: : . . rgling framework implemented in each network
of this, we have built a regression testsuite fo )
netfilter and iptables. protocol (IPv4, IPv6, ARP, Decnet and bridg-

ing code)[3]. IPv4 is the most complete im-
Nfsim provides an emulated kernel environ-Plementation, with packet filtering, connection

ment in userspace, with a simulated IPv4 stackracking and full dynamic Network Address

as well as enhanced versions of standard kerndfansiation (NAT). Each of these, in turn, is
primitives such as locking and a proc f”esys_extensmle: dozens of modules exist within the

tem. The kernel code is imported into thetree to filter on different packet features, track

nfsim environment, and run as a userspacdlifferent protocols, and perform NAT.

application with a scriptable command-line in-
terface which can load and unload modules;l-here were several occasions where code

add aroute, inject packets, run iptables, controkhanges unintentionally broke extensions, and
time, inspectproc , and so forth. other times where large changes in the network-

More importantly we can test every single per ing layer (such as non-lineaskb ') caused
imp y . Y SINgi€ Perg, hile bugs. Network testing which relies on
mutation of external failures automatically—

for example, packet drops, kmalloc failures anc}Jsers 's generally poor, because no single user
. e, b PS, : : makes use of all the extensions, and intermit-
timer deletion races. This makes it possible t

: Oﬁent network problems are never reported be-

check error paths that very rarely happen in rea . o ,

life cause users simply hit “Reload” to work around
' any problem. As an example, the Linux 2.2

This paper will discuss some of our experiencedn@sguerade code would fail on one in a thou-
with nfsim and the progression of the netfil- sand FTP connections, due to a control message

ter testsuite as new features became availabRENY SPlitover two packets. This was never re-
in the simulator, and the amazing effect on deP°ed:
velopment. We will also show the techniques

we used for exhaustive teStir‘g, and why these 1gp s are the kernel representation of network pack-
should be a part of every project. ets, and do not need to be in contiguous virtual memory.

o 141 o
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2 The Existing Netfilter Testsuite these, Krisztian Kovacs, found a nasty, previ-
ously unnoticed bug in 2004. This discovery

_ _ ) caused Rusty to revisit this code, which in turn
ment. This testsuite used the etheftdpvices
along with a set of helper programs; the tests
themselves consisted of a series of shell scripts ) )
as shown in Figure 1. 3 Testsuite Requirements

Ur_n‘prtunately, t.h is kind of tes_tlng requires 00t rhere are several requirements for a good test-
privileges, a quiescent machine (ssh -ing in . )

. suite here:
to run the testsuite!) and a knowledge of shell
slightly beyond cut-and-paste of other tests. o
The result was that the testsuite bit-rotted, and ® 't must be trivial to run, to encourage de-
was no longer maintained after 2000. velopers and others to run it regularly;

e It must be easy to write new tests, so non-
core developers can contribute to testing

2.1 Lack of Testing fort
efforts;

¢ It must be written in a language the devel-

The lack of thorough testing had pervasive ef- :
vgh testiing pervas opers understand, so they can extend it as

fects on the netfilter project which only became

clear as the lack was remedied. Most obviously,
the quality of the code was not all that it could
have been—the core functionality was solid,
but the fringes contained longstanding and sub-
tle bugs.

necessary,

It must have reasonable and measurable
coverage;

It should encourage use of modern debug-

ging tools such as valgrind; and
The less-noticed effect is the fear this knowl-
edge induces in the developers: rewrites such
as TCP window tracking take years to enter
the kernel as the developers seek to slowly add
users to test functionality. The result is a cy-4 The New Testsuite—nfsim
cle of stagnation and patch backlog, followed

by resignation and a lurch forward in function- _

ality. It's also difficult to assess test coverage:'t Was a long time before the authors Ead the

whether users are actually running the change@PPOrtunity to write a new testsuite. The aim
of nfsim was to provide a userspace environ-

code at all. _ _
ment to import netfilter code (from a standard
Various hairy parts of the NAT code had not kernel tree) into, which can then be built and
been significantly altered since the initial im- run as a standalone application. A command-
plementation five years ago, and there are fedne interface is given to allow events to be sim-
developers who actually understand it: one otllated in the kernel environment. For example:

¢ It must make developersantto use it.

2ethertap devices are virtual network interfaces that . )
allow userspace programs to inject packets into the net- ® generate a packet (either from a device or
work stack. the local network stack); or
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tools/intercept PRE_ROUTING DROP 2 1 > $TMPFILE &
sleep 1

tools/gen_ip $TAPONET.2 $TAPINET.2 100 1 8 0 55 57 > /dev/tapO

if wait %tools/intercept; then :

else
echo Intercept failed:
tools/rcv_ip 1 1 < $TMPFILE
exit 1

fi

Figure 1. Shell-script style test for old netfilter testsuite

e advance the system time; or further experience, we have found that the sig-

_ nificant majority of tests do not need to alter the
e inspect the kernel state (e.g., through thgyefault network setup.

/proc/  file system).
Although the simulator can be used interac-
tively, running predefineahfsim test scripts
allows us to automate the testing process. At
d_present, a netfilter regression testsuite is be-
ing developed in the main netfilter subversion
repository.

Upon this we can build a simple testsuite.

Figure 2 shows a simple configure-buil
execute session offsim .

Help text is automatically generated from doc-
book XML comments in the source, which also
form the man page and printable documenta
tion. There is a “trivial” XML stripper which
allows building if the required XML tools are
not installed.

To assist in automated testing, the builtin

expect command allows us to expect a string

to be matched in the output of a specific com-
mand that is to be executed. For example, the
command:

When the simulator is started, it has a default

network setup consisting of a loopback inter-€xpect gen_ip rcv:ethO

face and two ethernet interfaces on separate

networks. This basic setup allows for the ma-

jority of testing scenarios, but can be easily reWwill expect the string fcviethO " to be
configured. Figure 3 shows the default networkPresent in the output the next time that the

setup as shown by thgconfig ~ command. gen_ip command (used to generate IPv4
packets) is invoked. If the expectation fails,

The presence of this default network configu-the simulator will exit with a non-zero exit sta-
ration was a decision of convenience over abtus. Figure 4 shows a simpfésim test which
straction. It would be possible to have no inter-generates a packet destined for an interface on
faces configured at startup, but this would rethe simulated machine, and fails if the packet
quire each test to initialise the required networkis not seen entering and leaving the network
environment manually before running. Fromstack.
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$ ./configure --kerneldir=/home/rusty/devel/kernel/linux-2.6.12-rc4/
$ make

$ ./simulator --no-modules

core_init() completed

nfsim 0.2, Copyright (C) 2004 Jeremy Kerr, Rusty Russell

Nfsim comes with ABSOLUTELY NO WARRANTY; see COPYING.
This is free software, and you are welcome to redistribute

it under certain conditions; see COPYING for details.

initialisation done

> quit
$

Figure 2: Building and runningfsim
Note that there’s a helpful depends on further code, leading to a large
test-kernel-source script in  the amount of dependencies. We needed to decide
nfsim-testsuite/ directory. Given which code was simulated (reimplemented in

the source directory of a Linux kernel, builds nfsim ), and which was imported from the ker-
nfsim for that kernel and runs all the tests. Itnel tree.
has a simple caching system to avoid rebuildin

nfsim unnecessarily. gi?eimplementing functionality in the simulator

gives us more control over the “kernel.” For ex-

During early development, a few benefits ofample, by using simulated notifier lists, we are
nfsim appeared. able to account for each register and deregister
on all notifier chains, and detect mismatches.

Firstly, compared to a complete kernel, buildThe drawback of reimplementation is that more
time was very short. Aside from the code undemfsim code needs to be maintained; if the ker-
test, the only additional compilation involved nel’'s API changes, we need to update our local
the (relatively small) simulation environment. copy too. We also need to ensure that any be-
o havioural differences between the real and sim-

Secondly, ‘boot time’ is great: ulated code do not cause incorrect test results.

Importing code allows us to bring in func-
real 0m0.006s tionality ‘for_ free_,’ an_d ensures that the im-
user 0m0.003s ported functionality will mirror that of the ker-
sys 0m0.002s nel. However, the imported code will often re-
quire support in another area, meaning that fur-
ther functionality will need to be imported or
4.1 The Simulation Environment reimplemented.

$ time ./simulator < /dev/null

For example, we were faced with the decision
As more (simulated) functionality is required to either import or reimplement the IPv4 rout-
by netfilter modules, we needed to “bring in” ing code. Importing would guarantee that we
more code from the kernel, which in turn would deal with the ‘real thing’ when it came
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> ifconfig
lo
addr: 127.0.0.1 mask: 255.0.0.0 bcast: 127.255.255.255
RX packets: 0 bytes: O
TX packets: 0 bytes: 0
ethO
addr: 192.168.0.1 mask: 255.255.255.0 bcast: 192.168.0.255
RX packets: 0 bytes: O
TX packets: 0 bytes: 0
ethl

addr: 192.168.1.1 mask: 255.255.255.0 bcast: 192.168.1.255
RX packets: 0 bytes: 0
TX packets: 0 bytes: O

Figure 3: Default network configuration afsim

# packet to local interface

expect gen_ip rcv:ethO

expect gen_ip send:LOCAL {IPv4 192.168.0.2 192.168.0.1 0 17 3 4}
gen_ip IF=eth0 192.168.0.2 192.168.0.1 0 udp 3 4

Figure 4: A simplenfsim test

time to test, but required a myriad of other com-as clean and simple as possible; adding com-
ponents to be able to import. We decided toplexity here may cause problems when the code
reimplement a (very simple) routing system,under test fails.

having the additional benefit of increased con-

trol over the routing tables and cache. _ _ o
4.2 Interaction with Userspace Utilities

Generic functions, or functions strongly tied
to kernel code were reimplemented. We have h ; q hod of i i ith
a single kernelenv/kernelenv.c file, The most often-used method of interacting wit

which defines primitives such &alloc() netfilter code is through thiptables  com-
locking functions and lists. The kernel environ-mand’ run from userspace. We needed some

ment contains around 1100 lines of code. way of providing this interface, without either
modifying iptables, or reimplementing it in the
IPv4 code is implemented in a separate modulegimulator.

with the intention of making a ‘pluggable pro- _ _ _ _
tocol’ structure, with an IPv6 implementation T0 @llow iptables to interface with netfilter code

following. The IPv4 module contains around Under test, we've developed a shared library, to
1700 lines of code, the majority being in rout- °¢LD_PRELOABed when running an unmod-
ing and checksum functions. ified iptables  binary. The shared library

intercepts calls tdset,get}sockopt() ,
Ideally, the simulation environment should beand diverts these calls to the simulator.
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4.3 Exhaustive Error Testing the parent blocks (imvait() ) while the child
executed,

During netfilter testing with an early version The failure decision points are handled by a

of nfsim , it became apparent that almost allfunction namedshould_i_fail() . This

of the error-handling code was not being exerhandles the process creation, error testing and

cised. A trivial example fronip_tables.c  :  failure-path replay; the return value indicates
whether or not the calling function should fail.
Figure 5 shows thafsim implementation of

counters = vmalloc(countersize); vmalloc , an example of a function that is
if (counters == NULL) prone to failure. The single (string) argument
return -ENOMEM; toshould_i_fail() is unique per call site,
and allowsnfsim to track and replay failure
patterns.

Because we do not usually see out-of-memory
problems in the simulator (nor while running in
the kernel), the error path (wheoaunters

is NULL) will almost certainly never be tested.

The placement oshould_i_fail() calls

needs to be carefully considered—while each
failure test will increase test coverage, it can
potentially double the test execution time. To

In order to test this error, we need the : . o .
. . . prevent combinatorial increase in simulation
vmalloc() to fail; other possible failures . . L
time, nfsim also has ashould_i fail _

may be due to any number of possible exter-

. . e once() function, which will test the failure
nal conditions when calling these ‘risky’ func- . .
. case once only. We have used this for functions
tions (such agopy_{to,from} _user() :

whose failure does not necessarily indicate an
semaphores or skb helpers).
error, for exampléry_module_get()

Ideally, we would be able to simulate the fail-
ure of these risky functions in every possible
combination.

When performing this exhaustive error testing,
we cannot expect a successful result from the
test script; if we are deliberately failing a mem-

One approach we considered is to save the staffy allocation, itis unreasonable to expect that
of the simulation when we reach a point of fail- the code will handle this without problems.
ure, test one case (perhaps the failure), restorbnerefore, when running these failure tests, we

to the previous state, then test the other casion’t require a successful test result, only that
(success). This left us with the task of havingthe code will handle the failure gracefully (and

to implement checkpointing to save the simu-"0t cause a segmentation fault, for example).
lator state; while not impossible, it would have Running the simulator under valgrind[1] can be

been a large amount of work. useful in this situation.

The method we implemented is based orff @ certain failure pattern causes unexpected
fork()) . When we reach a risky function, we problems, the sequence of failures is printed
fork()  the simulator, test the error case in thel©® allow the developer to trace the pattern,
child process, and the normal case in the parenfnd can be replayed using théailpath

This produces a binary tree of processes, with 3Although it would be possible to implement parallel

each node repr_ese_nting arisky function. To pretajiure testing on SMP machines by allowing a bounded
vent an explosion in the number of processesyumber of concurrent processes.
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struct sk_buff *alloc_skb(unsigned int size, int priority)

{
if (should_i_fail(__func_))
return NULL;
return nfsim_skb(size);
}

Figure 5: Example of a risky function imfsim

command-line option, running under valgrind4.4 Benefits of Testing in Userspace
or a debugger.

Becausenfsim allows us to execute kernel
o) b h d h code in userspace, we have access to a number
ne probiem t. at_ we encou_ntere_ was t € US§t tools that aren't generally available for ker-
of iptables while in exhaustive failure testing nel development. We have been able to expose

mode: we need to be ablefiark()  while in- few buas b inafsi d larind
teracting with iptables, but can not allow botha ewbugs by unningisim - under vaigrind.

resulting processes to continue to use the sinthe GNU Coverage tooicov [2], has allowed
gle iptables process. We have solved this by;s to find untested areas of neffilter code; this

recording all interactions with iptables up un-nas peen helpful to find which areas need atten-

ecute the second case, a new iptables process

is invoked, and we replay the recorded sessionAndrew Trigell'stalloc  library[4] gives us

However, we intend to replace this with a sys-clean memory allocation routines, and allows

tem that causes the iptables process to fork witlfor leak-checking in kernel allocations. The

the simulator. ‘contexts’ thattalloc  uses allows developers
to identify the source of a memory leak.

Additionally, the failure testing is very time-

consuming. A full failure test of the 2.6.11 net- 5 Wider

filter code takes 44 minutes on a 1.7GHz x86 .
machine, as opposed to 5 seconds when run- Kernsim ?
ning without failure testing.

Kernel Testing:

The nfsim technique could be usefully ap-

plied to other parts of the kernel to allow a
At present, the netfilter testsuite exercises 61%inux kernel testsuite to be developed, and
of the netfilter code, and 65% when runningspeed quality kernel development. The Linux
with exhaustive error CheCking. AlthOUgh the kernel is quite modu|ar, and so this approach

increase in coverage is not large, we are noWyhich worked so well for netfilter could work
able to test small parts of code which are veryyell for other sections of the kernel.

difficult to reliably test in a running kernel.
This found a number of long-standing failure- Currentlynfsim is divided intokernelenv
path bugs. ipv4 and thenetfilter (IPv4) code. The
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first two are nfsim-specific testing implemen- overcome, however, so the burden of maintain-
tations of the kernel equivalents, such adng akernsim would fall on a small external

kmalloc and spin_lock . The latter is group of developers, rather than being included
transplanted directly from the kernel source. in the kernel source in a seriestest/  sub-
directories.

The design of a more completeernsim

would begin with dividing the kernel into other There are other possibilities, including the sug-
subsystems. Some divisions are obvious, sucfestion by Andrew Tridgell that a host kernel
as the SCSI layer and VFS layer. Others aréelper could allow development of simple de-
less obvious: the slab allocator, the IPv4 routwvice drivers withinkernsim . The potential
ing code, and the IPv4 socket layer are allfor near-exhaustive testing of device drivers, in-
potential subsystems. Subsystems can requikgtuding failure paths, against real devices is sig-
other subsystems, for example the IPv4 sockaeiificant; including a simulator subsystem inside
layer requires the slab allocator and the IPv4ernsim would make it even more attractive,
routing code. allowing everyone to test the code.

For most of these subsystems, a simulated ver-

sion of the subsystem needs to be written,

which is a simplified canonical implementa—6 Lessons Learnt fromnfsim
tion, and contains additional sanity checks. A

good example imfsim is the packet gener-

ator which always generates maximally non-\isim has proven to be a valuable tool for easy
linear skb s. A configuration language simi- 1egting of the complex netfilter system. By pro-
lar to the Linux kernel ‘Kconfig’ configuration viding an easy-to-run testsuite, we have been
system would then be used to select whethegy . 1 speed up development of new compo-
each subsystem should be the simulator versioge s and increase developer confidence when
or imported from the kernel source. This al-aying changes to existing functionality. Net-
lows testing of both the independent pieces anfjiqr gevelopers can now be more certain of any

the combinations of pieces. The latter is réy,,gsives and avoid inadvertent regressions in
quired because the simulator implementationsg|ated areas.

will necessarily be simplified.

The current nfsim  commands are ver Unfortunately, persuading some developers to
Y use a new tool has been more difficult than ex-

network-orle.nted: they wil require S’.'gn'f" pected; we sometimes see testsuite failures with
cant expansion, and probably introduction of &

namesnace of some kind to prevent overload new versions of the Linux kernel. However, we
b P  are confident thatfsim  will be adopted by a

wider community to improve the quality of net-
5.1 Benefits of akernsim filter code. Ideally we will see almost all of the
netfilter code covered by a nfsim test some time
in the near future.
It is obvious to thenfsim authors that
wider automated testing would help speed anddopting the simulation approach to testing is
smooth the continual redevelopment which ocsomething that we hope other Linux kernel de-
curs in the Linux kernel. It is not clear that the velopers will take interest in, and use in their
Linux developers’ antipathy to testing can beown projects.



Downloading nfsim

nfsim is available from:

http://ozlabs.org/~jk/projects/nfsim/
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Abstract ory Hotplug.

Memory Hotplug is one of the most antici-

pated features in the Linux Kernel. The PUr-1  Introduction

poses of memory hotplug are memory replace-

ment, dynamic workload management, or Ca-

pacity on Demand of Partitioned/Virtual ma- Atthe 2004 Ottawa Linux Symposium Andrew
chines. In this paper we discuss the historyMorton had this to say in the keynote:

of Memory Hotplug and the LinuxVM includ-

ing mistakes made along the way and technolo*Some features do tend to encapsulate poorly
gies which have already been replaced. Weand they have their little sticky fingers into lots
also discuss the current state of the art in Memef different places in the code base. An exam-
ory Hotplug including user interfaces, CON- ple which comes to mind is CPU hot plug, and
FIG_SPARSEMEM, the no bitmap buddy al- memory hot unplug. We may not, we may end
locator, free area splitting within zones, andup not being able to accept such features at all,
memory migration on PPC64, x86-64, andeven if they’re perfectly well written and per-
IA64. Additionally, we give a brief discussion fectly well tested due to their long-term impact
on the overlap between Memory Hotplug andon the maintainability of those parts of the soft-
other areas including memory defragmentatiorware which they touch, and also to the fact that
and NUMA memory management. Finally, we very few developers are likely to even be able
gaze into the crystal ball to the future of Mem- to regression test them.” [1]
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It has been one year since that statement. Amdody has previously taken it upon themselves
drew Morton is a clever man who knows thatto write memory hotplug for the Linux kernel.

the way to get developers to do something is td-ast forward to today and we have most major
tell them it can’t be done. CPU hot plug hashardware vendors paying developers to write
been accepted[15]. The goal of this paper is tanemory hotplug. Some things have changed;
lay out how developers have been planning andapacity upgrade on demand, partitioning, and
coding to prove the memory half of that state-virtualization all have made the resources as-
ment wrong. signed to an operating system much more fluid.

Capacity Upgrade On Demand came on the
leading edge of this new wave. Manufactur-
ers of hardware thought of a very clever and
useful way to sell more hardware. The manu-

Memory hotplug was named for the ability facturer would give users more hardware than
to literally plug and unplug physical memory they paid for. This extra unpaid for hardware

from a machine and have the Operating Systerould be disabled, and could be enabled if the
keep running. customer later decided to pay for it. If the cus-

tomer never decided to pay for it then the hard-
In the case of plugging in new physical mem-ware would sit unused. Users got an afford-
ory the motivation is being able to expand sys-able seamless upgrade path for their machines.
tem resources while avoiding downtime. TheHardware manufacturers sold enough of the ex-
proverbial example of the usefulness is thera hardware they had already shipped they still

slashdot effect. In this example a sysadmimmade a profit on it. In business terms it was a
runs a machine which just got slashdotted. Th&vin-win.

sysadmin runs to the parts closet, grabs some

RAM, opens the case, and puts the RAM intoWithout hotplug, capacity upgrades still require

the computer. Linux then recognizes the RAMa reboot. This is bad for users who have to de-
and starts using it. Suddenly, Apache runday upgrades for scheduled downtime. The de-
much faster and keeps up with the increasetfyed upgrades are bad for hardware manufac-

traffic. No downtime is needed to shutdown,turers who don’t get paid for unupgraded sys-
insert RAM, and reboot. tems. With hotplug the upgrades can be done

without delay or downtime. It is so convenient
Conversely, unplugging physical memory isthat the manufacturers can even entice users
usually motivated by physical memory failing. with free trials of the upgrades and the ability
Modern machines often have the ability to re-to upgrade temporarily for a fraction of the per-
cover from certain physical memory errors andmanent upgrade price.
to use those errors to predict that the physical _ _ o
memory is likely to have an unrecoverable error! N€ idea of taking a large machine and divid-
in the future. With memory hotplug the mem- INg Up its resources into smaller machines is
ory can be automatically disabled. The disabledOWn as partitioning. Linux looks at a parti-
memory can then be removed and/or replaceHO” like it is a dedlcatqu machine. This brings
at the system administrator’s convenience withYS back to our slashdotting example from phys-

out downtime to the machine [31]. icql hotplug. The reason that exarr_lple didn’t
drive users to want hotplug was that it was only

However, the ability to plug and unplug phys- useful if there was extra memory in a closet
ical memory has been around awhile and nosomewhere and the system administrator could

2 Motivation
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open the machine while it was running. With cult problems to be overcome to make memory
partitioning the physical memory is already in hotplug a success, and if there is one thing a
the machine, it's just probably being used bydeveloper loves it is solving difficult problems.
another partition. So now hotplug is needed

twice. Once to remove the memory from a par-

tition that isn’t being slashdotted and again to

add it to a partition that is. The system admin-3 CONFIG_SPARSEMEM
istrator could even do this “hotplug” remotely
from a laptop in a coffee house. Better yet3.1 Nonlinear vs Sparsemem
management software could automatically de-

cide and move memory around where it was _ )
needed. Because memory would be allocatef€Vious papers[6] have discussed the concept

more efficiently users would need less of it,0f nonlinear memory maps: handling systems

saving them some money. Hardware vendor¥hich haYe _non-trivial rela_tionships between
might even encourage selling less hardware pdhe kernel's virtual and physical address spaces.

cause they could sell the management softwarﬁ_I 2004. Dave McCracken from IBM created
cheaper than they sold the extra hardware it re- ’

places and still make more money a quite complete i_mplementation of nonlin-
' ear memory handling for the hotplug mem-
Virtualization then takes partitioning to the next Oy project. As presented in[6], this imple-
level by removing the strict dependency onMmentation solved two problems: separating the
physical resources [10][17]. At first glance it Meém_map[] into smaller pieces, and the non-
would seem that virtualization ends the need fofinear layout.
hotplug because the resources aren’t real any- .
way. This turns out not to be the case becaus he nonl_lnear layout component _turned out
of performance. For example, if a virtual par-to _be qwte_ an undertaklng. Its implemen-
tition is created with 4GB of virtual RAM the &HO" required Cf‘a'f‘g'”g the types of some
only way to increase that to 256GB and have '€ VM macros: virt_to_page() and

Linux be able to use that RAM is to hotplug add page_to_virt() ; Italso requ_lred.changln.g
252GB of virtual RAM to Linux. On the other Many core assumptions, especially in boot-time

side of the coin, if a partition is using 256GB of memory setup code, which impaired other de-

virtual RAM and whatever is doing the virtual- velopment. However, the component that sep-

izing only has 4GB of real honest-to-goodnessarated thenem_map(]s turned out to be rela-

physical RAM to use, performance will make it tively problem-free.

unusable. In this case the virtualization enginerpe gecision was made to separate the two
would want to hotplug remove much of that vir- components. Nonlinear layouts are not re-

tual RAM. quired by simple memory addition. However,

So there are a variety of forces demanding€ SPlit-outmem_map(]s are. The memory

memory hotplug from hardware vendors tonotPlug plan has always been to merge hot-add
software vendors. Some want it for reliability 2/0n€, before hot-remove, to minimize code im-

and uptime. Others want it for workload bal- Pact at one time. Thenem_map]] splitting
ancing and virtualization. feature was named sparsemem, short for sparse

memory handling, and the nonlinear portion
Thankfully for developers it is also an interest-will not be implemented until hot-remove is
ing problem technically. There are lots of diffi- needed.
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3.2 What Does Sparsemem Do? as an example. Its sections are 16MB in size
and there are, today, systems with 1TB of mem-

Sparsemem has several of the same desiglfy In @ single system. To keep future expan-

goals as DISCONTIGMEM, which is currently Sion in mind (and for easy mzath), assume that
in use in the kernel for similar purposes. Bothth€ limitis 16TB. This means 2 possible sec-

of them allow the kernel to efficiently han- tions and, with 1 64-bimem_map[] pointer

dle gaps in its address space. The normdt®’ section, that's 8MB of memory used. Even

method for machines without memory gaps i<°" the smallest (256MB) configurations, this

to have astruct page for each physical amount. is a manageable price to pay for ex-
page of RAM in memory. If there are gaps from Pandability all the way to 16TB.
things like PCI config space, there @teuct

page’s, but they are effectively unused. In order to do quiclpin_to_page() opera-

tions, the index into the large array of the page’s
Although a simple solution, simply not using parent section is encoded page->flags
structures like this can be an extreme wastéart of the sparsemem infrastructure enables
of memory. Consider a system with 100 1GBsharing of these bits more dynamically (at
DIMM slots that support hotplug. When the compile-time) between thepage_zone()
system is first booted, only 1 of these DIMM and sparsemem operations.

slots is populated. Later on, the owner decides _ _

to hotplug another DIMM, but puts it in slot However, on 32-bit architectures, the number
100 instead of slot 2. This creates a 98GB gapQf bits is quite limited, and may require grow-
On a 64-bit system, eacitruct page is64 N9 the size of thpage->flags  type in cer-

bytes. tain conditions. Several things might force this
to occur: a decrease in the size of each section

(o8 * (64%9) ~ 1.5GB (if you want to hotplug smaller, more granu-
page lar, areas of memory), an increase in the physi-

The owner of the system might be slightly dis-cal address space (very unlikely on 32-bit plat-
pleased at havingret lossof 500MB of mem- forms), or an increase in the number of con-
ory once they plug in a new 1GB DIMM. Both sumedpage->flags

sparsemem and discontigmem offer an alterna-
tive. One thing to note is that, once sparsemem is

present, the NUMA node information no longer
needs to be stored in thEage->flags . It
might provide speed increases on certain plat-
forms and will be stored there if there are un-
Sparsemem uses an array to provide differenised bits. But, if there are inadaquate unused
pfn_to_page()  translations for each "sec- pjts, an alternate (theoretically slower) mech-

tion" of physical memory. The sections are ar-anjsm is used:page_zone(page)->zone
bitrarily sized and determined at compile-time pgqat->node _id B B

by each specific architecture. Each one of these
sections effectively gets its own, tiny version of
themem_map(]. 3.4 What happens to Discontig?

3.3 How Does Sparsemem Work?

However, one must also consider the storage
cost of such an array which must represent evAs was noted earlier sparsemem and discontig-
ery possible physical address. Let's take PPC6/hem have quite similar goals, although quite
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different implementations. As implemented e For resizing, physically contiguous pages
today, sparsemem replaces DISCONTIGMEM for new bitmaps were needed. This in-
when enabled. It is hoped that SPARSEMEM creased possibility of failure of Memory

can eventually become a complete replacement  Hotplug because of difficulty of large size

as it becomes more widely tested and graduates  page allocation.

from experimental status. . . , .
P e Reallocation of bitmaps is complicated

A significant advantage sparsemem has over and computationally expensive
DISCONTIGMEM is that it's completely sepa-

rated from CONFIG_NUMA. When producing For Memory Hotplug, bitmaps presented a
this implementation, it became apparent thatdrge obstacle to overcome. One proposed

NUMA and DISCONTIG are often confused. Solution was dividing and moving bitmaps
from zones to sections as was done with

Another advantage is that sparse doesn’t rememmaps. The other proposed solution, elimi-
quire each NUMA node’s ranges to be contigu-nating bitmaps altogether, proved simpler than
ous. It can handle overlapping ranges betweemoving them.

nodes with no problems, where DISCONTIG-

MEM currently throws away that memory. 4.2 Description of the Buddy Allocator

Surprisingly, sparsemem also shows some

marginal performance benefits over DISCON-The buddy allocator is an memory allocator

TIGMEM. The base causes need to be investiwhich coalesces pages into groups $iéngth.

gated more, but there is certainly potential hereX is usually 0-10 in Linux. Pages are coalesced
into a group of length of 1, 2, 4, 8, 16, 32,

As of this writing there are ports for sparsememg4, 128, 256, 512, 1024. X is called an "or-

on i386, PPC64, 1A64, and x86_64. der”. Only a head page of a buddy is linked to
free_arealorder]

This grouping is called a buddy. A pair of

4 No Bitmap Buddy Allocator buddies in order X, which are length off?2
can be coalesced into a buddy 6¥2Y length.
4.1 Why Remove the Bitmap? When a pair of buddies can be coalesced in or-

der X, offset of 2 buddies are®®™ «Y and

2X+1) « ¥ 42X Hence, another buddy of a
When memory is hotplug added or removedpuddy in order X can be calculated as (Offset
memory management structures have to be ref a buddy) XOR(1 << (X)).

allocated. The buddy allocator bitmap was one

lesced with page 5 (0x0101) in order O, page
Reallocation of bitmaps for Memory Hotplug 6 (0x0110) in order 1, page 0 (0x0000) in order
has the following problems: 2.

e Bitmaps were one of the things which 4-3 Bitmap Buddy Allocator
assumed that memory is linear. This
assumption didn't fit SPARSEMEM and The role of bitmaps was to record whether a
Memory Hotplug. page’s buddy in a particular order was free or
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not. Consider a pair of buddies a(tle) xY struct page *base = zone->zone_mem_map;
X+1) X int page_idx = page - base;
and 2 *Y 27, while ( order < MAX_ORDER ) {
int buddy_idx = page_idx " (1 << order);
R struct page *buddy = base + buddy_idx;
Whenfree_area[X_].bltmap[Y] was 1, it ((page. count(buddy) == 0 &&
one of the buddies was free. Soee_ PagePrivate(buddy) &&

: buddy->private == order))
pages() can determine whether a buddy can break

be coalesced or not from bitmaps. When both remove buddy from zone->free_areaforder]

. ClearPagePrivate(buddy);

buddies were _freed, they were coalesced and " uddy idx < page idy)

free_area[X].bitmap[Y] setto 0. page_idx = buddy_idx;
order++;

}

page = page_idx + base;

SetPagePrivate(page);

page->private = order;

link page to zone->free_arealorder]

4.4 No Bitmap Buddy Allocator

When it comes to the no bitmap buddy alloca-

tor, instead of recording whether a page has itd Nre is no significant performance difference
buddy or not in a bitmap, the free buddy’s orderither way between bitmap and no bitmap coa-

is recorded irmemmap The following expres- lescing.
sion is used to check a buddy page’s status: With SPARSEMEM base in the above code

is removed and following the relative offset cal-
page count(page) == 0 && culation is used. Thus, the buddy allocator can

PG_private is set && manage sparse memory very well.
page->private ==
page_idx = pfn_to_page(page);

The three elements that make up this expression buddy_idx = page_idx " (1 << order);
are: buddy = page + (buddy_idx - page_idx);

e When page_count(page) == , 5 Free Area Splitting Within Zones
page is not used.

e Even if page_count(page) == . The buddy system provides an efficient algo-
it's not sure that the page is linked to the fithm for managing a set gf pages within each
free area. When a page is linked to theZone [7][16][18][11]. Despite the proven effec-

free areaPG_private  is set. tiveness of the algorithm in its current form as
used in the kernel, it is not possible to aggre-
e When page count(page)==0 && gate a subset of pages within a zone accord-
PG_private is set,page->private ing to specific allocation types. As a result,
indicates its order. two physically contiguous page frames (or sets

of page frames) may satisfy allocation requests
that are drastically different. For example, one

Here, offset of an another buddy of a buddy inP29€ frame may contain data that is only tem-
order X can be calculated as (Offset of Ioage)oorarlly used by an application while the other
XOR 2X. The following code is the core of N0 ~ 1spaARSEMEM guarantees that memmap is contigu-
bitmap buddy allocator’s coalescing routine:  ous at least up to MAX_ORDER.
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is in use for a kernel device driver. While this is permanently mapped in the virtual address
is perfectly acceptable on most systems, thispace. Once a suitable zone is chosen, an ap-
scenario presents a unique challenge on menpropriately sized region is plucked from the re-
ory hotplug systems due to the variances in respective free area list via the buddy algorithm
claiming pages that satisfy each allocation typewithout regard for whether it satisfies a kernel

allocation or a user allocation.
One solution to this problem is to explicitly

manage pages according to allocation request

type. This approach avoids the need to radi5.2 Distinguishing Page Usage
cally alter existing page allocation and recla-

mation algorithms, but does require additional

structure within each zone as well as modificaPUring a page allocation, attributes are pro-
tion of the existing algorithms. vided to the memory allocation interface func-

tions. Each attribute provides a hint to the al-

location algorithm in order to determine a suit-
5.1 Oirigin of Page Allocation Requests able zone from which to extract pages; how-

ever, these hints are not necessarily provided

I . - ¢ di to the buddy system. In other words, the re-
Memory allocations originate from two dis- sinn from which the allocation is satisified is

tinct SOUrces—user gnd kernel requests. L,Jsetfnly determined at a zone granularity. On sys-
page aII_ocatlons typlcally result from a write tems such as PPC64 this may include the en-
into a V'rt#al pagein the T\dgreis ds%acehof _qirety of system memory! In order to enable the
prtl)cess that |shnotkcurr<Tnty acke 3;]pfys'l'distinction of user allocation from kernel allo-
cal memory. The kernel responds to the fault, ;o0 within a zone, additional flags that spec-

b_y allocating a physical page and mapping thqu whether the region must be provided to the
virtual page to the physical page frame V'abuddy algorithm. These flags include:
page tables. However, when the system is

under memory pressure, user pages may be

paged out to disk in order to reclaim physical e User Reclaimable
page frames for other higher priority requests

or tasks. The algorithms and techniques used ® Kernel Reclaimable
to accomplish this function constitute much
of the virtual memory research conducted to
date[22][23][24][25][26][27].

o Kernel Non-Reclaimable

In Linux, user level allocations may be Sat_psing these flags, t_he buo_ldy allocation algo-

isfied frc;m pages contained in any zone al-mhm may further dlﬁerentlatg bgnNegn page

houah thev are preferably allocated from’ theaIIo_catlor_ls _and attempt to maintain regions 'Fhat

LI%JSMEMyzone Fi)f that zo¥1e is employed by satisfy similar allocations and more signifi-
. . .~ _cantly, have similar presence requirements.

the architecture. This is reasonable consider-

ing these pages are not permanently mapped by

the kernel. Architectures that do not employs 3 Multiple Free Area Lists

the HIGHMEM zone direct user level alloca-

tions to one of the other two zone types, NOR-

MAL or DMA. Unlike user allocations, kernel Existing kernels employ one set of free area

allocations must be satisfied from memory thalists per zone as shown in figurel. In order
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hode node

DMA Normal High High

]
]
|
]
|

Figure 1. Existing free area list structure kernel kernel  user

nonreclaim reclaim reclaim

Figure 2: New free area list structure for frag-
to explicitly manage the user versus kernel dismentation
tinction of memory with zones, multiple sets of
free area lists are used within each zone, specif-
ically one set of free area lists per allocation
type. The.ba5|c strategy of th? buddy alg.O.'AIthough Mel's approach provides the basic
rithm remains unchanged despite this modifi-
. ; infrastructure needed by memory hotplug, ad-
cation. Each set of free area lists employs the,... ) : "
. . ditional structure is required. In addition to
exact same splitting and coalescing steps dut . :
. . . . __the set of free area lists for each allocation
ing page allocation and reclamation operations,

Therefore the functional integrity of the overall type, an adqmonal global free area I.'St fp rcon-
) . . tiguous regions of MAX_ORDER size is also
algorithm is maintained. The novelty of the ap-

: - . maintained as depicted in figure three. The
proach involves the decision logic and account-_ . . : .
D R : addition of this global list enables account-
ing involved in directing allocations and free . : )
: . ing for MAX_ORDER sized memory regions
operations to the appropriate set of free area . .
lists apcordlng to the_ capa_tt_)llle tc_J hotplug the re-
' gion. Thus, during initialization, memory re-
gions within each zone are directed to the ap-
Mel Gorman posted a patch that imple-propriate global free area list based on the po-
ments exactly this approach in an attemptential to hotplug the region at a later time. This
to minimize external memory fragmentation, translates directly to the type of allocation a
a consistent issue with the buddy algorithmpage satisfies. For example, many kernel pages
[19][8][7][11][16]. This approach introduces a are pinned in memory and will never be freed.
new global free area list with MAX_ORDER Hence, these pages will be obtained from the
sized memory regions and three new free areglobalpinnedlist. On the other hand nearly ev-
lists of size MAX_ORDER-1 as depicted in fig- ery user page may be reclaimed, so these pages

ure 2 below. will be obtained from the globdiotpluglist.
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or kernel reclaimable allocations, memory re-
node moval is possible. This was not previously
possible with the existing buddy algorithm due
to the likelihood that a pinned kernel non-
reclaimable page could be located within the
range to be removed. Thus, kernels that only
employ a subset of the potential zones may sup-

DMA Normal High port hot-remove transparently.

J 5.5 Configurability

] ]
] ]
[ ] [ 1
] ]
] ]

kernsl kernsl user
nonreclaim reclaim reclaim

While satisfying allocation requests from dis-
crete memory regions according to allocation
type does enable removal of memory within
zones, there is still the potential for one type of
allocation to run out of pages due to the assign-
5.4 Memory Removal ment of pages to each global free list. Mel dealt
with this issue for the fragmentation problem

The changes detailed in this section enable thfy aIIowir:_g allr?caltcijons tgallback (tjo alnotfcllelrg
isolation of sets of pages according to the typ ree area list should one become depleted[19].

of allocation they may satisfy. Because user
pages are relatively easy to reclaim, those page
allocations will be directed to the regions thatWhile this is reasonable for most systems, it
are maintained in the glob&iotplugfree area Ccompromises the capability to remove mem-
list. During boot time or during a memory Ory should a non-reclaimable kernel allocation
hot-add operation, the system firmware detail®e satisfied by some set of pages in a hotplug
which regions may be removed at runtime. Thigegion. As this type of fallback policy deci-
information provides the context for initializing Sion largely depends on the intended use of
the globalhotpluglist. As pages are allocated the system, one approach is to allow for the
thus depleting the user and kernel reclaimabléallback decision logic to be configured by the
free area lists, additional MAX ORDER re- System administrator. Therefore, systems that
gions may be derived from the globabtplug —aren't likely to need to remove memory, even
list. Similarly, the globalpinnedlist provides though the functionality is available, may allow
pages to the kernel non-reclaimable lists upoﬁhe fallback to occur as the workload demands.
depletion of available pages of sufficient size. Other systems in which memory removal is
more critical may disable the fallback mecha-
Because pages that may be hot-removed at rumism, thus preserving the integrity of hotplug
time are isolated such that they satisfy usememory regions.

Figure 3: New free area list structure for mem-
ory hotplug



160 e Hotplug Memory Redux

6 Memory migration 6.3 How does the memory migration
work?

6.1 Overview
A memory migration operation consists of the
following steps. The operation of anonymous

In memory hotplug removal events, all thepages is slightly different.

pages in some memory region must be freed in

a timely fashion, while processes are running

as usual. Memory migration achieves this by 1. lockoldpage , which is the target page

blocking page accesses and moves page con-2

tents to new locations. allocate and lockewpage

3. modify oldpage entry in page_
mapping(oldpage)->page_tree
with newpage

Although usingshrink_list() function—
which is the core ofkswapd —sounds sim-
pler, it cannot reliably free pages and causes
many disk 1/Os. Additionally, the function 4 invoke try_to_unmap(oldpage,

cannot handle pages which aren’t associated \;ityal address list) to unmap
with any backing stores. Pages on a ramdisk oldpaée frOFn the process address
are an example of this. The memory migra- spaces.

tion is designed to solve these issues. Page
accesses aren't a problem because they are5. wait until!PageWriteback(oldpage)

blocked, whileshrink_list() cannot pro-

cess pages that are being accessed. Unlike6. Write backoldpage if oldpage is dirty

shrink_list() , most dirty pages can be and PagePrivate(oldpage) and no

processed without writing them back to disk. file system specific method is available
7. wait until page_count(oldpage)

6.2 Interface to Migrate Page dropsto 2

8. memcpy(newpage, oldpage,
To migrate pages, create a list of pages to ~PAGE_SIZE)
migrate and call the following function:
int try to migrate_pages(struct
list_head *page_list) 10

9. makenewpage up to date

. unlocknewpage to wakeup the waiters

It returns zero on success, otherwise sets|] freeoldpage
page_list to a list of pages that cannot migrate
and returns a non-zero value. Callers must
check return values and retry failed pages iffThe key is to block accesses to the page un-
necessary. der operation by modifying thpage_tree

After the page_tree has been modified, no
This function is primarily for memory hotplug new access goes wdpage . The accesses
remove, but also can be used for memory deare redirected tmewpage and blocked until
fragmentation (see Section 8.1) or process mithe data is ready because it is locked and isn't
gration (see Section 8.2.3). up to date (Figure 4).
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oldpage After that these pages are placed in the

address_space R page_tree of swapper_space , which
PG_uptodatie /N PTE manages all pages in the swap-cache. These
page_tree H . . . .
! — paged fault pages can be. migrated Jgst like pages in the
page-cache without any disk I/Os.
PG_locked |#===="
ﬁlocked

..
Ly
.

The important issue of systems without swap
devices remains. To solve it, Marcelo Tosatti
has proposed the idea of “migration cache”[2]
and he’s working on its implementation. The
migration cache is very similar to the swap-
cache except it doesn’t require any swap de-
vices.

system call

Figure 4: page_tree
cesses

rewrite and page ac-

To handle mlock() ed pages,try to_

unmap() now takes two arguments. If the sec-
ond argument is non-NULL, the function un-
mapsmlock()ed pages also and records un-
mapped virtual addresses, which are used to
reestablish the PTEs when the migration com-
pletes.

6.4 Keeping Memory Management Aware
of Memory Migration

The memory migration functionality is de-
signed to fit the existing memory management
egemantics and most of the code works without
a modification. However, the memory manage-
ment code should satisfy the following rules:

Because the direct I/O code protects targ
pages with incrementeglhge _count , mem-
ory migration doesn't interfere with the 1/O.

In some cases, a memory migration operation
needs to be rolled back and retried later. This
is a bit tricky because it is likely that some pro-
cesses have already looked upplagie_tree

and are waiting for its lock. Such processes
need to discarchewpage and look up the
page _tree again, asnewpage is now in-
valid.

e Multiple lookups of a page from its
page_tree should be avoided. If a ker-
nel function looks up page_tree loca-
tion multiple times, a memory migration
operation can rewrite thgage_tree
in the meanwhile. When such a
page_tree rewrite happens, it usually
results in a deadlock between the kernel
function and the memory migration opera-
tion. The memory migration implements a
timeout mechanism to resolve such dead-
locks, but it is preferable to remove the
possibility of deadlocks by avoiding mul-
tiple page_tree lookups of the same
page. Another option is to use non-
hotremovable memory for such pages.

6.3.1 Anonymous Memory Migration

The memory migration depends on
page_tree lists of inodes, while anony-
mous pages may not correspond to any of
them.  This structure is strictly required
to block all accesses to pages on it during
migration.

[ J
Therefore, anonymous pages should be moved
into the swap-cache prior to migrating them.

The pages which may be grabbed for
an unpredictably long time must be al-
located from non-hotremovable memory,
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even though it may be in the page-cache oback operation and the buffer must be freed un-
anonymous memory. For instance, pagesess there is an available file system specific op-

used as ring buffers for asynchronous in-eration defined.

put/output (AlO) events are pinned not to

be freed. The above operation can be too slow to be prac-

tical because it has to wait a writeback /O

e For a swap-cache page, its PG_swapcachéompletion. A file system specific operation

flag bit needs checking after obtaining thecan be defined to avoid this problem by im-
page lock. This is due to how the mem-plementing thenigrate_page() = method in
ory migration is implemented for swap- the address_space_operations struc-

cache pages and not directly related to untyre.

winding. Such a check code is added in

do_swap_page() . For example, thebuffer_head  structures
_ that belong to ext2 file systems are handled by
e Functions that callock_page() ~ must themigrate_page_buffer ~ function. This

be aware of the unwinding of memory fynction enables page migration without write-
migration.  Basically, a page must bepack operations by havingewpage to take
checked if it is still valid after every oyer thebuffer_head  structure pointed by

lock_page()  call. Ifitisn't, one hasto page->private . It is implemented as fol-
restart the operation from looking up the |g\ys:

page tree again. A good example of
such restart is ifind_lock _page()

6.5 Tuning

6.5.1 Implementing File System Specific
Methods for Memory Migration

Memory migration works regardless of file sys-

tems in use. However, it is desirable that file

systems which are intensively used implement
the helper functions which are described in this
subsection.

There are various things that refer to pages,
and some of these references need time con-
suming operations such as disk 1/0s to com-
plete in order for the reference to be dropped.
This subsection focuses on one of these—the
handling of dirty buffer structures pointed by
page->private

When a dirty page is associated with a buffer,
the page must be made clean by issuing a write-

e Wait until the page_count drops

to the prescribed value (3 when the
PG_private page flag is set, 2 oth-
erwise). While waiting, issue the
try_to_unmap() function calls.

If the PG_private flag is set, process
the buffer_head  structure by calling

the generic_move_buffer() func-
tion. The function waits until the
buffer_count drops and the buffer

lock is released. Then, it haseewpage

to take over the buffer_head struc-
ture by modifying page->private
newpage->private and theb_page
member in thebuffer_head struc-
ture. To adjuspage _count due to the
buffer_head  structure, increment the
page_count of newpage by one and
decrement the one lage by one.

e At this point, thepage_count of page

is 2 regardless of the original state of the
PG_private flag.
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6.5.2 Combination With  tion infrastructure. Luckily, it's not so hard
shrink_list() to implement because Linux kernel manages
large pages—often called hugetlb pages—via

Memory pressure caused by memory migrathe pseudo file system known as hugetlbfs.

tion can be reduced. This memory pressure , o
can cause reclaim of pages as replacement%!nux kernel handles them in a similar manner

Inactive pages are not worth migrating when2S It handles normal pages in the page-cache.
the resultant migration causes other valid pagell INserts each of them into theage_tree

be reclaimed. This undesirable effect perturb®! the associated inode in hugetlbfs and
the LRUness of pages reclaimed. It would be™aPs them into process address spaces using
preferable to just release these pages withoffMmar() system call.

migrating them. . " , .
g g There is one additional requirement for migra-

The current implementation[3] invokes tion of large pages. Demand paging against

shrink_list() to release inactive pages hugetlb pages must be blocked, with all ac-

and moves only active pages to new location§€sses via process address spaces to pages un-

in case of memory hotplug removal. der migration blocked in a pagefault handler
until the migration is completed.

6.6 Hugetlb Page Migration. Therefore, the hugetlb page management re-

lated to demand paging feature has to be en-
Due to certain workloads like databases angyagnced as follows:

high performance computing (HPC) large page

capability is critical for good performance. Be-

cause these pages are so critical to these work- ¢ A pagefault handler for hugetlb

loads it follows that page migration must sup- pages must be implemented. The

port migration of large pages to be widely used. implementation[4] Chen, Kenneth W and
Christoph Lameter are working on can be
used with some modification, making the

6.6.1 Interface to Migrate Hugetlb Pages processes block in the pagefault handler if
the page is locked. This is similar to what
The prototype[5] interface for hugetlb migra- the pagefault handler for normal pages

tion seperates normal page migration from does.
huge page migration.

e The functiontry_to_unmap() must
When a caller notices the page needing to be  pe able to handle hugetlb pages to un-
migrated is a hugetlb page, it has to pass the  map them from process address spaces.

page totry_to_migrate_hugepage() : This meanbjrmap —the object-based
migrating it wﬂho_ut any system freeze or any reverse mapping VM—also has to be in-
process suspension. troduced so that page table entries associ-

ated with any pages can be found easily.

6.6.2 Design of hugetlb page migration

Another interesting topic is hugetlb page allo-
The migration can be done in the same way forcation, which is almost impossible to do dy-
normal pages, using the same memory migranamically. Physically contiguous memory allo-
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‘ ‘ ‘ target hugetlb page
1

%‘ate
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defragmentatlon G

page
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Figure 5:hugetlb  page migration 7.

cation is one of the well known issues remain-
ing to be solved. The current hugetlb page man-

agement chooses the approach that all pagesg

should be reserved at system start-up time.

Despite its current state, hugetlb page migra-
tion can not continue to use this approach. o7
demand allocation is strictly required. Fortu-

w

8.

Replace atarget hugetlb page with the new
page onpage tree of the correspond-
ing inode in hugetlbfs.

. Unmap the target page from the process

migrate
migrate

address spaces, clearing all page table en-
tries mapping it.

Wait until all references on the target page
are gone.

Copy from the target page to the new page.

Make the new page uptodate, setting the
PG_uptodate flag oniit.

Release the target page into the page allo-
cator directly.

Unlock the new page to wake up all wait-
ers.

Restriction

nately, this is going to be solved with “Memory Under some rare situations, pages cannot mi-
defragmentation” (see Section 8.1). Marcelograte, and making those migrations functional
Tosatti is working on “Free area splitting within would require too much code to be practical.

zones” effort (see section 5).

6.6.3 How hugetlb Page Migration
Works

There really isn’t much difference between
hugetlb page migration and normal page migra-
tion. The following is the algorithm flow for
this migration.

1. Allocate a new hugetlb page from the page
allocator also known as the buddy allo-
cator. This may require memory defrag-
mentation to make a sufficient contiguous
range (figure 5).

2. Lock the newly allocated page and
keep it non-uptodate, without the
PG_uptodate flagonit.

NFS page-cache may have a non-
responding NFS server. NFS I/O requests
cannot complete if the server isn’t

responding. The pages with such out-
standing NFS I/O requests cannot migrate.
It is technically possible to handle this

situation by updating all the references to
an oldpage with ones to a newpage, but
the code modification would be very large

and probably not maintainable.

Page-cache of which the file is used

by sendfile() are also problematic.
When a page-cache page is used by
sendfile() , its page_count is kept

raised until corresponding TCP packets

are ACKed. This becomes a problem

when a connection peer doesn't read data
from the TCP connection.
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e RDMA client/server memory use may 7.1 PPC64 Implementation
also be an issue but further investigation

is required. The PPC64 architecture is perhaps the most

mature with respect to the support of memory
hotplug. This is because there are other operat-
ing systems that currently support memory hot-
plug on this architecture.

6.8 Future Work

Currently, nonlinear mmaped padesannot
migrate agry_to_unmap() doesn’t unmap

such pages. This must be addressed. 7.1.1 Logical Partition Environment

All file systems should have their own Operating Systems running on PPC64 oper-
migrate_page() method. This will help ate in a Logical Partition (LPAR) of the ma-
performance considerably as the filesystemshine. These LPARs are managed by a under-
can make more intelligent decisions about theitying level of firmware known as the hypervi-
own data. sor. The hypervisor manages access to the ac-

tual underlying hardware resources. It is possi-
Kernel memory should be migratable too. Able to dynamically modify the resources asso-
first approach would be migrating page ta-ciated with an LPAR. Such dynamically mod-
ble pages which consume significant memoryifiable LPARS are known as Dynamic LPARS
This migration should be reasonably straight{DLPARS)[29].

forward. :
Memory is one of the resources that can be

dynamically added to or removed from a DL-
PAR on PPC64. In a PPC64 system, physical
7 Architecture Implementation memory is divided into memory blocks that are
Specifics then assigned to LPARs. The hypervisor per-
forms remapping of real physical addresses to
addresses that are given to the LPARhese
memory blocks with remapped addresses ap-

Memory hotplug has been implemented on hvsical o the O tina S
many different architectures. Each of these grPear as pnysical memory fo tne “perating sys-

chitectures have unique hardware and consé?mfgzéh?thl'f‘&RW hphnhan 0S |stst?rted on
guently do memory management in different®” bl k’ €L q \;V' i a;/e adz('i' ot mem-
ways. They each present unique challenges angy D0cks assigned fo it. -In addition, mem-

solutions that should be of interest to future im-OrY blocks can be added or removed to the

plementators on the other architectures that qu:PAR while the OS is active. The size Qf mem-
rently don’t support memory hotplug. Addi- ory blocks managed by the hypervisor is scaled

tionally, those whose architectures are alread asgdtﬁn the E?tal a_lr_r;ount' qf phyS|p al t;? enl:-
covered can better understand their own archi®”Y " 1€ machine. € minimim size bloc
tectures by comparing them side by side with 3To Linux the addresses given to it are considered

others. physical addresses, but they are not in actuality physical
addresses. This causes no end of confusion in developers
2With remap_file_pages() system call, sev- conversations because developers get confused over what

eral pieces of a file can be mapped into one contiguouss a virtual address, physical address, remapped address,
virtual memory. etc.
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is 16MB*. As a result, the default SPARSE- 7.1.3 Single Zone and Defragmentation
MEM section size for PPC64 is a relatively
small 16MB.

PPC64 makes minimal use of memory zones.
This is because DMA operations can be per-
formed to any memory address. As a result,
_ only a single DMA zone is created on PPC64
7.1.2 Add/Remove Operations and no HIGHMEM or NORMAL zones. Of
course, there may be multiple DMA zones (one
per node) on a NUMA architecture. Having
On PPC64, the most common case of mema single zone makes things simpler but it does
ory hotplug is not expected to be the actual adnothing to segregate memory allocations of dif-
dition or removal of DIMMs. Rather, mem- ferent types. For example, on architectures that
ory blocks will be added to or removed from support HIGHMEM, allocations for user pages
a DLPAR by the hypervisor. These add or re-mostly come from this zone. Having multiple
move operations are initiated on the Hardwareones provides a very basic level of segrega-
Management Console (HMC). When memorytion of different allocation types. Since we have
is added to an LPAR, the HMC will notify a no such luxury on PPC64, we must employ
daemon running in the OS of the desire to adtther methods to segregate allocation types.
memory blocks. The daemon in turn makesThe memory defragmentation work done by
a special system call that results in calls beMel Gorman is a good starting point for this
ing made to the hypervisor. The hypervisoreffort[19]. Mel's work segregates memory al-
then makes additional memory blocks availablgocations on the natural MAX_ORDER PAGE
to the OS. As part of the special system calkize blocks managed by the page allocator. Be-
processing, the physical addresg these new cause PPC64 has a relatively small default sec-
blocks is obtained. With the physical addressijon size of 16 MB, it should be possible to ex-
known, scripts called via the daemon use theend this concept in an effort to segregate allo-

sysfs memory hotplug interface to create newtations to segment size blocks.
memory sections associated with the memory

blocks.

For memory remove operations, the HMC once; 1 4 ppcea Hypervisor Functionality
again contacts the daemon running in the OS.

The OS then executes a script that uses the sysfs
interfaces to offline a memory section. Once a]_
section is offlined, a special system call is mad(%
that results in calls to the hypervisor to isolate
the memory from the DLPAR.

he PPC64 hypervisor provides functionality
o aid in the removal of memory sections. The
H_MIGRATE_DMA call aids in the remapping
of DMA mapped pages. This call will selec-
tively suspend bus traffic while migrating the
4256MB is a more typical minimum block size. On contents of DMA mapped pages. It also mod-
some machines the user can actually change the miniﬂeS the Translation Control Entries (TCESs)

mum block size the machine will use . .
5This is not the real physical address, but theused for DMA accesses. Such functionality

remapped address that Linux thinks is a real physical adWill allow for the removal ofdifficult memory
dress sections on PPC64.
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7.2 x86-64 Implementation One of the key pieces of supporting physi-
cal memory hotplug is notification of memory

. capacity changes from the hardware/firmware.
Although much of the memory hot-plug infras- the ACP| specification outlines basic informa-

tructure discussed in this paper, such as thgy, on memory devices that is used to con-

sparsememmplementation, is generic across ey these changes to the kernel. Accordingly,
all platforms, architecture specific support is;, order to fully support physical memory hot-

still required due to the variance in Memory g in the kernel the x86-64 kernel uses the
management requirements for specific proceSacp| memory hotplug driver to field notifica-

sor architectures. Fortunately, the changes tQ,ns from firmware and notify the VM of the
the x86-64 Linux kernel beyonsparsemento  44qition or reduction at runtime using the same

support memory hotplug have been minimizednierface employed by the logical operations.
to the following: Further information on the ACPI memory hot-
plug driver support in the kernel may be found

e Kernel Page Table Initialization (capacity in [21]
addition)
* ZONE_NORMAL selection 7.3 1A64 Implementation

e Kernel Page Table Tear Down (capacity

reduction
) IA64 is one of architectures where Memory

Hotplug is eagerly desired. From the view
The x86-64 kernel doesn't require the HIGH-of Memory Hotplug, 1A64 linux has following
MEM zone due to the large virtual addresscharacteristics:
space provided by the architecture [28][12].
Thus, new memory regions discovered during
memory hot-add operations result in expan- o The memory layout of IA64 is very sparse
sion of the NORMAL zone. Conversely, be- with lots of holes.
cause the x86-64 kernel only uses the DMA and
NORMAL zones, removal of memory within

each zone as discussed in 5 is required. * For managing holesVIRTUAL_MEM_

MAPis used in some configurations.

Much of the development of the kernel sup-

port for memory hotplug has relied dogi- e MAX_ORDER is not 11 but 18.

cal memory add and remove operations, which

has enabled the use of existing platforms for e 1A64 supports a physical address bits of 50
prototyping. However, the x86-64 kernel has

been tested and used on real hardware that sup-

ports memory hotplug. Specifically, the X86'64Early Imbench2 data has shown that SPARSE-
memory hotplug kernels have been tested on RMEM performs equivalently to DISCONTIG-
recently released Intel Xe@®P® platform that MEM+VIRTUAL MEM MAP. The data was
supports physical memory hotplug operations.taken on a non-NUMA machine. Further work

6Xeon is a registered trademark of the Intel Corpora-Should be done with other benchmarks and
tion NUMA hardware.
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7.3.1 SPARSEMEM and VIRTUAL MEM miss handler with big page size. If a hole
MAP covers the whole section, section_memmap is
not allocated. Holes in a section are treated as

The VM uses amemmap[], a linear ar- reserved pages. For example, an HP rx2600

ray of page structures. With DISCONTIG- with 4GB of memory has the available physical
MEM, memmap[] is aivided into several Memory attwo locations with sizes of 1Gb and

node_mem_maps In generalmemmapy] is SVESId bF(S rr(;/;?ezgﬁtl_eabe/Mgrgﬂppti \/tirr]tiarllosl(;;ce

allocated in physically contiguous pages at boot .

o prysically contiguous pag with vmemmap. SPARSEMEM handles a hole
' which covers an entire section with an invalid

The memory layout of 1A64 is very sparse Section.

with lots of holes. Sometimes there are GBs

of memory holes, even for a non-NUMA

machine. In IA64 DISCONTIGMEM, a 7.3.2 SPARSEMEM NUMA
vmemmagps used to avoid wasting memory. A

vmemmaps amemmapvhich uses contiguous

region of virtual address instead of contiguous! N& mem_section[]  array is on the BP’s
physical memory” node. Becauspfn_to_page() = accesses it,

a non BP nodefn_to page() is slightly
It is useful to hide holes and to create sparsénore expensive. Besides boot time the section
memmap][]s. It resides in region 5 of the vir- array is modified only during a hotplug event.
tual address space, which uses virtual page taFhese events should happen infrequently. This
ble 8 like vmalloc. frequently accessed but rarely changing data

suggests replicating the array into all nodes in
Unfortunately, VIRTUAL_MEM_MAP is order to eliminate the non BP node penalty.
quite complicated. Because of the compli-Hotplug memory updates would have to notify
cations VIRTUAL_MEM_MAP presents, each node of modifications to the array.
early designs for MEMORY_HOTPLUG
were too complicated to be successfully
implemented. SPARSEMEM cleanly re-
moves VIRTUAL _MEM_MAP and thus
avoids the associated complexity altogether.
Because SPARSEMEM is simpler thanOne feature which is very aggresive
VIRTUAL_MEM_MAP it is a logical re- on IA64 is the configuration parameter
placement for VIRTUAL_MEM_MAP for FORCE_MAX ZONEORDER. This over-
situations other than just hotplug. SPARSE-writes MAX_ORDER to 18. For a 16kb page
MEM divides the whole memmap into size the resultant MAX_ORDER region is
the section’s section_memmap s. All 4Gb(18+14). This is done for supporting
section_memmap s reside in region 7 of the 4Gb HugetlbFS. SPARSEMEM constrains
virtual address space. Region 7 is an identityPAGE SIZE x 2(MAX_ORDER-1) {5 he |ess
mapped segment and handled by the fast TLBhan or equal to section size. For HugetlbFS

7 _ _ _ we have: (1)the smallest size of section
VIRTUAL_MEM_MAP is configurable indepen- . AGB d (ol I h AGB
dent of DISCONTIGMEM IS and (2)holes smaller than

8VHPT, Virtual Hash Page Table, is a hardware sup-CONSume reserved page structures. _ :_|-8_ of
ported function to fill TLB MAX_ORDER seems to be rather optimistic

7.3.3 Size of Section and MAX_ORDER
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value for Memory Hotplug. Currently, con- 8.1 Memory Defragmentation
figuation of FORCE_MAX_ ZONEORDER
is modified at compile time. At configu-
ration time, if HUGETLB isn't selected, The primary concern for memory defragmen-
FORCE_MAX_ ZONEORDER can be con- tation within the VM subsystem is at the page
figured to 11-20. If HUGETLB is selected, level. Atthe heart of this concern is the page al-
MAX_ ORDER and SECTION_SIZE are locator and management of contiguous groups
adjusted to support 4Gb HUGETLB Page. of pages. Memory requests can be made for
for sizes in the range of a single page up to
2(MAX_ORDER-1) contiguous pages. As time
7.3.4 Vast 50 Bits Address Space of IA64 ~ 90€S by, various size allocations are obtain_ed
and freed. The page allocator attempts to in-
telligently group adjacent pages via the use of
The IA64 architecture supports a physical adyuddy allocator as previously described. How-
dress bit limit of 50, which can addresss up toever, it still may become difficult to satisfy re-
1 petabyte of memory. A section array with aquests for large size allocations. When a suit-
256Mb section size requires 32Mb of data togple size block is not found on the free lists,
cover the whole address range. The Linux ker'an attempt is made to reclaim pages so that a
nel by default is configured to only use 44 bitssyfficiently large block can assembled. Unfor-
maximum, which can address 16 terabytes ofunately, not all pages can be reclaimed. For
memory. This only requires 512Kb of data to example, those in use for kernel data. The free
cover the whole address range. The number oirea splitting concepts previously discussed ad-
bits used is configurable at compile time. dress this issue. By grouping pages based on
usage characteristics, the likelihood that a large
block of pages can be reclaimed and ultimately
allocated is greatly increased.
8 Overlap with other efforts
With memory hotplug, removing a memory

_ section is somewhat analogous to allocating all
During the development of memory hotplug the,e hages within the memory section. This is

developers discovered two surprising things. pacause all pages within the section must be
free (not in use) before the section can be re-

e Parts of the memory hotplug code weremoved' Therefore, the concept of free list split-

very useful to those who don't care at aII;Irlg can also be a?plled io merSo;y tsect;olns
about memory hotplug. or memory removal operations. Unfortunately

however, memory sections do not map directly

e Code others were developing without sot® memory blocks managed by the page allo-
much as a thought of memory hotplug ¢ator. Rather, a memory section consists of

proved useful for memory hotplug. multiple contiguous $'AX_ORPER"L) page size
blocks. The number of blocks is dependent

on architecture specific SECTION_SIZE and
This section attempts to briefly mention theseMAX_ORDER definitions. Future work within
surprising overlaps with other independent dethe memory hotplug project is to extend the
velopment without straying too far from the concepts used to avoid fragmentation to that of
topic of memory hotplug. memory section size blocks. This will increase
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the likelihood that memory sections can be rezonelist The zonelist is an array of zone ad-

moved.

8.2 NUMA Memory Management

Ina NUMA system, memory hotplug must con-
sider the case where all of the memory on a
node might be added/removed. Structures to
manage the node must be updated.

In addition, a user can specify nodes which are
used by a user’s tasks by usingpind() or
set_mempolicy() in order to support load
balancing among cpusets/dynamic partitioning.
Memory hotplug has to not only update mem-
policy information, but also make interfaces for
load balancing scripts to move memory con-
tents from nodes to other appropriate nodes.

8.2.1 Hotplug of Management Structures
for a Node.

Structures which manage memory of a node
must be updated in order to hotplug the node
This section describes some of the structures.

dresses, and it is ordered by which zone
should be used for its node. Its order is
determined by access cost from a cpu to
memory and the zone’s attributes. This
implies when a node with memory is hot-
plugged, all the node’s zonelists which are
being accessed must be updated. For up-
dating, the options are:

e getting locks
e giving up reordering
e stop other cpus while updating

Stopping other cpus while updating may
be the best way, because there is no im-
pact on performance of page allocation un-
less a hotplug event is in progress. In ad-
dition, more structures than just zonelists
need updating. For example, mempoli-
cies of each process have to be updated to
avoid using a removed node. To update
them, the system has to remember all of
the processes’ mempolicies. Linux does
not currently do this, so further develop-
ment is necessary.

8.2.2 Scattered Clone Structures Among

pgdat To reduce expensive cross node mem-
ory accesses, Linux usgmdat struc-

Nodes

tures which include zone and zonelists.Pgdat, which includes zone and zonelist, is
These structures are allocated on eachised to manage its own node, but some of data
node’s local memory in order to reduce ac-structures’ clones are allocated on each of the
cess costs. If a new node is hotplug addednodes for light weight accesses. One current
itspgdat structure should be allocated on example iSNODE_DATA() on IA64 imple-

its own node. Normally, there are no mm mentation. NODE_DATA(node_id) macro
structures for the node until the pgdat ispoints to eacmode_id ’s pgdat. In the 1A64
initialized, so pgdat has to be allocated byimplementation NODE_DATA(node_id) is
special routine early in the boot process.not just an array like it is in the 1A32 imple-
This allocation (getting a virtual address mentation. This data is localized on each node
and mapping physical address to it) is likeand it can be obtained fromper_cpu data.

aioremap()
on cached area unlikeremap()

, but it should be mapped In this case, all of the nodes have clones of
pg_data_ptrs]]

array.
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#define local_node_data \ 9 Conclusion

local_cpu_data->node_data
#define NODE_DATA(nid) \
local_node_data->pg_data_ptrs[nid]

Hotplug Memory is real and achievable due to
the dedication of its developers. This paper

Besides NODE_DATA() many other data has shown that the issues with memory hotplug

structures which are often accessed are IocaEaVe been well thought OUF' Most of memory_
ized to each node. This implies that all of otplug has already been implemented and is

the node copies must also be updated Whewaintained in themhp tree[3]—broken down
a hotplug event occurs. To update themNtO the smallest possible independent pieces
stop_machine_run méy prove to be the for continued development. These small pieces

best method of serializing access. are released early and often. As individual
pieces of this code become ready for consump-
tion by the general public they are merged up-
stream. By maintaining this separate tree which

8.2.3 Process Migration on NUMA is updated at least once per -rc release, hotplug
developers have been able to test and stabilize
an increasing amount of memory hotplug code.

It is important to determine what the best des-Thus, the pieces that get merged upstream are
tination node is for migration of memory con- small, non-disruptive, and well tested.

tents. This applies not only automatic migra-

tion, but also “manual page migration” as pro-Memory hotplug is a model of how a large, dis-
posed by Ray Bryant at SGI. With manual pageruptive feature can be developed and merged
migration a load balancer script can specify thénto a continuously stable kernel. In fact, hav-
destination node for migrating existing mem-ing a stable kernel has made development much
ory. A potential interface would be a simple more disciplined, debugging easier, conflicts
system call likesys_migrate_pages(pid, with other developers easier to identify, feed-
oldnode, newnode) . back more thorough, and generally has been a

blessing in disguise.
However, if there are too many nodes (ex, 128
nodes) and tasks (ex, 256 processes) in the sy§-in a parallel universe somewhere Andrew
tem, this system call will be called too fre- Morton gave his keynote today instead of a
quently. Therefore, Ray Bryant is proposingyear ago | suspect he would say something dif-
an array interface to specify each node to avoiderent. The parallel universe Andrew Morton
too many calls:sys_migrate_pages(pid, might say:
count, old_nodes, new_nodes)

“Some features tend to be pervasive and have
The arguments teys_migrate_pages() their little sticky fingers into lots of different
old_nodes andnew_nodes are the sets of places in the code base. An example of which
source and destination nodes and count is theomes to mind is CPU hot plug, and memory
number of elements in each array. Therefore, &dot unplug. We may not be able to accept these
user can just calsys_migrate _pages() features into a 2.7 development kernel due to
once for each task. If each task uses sharetheir long-term impact on stabilizing that ker-
message blocks, there will be a large reductiomel. To make it easier on the developers of fea-
in the number of system calls. tures like these we have decided to never have a
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Abstract the literature and this study reports, no one
scheduler can provide the best possible perfor-
mance for all workloads; accordingly, Linux

The Linux 2.6 release provides four disk I/O provides four 1/0O schedulers from which to se-

schedulers: deadline, anticipatory, noop, andect. Even when dealing with just four, in sys-

completely fair queuing (CFQ), along with an tems that service concurrent workloads with
option to select one of these four at boot timedifferent I/O behaviorsa priori selection of

or runtime. The selection is based anpri- the scheduler with the best possible perfor-

ori knowledge of the workload, file system, mance can be an intricate task. Dynamic se-

and 1/0 system hardware configuration, amondection based on workload needs, system con-
other factors. The anticipatory scheduler (AS)iguration, and other parameters can address
is the default. Although the AS performs this challenge. Accordingly, we are developing
well under many situations, we have identi-metrics and heuristics that can be used for this
fied cases, under certain combinations of workpurpose. The paper concludes with a descrip-
loads, where the AS leads to process starvationion of our efforts in this direction, in particular,

To mitigate this problem, we implemented anwe present a characterization function, based

extension to the AS (called Cooperative AS oron metrics related to system behavior and 1/0

CAS) and compared its performance with therequests, that can be used to measure and com-

other four schedulers. This paper briefly de-pare scheduling algorithm performance. This

scribes the AS and the related deadline scheaharacterization function can be used to dy-
uler, highlighting their shortcomings; in addi- namically select an appropriate scheduler based
tion, it gives a detailed description of the CAS. on observed system behavior.

We report performance of all five schedulers

on a set of workloads, which represent a wide

range of 1/0O behavior. The study shows thatl

(1) the CAS has an order of magnitude im-

provement in performance in cases where the

AS leads to process starvation and (2) in sevThe Linux 2.6 release provides four disk I/O

eral cases the CAS has performance compachedulers: deadline, anticipatory, completely

rable to that of the other schedulers. But, adair queuing (CFQ), and noop, along with an

Introduction
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option to select one of these at boot time or runin this paper we also explore the idea of dy-
time. Selection is based @anpriori knowledge namic scheduler selection. In an effort to de-
of the workload, file system, and 1/O systemtermine the best scheduler, [13] quantifies the
hardware configuration, among other factorsperformance of the four I/O schedulers for dif-
In the absence of a selection at boot time, théerent workloads, file systems, and hardware
anticipatory scheduler (AS) is the default sinceconfigurations. The conclusion of the study is
it has been shown to perform better than thehat there is “no silver bullet,” i.e., none of the
others under several circumstances [8, 9, 11]. schedulers consistently provide the best possi-
ble performance under different workload, soft-
To the best of our knowledge, there are noware, and hardware combinations. The study
performance studies of these I/0O schedulershows that (1) for the selected workloads and
under workloads comprised of concurrent 1/Osystems, the AS provides the best performance
requests generated by different processes th&ir sequential read requests executed on sin-
exhibit different types of access patterns andjle disk hardware configurations; (2) for mod-
methods. We call these types of workloadserate hardware configurations (RAID systems
“mixed workloads.” Such studies are of in- with 2-5 disks), the deadline and CFQ sched-
terest since, in contemporary multiprogram-ulers perform better than the others; (3) the
ming/multiprocessor environments, it is quitenoop scheduler is particularly suitable for large
natural to have several different types of /ORAID (e.g., RAID-0 with tens of disks) sys-
requests concurrently exercising the disk I/Otems consisting of SCSI drives that have their
subsystem. In such situations, it is expectesewn scheduling and caching mechanisms; and
that the 1/0 scheduler will not deprive any pro- (4) the AS and deadline scheduler provide sub-
cess of its required 1/O resources even whestantially good performance in single disk and
the scheduler’s performance goals are met bg-5 disk configurations; sometimes the AS per-
the processing of concurrent requests geneforms better than the deadline scheduler and
ated by other processes. In contrast, due to théce versa. The study infers that to get the
anticipatory nature of the AS, there are situa-best possible performance, scheduler selection
tions, which we identify in this paper, when should be dynamic. So, the final question we
the AS leads to process starvation; these situaddress in this paper is:
ations occur when a mixed workload stresses
the disk 1/0 subsystem. Accordingly, this pa-Q4. Can metrics be used to guide dynamic se-
per answers the following three questions andection of I/O schedulers?
addresses a fourth one, which is posed in the
next paragraph. The paper is organized as follows. Section 2
describes the deadline and anticipatory sched-
Q1. Are there mixed workloads that potentially ulers, highlighting similarities and differences.
can starve under the AS due to its anticipatorylhe first and second questions are answered in
nature? Sections 3 and 4, respectively, by demonstrat-
ing that processes can potentially starve under
Q2. Can the AS be extended to prevent suclthe AS and presenting an algorithm that ex-
starvation? tends the AS to prevent process starvation. To
answer the third question, Section 5 presents
Q3. What is the impact of the extended scheda comparative analysis of the deadline sched-
uler on the execution time of some realisticuler, AS, and extended AS for a set of mixed
benchmarks? workloads. Furthermore, the execution times
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of a set of benchmarks that simulate web, file,16 contiguous requests. Requests are selected
and mail servers, and metadata are executed uby the scheduler using the algorithm presented
der all five schedulers are compared. Finallypelow.

the fourth question is addressed in Section 6,

which presents microbenchmark-based heurisStep 1: If there are write requests in the write
tics and metrics for /O request characterizatiorfort list and the last two scheduled requests
that can be used to guide dynamic scheduler savere selected using step 2 and/or step 3, then
lection. Sections 7, 8, and 9 conclude the papegelect a set of write requests from the write sort
by highlighting our future work, describing re- list and exit.

lated work, and presenting conclusions, respec- _ )
Step 2: If there are read requests with expired

tively. _ _ At
deadlines in the read fifo list, then select a set
of read requests from this list and exit.

2 Description of /0 Schedulers Step 3: If there are read requests in the read sort
list, then select a set of read requests from this
list and exit.

This section describes two of the four sched-

ulers provided by Linux 2.6, the deadline Step 4: If there are write requests in the write
scheduler and the anticipatory scheduler (AS)Sort list, then select a set of write requests from
The deadline scheduler is described first bethis list and exit.

cause the AS is built upon it. Similarities

and differences between the two schedulers ar\é/hen the scheduler assigns deadlines, it gives

highlighted. For a description of the CFQ and® higher preference to reads; a read is satisfied
noop schedulers, refer to [13]. within a specified period of time—500ms is the

default—while a write has no strict deadline. In
order to prevent write request starvation, which

2.1 Deadline Scheduler is possible under this policy, writes are sched-
uled after a certain number of reads.

The deadline scheduler maintains two separat€he deadline scheduler is work-conserving—
lists, one for read requests and one for writeét schedules a request as soon as the previous
requests, which are ordered by logical blockrequest is serviced. This can lead to poten-
number—these are called teert lists During  tial problems. For example, in many applica-
the enqueue phase, an incoming request is aions read requests asynchronousi.e., suc-
signed an expiration time, also callddadline  cessive read requests are separated by small
and is inserted into one of the sort lists and onehunks of computation, and, thus, successive
of two additional queues (one for reads and oneead requests from a process are separated by
for writes) ordered by expiration time—thesea small delay. Ifp (p > 1) processes of this
are called thdifo lists Scheduling a request to type are executing concurrently, thengfre-

a disk drive involves inserting it into a dispatch quests, one from each process, arrive during
list, which is ordered by block number, anda time interval, a work-conserving scheduler
deleting it from two lists, for example, the read may first select a request from one process and
fifo and read sort lists. Usually a set of contigu-then select a request from a different process.
ous requests is moved to the dispatch list. AConsequently, the work-conserving nature of
request that requires a disk seek is counted abe deadline scheduler may result in deceptive
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idleness [7], a condition in which the sched-the LAS follows the same basic idea, i.e., if the
uler alternately selects requests from multipledisk just serviced a read request from process
processes that are accessing disjoint areas @fthen stall the disk and wait (some period of
the disk, resulting in a disk seek for each re-time) for more requests from process

guest. Such deceptive idleness can be elimi- _ _

nated by introducing into the scheduler a short '€ LAS is comprised of three components:
delay before 1/0 request selection; during thig(1) the original, non-anticipatory disk sched-

time the scheduler waits for additional requestd!lef Which is essentially the deadline scheduler
from the process that issued the previous re@lgorithm with the deadlines associated with re-

quest. Such schedulers are called non-workdUests, (2) the anticipation core, and (3) the an-
conserving schedulers because they trade oficipation heuristic. The _Iatter two serve rea_ld
disk utilization for throughput. The anticipa- '€duests. After scheduling a request for dis-
tory scheduler, described next in Section 2.2Patch, the deadline scheduler selects a pending
is an example of such a scheduler. The deI_/O request for dispatch. In contrast, the LAS,

ceptive idleness problem, with respect to the>€/€Cts @ pending /O request, using the same
deadline scheduler. is illustrated in Section 5C'iteria as the deadline scheduler, and evaluates

which presents experimental results for varioud! Vi its anticipation heuristic.

microbenchmarks and real workloads. A studyrhe anticipation core maintains statistics re-

of the performance of the deadline schedulefyiaq tg all I/0 requests and decaying frequency

under a range of workloads also is presented igypjes of exit probabilities, mean process seek
the same section. distances, and mean process think times. The

The Linux 2.6 deadline scheduler has severa‘int probabilityindicates the probability that an

parameters that can be tuned to obtain bettearn.t'c'pated reques L.e., arequest from then
. ticipated processi.e., the process that gener-
disk I/0O performance. Some of these param- : .
. . ated the last request, will not arrive. Accord-

eters are the deadline time for read requests

(read_expire ), the number of requests to ingly, it is decremented when an anticipated
move to the di:spatch listfifo_batch ) request arrives and is incremented otherwise,

and the number of times the 1/O SChed__(—:‘.g.,whenaprocess terminates before generat-

uler assigns preference to reads over writed9 a subsequent l/O request. If the exit proba-

. : %ility exceeds a specified threshold, any request
(write_starved ). For a complete descrip- . L !
: . : that arrives at the anticipation core is scheduled
tion of the deadline scheduler and various tun; : . T )
able parameters, refer to [13] for dispatch. The seek distance (think time) is
' ' the difference between the logical block num-
bers (arrival times) of two consecutive requests.
2.2 Anticipatory Scheduler These metrics—exit probability, mean process
seek distance, and mean process seek time—
) o are used by the anticipation heuristic, in combi-
Theseek-reducing anticipatory schedulgde-  ation with current head position and requested

signed to minimize the number of seek 0p-heaq position, to determine anticipation time.
erations in the presence of synchronous read

requests and eliminate the deceptive idlenesghe anticipation heuristic evaluates whether to
problem [7]. Due to some licensing issues [14],stall the disk for a specific period of timevéit

the Linux 2.6 implementation of the AS, which period or anticipation tim@, in anticipation of

we refer to a1 AS is somewhat different from a “better request”, for example from the an-

the general idea described in [7]. Nonethelesgjcipated process, or to schedule the selected
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request for dispatch. The anticipation heuris-Step 4: If the request is a read request that will
tic used in the LAS is based on the shortesticcess a logical block that is “close” to the cur-
positioning time first (SPTF) scheduling pol- rent head position, then update process statis-
icy. Given the current head position, it evalu-tics, schedule the new request for dispatch, and
aes which request, anticipated or selected, wilexit. In this case, there is no incentive to wait
potentially result in the shortest seek distancefor a “better” request.
This evaluation is made by calculating the po-
sitioning times for both requests. If the logical Step 5: If the anticipated process just started
block of the selected request is close to the cur/O and the exit probability is greater than 50%,
rent head position, the heuristic returns zeroupdate process statistics, schedule the new re-
which causes the request to be scheduled faqyuest for dispatch, and exit; this process may
dispatch. Otherwise, the heuristic returns a posexit soon, thus, there is no added benefit in fur-
itive integer, i.e., the anticipation time, the timether anticipation. This step creates some prob-
to wait for an anticipated request. Since syndems, further described in Section 3, when co-
chronous requests are initiated by a single proeperative processes are executing concurrently
cess with interleaved computation, the proceswith other processes.
that issued the last request may soon issue a re-
guest for a nearby block. Step 6: If the mean seek time of the anticipated
process is greater than the anticipation time, up-

During the anticipation time, which usually is gate process statistics, schedule the request for
small (a few milliseconds—6ms is the default) gispatch, and exit.

and can be adjusted, the scheduler waits for the

anticipated request. If & new request arrivesstep 7: If the mean seek distance of the an-
during the wait period, it is evaluated immedi-ticipated process is greater than the seek dis-
ately with the anticipation heuristic. If it is the {gnce required to satisfy the new request, up-

the dispatch list. Otherwise, the following al- gispatch, and exit.

gorithm is executed. If the algorithm does not

result in the new request being scheduled foypjike the deadline scheduler, the LAS allows
dispatch, the core continues to anticipate an@imited back seeks. A back seek occurs when
the disk is kept idle; this leads to potential prob-the position of the head is in front of the head
lems, some of which are described in Section 3pgsition required to satisfy the selected request.
In deadline and other work-conserving sched-

as a result of a read request exceeding its deaﬁ{ers’ such requests are placed at the end of

: . e queue. There is some cost involved in back
line, then update process statistics, schedule the L

) . . seeks, thus, the number of back seeks is limited
starving request for dispatch, and exit.

to MAXBACK(1024*1024) sectors; see [13]

Step 2: If the anticipation time has expired thenfOr more information.

update process statistics, schedule the request _ o
for dispatch, and exit. As described, the essential differences between

the LAS and deadline scheduler are the antici-
Step 3: If the anticipated process has termipation core and heuristics, and back seeks. Per-
nated, update the exit probability, update proformance of the LAS under a range of work-
cess statistics, schedule the new request for diseads is studied in Section 5, which highlights
patch, and exit. its performance problems.

Step 1: If anticipation has been turned off, e.g.
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3 Anticipatory Scheduler Problems Consider two programs, A and B, presented in
Figure 2. Program A generates a stream of

The anticipatory scheduler (LAS) algorithm is SYnchronous read requests by a single process,

based on two assumptions: (1) synchronou¥/Nile program B generates a sequence of de-
disk requests are issued by individual processdd€ndent chunk read requests, each set of which
[7] and, thus, anticipation occurs only with re- IS génerated by a different process.

spect to the process that issued the last request; ) ]
and (2) for anticipation to work properly, the Assume that Program B is reading the top-level

anticipated process must be alive: if the andirectory of the Linux source tree. The pro-

ticipated process dies, there is no further and9ram reads all the files in the source tree, in-
ticipation for requests to nearby sectors. in-cluding those in the subdirectories, one file at
stead, any request that arrives at the schedul& time, and does not read any file outside the

is scheduled for dispatch, irrespective of the reloP-1evel directory. Note that each file is read

quested head position and the current head pdY @ different process, i.e., when Program B is
sition. These two assumptions hold true as long*€cuted, a group of processes is created, one
as synchronous requests are issued by indivifter the other, and each issues synchronous
ual processes. However, when a group of prodisk read requests. For this program, con-
cesses collectively issue synchronous requestSider the performance effect of the first assump-
the above assumptions are faulty and can resufe™ I-€-, the per-process anticipation built into
in (1) faulty anticipation, but not necessarily the LAS. Recall that LAS anticipation works
bad disk throughput, and (2) a seek storm whe@MlY On & per-process basis and provides im-
multiple sets of short-lived groups of processesProved performance only under multiple out-
which are created and terminated in a Verystan_dlng requests that will access d|SJo_|nt sets
short time interval, issue synchronous request8f disk blocks. When Program A or B is ex-
collectively and simultaneously to disjoint sets€cuted while no other processes are accessing
of disk area, resulting in poor disk through-the disk, ant|C|_pat|on does not reap a t_)eneflt
put. We call processes that collectively issue’€cause there is only a small set of pending I/0
synchronous requests to a nearby set of disrgquests (due t(_) prefetching) that are assocu_alted
blocks cooperative processes Examples of with the executing program. There are no disk

programs that generate cooperative process@é:"ad seeks that are targets for performance im-

include shell scripts that read the Linux source®rovement.

tree, different instances ahake scripts that

compile large programs and concurrently readVOW consider executing both programs concur-
a small set of source files, and different Iorc)_rently. Assume that they access disjoint disk

grams or processes that read several databa@9Cks and the size of theig-file read

records. We demonstrate related behavior anBY Program A is larger than that of the buffer

associated performance problems using the twgache. In this case, each read request results
examples below. in a true disk access rather than a read from

the buffered file copy. Since the two programs
are executing concurrently, at any point in time
there are at least two pending 1/O requests, one
generated by each of the processes. Program B
sequentially creates multiple processes that ac-
First, we demonstrate how the first assump<ess the disk and only a small set of the total
tion of the LAS can lead to process starvationnumber of 1/0 requests generated by Program

3.1 Concurrent Streaming and Chunk
Read Programs



2005 Linux Symposium e 181

B corresponds to a single process; all read renstances reading files then the second assump-
guests associated with a particular file are gention does not allow the scheduler to exploit
erated by one process. In contrast, the execuhe disk spatial locality of reference of read
tion of Program A involves only one processrequests generated by another process associ-
that generates all I/O requests. Since the antiated with instance 1. For example, given pend-
ipation built into the LAS is associated with a ing 1/0 requests generated by two processes,
process, it fails to exploit the disk spatial local-one associated with instance 1 and one asso-
ity of reference of read requests generated bgiated with instance 2, anticipation will work
the execution of Program B; however, it workswell for each process in isolation. However,
well for the requests generated by Program Aonce a process from one instance, say instance
More important is the fact that concurrent ex-1, terminates, even if there are pending requests
ecution of these two programs results in starfrom another process of instance 1, the sched-
vation of processes generated by Program Buler schedules for dispatch a request of the pro-
Experimental evidence of this is presented incess of instance 2. This results in a disk seek
Section 5. and anticipation on the instance 2 process that
generated the request. This behavior iterates
for the duration of the execution of the pro-
3.2 Concurrent Chunk Read Programs grams. As a result, instead of servicing all read
requests corresponding to one source tree and,
thus, minimizing disk seeks, an expensive se-
This section demonstrates how the second asjuence of seeks, caused by alternating between
sumption of the LAS can fail and, hence, leadprocesses of the two instances of Program B,
to poor disk throughput. Consider the concur-occurs. For this scenario, at lea$t 2 1 seeks
rent execution of two instances of Program B,are necessary to service the requests generated
instances 1 and 2, reading the top-level direcby both instances of Program B. As demon-
tory of two separate Linux source trees thatstrated, adherence to the second assumption of
are stored in disjoint sets of disk blocks. As-the LAS leads to seek storms that result in poor
sume that there aré files in each source tree. disk throughput. Experimental evidence of this
Accordingly, each instance of Program B cre-problem is presented in Section 5.
atesF different processes sequentially, each of
which reads a different file from the disk.

For this scenario, consider the performance ef4 Cooperative Anticipatory Sched-
fect of the second assumption, i.e., once the ler

anticipated process terminates, anticipation for

requests to nearby sectors ceases. When two

instances of program B are executing concurin this section we present an extension to the
rently, at any point in time there are at leastLAS that addresses the faulty assumptions de-
two pending 1/O requests, one generated bgcribed in Section 3 and, thus, solves the prob-
each program instance. Recall that requestems of potential process starvation and poor
to any one file correspond to only one pro-disk throughput. We call this scheduler the
cess. In this case, the anticipation works wellCooperative Anticipatory Scheduler (CAS). To
as long as only processess associated with oraldress potential problems, the notion of antic-
program instance, say instance 1, are readingation is broadened. When a request arrives
files. When there are processess from the twat the anticipation core during an anticipation
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time interval, irrespective of the state of the an—requested block number is within some delta
ticipated process (alive or dead) and irrespecdistance from the current head position or the
tive of the process that generated the requesprocess’ mean seek distance is greater than the
if the requested block is near the current headeek distance required to satisfy the request.
position, it is scheduled for dispatch and an-Recall that this defines a request from a coop-
ticipation works on the process that generate@rative process. At this point in time the an-
the request. In this way, anticipation works notticipated process could be alive or dead. If it
only on a single process, but on a group of prois dead, update the statistics for the request-
cesses that generate synchronous requests. Aing process and increment the CABopera-
cordingly, the first assumption of the LAS andtive exit probability which indicates the exis-
the associated problem of starvation of coopience of cooperative processes related to dead
erative processes is eliminated. Since the stafgrocesses. If the anticipated process is alive,
of the anticipated process is not taken into acupdate the statistics for both processes and in-
count in determining whether or not to schedulecrement the cooperative exit probability.

a new request for dispatch, short-lived coopera-

tive processes accessing disjoint disk block set§tep 4: If the anticipated process is dead, up-
do not prevent the scheduler from exp|0itingdate the system exit probability and if it is less
disk spatial locality of reference. Accordingly, than 50% then schedule the new request and
the second assumption is broadened and the agXit. Note that this request is not from a co-
sociated problem of reduced disk throughput igperative process.

eliminated. o _
Step 5: If the anticipated process just started

The CAS algorithm appears below. As in thel/O, the system exit probability is greater than
LAS algorithm, during anticipation, if a re- 50%, and the cooperative exit probability is less
guest from the anticipated process arrives at ththan 50%, schedule the new request and exit.
scheduler, it is scheduled for dispatch immedi-

ately. In contrast to the LAS, if the request isStep 6: If the mean think time of the antic-
from a different process, before selecting thdpated process is greater than the anticipation
request for scheduling or anticipating for a bet-time, schedule the new request and exit.

ter request, the following steps are performed ) .
in sequence. This concludes the extensions to the anticipa-

tory scheduler aimed at solving the process
Step 1: If anticipation has been turned off, e.g. starvation and reduced throughput problems.
as a result of a read request exceeding its dead-
line, then update process statistics, schedule the

starving request for dispatch, and exit. i )
5 Experimental Evaluation

Step 2: If the anticipation time has elapsed,

then schedule the new request, update process o _
statistics and exit. This section first presents a comparative perfor-

mance analysis, using a set of mixed workload
Step 3: If the anticipation time has not elapsednicrobenchmarks, of the deadline scheduler,
and the new request is a read that access&f\S, and CAS. The workloads are described in
a logical block number “close” to the current Sections 5.4, 5.5, and 5.6. The goal of the anal-
head position, schedule the request for dispatcisis is to highlight some of the problems with
and exit. A request is considered close if thethe deadline scheduler and LAS, and to show
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that the CAS indeed solves these problems5.2 Experimental Platform
Second, we compare the execution times, under

all five schedulers, of a set of benchmark proyye conducted the following experiments on a

files that simulate web, file, and mail Servers’dual-processor (2.28GHz Pentium 4 Xeon) sys-
and metadata. A general description of these., \vith 1 GB main memory and 1 MB L2

profiles is provided in Section 5.1 and individ- -5che running Linux 2.6.9. Only a single pro-
ual workloads are described in Sections 5.7- ’

) : _ cessor is used in this study. In order to elim-
5.10. The goal of this comparison is t0 ShoWinate interference from operating system (OS)

that the CAS, in fact, performs better or as good,q requests, benchmark 1/0 accesses an ex-
as the LAS under workloads with a wide rangea g 7,200 RPM Maxtor 20 GB IDE disk,
of characteristics. Using these benchmarks, W hich is different from the disk hosting the
show that (1) the LAS can lead to process stargg, The external drive is configured with the
vation and reduced disk throughput problems,yi3  fije system and, for every experiment,

that can be mitigated by the CAS, and (2) un+g ,nmounted and re-mounted to remove buffer
der various workload scenarios, which are d'f'cache effects.

ferent from those used to demonstrate process
starvation or reduced throughput, the CAS has )
performance comparable to the LAS. 5.3 Metrics

For the microbenchmark experiments, two ap-
plication performance metrics, application ex-
ecution time (in seconds) and aggregate disk
The Flexible File System Benchmark (FFSB)throughput (in MB/s), are used to demonstrate
infrastructure [6] is the workload generatorthe problems with different schedulers. With no
used to simulate web, file, and mail serverspther processes executing in the system (except
and metadata. The workloads are specified ustaemons), I/O-intensive application execution
ing profiles that are input to the FFSB infras-time is inversely proportional to disk through-
tructure, which simulates the required I/O be-put. In such situations, the scheduler with the
havior. Initially, each profile is configured to smallest application execution time is the best
create a total of 100,000 files in 100 directo-scheduler for that workload. In mixed work-
ries. Each file ranges in size from 4 KB to 64 load scenarios, however, the execution time of
KB; the total size of the files exceeds the sizeany one application cannot be used to compare
of system memory so that the randapera- schedulers. Due to the non-work-conserving
tions (file read, write, append, create, or deletenature of the LAS and CAS, these schedulers,
actions) are performed from disk and not fromwhen serving 1/O requests, introduce delays
memory. File creation time is not counted inthat favor one application over another, some-
benchmark execution time. A profile is config- times at the cost of increasing the execution
ured to create four threads that randomly extimes of other applications. Hence, in the pres-
ecute a total of 80,000 operations (20,000 peence of other 1/O-intensive processes, the ap-
thread) on files stored in different directories.plication execution time metric must be cou-
Each profile is executed three times under eachpled with other metrics to quantify the relative
of the five schedulers on our experimental platmerit of different schedulers. Consequently,
form (described in Section 5.2). The average ofve use the aggregate disk throughput metric in
the three execution times, as well as the stansuch scenarios. Application execution time in-
dard deviation, are reported for each scheduledicates the performance of a single application

5.1 Workload Description
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Program 1: shown in Table 1 are attained. These results in-
while true dicate the following. (1) For synchronous read
do requests, the LAS performs an order of mag-
dd if=/dev/zero of=file \ nitude better, in terms of execution time, and
count =2048 bs=1M it provides 32% more disk throughput than the
done deadline scheduler. (2) The CAS has perfor-
) mance similar to that of the LAS.

Program 2:

time cat 200mb-file > /dev/null The LAS and CAS provide better performance

than the deadline scheduler by reducing un-
necessary seeks and serving read requests as

Figure 1: Program l—generates stream Writé:IUiCkly as possible. For many such workloads,

requests; Program—2 generates stream read ri1es€ schedulers improve request latency and
aggregate disk throughput.

quests

Schedulen Execution Time| Throughput
and disk throughput indicates overall disk per- (sec.) (MB/s)
formance. Together, these two metrics help ex-peadiine 129 25
pose potential process starvation and reduced | Ag 10 33
throughput problems with the LAS. CAS 9 33

Table 1: Performance of Programs 1 and 2 un-

5.4 Experiment 1: Microbenchmarks— X
der the Deadline Scheduler, LAS, and CAS

Streaming Writes and Reads

This experiment uses a mixed workload com-5.5 Experiment 2: Microbenchmarks—
prised of two microbenchmarks [9], shown in Streaming and Chunk Reads

Figure 1, to compare the performance of the

deadline scheduler, LAS, and CAS. It demon-

strates the advantage of the LAS and CAS ovefo compare the performance of the deadline
the deadline scheduler in a mixed workloadscheduler, LAS, and CAS, illustrate the process
scenario. One microbenchmark, Program LSt&I’V&tiOﬂ problem of the LAS, and show that
generates a stream of write requests, while ththe CAS solves this problem, this experiment
other, Program 2, generates a stream of read r&ises a mixed workload microbenchmark com-
quests. Note that the write requests generatefised of two microbenchmarks [9], shown in
by Program 1 are asynchronous and can be déigure 2. One microbenchmark, Program A,
layed to improve disk throughput. In contrast,generates a stream of read requests, while the
Program 2 generates synchronous stream reddher, Program B, generates a sequence of de-

requests that must be serviced as fast as posglendent chunk read requests. Concurrent exe-
ble. cution of the two programs results in concur-

rent generation of read requests from each pro-
When Programs 1 and 2 are executed concugram. Thus, assume that the read requests of
rently under the three different schedulers, exthese two programs are interleaved. In general,
perimental results, i.e., application executionthe servicing of a read request from one of the
times and aggregate disk throughput, like thos@rograms will be followed by an expensive seek
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Program A:
while true
do

Note that, in this case, each file read operation
is performed by a different process, while LAS
anticipation works only on a per-process basis.

cat big-file > /dev/null Thus, if these processes are the only ones ac-

done cessing the disk, there will be no delays due
to seek operations to satisfy other processes.
Program B: However, when run concurrently with Program
time find . -type f -exec \ A, the story is different, especially if, to elim-
cat *{}' ';' > /dev/null inate disk cache effects, we assume that the

big-file read by Program A is larger than
the buffer cache. Note that during the execu-

Figure 2: Program—A generates stream rea${On of Program A a single process generates
requests; Program—B generates chunk read réll read requests.

quests
When these two programs are executed con-

currently, anticipation works really well for the
in order to service a request from the other prostreaming reads of Program A but it does not
gram; this situation repeats until one programwork at all for the dependent chunk reads of
terminates. However, if a moderate number ofProgram B. The LAS is not able to recognize
requests are anticipated correctly, the numbethe dependent disk spatial locality of reference
of expensive seeks is reduced. For each coexhibited by thecat processes of Program B;
rect anticipation, two seek operations are elimthis leads to starvation of these processes. In
inated; an incorrect anticipation costs a smaltontrast, the CAS identifies this locality of ref-
delay. Accordingly, anticipation can be advan-erence and, thus, as shown in Table 2, provides
tageous for a workload that generates deperbetter performance both in terms of execution
dent read requests, i.e., that exhibit disk spatiaime and aggregate disk throughput. In addi-
locality of reference. However, as describedtion, it does not lead to process starvation.
previously, the LAS can anticipate only if de-

pendent read requests are from the same pro- | Scheduler, Execution | Throughput
cess. In this experiment the dependent read re- Time (sec.)) (MB/s)
quests of Program A are from the same pro- | Deadline 297 9
cess, while the dependent chunk read requests LAS 4767 35

of Program B are from different processes. CAS 255 34

Assume that Program B is reading the top-levellable 2: Performance of Program A and B un-
directory of the Linux source tree, as describedler the Deadline Scheduler, LAS, and CAS

in Section 3.1. In this case, thlimd command

finds each file in the directory tree, then tee  The results in Table 2 show the following. (1)
command (spawned as a separate process) iShe LAS results in very bad execution time;
sues a read request to read the file, with théhis is likely because LAS anticipation does
file name provided by thi#nd process from the not work for Program B and, even worse, it
disk. The newcat process reads the entire file, works really well for Program A, resulting in
then the file is closed. This sequence of acgood disk utilization for Program A and a very
tions is repeated until all files in the directory small amount of disk time being allocated for
are read. requests from Program B. (2) The execution
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time under the deadline scheduler is 16 times
smaller than that under the LAS; this is likely
because there is no anticipation in the deadline «
scheduler. (3) Aggregate disk throughput un-
der the deadline scheduler is 3.9 times smallet
than under the LAS; this is likely because LAS; ~
anticipation works really well for Program A. § «
(4) The CAS alleviates the anticipation prob- .
lems exhibited in the LAS for both dependent
chunk reads (Program B) and dependent read
workloads (Program A). As a result, CAS pro- -
vides better execution time and aggregate disk

throughput.

120

Figure 3: Reading the Linux Source: multi-
ple, concurrent instances cause seek storms
5.6 Experiment 3: Microbenchmarks—  with the deadline scheduler and LAS, which are
Chunk Reads eliminated by the CAS

To illustrate the reduced disk throughput prob-gisk - the deadline scheduler seeks back and
lem of the deadline scheduler and LAS and t0qh several thousand times. The LAS is not
further illustrate the performance of the CAS, jp1e to identify the dependent read requests
this experiment first uses one instance of a migenerated by the differertat processes and,
crobenchmark that generates a sequence of dﬁTus, does not anticipate for them. As a re-

pendent chunk reads and then uses two congi¢ jike the deadline scheduler, the LAS be-
currently executing instances of the same proggmes seek bound. In contrast. the CAS cap-
gram, Program B of Figure 2, that access disyres the dependencies and, thus, provides bet-
joint Linux source trees. The results of this ex-yer gisk throughput and execution time. Recall
periment are shown in Table 3 and Figure 3. {ha¢ in this case, throughput is inversely pro-
portional to execution time.

Schedulent  Throughput (MB/s)

1 Instance 2 Instances
Deadline 14.5 4.0 As shown in Figure 3 and Table 3, with one in-
LAS 15.5 4.0 stance of Program B the three schedulers have
CAS 15.5 11.6 a performance difference of about 7%. One

would normally expect the execution time to
Table 3: Chunk Reads under the Deadlinedouble for two instances of the program, how-
Scheduler, LAS, and CAS ever, for the reasons described above the dead-
line scheduler, LAS, and CAS increase their ex-
As described before, in Program B a differ-ecution times by a factor of 7, 7, and 2.5, re-
ent cat process reads each of the files in thespectively. Again, the CAS has a smaller factor
source tree, thus, each execution of the progranmcrease (2.5) in execution time because it de-
generates, in sequence, multiple processes thegcts the dependencies among cooperative pro-
have good disk spatial locality of reference.cesses working in a localized area of disk and,
With two concurrently executing instances ofthus, precludes the seek storms that occur oth-
Program B accessing disjoint sections of theerwise in the deadline scheduler and LAS.
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5.7 Experiment 4. Web Server Benchmark

1200

This benchmark simulates the behavior of a™
web server by making read requests to ran:
domly selected files of different sizes. The§
mean of the three execution times for each ~
scheduler are reported in Figure 4 and Table 4.
The numbers in the table are in seconds, and
bold numbers indicate the scheduler with the
best execution time for each benchmark. It is
worthwhile to point out that the standard de-
viations of the results are less than 4% of the
average values, which is small for all practi-
cal purposes. From the table we can conclud&igure 4. Mean Execution Time (seconds) on
that the CAS has the best performance of all thext3 File System

schedulers in the case of random reads and the

CFQ has the worst performance. The LAS has

very good execution time performance which iscan conclude that the CAS has the best perfor-
comparable to that of CAS; it trails the CAS by mance; the LAS trails the CAS by 2.9%; and
less than 1%. The deadline, CFQ, and nooﬂ)he other schedulers trail the CAS by at least
schedulers trail the CAS by 8%, 8.9%, and23%.

6.5%, respectively.

NooP

Schedulerr Web | Mail File | Meta
Server| Server| Server| Data 5.9 Experiment6: Mail Server Benchmark
Deadline | 924 118 1127 | 305
LAS 863 177 916 | 295
CAS 855 109 890 | 288
CFQ 931 112 1099 | 253
noop 910 125 | 1127 | 319

This benchmark simulates the behavior of a
typical mail server by executing random file
read, create, and delete operations in the pro-

ortions of 40%, 40%, and 20%, respectively.

he average of the three execution times are
reported in Figure 4 and Table 4. The stan-
dard deviations of the results are less than 3.5%
of the average values except for the LAS for
which the standard deviation is about 11%.
From these results we can conclude that the
This benchmark simulates the behavior of aCAS has the best performance and the LAS has
typical file server by making random read andthe worst performance, the LAS trails the CAS
write operations in the proportions of 80% andby more than 62%. The CFQ scheduler has
20%, respectively. The average of the three exvery good execution time performance com-
ecution times are reported in Figure 4 and Tapared to the CAS,; it trails by a little more than
ble 4. The standard deviations of the results ar8%. The deadline and noop schedulers trail the
less than 4.5% of the average values. Here w€AS by 8% and 14%, respectively.

Table 4: Mean Execution Times (seconds) o
Different Benchmark Programs

5.8 Experiment 5: File Server Benchmark
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5.10 Experiment 7: MetaData Program quirements, operating systems provide multi-
ple 1/0 schedulers—each suitable for a differ-

ent class of workloads—that can be selected, at

Th'.s benchmark simulates the beha\_/lor of %oot time or runtime, based on workload char-
typical MetaData program by executing ran-_ teristics

dom file create, write-append, and delete opera-

ions in the proportions of 40%, 40%, and 20%’The Linux 2.6.11 kernel provides four different

respectively. Note that in this benchmark thereschedulers and an option to select one of them

are no_rea(_:i requests. The average of the thre§ boot time for the entire 1/0 system and switch
execution times are reported in Figure 4 and Ta

. between them at runtime on a per-disk basis [2].
ble |4 'Ij[?]e sgag(c;arc:: t(;i]ewatlons of tlhe resultsl.his selection is based anpriori understand-
are 1ess than 5.7 oTthe average values exce g of workload characteristics, essentially by a

gor Fhﬁ nopp;;:(t;ed;ler fotrhwhlch th‘lat standar ystem administrator. Moreover, the scheduler
eviation 1s 7./ vo. From these resulls, We Cafq o ction varies based on the hardware config-

conclude that the CFQ scheduler has the be?}ration of the disk (e.g., RAID setup), software
performance. The LAS trails the CAS by 2%. configuration of the disk, i.e., file system, etc.

;thlzt(;i]eag:;ne,thAi, CE[AS,har:jd lnoc;)p SChedufrﬁ'hus, static or dynamic scheduler selection is
rail the CFQ, the best, scheduler by as muc a3 daunting and intricate task. This is further

26%. complicated by two other factors. (1) Systems
that execute different kinds of workloads con-
currently (e.g., a web server and a file server)—

6 |I/O Scheduler Characterization that require, individually, a different scheduler

for Scheduler Selection to obtain best possible performance—may not
provide best possible performance with a sin-
gle scheduler selected at boot time or runtime.

Our experimentation (e.g., see Figure 4) ag2) Similarly, workloads with different phases,

well as the study in [13] reveals that no oneeach phase with different I/O characteristics,

scheduler can provide the best possible pemill not be best served bw priori scheduler
formance for different workload, software, andselection.

hardware combinations. A possible approach

to this problem is to develop one scheduler thatWe propose a scheduler selection methodol-

can best serve different types of these comegy that is based primarily on runtime work-

binations, however, this may not be possibldoad characteristics, in particular the average
due to diverse workload requirements in reakequest size. ldeally, dynamic scheduler selec-
world systems [13, 15]. This issue is furthertion would be transparent to system hardware
complicated by the fact that workloads haveand software. Moreover, a change in hard-
orthogonal requirements. For example, someavare or software configurations would be de-
workloads, such as multimedia database applitected automatically and the scheduler selec-
cations, prefer fairness over performance, othtion methodology would re-evaluate the sched-
erwise streaming video applications may suffeuler choice. With these goals in mind, we de-

from discontinuity in picture quality. In con- scribe below ideas towards the realization of a

trast, server workloads, such as file servers, daelated methodology.

mand performance over fairness since small de-

lays in serving individual requests are well tol- We propose that runtime scheduler selection

erated. In order to satisfy these conflicting re-be based ora priori measurements of disk
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Comparison of Different I/O Schedulers on RAID-0

priately. This scheduler has several tunable pa-
) rameters, e.g., the amount of time a request
' /ﬂ spends in the queue before itis declared expired
i ) // =—1 and the amount of time the disk is kept idle in

/ \ e anticipation of future requests.
sl / v [T Because we were interested in investigating the
M?’"‘_’_" — possible starvation problem and proposing a
solution, we did not investigate the effects of
changing these parameters; however, we have
Figure 5: Scheduler Ranking using a Mi- begur_1 to do so. We are especially interested in
crobenchmark studying the performance effects of the CAS,
with various parameter sets, on different disk
systems. Given that the study shows that differ-

throughput under the various schedulers and résnt parameter sets provide better performance

quest sizes. These_ measurements are _then usy systems with different disk sizes and config-
to generate a function that_ at runtime, given th rations [13], a methodology for dynamically
current average request size, returns the sche electing parameters is our goal. Furthermore,
uler that gives the best measured throughput fqpe jyenq 1o experiment with maintaining other

the specified disk. Using the four SCheOIUIerSStatistics that can aid in making scheduling de-

on our experimental system, described in S(':'C(:isions for better disk performance. An exam-
tion 5.2, augmented by a RAID-0 device with

four IDE 10 GB dri & priori ple statistic is the number of times a process
o rives, we ook priorl mea-  .,ngmes its anticipation time; if such a met-

surements by executing a program th_at cre_ateﬁc exceeds a certain threshold, it indicates that
and randomly reads data blocks of various sizeg . .o is a mismatch between the workload ac-
from several large files. The system is config-cess pattern and the scheduler and, hence, such

ured with the ext3 file s_yster_n; 't. runs the Linux a process should not be a candidate for antici-
2.6.11 kernel to permit switching SChedUIers'rpation

The ranking of the schedulers based on ave

age request size and disk throughput is showgyith these types of advances, we will develop

in Figure 5. Experiments using this proposedy methodology for automatic and dynamic 1/0

methodology to guide dynamic scheduler sescheduler selection to meet application needs
lection are in progress. and to maximize disk throughput.

Bandwidth (MB/s)
B

B3

S

o

> g
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7 Future Work 8 Related Work

Our cooperative anticipatory scheduler elim-To our knowledge the initial work on antici-
inates the starvation problem of the AS bypatory scheduling, demonstrated on FreeBSD
scheduling requests from other processes thainix, was done in [7]. Later, the general idea
access disk blocks close to the current headas implemented in the Linux kernel by Nick
position. It updates statistics related to re-Piggin and was tested by Andrew Martin [11].
guests on a per-process basis such that futurde our surprise, during the time we were ex-
scheduling decisions can be made more apprgeloring the 1/0O scheduler, the potential starva-



190 e Enhancements to Linux I/O Scheduling

tion problem was reported to the Linux com-9 Conclusions
munity independently on Linux mailing lists,

however, no action was taken to fix the prob- _ N _ _
lem [3]. This paper identified a potential starvation

problem and a reduced disk throughput prob-

lem in the anticipatory scheduler and proposed

a cooperative anticipatory scheduling (CAS) al-
Workload dependent performance of the fourgorithm that mitigates these problems. It also
/O schedulers is presented in [13]; this workgemonstrated that the CAS algorithm can pro-
points out some performance problems withjide significant improvements in application
the anticipatory scheduler in the Linux oper-execution times as well as in disk throughput.
ating system. There is work using genetic al-at ts core, the CAS algorithm extends the LAS
gorithms, i.e., natural evolution, selection, andby broadening anticipation of 1/O requests; it
mutation, to tune various 1/O scheduler paramyives scheduling priority to requests not only
eters to fit workload needs [12]. In [15] the au-from the process that generated the last request
thors explore the idea of using seek time, avyt also to processes that are part of a coop-

erage waiting time in the queue, and the varierative process group. We implemented this
ance in average waiting time in a utility func- methodology in Linux.

tion that can be used to match schedulers to
a wide range of workloads. This resulted inin addition, the paper evaluated performance
the development of a maximum performancefor different workloads under the CAS and the
two-policy algorithm that essentially consistsfour schedulers in Linux 2.6. Microbench-
of two schedulers, each suitable for differentmarks were used to demonstrate the problems
ranges of workloads. There also have beewith the Linux 2.6 schedulers and the effective-
attempts [2] to include in the CFQ schedulerness of the solution, i.e., the CAS. It was shown
priorities and time slicing, analogous proces-that under the CAS web, mail, and file server
sor scheduler concepts, along with the antichenchmarks run as much as 62% faster.
ipatory statistics. This new scheduler, called
Time Sliced CFQ scheduler, incorporates thd-inally, the paper describes our efforts in rank-
“good” ideas of other schedulers to provide theing I/O schedulers based on system behavior as
best possible performance; however, as notedell as workload request characteristics. We
in posts to the Linux mailing list, this may not hypothesize that these efforts will lead to a
work well in large RAID systems with Tagged methodology that can be used to dynamically
Command Queuing. select I/O schedulers and, thus improve perfor-
mance.

To the best of our knowledge, we are the first

to present a cooperative anticipatory scheduling o Acknowledgements

algorithm that extends traditional anticipatory
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2005 Linux Symposium e 191

at IBM-Austin, TX for valuable discussions, [4]
Santhosh Rao of IBM LTC for his help with
the FFSB benchmark, and Jayaraman Suresh
Babu, UTEP, for his help with related experi-
ments. This work is supported by the Depart-
ment of Energy under Grant No. DE-FGO02-
04ER25622, an IBM SUR (Shared University
Research) grant, and the University of Texas- [6]
El Paso.

11 Legal Statement
[7]

This work represents the view of the authors, and
does not necessarily represent the view of the Uni-
versity of Texas-El Paso or IBM. IBM is a trade-
mark or registered trademark of International Busi-
ness Machines Corporation in the United States,
other countries, or both. Pentium is a trademark of
Intel Corporation in the United States, other coun-
tries, or both. Other company, product, and service [8]
names may be trademarks or service marks of oth-
ers. All the benchmarking was conducted for re- [9
search purposes only, under laboratory conditions.
Results will not be realized in all computing envi-

ronments.
[10]

References

[1] Axboe, J., “Linux Block IO—Present
and Future,Proceedings of the Ottawa  [11]
Linux Symposium 200®ttawa, Ontario,
Canada, July 21-24, 2004, pp. 51-62

[2] Axobe, J., “Linux: Modular I/O
Schedulers http: [12]
//kerneltrap.org/node/3851

[3] Chatelle, J., “High Read Latency Test
(Anticipatory 1/0O Scheduler),” [13]
http://linux.derkeiler.com/
Mailing-Lists/Kernel/
2004-02/5329.html

Corbet, J., “Anticipatory 1/0O
Scheduling, http:
/llwn.net/Articles/21274

5] Godard, S., “SYSSTAT Utilities Home

Page,’http://perso.wanadoo.
fr/lsebastien.godard/

Heger, D., Jacobs, J., McCloskey, B., and
Stultz, J., “Evaluating Systems
Performance in the Context of
Performance PathsBM Technical
White PaperIBM-Austin, TX, 2000

lyer, S., and Druschel, P., “Anticipatory
Scheduling: a Disk Scheduling
Framework to Overcome Deceptive
Idleness in Synchronous 1/01'8th ACM
Symposium on Operating Systems
Principles (SOSP 2001Banff, Alberta,
Canada, October 2001, pp. 117-130

Love, R.,Linux Kernel Development
Sams Publishing, 2004

] Love, R., “Kernel Korner: 1/0

Schedulers,Linux Journal February
2004, 2004(118): p. 10

Madhyastha, T., and Reed, D.,
“Exploiting Global Input/Output Access
Pattern ClassificationProceedings of
SC '97, San Jose, CA, November 1997,
pp. 1-18

Martin, A., “Linux: Where the
Anticipatory Scheduler Shines,”
http://lwww.kerneltrap.org/
node.php?id=592

Moilanen, J., “Genetic Algorithms in the
Kernel,” http:
//kerneltrap.org/node/4751

Pratt, S., and Heger, D., “Workload
Dependent Performance Evaluation of
the Linux 2.6 I/O Schedulers,”
Proceedings of the Ottawa Linux



192 e Enhancements to Linux I/O Scheduling

Symposium 20Q©Dttawa, Ontario,
Canada, July 21-24, pp. 425-448

[14] Private communications with Nick Piggin

[15] Teory, T., and Pinkerton, T., “A
Comparative Analysis of Disk
Scheduling Policies,Communications of
the ACM 1972, 15(3): pp. 177-184



Chip Multi Processing aware Linux Kernel Scheduler

Suresh Siddha Venkatesh Pallipadi
suresh.b.siddha@intel.com venkatesh.pallipadi@intel.com

Asit Mallick
asit.k.mallick@intel.com

Abstract logical processors running on the same execu-
tion core, sharing all the resources like func-
: . tional execution units and cache hierarchy. This
Recent advances in semiconductor manufactur- : : :
. : . ) approach interleaves the execution of two in-
ing and engineering technologies have led to : : :
) i . _struction streams, making the most effective
the inclusion of more than one CPU core in a .
: . : use of processor resources. It maximizes the
single physical processor package. This, IOOp_erformance vs. transistor count and power
ularly know as Chip Multi Processing (CMP), b ' b

L : consumption.
allows multiple instruction streams to execute

at the same time. CMP is in addition to today'sRrecent advances in semiconductor manufactur-
Simultaneous Multi Threading (SMT) capabil- jng and engineering technologies are leading to
ities, like Intef® Hyper-Threading Technology rapid increase in transistor count on a die. For
which allows a processor to presentitself as WQxample, forthcoming Itaniuff family proces-
logical processors, resulting in best use of exsor code named Montecito will have more than
ecution resources. With CMP, today’s Linux 1 7 pillion transistors on a die! As the next
Kernel will deliver instantaneous performance|ogica| step to SMT, these extra transistors are
improvement. In this paper, we will explore yyt to effective use by including more than one
ideas for further improving peak performanceexecution core with in a single physical pro-
and power savings by making the Linux Kermnelcessor package. This is popularly known as
Scheduler CMP aware. Chip Multi Processing (CMP). Depending on
the number of execution cores in a package,
it's either called a dual-core[4] (two execution
1 Introduction cores) or multi-core (more than two execution
cores) capable processors. In multi-threading
and multi-tasking environment, CMP allows

To meet the growing requirements of procesyoy significant improvement in performance at
sor performance, processor architects are ook« system level.

ing at new technologies and features focusing

on enhanced performance at a lower power disin this paper, in Section 2 we will look at

sipation. One such technology is Simultane-an overview of CMP and some implementa-
ous Multi-Threading (SMT). Hyper-Threading tion examples. Section 3 will talk about the
(HT) Technology[5] introduced in 2002, is In- generic OS scheduler optimization opportuni-
tel's implementation of SMT. HT delivers two ties that are appropriate in CMP environment.

e 193 o
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Linux Kernel Scheduler implementation details |7 —— -
of these optimizations will be dwelled in Sec- || esoues Resources
tion 4. We will close the paper with a brief look Mk L1Cache
at CMP trends in future generation processors || 5o Ao

Gameed

‘ Shared L2 Cache ‘

2 Chip Multi Processing

Shared Arsa
In a Chip Multi Processing capable physical | S s

processor package, more than one execution
core reside in a physical package. Each cor&igure 1: CMP implementation with two cores
has its own resources (architectural state, regsharing L2 cache and Bus interface

isters, execution units, up-to a certain level of
cache, etc.). Shared resources between tt

. h . I k d d Architectural | Architectural Architectural | Architectural
cores In a physical package vary depending ol SweT) | Stae T1 Sate T | State T
the |mp|ementat|0n. Some of the Implementa. Execution Resources Execution Resources
tion examples are

L1 and L2 caches L1 and L2 caches
a) each core could have a portion of on-die Bus I Bus IFF
cache (for example L1) exclusively for itself (B

and then have a portion of on-die cache (for
example L2 and above) that is shared betwee
the cores. An example of this is the upcom- Systm Bas
ing first mobile dual-core processor from Intel,
code named Yonah.

Figure 2: CMP implementation with two cores,
each having two logical threads. Each core has
b) each core having its own on-die cache hiertheir own cache hierarchy and communication
archy and its own communication path to thepath to FSB.

Front Side Bus (FSB). An example of this is

the Intef® Pentiun® D processor. logical threads in each core and with each core

Figure 1 shows a simplified block diagram thavmg their own cache hierarchy and their own

a physical package which is CMP Capablecommunlcatlon path to the FSB. An example of

where two execution cores reside in one physil-thls s the InteP Pentiun® D Extreme Edition

cal package, sharing the L2 cache and front sigRrocessor
bus resources.

A physical package can be both CMP and SMT?r CMP Optimization opportunities

capable. In that case, each core in the physica
package can in turn contain more than one log-
ical thread. For example, a dual-core with HTA multi-threaded application that scales well
will enable a single physical package to appeaand is optimized on SMP systems will have an
as four logical processors, capable of runningnstantaneous performance benefit from CMP
four processes or threads simultaneously. Figbecause of these extra logical processors com-
ure 2 shows an example of a CMP with twoing from cores and threads. Even if the appli-
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cation is not multi-threaded, it can still take ad-3.1  Opportunities for improving peak per-
vantage of these extra logical processors in a  formance
multi-tasking environment.

CMP also brings in new optimization oppor- In a CMP implementation where there are no
tunities which will further improve the sys- shared resources between cores sharing a phys-
tem performance. One of the optimization op-ical package, cores are very similar to individ-
portunity is in the area of Operating Systemual CPU packages found in a multi-processor
(OS) scheduler. Making the OS scheduler CMPenvironment. OS scheduler which is optimized
aware will result in an improved peak perfor- for SMT and SMP will be sufficient for deliv-
mance and power savings. ering peak performance in this case.

In general, OS scheduler will try to equally dis- However, in most of the CMP implementations,
tribute the load among all the available procesto make best use of the resources cores in a
sors. In a CMP environment, OS scheduler caphysical package will share some of the re-
be further optimized by looking at micro archi- sources (like some portion of cache hierarchy,
tectural information(like L2 cache misses, Cy-FSB resources, ...). In this case, kernel sched-
cles Per Instruction (CPI), ...) of the running uler should schedule tasks in such a way that it
tasks. OS scheduler can decide which tasks caminimizes the resource contention, maximizes
be scheduled on same core/package and whiche system throughput and acts fair between
can'’t be scheduled together based on this micrequal priority tasks.

architectural information. Based on these deci-

sions, scheduler tries to decrease the resourdet’s consider a system with four physical CPU
contentions in a CPU core or a package andgdackages. Assume that each CPU package has
thereby resulting in increased throughput. Intwo cores sharing the last level cache and FSB
the past, some work[10, 9] has been done in thigueue. Let's further assume that there are four
area and because of the complexities involvedunnable tasks, with two tasks scheduled on
(like what micro architectural information need package 0, one each on package 1, 2 and pack-
to be tracked for each task and issues in incorage 3 being idle. Tasks scheduled on package
porating this processor architecture specific inO will contend for last level cache shared be-

formation into generic OS scheduler) this worktween cores, resulting in lower throughput. If
is not quite ready for the inclusion in today’s all the tasks are FSB intensive (like for exam-

Operating Systems. ple Streams benchmark), because of the shared
FSB resources between cores, FSB bandwidth
We will not address the micro architectural in-for each of the two tasks in package 0 will be
formation based scheduler optimizations in thishalf of what individual tasks get on package
paper. Instead this paper talks about the OF and 2. This scheduling decision isn't quite
CMP scheduler Optimization Opportunities in r|ght both from throughput and fairness per-
the case where the system is lightly loaded (i.e.gpective. The best possible scheduling decision
the number of runnable tasks in the system argi|| be to schedule the four available tasks on
less compared to the number of available prothe four different packages. This will result in
cessors in the system). These optimization opeach task having independent, full access to last
portunities are simple and straight forward tojeve| shared cache in the package and each will

leverage in today’s Operating Systems and willyet fair share of the FSB bandwidth.
help in improving peak performance or power

savings. On CMP with shared resources between cores
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in a physical package, for peak performance3.2.1 CMP implications on P and C-states
scheduler must distribute the load equally
among all the packages. This is similar to P_states
SMT scheduler optimizations in todays operat-
ing systems.
In a CMP configuration, typically all cores in
one physical package will share the same volt-
3.2 Opportunities for improving power age plane. Because of this, a CPU package
savings will transition to a higher P-state, only when
all cores in the package can make this transi-
tion. P-state coordination between cores can
Power management is a key feature in today'se either implemented by hardware or soft-
processors across all market segments. Difware. With this mechanism, P-state transition
ferent power saving mechanisms like P-stategequests from cores in a package will be co-
and C-States are being employed to save morerdinated, causing the package to transition to
power. The configuration and control infor- target state only when the transition is guar-
mation of these power saving mechanisms ara@nteed to not lead to incorrect or non-optimal
exported through Advanced Configuration andperformance state. If one core is busy running
Power Interface (ACPI)[2]. Operating Systema task, this coordination will ensure that other
directed Configuration and Power Managemenidle cores in that package can't enter lower
(OSPM) uses these controls to achieve desiregower P-states, resulting in the complete pack-
balance between performance and power.  age at the highest power P-state for optimal per-
formance. In general, this coordination will en-
ACPI defines the power state of processors andure that a processor package frequency will be
are designated as CO, C1, C2, C3, ..., Cn. Thehe numerically lowest P-state (highest voltage
CO power state is an active power state wherand frequency) among all the logical processors
the CPU executes instructions. The C1 throughn the processor package.
Cn power states are processor sleeping (idle)
states where the processor consumes less power
and dissipates less heat. C-states
While in the CO state, ACPI allows the perfor-
mance of the processor to be altered througin a CMP configuration with shared resources
performance state (P-state) transitions. Eachetween the cores, processor package can be
P-state will be associated with a typical powerbroken up into different blocks, one block for
dissipation value which depends on the operateach execution core and one common block
ing voltage and frequency of that P-state. Ustepresenting the shared resources between all
ing this, a CPU can consume different amountshe cores (as shown in Figure 1). Depending on
of power while providing varying performance the implementation, each core block can inde-
at CO (running) state. At a given P-state, CPUpendently enter some/all of the C-state’s. The
can transit to numerically higher numbered C-common block will always reside in the numer-
states in idle conditions. In general, numeri-ically lowest (highest power) C-state of all the
cally higher the P states (i.e., lower the CPUcores. For example, if one core is in C1 and
voltage) and C-states, the lesser will be powenpther core is in CO, shared block will reside in
consumed, heat dissipated. Co.
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3.2.2 Scheduling policy for power savings 4 Linux Kernel Scheduler enhance-
ments

Let's consider a system having two physica|Process scheduler in 2.6 Linux Kernel is based

packages, with each package having two core@" hierarchical scheduler domains constructed
sharing the last level cache and FSB resource§ynamically depending on the processor topol-
If there are two runnable tasks, as observe@9Y In the system. Each domain contains a
in the Section 3.1 peak performance will beliSt of CPU groups having a common property.

achieved when these two tasks are scheduldg?@d balancer runs at each domain level and
on different packages. But, because of the pscheduling decisions happen between the CPU

state coordination, we are restricting idle coreJrOUPs atany given domain.
in both the packages to run at higher power Pa

state. Similarly the shared block in both they, o coming sections, stands for version 2.6.12-

pk;ackages V\]fi” resibde in higher %O\ger C(()]I.StaterCS[6]. Current Linux Kernel domain scheduler
(because of one busy core) and depending 9L aware of three different domains represent-

the implementation, idle cores in both the packamg SMT (calledcpu_domain ), SMP (called
ages may not be able to enter the availabl

| ¢ C-state. This will It ‘f:)hys_domain ) and NUMA (callednode_
owest power £.-state. - This Wil Tesuit I NoN- 4omain ). Current Linux kernel has core de-
optimal power savings.

tection capabilities for x86, x86_64, ia64 ar-
chitectures. This will place all CPU cores in a

: . node into different sched groups in SMP sched-
Instead, if the scheduler picks the same packag&:Ier domain, even though they reside in dif-

for both the tasks, other package with all COreSarant physical packages. The first step nat-
being idle, will transition slowly into the lowest urally is to add a new scheduler domain rep-

power P and C-state, resulting in more powerresenting CMP (calledore_domain ). This

sa;]/injjsl.. Bué ashthhe coreks sharr1e last level CEChs\lill help the kernel scheduler identify the cores
scheduling both the tasks to the same pac ag"3haringagiven physical package. This will en-

will not lead to o_ptlmal behavior from perfor-_ able the implementation of scheduling policies
mance perspective. Performance impact WI||h-

depend on the behavior of the tasks and sharedgh“ghted In Section 3.

resources between the cores. In this particulaFigure 3 shows the scheduler domain hierarchy
example, if the tasks are not memory/cache insetup with current Linux Kernel on a system

tensive, performance impact will be very min- having two physical packages. Each package
imal. In general, more power can be savechas two cores and each core having two logical
with relatively smaller impact on performance threads. Figure 4 shows the scheduler domain
by scheduling them on the same package.  hierarchy setup with the new CMP scheduler

domain.

Il the references to “Current Linux Kernel” in

On CMP with no shared resources between the .

cores in a physical package, scheduler s.hould/]":L _Scheduler enhancements for improv-
distribute the load among the cores in a pack- ing peak performance

age first, before looking for an idle package. As

a result, more power will be saved with no im- As noted in Section 3.1, when the CPU cores in
pact on performance. a physical package share resources, peak per-
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mesenies I will h_elp detecta si_tuation Where more than one
T T T i et core in a package is busy, with another package

1 being completely idle. Similar to the above,

CPU Domains rovey I vy I vy B e active load balance will get kicked on one of
ottt | Pttt [eltad] el the non-idle cores in the busiest package. In

the presence of SMT and CMP, active load bal-
ance needs to pick up an idle package if one is

D i domin v available; otherwise it needs to pick up an idle

» 0 * Scheduler group ¢ %0 | Scheduler domain with . . . . .

R v grougs core. This will result in load being uniformly
distributed among all the packages in a SMP
domain and all the cores with in a package.

Figure 3: Scheduler domain hierarchy with cur-

rent Linux Kernel on a system having two phys-|n pre 2.6.12 -mm kernels, there is a change in

ical packages, each having two cores and eaciictive load balance code which leverage the do-

core having two logical threads. main scheduler topology more effectively. In-
stead of looking for an idle package, active load

formance will be achieved when the load isPalance code is modified in such a way, that it
distributed uniformly among all physical pack- SIMPly moves the load to the processor which
ages. Following subsections will look into the d€tects the imbalance. In some of the cases[1]

enhancements required for implementing thidhis will take few extra hops in finding a correct
policy. processor destination for a process but because

of simplicity reasons this was pursued. This
modification to active load balance also works
in the presence of both SMT and CMP.

-

4.1.1 Active load balance in presence of

CMP and SMT Figures 4 and 5 show how active balance plays

a role in distributing the load equally among
With SMT and SMP domains in current Linux the physical packages and CPU cores in pres-
Kernel, load balance at SMP domain will helpence of CMP and SMT. Figure 6 shows how
in detecting a situation where all the SMT sib-the new active balance will help in distributing
lings in one physical package are completelythe load equally among the physical packages,
idle and more than one SMT sibling is busyeven though there is no idle package available.
in another physical package. Load balance or his will help from the fairness perspective.
processors in idle package will detect this situa-
tion and will kick active load balance on one of
the non i.dle SMT siblings in the busiest pack-,4 1 5 cpu_power selection
age. Active load balance then looks for a pack-
age with all the SMT threads being idle and
pushes the task (which was just running beforédne of the key parameters of a scheduler do-
active load balance got kicked in) to one of themain is the scheduler groupspu_power .
siblings of the selected idle package, resultindt represents effective CPU horsepower of the
in optimal performance. scheduler group and it depends on the under-
neath domain characteristics. With SMP and
Similarly in the presence of new scheduler do-SMT domains in current Linux Kernetpu_
main for CMP, load balance in SMP domainpower of sched groups in the SMP domain is
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rActive load balance kicks in
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. Figure 6: Demonstration of active load balance
' Bugy CPU - Idle CPT

with 6 tasks, on a system having two physi-

Figure 4: Demonstration of active load balance®@ Packages, each having four cores. Active
with 4 tasks, on a system having two physical©@d balance kicks in at SMP domain between
packages, each having two cores and each coFtéle two physical packaggs, distributing the load
having two logical threads. Active load balanceequally among the physical packages

kicks in at the core domain for the first package,

distributing the load equally among the cores cgicylated with the assumption that each ex-

tra logical processor in the physical package
will contribute 10% to theepu_power of the
physical package.

With the new CMP domaingpu_power for
CMP domains scheduler group will be same
ascpu_power of schedule group in current
Linux Kernel's SMP domain (as the under-
neath SMT domain will remain same). Be-
cause of the new CMP domain underneath, new
cpu_power for SMP domains sched group

rActive load balance kicks in

il © 6 0 0 e o o o

Core Domains [Toenenny

CPU Domains [

- \ e —- needs to be selected.
After Load Balance ] 10
If the cores in a physical package don’t share
| e Tkle CPU

resources, then thepu_power of groups in

Figure 5: Demonstration of active load balanceS'vIP domain, wil sw_nply be the.horsepower
um of all the cores in that physical package.

with 2 tasks, on a system having two physicals

packages, each having two cores and each co%rl lihe ott;]err h?nd, Irf the t(r:]ores n a ph)r/smal
having two logical threads. Active load bal- package share resources, thendpe_powe

ance kicks in at SMP domain between the twoof groups in SMP domain has to be smaller

gfr:]yc')srllzatlhp: ;l:\?/gﬁ:ZI%:tcrnglg:arlsg the load equall)%:uss more about this in the power saving Sec-

tions 4.2.1 and 4.2.2 and determine how much
smaller this needs to be for the peak perfor-
mance mode policy.
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4.1.3 exec, fork balance this power savings policy as default. For the
other CMP implementations, we can allow the
Pre 2.6.12 mm kernels has exec, forkadministratorto choose a scheduling policy of-

balance[3] introduced by Nick Piggin. Setting fering either peak performance (covered in Sec-
SD_BALANCE_{EXEC, FORK}flags to do- tion 4.1) or improved power savings. Depend-

mains SMP and above, will enable exec, forking on the requirements one can select either of
balance. Because of this, whenever a new prdhese policies.

cess gets created, it will start on the idlest pack- _ . o
age and idlest core with in that package. Thigollowmg subsections highlights the changes

will remove the dependency on the active |an(equired in kernel S‘?hed”'ef for implementing
balance to select the correct physical packagér,nproveCI power savings policy on CMP.

CPU core for a new task. This makes the pro-

cess of picking the right processor more opti- .

mal as it happens at the time of task creation?-2-1 ~CPU_power selection

instead of happening after a task starts running

on awrong CPU. The first step in implementing this power sav-

. . ings policy is to allow the system under light
exec, fork balance will select the optimal CPU| = 4 - nditions to go into the state with one

at the beginning itself and if dynamics Changephysical package having more than one core

later during the process run, active load bal-busy and with another physical package be-
ance will kick in and distribute the load equally ing completely idle. Using scheduler group’s

among _the_ physical packages and the CPLtJ:pu power in SMP domain and with modifi-
cores with in them. cations to load balance, we can achieve this.

4.2 Scheduler enhancements for improv- In the presence of CMP domain, we will set
ing power savings cpu_power of scheduling group in SMP do-

main to the sum of all the cores horsepower

As observed in Section 3.2, when the systerr'1n thaf[ phys'.cal package. And if the_ load bal-

ance is modified such that, the maximum load

is lightly loaded, optimal power savings can bein a physical package can grow up to tei_

achieved when all the cores in a physical pack- ower of that scheduling group, then the sys-

age are completely loaded before distributingf .
: em can enter a state, where one physical pack-
the load to another idle package.

age has all its cores busy and another physical

When the cores in a physical package share rd2ackage in the system being completely idle.
sources, this scheduling policy will slightly im-
pact the peak performance. Performance im k
pact will depend on the application behavior,domain as before (same as the one used for
shared resources between cores and the numbeMP domain in the current Linux Kernel) and
of cores in a physical package. When the corethis will result in active load balance when

don't share resources, this scheduling policyt S€€S @ situation where more than one SMT
will result in an improved power savings with thréad in a core is busy, with another core be-

no impact on peak performance. ing completely idle. As the performance con-
tribution by SMT is not as large as CMP, this

For the CMP implementations which don’t behavior will be retained in power saving mode
share resources between cores, we can make well.

We will leave thecpu_power for the CMP
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Active load balance kicks in
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Let's take an example where there are tWoFlgure 7. Demonstration of active load balance

packages in the system, each having two coreg.)r improved POWET Savings with 4 tasks, on
There can be a situation where there are tw system having two physical packages, each

runnable tasks in the system and each end u aving four cores. Active load balance kicks in

running on a core in two different packages,getween the two physical packages, resulting in

with one core in each package being idle. Thismovement of th_e cqm_plete load to one physmal
ckage, resulting in improved power savings

situation needs to be detected and the comple!%a

load needs to be moved into one physical pack-
age, for more power savings. vent the idle core in package 1 doing the same

thing to the busiest core in package O (caus-
For detecting this situation, scheduler will cal-ing unnecessary ping-pong) load balance algo-
culate watt wastage for each scheduling groupithm needs to follow the ordering. Figure 7
in SMP domain. Watt wastage represents numshows a demonstration of this active load bal-
ber of idle cores in a non-idle physical pack-ance, which will result in improved power sav-
age. This is an indirect indication of wastedings.
power by idle cores in each physical package
so that non-idle cores in that package run unAs the number of cores residing in a physical
affected. Watt wastage will be zero when allpackage increase, shared resources between the
the cores in a package are completely idle ogores will become bottle neck. As the con-
completely busy. Scheduler can try to mini-tention for the resources increase, power sav-
mize watt wastage at SMP domain, by movinging scheduling policy will resultin an increased
the running tasks between the groups. Durindmpact on peak performance. As shown in Fig-
the load balance at SMP domain level, if theure 7, moving the complete load to one physi-
normal load balance doesn't detect any imbalcal package will indeed consume lesser power
ance, idle core (in a package which is not wastcompared to keeping both the packages busy.
ing much power compared to others in SMPBUt if the cores residing in a package share
domain) can run this power saving schedulingast level cache, the impact of sharing the last
policy and see if it can pull a task (using activelevel cache by 4 tasks may outweigh the power

load balance) from a package which is wastingsaving. To limit such performance impact, we
lot of power. can let the administrator choose the allowed

watt wastage for each package. Allowed watt
In the last example, idle core in package Owastage is an indirect indication of the schedul-
can detect this situation and can pickup theang group’s horsepowercpu_power of the
load from busiest core in package 1. To pre-scheduling group in SMP domain can be mod-
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ified proportionately based on the allowed watt5 Summary & Future work
wastage. Load balance modifications in Sec-

tion 4.2.1 will limit the maximum load that c\pp related scheduler enhancements dis-
a package can pickup (under light load conyssed in this paper fits naturally to the 2.6
ditions) and hence the impact to peak perfory jnyx Kernel Domain Scheduler environment.
mance. More power will be saved with Sma”erDepending on the requirements, administra-
allowed watt wastage. In the case shown in Figior can select the peak performance or power
ure 7, administrator for example can say, undega\,ing scheduler policy. We have prototyped
light load cond.itions don’t overload one physi- peak performance policy discussed in this pa-
cal package with more than 2 tasks. per. We are currently experimenting with the
power saving policy, so that it behaves as ex-
Setting the scheduler grougpu_power of  pected under the presence of CMP, SMT and
SMP domain to the sum of all the cores horseunder the light, heavy load conditions. Once
power (i.e., allowed watt wastage is zero) will e complete the performance tuning and anal-

result in a package picking up the max loadysis with real world workloads, these patches
depending on the number of cores. This willwill hit the Linux Kernel Mailing List.

result in maximum power saving. Setting the _ _
cpu_power to a value less than the combinedFor the future generation CMP imple-
horsepower of two cores (i_e.’ allowed Wattmentanons, researchers and scientists are
wastage is one less than the number of core@xperimenting[8] with “many tens of cores,
in a physical package) will distribute the load Potentially even hundreds of cores per package

equa"y among the physica| packages_ Th|§nd these cores Supportin.g tens, hundreds,
will result in peak performance. Any value for maybe even thousands of simultaneous execu-

cpu_power in between will limit the impact tion threads.” Probably we can extend Moore’s
to peak performance and hence the power say@w[7] to CMP and can dare say that number
ings. of cores per die will double approximately
every two years. This sounds plausible for
dhe coming decade at least. With more CPU
cores per physical package, kernel scheduler
optimizations addressed in this paper will
become critical. In future, more experiments
and work need to be focused on bringing micro
architectural information based scheduling to
the mainline.

Administrator can select the peak performanc
or the power savings policy by setting appro-
priate value to the scheduler grouptspu_
power in SMP domain.

4.2.3 exec, fork balance

Acknowledgments
SD_BALANCE_{EXEC, FORK}flags need

to be reset for domains SMP and above, Ca”%\'/lany thanks to the colleague’s at Intel Open

ing the new process to be started in the same, ;;ce Technology Center for their continuous
physical package. Normal load balance WI||Supp0rt_

kick in when the load of a package is more than

the package’s horsepowespu_power ) and Thanks to Nick Piggin and Ingo Molnar for al-
there is an imbalance with respect to anotheways providing quick comments on our sched-
physical package. uler patches.
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Abstract ogy as never before, with repercussions affect-
ing all areas of biology[15].

In the post-genomic era, getting useful answer®ne of the greatest hurdles a novice bioinfor-
to challenging biological questions often de-maticist must face is the learning curve when
mands significant expertise and resources ndearning an approach to biology that does not
only to acquire the requisite biological datainvolve the use of any of the classical or well-
but also to manage it. The storage requirecknown laboratory techniques.

to maintain a workable genomic or proteomic

database is usually out of reach for most biPerl is probably the most commonly used
ologists. Some toolsets already exist to facil-bioinformatics language currently[13], and has
itate some aspects of data analysis, and otrsubstantial and rich object-oriented facilities
ers for access to particular data stores (e.gtp deal with biological data[2]. While Perl
NCBI Toolkit), but there is a substantial learn-is highly versatile and effective in the hands
ing curve to these tools and installation is oftenof experienced bioinformaticists[14], my ex-
non-trival. SeqHoundRWeb.py grew out of aperience shows that initiates to programming
common frustration in bioinformatics—the ini- through academic bioinformatics courses often
tiate bioinformaticist often has substantial bio-have considerable difficulty understanding the
logical knowledge, but little experience in com- breadth of Perl approaches and idioms suffi-
puting; Python is often held up as a good firstciently for it to be useful.

scripting language to learn, and in our experi-

ence new users can be productive fairly rapidlyLike Perl, other languages have seen special-
ized facilities to handle biological informa-

tion develop considerably. Java[l], Ruby[4],

Python[3], amongst others, all have have been
Introduction used successfully in research projects. In par-

ticular, use of Python is becoming increasingly

commonplace in research[12].
The discovery of DNA by Watson and Crick

marked the beginnings of massive upheaval ilA second issue is the ability to obtain
biology, and ultimately, in the ways biologists and effectively exploit data in order to test
work. Research today, in the so-called postthe research hypotheses of interest. Fortu-
genomic era, has embraced computing technohately, there are many research sites provid-

o 205 o
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ing substantial data for research use, includhave a system able to store some 650 GB of
ing the US National Center for Biotechnol- data[9].

ogy Information[7] (NCBI), the Gene Ontology

Consortium[5] (GO) and the European Bioin- In order to make access to SeqHound simpler
formatics Institute[8] (EBI). Each of these sitesfor novice bioinformaticists, my approach was
host a considerable amount of data, in both siz¢0 trade off some speed for flexibility, and build
and breadth, typically database table dumps a@ Python wrapper around SeqHound's HTTP
lowing others to reconstitute and further de-APl, exposing much of the rich data provided
velop the data for individual research needsPy SeqHound to the ease-of-use of Python and
Although the data files are normally well un- its language features.

der a gigabyte in size (compressed), typical

processing requires some skill even for simple

parsing angl dat_a work up, particularly becaus&bverview

of the file sizes involved.

Not surprisingly, most research q_uestions tendre primary prerequisites for SeqHoundR-
to be more complex and require more ro-\ep ny are the urllib and os modules, so this
bust approaches to managing data, such §feans that SeqHoundRWeb.py should be able
relational databases (e.g. MySQL and Postg, \york on any platform supported by Python.
GreSQL) which in turn often mean having sub-jstaiation of the package will be via the typi-

s_tantia_l hardware and some system administraz,| Python installation techniques, and we ex-
tion skills. pect that it will be made available through

Other types of data processing, such adhe normal distribution c_hannels soon. until

genome-level comparisons between specigd'€n: the code can be imported into Python,
through Basic Local Alignment Search S shown below as ang as the Ipcatlon of.the
Tool[10] (BLAST) can be highly CPU inten- SegqHoundRWeb.py file is provided—novice

sive for hours or even days depending on th&Ython users can take full advantage of the
size of the genomes being searched and thfsinctions provided In t_hls module without the

underlying hardware. As this data updates orneed for root or Administrator-level access!

an ongoing basis, the need to rebuild result se
dictates the availability of large quantities of
substantial computing power.

t?able 1 shows a straightforward example of re-
trieval of a Genlnfo (GI) identifier given a par-
ticular accession number for a hypothetical pro-

One project to assemble much of the data frontein for a species of rat (specifically, the Nor-
these various sources and carry out many ofvay Rat,Rattus norvegicys

the more demanding data process steps was

SeqHound[11], merging biological sequence

(genomic and proteom?c)z taxon(_)my, a‘_nnOta_ACknOWbdgementS
tion and 3-D structure within an object-oriented

database management system and exposed via

a web-based API. Although most of SeqHoundThis project came about thanks to a number of
is F/OSS, hosting it locally locally would be people: Alexander Ignachenko, Shaun Ghanny,
difficult for most researchers without substan-Robin Haw, Henry Ling, Bianca Tong, Kayu
tial hardware and technical expertise, as th&€hin, Thomas Kislinger, and Ata Ghavidel all
current (as of Oct '04) recommendation is toprovided constructive criticism and support, for
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import os
import SeqHoundRWeb

# Set the proper URL for seghound
os.environ["SEQHOUNDSITE"] = "http://seghound.blueprint.org”

accs = |
"CAA28783",
"CAA28784",
"CAA28786"

]

for acc in accs:
result = SegHoundRWeb.SeqHoundFindAcc([acc])
if resultf0] == 'SEQHOUND_OK’: # found it
print result[1]

Table 1: Simple SeqHoundRWeb Example - Rat

which | remain grateful. Katerina Michalick- [3] BioPython web site.

ova, Michel Dumontier and others from the http://www.biopython.org/
Hogue Lab at Mount Sinai Hospital for cre-
ating SegqHound and exposing its functionality
via HTTP. An initial proof of concept, which
became the basis for this project, was built in [5] Gene Ontology Consortium FTP site.
the Emili Lab at the University of Toronto, and http://archive.godatabase.

| would like to thank the Department of Eco- org/latest-full/

nomics for allowing me the opportunity to con-

tinue working on it as part of my professional [6] It's All Pete’s Fault websitehttp:
responsibilities. Thanks also to Alex Brotman, Ilwww.itsallpetesfault.org/

Ales Hvezda and others from the SEUL Project .

for their keen eyes in finding mistakes in the [7] NCBIFTP site.http:

text. Any errors or omissions are, of course, //Www.ncbi.nim.nih.gov/Ftp/

[4] BioRuby web site.
http://www.bioruby.org/

my own(6]. [8] Catherine Brooksbank, Evelyn Camon,
Midori A. Harris, Michele Magrane,
Maria Jesus Martin, Nicola Mulder,
Claire O’'Donovan, Helen Parkinson,
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Abstract 1 Introduction

The Linux kernel has a number of alloca-
tors, including the page allocator for allocating
physical pages, the slab allocator for allocat-
ing objects with caching, and vmalloc alloca-
The Linux® kernel currently incorporates tor. Each of these allocators provide ways to
a minimalistic slab-based dynamic per-CPUmanage kernel memory in different ways. With
memory allocator. While the current alloca- the introduction of symmetric multi-processing
tor exists with some applications in the form of (SMP) support in the Linux kernel, managing
block layer statistics and network layer StatiS-data that are rarely shared among processors
tics, the current implementation has issuespecame important. While statically allocated
Apart from the fact that it is not even guar- per-CPU data has been around for a while, sup-
anteed to be correct on all architectures, theyort for dynamic allocation of per-CPU data
current implementation is slow, fragments, andyas added during the development of 2.6 ker-
does not do true node local allocation. A newne|. Dynamic allocation allowed per-CPU data
per-CPU allocator has to be fast, work welltg be used within dynamically allocated data

with its static sibling, minimize fragmentation, structures making it more flexible for users.
co-exist with some arch-specific tricks for per-

CPU variables and get initialized early enoughThe dynamic per-CPU allocator in the 2.6 ker-
during boot up for some users like the slab subnel was, however only the first step toward bet-
system. In this paper, we describe a new perter management of per-CPU data. It was a com-
CPU allocator that addresses all issues merpromise given that the use of dynamically allo-
tioned above, along with possible uses of thiscated per-CPU data was limited. But with the
allocator in cache friendly reference counterseed for per-CPU data increasing and support
(bigrefs), slab head arrays, and performancéor NUMA becoming important, we decided to
benefits due to these applications. revisit the issue.
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struct abc *ptr = alloc_percpu(struct abc);

In this paper, we present a new dynamic per-
CPU data allocator that saves memory by in-
terleaving objects of the same processor, sup-
ports allocating objects from memory close to
the CPUs (for NUMA platforms), works during
early boot and is independent of the slab allo+=-crvs
cator. We also show it allows implementation
of more complex synchronization primitives
like distributed reference counters. We discuss
some preliminary results and future course of
action.

21_cachep (size, GFP_KERN

struct percpu_data.ptrs[]

Figure 1: Current allocator

2 Background allowed better management of cache lines by

sharing them between CPU-local versions of

ory access. This is even more important incally, the first RFC for a dynamic per.-CPU data
multi-processor systems where accessing menfllocator was proposed [6] along with a refer-
ory shared between the processors could bgnce implementation [7].

significantly more costly if the corresponding

cache line is not available in that processor’ Subsequent discussions led to a simplified im-

plementation of a dynamic allocator in the 2.5

cache. kernel as shown in Figure 1. This allocator pro-
[Operation | Cost (ns)] vides an interfacalloc_percpu() that re-

Instruction 07 turns a pointer cookie. The pointer cookie is

Clock Cycle 14 the address of an array of pointers to CPU-local

L2 Cache Hit 12.9 objects each corresponding to a CPU in the

Main Memory 162.4 system. The array and the CPU-local objects

are allocated from the slab. Simplicity was the
most important factor with this allocator, but it

Table 1: 700 MHz P-IIl Operation Costs clearly had a number of problems.

Table 1 shows the cost of memory opera-
tions on a 700 MHz Pentium IlI processor.
When global data is shared between proces-
sors, cache lines bouncing between processors
reduce memory bandwidth and thereby nega-
tively impact scalability. As scalability im-
proved during the development of the 2.6 ker-
nel, the need for efficient management of in-
frequently shared data also increased. The first
step towards this was interleaved static per-
CPU areas proposed by Rusty Russell [3]. This 3. The array itself is not NUMA-friendly.

1. The slab allocations are no longer padded
to cache line boundaries. This means that
the current implementation would lead to
false sharing.

2. An additional memory access (array of
CPU-local object pointers) has a perfor-
mance penalty, mostly due to associativity
miss.
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4. It wastes space. v | UGN | s
f - objN
ob) N
CPU1 CHUNK s
We therefore implemented a new dynamic al- i =
locator that worked around the problems of R CONTIGHOVYM SPACE
the current one. This allocator is based on M s sk
the reference implementation [7] published ear- N
lier. The key improvement has been the use of POPU BLKCSIZE CPUn CHONK
. . . . ' obj
pointer arithmetics to determine the address of ! ‘
. B BLOCK,MAP}JAGEMENT,SIZE BLOCK MANAGEMENT
the CPU-local objects, which reduces derefer- :

encing overhead.

BLOCK

Figure 2: A block

3 Interleaved Dynamic Per-CPU

Allocator copy of the object’s private data to the corre-

sponding CPU. In our allocator, this record is a
3.1 Design Goals cookie and the CPU-local versions of the allo-
cated objects can be accessed using it. Deref-
. o erencing speeds are very important, since this
In order to address the inadequacies in the CUky the fast path for all users of per-CPU data.
rent per-CPU allocation schemes in the Linuxthe cpy-local versions of the object also need
kernel, a new allocator must do the following: {4 pe allocated from the memory nearest to the
CPU on NUMA systems. Also, in order to
1. Fast pointer dereferencing to get to thef’iVOid the overhead of an extrq memory access
per-CPU object in the current per-CE’U datg |mpI9mentat|on,
we needed to use pointer arithmetics to access
2. Allocate node local memory for all CPUs the object corresponding to a given CPU. The
pointer arithmetic should be simple and should

3. Save on memory, minimize fragmentation, ;ca as few CPU cycles as possible.

maximize cache line utilization

4. Work well with CPU hotplug and memory

hotplug, sparse CPU numbers. 3.2 Allocating a Block

5. Get initialized early during boot
The internal allocation unit of the interleaved
per-CPU allocator is &lock . Requests for
7. Work well with its static sibling (static per- per-CPU objects are served frombeock — of
memory. Theblock s are allocated on demand
CPU areas) . .
for new per-CPU objects. Alock is a con-
tiguous virtual memory space (VA space) that
A typical memory allocator returns a recordis reserved to contain a chunk of objects cor-
(usually a pointer) that can be used to access thesponding to every CPU. It also contains ad-
allocated object. A per-CPU allocator needs talitional space that is used to maintain internal
return a record that can be used to access evesgructures for managing the blocks.

6. Independent of the slab allocator
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Figure 2 shows the layout oftdock . The VA
space within &lock consists of two sections: :
1. The top section consists diR_CPU
chunks of VA space each of siRCPU _ cris
BLK_SIZE. PCPU_BLKSIZEis a com-
pile time constant. It represents the capacs«vwsemesize |y

ity of oneblock . Each CPU has one such
per-CPU chunk within &lock . Cur-
rently the size of each per-CPU chunk is
two pages. PCPU_BLKSIZEIs the size
limit of a per-CPU object.

VIRTUALLY CONTIGUOUS BLOCK

Figure 3: Page allocation for a block

2. The bottom section of dlock con-
sists of memory used to maintain the
per-CPU object buffer control information
for this block and plus block descrip-
tor size. This section is of siZzBLOCK _
MANAGEMENT_SIZE

3.3 Allocating Objects from a block

The per-CPU chunks insideldock are fur-
ther divided into units ofcurrency . A
currency is the size of the smallest object
that can be allocated in this scheme. The cur-
rency size is defined aszeof(void *) in

the current implementation. Any object in this

While the VA for the entireblock is allo-  gjiocator consists of one or more contiguous
cated, the actual pages for each per-CPU chunlts ofcurrency

are allocated only if the corresponding CPU is

present in theepu_possible_mask . This  Eachblock in the system has a descriptor as-
has two benefits—it avoids unnecessary wastsociated with it. The descriptor is defined as
of memory and each chunk can be allocated sbelow:

itis closest to the corresponding CRAlloc_

page_node() is used to get pages nearest t0, .\ ncou biock

the CPU. The management pages at the bottom void *start_addr;
of a block are always allocated. Once the
pages are allocated, VA space is then mapped

struct page *pages[PCPUPAGES_PER_BLOCK * 2];
struct list_head blKlist;

unsigned long bitmap[BITMAP_ARR_SIZE];

int bufctl_fl[OBJS_PER_BLOCK];

with pages for the CPU-local chunks. int bufctl fi_head:

unsigned int size_used;

Also, as shown in Figure 3, there won't be map-}’

pings for any VA space corresponding to CPUs

that are “not possible” on the system. The VAThis is embedded into the block management
space is contiguous fAdR_CPUSprocessors part of the block. In the current implementa-
and this allows us to use pointer arithmetics taion, it is at the beginning of the block man-
calculate the address of an object corresponcagement section of block . Each per-CPU
ing to a given CPU. We also save memoryobjectis allocated from one sublock main-

by not allocating for CPUs that are not in thetained by the interleaved allocator. The block
cpu_possible  mask. descriptor records the base effective address of
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BLOCK

0x£8880000

‘CPUO chunk

uct.-pépu-block:Bitmap

[oo]o]

OBJ1 OBJ2

Object block list CPU1 chunk

addr
[0x£8880000

Jon

size
20

addr
0x£8880018

BLOCK

size
20

bufctl
(OBJ1)

next
BLOCK MANAGEMENT STRUCTURE

Figure 4. Managing blocks |
Figure 5: Object layout

the block 6tart_addr ) as well as the al-
location state of eaclurrency  within the

block . The allocation state is recorded using,:igure 5 shows the relation betweemlack
a bitmap wherein each bit represents an iSomoi, the allocator, per-CPU objects allocated from
phic currency  of every per-CPU chunk in theplock |, the bitmap corresponding to these
that block. There are as many bits as the NUMgpjects,bufctl  structures andufctl  list
ber ofcurrency in one chunk of the block. o these objects. In this example, a per-CPU
block starts at 0xf8880000. The currency size
Figure 4 shows the organization of the blockis 3ssumed to be &igeof (void *) on
management area. Block descriptor has agge).  The squares in CPU chunks represent
array of pointers, each pointing to a CPU-ihe ajiocator currency. The first five consecu-
local chunk of physical pages allocated for thistjye currencies make OBJ1 (shaded currencies
block. Each object allocated fromtdock i, the block). Each currency is represented by
is represented by dufctl  data structure. 45 pit in the bitmap. Hence, bits 0—4 of the
Thesebufctl  structures are embedded in thebitmap correspond to OBJ1. OBJ1 starts at ad-
block management section of tikock and  gress 0xf8880000. OBJ2 starts at 0xf8888018.

they start right after the block descriptor. TheTne figure also depicts the bufctl structures and
block descriptor also has an array-based fregfct| list for OBJ1 and OBJ2.

list to allocatebufctl  or object descriptors.
bufctl_fl is the array-based free list and
bufctl_head  stores the head of this free list.

correspondingurrency units are allocated.

3.4 Managing blocks

During allocation of a per-CPU object, the The amount of per-CPU objects served by a sin-
bitmap indicatingcurrency allocation state gle block is limited. So, our allocator allows
is sorted and saved. This array is sorted in asallocation of newblock on demand. When-
cending order of available object sizes in thatever a request for a per-CPU object cannot be
block due to contiguousurrency regions. met with anyblock currently in the system, a
This array is traversed and the first element thanew block is added to the system that is iso-
fits the allocation requirement is used and thanorphic to existing ones.
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object for CPU 0. To get to the CPU-local
version of CPU N, the following arithmetics
is used—epu_local_address = p + N *
PCPU_BLKSIZE where p is the cookie re-
turned by the interleaved allocator. Since
PCPU_BLKSIZE is a carefully chosen com-
pile time constant of a proper page order, the
above arithmetics is optimized to a simple add
and bit shift operations. The most expensive
operation in accessing the CPU-local object is
usually the determination of the current CPU
number émp_processor_id() ). This is
true for static per-CPU areas as well. To avoid
Figure 6: Managing block lists the cost ofsmp_processor_id() during
per-CPU data access, kernel developers like
Rusty Russell have been contemplating using
These blocks are linked to one another in aa dedicated processor register to get a handle to
circular doubly linked sorted list (Figure 6). that processor's CPU-local data. The current
pcpu_block counts the amount of memory static per-CPU area in the Linux kernel uses

Sorted list of allocator blocks

used in the blockgize_used ). This listis an array (_per_cpu_offset[] ) to store
sorted in descending order usisige_used . a handle to each CPU’s per-CPU data. With
Thefirstnotfull field contains the list po- a dedicated processor register,per_cpu_

sition of the firstblock in the list that has offset[cpuN] would be loaded into the reg-
available memory for allocation. On an al- ister and users of per-CPU data would not need
location request, the list traversed from theto make a call tamp_processor_id() to
firstnotfull position and the first avail- get to the CPU-local versions—simple arith-
able block with sufficient space is chosen formetic on the contents of the processor ded-
allocation. If no such block is found, a new icated register will suffice. In factsmp_
block is created and added to this list. Theprocessor_id() could be derived from the
blocks are repositioned in the list to preserveregister based per_cpu_offset[] ta-
the sorted nature of the list upon every allo-ble. This scheme can co-exist with our per-
cation and free request. During the course oCPU allocator.

freeing per-CPU objects, if the allocator notices

thatblkp->size used goesto zero, the en-

tire block—VA space, per-CPU pages, block . .
management pages and the VA mapping are deAf Using Dynamic Per-CPU Alloca-

stroyed. tor
3.5 Accessing Per-CPU Data 4.1 Per-CPU structures within the slab al-
locator

A per-CPU allocation returns a pointer that is

used as a cookie to access CPU-local versiofhe Linux slab allocator uses arrays of object
of the object for any given CPU. This pointer pointers to speed up object allocation and re-
effectively points to address of the CPU-locallease. This avoids doing costly linked list or
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struct kmem_cache_s { struct kmem_cache_s { /* per-CPU variable */
struct array_cache *array[NR_CPUS]; struct kmem_globalcache *global;
/* ... additional members, only unsigned int avail;
* touched from slow path ... */ unsigned int limit;

}.

; void * objects[];
struct array_cache {

unsigned int avalil; struct kmem_globalcache { /* one instance */
unsigned int limit; /* ... additional members, only
void * objects]]; * touched from slow path ... */

Table 2: Main structures in the fast-path— Table 3: Main structures for fast-path—after
before

. o . and thus cache line transfers on the cache
spinlock operations in each operation. Eachob-  |ine that contains the table.

ject cache contains one array for each CPU. If
an array is not empty, then an allocation little e The implementation is fixed within
more than looking up the per-CPU array and slab.c , it's not possible to override it

returning one entry from that array. There- with arch specific code, even if an archi-
fore the time required for the pointer lookup tecture supports a fast per-CPU variable
is the most significant part of the execution lookup.

time for kmem_cache_alloc and kmem_

cache_free

Therefore the slab code was rearranged to

At present, the lookup code mimics the imple-US€ Per-CPU variables natively for the ob-
mentation of the dynamic per-CPU variablesi€Ct caches:kmem_cache_create  returns
kmem_cache create returns a pointer to thg pointer to the per-CPU structure_ that con-
the structure that contains the array of pointerd@ins the members that are needed in the fast-
to the per-CPU variables. Each allocation ofP@th of the allocator.  The other members
release looks up the correct per-CPU structur@r€ stored in a new structurstuctkmem_
and returns an object from the array. Table Zlobalcache ). The new structure layout is
shows the (slightly simplified) structures. shown in Table 3.

While this is a simple implementation, it has The functionskmem_cache_alloc() and
several disadvantages: kmem_cache_free()  only need to access

avail ,limit , andobjects |, thus there are

_ o _ no accesses to the global structure from the
e Itis acode duplication and itwould be bet- fast-path,

ter if slab could reuse the primitives pro-

vided by the dynamic per-CPU variables.

This is not possible, because it would cre-4.2  Statistics counters
ate a cyclic dependency: the dynamic per-

CPU variable implementation relies on the

slab allocator for its own allocations. As part of the scalable statistics counter work

we carried out earlier, it has already been es-

e Itis a simple per-CPU allocator, therefore tablished that per-CPU data is useful for ker-

each access required a table lookup. Denrel statistics counters, and solves the problem
pending on the value dIR_CPUSthere of cache line bouncing on NUMA and multi-

might be even frequent write operations,processor systems [5]. During the development
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of the 2.6 kernel, a number of kernel statisticsmake sure all CPUs recognize slow mode op-
were converted to use a dynamic per-CPU aleration before the 'disowning’ completes. The
locator. These include networking MIBs, disk reference counter is biased with a high value
statistics and th@ercpu_counter  used in by setting theatomic_t counter with the high
ext2 and ext3 filesystems. With our allocator,bias value before the switch to slow mode is ini-
the per-CPU statistics counters become moré&ated. In fact this biasing itself indicates begin-
efficient. In addition to faster dereferencing andning of the switch. This bias value is subtracted
node-local allocation, our allocator saveR_  from the reference counter after the switch to
CPUS x sizeof(void *) bytes of memory slow mode.

for each per-CPU counter by avoiding the array
storing the CPU-local object pointers. Bigrefs save on space and dereference speeds

when they use our per-CPU allocator. In ad-

dition to space saving, our allocator interlaces

4.3 Distributed reference counters (bi- counters on cache lines too, which results in in-
grefs) creased cache utilization.

Rusty Russell has an experimental patch that
makes use of the dynamic per-CPU memonp Results
allocator to avoid global atomic operations on

reference counters[4]. 51 Slab enhancements

A “bigref” reference counter would con-

sist of two counters internally; one of type The new slab implementation discussed in
atomic_t  which is the global counter, and Section 4.1 was tested with both micro-
another per-CPU counter of tydecal t , benchmarks and real-world test loads.

the distributed counter. Per-CPU memory for

thelocal_t is allocated when the blgref ref- e Micro-benchmarks showed no Change be-
erence counter is initialized. The reference  tween the old and the new implemen-

counter usually operates in the “fast” mode— tation; In a tight loop,kmem_cache

it just increments or decrements the CPU- alloc needed around 35 CPU cycles on
local local_t  counter whenever the bigref an 64-bit AMD Athlon" . The lack of im-
reference counter needs to be incremented or  ,rgyement is not unexpected because a ta-
decrementedyet() andput() operationsin ble lookup is only slow on a cache miss.

Linux parlance). This operation docal_t
per-CPU counters is much cheaper compared e Tests with tbench (version 3.03 with

to operations on a globatomic_t type. In warm-up) on a 4-CPU HT Pentium 4
fact on x86, local increment is just amcl  in- (2.8GHz Xeon) system showed an im-
struction. provement of around 1%.

The reference counter switches to a “slow”

mode when the element being protected by th

reference counter is no longer needed in the
system and is being released or 'disowned'.
This switch from fast mode to slow mode is The new allocator is not without its own limita-
done by usingynchronize_kernel() to tions:

Future Work
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Abstract

| will be discussing Beagle, a desktop search
system that is currently being developed by
Novell. It acts as a search aggregator, pro-
viding a simple API for simultaneously query-
ing multiple data sources. Pluggable backends
do the actual searching while Beagle handles
the details, such as consolidating and ranking
the hits and passing them back to client appli-
cations. Beagle includes a core set of back-
ends that build full-text indexes of your per-
sonal data, allowing you to efficiently search
your files, e-mail, contacts, calendar, IM logs,
notes and web history. These indexes are up-
dated in real time to ensure that any search re-
sults will always reflect the current state of your
data.

Check Online

] This author did not provide the body of this paper by deadline. Please check online for any ‘deates.
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Abstract in a network, and reference resources within
a file system. Within each of these cate-
ories names are evaluated in a specific con-

Private nam were first intr in .
ate name spaces were first introduced text. Program variables have scope, database

LINUX during the 2.5 kernel series. Their use, s
2 ._‘Indexes are evaluated within tables, networks
has been limited due to name space manipu- ) o :
) : . . .~ ‘machine names are valid within a particular
lation being considered a privileged operation. . . . :
- o . domain, and file names provide a mapping to
Giving users and applications the ability to cre- ; T :
. ... underlying resources within a particulaame
ate private name spaces as well as the ability t0

mount and bind resources is the key to unlock>Pac® This paper is primarily concerned with

ing the full potential of this technology. There the evaluation and manipulation of names and

: . ... name space contexts for file systems under the
are serious performance, security and stabilit

issues involved with user-controlled dynamicxf‘lNUX operating system.

private name spaces inNuUX. This paper pro- Fjle systems evolved from flat mappings of
poses mechanisms and policies for maintainpgmes to multi-level mappings where each cat-
ing system integrity while unlocking the power gjoq (or directory) provided a context for name
of dynamic name spaces for normal users. ltesolution. This design was carried further
discusses relevant potential applications of thi%y MULTICS[1] with deep hierarchies of di-
technology including its use WithlIEESYSTEM  rectories including the concept of links be-
IN USERSPACE24], VOFS[8] (the LINUX port  tween directories within the hierarchy[5]. Den-
of the RLAN 9 resource sharing protocol) and pis Ritchie, Rudd Canaday and Ken Thomp-
PLAN 9 FROM USER SPACE[4] (the RLAN 9 gon puilt the first UNIX file system based
application suite including user space synthetign MULTICS, but with an emphasis on
file servers ported to UNIX variants). simplicity[22]. All these file systems had a sin-
gle, global name space.

In the late 1980s, Thompson joined with Rob
Pike and others in designing the AN 9 oper-
ating system. Their intent was to explore po-
Names are used in all aspects of computetential solutions to some of the shortcomings
science[21]. For example, they are used to refef UNIX in the face of the widespread use of
erence variables in programing languages, inhigh-speed networks[19]. It was designed from
dex elements in a database, identify machine8rst principles as a seamless distributed system

1 What's in a name?
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with integrated secure network resource shar2 Background: Plan 9
ing.

The configuration of an environment to useln PLAN 9, all system resources and interfaces
remote application components or services irre represented as files. UNIX pioneered the
place of their local equivalent is achieved with aconcept of treating devices as files, providing a
few simple command line instructions. For thesimple, clear interface to system hardware. In
most part, application implementations operatdhe 8th edition, this methodology was taken fur-
independent of the location of their actual re-ther through the introduction of the /proc syn-
sources. PAN 9 achieves these goals throughthetic file system to manage user processes[10].
a simple well-defined interface to services, aSynthetic file systems are comprised of ele-
simple protocol for accessing both local and rements with no physical storage, that is to say
mote resources, and through dynamic, stackthe files represented are not present as files on
able, per-process private name spaces whichny disk. Instead, operations on the file com-

can be manipulated by any user or applicationmunicate directly with the sub-system or ap-
plication providing the service. INUX con-

On the other hand, theikiux file system name  tains multiple examples of synthetic file sys-
space has traditionally been a global flat namgems representing device®HvFS), process

space much like the original UNIX operat- control (PROCF9, and interfaces to system ser-
ing system. In November of 2000, Alexanderyices and data structuresysrs.

Viro proposed implementinglAN 9 style per-
process name space bindings[28], and in lat€LAN 9 took the file system metaphor fur-
February 2001 released a patch[2] against thther, using file operations as the simple, well-
2.4 kernel. This code was later adopted intadefined interface to all system and application
the mainline kernel in 2.5. This support, whichservices. The design was based on the knowl-
is described in more detail in section 4, estabedge that any programmer knows how to inter-
lished an infrastructure for private name spacegct with files. Interfaces to all kernel subsys-
but restricted the creation and manipulation otems from the networking stack to the graphics
name spaces as privileged. frame buffer are represented within synthetic
file systems. User-space applications and ser-
This paper presents the case for making namgices export their own synthetic file systems in
space operations available to common usergych the same way as the kernel interfaces.
and applications while extending the existindcommon services such as domain name ser-
LINUX dynamic name space support to havejice (DNS), authentication databases, and win-
the power and flexibility of PAN 9 name gow management are all provided as file sys-
spaces. Section 2 describes the design, implgams. End-user applications such as editors and
mentation and advantages of theAR 9 dis-  g_majl systems export file system interfaces as a
tributed system. Example applications of thisyeans for data exchange and control. The ben-
technology are discussed in Section 3. The eXafits and details of this approach are covered in
isting LINUX support is described in more de- great detail in the existinglAN 9 papers[18]

tail in Section 4. Perceived barriers and soluzng will be covered to a lesser extent by appli-
tions to extended INUX name space SUPPOrt cation examples in section 3.

are covered in Section 5. Section 6 overviews

related work and recent proposals as alterna@P[15] represents the abstract interface used to
tives to our approach and Section 7 summarizeaccess resources undaraR 9. It is somewhat
our conclusions and recommendations. analogous to the VFS layer inilux[11].
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In PLAN 9, the same protocol operations areor from a remote server. Bind commands al-
used to access both local and remote resourcesw reorganization of the existing name space,
making the transition from local resources toallowing certain services to be bound to well-
cluster resources to grid resources completelknown locations. Bind operations can sub-
transparent from an implementation standpointstitute one resource for another, for example,
Authentication is built into the protocol and binding a remote device over a local one. Bind-
was extended in itsNFERNJ20] derivative ing can also be used to create stackable layers
Styx[14] to include various forms of encryption by interposing one interface over another. Such
and digesting. interposer interfaces are particularly useful for

o debugging and statistics gathering.
It is important to understand that all 9P opera-

tions can be associated with different active seThe default mount and bind behavior is to re-
mantics in synthetic file systems. Traversal of gplace the mount-point. HoweverLEN 9 also
directory hierarchy can allocate resources or sedllows multiple directories to be stacked at a
locks. Reading or writing data to a file interfacesingle point in the name space, creatingnon

can initiate actions on the server. The dynamiairectory. Within such a directory, each compo-
nature of these semantics makes caching dament is searched to resolve name lookups. Flags
gerous and in-order synchronous execution ofo the mount and bind operations determine the
file system operations a must. position of a particular component in the stack.

. . . A special flag determines whether or not file
The 9P protocol itself requires only a reliable, oreation is allowed within a particular compo-
in-order transport mechanism to function. Itisont

commonly used on top of TCP/IP[16], but has

also been used over RUDP[13], PPP[23], anBy default, processes inherit an initial name

over raw reliable mechanisms such as the PCg},pace from their parent, but changes made to

bus, serial port connections, and shared menthe child’s name space are not reflected in the

ory. The IL protocol was designed specifically parent’s. This allows each process to have a

to provide 9P with a reliable, in order transportcontext-specific name space. TheaR 9 fork

on top of an IP stack without the overhead ofsystem call may be called with several flags al-

TCP[17]. lowing for the creation of processes with shared
name spaces, blank name spaces, and restricted

The final key design point of ;AN 9 is the name spaces where no new file systems can be

organization of all local and remote resources, J inted. PAN 9 also provides library func-

into a dynamic private name space. IVI""r"pmat'tions (and associated system calls) for creating

ing an element's Iogation wit.hin a Name Space, naw name space without creating a process
can be used to configure which services to US€,\d for constructing a name space based on a

interpose stackable layers onto service intergq yoscrining mount sources, destinations, and
faces, and create restricted "sandbox" environ-

options.
ments. Under PAN 9 and NFERNO, the name
space of each process is unique and can be ma-
nipulated by ordinary users through mount and
bind system callls. 3 Applications

Mount operations allow a client to attach new
interfaces and resources which can be provide@here are many areas where the pervasive use
by the operating system, a synthetic file serverpf private dynamic name spaces undenR 9
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can be applied in similar ways underNuUx. vices. Daemons exporting network services
Many of these are detailed in the foundationalkcan be locked into a very restrictive name
PLAN 9 papers [19, 18] as well as the AN  space, thus helping to protect system integrity
9 manual pages[15]. We will step through aeven if the daemon itself becomes compro-
subset of these applications and provide someised. Similarly, users accessing data from
additional potential applications in theNux  other domains over mounted file systems don't
environment. run as much risk of other users gaining access
_ if they mount the resources in a private name
Under RAN 9, one of the more straightfor- gn406  Users can craft custom sandboxes for

ward uses of dynamic name space is t0 bindynsted applications to help protect against
resources into well-known locations. For ex- potential malicious software and applets.

ample, instead of using a PATH environment

variable, various executables are bound into As mentioned earlier, AN 9 combines dy-
single/bin  union directory. PAN 9 clusters
use a single file server providing resources fo
multiple architectures. Typical startup profiles
bind the right set of binaries to tlkin direc-
tory. For example, if you logged in on an x86
host, the binaries froni386/bin would be
bound to/bin , while on PPC/power/bin
would be bound over bin. Then the user’s pri-

namic name space with a remote resource shar-
ing protocol to enable transparent distributed
resource utilization. Remote resources are
bound into the local name space as appropri-
ate and applications run completely oblivious
to what resources they are actually using. A
straightforward example of this is mounting

) : _ a networked stereo component’s audio device
vate binary directory is bound on top of the sys-t,;m across the room instead of using your

tem binaries. This has a side benefit of searchy,qstation’s sound card before starting an au-
ing the various directories in a single 100kup i, jukebox application. A more practical ex-

system call versus individually walking to ele- ample is mounting the external network proto-
ments in the path list from the shell. col stack of a firewall device before running a
Another use of stackable binds inLan 9  Web browser client. Since the external network

is within a development environment. You protocol stack is only mounted for the particu-

can bind directories (or even individual files) l&r browser client session, other services run-
with your changes over read-only versions of "9 in separate sessions with separate name
larger hierarchy. You can even recursively bingSPaces (and protocol stacks) are safe from ex-

a blank hierarchy over the read-only hierarchyf€nal access. ThetRN 9 paradigm of mount-

to deposit compiled object files and executaiNd any distributed resource and transparently

bles. The RPAN 9 development environment replacing local resources (or providing a net-

at Bell Labs has a single source tree which peowork resource when a local resource isn’t avail-
able) provides an interesting model for imple-

ple bind their working directories and private _ _ S _
object/executable trees over. Once they are saf€Nnting grid and utility based computing.

isfied with their changes, they can push them o
from the local versions to the core directories Another example of this is thetRN 9 cpu(1)

Using similar techniques developers can als¢mmand which is used to connect from a ter-
keep distinct groups of changes separated witH1inal to a cluster compute node. Note that
out having to maintain copies of the entire tree {NiS command doesn’t operate like ssh or telnet.

The cpu(l) command will export to the server
Crafting custom name spaces is also a goothe current name space of the process from

way to provide tighter security controls for ser- which it was executed on the client. Server side
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scripts take care of binding the correct archi-<4 Linux Name Spaces
tectural binaries for the cpu server over those

of the client terminal. Interactive I/O between . .
the cpu and the client is actually performed byThe private name space support added in the
2.5 kernel revolved around the addition of a

the cpu server mounting the client’s keyboard’CLONE_NEWNSag to the LNUX clone(2)

mouse, and display devices into the session’s stem call. The clone(2) system call allows

) . S
rivate name space and binding those resourc %/ . .
privat b ding $Re creation of new threads which share a cer-
over its own. Custom profiles can be used tq_. .
- tain amount of context with the parent process.
limit the resources exported to the cpu server. : )
: ._The flags to clone specify the degree of sharing
or to add resources such as local audio devices, . , . . ) -
Which is desired and include the ability to share
or protocol stacks. It represents a more ele;

. file descriptor tables, signal handlers, memory
gant approach to the problems of grid, cluster :
T . . 5pace, and file system name space. The current
and utility-based computing providing a mech-

) : . default behavior is for processes and threads
anism for the seamless integration and orga:-

nization of local resources with those spreaaIo start with a shared copy of the global name

space.
across the network. P

When theCLONE_NEWN#g is specified, the

o _ _child thread is started with a copy of the name
Similar approaches can be provided 1o virtu-space hierarchy. Within this thread context,
alization and para-virtualization environments.mqgifications to either the parent or child’s
Atthe moment, the LnuX kernelis plagued by name space are not reflected in the other. In
aplethora of “virtual” device drivers supporting other words, when a new name space is re-
ments. Separate gateway devices are support@bunted by the child process will not be vis-
for Xen[7], VMware[30], IBM Hypervisors[3], iple in the parent's name space. The converse
User Moder Linux[9], and others. Additionally, is a|so true. In this way, a thread’s name space
each of these virtualization engines requireperations can be isolated from the rest of the
separate gateways for each class of device. Thg/stem. The use of tHeLONE_ NEWN®g is
PLAN 9 paradigm provides a unified, simple, yrotected by th€AP_SYS_ADMINapability,

and secure method for supporting these varimaking its use available only to privileged users
ous virtual architectures and their device, fileg,ch as root.

system, and communication needs. Dynamic

private name spaces enable a natural envirorz-INUX name spaces are currently manipu-
ment for sub-dividing and organizing resourcedated by two system calls:mount(2) and
for partitioned environments. Application file umount(2) . Themount(2) system call at-
servers or generic plug-in kernel modules protaches a file system to a mount-point within
vide a variety of services including copy-on- the current name space and tinaount(2)
write file systems, copy-on-write devices, mul-system call detaches it. More recently in the
tiplexed network connections, and command.4 kernel series, theS_BINDflag was added
and control structures. IBM Research is curto allow an existing file or directory subtree
rently investigating using/ 9rs together with to be visible at other mount-points in the cur-
private name spaces and application synthetipent name space. Both system calls are only
file servers to provide just such an approach fowalid for users withCAP_SYS_ ADMINcapa-
partitioned scale-out clusters executing high-ility, and so are predominately used only by
performance computing applications. root. The table of mount points in a thread’s
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current name space can be viewed by lookingpowerful computing environment. Addition-
at the/proc/xxx/mounts file. ally, providing a more flexible, yet consistent
set of kernel enforced policies would be far su-

Users may be granted the ability to mountyerior 1o the wide range of semantics currently
and unmount file systems through the mount(1}ntorced by file system specific set-uid mount
application and certain flags in the fStab(5)appIications.

configuration file. This support requires that
the mount application be configured with set-
uid privileges and that the exact mount source
and destination be specified in the fstab(5)5 Barriers and Solutions
Certain network file systems (such a8IBFS
CIFs, and VIFs) which have a more user-
centric paradigm circumvent this by having PLAN 9 is not LINUX, and LINUX is not RLAN
their own set-uid mount utilities: smbmnt(8), 9. There are significant security model and file
cifs.mount(8), and 9fs(1). More recently, theresystem paradigm differences between the two
has been increased interest in user-space figystems. Concerns related to these differences
servers such asIEESYSTEM IN USERSPACE have been broken down into four major cate-
(FUSE)[24] with its own set-uid mount appli- gories: concerns with user name space manipu-
cation fusermount(8). lation, problems with users being able to mount

. . . . arbitrary file systems, potential problems with
The proliferation of these various set-uid ap-;,ser file systems, and problems with allowing

mechanisms indicates the need to re-evaluate

the existing restrictions so that a more practi-

cal set of policies can be put in place within5.1 Binding Concerns

the kernel. Users should be able to mount file

systems when and where appropriate. Private

name spaces seem to be a natural fit for prelhe mount(l) command specified with the
venting global name space pollution with in- -bind option, hereafter referred to as a bind
dividual user mount and bind activities. Theyoperation, is an incredibly useful tool even in
also provide a certain degree of isolation froma shared global name space. When combined
user mounted synthetic file systems, providingVith the notion of private name spaces, it allows
an additional degree of protection to systemiiSers and applications to craft custom environ-
demons and Other users Who m|ght Otherwisénents in Wh|Ch to WOI‘k. However, the ab'“ty to

unwittingly access a malicious user-level file dynamically bind directories and/or files over
server. one another creates several security concerns

that revolve around the ability to transparently
Private name space support inNUX is un-  replace system configuration and common data
der utilized primarily due to the classification with potentially compromised versions.
of name space operations as privileged. It is
further crippled by the lack of stackable namePLAN 9 places no restrictions on bind op-
space semantics and application file serversrations. Users are free to bind over any
Unlocking applications and environments suchsystem directory or file regardless of access
as those described in Section 3 by removingermissions—binding writable layers over oth-
some of the restrictions enforced by thewux  erwise read-only directories can be one of the
kernel would create a much more elegant ananore useful operations. HoweverLAN 9’s
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authentication and system configuration mechextend this protection to user name space ma-
anisms are constructed in such a way as taipulation is to return a permissions error when
not rely on accessing files when running undel normal user attempts to bind over a directory
user contexts. In other words, authenticatiorin which the sticky bit is set.
and configuration are system services which are
started at boot (or reside on different servers)While limiting binds to sticky-bit directories is
and so aren'’t affected by user manipulations ofeasonable enough, it is an unnecessary restric-
their private name spaces. tion. The use of private name spaces solves sev-
eral security concerns with user-modifications
Under LINUX, system services are constructeddo name space, and does so without overly
differently and there is still heavy reliance onlimiting the user’s ability to mount over these
well-known files which are accessed throughshared spaces. Another benefit of requiring
out user sessions. Examples include suchiser binds to be within a private name space
sensitive files agetc/passwd  and/etc/ is that it prevents such binds from polluting the
fstab . global system name space.

Similar concerns apply to certain system direc-
tories which multiple users may have write ac-5.2 Mounting Concerns
cess to, such asmp or/usritmp . If users
are able to bind over these public directories
under the global name space, they could potenAnother set of concerns has to do with allowing
tially compromise the data of another user whausers to mount new file systems into a name
inadvertently used a bourftmp instead of the space. As discussed previously, this is some-
system/tmp . thing currently accomplished through set-uid
mount applications which check the user’s per-
These problems can be addressed with a sinmissions versus particular policies. A more
ple policy of only allowing a user to bind over global policy would give administrators more
a directory they have explicit write access to.consistent control over users and help eliminate
This solves the problem of system configura-the potential problems caused by the use of set-
tion files, but doesn’t cover globally writable uid applications
spaces such aasr/tmp . A simple solu-
tion to protecting such shared spaces is to onl¥Dne of the primary problems with giving users
allow user initiated binds within private name the ability to mount arbitrary file systems is
spaces. A slightly more complicated form of the concern that they may mount a file system
protection is based on the assumption that suclith set-uid scripts allowing them to gain ac-
public spaces have thaicky bitset in the di- cess to privileged accounts (i.e., root). It is
rectory permissions. relatively trivial for a user to construct a file
system image, floppy, or CD-ROM on a per-
When used within directory permissions, thesonal machine with set-uid shells. If they were
sticky bit specifies that files or subdirectoriesallowed to mount these on an otherwise se-
can only be renamed or deleted by their origi-cure system, they could instantly compromise
nal owner, the owner of the directory, or a priv-it. The existing mount applications circum-
ileged process. This prevents users from deletvent such a vulnerability by providing Ro-
ing or otherwise interfering with each other’s suiD flag which disables interpretation of set-
files in shared public spaces. A simple policy touid and set-gid permission flags. A similar
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mechanism enforced as the default for all user5.3 User File System Concerns
mounts would provide a certain level of protec-

tion against such an attack. . L . -
g A driving motivation behind providing users

Another possible attack vector would be the im-the ability to mount and bind file systems is the
age being mounted. Most file systems are writincrease in popularity of user-space file servers.
ten on the assumption that the backing store i$hese predominantly synthetic file systems are
somewhat secure and reputablenlux kernel enabled through a number of different pack-
community members have expressed concerages includingy9rs and more predominantly
that disk images could be constructed specifiFUSE. These packages export VFS interfaces
cally to crash or corrupt certain file systems, sor equivalent APIs to user space, allowing ap-
as to disable or disrupt system activity. This isplications to act as file servers. Practical uses
particularly difficult to protect against, but not for such file servers include the exporting of
all file systems are vulnerable to such attacksarchive file contents as mountable name spaces,
In particular, network file systems are writtenadding cryptographic layers, and mapping of
defensively to prevent such corruption from af-network transports such as ftp to synthetic file
fecting the rest of the system. Such defensivelhierarchies.

written file systems could be marked with an

additional file system flag marking them as safe>ince they are implemented as user applica-
for users to mount. tions, these synthetic file servers pose an even

greater danger to system integrity by allow-
Each mounted file system uses a certain amouitg users to implement arbitrary semantics for
of system resources. Unlocking the ability tooperations. These implementations can easily
mount a new file system also unlocks the abilprovide corrupt data to system calls or block
ity for the user to abuse the system resourcesystem call resolution indefinitely, bringing the
by mounting new file systems until all sys- entire system to a grinding halt. Because of
tem memory is expended. This sort of activitythis, application file servers have fallen under
is easily controlled with per-user mount limits harsh criticism from the INUx kernel commu-
maintained using the kernel resource limit sysmity. However their many practical uses makes
tem with a policy set by the system administra-the engineering of a safe and reliable mecha-
tor. nism allowing their use in a INUX environ-

ment highly desirable.
A slightly different form of resource abuse gy

mentioned earlier is name space pollution. |fMany of the prior solutions mentioned can be
users are granted the ability to mount and bind gsed to limit the damage done by a malicious
large number of file systems, the resulting name;ser-space file servers. Private name spaces can
space pollution could prove to be distracting, ifprotect system daemons and other users from
not damaging to performance. Enforcing a pol-stumbling into a synthetic file system trap. Re-
icy in which users are only able to mount newstrictions preventing set-uid and set-gid inter-
file systems within a private name space easpretation within user mounts can prevent mali-
ily contains such pollution to the user’s sessioncjous users from using application file servers

Additionally, the current name space garbaggo gain access to privileged accounts or infor-
collection will take care of conveniently un- mation.

mounting file servers and recovering resources
when the session associated with the privaté different sort of permissions problem is also
name space closes. introduced by application file servers. Typi-
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cally, the file servers are started by a certaircharged for every mount he inherits when cre-
user and information within the file system is ating a private name space. If these two limita-
accessed under that user’s authority, potentiallyions are deemed insufficient, an additional per-
in a different authentication domain. For ex-user limit can be established for private name
ample, if a user mounts a ftpfs or an sshfs byspaces.
logging into a remote server domain, they are
potentially exposing the data from that domainMore prevalent among these perceived prob-
to other users and administrators on the localems is the change in basic paradigm. No
domain. As this is undesirable, it is importantlonger can the same file system environment
that other users (besides the initiator) do nobe expected from every session on a particu-
obtain direct access to mounted file systemdar system. In fact, depending on the extent to
While there are several ways of approachingvhich private name spaces are used there may
this (including overloaded permissions checksven be different file system views in different
that deny access to anyone but the mounter)yindows on the same session. The plurality of
private name spaces seem to handle this nicelyame spaces across processes and sessions pro-
without changing other system semantics. vides a great deal of flexibility in construction
of private environments, but is quite a departure
from expected behavior.
5.4 Private Name Space Concerns
The ability to maintain a certain degree of tra-
ditional semantics is desirable during a transi-
While they are limited, several barriers do existtion in paradigms. Further, having to mount
to user creation and use of private name spacesore resources for each session is rather te-
One objection to allowing users to create theirdious and undesirable. To a certain extent this
own private name spaces is the existence of aan be mitigated by more advanced inheritance
vulnerability in thechroot(1)  infrastructure techniques within the private hame spaces—
in the presence of such private name spacesllowing changes in parents to be propagated
The chroot(1) command is used to estab- to children but not vice versa. This is further
lish a new root for a particular user’s namediscussed in the Related Work section regard-
space. However, if a private name space is creng Alexander Viro’s shared subtrees proposal.
ated with theCLONE_N$Slag, the new thread is
allowed to traverse out of the chroot “jail” sim- Another possibility is a per-session name space
ply using the dot-dot traversal. This appears tareated when a user logs into the system. This
be more of a bug than a feature and should bprovides a single name space for that session
easy to defend against by never allowing a useseparate from the global name space insulat-
to traverse out of the root of their current nameing user modifications from the unsuspecting.
space. However, in simpler embodiments it doesn’t
provide the per-user name space semantics
The same resource concerns that apply to ussome desire (ie. the name space wouldn't ac-
mounts also apply to private name spacedually bridge two different SSH sessions). One
However, since the user can have no more pripossibility here is to tightly bind creation and
vate name spaces than processes, there is a pestoption of the per-user name space to the lo-
existing constraint. Additionally, due to the gin process (potentially as part of the PAM in-
copy semantics present in the existinguux  frastructure). Another possibility would be to
name space infrastructure, the user will beuse the name space description present in the
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/proc/xxxx/mounts synthetic file to cre- propagating name space changes from parent to
ate a duplicate name space in different processhildren. This provides a more convenient form
groups. This would work well for network file of inheritance allowing name space changes in
systems, binds, and9rs but may not work parents to also take effect in children with pri-
well for certain user file servers such as FUSEvate name spaces.

VOFs enables multi-session user file serverdViklos Szeredi, the project leader of FUSE has
without problems as it separates mount-poinProposed several patches related to opening up
from the file system semantics. In other words@nd expanding name space support. Among
when you run as9Fs application file server, it these were an altered permission semantics[25]
creates a mount point which could be used byo prevent users other than the mounting user
several different clients to mount the resultingfrom accessing FUSE mounts. After this met
file system. Besides giving the ability to sharefrom some resistance from theiNuX ker-

the resulting file system between user session§g! community, Miklos proposed an invisible
this technique potentially allows other users tomount patch[26] which tries to protect other
access the mount-point. User credentials arésers from potentially malicious mounts by
part of thev9Fs mount protocoL so each useris hldlng them from other users without the use
authenticated on the file system based on theRf private name spaces. A separate patch[27]
own credentials instead of the credentials of thé@ttempted to unlock mount privileges by en-

user who initially started the file server applica-forcing a static policy on user-mounts includ-
tion. ing some of the protections we have described

previously (only writable directories can be
mounted over, only safe file systems can be
mounted, and set-uid/set-gid permissions are
6 Related Work disabled). To date, none of these patches have
been incorporated into the mainline, but most

. . of these events are happening concurrently with
There are several historical as well as ongoingy, writing and revision of this paper

attempts to provide more dynamic name space
operations in INUX and/or open up those op- One of the responses to the FUSE patches was
erations to end-users and not just privileged adthe assertion that the job may have been bet-
ministrators. There are also several outstandinger done in user-space by an extended form of
request-for-comments on extensions to the exthe mount(1) application. The advantage to us-
isting name space support. ing a user-space policy solution is a much wider
and dynamic set of policies than would be de-
The originalv9rs project had tried to integrate sjrable to incorporate directly into the kernel.
private name space support into the file syssych an application would have set-uid style
tem and remote-resource sharing [12]. Whilepermissions, which several in the community
this worked in practice, Alexander Viro's re- haye criticized as undesirable. An alternative
lease of private name space support within thep this approach would be to use up-calls from

LiNux kernel suspended work on th®Fspri-  the kernel to a user-space policy daemon.
vate name space implementation.
Another outcome of the FUSE discussion was

As a follow-up to Viro’s initial name space sup- a patch[6] providing an unshare system call
port, he released a shared sub-tree request-farhich could be used to create private name
comments[29] detailing specific policies for spaces in a pre-existing thread. In other words,
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this would allow a thread to request a private/ Conclusions

name space without having been spawned with

one, making the creation of private name spaces

more accessible. The unshare patch also prépening up name space operations to com-
vides similar facilities for controlling other re- mon users will enable better working environ-
sources originally only available via flags dur- ments and transparent cluster computing. Users
ing the clone system call. should be granted the permission to establish

private name spaces through flags provided to
The file system translator projecti&T)[33] the clone(2) system call or using the newly
takes a different approach, offering users thgyroposed unshare system call. Once isolated
ability to add incremental features to existingj, g private name space, normal users should
file systems. It provides a set of templatesye granted the ability to mount new resources
and a toolkit which allow for relatively easy gng organize existing resources in ways they
creation of kernel file system modules whichgee fit. A simple set of system-wide restric-
sit atop pre-existing conventional file systems4jons on these activities will prevent malicious
The resulting modules have to be installed anq,sers from obtaining privileged access, disrupt-
mounted by a privileged user. Instead of r€ing system operation, or compromising pro-
lying on set-uid helper applications|&T al-  tected data. Adding stackable file name spaces

lows use of “private” instances of the file sys-intg the kernel file system interfaces would fur-
tem through a special ioctl attach command angher extend these benefits.

per-user sub-hierarchies. Several example file

system layers are provided with the standard

FIST distribution including cryptographic lay-

ers and access control list enforcement layers.g Acknowledgements
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Abstract isting applications that use SystemV shared-
memory constructs to run transparently, with-
)?ut any modifications, on this pseudo single

After years of research, the goal of seamlessl|
ystem.

migrating applications from shared memorys

multi-processors to a cluster-based computing, 2003, Virtual Iron Software began to investi-
environment continues to be a challenge. Thejate the potential of applying virtual machine
main barrier to adoption of cluster-based comyygpjtors (VMM) to overcome difficulties in

puting has been the need to make applicationﬁrogramming and using tightly-coupled clus-

cluster-aware. In trying to solve this problema s of servers. The VMM, pioneered by IBM

two approaches have emerged. One cOnSisig the 1960s, is a software-abstraction layer that
of the use of middleware tools such as MPI,E]

artitions hardware into one or more virtual
Globus and others. These are used to rewor, achines[Goldberg-74], and shares the under-

applicat.ions to run on a clulster. Anothe.r apP-lying physical resource among multiple appli-
proach is to form a pseudo single system imagetions and operating systems.
environment by clustering multiple operating

system kernels[Pfister-98]. Examples of thes@he result of our efforts is Virtual Iron VFe,
are Locus, Tandem NonStop Kernel, OpenSSia purpose-built clustered virtual machine mon-
and openMosix. itor technology, which makes it possible to
_transparently run any application, without mod-
However, _both approaches fall far short of the'rification, on a tightly-coupled cluster of com-
mark. Middleware level clustering tools re- yters. The Virtual Iron VFe software elegantly
quire applications to be reworked to run a clus—ypsiracts the underlying cluster of computers
ter. Due to this, only a handful of highly spe- yith a set of Clustered Virtual Machine Moni-
cialized applications sometimes referred to agy g (CVMM). Like other virtual machine mon-
embarrassingly parallel —have been jiors the CVMM layer takes complete con-
made cluster-aware. Of the very few commeryyq) of the underlying hardware and creates vir-
cial cluster-aware applications, the best knowny,a| machines, which behave like independent
is OracleR) Database Real Application Cluster- yhysical machines running their own operating
ing. OS kernel clustering approaches presendysiems in isolation. In contrast to other virtual
complexity of supporting a consistent, singleeny creates a shared memory multi-processor

system image to be seen on every system calj; of a collection of tightly-coupled servers.
made by every program running on the sys-

tem: applications, tools, etc; to making ex-Within this system, each operating system has

e 235 ¢
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the illusion of running on a single multi- Instruction Set Architecture) natively in hard-
processor machine wittN CPUs on top of ware, butreplacing the ISA's privileged instruc-
M physical servers interconnected by hightions with a set of (sys)calls that provide the
throughput, low latency networks. missing functionality on the virtual server. Be-

_ ~cause the virtual server does not support the full
Using a cluster of VMMs as the abstractionargware ISA, it's not a virtual instance of the
layer greatly simplifies the utilization and pro- ynderlying hardware architecture, but rather a
grammability of distributed resources.  We jriyal instance of the Virtual Iron Machine Ar-

found that the VFe software can run any aphjtecture (aka Virtual Hardware), having the
plication without modification. Moreover, the following crucial properties:

software supports demanding workloads that
require dynamic scaling, accomplishing this in
a manner that is completely transparent to OSs
and their applications.

e The virtual hardware acts like a multi-
processor with shared memory.

e Applications can run natively “as is,’
transparently using resources (memory,
CPU and 1/0) from all physical servers
comprising the virtual multi-processor as
needed.

In this paper we’ll describe Linux virtualiza-
tion on Virtual Iron VFe, the virtualization ca-
pabilities of the Virtual Iron Clustered VMM
technology, as well as the changes made to the
LINUX kernel to take advantage of this new

virtualization technology. e Virtual servers are isolated from one an-

other, even when sharing underlying hard-

ware. At a minimum, this means a soft-
1 Introduction ware failure in one virtual server does
not affect the operation of other virtual
servers. We also prevent one virtual server
from seeing the internal state (including
deallocated memory contents) of another.
This property is preserved even in the
presence of a maliciously exploitive (or
randomly corrupted) OS kernel.

The CVMM creates virtual shared memory
multi-processor servers (Virtual Servers) from
networks of tightly-coupled independent phys-
ical servers (Nodes). Each of these virtual
servers presents an architecture (the Virtual
Iron Machine Architecture, or VIMA) that
shares the user mode instruction set with the _ _ _
underlying hardware architecture, but replacegu""ralnteelng the .Iast two properties  si-
various kernel mode mechanisms with calls tomultane_ously requires —a hardwgre plat-
the CVMM, necessitating a port of the guestform with the following key architectural
operating system (aka guest OS) kernel infeatures[Goldberg-72]:
tended to run on the virtual multi-processor.

e Atleast two modes of operation (aka privi-

The Virtual Iron Machine Architecture ex- lege levels, or rings) (but three is better for
tends existing hardware architectures, virtualiz-  performance reasons)

ing access to various low-level processor, mem- - _
ory and 1/O resources. The software incorpo- Unreasonably, that is. Some performance degrada-

. . . tion can be expected for virtual servers sharing a CPU,
rates a type of Hybrid Virtual Machine Mon- for example. But there should be no way for a misbe-

itor [RObin'OOL executing non-privileged in- haying virtual server to starve other virtual servers of a
structions (a subset of the hardware platform’shared resource.
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e A method for non-privileged programs to 2.1 Virtual Machine Features

call privileged system routines

o A memory relocation or protection mech- The CVMM creates an illusion of a shared

anism

memory virtual multi-processor. Key features

of our virtualization are summarized below:

e Asynchronous interrupts to allow the I/O
system to communicate with the CPU

Like most modern processor architectures, the
Intel 1A-32 architecture has all of these fea-
tures. Only the Virtual Iron CVMM is allowed

to run in kernel mode (privilege level 0) on
the real hardware. Virtual server isolation im-
plies the guest OS cannot have uncontrolled ac-
cess to any hardware features (such as the CPU
control registers) nor to certain low-level data
structures (such as the paging directories/tables
and interrupt vectors).

Since the I1A-32 has four privilege levels, the
guest OS kernel can run at a level more highly
privileged than user mode (privilege level 3),
though it may not run in kernel mode (privi-
lege level O, reserved for the CVMM). So the
LINUX kernel runs in supervisor mode (privi-
lege level 1) in order to take advantage of the
IA-32’s memory protection hardware to keep
applications from accessing pages meant only
for the kernel.

2 System Design

In the next few sections we describe the basic
design of our system. First, we mention the
features of the virtualization that our CVMM

provides. Next, we introduce the architecture
of our system and how virtual resources are

mapped to physical resources. And lastly we e

describe the LINUX port to this new virtual
machine architecture.

e The CVMM supports an Int@ ISA

architecture of modern Intel processors
(such as Intel XEONWM),

e Individual VMMs within the CVMM are

not implemented as a traditional virtual

machine monitor, where a complete pro-
cessor ISA is exposed to the guest op-
erating system; instead a set of data
structures and APIs abstract the underly-
ing physical resources and expose a “vir-
tual processor” architecture with a con-
ceptual ISA to the guest operating sys-
tem. The instruction set used by a guest
OS is similar, but not identical to that

of the underlying hardware. This results
in a greatly improved performance, how-

ever it does require modifications to the
guest operating system. This approach
to processor virtualization is known in

the industry as hybrid virtualization or as

paravirtualization[Whitaker-00].

The CVMM supports multiple virtual ma-
chines running concurrently in complete
isolation. In the Virtual Iron architecture,
the CVMM provides a distributed hard-
ware sharing layer via the virtual multi-
processor machine. This virtual multi-
processor machine provides access to the
basic I/0, memory and processor abstrac-
tions. A request to access or manipulate
these items is handled via the VIMA APIs
presented by the CVMM.

Being a clustered system Virtual Iron VFe
providesdynamic resource management
such as node eviction or addition visible
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nect, high-speed 1/0O and software. The ba-
— sic hardware components providing processors
vee veru and memory are called nodes. Nodes are likely
to be packages of several components such as
processors, memory, and I/O controllers. All
e I/O in the system is performed over intercon-
@H@ H H@| nect fabric, fibre channel, or networking con-
— trollers. All elements of the system present a

shared memory multiprocessor to the end appli-
(

Guest Operating System

Logleal Memory

cations. This means a unified view of memory,
processors and I/O. This level of abstraction is
provided by the CVMM managing the proces-
Figure 1: A Cluster of VMMs supporting a four SOrS, memory and the interconnect fabric.
processor VM.

Interconnect )

to the Virtual Machine as hot-plug proces- 222 Server\View

sor(s), memory and device removal or ad-
dition respectively. Starting from the top, there is a virtual server
running guest operating system, such as RHAS,

We currently support LINUX as the guest 0S;SUSE, etc.  The guest operating system
however the underlying architecture of the Vir- Presents the expected multi-threaded, POSIX

tual Iron VFe is applicable to other operating S€"Ver instance running multiple processes and
systems. threads. Each of these threads utilizes resources

such as processor time, memory and 1/0O. The
. virtual server is configured as a shared mem-
2.2 Architecture ory multi-processor. This results in a number
of processors on which the guest operating sys-
This section outlines the architecture of Vir- M may schedule processes and threads. There

tual Iron VFe systems. We start with differing IS @ unified view of devices, memory, file sys-
views of the system to introduce and reinforcel®mS, buffer caches and other operating system
the basic concepts and building blocks. Thd€ms and abstractions.

Virtual Iron VFe system is an aggregation of

component systems that provide scalable capa-

bilities as well as unified system managemeng.2.3 System View

and reconfiguration. Virtual Iron VFe software

creates a shared memory multi-processor sysrhe Building Blocks View differs from the pre-
tem out of component systems which then rung;iously discussed Server View in significant
a single OS image. ways. One is a collection of unshared com-
ponents. The other is a more typical, unified,
shared memory multi-processor system. This
needs to be reconciled. The approach that we
use is to have the CVMM that presents Virtual
Each system is comprised of elementary buildProcessors (VPs) with unified logical memory
ing blocks: processors, memory, intercon-to the guest OS, and maps these VPs onto the

2.2.1 Building Blocks
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physical processors and logical memory ontmn a shared memory multi-processor system of
distributed physical memory. A large portion new design. The hardware is managed by the
of the instruction set is executed by the ma-CVMM that maps physical resources to virtual
chine’s physical processor without CVMM in- resources.

tervention, the resource control and manage-
ment is done via VIMA API calls into the
CVMM. This is sufficient to create a new ma- 3
chine model/architecture upon which we run
the virtual server. A virtual server is a collec-
tion of virtual processors, memory and virtual In this section we describe how the CVMM vir-
I/O devices. The guest OS runs on the virtuakualizes processors, memory and I/O devices.
server and the CVMM manages the mapping of

VPs onto the physical processor set, which ca

change as the CVMM modifies the available re-%'1 Cluster of VMMs (CYMM)
sources.

Implementation of the CVMM

_ _ The CVMM is the software that handles all of
Nodes are bound into sets known as Virtuakhe mapping of resources from the physical to
Computers (VC). Each virtual computer mustyiry,al.  Each node within a CVMM cluster
contain at least one node. The virtual com+,4s an instance of the VMM, and these in-
puters are dynamic in that resources may Oiryiances form a shared-resource cluster that pro-
and leave a virtual computer without any sys-;iqes the services and architecture to support
tem interruption. Over a longer time frame, ihe virtyal computers and appear as a single
virtual computers may be created, destroyedpgred memory multi-processor system. The

and reconfigured as needed. Each virtual comragoyrces managed by the CVMM include:
puter may support multiple virtual servers, each

running a single instance of an operating sys-
tem. There are several restrictions on virtual ® Nodes
servers, virtual computers, and nodes. Each vir-
tual server runs on a single virtual computer,
and may not cross virtual computers. An indi- e Memory, local and remote
vidual node is mapped into only a single virtual
computer.

Processors

I/O (devices, buses, interconnects, etc)

The virtual server guest operating system, Interrupts, Exceptions and Traps

LINUX for instance, is ported to run on a
new virtual hardware architecture (more details
on this further in the document). This new ) o
virtual hardware architecture is presented byFach collection of communicating and co-
the CVMM. From the operating system point °Perating VMMs forms a virtual computer.
of view, it is running on a shared memory There is a one-to-one mapping of virtual com-

multi-processor system. The virtual hardwarguter to the cluster of VMMs.  The CVMM
still performs the computational jobs that it al- IS re-entrant and responsible for the scheduling

ways has, including context switching between2Nd management of all physical resources. Itis
threads. as thin a layer as possible, with a small budget

for the overhead as compared to a bare LINUX
In summary, the guest operating system runsystem.

Inter-node communication
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cessors by the CVMM. There are a number of
e vl 3 OS User Pracesses rules that are followed in performing this map-
ping:

Supervisor Mode
priv level 1 05 Kernel

e Virtual processors are scheduled concur-
rently, and there are never more virtual

priv lovel processors than physical processors within

prvges et a single virtual server.

Instructions Excoptions

LET
ardware Physical Processors

¢ The CVMM maintains the mapping of vir-

tual processors to physical processors.
Figure 2: Virtual Iron paravirtualization (Intel

IA-32). e Physical processors may belong to a vir-
tual computer, but are not required to be

3.2 \Virtualizing Processors used or be active for any particular virtual
server.

Each of the physical processors is directly man-

aged by the CVMM and only by the CVMM. These rules lead to a number of conclusions.

A physical processor is assigned to a single vir-First anv number of phvsical processors ma
tual computer, and may be used for any of th » any pny P y

eoe assigned to a virtual computer. However, at

virtual servers that run on that virtual computer. . .
. ._._‘any given moment, the number of active phys-
As we stated before, the method of virtualizing. :
ical processors is the same as the number of

the processors that is used in the Virtual Iron . .
: : L . - virtual processors in the current virtual server.
VFe isparavirtualization The diagram irFig- : .
. : : Moreover, the number of active virtual proces-
ure 2illustrates our implementation of the par-

) o . sors in a virtual server is less than or equal
avirtualization concept on the IA-32 platform: ) )
to the number of physical processors available.

In this scheme, the vast majority of the vir- For instance, if a node is removed from a vir-

tual processor's instructions are executed by thi/@! computer, it may be necessary for a vir-
real processor without any intervention from U@l server on that virtual computer to reduce
the CVMM, and certain privileged instructions the number of active virtual processors.

used by the guest OS are rewritten to use the

VIMA APIs. As with other VMMs, we take

advantage of underlying memory protection in3-3  Interrupts, Traps and Exceptions

the Intel architecture. The CVMM runs in the

privilege ring-0, the guest OS runs inring-1 and

the user applications run in ring-3. The CYMM The CVMM is set-up to handle all inter-
is the only entity that runs in ring-0 of the pro- rupts, traps and exceptions. Synchronous traps
cessor and it is responsible for managing all opand exceptions are mapped directly back into
erations of the processor, such as booting, inithe running virtual processor. Asynchronous

tialization, memory, exceptions, and so forth. €vents, such as interrupts, have additional logic
such that they can be mapped back to the ap-

Virtual processors are mapped to physical propropriate virtual server and virtual processor.
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3.4 Virtualizing Memory 3.5 Virtualizing I/0 Devices

Memory, like processors, is a resource that iS:lust as with the other resources, the CVMM

shared across a virtual computer and used by, 4065 411 1/0 devices. No direct access by
the virtual servers. Shared memory |mpIe-a virtual server is allowed to any I/O device,

mented within a distributed system natura"ycontrol register or interrupt. The VIMA pro-

results in non-uniform memory access tImeSvides APIs to access the I/O devices. The vir-

The CVMM.'.‘Q’ r_espon5|ble for_ memory m"?m' tual server uses these APIs to access and con-
agement, initialization, allocation and sharlng.trol all /O devices

Virtual servers are not allowed direct access to

the page tables. However, these tables neeg ;5 for the virtual computer is done via

to be.managed to accommodate a number Qfierfaces and mechanisms that can be shared

goals: across all the nodes. This requires a set of
drivers within the CVMM that accommodate

e First, they need to be able to specificallythis, as well as a proper abstraction at the level
locate an individual page which may re- Of @ virtual server to access the Fibre Channel

side in any one of the physical nodes and Ethernet.

e They must be able to allow several levelswith the previous comments in mind, the job
of cost. That is, the virtual server should of the CVMM is to present a virtualized I/O in-
be able to manipulate page tables at theerface between the virtual computer physical
lowest possible cost in most instances ta/O devices and the virtual servers. This inter-
avoid round-trips through the CVMM.  face provides for both sharing and isolation be-

tween virtual servers. It follows the same style

¢ Lseorl\?et'rogh(')s IZ gzq:g|ir?§n;ﬁeCTznV'rg:ﬁéra”d paradigm of the other resources managed
. y Ot€h,y the cvMM.

virtual server. If several virtual servers
are running on the same virtual computer,
then any failures, either deliberate or acci-
dental, should not impact the other virtual

servers. 4 LINUX Kernel Port

The illusion of a shared memory multi- This section describes our port of the LINUX
processor system is maintained in the Virtual2.6 kernel to the 1A-32 implementation of the
Iron architecture by the sharing of the memoryVirtual Iron Machine Architecture. It doesn't
resident in all of the nodes in a virtual com- specify the architecture in detail, but rather de-
puter. As various processors need access tecribes our general approach and important pit-
pages of memory, that memory needs to be redalls and optimizations, many of which can ap-
ident and available for local access. As pro-ply to other architectures real and virtual. First
cesses, or the kernel, require access to pagese’ll look at the essential porting work required
the CVMM is responsible for insuring the rel- to make the kernel run correctly, then at the
evant pages are accessible. This may involvenore substantial work to make it run well, and
moving pages or differences between the modfinally at the (substantial) work required to sup-
ified pages. port dynamic reconfiguration changes.
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4.1 Basic Port Page Type Meaning
Physical page | A local memory instance

(copy) of a VIMA logical

We started with an early 2.6 LINUX kernel, de- page. The page contents
riving our architecture port from the i386 code are of interest to the own-
base. The current release as of this writing ing virtual server.

is based on the 2.6.9 LINUX kernel. As the Physical page A local memory con-
burden of maintaining a derived architecture is  frame tainer, denoted by a
substantial, we are naturally interested in co- specific physical address,
operating with various recent efforts to refac- Cogical 'Tan‘."l?eci by the CVMM.
tor and generalize support for derived (e.g., ogical page virtual server page,

. . \ the contents of which are
;(frzg64) and virtualized (e.g., Xen) architec- managed by the guest op-

erating systemThe phys-
ical location of a logical
page is not fixed, nor even

The VIMA interface is mostly implemented via

soft interrupts (like syscalls), though memory- exposed to the guest oper-
mapped interfaces are used in some special ating system
cases where performance is crucial. The [ogical page| A logical memory con-
data structures used to communicate with the frame tainer, denoted by a spe-
CVMM (e.g., descriptor tables, page tables) are cific logical address, man-
close, if not identical, to their 1A-32 equiva- aged by the guest operat-
lents. ing system.

Replicated page A logical page may be
The basic port required only a single modifica- replicated on multiple
tion to common code, to allow architectures to nodes as long as the
overridealloc_pgd()and free_pgd() Though contents are quaranteed
as we'll see later, optimizing performance and to be identical. Writing to

a replicated logical page
will invalidate all other
copies of the page.

adding more dynamic reconfiguration support
required more common code modifications.

The virtual server configuration is always avail-
able to the LINUX kernel. As mentioned ear-
lier, it exposes the topology of the underlying
hardware: a cluster afiodes each providing
memory and (optionally) CPUs. The configura-| INUX guest operating system and the Virtual
tion also describes the virtual devices availablgrgn cvMM.

to the server. Reading virtual server configu-

ration replaces the usual boot-time BIOS an
ACPI table parsing and PCI bus scanning.

Table 1: Linux Memory Management in Virtual
Iron VFe

qsolating a virtual server from the CVMM and
other virtual servers sharing the same hardware
requires that memory management be carefully
4.2 Memory Management controlled by the CVMM. Virtual servers can-

not see or modify each other's memory under

any circumstances. Even the contents of freed
The following terms are used throughout thisor “borrowed” physical pages are never visible
section to describe interactions between théo any other virtual server.
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Accomplishing this isolation requires explicit 4.3 Virtual Address Space
mechanisms within the CVMM. For example,

CPU control register cr3 points to the top-levelthe standard 32-bit LINUX kernel reserves the
page directory used by the CPU’s paging unityast quarter (gigabyte) of virtual addresses for
A malicious guest OS kernel could fry to pointjis own purposes. The bottom three quarters of
this to afake page directory structure map- yirtyal addresses makes up the standard process

ping pages belonging to other virtual Serveryyser-mode) address space.
into its own virtual address space. To prevent

this, only the CVMM can create and modify the Much efficiency is to be gained by having the
page directories / tables used by the hardwareCVMM share its virtual address space with the
and it must ensure that cr3 is set only to a top-guest OS. So the LINUX kernel is mapped into
level page directory that it created for the ap- the top of the CVMM’s user-space, somewhat
propriate virtual server. reducing the virtual address space available to
LINUX users. The amount of virtual address

pace required by the CVMM depends on a
variety of factors, including requirements of
grivers for the real hardware underneath. This
overhead becomes negligible on 64-bit archi-
tectures.

On the other hand, the performance of memor
management is also of crucial importance. Tak
ing a performance hit on every memory acces
is not acceptable; theommon caséin which
the desired logical page is in local memory,
mapped, and accessiblg)ffers no virtualiza-
tion overhead. 4.4 Booting

The MMU interface under VIMA 32-bit archi- As discussed earlier, a guest OS kernel runs
tecture is mostly the same as that of the 1A-328t privilege level 1 in the 1A-32 VIMA. We

in PAE mode, with three-level page tables offirst replaced the privileged instructions in the
64-bit entries. A few differences exist, mostly arch code by syscalls or other communication
that ours map 32-bit virtual addresses to 40W|th the CVMM. Kernel execution starts when
bit logical addresses, and that we use softwaré1e CYMM is told to start a virtual server and

dirty and access bits since these aren’t set bpointed at the kernel. The boot virtual proces-
the CVMM. sor then starts executing the boot code. VPs are

always running in protected mode with paging
enabled, initially using aull page table sig-

The page tables themselves live in logical .. . . ol .
memory, which can be distributed around themfymg direct (logical = virtual) mapping. So

. the early boot code is fairly trivial, just estab-
system. To reduce possibly-remote page tabl y y J

: . ﬁshing a stack pointer and setting up the ini-
accesses during page faults, the CVMM 'Mal kernel page tables before dispatching to C

plements fairly aggressive software TLB. Un_code. Boot code for secondary CPUs is even

like the x86 TLB, the CVMM supports Ad- S
' ) more trivial since there are no page tables to
dress Space Number tags, used to differenti: | bag

ate and allow selective flushing of translations

from different page tables. The CVMM TLB is _

naturally kept coherent within a node, so a lazy*->  Interrupts and Exceptions

flushing scheme is particularly useful since (as

we’ll see later) we try to minimize cross-node The LINUX kernel registers handlers for inter-
process migration. rupts with the CVMM via a virtualized Inter-
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rupt Descriptor Table. Likewise, the CVMM e device discovery
provides a virtualized mechanism for masking

and unmasking interrupts. Any information ® device configuration
(e.g., cr2, etc.) necessary for processing an in-
terrupt or exception that is normally readable
only at privilege level 0 is made available to
the handler running at level 1. Interrupts actu-
ally originating in hardware are delivered to the
CVMM, which processes them and routes them
when necessary to the appropriate virtual server

interrupt handlers. Particular care is taken toBecause IO performance is extremely impor-
provide a “fast path” for exceptions (like Page ant, data is presented in large chunks to mit-

]:gfll;/s) and interrupts generated and handled IO|'gate the overhead of going through an extra

layer. The only currently supported I/O devices

Particularlv wh hari hvsical are Console (VCON), Ethernet (VNIC), and Fi-
articuiarly when sharing a physical proces, o cpannel storage (VHBA). We have imple-
sor among several virtual servers, interrupts

) . . mented théottom layer  of three new de-
can arrive when a virtual server is not cur-

f ina. In thi the int t vice drivers to talk to the VIMA, while the in-
rently running. 'n this case, the Interrup () A% erface from above remains the same for drivers
pended , possibly coalescing several for the

same device into a single interrupt Becaus%n the same class. Sometimes the interface
L ~from above is used directly by applications, and
the CVMMs handle all actual device communi- ybyapp

. ) : sometimes it is used by higher-level drivers. In
cation, LINU).( 'S not sgk_)Jec_t to the_usual harad- either case, the upper levels work “as is.”
ware constraints requiring immediate process-

ing of device interrupts, so such coalescing iy, 4imost all cases, completion interrupts are
not dangerous, provided that the interrupt hangejivered on the CPU that initiated the opera-
dlers realize the coalescing can happen and agbn. But since CPUs (and whole nodes) may

initiation of (typically asynchronous) 1/0O
operations

e completion of asynchronous 1/0O opera-
tions

accordingly. be dynamically removed, LINUX can steer out-
standing completion interrupts elsewhere when
necessary.

46 1/0

4.7 Process and Thread Scheduling
The VIMA 1/O interface is designed to be

flexible and extensible enough to support new

classes of devices as they come along. Th&he CVMM runs one task per virtual proces-
interface is not trying to present somethingsor, corresponding to its main thread of control.
that looks likereal hardware , but rather The LINUX kernel further divides these tasks
higher-level generic conduits between the guedb run LINUX processes and threads, starting
OS and the CVMM. That is, the VIMA itself with the vanilla SMP scheduler. This approach
has no understanding of I/0O operation semanis more like the one taken by CoVirt[King-03]
tics; it merely passes data and control signaland VMWare Workstation[Sugerman-01], as
between the guest operating system and thepposed to having the underlying CVMM
CVMM. It supports the following general ca- schedule individual LINUX processes as done
pabilities: in L4[Liedtke-95] . This is consistent with our
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general approach of exposing as much informamachine is ease of instrumentation. To this end,
tion and control as possible (without compro-our CVMM has a large amount of (optional)
mising virtual server isolation) to the guest OS,code devoted to gathering and reporting per-
which we assume can make better decisions béermance data, and in particular for gathering
cause it knows the high-level context. So, otheinformation about cross-node memory activity.
than porting the architecture-specific context-Almost all of the optimizations described here
switching code, no modifications were neceswere driven by observations from this perfor-
sary to use the LINUX scheduler. mance data gathered while running our initial
target applications.

4.8 Timekeeping

4.9.1 Logical Frame Management and

Timekeeping is somewhat tricky on such a NUMA

loosely coupled system. Because fjifées

variable is used all over the place, updating

the global value on every clock interrupt gener-When LINUX runs on non-virtualized hard-
ates prohibitively expensive cross-node memware, page frames are identified by physical
ory traffic. On the other hand, LINUX ex- address, but when it runs on the VIMA, page
pects jiffies to progress uniformly. Normally frames are described blpgical address.
jiffies is aliased tgiffies_32 the lower 32 bits Though logical page frames are analogous to
of the full 64-bit jiffies_64 counter. Through physical page frames, logical page frames have
some linker magic, we makgffies 32 point somewhat different properties:

into a special per-node page (a page whose log-

ical address maps to a different physical page

on each node), so each node maintains its own ® Logical page frames are dynamically

jiffies_32 The globaljifiies_64is still updated mapped to physical page frames by the
every tick, which is no longer a problem since CVMM In response to page faults gener-
most readers are looking iiffies_32 The ated while the guest OS runs

local jiffies_32values are adjusted (incremen-
tally, without going backwards) periodically to
keep them in sync with the global value.

e Logical page frames consume physical
page frames only when mapped and ref-
erenced by the guest OS.

4.9 Crucial Optimizations e The logical page frames reserved by the
CVMM are independent of the physical

The work described in the previous sections is ~ Page frames reserved for PC-compatible
adequate to boot and run LINUX, but the re-  hardware and BIOS.
sulting performance is hardly adequate for all

but the most contrived benchmarks. The tough- o
est challenges lie in minimizing remote mem-SUPPOSe we have a system consisting of four

ory access (and communication in general). dual-processor SMP nodes. Such a system
can be viewed either as a “flat” eight-processor

Because the design space of potentially usefBMP machine or (viaCONFIG_NUMA as
optimizations is huge, we strive to focus our op-a two-level hierarchy of four two-processor
timization efforts by guiding them with perfor- nodes (i.e., the same as the underlying hard-
mance data. One of the advantages of a virtualare). While the former view works correctly,
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hiding the real topology has serious perfor-4.9.3 Node-Aware Batch Page Updates
mance consequences. The NUMA kernel as-

SUMes each node manages its own range ‘goth fork() andexit() update page metadata for
physical pages. Though pages can be used anjjrqe numbers of pages. As currently coded,
where in the system, the NUMA kernel tries t0 6y, ndate the metadata in the order the pages
avoid frequent accesses to remote data. are walked. We see measurable improvements

1 some sense, e VIVA can be eted s £ SPIUNO VIS 10 TPl pesses oo up
virtual cache coherent NUMA (ccNUMA) ma- nodeg ytorpag P
chine, in that access to memory is certainly '

non-uniform.

By artificially associating contiguous logical 4-9-4 Spinlock Implementation

page ranges with nodes, we can make our
virtual server look like a ccNUMA machine. The i386 spinlock implementation also turned
We realized much better performance by treatout to be problematic, as we expected. The
ing the virtual machine as a ccNUMA ma- atomic operation used to try to acquire a spin-
chine reflecting the underlying physical hard-lock requires write access to the page. This
ware. In particular the distribution of mem- works fine if the lock isn’t under contention,
ory into more zones alleviates contention forparticularly if the page is local. But if some-
the zone lock and Iru_lock. Furthermore, theone else is also vying for the lock, spinning
optimizations that benefit most ccNUMA ma- as fast as possible trying to access remote data
chines benefit ours. And the converse is trueand causing poor use of resources. We con-
as well. We're currently cooperating with other tinue to experiment with different spinlock im-
NUMA LINUX developers on some new op- plementations (which often change in response
timizations that should benefit all large cc-to changes in the memory access characteris-
NUMA machines. tics of the underlying CVMM). Currently we
always try to get the lock in the usual way first.
For various reasons, the most important betf that fails, we fall into our owrspinlock_
ing some limitations of memory removal sup-wait() that does a combination of “remote”
port, we currently have a fictitious CPU-lessreads and yielding to the CVMM before trying
node O that manages all of low memory (the the atomic operation again. This avoids over-
DMA and NORMAL zones). So HIGHMEM |oading the CVMM to the point of restricting
is divvied up between the actual nodes in proyseful work from being done.
portion to their relative logical memory size.

4.9.5 Cross-Node Scheduling
4.9.2 Page Cache Replication

The multi-level scheduling domains intro-
To avoid the sharing of page metadata by nodeduced in 2.6 LINUX kernel match very nicely
using replicas of read-only page cache pagesyith a hierarchical system like Virtual Iron
we have implemented a NUMA optimization VFe. However, we found that the cross-node
to replicate such pages on-demand from nodescheduling decisions in an environment like
local memory. This improves benchmarks thathis are based on much different factors than the
do a lot of exec’ing substantially. schedulers for more tightly-coupled domains.
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Moreover, because cross-node migration of d@alance threshold—for session group leaders).
running program is relatively expensive, weFurthermore, whesched_exec@oes consider
want to keep such migrations to a minimum. Samigrating to another node, it looks at the 3-
the cross-node scheduler can manchless of- d load vectors described earlier. This policy
ten than the other domain schedulers, so it behas been particularly good for distributing the
comes permissible to take a little longer mak-memory load around the nodes.

ing the scheduling decision and take more fac-

tors into account. In particular, task and node

memory usage are crucial—much more impor4.10 Dynamic Reconfiguration Support
tant than CPU load. So we have implemented a (Hotplug Everything)

different algorithm for the cross-node schedul-

ing domain.

. . When resources (CPU or memory) are added or
The cross-node scheduling a'go“thm TP emoved from a the cluster, the CVMM noti-
sen_ts nqde load (and a task's Cont”bm'onﬁes the guest OS via a special “message” inter-
to If) with a 3-d vector whose compo- rupt also used for a few other messages (“shut-

nents represent CPU, memory, and 1/O us'down,” “reboot” etc.). LINUX processes the

age. Loads are compared by taking the vector Ki handler th
norm[Bubendorfer-96]. While we're still ex- interrupt by waking & message handler thread,

: ) L . which then reads the new virtual server config-
perimenting heavily with this scheduler, a few

. . uration and starts taking the steps necessary to
conclusions are clear. First, memory matter

. ClSealize it. Configuration changes occur in two
far more than CPU or I/O loads in a system “keEhases. During the first phase, all resources

ours. Hence we weight the memory componen eing removed are going away. LINUX ac-

of the ]oad vgctor more heavily than the Otherknowledges the change when it has reduced
two. It's also important to be smart about hOWits resource usage accordingly. The resources
tasks share memory. are, of course, not removed until LINUX ac-
nowledges. During the second phase, all re-
ources being added are added (this time be-
fore LINUX acknowledges), so LINUX simply
adds the new resources and acknowledges that
) hase. This implies certain constraints on con-
when they allocate. We'd prefer that processe%)guration changes. For example, there must be

use such local pages so they’ don't fight W'that least one VP shared between the old and new
other processes or the node’'s swap daemo

when memory pressure rises. This implies that@onﬁguranons.
we would rather avoid moving a process af-
ter it allocates its memory. Redistributing a
process to another node etec()time makes 4.10.1 CPU and Device Hotplug

a lot of sense, since the process will have its

smallest footprint at that point. Processes often

share data with other processes in the same préxdding and removing CPUs and devices re-
cess group. So we've modifiedhed_exectp quired some porting to our methods of start-
consider migrating an exec’ing process to aning and stopping CPUs and devices, but for the
other node only if it's a process group leadermost part this is much easier with idealized vir-
(and with even more incentive—via a lower im- tual hardware than with the real thing.

Scheduling and logical memory management isz
tightly intertwined. Using the default NUMA

memory allocation, processes try to get mem
ory from the node on which they’re running
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4.10.2 Node Hotplug forget them), then counted as removed. During
memory removal, the swap daemons on nodes

Adding and removing whole nodes was a Iittlelosmg memory are woken often to attempt t9
reclaim pages marked for capture. In addi-

more problematic as most iterations over node§ o
. . lon, we try reclaiming targeted pages from the
in the system assumes online nodes are con-

tiguous going from 0 tmumnodes-1Node re- shrinking zones’ active lists.

moval ca_n leave a “hole” Which_ invalidfites this This approach works well on a mostly idle (or
assumption. The CPUs associated with a nodgt least suspended) machine, but has a num-

are m_ade “physically present” or absent as th‘Ber of weaknesses, particularly when the mem-

node is added or removed. ory in question is being actively used. Direct
page migration (bypassing swap) would be an
obvious performance improvement. There are

4.10.3 Memory Hotplug pages that can't be removed for various rea-
sons. For example, pages locked into memory

Memory also comes with a node (thoughVia mlock()can’t be written to disk for security
nodes’ logical memory can be increased or def€asons.

;Leda;eudstvgzh;l;;:ii'tn?uoraﬁzol\jl':]f%rgj c;]cﬁzl)But because our logical pages aren’t actually
piugg ) ¥ied to nodes (but just artificially assigned to

our efforts in this area proceeded independentl}/hem for management purposes), we can tol-

for quite a while until we encountered the . . .
memory hotplug effort being pursued by othererate a substantial number of “unremovable
pages. A node that has been removed, but still

members of LINUX development community. has some “unremovable” pages is known as a

We've decided to combine our efforts and plan, -

i : . zombie” node. No new pages are allocated
on integrating with the new code once we move .

: from the node, but existing pages and zone data

forward from 2.6.9 code base. Adding memory : ) ) ‘
- . are still valid. We’ll continue to try and re-
isn't terribly hard, though some more SynChrO_claim the outstanding pages via the node’s swa
nization is needed. At the global level, a mem- gpag b

ory hotplug semaphore, analogous to the CI:,Lsiaemon (now running on a different node, of

. ourse). If another node is added in its place
hotplug semaphore, was introduced. Carefu
: efore all pages are removed, the new node can
ordering of the updates to the zones allows

. subsume the “unremovable” pages and it be-
most of the existing references to zone memory

: : : : comes a normal page again. In addition, it is
info to continue to work without locking. . i

also possible to exchange existing free pages
Removing memory is much more difficult. Our for ‘funremova_ble” pages to ret_:laim space for
existing approach removes only high memory,repl'cas' While tr_us sche_me is currer_ltly far
and does so by harnessing the swap daemon. 1;&om perfec'F or universal, it works predictably
new page bitPG_captureis introduced (name " enough circumstances to be useful.
borrowed from the other memory hotplug ef-
fort) to mark pages that are destined for re-
mova!. Such pages are swapped out more ag  Conclusion
gressively so that they may be reclaimed as
soon as possible. Freed pages marked for cap-
ture are taken off the free lists (and out of theln this paper we have presented a Clustered
per-cpu pagesets), zeroed (so the CVMM carirtual Machine Monitor that virtualizes a set
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of distributed resources into a shared mem{Whitaker-00] A. Whitaker, M. Shaw, and S.
ory multi-processor machine. We have ported Gribble. Scale and Performance in the De-
LINUX Operating System onto this platform nali Isolation Kernel. INnACM SIGOPS
and it has shown to be an excellent platform Operating System Rewvol. 36, no SI, pp.
for deploying a wide variety of general purpose 195-209, Winter 2000.

applications. _ _
[King-03] S. King, G. Dunlap, and P. Chen

Operating System Support for Virtual
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Abstract single root filesystem and a single namespace

for processes, files, networking and interpro-
cess communication objects. It provided high

There are several kernel-based clusterwide pro=

: : . .availability as well as a simple management
cess management implementations available

today, providing different semantics and ca-f\)ﬂa;;i'?guzgg Jsa(:o(?:;ir}ggg b(;flaggi)r?es'sriz
pabilities (OpenSSlI, openMosix, bproc, Ker- P 9.

righed, etc.). We present a set of hooks to auov\;:oncepts of Locus have moved to Linux via the

. . . OpenSSI[3] open source project. Mosix has
various installable kernel module mplementa—moveoI to Linux via the openmosix[4] project
tions, with a high degree of flexibility and vir- P project.

tually no performance impact. Optional capa-gpensS| and Mosix were not initially tar-
bilities that can be implemented via the hooksyeted at large scale parallel programming clus-
include: clusterwide unique pids, single init, tgrg (eg. those using MPI). The BProc[5]
heterogeneity, transparent visibility and accesgpm project has targeted that environment to
to any process from any node, ability to dis-speed up job launch and simplify process man-
tribute processes at exec or fork or thru mi-ggement and cluster management. More re-
gration, file inheritance and full controlling ter- cent efforts by Kerrighed[6] and USI[7] (now
minal semantics, node failure cleanup, clustercassat[8]) were also targeted at HPC environ-

wide /proc/<pid> , checkpoint/restart and ments, although Cassat is now interested in

describe an OpenSSl-inspired implementation

using the hooks and providing all the featuresThese 5 CPM implementations have somewhat
described above. different cluster models (different forms of SSI)
and thus fairly different implementations, in
part driven by the environment they were orig-
inally developed for. The “Introduction to SSI”
paper[10] details some of the differences. Here
we outline some of the characteristics relevant
Kernel based cluster process managemerib CPM. Mosix started as a workstation tech-
(CPM) has been around for more than 20nology that allowed a user on one workstation
years, with versions on Unix by Locus[1] and to utilize cpu and memory from another work-
Mosix[2]. The Locus system was a general purstation by moving running processes (process
pose Single System Image (SSI) cluster, with amigration) to the other workstation. The mi-

1 Background

o 251 o
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grated processes had to see the OS view of th2 Goals and Requirements for the

original workstation (home node) since there  Clusterproc Hooks

was no enforced common view of resources

such as processes, filesystem, ipc objects, bina-

ries, etc. To accomplish the home-node view;The general goals for the hooks are to enable

most system calls had to be executed back oa variety of CPM implementations while being

the home node—the process was effectivelynon-invasive enough to be accepted in the base

split, with the kernel part on the home nodekernel. First we look at the base kernel require-

and the application part elsewhere. What thisnents and then some of the functional require-

means to process ids is that home nodes geneaments.

ate ids which are not clusterwide unique. Mi-

grated processes retain their home node pid i€hanges to the base kernel should retain the ar-

a private data structure but are assigned a loshitectural cleanliness and not affect the per-

cal pid by the current host node (to avoid pidformance. Base locking should be used and

conflicts). The BProc model is similar exceptcopies of base routines should be avoided. The

there is a single home node (master node) thatlusterproc implementations should be instal-

all processes are created on. These ids are thigble modules. It should be possible to build

clusterwide unigue and a local id is not neededhe kernel with the hooks disabled and that ver-

on the host node. sion should have no impact on performance. If
the hooks are enabled, the module should be

The model in OpenSSI, Kerrighed and Cassat isptional. Without the module loaded, perfor-

different. Processes can be created on any nodeance impact should be negligible. With the

and are given a single clusterwide pid whenmodule loaded, one would have a one node

they are created. They retain that pid no mattecluster and performance will depend on the

where they execute. Also, the node the proces€PM implementation.

was created on does not retain part of the pro-

cess. What this means to the CPM implemental he hooks should enable at least the following

tion is that actions to be done against processdynctionality:

are done where the process is currently execut-

ing and not on the creation or home node. :
e optionally have a per process data struc-

There are many other differences among the ture maintained by the CPM module;

CPM implementations. For example, OpenSSiI
has a single, highly available init process while
most/all other implementations do not. Addi-
tionally, BProc does not retain a controlling ter- ¢ support for distributed process rela-

minal (or any other open files) when processes  tjonships including parent/child, process
move, while other implementations do. Some group and Session; optiona| Support for

implementations, like OpenSSI, support clus-  distributed thread groups and ptrace par-
terwide ptrace, while others do not. ent;

¢ allowing for the CPM module to allocate
clusterwide process ids;

With some of these differences in mind, we e optional ability to move running pro-
next look at the goals for a set of CPM hooks cesses from one node to another either at
that would satisfy most of the CPM implemen- exec/fork time or at somewhat arbitrary
tations. points in their execution;
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optional ability to transparently check- structure additions and a set of entry points
point/restart processes, process groups arare proposed. The data structure additions are
thread groups; a pointer in the task structure (CPM imple-

: - _ mentations could then allocate a per process
optional ability to have process continue to

if the node th %tructure that this pointer points to), and 2 flag
execute even i the node they were createqyis  The infrastructure for the hooks is pat-
on leaves the cluster;

terned after the security hooks, although not ex-
optional ability to retain relationships of actly the same. ICONFIG_CLUSTERPROG
remaining processes, no matter Whichnot set, the hooks are turned into inline func-
nodes may have crashed; tions that are either empty or return the de-
fault value. WithCONFIG_CLUSTERPROdE-
optional ability to have full controlling ter-  fined, the hook functions call clusterproc ops if
minal semantics for processes running rethey are defined, otherwise returning the default
motely from their controlling terminal de- value. The ops can be replaced, and the clus-
vice; terproc install-able module will replace the ops
with routines to provide the particular CPM im-
plementation. The clusterproc module would
be loaded early in boot. All the code to sup-
capability to support either an “init” pro- port the clusterwide process model would be
cess per node or a single init for the entireunder GPL. To enable the module some addi-
cluster; tional symbols will have to exported to GPL

- . - modules.
capability to function within a shared root

environment or in an environment with a The proposed hooks are grouped into cat-
root filesystem per node; egories below. Each CPM implementation
can provide op functions for all or some
of the hooks in each category. For each
category we list the relevant hook functions
in pseudo-C. The names would actually be
support for clusters of up to 64000 nodes clusterproc_xxx but to fit here we leave
with optional code to support larger; out the clustproc_  part. The parameters
are abreviated. For each category, we de-

full, but optional/proc/<pid> capabil-
ity for all processes from all nodes;

capability to be an installable module
that can be installed either from the
ramdisk/initramfs or shortly thereafter;

In the next section we detail a set of hooks describe the general purpose of the hooks in
signed to meet the above set of goals and rethat category and how the hooks could be
quirements. Following that is the design of theused in different CPM implementations. The
OpenSSI 3.0, as adapted to the proposed hookgategories are: Init and Reaper; Allocation/

3 Proposed Hook Architecture,

To enable the optional inclusion of clusterwide

Free; Update Parent; Process lock/unlock;
Exit/Wait/Reap; Signalling; Priority and Capa-
bility; Setpgid/Setsid; Ptrace; Controlling Ter-

) minal; and Process movement;
Hook Categories and Hooks

3.1 Initand Reaper

process management (referred also as “clus-
terproc” or CPM) capability, very small data void single_init();
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void child_reaper(*pid); are only used in those implementations present-
ing a clusterwide single pid space. Thie_

alloc  hook is called inalloc_pidmap() in
pid.c . It takes a locally unique pid and re-
turns a clusterwide unique pid, possibly by en-

- . . coding a node number in some of the high order
init() can be used in a couple of ways. F'rSt'bits. Thelocal pid  andstrip_pid hooks

if there is to be a single init, this routine can are infree_pidmap() , also inpid.c The

spawn a “reaper” process that will locally reap, . pid _ hook returns 1 if this pid was gen-

the orphan processes that init normally reaps, iad on this node and the process id is no

On:he notde th?t ls"gom.g.tt(i hzve the ,'g't’ct)helonger needed clusterwide. Otherwise return
routine returns to aflow init 1o be execd. ©n q Thestrip_pid hook is called to undo the

other nodes it can exit so there is no Procesgsracts ofpid_alloc  so the base routines on
1 on those nodes. The other hook in this cat- -

o o each node can manage their part of the cluster-
egory ischild_reaper , which is in timer.c, wide pid space.
sys_getppid() . It returns 1 if the process’s
parent was thehild_reaper process. Nei-
ther of these hooks would be used in those CPI\@ 3
implementations that have an init process per’
node.

One of the goals was to allow the cluster to
run with a single init process for the cluster.
The single_init hook in init/main.c :

Update parent

int update_parent(*ptsk,*ctsk,
3.2 Allocation/ Free flag,sig,siginfo);

int fork_alloc(*tsk);
void exit_dealloc(*tsk);
int pid_alloc(pid);
int local_pid(pid);

Update_parent is a very general hook called
in several places. It is used by a child pro-
cess to notify a parent process if the parent

void strip_pid(*pid): process is exeputing remote!y. ptrace.
c, it is called in__ ptrace_unlink() and
__ptrace_link() . In the arch version of
There are 5 hooks functions in this categoryptrace.c it is called insys_ptrace() . In
Firstisfork_alloc  , whichis called ircopy_  exit.c itis called inreparent_to_init()

process() infork.c . Thisroutineis called andinfork.c ,copy process() ,itiscalled
to allow the CPM to allocate a private datain the CLONE_PARENTase. Although not all
structure pointed to bylusterproc  pointer  CPM implementations will support distributed
which is added to the task structure. Freeptrace orCLONE_PARENTsupport for some of
ing that structure is done via the hoekit_ the instances of this hook will probably be in

dealloc() which is called inrelease_ each CPM implementation.
task() in exit.c  and under error condi-

tions in copy_process() in fork.c  The

exit_dealloc routine can also be used to do3.4 Process lock/unlock
remote notifications necessary for pgrp and ses-

sion management. All CPM implementations

will probably use these hooks. The other 3 void proc_lock(*tsk,base_lock);
hooks deal with pid allocation and freeing and void proc_unlock(*tsk,base_lock);
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Theproc_lock andproc_unlock hooks al- in is_orphan_pgrp() , In exitc . It re-
low the CPM implementation to either use theturns 1 if orphaned and O if non-orphaned. If
basetsk->proc_lock (default) or to intro- not provided, the existing base algorithm is
duce a sleep lock in their private process dataised. rmt_orphan_pgrp is called inwill_
structure. In some implementations, a sleefpecome_orphaned_pgrp() in exitc . It
lock is needed because remote operations may called if there are no local processes remain-
be executed while this lock is held. In addition, ing that make the process group non-orphan. In
calls to proc_lock and proc_unlock are that case it determines if the pgrp will become

added inexit_notify() , In exit.c , be- orphan and if so it effects the standard action
causeexit_notify() may not be atomic and on the pgrp members. Metach_pid hook
may need to be interlocked witketpgid() in detach_pid() is proposed to allow CPM

and with process movement (the locking callsmplementations to update any data structures
for setpgid and process movement would be irmaintained for process groups and sessions.

the CPM implementation.
There are 4 proposed hooks in wait. The

first, in eligible_child() , exit.c , is
3.5 Exit/Wait/Reap rmt_thread_group_empty . This is used
to determine if the thread group is empty,

_ _ for thread groups in which the thread group
int rmt_reparent_children(*tsk);

int is_orphan_pgrp(pgrp): leader is executing remotely. If it is

void rmt_orphan_pgrp(newpgrp,*ret); empty, the thread group leader can be

void detach_pid(*tsk,nr,type); . . .

int rmt_thread_group_empty(*tsk,pid,opt); reaped; otherwise it cannot. The other 3

it rmt_wait_task_zombie(*tsk,noreap, hooks arermt_wait_task_zombie  , rmt
*siginfo,*stat_addr, *rusage); ) — - - . -

int rmt_wait_stopped(*tsk,int,noreap, wait_stopped and rmt_wait_continued

. "siginfo,"stat_addr,"rusage); which are called inwait_task_zombie() :

int rmt_wait_continued(*tsk,noreap, . — — .
*siginfo,*stat_addr, *rusage); wait_task_stopped() and wait_task_

continued() respectively. These hooks al-
low the CPM implementation to move the re-

There are several hooks proposed to acconspective functions to the node where the pro-
plish all the actions around the exit of a processess is and then execute the base call there, re-
and wait/reap of that process. One early actiofturning an indication if the child was reaped or
in exit is to reparent any children to takild_ if there was an error.
reaper . This is done irforget_original _
parent() inexit.c . Thermt_reparent_ ) )
children  hook provides an entry to repar- 36 Signalling
ent those children not executing with the par-
ent. Accurate orphan process group pProCesSaid mt_sigproc(pidsig,*siginfo, *error);
ing can be difficult with other pgrp members, int Pgfp_,"st_'oca'(ngPv*ﬂég)?f .
children and parents all potentially exeCUtingi?otidrQzazlgrr:)gq_rfrg??rrﬁéigt;e?sg(;gor)ﬁ,sig,*siginfo,
on different nodes. The “home-node” model . "reg.flag);
. . . . int Kill_all(sig,*siginfo,*count,*ret,tgid);
implementations will have all the necessary iN-void mt_sig_tgkill(tgid, *siginfo,pid, flag,
formation at the home node. For non-home- . . "tske,*error);

. i i void rmt_send_sigio(*tsk,*fown,fd,band);
node implementations like OpenSSl, two hooKSnt mt_pgrp_send_sigio(pgid, *fown,fd,band);
are proposed—is_orphan_pgrp and rmt_ void rmt_send_sigurg(*tsk,*fown);

- . int rmt_pgrp_send_sigurg(pgid,*fown);
orphan_pgrp . is_orphan_pgrp  is called void timedwait(timeout,*timespec,*ret);
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There are many places in the kernel that mayeeded irsend_sigurg() in fcntl.c (with
signal a process, for a variety of of reasonsdifferent parameters). The final signal related
Hooks inkill_proc_info() andkill_pg_ hook istimedwait , which s called fronsys_
inffo() handle many cases. One could define at_sigtimedwait() , in signal.c . Itis
general hook function that handles many of thecalled only if a process was in a scheduled
cases (process, pgrp, killall, sigio, sigurg, etc.)timeout and was woken up to do a migrate.
Doing so would reduce the number of differentlt restarts thesys rt_sigtimedwait() af-
hook functions but would require a superset otter the migrate.
parameters and the op would have to relearn the
reason it was called. For now we have propose
them as separate hooksnt_sigproc  is the
hook in kill_proc_info() , called only if
the process is not found locally. It tries to find veid priority(cmd,who,niceval *tsk err);

R . int pgrp_priority(cmd,who,niceval,*ret);
the process on another node and deliver the Sigt prio_user(cmd,who,niceval,*err);
nal. For the process group case we currently" ;Z,r);b::“atgg:enggﬁﬁZifz?;:/gaﬁh;?g)
have 3 hooks irkill_pg_info() . Based on - ' “spermitted *ret);
the assumption that some node knows the lisft capset allCeffective*inheri,

of pgrp members (or at least the nodes they

g.? Priority and Capability

*permitted,*ret);

are on), the first hookpgrp_list_local )

determines if such a list is local. If not, it In sys_setpriority() (sys.c ), schedul-
calls rmt_sigpgrp ~ which will transfer con- ing priority can be set on processes, pro-
trol to such a node, so the bag#_pg_ cess groups or “all processes owned by
info) can be called. Given we are now@ given user” A get-priority can be
executing on the node where the list is, thedone for a process or a pgrp. The
pgrp_list_local hook can lock the list so priority , pgrp_priority andprio_user

that no members will be missed during the sighooks are proposed to deal with distribu-
nal operation. After that, the base code to signalions issues for these functions.  Capabil-
locally executing pgrp members is executedity setting/getting ¢ys_capset() ~ andsys_
followed by the code to signal remote mem-capget() incapability.c ) are quite sim-

bers 6igpgrp_rmt_members ). That hook ilar and capabilty —, pgrp_capset and
also does the list unlock. Support for cluster-capset all  hooks are proposed for those
wide kill =1 is provided by a hook irkill_ functions.
something_info() . A CPM implementation
poulq loop thru_ all Fhe nodes in the cluster, call-3 g Setpgid/Setsid
ing kill_something_info() on each one.
Linux has 2 system calls for thread signalling— ocalloidoaid
. . t f )
sys_tkil)  andsys_tgkil) . The pro- o oo belon i)

posed hookrmt_sig_tgkill is inserted in int_dveriw_pgicé_seisiingpgid,sid):

each of these system calls to find the thread(sfiy borat doneier pic)

and deliver the signal, if the threads were not aIMO?g rmtt__zrocﬁgétattr(pidv*pgidv*siod):

ready found locally. Theend_sigio() func- YO sertend)

tioninfcntl.c ~ can send process or pgrp sig-

nals. Thermt_send_sigio or rmt_pgrp_ Setpgid §ys.c ) may be quite straightforward
send_sigio  hook is called if the process or to handle in the home/master node implementa-

process group is remote. Similar hooks ardions because all the process, process group and
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session information will be at the home/masterClusterwide ptrace support is not provided in
node. For the more peer-oriented implementaall CPM implementations (eg. BProc) but
tions, in the most general case there could bean be supported with the help of a few
several nodes involved. First, while the setpgichooks. Unfortunatelysys_ptrace() is in
operation is most often done against oneself, ithe arch tree, inptrace.c . The rmt_
doesn’t have to be, so there is a hook set earlgtrace  hook is needed if the process to be
in sys_setpgid to move execution to the ptraced is not local. It reissues the call on
node on which the setpgid is to be dor® (  the node where the process is running. In
process_local and rmt_setpgid ). is_ ptrace_attach() , in the non-arch version
process_local can also acquire a sleep lock of ptrace.c , the rmt_find_pid hook is

on the process since setpgid may not be atomiagsed in the scenario that the request was gen-
to the tasklist_lock . One of the tests in erated remotely. This hook helps ensure that
setpgid is to make sure there is someone in ththe the process being traced is attached to the
proposed process group in the same session asocess debugging and not to a server daemon
the caller. If that check isn’t satisfied locally, acting on behalf of that process. Tpieace

verify _pgid_session is called to check the lock and ptrace_unlock hooks are used
rest of the process group. Given the operatiomn do_ptrace_unlink() (ptrace.c ) and

is approved, thegrp_update hook is called de_thread() (exec.c ). They can be used

to allow the CPM implementation to adjust or- to provide atomicity across operations that re-
phan pgrp information, to create or update anyjuire remote messages.

central pgrp member list and to update any

cached information that might be at the pro-
cess’s parent’s execution site (to allow him to
easily do waits). A final hook inys_setpgid
(setpgid_done ) is called to allow the CPM vl Efggt—gt—tgig;g)égrpangrp);
implementation to release the process lock acsoid mt_vhangup(*tsk);

quired inis_process_local void get_tty("tsk,"ty_nr,"ty_pgrp);

void clear_tty(sid,*tty,flag);
void release_rmt_tty(*tsk,flag);

3.10 Controlling Terminal

The rmt_proc_getattr hook in sys inthas_rmt_ctty(); .

L= — . — int rmt_tty _open(*inode,*file);
getpgid() and sys_getsid() supplies  void rmt_tty_write_message(*msg,*tty);
the pgid and/or sid for processes not executing® "™M:-is-ignored(pid.sig);
locally.

Some CPM implementation do not support
The setsid  hook in sys_setsid() can be controlling terminal for processes after they
used by the CPM implementation to updatemove (eg. BProc). In the home-node style
cached information at the parent's executioncppm, the task structure on the home node will
node, at children execution nodes and at anyavetty pointer. On the node where the pro-
session or pgrp list management nodes. cess migrated, the task structure hasttyo
pointer. As long as any interrogation or up-
dating using that pointer is done on the home

3.9 Ptrace node, this strategy works. For CPM imple-
mentations where system calls are done locally,

void rmt_ptrace(request,pid,addr,data, *ret); some hooks are needed to deal with a poten-

rtsk rmt_find_pid(pid); tially remote controlling terminal. The pro-

int ptrace_lock(*tsk,*tsk) . . . i
void ptrace_unlock(*tsk,*tsk); posed strategy is that if the controlling terminal
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is remote, thety pointer would be null but printk.c ,tty write_message() if the tty
there would be information in the CPM private it wants to write to is remote.
data structure.

3.11 Process movement

Daemonize(), inexit.c , normally clears
the tty pointer in the task structure. Ad-
ditionally it calls the hookclear_my_tty int do_rexec(*char,*argv,*envp,
to do any other bookkeeping in the case *regs,*reg);
where the controlling terminal is remote. void rexec_done();
In drivers/char/tty_io.c , the routines it do_rfork(flags stk *regs,size,

. . *ptid,*ctid, pid, *ret);
do_tty_hangup() , disassociate_dev() ! int do_migrate(*regs,signal,flags);
release_dev() andtiosctty() all call the -
hook clear_tty , which clears the tty in-
formation for all members of the session onAs mentioned in the goals, the hooks should
all nodes. release_rmt_tty is called by allow for process movement at exec() time, at
disassociate_ctty() if the tty is not local;  fork() time and during execution. Earlier ver-
the hook callglisassociate_ctty() onthe sjons of OpenSSI accomplished this via new
node where the tty is.get_tty is called in  system calls. The proposal here does not re-
proc_pid_stat() in fs/proc/array.c t0  quire any system calls although that is an op-
gather the foreground pgrp and device id for thejon. For fork() and exec(), a hook is putdio_
task’s controlling terminal. The hoalpdate fork() anddo_execve() respectively. Ops
ctty pgrp is called bytiocspgrp() , in behind the hooks can determine if the operation
drivers/char/tty_io.c and can be used should be done on another node. A load balanc-

by the CPM to inform all members of the old ing algorithm can be consulted or the process
pgrp that they are no longer in the control-could have been marked (eg. via a procfs file
ling terminal foreground pgrp and to inform the |ike /proc/<pid>/goto ) for remote move-
new pgrp members as well. Distributed knowl-ment. An additional hookexec_done is pro-
edge of which pgrp is the foreground pgrp isvided so the CPM implementation can get con-
important for correct behavior in the situationtro| after the exec on the new node has com-
when the controlling terminal node crashespleted but before returning to user mode, so that
Sys_vhangup() ,infs/open.c ,hasacallto process setup canbe completed and the original
rmt_vhangup()  if tty is notset (ifthereisa node can be informed that the remote execve()

remote tty, the CPM can calls_vhangup() was successful.
on that node). Indrivers/char/tty_io.c :
tiosctty() andtty open()  call the hook A single hook is needed for process migration.

has_rmt_ctty  to determine if the process The proposed mechanism is that yjaoc/
already has a controlling terminal that is re-<pid>/goto  or a load balancing subsystem,
mote. Also indrivers/char/tty io.c ,the processes havelF_MIGPENDING flag (added
tty_open() function calls rmt_tty open flag in flags field ofthread_info structure)
for opens of/dev/tty if the controlling ter-  set if they should move. That flag is checked
minal is remote. Thés_ignored() function just before going back to user space,din_

in drivers/char/n_tty.c calls rmt_is_ notify_resume() , In arch/xxx/kernel/
ignored ifitis called by an agent for a process signal.c  and calls thedo_migrate  hook.
that is actually running remotely. Finaliynt_ Checkpoint and restart can be invoked via the

tty_write_message is called inkernel/ same hook (migrate to/from disk).
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Determining if these hooks are sufficient to al-In this section we describe the process id and
low an implementation that satisfies the goalgprocess tracking design, the module initializa-
and requirements outlined earlier is best dongion, and per process private data. Then we
by implementing a CPM using the hooks. Thedescribe how all the process relationships are
OpenSSl 3.0 CPM, which provides almost allmanaged clusterwide, followed by sections on
the requirements, including optional ones, hagproc and process movement.

been adapted to work via the hooks described

above. Work to ensure that other CPM im-4 1  process Ids and Process Tracking
plementations can also be adapted needs to be

dor_le. '_I'he OpenssSl .3'0 CPM design is deAs in OpenSSil, process ids are created by first
scribed in the next section.

having the local base kernel generate a locally
unique id and then, using the hooks, adding the
local node number in the higher order bits of
4 Clusterproc Design for OpenSSl the pid. This is the only pid the process will
have and when the pid is no longer in use, the
) _ _ locally unique partis returned to the pool on the
In this section we describe a Cluster Processge it was generated on. The node who gener-
Management (CPM) implementation adaptedyieq the process id (creation or origin node) is
from OpenSSI 2.0. It is part of a functional (egponsible for tracking if the process still ex-
cluster which is a subset of OpenSSI. The Subjsig and where it is currently running so opera-
set does not have a cluster filesystem, a singlgyng on the process can be routed to the correct
root or single init. It does not have clusterwide hode and so ultimately the pid can be reused.
device naming, a clusterwide IPC space or g the origin node leaves the cluster, tracking is
cluster virtual ip. It does not have connectionisken over by a designated node in the cluster

or process load balancing. All those capabilygyrogate origin node) so processes are always
ities will be subsequently added to this CPM¢indable without polling.

implementation to produce OpenSSlI 3.0.

To allow the CPM implementation to be part of 4.2 Clusterproc Module Initialization and

a functional cluster, several other cluster com-  Per Process Clusterproc Data Struc-
ponents are needed. A loadable membership  ture

service is needed, together with an intra-node

communication service layered on tcp socketsThe clusterproc module is loaded during the
To enable the full ptrace and remote control-ramdisk processing although it could be done
ling terminal support, a remote copy—to/from—later. It assumes the membership, intra-node
user capability is needed. Also, a set of reccommunication remote copy-in/copy-out and
mote file ops is needed to allow access to reremote file ops modules are already loaded and
mote controlling terminals. Finally, a couple of registers with them. It sets up its data structures
files are added tdproc/<pid> to provide and installs the function pointers in the cluster-
and get information for CPM. Implementations proc op table. It also allocates and initializes
of all needed capability are available and noneclusterproc data structures for all existing pro-
require significant hooks. Like the clusterproccesses, linking the structures into the task struc-
hooks, however, these hooks must be studietlire. After this initialization, each new process
and included if they are general and allow forcreated will get a private clusterproc data struc-
different implementations. ture via thefork_alloc  hook.
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pid_chain pidsloLpid_chain o Local
pid_hash Local / Child C
[PIDTYPE_PID] pid_chain paren Child A sibling
children Sibling siblin
XYZ 9
parent -
surrogate_hash _ _ ' Remote arent Remote
pid_chain Child B PAEN | child D

Figure 1: Parent xyz's execution node

pids[0].pid_chain

pid_hash

[PIDTYPE_PID] pid_chain Child B ) Child D

sibling

pare children
surrogate_hash

pid_chain XYZ Figure 2: xyz children’s execution node

4.3 Parent/Child/Ptrace Relationships each node that has children but no parent, there
is a surrogate task structure for the parent and a
partial parent/child/sibling list. Surrogate task

To minimize hooks and changes to the basétructures are hashed off a hash header private
Linux, the complete parent/child/sibling rela- to the CPM module. Figure 1 shows how parent
tionship is maintained at the current executiorProcess XYZ is linked to his children on his ex-
node of the parent, using surrogate task strucecution node and Figure 2 shows the structures
tures for any children that are not currently ex-0n a child node where XYZ is not executing.
ecuting on that node. Surrogate task structures

are just structask_struct ~ but are not hashed

into the any of the base pid hashes and thus

only visible to the base in the context of the

parent/child relationship. Surrogate task struc-

tures have cached copies of the fields the parent

will need to executeys_wait()  without hav- Ptrace parent adds some complexity because a
ing to poll remote children. The reap operationprocess’s parent changes over time esal

does involve an operation to the child execuparent can be different fronparent . The

tion node. Thaupdate_parent  hook is used update_parent  hook is used to maintain all

to maintain the caches of child information. Forthe proper links on all the nodes.
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pid_chain
pid_hash . . local
[PIDTYPE_PID] pid_chain ' o
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. S pids[Q]pid
pid_hash pid_chain XYZ pids(2].pid_list Local
[PIDTYPE_PGID] member C

pid_chain

For clusterprocs, a supplemental structure with
a nodelist where other pgrp members are executing
and the pgrp_list_sleep_lock

Figure 3: Pgrp Leader XYZ Origin Node (leader executing locally)

pid_chain
pid_hash ) ) Local
[PIDTYPE_PID pid_chain member A pids[2].pid_list pids[0]pid._chain
—
pid_hash pid_chain m:r%ct;a:elr C

[PIDTYPE_PGID] )
For clusterprocs, a supplemental structure with

a nodelist where other pgrp members are executing
and the pgrp_list_sleep_lock

Figure 4: Pgrp Leader XYZ Origin Node (leader not executing locally)

4.4 Process Group and Session Relation- origin node with and without the pgrp leader
ships executing on that node. As with process track-

ing, this origin node role is assumed by the sur-
rogate origin if the origin node fails and is thus

With the process tracking described above, achot a single point of failure.

tions on an individual process is pretty straight-

forward. Actions on process groups and sesOperations on process groups are directed to

sions are more complicated because the menthe origin node (aka the list node). On that node

bers may be scattered. For this CPM implethe operation first gets the sleep lock. Then

mentation, we keep a list of nodes where memthe operation can be done on any locally exe-

bers are executing on the origin/surrogate oricuting members by invoking the standard base

gin node for the pid that is the name of the pgrpcode. Then the operation is sent to each node

or session. On that origin node any local memin the node list and the standard base operation

bers are linked together as in the base but an ads done for any members on that node.

ditional structure is maintained that records the

other nodes where members are on. This strucA process group is orphan if no member has

ture also has a sleep lock in it to make certaira parent in a different pgrp but with the same

pgrp or session operations are atomic. Figuresession id (sid). Linux needs to know if a pro-

3 and 4 shows the data structure layout on theess group is orphan to determine if processes
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can stop (SIGTSTP, SIGTTIN, SIGTTOU). If and cttydev fields to allow CPM code to deter-
a process group is orphan, they cannot. Linuwxmine if and where the controlling terminal is.
also needs to know when a process group beFo avoid hooks in some of the routines being
comes orphan, because at that point any menexecuted at the controlling terminal node, svr-
bers that are stopped get SIGHUP and SIGprocs (agent kernel threads akin to nfsd’s) do-
CONT signals. A process exit might effect ing opens, ioctls, reads and writes of devices
its own pgrp and the pgrp on all its children, at the controlling node will masquerade as the
which could involve looking at all the pgrp process doing the request (pid, pgrp, session,
members (and their parents) of all the pgrps ofind tty). To avoid possible problems their mas-
all the exiting process’s children. When all thequerading might cause, svrprocs will not be
pgrps and processes are distributed, this couldashed on theid_hash[PIDTYPE_PID]

be very expensive. The OpenSSI CPM, through

the described hooks, has each pgrp list cache ,

whether it is orphan or not, and if not, which 4-6 Clusterwide/proc

nodes have processes contributing to its non-

pr_phaness. Process exit can locally dewrmin%lusterwide/proc
if it necessary to update the current process'’s,

pgrp list. Each child must be informed of the unmodifiedproc . Hooks may be needed
parents exit, but they can locally determine if;; 44 the stacking but will be modest. In

they have to update the pgrp list orphan infor-,qgition, a couple of new files are added to
mation. With a little additional information this Iproc/<pid> —agoto file to facilitate pro-

mechanism can survive arbitrary node failures..ocs movement and where file to display

where the process is currently executing. The

4.5 Controlling Terminal Management proposed semantics farprocfs ~ would be
that:

is accomplished by stack-
g a new pseudo filesysterapgrocfs ) over

In the OpenSSiI cluster, the controlling terminal _
may be managed on a node other than that of ® readdir presents all processes f_rom all
the session leader or any of the processes using N0des and other proc files would either be
it. There is a relationship in that processes need " @ggregation (sysvipc, uptime, net/unix,
to know who their controlling terminal is (and etc.) or would pass thru to the local

where it is) and the controlling terminal needs ~ /Proc

to know which session it is associated with and

cprocfs  function ships all ops on pro-
which process group is the foreground process * P D P b

cesses to the nodes where they are execut-
group. ing and then calls therocfs on those

In the base linux, processes havitya pointer nodes;

to their controlling terminal. Thay_struct

has apgrp and asession field. In cluster-
proc, the base structures are maintained as is,
with the pgrp and session fields in the tty struc-

e cprocfs inodes don'’t point at task struc-
tures but at small structures which have
hints as to where the process is executing.

ture and the tty pointer in the task’s signal struc- e /proc/node/# directories are redi-
ture. The tty pointer will be maintained if the rected to thdproc on that node so one
tty is local to the process. If the tty is not lo- can access all the hardware information

cal, the clusterproc structure will have cttynode for any node.
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e readdir of/proc/node/# only shows thedo_notify_resume() function is called
the processes executing on that node.  if any of the flags inthread_info.flags are
set (normally there are none set). The function
do_notify_resume() now has a hook which
4.7 Process Movement will check for theTIF_MIGPENDING flag and

if it is set, the process migrates itself. This

Via the hooks described earlier, the Openss'o0k only adds pathlength when any of the
CPM system provides several forms of procesf29s are setTlF_SIGPENDING, etc.), which
movement, including a couple of forms of re- IS Very rarely.

mote exec, an rfork and somewnhat arbitrarygenss) currently has checkpoint/restart ca-

process migration. In addition, these interface?)ab”ity and this can be adapted to use the
allow for transparent and programmatic CheCk'goto file and migration hook. Two forms

point/restart. of kernel-based checkpoint/restart have been

The external interfaces to invoke process moveEione in OpenSSl. The first is transparent to

. . . the process, where the action is initiated by
ment are library routines which in turn use theanother rocess. The other is when the bro-
/proc/<pid>/goto interface to affect how P : P

standard system calls function. Writes to thiste>5 1S checkpointrestart aware and is doing the

file would take a buffer and length. To allow checkpoint on itself. In that case, the process

: S e may wish to “know” when it is being restarted.
considerable flexibility in specifying the form
- . _To do that, we propose that the process open
of the movement and characteristics/function

to be performed as part of the movement, chhe/proclself/goto flle_ and attach a sig-
) nal and signal handler to it. Then, when the
buffer consists of a set of stanzas, each made

. process is restarted, the signal handler will be
up of a command and arguments. The ini- ) . :
. . . called. Checkpoint/restart are variants of mi-
tial set of commands is: rexec, rfork, migrate,

checkpoint, restart, and context, but additionaprate' The argument field to tigoto fllg 'S
commands can be added. The arguments a pathname. In the case of checkpoint, the
: ' IF_MIGPENDING will be set and at the end
rexec, rfork and migrate() are a node number., .
of the next system call, the process will save

The argument to checkpoint and restart are ?ts state in the filename specified. Another ar-

pathname for the checkpoint file. The context ) .
- . ument can determine whether the process is

command indicates whether the process is t . , :
0 continue or destroy at that point. Restart is

have the context of the node it is moving to : .
) : done by first creating a new process and then
or remain the way it wasDo_execve() and . ) )
doing the “restartjoto command to populate

do_fork()  have hooks which, if clusterproc . : : .
) . : : the new process with the saved image in the file
is configured, will check theyoto informa- o i

which is specified as an argument.

tion that was stored off the clusterproc struc-
ture, and if appropriate, turn an exec into ana more extensive design document is available
rexec or a fork into an rfork. on the OpenSSI web site[9].

The goto is also used to enable migrations.
Besides saving thgoto value, the write to
thegoto sets a new bit in théhread_info
structure TIF_MIGPENDING). Each time the
process leaves the kernel to return to user spad&rocess management in Linux is a compli-
(did a system call or serviced an interrupt),cated subsystem. There are several differ-

5 Summary
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ent relationships—parent/child, process group|9] http://openssi.org/
session, thread group, ptrace parent and con-  proc-hooks/proc-hooks.pdf
trolling terminal (session and foreground pgrp).

There are some intricate rules, like orphan prol10] http: N

cess groups ande_thread  with ptrace on the /lopenssi.org/ssi-intro.pdf
thread group leader. Making all this function in

a completely single system way requires quite a

few different hook functions, as defined above

(some could be combined to reduce this num-

ber), but there is no performance impact and

the footprint impact on the base kernel is very

small (patch file touches 23 files with less than

500 lines of total changes, excluding the new

clusterproc.h file).
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Abstract Once a connection is evicted from the state ta-
ble, its accounting relevant data is transferred

to userspace to a special accounting daemon for

Many networking scenarios require some formether processing, aggregation and finally stor-
of network accounting that goes beyond somegye in the accounting log/database.
simple packet and byte counters as available

from the ‘ifconfig’ output.

When people want to do network accouting, the]' Network accounting

past and current Linux kernel didn’'t provide

them with any reasonable mechanism for doingNetwork accounting generally describes the

So. process of counting and potentially summariz-
ing metadata of network traffic. The kind of

Network accounting can generally be done inmetadata is largely dependant on the particular

a number of different ways. The traditional application, but usually includes data such as

way is to capture all packets by some userspaceumbers of packets, numbers of bytes, source

program. Capturing can be done via a num-and destination ip address.

ber of mechanisms such B&_PACKETsock- _ _

ets,mmap() ed PF_PACKET ipt_ULOG , or There are many reasons for doing accounting

ip_queue . This userspace program then ana©f networking traffic, among them

lyzes the packets and aggregates the result into
per-flow data structures. e transfer volume or bandwisth based billing

e monitoring of network utilization, band-

Whatever mechanism used, this scheme has a width distribution and link usage

fundamental performance limitation, since all
packets need to be copied and analyzed by a e research, such as distribution of traffic
userspace process. among protocols, average packet size, ...

The author has implemented a different ap-

proach', by w.hich the accounting information i52 Existing accounting solutions for
stored in the in-kernel connection tracking table .
of the ip_conntrack stateful firewall state Linux

machine. On all firewalls, that state table has to

be kept anyways—the additional overhead in-There are a number of existing packages to do
troduced by accounting is minimal. network accounting with Linux. The follow-

o 265 o
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ing subsections intend to give a short overviewkernel message ring buffer. This mechanism
about the most commonly used ones. is calledipt_LOG (or LOG target ). Such
messages are then further processeklibgd

21 nacetd and ;yslogd , Whlch put them into one or
multiple system log files.

nacctd also known asiet-acct is proba- Asipt_LOG was designed for logging policy
bly the oldest known tool for network account- violations and not for accounting, its overhead
ing under Linux (also works on other Unix- is significant. Every packet needs to be inter-
like operating systems). The author of this pafreted in-kernel, then printed in ASCII format
per has usedacctd as an accounting tool to the kernel message ring buffer, then copied
as early as 1995. It was originally developedfrom klogd to syslogd, and again copied into
by Ulrich Callmeier, but apparently abandoned@ text file. Even worse, most syslog installa-
later on. The development seems to have cortions are configured to write kernel log mes-
tinued in multiple branches, one of them beingsages synchronously to disk, avoiding the usual

the netacct-mysdlbranch, currently at version Write buffering of the block I/O layer and disk
0.79rc2. subsystem.

Its principle of operation is to use aAF_ To sum up and anlyze the data, often custom
PACKETsocket vialibpcap in order to cap- perl scripts are used. Those perl scripts have to
ture copies of all packets on configurable netparse the LOG lines, build up a table of flows,

work interfaces. It then does TCP/IP headeladd the packet size fields and finally export the
parsing on each packet. Summary informatiordata in the desired format. Due to the inefficient
such as port numbers, IP addresses, number eforage format, performance is again wasted at
bytes are then stored in an internal table formnalyzation time.

aggregation of successive packets of the same

flow. The table entries are evicted and stored

in a human-readable ASCII file. Patches ex2.3 ipt_ULOG based (ulogd, ulog-acctd)

ist for sending information directly into SQL

databases, or saving data in machine-readable . _
data format. The iptablesULOG target is a more effi-

cient version of thd.OG target described
As a pcap-based solution, it suffers from theabove. Instead of copying ascii messages via
performance penalty of copying every full the kernel ring buffer, it can be configured to
packet to userspace. As a packet-based solenly copies the header of each packet, and
tion, it suffers from the penalty of having to in- send those copies in large batches. A special

terpret every single packet. userspace process, normally ulogd, receives
those partial packet copies and does further in-
terpretation.

2.2 ipt_LOG based

ulogd ?is intended for logging of security vi-

The Linux packet filtering subsystem iptablesolations and thus resembles the functionality of
offers a way to log policy violations via the LOG. it creates one lodfile entry per packet. It

http://netacct-mysqgl.gabrovo. 2http://gnumonks.org/projects/
com ulogd
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supports logging in many formats, such as SQL2.5 ipt ACCOUNT (iptaccount)
databases or PCAP format.

ulog-acctd 3 is a hybrid betweerulogd  ipt ACCOUNT? is a special-purpose iptables
and nacctd . It replaces thenacctd libp- target developed by Intra2net AG and avail-
cap/PF_PACKET based capture with the moreable from the netfilter project patch-o-matic-ng
efficient ULOG mechanism. repository. It requires kernel patching and is

not included in the mainline kernel.
Compared tapt_LOG , ipt_ULOG reduces

the amount of copied data and required keript. ACCOUNT keeps byte counters per IP
nel/userspace context switches and thus imaddress in a given subnet, up to a /8 net-
proves performance. However, the wholework. Those counters can be read via a special
mechanism is still intended for logging of se-iptaccount commandline tool.

curity violations. Use for accounting is out of
its design. Being limited to local network segments up to

‘18’ size, and only having per-ip granularity are
two limiteations that defeapt ACCOUNT as

a generich accounting mechainism. It's highly-
optimized, but also special-purpose.

Every packet filtering rule in the Linux packet
filtker (iptables , or even its predecessor
ipchains ) has two counters: number of
packets and number of bytes matching this par-

ticular rule. ntop © is a network traffic probe to show
network usage. It useBbpcap to cap-
ture the packets, and then aggregates flows in
userspace. On a fundamental level it's there-
Rore similar to whanacctd  does.

2.4 iptables based (ipac-ng)

2.6 ntop (including PF_RING)

By carefully placing rules with no target (so-
calledfallthrough) rules in the packetfilter rule-
set, one can implement an accounting setu
i.e., one rule per customer.

From the ntop project, there’s als®robe , a

ﬁonmur:]nabnedr g]; tt oﬁtlsai)gsgjﬁ]ﬁf;rrsi’geg]eﬂ:staczljﬁpetwork traffic probe that exports flow based in-
b . formation in Cisco NETFLOW v5/v9 format.
ters. The most commonly used package |§

ipac-ng 4. It supports advanced features sucl‘\
as storing accounting data in SQL databases.

t also contains support for the upcoming IETF
PFIX’ format.

- L To increase performance of the probe, the au-
The approach works quite efficiently for small
PP g y thor (Luca Deri) has implementeeF_RING®,

installations (i.e., small number of accounting 4impl tation f
rules). Therefore, the accounting granularity? M€V 2€r0-cOpy mmap()ed implementation for

can only be very low. One counter for each  Shttp://www.intra2net.com/
single port number at any given ip address ipensource/ipt_account/

certainly not applicable. Shttp://www.ntop.org/ntop.html
1P Flow Information Export
3http://alioth.debian.org/ http://wwwe.ietf.org/html.charters/
projects/pkg-ulog-acctd/ ipfix-charter.html
“http://sourceforge.net/ 8http://www.ntop.org/PF_RING.

projects/ipac-ng/ html
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packet capture. There is a libpcap compatibil-3.1 ip_conntrack_acct

ity layer on top, so any pcap-using application

can benefit fronPF_RING, ip_conntrack_acct is how the in-kernel
ip_conntrack  counters are called. There is
a set of four counters: numbers of packets and
Bytes for original and reply direction of a given
connection.

PF_RING is a major performance improve-
ment, please look at the documentation and th
paper published by Luca Deri.

However, ntop / nProbe / PF_RING are ¢ o, configure a recent (>= 2.6.9) kernel,
all packet-based accounting solutions. Every, . prompt you for CONFIG_IP_NF_CT
packet needs to be analyzed by some Userspage .1 gy enabling this configuration option,
process—even if there is no copying involved.ihe ner-connection counters will be added, and

Due to PF_RING optimiziation, it is probably 4 o accounting code will be compiled in.
as efficient as this approach can get.

However, there is still no efficient means of
reading out those counters. They can be ac-
. cessed vigat /proc/net/ip_conntraghut that’s
3 New _ Ip_conntrack based ac- not a real solution. The kernel iterates over
counting all connections and ASCIlI-formats the data.
Also, it is a polling-based mechanism. If the

The fundamental idea is to (ab)use the CorlnecQolling interval is too short, connections might
tion tracking subsystem of the Linux 2.4.x | get evicted from the state table before their fi-

2.6.x kernel for accounting purposes. There ar@al counters are being read. If the interval is too
several reasons why this is a good fit: small, performance will suffer.

To counter this problem, a combination of con-
e It already keeps per-connection state in‘track notifiers and ctnetlink is being used.
formation. Extending this information to
contain a set of counters is easy. 3.2 conntrack notifiers

e Lots of routers/firewalls are already run- N
ning it, and therefore paying its per- Conntrack notifiers use the core kernel no-

Bumping a couple of counters will intro- block ) to notify other parts of the kernel about
duce very little additional penalty. connection tracking events. Such events in-

clude creation, deletion and modification of
e There was already an (out-of-tree) systentonnection tracking entries.

to dump connection tracking information -
to userspace, called ctnetlink. The conntrack notifiers can help us

overcome the polling architecture. If we'd only

listen toconntrack deletevents, we would al-

So given that a particular machine was already) . get the byte and packet counters at the end
runningip_conntrack , adding flow based of a connection.

acconting to it comes almost for free. | do not

advocate the use op_conntrack merely However, the events are in-kernel events and
for accounting, since that would be again atherefore not directly suitable for an account-
waste of performance. ing application to be run in userspace.
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3.3 ctnetlink polling scheme. The granularity of accounting
can therefore be configured by the polling in-

_ terval, and a compromise between performance
ctnetlink (short form for conntrack zng accuracy can be made.

netlink) is a mechanism for passing connection

tracking state information between kernel andro overcome the second limitation, the ac-
userspace, originally developed by Jay Schulisgounting process can also listen fOEW
and Harald Welte. As the name implies, it usesevent messages. By correlating tREW and
Linux AF_NETLINK sockets as its underlying DELETEmessages of a connection, accounting
communication facility. datasets containign start and end of connection

_ _ _ can be built.
The focus otctnetlink is to selectively read

or dump entries from the connection tracking
table to userspace. It also allows userspace pr@.4 ulogd2
cesses to delete and create conntrack entries as

well asconntrack expectations
As described earlier in this papedogd is a

The initial nature ofctnetlink is there- userspace packet filter logging daemon that is
fore again polling-based. An userspace procesalready used for packet-based accounting, even
sends a request for certain information, the kerif it isn’t the best fit.

nel responds with the requested information.
ulogd2 , also developed by the author of this

By combining conntrack notifiers paper, takes logging beyond per-packet based
with ctnetlink , it is possible to register a information, but also includes support for per-
notifier handler that in turn sendtnetlink connection or per-flow based data.

event messages down tAE_NETLINK socket.
Instead of supporting onlypt ULOG in-

A userspace process can now listen for suclput, a number of interpreter and output plug-

DELETEevent messages at the socket, and putis, ulogd2 supports a concept callgdugin

the counters into its accounting storage. stacks Multiple stacks can exist within one
deamon. Any such stack consists out of plu-

There are still some shortcomings inherent tqyins. A plugin can be a source, sink or filter.

thatDELETEevent scheme: We only know the

amount of traffic after the connection is over.Sources acquire per-packet or per-connection

If a connection lasts for a long time (let's say data fromipt_ULOG or ip_contnrack_

days, weeks), then it is impossible to use thisacct .

form of accounting for any kind of quota-based

billing, where the user would be informed (or Filters allow the user to filter or aggregate in-

disconnected, traffic shaped, whatever) wheformation. Filtering is requird, since there

he exceeds his quota. Also, the conntrack enis no way to filter the ctnetlink event mes-

try does not contain information about whensages within the kernel. Either the function-

the connection started—only the timestamp oflity is enabled or not. Multiple connections

the end-of-connection is known. can be aggregated to a larger, encompassing
flow. Packets could be aggregated to flows (like

To overcome limitation number one, the ac-nacctd ), and flows can be aggregated to even
counting process can use a combined event aridrger flows.
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Sink plugins store the resulting data to someand efficient solution for any accounting prob-
form of non-volatile storage, such as SQLlem.

databases, binary or ascii files. Another sink

is a NETFLOW or IPFIX sink, exporting in- Still,  the new ip_conntrack_acct
formation in industy-standard format for flow ctnetlink  based mechanism described in

based accounting.

3.5 Status of implementation

this paper has a clear performance advantage if
you want to do acconting on your Linux-based
stateful packetfilter—which is a common case.
The firewall is suposed to be at the edge of
your network, exactly where you usually do
accounting of ingress and/or egress traffic.

ip_conntrack_acct is already in the ker-
nel since 2.6.9.

ctnetlink and the conntrack event
notifiers are considered stable and will be
submitted for mainline inclusion soon. Both
are available from the patch-o-matic-ng reposi-
tory of the netfilter project.

At the time of writing of this paperlogd?2
development was not yet finished. How-
ever, the ctnetlink event messages can already
be dumped by the use of the “conntrack”
userspace program, available from the netfilter
project.

The “conntrack” prorgram can listen to the
netlink event socket and dump the information
in human-readable form (one ASCII line per ct-
netlink message) to stdout. Custom accounting
solutions can read this information from stdin,
parse and process it according to their needs.

4 Summary

Despite the large number of available account-
ing tools, the author is confident that inventing
yet another one is worthwhile.

Many existing implementations suffer from
performance issues by design. Most of them
are very special-purpose. nProbe/ntop together
with PF_RING are probably the most universal
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Abstract 1 Introduction

This paper describes the core software compo-
InfiniBand support was added to the kernel innents of the InfiniBand software that was in-
2.6.11. In this paper, we describe the vari-cluded in the linux 2.6.11 kernel. The reader is
ous modules and interfaces of the InfiniBandreferred to the architectural diagram and foils
core software and provide examples of how andn the slide set that was provided as part of the
when to use them. The core software consistpaper’s presentation at the Ottawa Linux Sym-
of the host channel adapter (HCA) driver and gposium. It is also assumed that the reader has
mid-layer that abstracts the InfiniBand deviceread at least chapters 3, 10, and 11 of Infini-
implementation specifics and presents a conBand Architecture Specification [IBTA] and is
sistent interface to upper level protocols, sucHamiliar with the concepts and terminology of
as IP over IB, sockets direct protocol, and thethe InfiniBand Architecture. The goal of the pa-
InfiniBand storage protocols. The InfiniBand per is not to educate people on the InfiniBand
core software is logically grouped into 5 ma- Architecture, but rather to introduce the reader
jor areas: HCA resource management, memorto the APIs and code that implements the In-
management, connection management, workniBand Architecture support in Linux. Note
request and completion event processing, anthat the InfiniBand code that is in the kernel has
subnet administration. Physically, the corebeen written to comply with the InfiniBand 1.1
software is currently contained within 6 ker- specification with some 1.2 extensions, but it is
nel modules. These include the Mellanox HCAimportant to note that the code is not yet com-
driver, ib_mthca.ko, the core verbs modulepletely 1.2 compliant.
ib_core.ko, the connection manager, ib_cm.ko,
and the subnet administration support modulesThe InfiniBand code is located in the ker-
ib_sa.ko, ib_mad.ko, ib_umad.ko. We will alsonel tree underlinux-2.6.11/drivers/
discuss the additional modules that are undeinfiniband . The readeris encouraged to read
development to export the core software interthe code and header files in the kernel tree. Sev-
faces to userspace and allow safe direct accessal pieces of the InfiniBand stack that are in
to InfiniBand hardware from userspace. the kernel contain good examples of how to use
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the routines of the core software described irwhen an InfiniBand device is added or removed
this paper. Another good source of informa-from the system. Below is some sample code
tion can be found at the www.openib.org web-that shows how this routine is called:

site. This is where the code is developed prior

to being submitted to the linux kernel mailing
list (lkml) for kernel inclusion. There are sev-
eral frequently asked question documents plus

email lists <openib-general@openib. static void my_remove_device(
org> . where people can ask questions or sub-  struct ib_device *device);
mit patches to the InfinBand code.

static void my_add_device(
struct ib_device *device);

static struct ib_client my_client = {

. . . .name = "my_name",
The remainder of the paper provides a high 4 = my_add_device,

level overview of the mid-layer routines and remove = my remove device
provides some examples of their usage. It ig;
targeted at someone that might want to writeStatic int __init my_init(void)
a kernel module that uses the mid-layer oft
someone interested in how it is used. The pa-
per is divided into several sections that cover ret = ib_register_client(
driver initialization and exit, resource manage- &my_client);
ment, memory management, subnet adminis-  if (re9)
tration from the viewpoint of an upper level , . PIN(KERN_ERR

) my ib_register_client failed\n");
protocol developer, connection management, .etm ret:
and work request and completion event pro3
cessing. Finally, the paper will present a secstatic void __exit my_cleanup(void)
tion on the user-mode infrastructure and how!
one can safely use the InfiniBand resource di-
rectly from userspace applications.

int ret;

ib_unregister_client(
&my_client);

module_init(my_init);
module_exit(my_cleanup);

2 Driver initialization and exit

_ o 3 InfiniBand resource management
Before using InfiniBand resources, kernel

clients must register with the mid-layer. This
also provides the way, via callbacks, for3.1 Miscellaneous Query functions
the client to discover the available Infini-

Band devices that are present in the syste . . .
P y ml‘he mid-layer provides routines that allow a

To register with the InfiniBand mid-layer, a _. o .
client calls thab_register_client rou- che_nt to qu_e_ry or modify information about the
" - various InfiniBand resources.

tine. The routine takes as a parameter a
pointer to aib_client structure, as defined
in linux-2.6.11/drivers/infiniband/ ib_query_device
include/ib_verbs.h . The structure takes a ib_query_port
pointer to the client’s name, plus two function ib_query gid
pointers to callback routines that are invoked ib_query_pkey
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ib_modify_device with subsequent InfiniBand resources, such as
ib_modify_port gueue pairs, or memory regions.
The ib_query_device routine allows a Protection domains allow a client to associate

client to retrieve attributes for a given hardwaremultiple resources, such as queue pairs and
device. The returnedevice_attr ~ structure memory regions, within a domain of trust. The
contains device specific capabilities and limi-client can then grant access rights for send-
tations, such as the maximum sizes for queuég/receiving data within the protection domain
pairs, completion queues, scatter gather entrie$9 others that are on the Infinband fabric.

etc., and is used when configuring queue pairs . . )
and establishing connections. To allocate a protection domain, clients call the

ib_alloc_pd routine. The routine takes and
The ib_query_port routine returns infor- pointer to the device structure that was returned
mation that is needed by the client, such as thevhen the driver was called back after register-
state of the port (Active or not), the local iden-ing with the mid-layer. For example:
tifier (LID) assigned to the port by the subnet
manager, the Maximum Transfer Unit (MTU),
the LID of the subnet manager, needed for
sending SA queries, the partition table length,
and the maximum message size. Once a PD has been allocated, it is used in sub-
sequent calls to allocate other resources, such
as creating address handles or queue pairs.

my_pd = ib_alloc_pd(device);

The ib_query_pkey routine allows the
client to retrieve the partition keys for a port.

Typically, the subnet manager only sets one€To free a protection domain, the client calls

pkey for the entire subnet, which is the defaultip_dealloc_ pd , which is normally only
pkey. done at driver unload time after all of the other
resources associated with the PD have been

The ib_modify_device and ib_modify

port routines allow some of the device or port
attributes to be modified. Most ULPs do not
need to modify any of the port or device at- ib_dealloc_pd(my_pd);
tributes. One exception to this would be the

communication manager, which sets a bit in the . -
port capabilities mask to indicate the presenct—?'3 Types of communication in InfiniBand
of a CM.

freed.

" . . .. Several types of communication between
Additional query and modify routines are dis end-points are defined by the InfiniBand ar-

cussed in later sections when a particular re-, . e .
P chitecture specification [IBTA]. These include

source, such as queue pairs or completion . .
. 9 P P reliable-connected, unreliable-connected,
gueues, are discussed. . )
reliable-datagram, and unreliable datagrams.
' _ Most clients today only use either unreliable
3.2 Protection Domains datagrams or reliable connected commu-
nications. An analogy in the IP network
Protection domains are a first level of accesstack would be that unreliable datagrams
control provided by InfiniBand. Protection do- are analogous to UDP packets, while a

mains are allocated by the client and associateckliable-connected queue pairs provide a
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connection-oriented type of communication,3.5 Queue Pairs and Completion Queue
similar to TCP. But InfiniBand communication Allocation
is packet-based, rather than stream oriented.

All data communicated over InfiniBand is done
3.4 Address handles via queue pairs. Queue pairs (QPs) contain
a send queue, for sending outbound messages

When a client wants to communicate via un-and requesting RDMA and atomic operations,
reliable datagrams, the client needs to creat@nd a receive queue for receiving incoming

an address handle that contains the informatiof’€ssages or immediate data. ~Furthermore,
needed to send packets. completion queues (CQs) must be allocated and

_ associated with a queue pair, and are used to re-
To create an address handle the client callgeive completion notifications and events.

the routineib_create_ah() . An example

code fragment is shown below: Queue pairs and completion queues are allo-
cated by calling thé_create_gp  andib_

struct ib_ah_attr  ah_atr; create_cq routines, respectively.

struct ib_ah *remote_abh;

memset(@ah_attr, 0, sizeof ah_atr) The following sample code allocates separate
ah atrdid = remote lid completion queues to handle send and receive
ah_attr.sl = service_level; completions, and then allocates a queue pair as-
ah_attr.port_num = port->port_num; sociated with the two CQs.

remote_ah = ib_create_ah(pd, &ah_attr); ] )
send_cqg = ib_create_cq(device,
my_cq_event_handler,

In the above example, the pd is the protection m‘)—/’%{;mext
domain, theremote_lid and service_ my_send_cq_size):

level are obtained from an SA path recordrecv-cd = ib_create_cq(device,
my_cq_event_handler,

query, and thgort_num was returned in the NULL,
device structure through thie_register my_context,
_ — — my_recv_cq_size);
client  callback. Another way to get the
: ; : _ init_attr->cap.max_send_wr = send_cq_size;
remote_lid  and service_level infor Init_attr->cap.max_recy. wr = recy cq. size:

mation is from a packet that was received frominit_attr->cap.max_send_sge = LIMIT_SG_SEND;
a remote node init_attr->cap.max_recv_sge = LIMIT_SG_RECV;

. init_attr->send_cq = send_cq;
There are also core verb APIs for destroying thenit_attr->recv_cq = recv_cg;
P -¢ init_attr->sq_sig_type = IB_SIGNAL_REQ_WR;
address handles and for retrieving and modify;yatr->qp_type - |B_QPT RC:
ing the address handle attributes. init_attr->event_handler = my_gp_event_handler;

my_gp = ib_create_qp(pd, init_attr);
ib_destroy_ah
ib_query_ah After a queue pair is created, it can be con-
ib_modify_ah nected to a remote QP to establish a connec-
tion. This is done using the QP modify routine

Some example code that calls create_ g the communication manager helper func-
ah to create an address handle for a multlcasﬁ-ons described in a later section.

group can be found in the IPoIB network driver
for InfiniBand, and is located iftinux-2.6. There are also mid-layer routines that allow de-
11/drivers/infiniband/ulp/ipoib . struction and release of QPs and CQs, along
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with the routines to query and modify the queueTo get the memory region structure that has
pair attributes and states. These additional corthe keys that are needed for data transfers, the

QP and CQ support routines are as follows: client calls thelb_get_dma_mr routine, for
example:

ib_modify_qgp
ib_query_qp

ib_destroy_gp

ib_destroy_cq
ib_resize cq If the client has a list of pages that are not
physically contiguous but want to be virtually

] . ] ) contiguous with respect to the DMA opera-

Note thaib_resize_cq  isnotcurrentlyim- o je. scatter/gather, the client can call the

plemented in the mthca driver. ib_reg_phys_mr  routine. For example,

mr = ib_get_dma_mr(my_pd,
IB_ACCESS_LOCAL_WRITE);

An example of kernel code that allocates QPs
and CQs for reliable-connected style of com-fiova = &my_bufferl;
munication is the SDP driver [SDP]. It can be vuffer listj0o].addr = dma_addr_buffer?;
P i i uffer_list[0].size = bufferl_size
fo_und in the _subver5|on tree_ at opgnlb.org, ant@uﬂer_nst[ll_adolr _ dma, aoeh buffer2:
will be submitted for kernel inclusion at some buffer_list[1].size = buffer2_size;
point in the near future. mr = ib_reg. phys.mr(my._pd.
buffer_list,
2,
IB_ACCESS_LOCAL_WRITE |
IB_ACCESS_REMOTE_READ |

4 InfiniBand memory management IB_/CCESS_REMOTE_WRITE,

iova);

Before a client can transfer data across |nﬁni-'|'he mr structure that is returned contains the
Band, it needs to register the correspondinmecessary local and remote keys, lkey and
memory buffer with the InfiniBand HCA. The rkey, needed for sending/receiving messages
InfiniBand mid-layer assumes that the kerneland performing RDMA Operations_ For exam-
or ULP has already pinned the pages and hagle, the combination of the returned iova and

translated the virtual address to a Linux DMAthe rkey are used by a remote node for RDMA
address, i.e., a bus address that can be used Bgerations.

the HCA. For example, the driver could call
get_user_pages and thendma_map_sg Once aclient has completed all data transfers to
to get the DMA address. a memory region, e.g., the DMA is completed,
the client can release to the resources back to
Memory registration can be done in a couple ofthe HCA using théb_dereg_mr  routine, for
different ways. For operations that do not haveexample:
a scatter/gather list of pages, there is a memory
region that can be used that has all of physical
memory pre-registered. This can be thought of
as getting access to the “Reserved L_key” that
is defined in the InfiniBand verbs extensionsThere is also a verbipb_rereg_phys_mr
[IBTA]. that allows the client to modify the attributes of

ib_dereg_mr(mr);
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a given memory region. This is similar to do-

extensions [IBTA]. The FMRs that are imple-

ing a de-register followed by a re-register butmented are based on the Mellanox FMRs that
where possible the HCA reuses the same repredate the 1.2 specification and so the develop-
sources rather than deallocating and then reakrs deviated slightly from the InfiniBand speci-

locating new ones.

status = ib_rereg_phys_mr(mr,

mr_rereg_mask,
my_pd,
buffer_list,
num_phys_buf,
mr_access_flags,
iova_start);

There is also a set of routines that allow a tech
nique called fast memory registration.
Memory Registration, or FMR, was imple-

fication in this area.

InfiniBand also has the concept of memory
windows [IBTA]. Memory windows are a way
to bind a set of virtual addresses and attributes
to a memory regions by posting an operation
to a send queue. It was thought that people
might want this dynamic binding/unbinding in-
termixed with their work request flow. How-
ever, it is currently not used, primarily because
of poor H/W performance in the existing HCA,
and thus is not implemented in the mthca driver

Fastin Linux.

mented to allow the re-use of memory regiongiowever, there are APIs defined in the mid-

and to reduce the overhead involved in regis
tration and deregistration with the HCAs. Us-
ing the technique of FMR, the client typically
allocates a pool of FMRs during initialization.
Then when it needs to register memory with
the HCA, the client calls a routine that maps

layer for memory windows for when it is im-
plemented in mthca or some future HCA driver.
These are as follows:

ib_alloc_mw
ib_dealloc_mw

the pages using one of the pre-allocated FMRs.

Once the DMA is complete, the client can un-

map the pages from the FMR and recycle the

memory region and use it for another DMA op-
eration. The following routines are used to al-
locate, map, unmap, and deallocate FMRs.

ib_alloc_fmr
ib_unmap_fmr
ib_map_phys_fmr
ib_dealloc_fmr

An example of coding using FMRs can be
found in the SDP [SDP] driver available at
openib.org

NOTE: These FMRs are a Mellanox specific

5 InfiniBand subnet administration

Communication with subnet administra-
tion(SA) is often needed to obtain information
for establishing communication or setting
up multicast groups. This is accomplished
by sending management datagram (MAD)
packets to the SA through InfiniBand special
QP 1 [IBTA]. The low level routines that
are needed to send/receive MADs along with
the critical data structures are defined in
linux-2.6.11/drivers/infiniband/

include/ib_mad.h

Several helper functions have been imple-

implementation and are NOT the same as thenented for obtaining path record information

FMRs as defined by the 1.2 InfiniBand verbs

or joining multicast groups. These relieve
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most clients from having to understand the info->ca,

low level MAD routines. Subnet adminis- info->port,

tration APIs and data structures are located &info->path,

i o Idrivers/infiniband/ (IB_SA_PATH_REC_DGID |

!n |nux'-2.6.11 rivers/infiniban . ‘ IB_SA_PATH_REC_SGID |

include/ib_sa.h and the following sections IB_SA_PATH_REC_PKEY |

discuss their usage. IB_SA_PATH_REC_NUMB_PATH),
info->sa_time,
GFP_KERNEL,

5.1 Path Record Queries _Sf:cp_llnk_path_rec_done,
Into,

&info->query);

To establish connections, certain information is
. If (result < 0) {

needed, such as the source/c!es_tlnatlon _LIDs, sdp_dbg_warn(NULL,
service level, MTU, etc. This information "Error <%d> restarting path query”,
is found in a data structure known as a path result);
record, which contains all relevant informa-}
tion of a path between a source and destina-
tion. Path records are managed by the Inin the above example, when the query com-
finiBand subnet administrator(SA). To obtain apletes, or times-out, the client is called back
path record, the client can use the helper funcat the provided callback routinedp_link_
tion: path_rec_done . If the query succeeds, the
path record(s) information requested is re-
. turned along with the context value that was
ib_sa_path_rec_get : :

provided with the query.

This function takes the device structure, ref the query times out, the client can retry the
turned by the register routine callback, the locaf€duest by calling the routine again.

InfiniBand port to use for the query, atimeoutNote that in the above example, the caller
value, which is the time to wait before giving . provide the DGID, SGID :;lnd PKEY
up on the query, and two maslcgmp_ma_ls_k in the info->path structure, In the SDP
and gfp_mask . The_comp_mask specifies example, thénfo->path.dgid info->

the components of thi_sa path_rec to path.sgid , and info->path.pkey are

perform the query with. Thgfp_mask is set in the SDP routinedo_link_path
the mask used for internal memory auoca'lookup - B

tions, e.g., the ones passed to kmallG&P_

KERNEL GFP_USERGFP_ATOMIC GFP_

USER The**query parameter is a returned 5.2 Cancelling SA Queries
identifier of the query that can be used to

cancel it, if needed. For example, given ajf the client wishes to cancel an SA query, the
source and destination InfiniBand global identi-cjient uses the returnettquery  parameter

fier (sgid/dgid) and the partition key, here is angnq query function return value (query id), e.g.,
example query call taken from the SDP [SDP]

code. ib_sa_cancel_query(

query_id,
query_id = ib_sa_path_rec_get( query);
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5.3 Multicast Groups (MADSs) directly. For the few operations that
require communication with the subnet man-
ager/subnet administrator, such as path record

Multicast groups are administered by the SUb'queries or joining multicast groups, helper

net administrator/subnet manager, which cong,nctions are provided, as discussed in an ear-
figure InfiniBand switches for the multicast ;o saction

group. To participate in a multicast group, a

client sends a message to the subnet adminigiowever, for some modules of the mid-layer
trator to join the group. The APIs used to dojiself such as the communications manager,

this are shown below: or for developers wanting to implement man-

agement agents using the InfiniBand special

ib sa mcmember rec set queue pairs, MADs may need to be sent
ib sa mcmember rec delete and received directly. An example might be
ib_sa_mcmember_rec_query someone that wanted to tunnel IPMI [IPMI]

or SNMP [SNMP] over InfiniBand for re-
_ _ mote server management. Another exam-
The ib_sa_mcmember_rec_set  routine ple is handling some vendor-specific MADs
is used to create and/or join the multicast groughat are implemented by a specific Infini-

and theib_sa_mcmember_rec_delete Band vendor. The MAD routines are defined
routine is used to leave a multicast group.n |inux-2.6.11/driversfinfiniband/

The ib_sa_mcmember_rec_query rou-  include/ib mad.h

tine can be called get information on avail- B

able multicast groups. After joining the mul- Before being allowed to send or receive MADs,
ticast group, the client must attach a queuaviAD layer clients must register an agent with
pair to the group to allow sending and receiv-the MAD layer using the following routines.

ing multicast messages. Attaching/detachingrhe ib_register_mad_snoop routine can
queue pairs from multicast groups can be donge used to snoop MADs, which is useful for
using the API shown below: debugging.

ib_attach_mcast

: ib_register_mad_agent
ib_detach_mcast

ib_unregister_mad_agent
ib_register_mad_snoop
The gid and lid in these routines are the mul-
ticast gid(mgid) and multicast lid (mlid) of
the group. An example of using the multi-
cast routines can be found in the IP over IB
code located inlinux-2.6.11/drivers/
infiniband/ulp/ipoib

After registering with the MAD layer, the MAD
client sends and receives MADs using the fol-
lowing routines.

ib_post_send_mad

54 MAD routines ib_coalesce recv_mad
ib_free_recv_mad
ib_cancel_mad

Most upper level protocols do not need to send ib_redirect_mad_gp

and receive InfiniBand management datagramsib_process_mad_wc



2005 Linux Symposium e 279

Theib_post_send_mad routine allows the linux-2.6.11/drivers/infiniband/

client to queue a MAD to be sent. After a include/ib_cm.h Before initiating a con-
MAD is received, it is given to a client through nection request, the client must first register
their receive handler specified when registera callback function with the mid-layer for
ing. When a client is done processing an in-connection events.

coming MAD, it frees the MAD buffer by call-
ingib_free_recv._mad . Asone would ex-
pect, thelb_cancel_mad routine is used to
cancel an outstanding MAD request.

ib_create_cm_id
ib_destroy_cm_id

i I recv..m i lace-holder : . ,
b_coalesce_recv_mad § a place-holde The ib_create_id routine creates a com-

routlne_ related to the handling Of.MAD 5€9" munication id and registers a callback handler
mentation and reassembly. It will copy ré-¢or connection events. Thib destroy

ceived MAD segments into a single data buffer,Cm_id routine can be used to free the commu-

anl_d g\I"" beltl_mplelznfntec: OnfeRt&illanﬁmBancinication id and de-register the communication
reliable-multi-packet-protocol ( ) suppor callback routine after the client is finished us-

is added. ing their connections.

Similarly, the routineib_redirect_mad_

gp and the routingb_process_mad_wc The communication manager implements a

are place holders for supporting QP redirec.client/server style of connection establishment,
tion, but are not currently implemented. QP re_using a three-way handshake between the client

direction permits a management agent to Senand server. To establish a connection, the server

and receive MADs on a QP other than theside listens for incoming connection requests.

GSI QP (QP 1). As an example, a protocoIC”entS connect to this server by sending a con-

which was data intensive could use QP redi_nection request. After receiving the connection

rection to send and receive management datd€duest, the server will serl;d iconlz]ectll_on re-
grams on their own QP, avoiding contentionSPONS€ Of reject message back to the client. A

with other users of the GSI QP, such as connec_glient completes the connection setup by send-

tion management or SA queries. In this case!d @ ready to use (RTU) message back to the

the client can re-redirect a particular Infini- SErver. Thg following routines are used to ac-
Band management class to a dedicated QP u§OMPlish this:

ing theib_redirect_mad_qgp routine. The

ib_process_mad_wc  routine would then b cm_listen

be used to complete or continue processing aip send_cm_req

previously started MAD request on the redi- jb send _cm_rep

rected QP. ib_send_cm_rtu
ib_send_cm_rej
ib_send_cm_mra
6 InfiniBand connection manage- ib_cm_establish

ment

The communication manager is responsible for
The mid-layer provides several helper func-retrying and timing out connection requests.
tions to assist with establishing connec-Clients receiving a connection request may re-
tions. These are defined in the header filegquire more time to respond to a request than the
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timeout used by the sending client. For exam6.1 Service ID Queries

ple, a client tries to connect to a server that pro-

vides access to disk storage array. The server

may require several seconds to ready the drivelffiniBand provides a mechanism to allow ser-

before responding to the client. To prevent thevices to register their existence with the subnet
client from timing out its connection request, @dministrator. Other nodes can then query the
the server would use the send cm mra subnet administrator to locate other nodes that
routine to send a messaae received acknowlave this service and get information needed to
edged (MRA) to notify the client that the re- communicate with the other nodes. For exam-

quest was received and that a longer timeout igle. clients can discover if a node contains a
necessary. specific UD service. Given the service ID, the

client can discover the QP number and QKey
After a client sends the RTU message, it can beof the service on the remote node. This can
gin transferring data on the connection. How-then be used to send datagrams to the remote
ever, since CM messages are unreliable, theervice. The communication manager provides
RTU may be delayed or lost. In such casesthe following routines to assist in service ID
receiving a message on the connection notifiegesolution.
the server that the connection has been estab-
lished. In order for the CM to properly track
the connection state, the server caiscm__
establish  to notify the CM that the connec-
tion is now active.

ib_send_cm_sidr_req
ib_send_cm_sidr_rep

Once a client is finished with a connection, .
it can disconnect using the disconnect reques? Infm'Bar_]d work reque;t and
routine b_send_cm_dreq ) shown below. completion event processing
The recipient of a disconnect request sends a

disconnect reply.
Py Once a client has created QPs and CQs, reg-

istered memory, and established a connec-
ib_send_cm_dreq tion or set up the QP for receiving data-
ib_send_cm_drep grams, it can transfer data using the work
request APIs. To send messages, perform

. . _RDMA reads or writes, or perform atomic
There are two routines that support path migra- ) .
. . operations, a client posts send work request
tion to an alternate path. These are:

elements (WQE) to the send queue of the
queue pair. The format of the WQEs along

ib_send_cm_lap with other critical data structures are located
ib_send_cm_apr in linux-2.6.11/drivers/infiniband/
include/ib_verbs.h . To allow data to

be received, the client must first post receive

Theib_send_cm_lap routine is used to re- WQESs to the receive queue of the QP.
guest that an alternate path be loaded. The

ib_send_cm_apr routine sends a response
to the alternative path request, indicating if the ib_post_send
alternate path was accepted. ib_post_recv
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The post routines allow the client to post a list8 Userspace InfiniBand Access
of WQEs that are linked via a linked list. If

the format of WQE is bad. and the post rOUt_meThe InfiniBand architecture is designed so that

ﬁmltiple userspace processes can share a sin-
gle InfiniBand adapter at the same time, with
_ ) _ each the process using a private context so that
To process completions, a client typically sets,gt path operation can access the adapter hard-
up a completion callback handler when theyare directly without requiring the overhead of

completion queue (CQ) is created. The client, system call or a copy between kernel space
can then calib_req_notify cq torequest 44 userspace.

a notification callback on a given CQ. The
ib_req_ncomp_notif routine allows the Work is currently underway to add this sup-
completion to be delivered after n WQEs haveport to the Linux InfiniBand stack. A kernel
completed, rather than receiving a callback afmoduleib_uverbs.ko implements charac-
ter a single one. ter special devices that are used for control path
operations, such as allocating userspace con-
texts and pinning userspace memory as well
ib_req_notify_cq as creating InfiniBand resources such as queue
ib_req_ncomp_notif pairs and completion queues. On the userspace
side, a library called libibverbs will provide an
API in userspace similar to the kernel API de-

return a pointer to the bad WQE.

The mid-layer also provides routines for Scribed above.

poliing for completions and peeking “? see hOWIn addition to adding support for accessing the
many completions are currently pending on thg/erbs from userspace, a kernel modite (

completion queue. These are: umad.ko ) allows access to MAD services
from userspace.

ib_poll_cq There also now exists a kernel module to proxy
ib_peek_cq CM services into userspace. The kernel module
is calledib_ucm.ko

As the userspace infrastructure is still under

Finally, there is the possibility that the client ) ) .
: : construction, it has not yet been incorporated
might receive an asynchronous event from the

- : . ._into the main kernel tree, but it is expected to
InfiniBand device. This happens for certain : .
: : ._be submitted to Ikml in the near future. Peo-
types of errors or ports coming online or going

offline. Readers should refer to section 11'6'%L)ewtrliz\évﬁr;:ogrﬁtt;:miﬁi(;:aer?j éﬁt;[cgrgi%?]e dg?n
of the InfiniBand specification [IBTA] for a list

of possible asynchronous event types. The mi velopment tree available froopenib.org

layer provides the following routines to register

for asynchronous events.
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Abstract The first full-scale technical discussion on the
IPng started in 1992 at the IETF. IPng, i.e., In-
ternet Protocol Version 6 (IPv6), was intended

Linux has included an IPv6 protocol stack for ato solve the various problems on the traditional
long time. Its quality, however, was not quite IPv4, such as performance of packet forward-
good at the early stage. The USAGI Projecting, protocol extensibility, security and privacy.
was founded to promote this situation and pro-
vide high quality IPv6 stack for Linux systems. According to the above principles, the basic
As a result of 5 years of our intensive activity, SPecification of IPv6 was defined in 1994. Af-
our stack is now certified as IPv6 Ready. It hader a series of experimental implementation and
been merged into main-line kernel so that thehetwork operation (e.g., 6bone), the IPv6 tech-
Linux IPv6 stack has enough quality to get thenology is now getting into professional phase
IPv6 Ready Logo now. To maintain the stackand applied to production. Commercial IPv6
stable, we developed an automatic testing Sy§ervices by Internet Service Providers and the
tem, which greatly helps us saving our time. In@pplications running with IPv6 have been al-
this paper and the relevant presentation, we wilféady available around us. This means that
show our efforts and technology to get the LogolPv6 stack implemented in any devices must be
and to maintain the quality of kernel. In addi- Of production quality.

tion, we will discuss our future plan. :
P Linux system has also supported the IPv6 pro-

tocol as well as other operating systems such as
FreeBSD, Sun Solaris and Microsoft Windows
XP. Linux has included IPv6 stack since 1996
when early Linux 2.1.x version released. How-
ever, Linux IPv6 stack was not actively devel-
eoped nor maintained for some time.

1 Introduction

The current Internet has been running with th

Internet Protocol Version 4, so called as |PV4,C0nsidering above Circumstances’ USAGI
since the end of 1960s. At the end of 1980,prpject was lunched in October, 2000. To de-
the internet experts working at the IETF (In- ploy IPve, it aims at providing improved IPv6

ternet Engineering Task Force) recognized thadtack on Linux, which is one of the most popu-

we needed anew VerSion of Internet Pr0t0C0| tQar Open_source operating System in the Wor‘ld'
cope with rapid growth of the Internet. In 1992,

this new version of protocol was named as IPngNith a number of developments and treatments
(IP next generation). on problems, the quality has been remarkably

o 283
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improved. Itis now good enough to be certified2.2 1Pv6 Ready Logo Program
to the IPv6 Ready Logo Phase-1.

IPv6 Ready Logo Program is a worldwide au-
thorization activity for the interoperability on
2 Quality Assessment of IPv6 the IPv6. To obtain the certification, applicants
should submit corresponding results of self test
and pass the examination of the interoperabil-
There are some basic concepts about the qualiify for the test scenario prior to the judgment.
assessment of IPv6. Among them, TAHI Con-Some test sets, such as TAHI Conformance Test
formance Test Suite, IPv6 Ready Logo Pro-Tool that is a core part of TAHI Conformance
gram Phase-1 and Phase-2 are most importanest Suite, are admitted as a tool for the Self
ones. Test.

2.1 TAHI Conformance Test Suite 221 Phase-1

TAHI Conformance Teat Suite is designed toThe IPv6 Ready Logo Phase-1 indicates that
examine the conformity to the IPv6 specifica-the product includes IPv6 mandatory core pro-
tions. The details of the test are described inocols and can interoperate with any other IPv6
the test-scripts including the following fields; equipments. Self Test covers mandatory fea-
e.g. tures of IPv6 core, ICMPV6, Neighbor Discov-
ery, and Stateless Address Autoconfiguration.
On the other hand, simple trial for the interop-

e [Pv6 Core erability is carried out.
o ICMPV6
e Neighbor Discovery 2.2.2 Phase-2

Stateless Address Autoconfiguration -
* g Phase-2 logo indicates that a product has suc-

« Path MTU Discovery cessfully satisfied strong r.equirements stated
by the IPv6 Logo Committee (v6LC). The
e Tunneling v6LC defines the test profiles with associated

requirements for specific functionalities.
e Robustness
The Core Protocols Logo covers the fields of
e IPsec IPv6 core, NDP, Addrconf, PMTU, ICMPV6,
is designed to examine the MUST- and
SHOULD- items in specifications, and its tests
This test suite is considered one of the de-factdor interoperability are much more complicated
standard tools for judgment of conformance ofthan those of Phase-1. Other discussions are
IPv6 stack. Linux IPv6 stack can also be exam-underway on the tests for IPsec, MLDv2, Mo-
ined by this suite. bile IPV6.
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3 Quality Improvement Activities 4 TAHI Automatic Running Sys-
on Linux tem

As mentioned above, when the USAGI ProjectUSAGI Project has been seeking for more fea-
started, the quality of IPv6 stack is far beyondtured and higher functional code, improving
satisfaction though it was available on Linux.IPv6 stack for Linux, its libraries and applica-
Linux IPv6 stack could not get good scores intions. The results have been gradually accepted
the fields of Neighbor Discovery and Statelessn the Linux community. For example, many
Address Autoconfiguration in TAHI IPv6 Con- improvements on IPv6 stack have been added
formance Test Suite. in main-line kernels.

The members of USAGI Project and other con-These good results are obtained by introduc-

tributers analyzed the problems of the stackjng TAHI Automatic Running System, which

which are categorized as follows: is improved system of TAHI Conformance Test
Suite.

Improper State Transition. In Neighbor Dis-
covery, improper state transition to the4.1 Background
specification had been carried out. To

solve the problem, the mutual dependencyl_h in obiective of USAGI Proiect i
was sorted out in state machine to make' "€ Maino jective o roject is to pro-

the maintenance easier. vide a better environment of IPv6 for Linux,
and all the member of this project have been
Inadequate time management.Time man- Working hard for this purpose. One of those ac-
agement at Neighbor Discovery andtivities isto merge USAGI kernel patches to the
Stateless Address Auto-configuration didmain-line kernel.

not have enough time accuracy. We con-
ducted the structural reform mentioned”ACtive improvement and amendment of the

above which enable the simplification of Main-line kernel are under way on daily ba-

the management and more accurate timé&'S: As for the codes around the network, other

patches as well as those by USAGI are tried to

be taken in. Many maintainers and contribu-

Inadequate use of routing. In the previous tors are always wary of not being involved in
method, there were some occasions whergixing up bugs, but it is very difficult to avoid
invalid route was used in an improper way.completely the possibility of regression after al-

ternation.

control.

Improper treatment against wrong input.
Checks of input from outer sources wereThe improved code is accepted widely in Linux
not adequate, improper treatments wereommunity. While it is important to continue
going on for the wrong or malicious input. developing new functionality further more, to
maintain the quality of present code is defi-
nitely necessary.
The project results dealing with the above prob-
lems have been applied in main-line kernel stepn order to solve these problems, a system
by step, until the version 2.6.11-rc2. was developed, which enables us to test the



286 e Linux Is Now IPv6 Ready

gether with bk versichthat is released every

wait for
new release

night.
configure ) nc S .
When the system finds a new release of a ver-
) sion, it begins to build up the kernel with auto-
=-- J @ matic procedures of configuration, building-up,

-
-
-

,
.
.
.
.
e o7
_- Serious error

7
’
s

and installment. The logs in each procedure are
preserved in the system, so that building errors
can be analyzed. When the treatment of each
procedure fails, the system assumes that the
source contained the cause of problem, waiting
for next release of version.

Once the building-up of the kernel has finished,
Figure 1: The Flowchart of the system the system carries out the test. This system is
designed to run multiple tests with several set-
tings for one kernel. For this purpose, NUT, the
functions of IPv6 stack at each release Ofest target, is rebooted with proper mode such
the snapshots of main-line kernel that is pubss router or host, and with proper settings such
lished every day. TAHI IPv6 Conformance a5 |p address, prior to the launch of each test,
Test Tool qttp://www.tahi.org ) Pro- and then the test is carried out. Each time when
vided by TAHI Project is used in order 10 test the test is finished, the result is shown in a table,
the functions of IPv6. Using this system thatyhich is compared with the previous records.
runs the test automatically, immediate amendThat enable us to make sure if the regression
ment and tackling of the problems are possiblenight have occurred after the introduction of
even if some regression may be observed on thg new patch. The logs of each rebooting pro-
functions of IPv6. The system is open 1o thecess and test result are preserved. If the system

general public, and you can see ithtp:// failed to reboot the target, it will stop its au-
testlab.linux-ipv.org through the con-  tomatic operation and wait for manual resume
nect via IPv6. after checking.

After the test of kernel, the system will be back
4.2 Procedure of the System to the stage of waiting for a new release of ker-
nel. Before this transition to the waiting stage,
the test target will be rebooted in order to get it
The systemis a bunch of some procedures, eadfack to the stable stage, with putting it back to
of which consists of waiting for new release a stable kernel verified. The logs at the stage of
of the kernel, building-up, and testing. Thoserebooting are also preserved.
procedures are repeated, and the results are ob-

served. The state transition of each procedurg 3 collected Data and Access to the Infor-
is shown in Figure 1. mation

The system waits for new kernel release when )
the test is not performed. The release objectivedNe System collects many kinds of data, such

are not only stable version, but also rc versiorfS the results of tests, the differences between
that is a preparing stage for stable version, to- !as of April 2005
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Result of each test set p

ct-véoready2-core.host J O ——
[ Saurces & Bimaries[ here ]
O dot_config [ here ]
+ Results

. —— ct-v6ready1.host
— ct-v6ready l.router

— ct-v6ready2-core.router

(— diff-ct-véready.router Difference of result of each test se

from previous kernel

Phase-1 Self-Test (host) Results [ here ] |Diff [ here ]

— diff-ct-véready2-core.host

{— diff-ct-véready1.host
Phase-1 Self-Test (router) |Results [ here ] [Diff [ here ]

— diff-ct-v6ready2-core.router
. L Phase-2 Self-Test (haost) Results [ here ] |Diff [ here ]
(— testkernel Source, configuration and binaries

L log configure.txt Phase-2 Self-Test (router) |Results [ here ] |Diff [ here ]

+ Test Log

O Configure [ pas= ]

O Build [ pass ]

O Install [ pass ]

O Reboat for Host Test [ pass ]
[ Reboot for Router Test [ pass ]
[ Rehoot for recovery [ pass ]

install.txt

reboot_ct-véready1.host.txt

reboot_ct-v6ready1.router.txt Logs of each stage
reboot_ct-véready2-core.host.txt

reboot_ct-véready2-core.router.txt Hang Last modified Size Description

reboot_recover.txt
1 Parent Directory

1 ct-vBreadyl .host/ 10-Jan-2004 03309
1 ct-vereadyl,router/ 10-Jan-2004 03:09
[DIR] ct-vhresdyZ-core.host/ 09-Dec-2004 03:02
[DTR] ct-vhreadyZ-core,rou, > 09-Dec-2004 03:02
1 testkernel/ 22-Apr-2005 07:01
1 diff-ct-vhreadul.host/ 22-Apr-2005 10:03
1 diff-ct-vreadul.rou..> 22-Apr-2005 12:01
l diff-ct-veready2-cor..> 22-Apr-2005 20303
IR] diff-ct-veready2-cor..> 22-Apr-2005 23:42
DIR] log/ 22-Apr-2005 23:44

Figure 2: Data Collected by the Autorun Sys-
tem

Fpache/2,0,52 (FreeBSD) Server at testlab,linux-ipvé,org Port 80

each test result and its previous equivalent test,
the source and the compiled binaries, or various
logs in each process of tests like kernel-build.
Figure 2 shows what kinds of data should be ==z
collected at each release of kernel.

Figure 3: Access Example through Web
Each datum is exported by HTTP daemon andBrowser
people can browse it using web browsers. The
browser window is designed to seek the objec-
tive data open to the public as quick as possibleThese items are now being discussed under de-
Figure 3 shows an access example through thgejopment.
web browser.

4.4 Development in Future
5 LinuxIs IPv6 Ready

As of April in 2005, according to this system,
IPv6 Ready Logo Phase 1 Self Test and Phas&
2 Core Protocols Self Test are conducted on%
on the version 2.6 in main-line kernel. The ex-
pecting developments in future are as follows;

s described in Section 2.2, IPv6 Ready Logo
rogram is an international activity for proof of
interoperability. As of December 2004, more
than 120 products have been approved with
gaining the Phase-1 certification, which means

1. parallel proceedings to different kernel re-those products have the basic interoperability in
lease, such as USAGI kernel and main-lingpy,g_

kernel

2. supporting other tests, such as those fol’V6 used to be classified as EXPERIMENTAL

IPsec, MLDv2 and Mobile IPv6 in Linux, so that people are worrying for long

time that IPv6 in the Linux would not be useful.

3. General definition to the test target and tesGetting this logo, however, the anxiety would
sets be expelled completely.
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5.1 USAGI Project (National Institute of Advanced Industrial
Science and Technology), Alpha Systemss

) ) o ) Inc. to develop special IPv6-aware KNOPPIX
USAGI Project decided to join this program pased on KNOPPIX Japanese Editiontd:
to gain the international certificate, which will Ilunit.aist.go.jplitri/knoppix/ ).

show what credible results we are offering.  The code provided by USAGI Project

was integrated, and the resulting prod-
uct was named “KNOPPIX/IPv6” hftp:
www.alpha.co.jp/knoppix/ipv6/ ).

In 2004, USAGI Project took part in IPv6
Ready Logo Program with its patched kernel
and tool. In February, the Project ob.talned IPv ith KNOPPIX/IPV6, together with the merit
Ready Logo Phase-1 on both functions of host ) .
I f KNOPPIX that “only starting of CD-ROM
and router with its product based on 2.6 kerneP . . . .,
. Is needed without installment and setting-up
and with its enhanced tool. In September 2004and the hiah quality IPv6 protocol stack b
and in April 2005, it gained IPv6 Ready Logo gh quaity P y

Phase-1 on 2.4-based kernel, in addition to 2.6l-JSAGI Project, a new technical 1 CD OS

. world has been achieved where beginners can
based one, on the functions of host and router. . )
easily experience the IPv6 world.

5.2 Main-line

To summarize the dealing with situation of
Many improvements by USAGI Project mem- KNOPPIX/IPv6, major desktop applications
bers and other developers were unified intasuch as web browsers (Mozilla, Konqueror),
the main-line kernel in the 2.6.11 timeframe, mail clients (Sylpheed, Kmail) support IPVv6.
and the version 2.6.11-rc2, with patched radvddn the other hand, as for coping with funda-
(router advertisement daemon), is finally ap-mental IPv6 networking, 6to4 is adopted. This
proved with IPv6 Ready Logo Phase-1. function is supported, because users do not al-
. ) ) .. ways connect their machines to the global IPv6
In addition to this, the version 2.6.12 will in- | tarnet. Even if a user connects to the IPv4-
clude the kernel function that is needed to gebmy network, KNOPPIX/IPv6 automatically
IPv6 Ready Logo Phase-2 certificate. detects it and configures 6to4 tunnel to the out-
side local network. Therefore, from now on, it
53 KNOPPIX/IPV6 is possible for users to enjoy more sophisticated
network without realizing whether it is IPv4 or
IPV6.
USAGI Project collaborated with KNOP-
PIX/IPv6 (http://www.alpha.co.
jp/knoppix/ipve/ ), which uses the
provided code by USAGI to their prod- In September 2004, KNOPPIX/IPv6 could ob-
ucts, and helped them to take part intain IPv6 Ready Logo Phase-1 on both ker-
IPv6 Ready Logo Program. KNOPPIX nel versions based on 2.4 and 2.6. The neces-
(http://www.knopper.net/knoppix/ ) sary tests to confirm interoperability were con-
is one of the major Linux distributions which ducted at laboratory of USAGI Project in Keio
makes it possible to boot with single CD University as a cooperative work of the Project
without any special installing operation. and developers of the KNOPPIX Japanese Edi-
USAGI Project collaborated with AIST tion.



5.4 Development in Future

USAGI Project is going to participate in IPv6
Ready Logo Phase-1 Program to improve the
quality of interoperability.

On the other hand, in the new IPv6 Ready Logo
Phase-2 Program, the aim of which is verifica-
tion of the system whether it is available in the
real network environment, not only basic IPv6
functions but also IPsec, MIPv6, and MLD are
subject to verification. USAGI Project is going
to participate actively in the Phase-2 Program,
and will play an initiative role in the quality im-
provement.

The Self Test for IPv6 Ready Logo contains a
lot of its functions, playing a great role for the
guality improvement and maintenance of the
Linux, contributing to the less personal burden
of labor. However, it does not warrant liabil-
ity against the stress and attack from the out-
side, nor the stability in SMP (symmetric multi-
processing). Now, IPv6 is enabled by default in
Linux, it is more important to maintain the sta-
bility of the system on the more complicated
in higher stage. The members of this project
will continue to achieve this objective through
fulfillment of the experiments and the practical
environment.
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The usbmon: USB monitoring framework
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Abstract 2 Origins

, Although the need to have a robust, simple,
For years, Linux developers usedptk() and unobtrusive method of snooping appears
to debu_g thg USB stack, bl_Jt this approa_cqo be self-evident, Linux USB developers were
has s“erlous |Ir‘?Ita'[I0r’IS. In this paper we d's'getting by with layers of macros on top of
cuss “usbmon, gr_ecently deve_lo_ped facility toprintk() for years. Current debugging fa-
snoop USB trafflc Inamore efficient way than cilities are represented by a patchwork of build-
can be done witiprintk() time configuration settings, such @ONFIG_
USB_STORAGE_DEBUGo make the use of
From far away, usbmon is a very straightfor-systems with tracing included more palatable,
ward piece of code. It consists of circularusbserial  and several other modules offer
buffers which are filled with records by hooks “debug” parameter.
into the USB stack and a thin glue to the user
code which fetches these records. The devillimitations of the this approach became pro-
however, is in details. Also the user mode toolsnounced as more users running preconfigured
play a role. kernels appeared. For a developer, it is often
undesirable to make users to rebuild their ker-
nels with CONFIG_USB_STORAGE_DEBUG
enabled. These difficulties could be overcome
by making tracing configurable at runtime, by
1 Introduction a module parameter. Nonetheless, this style of
tracing is still not ideal, for several reasons.
Output to the system console and/or log file
is lossy when a large amount of data is piped
This paper largely deals with the kernel partthrough though the syslog subsystem. Tim-
of the USB monitoring infrastructure, which is ing variations introduced by formatted print-
properly called “usbmon” (all in lower case). outs skew results, which makes it harder to pin-
We describe usbmon’s origins, overall designpoint problems when peripherals require delays
internals, and how it is used, both by C code inin the access pattern. And finallyrintk()
kernel and by human users. To conclude, wealls have to be added all the time to capture
consider if experience with usbmon is applica-what is important. Often it seems as if the one
ble to subsystems other than USB. key printk() is missing, but once added, it

e 291 o
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stays in the code forever and serves to obscur@vokes a specified callback to notify the core
printouts needed at that time. and the requesting driver. The usbmon hooks
reside in the core of USB stack, in the sub-
A facility similar to tcpdump(8) would be a mjssion and callback paths. Thus, usbmon re-
great help for USB developers. The usbmonjes on HCD to function properly and is only
aims to provide one. marginally useful in debugging of HCDs. Such

. . .an arrangement is accepted for two reasons.
David Harding proposed a patch to address thlT':*—irst it allows usbmon to be unobtrusive and

need back in 2002, but for various reasons that. ... ,
o : : ) f ly | If. , th
effort stalled without producing anything suit- élgm icantly less buggy itself. Second, the vast

able to be accepted into the Linus’ kernel. ThemaJorIty of bugs occur outside of HCDs, in in

. ) upper level drivers or peripherals.
usbmon picks up where the previous work left PP Perip
and is available in the mainline kernel starting

with version 2.6.11. The user interface to the usbmon answers to

diverse sets of requirements with priorities

changing over time. Initially, a premium is
3 Architecture placed on ease of implementation and the pos-

sibility to access the information with simple

o ) . tools. But in perspective, performance starts to
The USB monitoring or snooping facilities for play a larger role. The first group of require-

Linux consist of the kernel part, or usbmon, jants favors an interface typified broc
and the user mode part, or user mode tools. Tﬂlesystem, the one of pseudo text files. The

jump-start the development, usbmon took thesecond group pulls toward a binary and ver-
lead while tools lagged. sioned API.

At highest level of architecture, usbmon is un-

complicated. It consists of circular buffers, fedI tead of forci hoice bet text and bi
by hooks in the USB stack. Every call puts an nsteac ot forcing a choice between text and bi-
nary interfaces, usbmon adopts a neutral solu-

event into a buffer. From there, user processetslon Its data structures are set up to facilitate
fetch these events for further processing or pre- " . uctu up
everal distinct types of consumers of events

sentation to humans. Events for all devices orfca”e d “readers’). Various reader classes can
a particular bus are delivered to users togethe :

separately from other buses. There is no fiIterprOVide textand binary interfaces. At this time,

ing facility of any sort. only text-based interface class is implemented.

At the lower level, a couple of interesting de- _ . _
cisions were made regarding the placement dEvery instance of a reader has its own circular

hooks and the formatting of events when prebUﬁer. When hooks are Ca"ed, they broadcast
sented to user programs. events to readers. Readers replicate events into

all buffers which are active for a given bus. To
An 1/O request in the USB stack is rep- be sure, this entails an extra overhead of data
resented by so-called “URB.” A peripheral- copying. However, the complication of hav-
specific driver, such as usb-storage, initializesng all aliasing properly tracked and resolved
and submits URB with a call to the USB stackturned out to be insurmountable in the time
core. The core dispatches URB to a Host Conframe desired, and the performance impact was
troller Driver, or HCD. When 1/O is done, HCD found manageable.
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struct mon_bus  {
struct list_head bus_link;
spinlock_t lock;

struct dentry xdent_s; | % Debugging file =/
struct dentry xdent_t; |« Text interface file */
struct usb_bus xU_bus;
| % Ref x/
int nreaders; / x Under mon_lock AND mbus->lock x/
struct list_head r_list; / x Chain of readers (usually one) x/
struct kref ref; / * Under mon_lock x*/
[ = Stats */
unsigned int cnt_text lost;
b
struct mon_reader { /% An instance of a process which opened a file x/
struct list_head r_link;
struct mon_bus «m_bus;
void «r_data;
void ( *rnf_submit)(void xdata, struct urb xurb);
void ( *rnf_complete)(void xdata, struct urb xurb);
b
Figure 1: The bus and readers.
4 Implementation source OS. In present, when usbmon is not run-

ning, it adds 8 bytes of memory use per bus

The usbmon is implemented as a Linux ker-(On & 32-bit system) and an additiori&()

nel module, which can be loaded and unloadedt@tément in submit and callback paths. This
at will. This arrangement is not intrinsic to V&S deemed an acceptable price for the lack of

the design: it is intended to serve as a contfacking.

venience to developers only. Hooks and adrpg key data structure that keeps usbmon to-
ditional data flelds_ remain built into the USB_ gether isstruct mon_bus  (See Figure 1).

stack core at all times as long as usbmon igne of them is allocated for every USB bus
configured on. In a proprietary OS, usbmon,regent. |t holds a list of readers attached to
would have to be implemented in a differenty,e s, pointer to the corresponding bus struc-

way. It is entirely possible to make the usb-y e statistic counters, reference count, and a
mon an add-on that stacks on top of HCDS byghininck. The manner in which circular buffers

manipulating existing function pointers. Suchyre arranged is encapsulated entirely within a
an implementation would make usbmon effec-

reader.
tively non-existing when not actively monitor-
ing. However, this approach introduces a sig-The locking model is straightforward. All
nificant complexity of tracking of active URBs hooks execute with the bus spinlock taken, so
which had their function pointers replaced, andreaders do not do any extra locking. The only
brings only a marginal advantage for an openiime instances aftruct mon_bus  may in-
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fluence each other is when buses are added @rmount -t debugfs none /sys/kernelidebug
removed. Data words touched at that time, suc Z‘act’dfsr;;ﬁefj;zggug/usbmow

as linked list entries, are covered with a globalifa05cc 1578069602 € 1:001:01 0 1 D
semaphorenon_lock - deloece 187000044 S 0101 U5 2D
d6bda284 1578069672 C Ci:001:00 0 4 = 01010100
The reference count is needed because buses-

are added and removed while user processes ac-

cess devices. Captured events may remain in ) ) .
buffers after a bus was removed. The count ig N€ number 3 in the file name is the number of
implemented with a predefined kernel facility & USB bus as reported yroc/bus/usb/
calledkref . Themon_lock is used to sup- devices

port kref as required by API. Each record copied byat starts with a tag that

is used to correlate various events happening to
the same URB. The tag is simply a kernel ad-
5 |nterfaces dress of the URB. Next words are: a timestamp
in milliseconds, event type, a joint word for the
type of transfer, device number, and endpoint
The usbmon provides two principal interfaces:number, 1/O status, data size, data marker and

the one into the USB core and the other facing® varying number of data words. More precise
the user processes. documentation exists within the kernel source

code, in fileDocumentation/usb/usbmon.
The USB core interface is conventional for antxt .
internal Linux kernel API. It consists of regis-
tration and deregistration routines provided byThis format is terse, but it can be read by hu-
the core, operations table that is passed to th@ans in a pinch. Itis also useful for postings to
core upon registration, and inline functions formailing lists, Bugzilla attachments, and other
hooks called by the core. It all comes down tosimilar forms of data exchange.

the code shown in Figure 2.
Tools to ease dealing with usbmon are being

As was mentioned previously, only one type ofdeveloped. Only one such tool exists today:
interface to user processes exists at present: teftte USBMon (written with upper case letters),
interface. It is implemented with the help of a originally written by David Harding. It is a tool
pseudo filesystem callediébugfs ” and con-  with a graphical interface.

sists of a few pseudo files, same group per every

USB bus in the system. Text records are pro-

duced for every event, to be read from pseudo

files. Their format is discussed below. 7 Lessons

When compared to tcpdump(8) or Ethereal(1),
6 Use (user mode) usbmon today is rudimentary. Despite that, in
the short time it has existed, usbmon helped
the author to quickly pinpoint several bugs that
A common way to access usbmon without anyotherwise would take many kernel rebuilds and
special tools is as following: gaining an understanding of unfamiliar system
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struct usb_mon_operations {
void ( *urb_submit)(struct usb_bus xbus, struct urb xurb);
void ( *urb_submit_error)(struct usb_bus xbus, struct urb «urb, int err);
void ( =*urb_complete)(struct usb_bus xbus, struct urb xurb);
void ( =*bus_add)(struct usb_bus xbus);
void ( =*bus_remove)(struct usb_bus xbus);
It
extern struct usb_mon_operations *MON_0psS;
static inline void usbmon_urb_submit(struct usb_bus xbus, struct urb xurb)
{

if (bus —monitored)
( *mon_ops—urb_submit)(bus, urb);

static inline void usbmon_notify _bus_remove(struct usb_bus xbus)
{
if (mon_ops)
( *mon_ops—bus_remove)(bus);

int usb_mon_register(struct usb_mon_operations *0pS);
void usb_mon_deregister(void);

Figure 2: The interface to the USB core.

log messages. Having any sort of usable unief tools.
fied tracing is helpful when developers have to
work with an explicitly programmed message

passing bus.
8 Future Work

A large part of usbmon’s utility comes from

being always enabled, which requires its overThe usbmon and user mode tools have a long
head to be undetectable when inactive and lowyay to go before they can be as developed

enough not to change the system’s behaviougs tcpdump(8) is today. Below we list issues
when active. So it probably is unreasonable tqyhich are prominent now.

implement an equivalent of usbmon for PCI:

performance overhead may be too great; the

level of messages is too low; there are no stan- ¢ When USB buses are added and removed,
dard protocols to be parsed by upper level tools.  tools have to be notified, which is not done
But developers of subsystems such as SCSl or at present. As a workaround, tools res-
Infiniband are likely to benefit from introduc- can file/proc/bus/usb/devices peri-
tion of “scsimon” or “infinimon” into their set odically. A solution may be something as
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simple as select(2) working on a special
file.

e Users often observe records which should
carry data, but do not. For example:

c07835cc 1579486375 S Co0:002:00 -115 0
d2ac6054 1579521858 S 1i:002:02 -115 4 D

In the first case, setup packet of a control
transfer is not captured, and in the second
case, data part of an interrupt transfer is
missing. The 'D’ marker means that, ac-
cording to the flags in the URB, the data
was not mapped into the kernel space, and
was only available for the DMA. The code
to handle these cases has yet to be devel-
oped.

e The raw text data is difficult to interpret
for people. So, it is desirable to decode
the output to higher level protocols: SCSI
commands, HID reports, hub control mes-
sages. This task belongs to the tools such
as USBMon.

e Some tool developers express preferences
for a binary and versioned API to compli-
ment the existing text-based interface to
usbmon. These requests need to be ad-
dressed.
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Abstract operating system. There are many hidden de-

tails in the system. If one ignores these details,
like a blind men trying to size up the elephant

Di ing older kernels including their prob- : .
ssecting olde €rnels inc uding the P ob by taking a part for the whole, its hard to under-
lems can be educational and an entertaining re- : A
. ; - _stand the entire system and is difficult to under-
view of where we have been. In this session . . .
. . . 5tand the design and implementations of an ac-
we examine the older Linux kernel version 0.11 .
. - - tual system. Although one may obtain some of
and discuss some of our findings. The pri- ) . :
. Lo the operating theory through reading classical
mary reason for selecting this historical kernel : ; . . .
. . books like the “The design of Unix operating
is that we have found that the current kernel's y I )
. . system,” [4] the composition and internal rela-
vast quantity of source code is far too comple onshins in an operating Svstem are not easy to
for hands-on learning purposes. Since the 0.1 b b gsy y

kernel has only 14,000 lines of code, we Cancomprehend. Andrew Tanenbaum, the author

easily describe it in detail and perform someOf MINIX[1], once said in his book, *teaching

. . : only theory leaves the student with a lopsided
meaningful experiments with a runnable sys-". : . L

. . view of what an operating system is really like.
tem effienctly. We then examine several as-

pects of the kernel including the memory man_and Subjects that really are important, such as

I/O and file systems, are generally neglected
agement, stack usage and other aspects of the e .

. : bécause there is little theory about them.” As
Linux kernel. Next we explain several aspects

. .a result, one may not know the tricks involved
of using Bochs emulator to perform experi-

ments with the Linux 0.11 kernel. Finally, we in implementing a real operating system. Only

present and describe the structure of the Linufgncter reading the entire source code of a oper-

kernel source including thié/  directory. :Eﬁghst)e/ifénébrgﬁztﬁgigrer:e? feeling of sudden

In 1991 Linus made a similar statements[5] af-
ter distributing kernel version 0.03, “TH@NU
kernel (Hurd) will be free, but is currently not
As Linus once said, if one wants to understandeady, and will be too big to understand and
the details of a software project, one shouldearn.” Likewise, the current Linux kernel is
“RTFSC—Read The F**king Source Code.” too large to easily understand. Due to the small
The kernel is a complete system, the parts reamount of code (only 14,000 lines) as shown
late to each other to fulfill the functions of a in Figure 1, the usability and the consistency

1 Introduction

e 297 o
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with the current kernel, it is feasible to choose2 Linux Kernel Architecture

Linux 0.11 kernel for students to learn and per-

form experiments. The features of the 0.11 ker-

nel are so limited, it doesn’t even contain jobThe Linux kernel is composed of five mod-
control or virtual memory swapping. It can, ules: task scheduling, memory management,
however, still be run as a complete operatindile system, interprocess communication (IPC)
system. As with an introductory book on oper-and network. The task scheduling module is re-
ating systems, we need not deal with the moreponsible for controlling the usage of the pro-
complicated components such ¥§&S, ext3 cessor for all tasks in the system. The strat-
networking and more comprehensive memoryegy used for scheduling is to provide reason-
management systems in a modern kernel. Aable and fair usage between all tasks in the sys-
students understand of the main concepts coriem while at the same time insuring the pro-
cerning how an operating system is generallycessing of hardware operations. The memory
implemented, they can learn to understand thenanagement module is used to insure that all
advanced parts for themselves. Thus, both theasks can share the main memory on the ma-
teaching and learning become more efficienthine and provide the support for virtual mem-
and consume considerably less time. The loweory mechanisms. The file system module is
barrier to entry for learning can even stimulateused to support the driving of and storage in
many young people to take part in and involveperipheral devices. Virtual file system modules

in the Linux activities. hide the various differences in details of the
hardware devices by providing a universal file
ooy ——Comparison of total Tine counts of Linux kernels interface for peripheral storage equipment and

V2417e V260 providing support for multiple formats of file
ﬁf systems. ThéPC module is used to provide
205 the means for exchanging messages between
processes. The network interface module pro-
vides access to multiple communication stan-
dards and supports various types of network

hardware.

1000

100

10

Vo1 Y axis unit: 1000 Lines The relationship between these modules is il-

lustrated in Figure 2. The lines between them
Figure 1: Lines of code in various kernel ver-indicates the dependences of each other. The
sions dashed lines and dashed line box indicate the
part not implemented in Linux 0.1x.

From teaching experience and student feed¥he figure shows the scheduling module rela-
back, we found the most difficult part of study- tionship with all the other modules in the kernel
ing the 0.11 kernel is the memory managementsince they all depend on the schedules provided
Therefore, in the following sections we mainly to suspend and restart their tasks. Generally, a
deal with how the 0.11 kernel manages and usesiodule may hang when waiting for hardware
memory in the protected mode of the Int&l  operations, and continue running after the hard-
32 processor along with the different kinds of ware operation finishes. The other three mod-
stacks used during the kernel initialization ofules have like relationships with the schedule
each task. module for similar reasons.
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Figure 2: The relationship between Linux ker- T T control I program
nel modules Chdw:BM(kv p——

Memory

Dev Drivers manage

$ $ 3
The remaining modules have implicit depen- | Hardware interface |
dences with each other. The scheduling subsys- _ _ _ __ ______- ﬁ ______________

tem needs memory management to adjust the | Hardware |

physical memory space used by each task. The
IPC subsystem requires the memory manage-
ment module to support shared memory com-
munication mechanisms. Virtual file systems

can also use the network interface to support
the network file systemNFS. The memory 3.1 Physical Memory
management subsystem may also use the file

system to support the swapping of memory data _
blocks. In order to use the physical memory of the ma-

chine efficiently with Linux 0.1x kernel, the
memory is divided into several areas as shown
in Figure 4.

Figure 3: Kernel structure framework

From the monolithic model structure, we can
illustrate the main kernel modules in Figure 3
based on the structure of the Linux 0.11 kernel

main memory

source code. kernel cache ram disk arca
~ A ~— N
1 1 1T 70 |
0 end  G4oKb\IMb  aup 4.5Mb 16Mb

video & BIOS

Figure 4: The regions of physical memory

3 Memory Usage

In this section, we first describe the usage of

physical memory in Linux 0.1x kernel. Then As shown in Figure 4, the kernel code and
we explain the memorgegmentation, paging, data occupies the first portion of the physi-

multitaskingand the protection mechanisms. cal memory. This is followed by the cache

Finally, we summarize the relationship betweerused for block devices such as hard disks and
virtual, linear, and physical address for the coddloppy drives eliminating the memory space

and data in the kernel and for each task. used by the adapters aRDM BIOS When a
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task needs data from a block device, it will betable GDT) and thelocal address spacad-
first read into the cache area from the block dedressed by the local descriptor taldl®(T). The
vice. When a task needs to output the data to andex part of ssegment selectdras thirteen bits
block device, the data is put into the cache areand one bit for the table index. The Intel 80X86
first and then is written into the block device processor can then provide a total of 16384 se-
by the hardware driver in due time. The lastlectors so it can addresses a maximum of 64T
part of the physical memory is the main areaof virtual address space[2]. The logical address
used dynamically from programs. When kernelis the offset portion of a virtual address. Some-
code needs a free memory page, it also needsnes this is also referred to as virtual address.
to make a request from the memory manage-

ment subsystem. For a system configured witthinear address is the middle portion of address

virtual RAM disksin physical memory, space translation from virtual to physical addresses.
must be reserved in memory. This address space is addressable by the pro-

cessor. A program can usel@gical address
Physical memory is normally managed by theor offsetin a segment and the base address of
processor's memory management mechanisnthe segment to get a linear addresspdfjing
to provide an efficient means for using the sys4s enabled, the linear address can be translated
tem resources. The Intel 80X86 CPU providego produced a physical address. If thagingis
two memory management mechanisms: Segdisabled, then the linear address is actually the
mentation and paging. The paging mechanisrsame as physical address. The linear address
is optional and its use is determined by thespace provided by Intel 80386 is 4 GB.
system programmer. The Linux operating sys-
tem uses both memory segmentation and pad?hysical addresss the address on the proces-
ing mechanism approaches for flexibility andsor’s external address bus, and is the final result
efficiency of memory usage. of address translation.

The other concept that we examinewvistual

3.2 Memory address space memory Virtual memory allows the computer
to appear to have more memory than it actu-
ally has. This permits programmers to write a
program larger than the physical memory that
the system has and allows large projects to be
implemented on a computer with limited re-
sources.

To perform address mapping in the Linux ker-
nel, we must first explain the three different
address concepts usedvimtual or logical ad-
dress space, the CRIbear address space, and
the actualphysicaladdress space. Thartual
addresses used in virtual address space are ad-

dresses composed of tsegment selectaand 3 3 Segmentation and paging mechanisms
offsetin the segment generated by program.

Since the two part address can not be used to

access physical memory directly, this addres$n a segmented memory system, the logical ad-
is referred to as a virtual address and must usdress of a program is automatically mapped or
at least one of the address translation mecharanslated into the middle 4 GB linear address
nisms provided by CPU to map into the phys-space. Each memory reference refers to the
ical memory space. The virtual address spacenemory in a segment. When programs refer-
is composed of thglobal address spacad- ence a memory address, a linear address is pro-
dressed by the descriptors in global descriptoduced by adding the segment base address with
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Global Space Local Space pages of 4 KB. When programs request mem-
8192 Segs, each 8192 Segs, each h Il .
pax 46 i len nax 4G, in len ory, the processor allocates memory in pages
p N N for the program.
T T T T O O I Y O Since Linux 0.1x kernel uses only opage di-
Lo rectory, the mapping function from linear to
ST N0 T T s physical space is same for the kernel and pro-
U A N O ear 77T cesses. To prevent tasks from interfering with
Logical Linear 16
5 Yo 31 0 each other and the kernel, they have to occupy
[Selector|[  Offset | different ranges in the linear address space. The
Linux 0.1x kernel allocates 64MB of linear
oot space for each task in the system, the system
imit can therefor hold at most 64 simultaneous tasks
(64MB * 64 = 4G) before occupying the entire
Desc. | . . . .
. Base Linear address space as illustrated in Figure 6.
GDTR K 0
_____________ v T Task 0 Task 1 Task 2
31 22 21 12 11 0 : as
Physical
| Dir. | Page | Offset | 4G - ™ 2/ \ /_Cl
D il K 0 640K 16M 64 128M 192M 4G
TR Kernel
DTE , base
|cr3 —\ ! . ] . .
Ly ¢ Figure 6: The usage of linear address space in
31 : 0 the Linux 0.1x kernel
| Physical address |

Figure 5. The translation between virtual or

) . ) 3.4 The relationship between virtual, lin-
logical, linear and physical address P

ear and physical address

the logical address visible to the programmer V& have briefly described the memory segmen-

If pagingis not enabled, at this time, the linear (2ion and paging mechanisms. Now we will

address is sent to the external address bus of tff@mine the relationship between the kernel

processor to access the corresponding physic81d tasks in virtual, linear and physical address
address directly. space. Since the creation tafsks Oand 1 are

special, we’ll explain them separately.

If pagingis enabled on the processor, the linear

address will be translated by tipagingmech-

anism to get the final physical corresponding?"‘l'1 The address range of kernel
physical address. Similar to the segmentation,

paging allow us to relocate each memory ref+or the code and data in the Linux 0.1x ker-
erence. The basic theory of paging is that thenel, the initialization inhead.s has already
processor divides the whole linear space intset the limit for the kernel and data segments to
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be 16MB in size. These two segments overinterrupt Descriptor TabldDT) are in the ker-

lap at the same linear address space startingel data segment, thus they are located in the
from address 0. Thpage directoryandpage

same address in both address spaces. In the
table for kernel space are mapped to 0-16MBexecution of code irsetup.s

in real mode,
in physical memory (the same address range iwe have setup both temporaBDT andIDT at
both spaces). This is all of the memory thatonce. These are required before entering pro-
the system contains. Since one page table caected mode. Since they are located by physical

manage or map 4MB, the kernel code and dataddres$x90200 and this will be overlapped
occupies four entries in theage directory In

and used for block device cache, we have to
other words, there are four secondary page taecreateGDT and IDT in head.s after en-

bles with 4MB each. As a result, the addresdering protected mode. The segment selectors
in the kernel segment is the same in the physineed to be reloaded too. Since the locations of
cal memory. The relationship of these three adthe two tables do not change after entering pro-
dress spaces in the kernel is depicted in Figuréected mode, we do not need to move or recre-
7.

ate them again. (3) All tasks excdpsk Oneed
additional physical memory pages in different
4GB linear address space locations. They need the
KData} [~ memory management module to dynamically
Seg. |\ setup their own mapping entries in thage di-
rectoryandpage table Although the code and

static data ofask lare located in kernel space,

we need to obtain new pages to prevent interfer-

ence withtask Q As a resultfask lalso needs
- its own page entries.

GDT

KCode
Seg.

KData
KCode
NULL

While the default manageable physical mem-
ory is 16MB, a system need not contain 16MB
memory. A machine with only 4MB or even
2MB could run Linux 0.1x smoothly. For a ma-
Virtual  Linear Physical 0 chine with only 4MB, the linear address range
space space 4MB to 16MB will be mapped to nonexistent

physical space by the kernel. This does not dis-
Figure 7: The relationship of the three addresgupt or crash the kernel. Since the kernel knows

A40K

space

the exact physical memory size from the initial-

ization stage, no pages will be mapped into this
nonexistent physical space. In addition, since

As seen in Figure 7, the Linux 0.1x kernelthe kernel has limited the maximum physical
can manage at most 16MB of physical mem-memory to be 16MB at boot time (imain()

ory in 4096 page frames. As explained ear-corresponding tstartkernel() ), memory
lier, we know that: (1) the address range ofover 16MB will be left unused. By adding
kernel code and data segments are the same ssme page entries for the kernel and chang-
in the physical memory space. This configuraing some of the kernel source, we certainly can

tion can greatly reduce the initialization oper-make Linux 0.1x support more physical mem-
ations the kernel must perform. (BDT and ory.
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3.4.2 The address space relationship for 3.4.3 The address space relationship for
task O task 1

Similar totask Q task 1lis also a special case in
Task Ois artificially created or configured and which the code and data segment are included

run by using a special method. The limits of itsin kernel module. The main difference is that
code and data segments are set to the 640KB iRyhen forkingtask 1, one free page is allocated
cluded in the kernel address space. Negk O from the main memory area to duplicate and
can use the kernel page entries directly withouttoretask Os page table entries faask 1 As
the need for creating new entries for itself. Asg resulttask lhas its owrpage tableentries in

a result, its segments are overlapped in lineaghe page directoryand is located at range from
address space too. The three space relationshgaMB to 128MB (actually 64MB to 64MB +
is shown in Figure 8.

640KB) in linear address space. One additional
page is allocated for task 1 to store tisk
structure (PCB)and is used as its kernel mode
HG] 4G stack. The task'Jask State Segment (TSS)
[ also contained in task’s structure as illustrated

in Figure 9.
GDT Ly Tasko
Data|s 4G
Data B . 16M
Code \ ﬁ% i 5 _—
LDTO S 64M+640K
7SS0 Data g \
Seg. | \
-> ' “
KData 640K GDT LDT s ' 64M
KCode ] Data ’,’ ,\"“ |‘
NULL Code| , Ve
-> 0 Code ' Vi
Virtual Linear Physical LDTL [” Seg. T e 16M
Space space space TSS1 ) \ \
LD10 AR VRS
. . . 1SS0 1ssils .
Figure 8: The relationship of three address 3 610K
spaces for task O KData \|code
KCode l‘. data
NULL L1 N 0
Virtual Linear Physical
As task Ois totally contained in the kernel space

Space space

space, there is no need to allocate pages from

the main memory area for it. The kernel stackFigure 9: The relationship of the three address
and the user stack faask Oare included the spacesintask 1

kernel space.Task Ostill has read and write
rights in the stacks since the page entries used

by the kernel space have been initialized to b&ask landtask Owill share their user stack
readable and writable with user privileges. Inuser_stack]]

(refer tokernel/sched.
other words, the flags in page entries are set as, lines 67-72). Thus, the stack space should be
U/S=1, R/W=1

‘‘clean” beforetask luses it to ensure that there
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is no unnecessary data on the stack. When fork- Task? 4
ing task ] the user stack is shared betweask Data|*« [~
0 andtask 1 However whertask 1starts run- Seg- | I—19m

ning, the stack operating task 1would cause !
the processor to produce a page fault because !
the page entries have been modified to be read '

only. The memory management module will GDT

therefor need allocate a free page task 1's LDT
stack. EZZ: Code| 4 ) 128

L2 > s

1SS2 l\“\-“ 16M
3.4.4 The address space relationship for ?;g

other tasks D10

1550 i N
Fortask 2and higher, the parentiask lor the 640K
.. . . . KData] i
init process. As described earlier, Linux 0.1x [~
can have 64 tasks running synchronously inthe [y . 0
system. Now we will detail the address space Virtual — Linear Physical
usage for these additional tasks. space space  space

Beginning withtask 2 if we designatenr as  Figure 10: The relationship of the three address
the task number, the Starting location fask spaces in tasks beginning with task 2

nr will be at nr * 64MB in linear address

space.Task 2 for example, begins at address 2

* 64MB = 128MB in the linear address space,

and the limits of code and data segments are s@lew page entries are set for the shell program.

to 64MB. As a result, the address range occuFigure 10 shows this address space relation-

pied bytask 2is from 128MB to 192MB, and ship. The code and data segmenttfsk lare

has 64MB/4MB = 16 entries in the page direc-replaced with that of the shell program, and one

tory. The code and data segments both maphysical memory page is allocated for the code

to the same range in the linear address spacef the shell program. Notice that although the

Thus they also overlap with the same addreskernel has allocated 64MB linear spacetask

range as illustrated in Figure 10. 2, the operation of allocating actual physical
o memory pages for code and data segments of

After task 2has forked, it will call the func- ihe shell program is delayed until the program

tion execve()  to run a shell program such as is rynning. This delayed allocation is called de-
bash. Just after the creation sk 2and be-  and paging.

fore callexecve() , task 2is similar totask 1

in the three address space relationship for code

and data segments except the address range d@eginning with kernel version 0.99.x, the usage
cupied in linear address space has the rangaef memory address space changed. Each task
from 128MB to 192MB. Whertask 2'scode can use the entire 4G linear space by changing
callsexecve() to load and run a shell pro- the page directory for each tasks as illustrated
gram, the page entries are copied frtask 1 in Figure 11. There are even more changes are
and corresponding memory pages are freed and current kernels.
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Datal level 0 and for user code at level 3 respectively.
Seg. |\ 4 When a task runs in the kernel, it uses the ker-
GDT \ 6 nel mode stack pointed by the valuesssO
v andespO fields of itsTSSand stores the task’s
~ 1N B user stack pointer in this stack. When the con-
LDT2 1DT | ' trol returns to the user code or to level 3, the
1552 [\ |Data \ ‘ \ user stack pointer will be popped out, and the
;gg Code) roogaTc” 3G task continues to use the user stack.
LDTO Seg. lll ‘\‘ ‘\‘
1550 \ Ny 4.1 |Initialization period
\ \ 640K
KData ~ \ \
KCod \ \
ST K e When theROM BIOScode boots and loads
Virtual Linear Physical

the bootsect into memory at physical address
space  space 0x7C00, no stack is used until it is moved

to the location0x9000:0 . The stack is then
Figure 11: The relationship of the three addresset at0x9000:0xff00

(refer to line 61—
space for tasks in newer kernels ). After control is
, the stack remains un-

space

62 in boot/bootsect.s
transferred tsetup.s
changed.

4 Stack Usage When control is transferred thead.s , the

processor runs in protected mode. At this time,
This section describes several different methihe stack is setup at the location o$er_

ods used during the processing of kernel bootstack[]  in the kernel code segment (line 31
ing and during normal task stack operationsin head.s ). The kernel reserves one 4 KB
Linux 0.1x kernel uses four different kinds of page for the stack defined at line 67-72 in
stacks: the temporary stack used for systengched.c as illustrated in Figure 12.

booting and initialization under real address_ . L

mode; The kernel initialization stack used afterThIS stack area 1S .St'" used after the control
the kernel enters protected mode, and the usé!;ansfers intanit/main.c

stack fortask Oafter moving into task O; The tion of move_to_user_mode()  to han_d the
kernel stack of each task used when running iff@ntrol over totask @ The above stack is then

the kernel and the user stacks for each task e)y_sed as a user stack farsk Q
cept fortasks 0 and 1

until the execu-

: . .. 4.2 Task stacks
There are two main reasons for using four dif-
ferent stacks (two used only temporarily for

booting) in Linux. First, when entering pro- For the processor privilege levels 0 and 3 used
tected from real mode, the addressing methoth Linux, each task has two stacks: kernel mode
used by the processor has changed. Thus tletack and user mode stack used to run kernel
kernel needs to rearrange the stack area. In adode and user code respectively. Other than the
dition, to solve the protection problems broughtprivilege levels, the main difference is that the

by the new privilege level on processor, wesize of kernel mode stack is smaller than that

need to use different stacks for kernel code aof the user mode stack. The former is located
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system module

[ Oxlee50 Code Cmd Line|Environ.
———————— (end) and data Params. | Params.
esp Data 0 0 64
En Current Stack
user stack[1k]
Data area for < one page esp bottom
kernel, mm, fs.
Data
*task[] Figure 13: User stack in task’s logical space
task 0 init data
\ Data
> 0x17000
— .
Code £ —— stack. Then the memory manager will allocate
ode Tor .
kernel mm, 5. Code and duplicate the stack page for the task.
s 0x664c Similar to the user stack, each task has its own
GDT (2k) kernel mode stacksed when operating in the
ChOded& data of IDT_(2K) kernel code. This stack is located in the mem-
ea rogram. . .
pro&rall < | Code and data ory to pointed by the values issO, esp0
Page tables (4k+4) fields in task’sTSS ssO is the stack segment
| [Page directory(k)] , 00 selector like thedata selectorin the kernel.

espO indicates the stack bottom. Whenever
Fontrol transfers to the kernel code from user
code, the kernel mode stack for the task always
starts fromss0:esp0 , giving the kernel code
an empty stack space. The bottom of a task’s
kernel stack is located at the end of a mem-
at the bottom in a page coexisting with task’sory page where the task’s data structure begins.
structure, and no more than 4KB in size. TheThis arrangement is setup by making the privi-
later can grow down to nearly 64MB in user lege level O stack pointer iIRSSpoint to the end

Figure 12: The stack used for kernel code afte
entering protected mode

space. of the page occupied by the task’s data struc-
ture when forking a new task. Refer to line 93
As described, each task has its own 64MB log4in kernel/fork.c as below:

ical or linear address space except fask 0
andl. When a task was created, the bottom of
its user stack is located close to the end of the
64MB space. The top portion of the user space
contains additional environmental parameters
and command line parameters in a backwardp is the pointer of the new task structutes
orientation, and then the user stack as illusis the structure of the task status segment. The
trated in Figure 13. kernel request a free page to store the task struc-
ture pointed byp. The tss structure is a field in
Task code at privilege level 3 uses this stack althe task structure. The value tfs.ssO  is
of the time. Its corresponding physical memoryset to the selector of kernel data segment and

page is mapped by paging management codgetss.esp0 s set to point to the end of the
in the kernel. Since Linux utilizes theopy- page as illustrated in Figure 14.

on-writg 3] method, both the parent and child
process share the same user stack memory unfls a matter of factiss.espO  points to the
one of them perform a write operation on thebyte outside of the page as depicted in the fig-

p->tss.esp0 = PAGE_SIZE+(long)p;
p->tss.ssO = 0x10;
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Stack botton — pu—m in main memory area for the stack sk 1in
(esp0) the exception handler, and map it to the loca-
tion of task Is user stack in the linear space.
Stack pointer | From now ontask 1lhas its own separate user
(esp) >1 Page stack page. As a result, the user stacktémk
0 should be “clean” befortask luses the user
Task stack to ensure that the page of stack duplica-
Task pointer Structure tion does not contain useless datatésk 1
(current) —» J

The kernel mode stack fdask Ois initialized
Figure 14: The kernel mode stack of a task in its static data structure. Then its user stack is

set up by manipulating the contents of the stack

originally used after entering protected mode

. and emulating the interrupt return operation us-
ure. This is because the Intel processor de- g P P

: ) ing IRET instruction as illustrated in Figure 15.
creases the pointer before storing a value on the g g
stack.
31 0
| old SS
4.3 The stacks used by task 0 and task 1 old ESP

EFLAGS
| old CS

<— SPO - (SS:ESP)

Both task Oor idle task andtask 1or init task SERIT
have some special properties. Althougisk O «—SP1 - Before TRET
andtask 1have the same code and data seg-
ment and 640KB limits, they are mapped into
different ranges in linear address space. The&igure 15: Stack contents while returning from
code and data segmentstask Obegins at ad- privilege level 0 to 3

dress 0, andask 1begins at address 64MB

in the linear space. They are both mapped

into the same physical address range from @s we know, changing the privilege level will
to 640KB in kernel space. After calling the change the stack and the old stack pointers
functionmove_to_user_mode() , the ker- will be stored onto the new stack. To emu-
nel mode stacks dhsk Oandtask lare located late this case, we first push thask Os stack

at the end of the page used for storing theipointer onto the stack, then the pointer of the
task structures. The user stacktask Ois the next instruction intask Q Finally we run the
same stack originally used after entering prodRET instruction. This causes the privilege
tected mode; the space faser_stack]] level change and control to be transferred to
array defined irsched.c program. Sincéask task Q In the Figure 15, the ol&Sfield stores

1 copiestask Os user stack when forking, they the data selector dfDT for task 0(0x17) and
share the same stack space in physical memorthe oldESPfield value is not changed since the
Whentask 1starts running, however, a pagestack will be used as the user stack fask Q
fault exception will occur whernask 1writes The oldCSfield stores the code selector (0xO0f)
to its user stack because the page entries fdor task Q The oldEIP points to the next in-
task 1have been initialized as read-only. At struction to be executed. After the manipula-
this moment, the kernel will allocate a free pagetion, alRET instruction switches the privileges
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from level O to level 3. The kernel begins run- kernel stack INT user stack
ning intask Q _ |01d ss| —=
= TRET
old ESP

EFLAGS
| Cs
EIP

4.4 Switch between kernel mode stack and
user mode stack for tasks

In the Linux 0.1x kernel, all interrupts and ex-
ceptions handlers are in mode 0 so they belonfjigure 16: Switching between the kernel stack
to the operating system. If an interrupt or ex-and user stack for a task

ception occurs while the system is running in

user mode, then the interrupt or exception will

cause a privilege level change from level 3 t0® Kernel Source Tree

level 0. The stack is then switched from the
user mode stack to the kernel mode stack of thE

ta;k. The processor will obtain the kernel StaCliree can be listed and described clearly. Since
pointersss0 andesp0 from the task'sTSS the 0.11 kernel source tree only has 14 directo-

and store the current user stack pointers int?ies and 102 source files it is easy to find spe-
the task's kernel stack. After that, the ProceSSOEisic files in comparison to searching the much
pushes the contents of the currefL AGSreg- larger current kernel trees. The mdimux/

ister and the next instruction pointers onto thedirectory contains only one Makefile for build-

f]tac(;. Finally, it runs the interrupt or exceptloning_ From the contents of the Makefile we can
andier. see how the kernel image file is built as illus-

trated in Figure 17.
The kernelsystem callis trapped by using a

software interrupt. Thus alNT 0x80 will i|head||main| [kernel | [mm] [ s ][ 1ib |\I
cause control to be transferred to the kernel J
code. Now the kernel code uses the current

task’s kernel mode stack. Since the privilege [|bootsect|] [|Setup|] [ [evsten |]

level has been changed from level 3 to level O,

the user stack pointer is pushed onto the kernel \

mode stack, as illustrated in Figure 16.

If a task is running in the kernel code, then Figure 17: Kernel layout and building

an interrupt or exception never causes a stack

switch operation. Since we are already in the

kernel, an interrupt or exception will never There are three assembly files in theot/
cause a privilege level change. We are using thdirectory: bootsect.s , setup.s , and
kernel mode stack of the current task. As a rehead.s . These three files had corresponding
sult, the processor simply pushes tELAGS files in the more recent kernel source trees un-

and the return pointer onto the stack and startsl 2.6.x kernel. Thefs/ directory contains
running the interrupt or exception handler. source files for implementing MINIX version

inux 0.11 kernel is simplistic so the source

Kernel Image

bt
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1.0 file system. This file system is a clone of the
traditional UN*X file system and is suitable for
someone learning to understand how to imple-
ment a usable file system. Figure 18 depicts the
relationship of each files in tHs/  directory.

Int & exception System ca}ls

\ e

~

N

sched.c| |panic.c|| mktime. ¢ | X
1

’
1

’ ‘\\~~|printk.c | |Vsprintf.c| -

_-

'| char/dev |file7dev|

\

\ T

\ .
‘\plpellblockidevl

Data access

user programs. The third category is files im-
/ plementing general functions such as schedul-
/ ing and printing messages from the kernel.

Block device drivers for hard disks, floppy
disks and ram disks reside in a subdirectory
blk_drv/  in the kernel/ , thus the Linux
----------------------------- 0.11 kernel supports only three classical block
devices. Because Linux evolved from a ter-
minal emulation program, the serial terminal
Figure 18: File relationships in fs/ directory driver is also included in this early kernel in
addition to the necessary console character de-
vice. Thus, the 0.11 kernel contains at least two

Thefs/ files can be divided into four types. types of char device drivers as illustrated in Fig-
The first is the block cache manager fileure 20.

Cache
Managementf
\

’

buffer.c . The second is the files concern-
ing with low level data operation files such The remaining directories in the kernel source
inode.c . The third is files used to processtree include, init, mm, tools, and

data related to char, block devices and regulafath . Theinclude/  contains the head files
files. The fourth is files used to execute pro-used by the other kernel source fileigit/

grams or files that are interfaces to user procontains only the kernel startup fifeain.c ,
grams. in which, all kernel modules are initialized and

the operating system is prepared for use. The
The kernel/  directory contains three kinds mm/ directory contains two memory manage-
of files as depicted in Figure 19. ment files. They are used to allocate and free

pages for the kernel and user programs. As
The first type is files which deal with hardware mentioned, the mm in 0.11 kernel uses demand
interrupts and processor exceptions. The se@aging technology. Thmath/ directory only
ond type is files manipulating system calls fromcontains math source code stubs as 387 emula-
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Upper_interface under Linux 0.11 system in Bochs. The other
e = is for more recent Linux systems suchRed
W Lttydo.c |“UOC‘91- cl Hat 9 or Fedora In the former environment,

RREEY4 I the 0.11 kernel source code needs no modifi-
o> cations to successfully compile. For the later

/|serial.c N eonsole. o environment one needs to modify a few lines

: ' ) of code to correct syntax errors. For people

| rs io. s keyboard. S familiar with MASM andVVC environment un-
der windows, we even provide modified 0.11

kernel source code that can compile. Offer-
ing source code compatible with multiple envi-
ronments and providing forums for discussion
"helps popularize linux and the linux community
with new people interested in learning about
operating systems)

Serial driver Console driver

Figure 20: Character devices in Linux 0.11 ker
nel

tion did not appear until the 0.12 kernel.

7  Summary

6 Experiments with the 0.1x kernel
From observing people taking operating system

courses with the old Linux kernel, we found
To facilitate understanding of the Linux 0.11 that almost all the students were highly inter-
kernel implementation, we have rebuilt aested in the course. Some of them even started
runnable Linux 0.11 system, and designed seyprogramming their own operating systems.
eral experiments to watch the kernel internal
activities using thé8ochs PC emulatorBochs The 0.11 kernel contains only the basic features
is excellent for debugging operating systemsthat an operating system must have. As a result,
The Bochssoftware package contains an inter-there are many important features not imple-
nal debugging tool, which we can use to ob-mented in 0.11 kernel. We now plan to adopt
serve the dynamic data structures in the kernegither the 0.12 or 0.98 kernel for teaching pur-

and examine the contents of each register on theoses to include job control, virtu&sS, virtual
processor. console and even network functions. Due to

time limitations in the course, several simpli-
It is an interesting exercise to install the Linuxfications and careful selection of material will
0.11 system from scratch. It is a good learningoe needed.
experience to build a root file system image file
under Bochs.
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