
Proceedings of the
Linux Symposium

Volume Two

July 20nd–23th, 2005
Ottawa, Ontario

Canada

Contents

PCI Express Port Bus Driver Support for Linux 1
T.L. Nguyen, D.L. Sy, & S. Carbonari

pktgen the linux packet generator 11
Robert Olsson

TWIN : A Window System for ‘Sub-PDA’ Devices 25
K. Packard

RapidIO for Linux 35
Matt Porter

Locating System Problems Using Dynamic Instrumentation 49
V. Prasad, W. Cohen, F. Ch. Eigler, M. Hunt, J. Keniston, & B. Chen

Xen 3.0 and the Art of Virtualization 65
I. Pratt, Fraser, Hand, Limpach, Warfield, Magenheimer, Nakajima, & Mallick

Examining Linux 2.6 Page-Cache Performance 79
S. Rao, D. Heger, & S. Pratt

Trusted Computing and Linux 91
K. Hall, T. Lendacky, E. Ratliff, & K. Yoder

NPTL Stabilization Project 111
S. Decugis & T. Reix

Networking Driver Performance and Measurement - e1000 A Case Study 133
J.A. Ronciak, J. Brandeburg, G. Venkatesan, & M. Willams

nfsim: Untested code is buggy code 141
R. Russell & J. Kerr

Hotplug Memory Redux 151
Schopp, Hansen, Kravetz, Hirokazu, Iwamoto, Yasunori, Kamezawa, Tolentino, & Picco

Enhancements to Linux I/O Scheduling 175
S. Seelam, R. Romero, P. Teller, & B. Buros

Chip Multi Processing aware Linux Kernel Scheduler 193
S. Siddha, V. Pallipadi, & A. Mallick

SeqHoundRWeb.py: interface to a comprehensive online bioinformatics resource 205
Peter St. Onge

Ho Hum, Yet Another Memory Allocator. . . 209
Ravikiran G. Thirumalai

Beagle: Free and Open Desktop Search 219
Jon Trowbridge

Glen or Glenda 221
Eric Van Hensbergen

LINUX R© Virtualization on Virtual Iron TM VFe 235
A. Vasilevsky, D. Lively, & S. Ofsthun

Clusterproc: Linux Kernel Support for Clusterwide Process Management 251
B.J. Walker, L. Ramirez, & J.L. Byrne

Flow-based network accounting with Linux 265
Harald Welte

Introduction to the InfiniBand Core Software 271
Bob Woodruff

Linux Is Now IPv6 Ready 283
Hideaki Yoshifuji

The usbmon: USB monitoring framework 291
Pete Zaitcev

Adopting and Commenting the Old Kernel Source Code for Education 297
Jiong Zhao

Conference Organizers

Andrew J. Hutton,Steamballoon, Inc.
C. Craig Ross,Linux Symposium
Stephanie Donovan,Linux Symposium

Review Committee

Gerrit Huizenga,IBM
Matthew Wilcox,HP
Dirk Hohndel,Intel
Val Henson,Sun Microsystems
Jamal Hadi Salimi,Znyx
Matt Domsch,Dell
Andrew Hutton,Steamballoon, Inc.

Proceedings Formatting Team

John W. Lockhart,Red Hat, Inc.

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.

PCI Express Port Bus Driver Support for Linux

Tom Long Nguyen, Dely L. Sy, & Steven Carbonari
Intel R© Corporation∗

{tom.l.nguyen, dely.l.sy, steven.carbonari}@intel.com

Abstract

PCI ExpressR©1 is a high performance gen-
eral purpose I/O Interconnect defined for a
wide variety of computing and communication
platforms. It defines PCI Express Ports and
switches to provide a fabric based point-to-
point topology. PCI Express categorizes PCI
Express Ports into three types: the Root Ports,
the Switch Upstream Ports, and the Switch
Downstream Ports. Each PCI Express Port
can provide up to four distinct services: na-
tive hot-plug, power management, advanced er-
ror reporting, and virtual channels[1][3]. To
fit within the existing LinuxR©2 PCI Driver
Model but provide a clean and modular solu-
tion, in which each service driver can be built
and loaded independently, requires the PCI Ex-
press Port Bus Driver architecture. The PCI Ex-
press Port Bus Driver initializes all services and
distributes them to their corresponding service
drivers. This paper is targeted toward kernel
developers and architects interested in the de-
tails of enabling service drivers for PCI Express
Ports. The i386 Linux implementation will be
used as a reference model to provide insight
into the implementation of the PCI Express

∗Intel is a trademark or registered trademark of Intel
Corporation in the United States, other countries, or both.
This work represents the view of the authors and does not
necessarily represent the view of Intel.

1PCI Express is a trademark of the Peripheral Com-
ponent Interchange Special Interest Group (PCI-SIG)

2Linux is a registered trademark of Linus Torvalds

Port Bus Driver and specific service drivers like
the advanced error reporting root service driver
and the native hot-plug root service driver.

1 Introduction

The Linux PCI Driver Model restricts a device
to a single driver. Drivers in Linux are loaded
based off the PCI Device ID and function. Once
a driver is loaded, no other drivers for that de-
vice can be loaded[2]. Referring to Figure 1,
if the Root Port hot-plug driver is loaded first,
it claims the Root Port device. The Linux PCI
Driver Model therefore prevents the support of
multiple services per PCI Express Port using
individual service drivers.

Figure 1: Service Drivers under the Linux PCI
Driver Model

A PCI Express Port may have multiple distinct
services operating independently. A PCI Ex-
press Port is not required to support all ser-
vices, so some PCI Express Ports within a PCI
Express hierarchy may support none, some or
all the services. A possible solution is to im-
plement a single driver to handle all services

• 1 •

2 • PCI Express Port Bus Driver Support for Linux

per PCI Express Port. However, this solution
would lack the ability to have each service built
and loaded independently from each other, pre-
venting extensibility for addition of future ser-
vices and the ability to have a service driver
loaded on more than one PCI Express Port.
Separate service drivers are required to support
addition of new features and loading of services
based on the PCI Express Port capabilities.

To support multiple drivers per device without
changing the existing Linux PCI Driver Model
requires a new architecture that fits within
the existing Linux PCI Driver Model but pro-
vides the flexibility required to support multi-
ple service drivers per PCI Express Port. As
shown in Figure 2, the PCI Express Port Bus
Driver (PBD)[5] fits into the existing Linux PCI
Driver Model while providing an interface to
allow multiple independent service drivers to
be loaded for a single PCI Express Root Port.
The PBD acts as a service manager that owns
all services implemented by the Ports. Each of
these services is then distributed and handled
by a unique service driver. The PBD achieves
the following key advantages:

• Allows multiple service drivers to run
simultaneously and independently from
each other and to service more than one
PCI Express Port.

• Allows service drivers to be designed and
implemented in a modular fashion.

• Centralizes management and distribution
of resources of the PCI Express Port de-
vices to requested service drivers.

This paper describes the PCI Express Port Bus
Driver architecture. Following the port bus
driver architecture are two examples of service
drivers. The first example is the advanced er-
ror reporting service driver that was designed to

Figure 2: Service Drivers under the PBD

work with the port bus architecture. The second
example is the hot-plug service driver that was
originally designed as an independent driver
then converted to a service driver to operate
with the Port Bus Driver. Lastly, an overview
of the impact to device drivers and future ser-
vice drivers is outlined.

2 PCI Express Port Bus Driver

2.1 PCI Express Port Topology

To understand the Port Bus Driver architecture,
it helps to begin with the basics of PCI Express
Port topology. Figure 3 illustrates two types of
PCI Express Port devices: the Root Port and
the Switch Port. The Root Port originates a
PCI Express Link from a PCI Express Root
Complex. The Switch Port, which has its sec-
ondary bus representing switch internal rout-
ing logic, is called the Switch Upstream Port.
The Switch Port which is bridging from switch
internal routing buses to the bus representing
the downstream PCI Express Link is called the
Switch Downstream Port[1].

Each PCI Express Port device can be imple-
mented to support up to four distinct services:
native hot plug (HP), power management event
(PME), advanced error reporting (AER), virtual
channels (VC). The PCI Express services dis-
cussed are optional, so in any given PCI Ex-
press hierarchy a port may support none, some,
or all of the services.

2005 Linux Symposium • 3

Figure 3: PCI Express Port Topology

2.2 PCI Express Port Bus Driver Architec-
ture

The design of the PCI Express Port Bus Driver
achieves a clean and modular solution in which
each service driver can be built and loaded in-
dependently from each other. The PCI Express
Port Bus Driver serves as a service manager
that loads and unloads the service drivers ac-
cordingly, as illustrated in Figure 4.

Figure 4: PCI Express Port Bus Driver System
View

The PCI Express Port Bus Driver is a PCI-
PCI Bridge device driver, which attaches to PCI
Express Port devices. For each PCI Express
Port device, the PCI Express Port Bus Driver
searches for all possible services, such as na-
tive HP, PME, AER, and VC, implemented by
PCI Express Port device. For each service

found, the PCI Express Port Bus Driver creates
a corresponding service device, named pcieXY
where X indicates the PCI Express Port type
and Y indicates the PCI Express service type
as described in Table 1, and then registers this
service device into a system device hierarchy.
Figure 5 shows an example of how the PCI Ex-
press Port Bus Driver creates service devices
on a system populated with two Root Port de-
vices, one Switch Upstream Port device, and
two Switch Downstream Port devices.

Port Service Service Entity Description (pcieXY)
Type Type
(X) (Y)
0 0 PME service on PCI Express Root Port (PMErs)
0 1 AER service on PCI Express Root Port (AERrs)
0 2 HP service on PCI Express Root Port (HPrs)
0 3 VC service on PCI Express Root Port (VCrs)
1 0 PME service on PCI Express Switch Upstream Port (PMEus)
1 1 AER service on PCI Express Switch Upstream Port (AERus)
1 2 Not a supported PCI Express configuration
1 3 VC service on PCI Express Switch Upstream Port (VCus)
2 0 PME service on PCI Express Switch Downstream Port (PMEds)
2 1 AER service on PCI Express Switch Downstream Port (AERds)
2 2 HP service on PCI Express Switch Downstream Port (HPds)
2 3 VC service on PCI Express Switch Downstream Port (VCds)

Table 1: Service Entity Description

Figure 5: Service Devices in a PCI Express Port
Bus Driver Architecture

Once service devices are discovered and added
in the system device hierarchy, a service driver
is loaded accordingly if it registers its ser-
vice with the PCI Express Port Bus Driver.
The PCI Express Port Bus Driver provides
an interface, namedpcie_port_service_
register , to allow a service driver to register
its service[4]. The registration enables the user

4 • PCI Express Port Bus Driver Support for Linux

to configure services during kernel configura-
tion regardless of HW support. It enables de-
bugging and adding of new services in a modu-
lar fashion. When a service driver callspcie_
port_service_register , the PCI Ex-
press Port Bus Driver loads a service driver
by invoking the PCI subsystem, which walks
through a system device hierarchy for a service
match. If the port bus finds a match, it loads a
service driver for that service device.

In addition, the PCI Express Port Bus
Driver provides pcie_port_service_

unregister , to undo the effects of calling
function pcie_port_service_register

[4]. Note that a service driver should always
call pcie_port_service_unregister

when a service driver is unloading.

2.3 The Service Driver

To maintain modularity in the PCI Express Port
Bus Driver design, individual service drivers
are required. In some cases a driver may al-
ready exist for a PCI Express Port. In these in-
stances the driver must be ported to the service
driver to allow other service drivers to load on
the PCI Express Port. To port drivers to service
drivers, the following three basic steps are re-
quired. Refer to Sections 3.1.1 to 3.1.3 for a
specific example.

• Specify service ID. The PCI Express Port
Bus Driver defines the data structure of
service ID similar to the data structure
of pci_device_id except with two
additional fields: theport_type and
service_type fields as described in
Table 1. Note that failure to specify a cor-
rect service ID will prevent the port bus
from loading a service driver.

• Initialize service driver. The PCI Express
Port Bus Driver defines the data struc-
ture of service driver similar to thepci_

driver data structure. The pointer to the
pci_dev data structure is replaced with a
pointer to thepcie_device data struc-
ture in each callback function.

• Call pcie_port_service_register

insteadpci_register_driver .

Once a service driver is loaded, a service driver
should always configure and initialize its own
capability structure and required IOs to oper-
ate normally without any support from the PCI
Express Port Bus Driver. However, a service
driver is prohibited from doing the following:

• Switch the interrupt mode on a device.
The interrupt mode can be INTx legacy,
MSI or MSI-X. A service driver should al-
ways use the assigned service IRQ to call
request_irq to have its software in-
terrupt service routine hookup. Note that
the assigned service IRQ may be shared
among service drivers; therefore, a service
driver should always treat this assigned
service IRQ as shared interrupt.

• Access resources that are not directly re-
quired by the service. For example, the
advanced error reporting service driver is
prohibited from accessing any configura-
tion registers other than the Advanced Er-
ror Reporting Capability structure. A ser-
vice driver uses theport pointer, a mem-
ber of thepcie_device data structure
defined by PBD, to access PCI configura-
tion and memory mapped IO space.

• Call pci_enable_device and pci_
set_master functions. This is no
longer necessary because these functions
now get called by the PCI Express Port
Bus Driver.

2005 Linux Symposium • 5

2.4 Resource Allocation and Distribution

Service drivers must adhere to the guidelines in
this document to deal with resource allocation
and distribution. Since all service drivers of a
PCI Express Port device are allowed to run si-
multaneously, a decision of which driver (Port
Bus Driver vs. service driver) owns which re-
source is described in Sections 2.4.1 to 2.4.3.
These resources include the MSI capability
structure, the MSI-X capability structure, and
PCI IO resources.

2.4.1 The MSI Capability Structure

The MSI capability structure enables a device
software driver to callpci_enable_msi to
request an MSI based interrupt. Once MSI is
enabled on a device, it stays in this mode un-
til a device driver callspci_disable_msi
to return to INTx emulation. Since each ser-
vice driver runs independently from each other,
changing the interrupt mode on the PCI Ex-
press Port by an individual service driver may
result in unpredictable behavior. Each ser-
vice driver is therefore prohibited from call-
ing these APIs. The PCI Express Port Bus
Driver is responsible for determining the in-
terrupt mode and assigning the service IRQ
to each service device accordingly. A service
driver must use its service vector when calling
request_irq /free_irq .

2.4.2 The MSI-X Capability Structure

Similar to MSI a device driver for an MSI-X ca-
pable device can callpci_enable_msix to
request MSI-X interrupts. The key difference
is that the MSI-X capability structure enables
a PCI Express Port device to generate multi-
ple messages. Managing multiple MSI-X vec-
tors is handled by the PCI Express Port Bus

driver. The PCI Express Port Bus Driver is re-
sponsible for determining the interrupt mode
transparent to the service drivers. A service
driver must use its service vector when calling
request_irq /free_irq .

If a PCI Express Port device supports MSI-X,
the PCI Express Port Bus Driver will request
the number of MSI-X messages equal to the
number of supported services for the device.
This allows each service to have it own hard-
ware interrupt resource independently gener-
ated from other services.

2.4.3 PCI IO Resources

PCI IO resources include PCI memory/IO
ranges and PCI configuration registers are as-
signed by BIOS during boot. For PCI mem-
ory/IO ranges, the service driver is responsible
for initializing its PCI memory/IO maps during
service startup. There is possibly where the PCI
memory/IO ranges are shared. If this occurs,
each service driver is responsible for mapping
its PCI memory/IO regions without overstep-
ping on resources of others. The PCI Express
Port Bus Driver does not arbitrate access to the
regions and assumes service drivers to be well
behaved.

For PCI configuration registers, each service
runs PCI configuration operation on its own ca-
pability structure except the PCI Express ca-
pability structure, in which the Device Con-
trol register and the Root Control register have
unique control bits assigned to AER service
and PME service. A read-modify-write should
always be handled by the AER/PME service
driver. Again this paper assumes that all service
drivers are responsible for not overstepping on
resources of others.

6 • PCI Express Port Bus Driver Support for Linux

3 PCI Express Advanced Error Re-
porting Root Service Driver

PCI Express error signaling can occur on the
PCI Express link itself or on behalf of trans-
actions initiated on the link. PCI Express de-
fines the Advanced Error Reporting capability,
which is implemented with the PCI Express
Advanced Error Reporting Extended Capabil-
ity Structure, to allow a PCI Express compo-
nent (agent) to send an error reporting message
to the Root Port. The Root Port, a host receiver
of all error messages associated with its hierar-
chy, decodes an error message into an error type
and an agent ID and then logs these into its PCI
Express Advanced Error Reporting Extended
Capability Structure. Depending on whether an
error reporting message is enabled in the Root
Error Command Register, the Root Port device
generates an interrupt if an error is detected[1].
The PCI Express advanced error reporting ser-
vice driver is implemented to service AER in-
terrupts generated by the Root Ports[6].

Once the PCI Express advanced error report-
ing service driver is loaded, it claims all AER
Root service devices in a system device hierar-
chy, as shown in Figure 6. For each AERrs ser-
vice device, the advanced error reporting ser-
vice driver configures its service device to gen-
erate an interrupt when an error is detected. For
each detected error, the advanced error report-
ing service driver performs the followings[6]:

• Gather comprehensive error information.

• Guide error recovery associated with the
hierarchy in question based on the com-
prehensive error information gathered.

• Report error to user in a format with more
precise what error type and severity.

Figure 6: AER Root Service Driver

3.1 Register AER Service

The advanced error reporting service driver is
implemented based on the service driver frame-
work as defined in Section 2.3. Sections 3.1.1
to 3.1.3 below illustrate how the advanced er-
ror reporting service driver follows three basic
steps as required.

3.1.1 Specify AER Service ID

Since the PCI Express advanced error reporting
service driver is implemented to serve only the
Root Ports, the data structure of AER service
ID is defined below[7]:

static struct pcie_port_service_id aer_id[]={{
.vendor = PCI_ANY_ID,
.device = PCI_ANY_ID,
.port_type = PCIE_RC_PORT,
.service_type = PCIE_PORT_SERVICE_AER,
}, {}

};

3.1.2 Initialize AER Service Driver

Once the AER service ID is defined, the ad-
vanced error reporting service driver initial-
izes the service callbacks as defined in the
pcie_port_service_driver data struc-
ture. The data structure of service callbacks is
defined below[7]:

2005 Linux Symposium • 7

static struct pcie_port_service_driver aerdrv={
.name = "aer",
.id_table = &aer_id[0],

.probe = aer_probe,

.remove = aer_remove,

.suspend = aer_suspend,

.resume = aer_resume,
};

3.1.3 Calling pcie_port_service_
register

The final step in initialization of the advanced
error reporting service driver is calling func-
tion pcie_port_service_register to reg-
ister AER service with the PBD. During driver
initialization, the module routine is called for
initialization when the kernel calls the ad-
vanced error reporting service driver. Call-
ing pcie_port_service_register /pcie_

port_service_unregister should always
be done inmodule_init /module_exit as
depicted below[7]:

static int __init aer_service_init(void)
{

return pcie_port_service_register(&aerdrv);
}

static void __exit aer_service_exit(void)
{

pcie_port_service_unregister(&aerdrv);
}

module_init(aer_service_init);
module_exit(aer_service_exit);

Figure 7 depicts the state diagram once the ad-
vanced error reporting service driver’s module
routine is called.

4 PCI Express Native Hot-Plug
Service Driver

The PCI Express Hot-Plug standard usage
model is derived from the standard usage

Figure 7: State Diagram of Registering AER
Service with PBD

model defined in the PCI Standard Hot-Plug
Controller and Subsystem Specification, Rev.
1.0[8].

4.1 PCI Express Native Hot Plug Features

PCI Express Native Hot-Plug features are:

• Root ports and downstream ports of
switches are hot-pluggable ports in PCI
Express hierarchy.

• Interrupt driven hot plug events will result
in hot-plug interrupts.

• Hot plug registers are part of the PCI Ex-
press Capability register set; hot-plug op-
erations are invoked by writing to these
registers.

• Based on SHPC usage model, but not the
bus centric SHPC register set.

4.2 Porting the PCI Express Hot-Plug
Driver to a Service Driver

As mentioned in Section 2.2, the PCI Express
Port Bus Driver provides a mechanism for a

8 • PCI Express Port Bus Driver Support for Linux

service driver to register its service. If the re-
quested service is found in a service device
hierarchy, the service driver can successfully
load. This section focuses on showing what the
changes are required to port the PCI Express
native hot-plug driver to a service driver.

4.2.1 Registering the Hot Plug Service
Driver

The pciehp driver calls pcie_port_

service_register (struct pcie_

port_service_driver *driver) to
register its hot-plug service with the PBD.
The pciehp driver is responsible for set-
ting up the data structures before calling
pcie_port_service_register . Below
shows the difference in the data structures used
when the driver is used as a standard driver or
as a service driver[9].

+ static struct pcie_port_service_id
+ port_pci_ids[] = {{
+ .vendor = PCI_ANY_ID,
+ .device = PCI_ANY_ID,
+ .port_type = PCIE_ANY_PORT,
+ .service_type = PCIE_PORT_SERVICE_HP,
+ .driver_data = 0,
+ }, { /* end: all zeroes */ }
+ };

- static struct pci_device_id pcied_pci_tbl[]={
- {
- .class = ((PCI_CLASS_BRIDGE_PCI << 8) |
- 0x00),
- .class_mask = ~0,
- .vendor = PCI_ANY_ID,
- .device = PCI_ANY_ID,
- .subvendor = PCI_ANY_ID,
- .subdevice = PCI_ANY_ID,
- }, { /* end: all zeroes */ }
- };

4.2.2 Initialize the Hot-Plug Service Driver

Once the HP service ID is defined, the ser-
vice driver initializes the service callbacks as
defined in thepcie_port_service_driver

data structure. The following shows the

changes that need to be made in porting the PCI
Express hot-plug driver to a service driver[9].

+ static struct pcie_port_service_driver
+ hpdriver_portdrv = {
+ .name = "hpdriver",
+ .id_table = &port_pci_ids[0],
+ .probe = pciehp_probe,
+ .remove = pciehp_remove,
+ .suspend = pciehp_suspend,
+ .resume = pciehp_resume,
+ };

- static struct pci_driver pcie_driver = {
- .name = "pciehp",
- .id_table = pcied_pci_tbl,
- .probe = pcie_probe,
- .remove = pcie_remove,
- };

4.2.3 Calling pcie_port_service_
register API

The final step in initialization of the HP ser-
vice driver is callingpcie_port_service_

register to register HP service with the PBD.
The following shows the changes that need to
be made in the standalone driver to port it to a
service driver[9].

static int __init pcied_init(void)
{

:
+ retval = pcie_port_service_register(
+ &hpdriver_portdrv);
- retval = pci_register_driver(
- &pcie_driver);

:
}

static void __exit pcied_cleanup(void)
{

:
+ pcie_port_service_unregister(
+ &hpdriver_portdrv);
- pci_unregister_driver(&pcie_driver);

:
}

Figure 8 depicts the state diagram once HP ser-
vice driver’s module routine is called.

2005 Linux Symposium • 9

Figure 8: State Diagram of Registering HP Ser-
vice with PBD

4.2.4 Available Resources

As a service driver, dev->irq is provided by the
PCI Express Port Bus Driver and is passed to
the pciehp driver. Whether dev->irq is a reg-
ular system interrupt, MSI or MSI-X, the PCI
Express Port Bus Driver assigns the value to
it. The pciehp service driver does not need
to call pci_enable_msi to request use of
MSI/MSI-X if the OS supports that.

5 Impacts to PCI Express Drivers

The Port Bus Driver design does not directly
impact existing PCI Express endpoint device
drivers. However, a service driver may impact
a PCI Express endpoint driver. Additional PCI
Express services may require endpoint driver
changes to take full advantage of the new func-
tionality. For example, to take full advantage of
AER error recovery will require drivers to sup-
port the AER callback API. Driver writers for
PCI Express components should be well versed
with this architecture and evaluate driver im-
pacts as new services (VC or PME) become
available.

The Port Bus perspective impacts device
drivers for PCI Express Switch components.

The PCI Express Port Bus Driver claims all PCI
Express Ports in a system device hierarchy, in-
cluding ports in a PCI Express switch. Switch
service drivers must follow the port bus driver
framework. Switch vendors can use existing
root service drivers as a reference while writ-
ing their own service drivers.

When developing a switch service driver the
usage model at each level in the PCI Express
hierarchy needs to be considered. A service
driver for a downstream switch port may be
required to provide different functionality than
a similar root port service driver. For exam-
ple, the AER Root service driver cannot be
reusedas-is . The usage model is differ-
ent. AER Switch service driver should pro-
vide error-handling callbacks and AER initial-
ization of the switch, while the AER Root ser-
vice driver provides the primary mechanism to
handle the error recovery process. However, in
the case of the hot-plug driver, the same service
driver may be used for both the Root Ports and
the Switch Downstream Ports because the hot-
plug usage model is identical.

6 Conclusion

The design of the PCI Express Port Bus Driver
delivers a clean and modular solution to sup-
port the multiple features of PCI Express while
remaining compatible with the Linux Driver
Model. Each feature can have its own soft-
ware service driver that can be built and loaded
as a separate module. In addition when/if fu-
ture PCI Express features come available or are
added to future specification revisions, the PCI
Express Port Bus architecture is extensible to
support those additions. The PCI Express Port
Bus Driver and changes to port the native PCI
Express hot-plug driver has been incorporated
Linux kernel version 2.6.11. The advanced er-
ror reporting service driver is currently under
review on the LKML.

10 • PCI Express Port Bus Driver Support for Linux

7 Acknowledgements

Special thanks to Greg Kroah-Hartman for his
contributions to the architecture design of PCI
Express Port Bus driver.

References

[1] PCI Express Base Specification Revision
1.1. March 28, 2005.
http://www.pcisig.com/
specifications/pciexpress/ .

[2] Linux Device Drivers, 3rd Edition.
Publisher: O’Reilly & Associates; 3
edition (February 10, 2005) by Jonathan
Corbet, Alessandro Rubini, Greg
Kroah-Hartman.

[3] Renato John Recio. Promises and
Reality: Server I/O networks, past,
present, and future. In Proceedings of the
ACM SIGCOMM Workshop on
Network-I/O Convergence: Experience,
Lessons, Implications. Pages 163-178,
Karlsruhe, Germany, August 2003.

[4] PCIEBUS-HOWTO.txt. Available from:
2.6.11/Documentation .

[5] PCI Express Port Bus Driver code.
Available from:
2.6.11/drivers/pci/pcie .

[6] PCIEAER-HOWTO.txt, under review. If
being accepted:
2.6.x/Documentation .

[7] PCI Express advanced error reporting
driver code, under review. If accepted:
2.6.x/drivers/pci/pcie/aer.

[8] PCI Standard Hot-Plug Controller and
Subsystem Specification Revision 1.0.
June 20, 2001.

http://www.pcisig.com/

specifications/conventional/

pci_hot_plug/SHPC_10/ .

[9] PCI Express hot-plug driver code.
Available from:
2.6.11/drivers/pci/hotplug .

pktgen the linux packet generator

Robert Olsson
Uppsala Universitet & SLU
robert.olsson@its.uu.se

Abstract

pktgen is a high-performance testing tool in-
cluded in the Linux kernel. pktgen is currently
the best tool to test the TX process of device
driver and NIC. pktgen can also be used to gen-
erate ordinary packets to test other network de-
vices. Especially of interest is the use of pkt-
gen to test routers or bridges which often also
use the Linux network stack. Because pktgen is
“in-kernel,” it can generate high bandwith and
very high packet rates to load routers, bridges,
or other network devices.

1 Introduction

This paper describes the novel rework of pktgen
in Linux 2.6.11. Much of the rework has been
focused on multi-threading and SMP support.
The main goal is to have one pktgen thread per
CPU which can then drive one or more NICs.
An in-kernel pseudo driver offers unique pos-
sibilities in performance and capabilities. The
trade-off is additional responsibility in terms of
robustness and avoiding kernel bloat (vs user
mode application).

Pktgen is not an all-in-one testing tool. It offers
a very efficient direct access to the host system
NIC driver/chip TX-process and bypasses most
of the Linux networking stack. Because of this,

use of pktgen requires root access. The packet
stream generated by pktgen can be used as in-
put to other network devices. Pktgen also exer-
cises other subsystems such as packet memory
allocators and I/O buses. The author has done
tests sending packets from memory to several
GIGE interfaces on different PCI-buses using
several CPU’s. Aggregate Rates > 10 GBit/s
have been seen.

1.1 Other testing tools

There are lots of good testing tools for network
and TCP testing. netperf and ttcp are probably
among the most widespread. Pktgen is not a
substitute for those tools but complements for
some types of tests. The test possibilities is de-
scribed later in this paper. Most importantly,
pktgen cannot do any TCP testing.

2 Pktgen performance

Performance varies of course with hardware
and type of test. Some examples follow. A
single flow of 1.48 Mpps is seen with a XEON
2.67 GHz using a patched e1000 driver (64 byte
packets). High numbers are also reported with
bcm5703 with tg3 driver. Aggregated perfor-
mance of >10 Gbit/s (1500 byte packets) comes
from using 12 GIGE NIC’s and DUAL XEON

12 • pktgen the linux packet generator

2.67 MHz with hyperthreading enabled (moth-
erboard has 4 independent PCI-X buses). Sim-
ilarly, DUAL 1.6ăGHz Opterons can generate
2.4 Mpps (64 byte packets). Tests involving
lots of alloc’s results in lower sending perfor-
mance (seeclone_skb()).

Many other things also affect performance: PCI
bus speed, PCI vs PCI-X, PCI-PCI Bridge,
CPU speed, memory latency, DMA latency,
number of MMIO reads/writes per packet or
per interrupt, etc.

Figure 1 compares performance of Intel’s
DUAL Port NIC (2 x 82546EB) with Intel’s
QUAD NIC (4 x 82546EB; Secondary PCI-X
Bus runs at 120 Mhz). on a Dual Opteron 242
(Linux 2.6.7 32-bit).

The graph shows a faster I/O bus gives higher
performance as this probably lowers DMA la-
tency. The effects of the PCI-X bridge are also
evident as the bridge is the difference between
the DUAL and QUAD boards.

It’s interesting to note that even bus bandwidth
is much faster than 1 Gbit/s it degrades the
small packet performance as seen from the ex-
periment. 133 MHz would theoretically cor-
respond to 8.5 Gbit/s. The patched version of
e1000 driver adds data prefetching and skb re-
fill at hard_xmit() .

Figure 1: PCI Bus Topology vs TX perf

3 Getting pktgen to run

EnableCONFIG_NET_PKTGENin the .config,
compile and build pktgen.o either in-kernel or
as module, insmod pktgen if needed. Once run-
ning, pktgen creates a kernel thread and binds
thread to that CPU. One can the register a de-
vice to exactly one of those threads.This to give
full control of the device to CPU relationship.
Modern platforms allow interrupts to be as-
signed to a CPU (aka IRQ affinity) and this is
necessary to minimize cache-line bouncing.

Generally, we want the same CPU that gener-
ates the packets to also take the interrupts given
a symmetrical configuration (CPU:NIC is 1:1).

On a dual system we see two pktgen threads:
[pktgen/0], [pktgen/1]

pktgen is controlled and monitored via the
/proc file system. To help document a test con-
figuration and parameters, shell scripts are rec-
ommended to setup and start a test. Again
referring to our dual system, at start up the
files below are created in̆a /proc/net/
pktgen/ kpktgend_0, kpktgend_1, pgctrl

Assigning devices (e.g. eth1, eth2) to kpkt-
gend_X thread, makes new instances of the de-
vices show up in/proc/net/pktgen/ to
be further configured at the device level.

A test can be configured to run forever or ter-
minate after a fixed number of packets. Ctrl-C
aborts the run.

pktgen sends UDP packets to port 9 (discard
port) by default. IP, MAC addresses, etc. can be
configured. Pktgen packets can hence be iden-
tified within the kernel network stack for pro-
filing and testing.

2005 Linux Symposium • 13

4 Pktgen versioninfo

The pktgen version is printed in dmesg when
pktgen starts. Version info is also in/proc/

net/pktgen/pgctrl .

5 Interrupt affinity

When adding a device to a specific pktgen
thread, one should also set/proc/irq/X/

smp_affinity to bind the NIC to the same
CPU. This reduces cache line bouncing in sev-
eral areas: when freeing skb’s and in the NIC
driver. The clone_skb parameter can in
some cases mitigate the effect of cache line
bouncing as skb’s are not fully freed. One must
experiment a bit to achieve maximum perfor-
mance.

The irq numbers assigned to particular NICs
can be seen in/proc/interrupts . In the ex-
ample below, eth0 uses irq 26, eth1 uses irq 27
etc.

26: 933931 0 IO-APIC-level eth0
27: 936392 0 IO-APIC-level eth1
28: 8 936457 IO-APIC-level eth2
29: 8 939310 IO-APIC-level eth3

The example below assigns eth0, eth1 to CPU0,
and eth2, eth3 to CPU1:

echo 1 > /proc/irq/26/smp_affinity
echo 1 > /proc/irq/27/smp_affinity
echo 2 > /proc/irq/28/smp_affinity
echo 2 > /proc/irq/29/smp_affinity

The graph below illustrates the performance ef-
fects of affinity assignment of PII system.

Figure 2: Effects of irq affinity

5.1 clone_skb: limiting memory allocation

pktgen uses a trick to increment the skb’s refcnt
to avoid full path of kfree and alloc when send-
ing identical skb’s. This generally gives very
high sending rates. For Denial of Service (DoS)
and flow tests this technique can not be used as
each skb has to be modified.

The parameterclone_skb controls this func-
tionality. Think ofclone_skb as the number
of packet clones followed by a master packet.
Settingclone_skb=0 gives no clones, just
master packets, andclone_skb=1000000
givs 1 master packet followed by one million
clones.

clone_skb does not test normal use of a
NIC. While the kfree and alloc are avoided by
using clone_skb , one also avoids sending
packets from dirty cachelines. The clean cache
can contribute as much as 20% in performance
as shown in Table 1.

Data in Table 1 was collected on HP rx2600-
Itanium2 with BCM5703 (PCI-X) NIC running
2.6.11 kernel. The difference in performance
between columns (RC on vs. off) shows how
much dirty cache can affect DMA. Numbers
are in packets per second. Read Current (RC) is
a Mckinley bus transaction that allows the CPU
to respond to a cacheline request directly from
cache and retain ownership of the dirty cache-
line. I.e., the cacheline can stay dirty-private

14 • pktgen the linux packet generator

clone_skb RC on RC off % Drop
on 947315 913768 –3.54%
off 630736 506711 –19.66%

Table 1: clone_skb and cache effects (pps)

and the CPU can write the same cacheline again
without having to acquire ownership first.

It’s likely cache effects contribute to the differ-
ence in performance between rows too (with
and without clone_skb). But it’s just as
likely clone_skb reduces the CPU’s use of
memory bus bandwidth and thus contends less
with DMA. This data is contributed by Grant
Grundler.

5.2 Delay: Decreasing sending rate

pktgen can insert an extra artificial delay be-
tween packets. The unit is specified in nanosec-
onds. For small delays, pktgen busywaits be-
fore putting this skb on the TX-ring. This
means traffic is still bursty and somewhat
hard to control. Experimentation is probably
needed.

6 Setup examples

Below a very simple example of pktgen send-
ing on eth0. One only needs to bring up the
link.

Figure 3: Just send/Link up

pktgen can send if the device is UP but many
derives also requires that link is up can be done

using a crossover cable connected to another
NIC in the same box. If generated packets
should be seen (i.e. Received) by the same host,
set dstmac to match the NIC on the cross over
cable as shown in Figure 4. Using a “fake” dst-
mac value (e.g. 0) will cause the other NIC to
just ignore the packets.

Figure 4: RX/TX in one Host

On SMP systems, it’s better if the TX flow (pk-
tgen thread) is on a different CPU from the RX
flow (set IRQ affinity). One way to test Full
Duplex functionality is to connect two hosts
and point the TX flows to each other’s NIC.

Next, the box with pktgen is used just a packet
source to inject packets into a local or remote
system. Note you need to configure dstmac of
localhost or gateway appropriate.

Figure 5: Send to other

Below pktgen in a forwarding setup. The sink
host receives and discards packets. Of course,
forwarding has to be configured on all boxes.
It might be possible to use a dummy device in-
stead of sink box.

Figure 6: Forwarding setup

Forwarding setup using dual devices. Pktgen
can use different threads to achieve high load
in terms of small packets or concurrent flows.

2005 Linux Symposium • 15

Figure 7: Parallel Forwarding setup

7 Viewing pktgen threads

Thread information as which devices are han-
dled by this thread as actual status for each de-
vice is seen.max_before_softirq is used to
avoid pktgen to avoid pktgen monopolize ker-
nel resources. This will probably be removed
as this of less problem with the threaded de-
sign. Result: is the “return” code “from the last
/proc write.

/proc/net/pktgen/kpktgend_0

Name: kpktgend_0
max_before_softirq: 10000
Running:
Stopped: eth1
Result: OK: max_before_softirq=10000

7.1 Viewing pktgen devices

‘Parm’ sections holds configured info. ‘Cur-
rent’ holds running stats. Result is printed after
run or after interruption for example: See Ap-
pendix.

8 Configuring

Configuring is done via the /proc interface this
is easiest done via scripts. Select a suitable
script and customize. This paper includes one
full example in Section 8. Additional example
scripts are available from:

..1-1 # 1 CPU 1 dev

..1-2 # 1 CPU 2 dev

..2-1 # 2 CPU’s 1 dev

..2-2 # 2 CPU’s 2 dev

..1-1-rdos # 1 CPU 1 dev route DoS

..1-1-ip6 # 1 CPU 1 dev ipv6

..1-1-ip6-rdos # 1 CPU 1 dev ipv6 route DoS

..1-1-flows # 1 CPU 1 dev multiple flows

Table 2: Script Filename Extensions

ftp://robur.slu.se/pub/Linux/
net-development/pktgen-testing/
examples/

Additional examples have been con-
tributed by Grant Grundler<grundler@
parisc-linux.org>
ftp://gsyprf10.external.hp.com/

pub/pktgen-testing/

See Appendix A for a quick-reference guide for
currently implemented commands. It’s divided
into three parts: Pgcontrol, Threads, and De-
vice. Each part has corresponding files in the
/proc file system.

A collection of small tutorial scripts for pktgen
are in examples dir. The file name extension is
described in Table reffilename-ext.

Run in shell: ./pktgen.conf-X-Y

It does all the setup and then starts/stops TX
thread. The scripts will need to be adjusted
based on which NICs one wishes to test.

8.1 Configuration examples

Below is concentrated anatomy of the example
scripts. This should be easy to follow.

pktgen.conf-1-2 A script fragment assigning
eth1, eth2 to CPU on single CPU system.

16 • pktgen the linux packet generator

PGDEV=/proc/net/pktgen/kpktgend_0
pgset "rem_device_all"
pgset "add_device eth1"
pgset "add_device eth2"

pktgen.conf-2-2 A script fragment assigning
eth1 to CPU0 respectivly eth2 to CPU1.

PGDEV=/proc/net/pktgen/kpktgend_0
pgset "rem_device_all"
pgset "add_device eth1"

PGDEV=/proc/net/pktgen/kpktgend_1
pgset "rem_device_all"
pgset "add_device eth2"

pktgen.conf-2-1 A script fragment assigning
eth1 and eth2 to CPU0 on a dual CPU system.

PGDEV=/proc/net/pktgen/kpktgend_0
pgset "rem_device_all"
pgset "add_device eth1"
pgset "add_device eth2"

PGDEV=/proc/net/pktgen/kpktgend_1
pgset "rem_device_all"

pktgen.conf-1-2 A script fragment assigning
eth1, eth2 to CPU on single CPU system.

PGDEV=/proc/net/pktgen/kpktgend_0
pgset "rem_device_all"
pgset "add_device eth1"
pgset "add_device eth2"

pktgen.conf-1-1-rdos A script fragment for
route DoS testing. Note clone_skb 0

PGDEV=/proc/net/pktgen/eth1
pgset "clone_skb 0"
Random address with in the
min-max range
pgset "flag IPDST_RND"
pgset "dst_min 10.0.0.0"
pgset "dst_max 10.255.255.255"

pktgen.conf-1-1-ipv6 Setting device ipv6 ad-
dresses.

PGDEV=/proc/net/pktgen/eth1
pgset "dst6 fec0::1"
pgset "src6 fec0::2"

pktgen.conf-1-1-ipv6-rdos

PGDEV=/proc/net/pktgen/eth1
pgset "clone_skb 0"
pgset "flag IPDST_RND"
pgset "dst6_min fec0::1"
pgset "dst6_max fec0::FFFF:FFFF"

pktgen.conf-1-1-flows A script fragment for
route flow testing. Note clone_skb 0

PGDEV=/proc/net/pktgen/eth1
pgset "clone_skb 0"
Random address within the
min-max range
pgset "flag IPDST_RND"
pgset "dst_min 10.0.0.0"
pgset "dst_max 10.255.255.255"
8k Concurrent flows at 4 pkts
pgset "flows 8192"
pgset "flowlen 4"

2x4+2 script

#Script contributed by Grant Grundler
<grundler@parisc-linux.org>
Note! 10 devices

PGDEV=/proc/net/pktgen/kpktgend_0
pgset "rem_device_all"
pgset "add_device eth3"
pgset "add_device eth5"
pgset "add_device eth7"
pgset "add_device eth9"
pgset "add_device eth11"
pgset "max_before_softirq 10000"

PGDEV=/proc/net/pktgen/kpktgend_1
pgset "rem_device_all"
pgset "add_device eth2"

2005 Linux Symposium • 17

pgset "add_device eth4"
pgset "add_device eth6"
pgset "add_device eth8"
pgset "add_device eth10"
pgset "max_before_softirq 10000"

Configure the individual devices

for i in 2 3 4 5 6 7 8 9 10 11
do

PGDEV=/proc/net/pktgen/eth$i
echo "Configuring $PGDEV"

pgset "clone_skb 500000"
pgset "min_pkt_size 60"
pgset "max_pkt_size 60"
pgset "dst 192.168.3.10$i"
pgset "dst_mac 01:02:03:04:05:0$i"
pgset "count 0"

done
echo "Running... CTRL-C to stop"
PGDEV=/proc/net/pktgen/pgctrl
pgset "start"

tail -2 /proc/net/pktgen/eth*

9 Tips for driver/chip testing

When testing a particular driver/chip/platform,
start with TX. Use pktgen on the host system
to get a sense of which ptkgen parameters are
optimal and how well a particular NIC can per-
form TX. Try with a range of packet sizes from
64 bytes to 1500 bytes or jumbo frames.

Then start looking at the RX on the target plat-
form by using pktgen to inject packets either
direct via crossover cable or via pktgen from
another host.

Again, vary the packet size etc To isolate
driver/chip from other parts of kernel stack pkt-
gen packets can be counted and dropped at var-
ious points. See section on detecting pktgen
packets.

Depending on the purpose of the test repeat the
process with additional devices, one at a time.

Multiple devices are trickier since one needs to
know I/O bus topology. Typically one tries to
balance I/O loads by installing the NICs in the
“right” slots or utilizing built-in devices appro-
priately.

9.1 Multiple Devices

With multiple devices, it is best to use CTRL-
C to stop a test run. This prevents any pktgen
thread from stopping before others and skew-
ing the test results. Sometimes, one NIC will
TX packets faster than another NIC just be-
cause of bias in the DMA latency or PCI bus
arbiter (to name only two of several possibili-
ties). Using CTRL-C to stop a test run aborts all
pktgen threads at once. This results in a clean
snapshot of how many packets a given configu-
ration could generate over the same period of
time. After the CTRL-C is received, pktgen
will print the statistics the same as if the test
had been stopped by a counter going to zero.

9.2 Other testing aspects

To isolate driver/chip from other parts of ker-
nel stack, pktgen packets can be counted and
dropped at various points. See Section 9.3 on
detecting pktgen packets.

If the tested system only has one interface, the
dummy interface can be setup as the output de-
vice. The advantage is we can test the system
at very high load and the results are very re-
produceable. Of course, other variables such
as different types of offload and checksumming
should be tested as well.

Besides knowing the hardware topology, one
should know what workloads are expected to
be present on the target system when placed in
production (i.e. real world use). An FTP server
can see quite a different workload than a web

18 • pktgen the linux packet generator

server, mail handler, or router, etc. Roughly
160 Kpps seems to fill a Gigabit link when run-
ning an FTP server. While this can vary, it gives
an useful estimate of required packet per sec-
ond (pps) versus bandwidth for this type of pro-
duction system.

For routers the number of routes in the rout-
ing table is also an issue as lookup times and
other behaviour may be affected. The author
has taken snapshots from current Internet rout-
ing table IPV4 and IPV6 (BGP) and formed
into scripts for this purpose. The routes are
added via the ip utility so the tested system does
not need any routing connectivity nor routing
daemon. Some scripts are available from:

ftp://robur.slu.se/pub/Linux/
net-development/inet_routes/

At last use your fantasy when testing, elaborate
with new setups try to understand how things
are functioning, monitor interested and related
variables add printouts etc. Testing understand-
ing and development are closely related.

9.3 Detecting pktgen packets in kernel

Sometimes it’s very useful to monitor/drop pk-
tgen packets within the driver/network stack ei-
ther at ingress or egress. The technique for both
is essentially the same. The patchlet in Sec-
tion 13.1 drops pktgen packets at ingress and
uses an unused counter.

Also it should be possible to capture pktgen
packets via the tc command and the u32 clas-
sifier which might be a better solution in most
cases.

10 Thanks to. . .

Thanks to Grant Grundler, Jamal Hadi Salim,
Jens Låås, and Hans Wassen for comments and

useful insights. This paper covers several years
of work and conversations with all of the above.

Relevant site:
ftp://robur.slu.se://pub/Linux/
net-development/pktgen-testing/

Good luck with the linux net-development!

2005 Linux Symposium • 19

11 Appendix A

Table 3: Command Summary

Commands

Pgcontrol commands
start Starts sending on all threads
stop
Threads commands
add_device Add a device to thread i.e eth0
rem_device_all Removes all devices from this thread
max_before_softirq do_softirq() after sending a number of packets
Device commands
debug
clone_skb Number of identical copies of the same packet 0 means alloc for each skb.

For DoS etc we must alloc new skb’s.
clear_counters normally handled automatically
pkt_size Link packet size minus CRC (4)
min_pkt_size Range pkt_size setting If < max_pkt_size, then cycle through the port

range.
max_pkt_size
frags Number of fragments for a packet
count Number of packets to send. Use zero for continious sending
delay Artificial gap inserted between packets in nanoseconds
dst IP destination address i.e 10.0.0.1
dst_min Same as dst If < dst_max, then cycle through the port range.
dst_max Maximum destination IP. i.e 10.0.0..1
src_min Minimum (or only) source IP. i.e. 10.0.0.254 If < src_max, then cycle

through the port range.
src_max Maximum source IP.
dst6 IPV6 destination address i.e fec0::1
src6 IPV6 source address i.e fec0::2
dstmac MAC destination adress 00:00:00:00:00:00
srcmac MAC source adress. If omitted it’s automatically taken from source device
src_mac_count Number of MACs we’ll range through. Minimum’ MAC is what you set

with srcmac.
dst_mac_count Number of MACs we’ll range through. Minimum’ MAC is what you set

with dstmac.
Flags
IPSRC_RND IP Source is random (between min/max),
IPDST_RND Etc
TXSIZE_RND
UDPSRC_RND

20 • pktgen the linux packet generator

Commands continued

UDPDST_RND
MACSRC_RND
MACDST_RND
udp_src_min UDP source port min, If < udp_src_max, then cycle through the port range.
udp_src_max UDP source port max.
udp_dst_min UDP destination port min, If < udp_dst_max, then cycle through the port

range.
udp_dst_max UDP destination port max.
stop Aborts packet injection. Ctrl-C also aborts generator.Note: Use count 0

(forever) and stop the run with Ctrl-C when multiple devices are assigned
to one pktgen thread. This avoids some devices finishing before others and
skewing the results. We are primarily interested in how many packets all
devices can send at the same time, not absolute number of packets each
NIC sent.

flows Number of concurrent flows
flowlen Length of a flow

12 Appendix B

12.1 Sample pktgen output

/proc/net/pktgen/eth1output after run

Params: count 10000000 min_pkt_size: 60 max_pkt_size: 60
frags: 0 delay: 0 clone_skb: 1000000 ifname: eth1
flows: 0 flowlen: 0
dst_min: 10.10.11.2 dst_max:
src_min: src_max:
src_mac: 00:00:00:00:00:00 dst_mac: 00:07:E9:13:5C:3E
udp_src_min: 9 udp_src_max: 9 udp_dst_min: 9 udp_dst_max: 9
src_mac_count: 0 dst_mac_count: 0
Flags:

Current:
pkts-sofar: 10000000 errors: 39192
started: 1076616572728240us stopped: 1076616585502839us idle: 1037781us
seq_num: 11 cur_dst_mac_offset: 0 cur_src_mac_offset: 0
cur_saddr: 0x10a0a0a cur_daddr: 0x20b0a0a
cur_udp_dst: 9 cur_udp_src: 9
flows: 0

Result: OK: 12774599(c11736818+d1037781) usec, 10000000 (64byte)
782840pps 382Mb/sec (400814080bps) errors: 39192

Results show 10 millon 64 byte packets were sent on eth1 to 10.10.11.2
with a rate at 783 kpps

2005 Linux Symposium • 21

\section{Appendix C}
\subsection{pktgen.conf-1-1 script}

Below is the full pktgen.conf-1-1 script

\begin{footnotesize}
\begin{verbatim}
#!/bin/sh

#modprobe pktgen

function pgset() {
local result

echo $1 > $PGDEV

result=‘cat $PGDEV | fgrep "Result: OK:"‘
if ["$result" = ""]; then

cat $PGDEV | fgrep Result:
fi

}

function pg() {
echo inject > $PGDEV
cat $PGDEV

}

Config Start Here -------------------------------------

thread config
Each CPU has own thread. Two CPU exammple.
We add eth1, eth2 respectively.

PGDEV=/proc/net/pktgen/kpktgend_0
echo "Removing all devices"

pgset "rem_device_all"
echo "Adding eth1"

pgset "add_device eth1"
echo "Setting max_before_softirq 10000"

pgset "max_before_softirq 10000"

device config
delay is inter packet gap. 0 means maximum speed.

CLONE_SKB="clone_skb 1000000"
NIC adds 4 bytes CRC
PKT_SIZE="pkt_size 60"

COUNT 0 means forever
#COUNT="count 0"
COUNT="count 10000000"
delay="delay 0"

22 • pktgen the linux packet generator

PGDEV=/proc/net/pktgen/eth1
echo "Configuring $PGDEV"

pgset "$COUNT"
pgset "$CLONE_SKB"
pgset "$PKT_SIZE"
pgset "$delay"
pgset "dst 10.10.11.2"
pgset "dst_mac 00:04:23:08:91:dc"

Time to run
PGDEV=/proc/net/pktgen/pgctrl

echo "Running... ctrl^C to stop"
pgset "start"
echo "Done"

Result can be vieved in /proc/net/pktgen/eth1

13 Appendix D

13.1 Patchlet to ip_input.c

Below is the patchlet to count and drop pktgen packets.

--- linux/net/ipv4/ip_input.c.orig Mon Feb 10 19:37:57 2003
+++ linux/net/ipv4/ip_input.c Fri Feb 21 21:42:45 2003
@@ -372,6 +372,23 @@

IP_INC_STATS_BH(IpInDiscards);
goto out;

}

+ {
+ __u8 *data = (__u8 *) skb->data+20;
+
+ /* src and dst port 9 --> pktgen */
+
+ if(data[0] == 0 &&
+ data[1] == 9 &&
+ data[2] == 0 &&
+ data[3] == 9) {
+ netdev_rx_stat[smp_processor_id()].fastroute_hit+
+;
+ goto drop;
+ }
+ }
+

2005 Linux Symposium • 23

if (!pskb_may_pull(skb, sizeof(struct iphdr)))
goto inhdr_error;

24 • pktgen the linux packet generator

TWIN: A Window System for ‘Sub-PDA’ Devices

Keith Packard
HP Cambridge Research Laboratory

keithp@keithp.com

Abstract

With embedded systems gaining high resolu-
tion displays and powerfulCPUs, the desire for
sophisticated graphical user interfaces can be
realized in even the smallest of systems. While
the CPU power available for a given power
budget has increased dramatically, these tiny
systems remain severely memory constrained.
This unique environment presents interesting
challenges in graphical system design and im-
plementation. To explore this particular space,
a new window system,TWIN, has been de-
veloped. Using ideas from modern window
systems in larger environments,TWIN offers
overlapping translucent windows, anti-aliased
graphics and scalable fonts in a total memory
budget of 100KB.

Motivation

Researchers at the HP Cambridge Research
Laboratory are building a collection of sub-PDA

sized general purpose networked computers as
platforms for dissociated, distributed comput-
ing research. These devices include smallLCD

or OLED screens, a few buttons and occasion-
ally some kind of pointing device.

One of the hardware platforms under de-
velopment consists of aTMS320 seriesDSP

(200MHz, fixed point, 384KB on-chip RAM),
8MB of flash memory, an AgilentADNS-2030
Optical mouse sensor, a Zigbee (802.15.4)
wireless networking interface and an Epson
L2F50176T00 LCD screen (1.1”, 120 x 160
color). At 200MHz, this processor is capable of
significant computation, but 384KB holds little
data.

In contrast, early graphical user interfaces for
desktop platforms was more constrained by
available CPU performance than by memory.
Early workstations had at least a million pixels
and a megabyte of physical memory but only
about 1MIPS of processing power. Software
in this environment was much more a matter
of what could be made fast enough than what
would fit in memory.

While the X window system[7] has been ported
to reasonably small environments[2], a mini-
mal combination of window system server, pro-
tocol library and application toolkit consumes
on the order of 4 to 5MB of memory, some ten
times more than is available in the target plat-
form.

Given the new challenge of providing a graph-
ical user interface in these tiny devices, it
seemed reasonable to revisit the whole graph-
ical architecture and construct a new system
from the ground up. TheTWIN window sys-
tem (for Tiny WINdow system) is the result of
this research.

26 • T WIN: A Window System for ‘Sub-PDA’ Devices

Assumptions

The hardware described above can be general-
ized to provide a framework within which the
TWIN architecture fits. By focusing on specific
hardware capabilities and limitations, the win-
dow system will more completely utilize those
limited resources. Of course, over-constraining
the requirements can limit the potential target
environments. Given the very general nature of
existing window systems, it seems interesting
to explore what happens when less variation is
permitted.

The first assumption made was that little-to-
no graphics acceleration is available within the
frame buffer, and that the frame buffer is at-
tached to theCPU through a relatively slow
link. This combination means that most draw-
ing should be done with theCPU in local mem-
ory, and not directly to the frame buffer. This
has an additional benefit in encouraging syn-
chronized screen updates where intermediate
rendering results are never made visible to the
user. If theCPU has sufficient on-chip storage,
this design can also reduce power consumption
by reducing off-chip data references.

The second limitation imposed was to require a
color screen with fixed color mapping. While
this may appear purely beneficial to the user,
the software advantages are numerous as well.
Imprecise rendering operations can now gener-
ate small nearly invisible errors instead of vis-
ibly incorrect results through the use of anti-
aliased drawing. With smooth gradations of
color available, there is no requirement that
the system support dithering or other color-
approximating schemes.

Finally, TWIN assumes that the target machine
provides respectableCPU performance. This
reduces the need to cache intermediate render-
ing results, like glyph images for text. Hav-
ing a homogeneously performant target market

means thatTWIN need support only one gen-
eral performance class of drawing operations.
For example,TWIN supports only anti-aliased
drawing; non-antialiased drawing would be
faster, but theCPUs supported by twin are re-
quired to be fast enough to make this irrelevant.

The combined effect of these environmental
limitations means thatTWIN can provide sig-
nificant functionality with little wasted code.
Window systems designed for a range of tar-
get platforms must often generalize functional-
ity and expose applications to variability which
will not, in practice, ever been experienced by
them. For example, X provides six different
color models for monochrome, colormapped
and static color displays. In practice, only True-
Color (separate monotonic red, green, blue ele-
ments in each pixel) will ever be used by the
majority of X users. Eliminating choice has
benefits beyond the mere reduction of window
system code, it reflects throughout the applica-
tion stack.

Windowing

Windowing can be thought of as the process of
simulating multiple, separate, two-dimensional
surfaces sharing the same display. These virtual
surfaces, or ‘windows,’ are then combined into
a single presentation. Traditional window sys-
tems do this by presenting a ‘21/2’ dimensional
user interface which assigns different constant
Z values to each object so that the windows ap-
pear to be stacked on top of one another.

TWIN provides this traditional metaphor
through an architecture similar to the X
window system Composite extension in that
all applications draw to off-screen image
buffers which are then combined and placed
in the physical frame buffer. This has many
advantages:

2005 Linux Symposium • 27

• Rendering performance is decoupled from
frame buffer performance. As the embedded
frame buffer controllers include a private frame
buffer, the bandwidth available to theCPU for
that memory is quite restricted. Decoupling
these two operations means that rendering can
operate at full main memory speed instead of
the reduced video controller memory speed
• Rendering operations needn’t clip to over-
lapping windows. Eliminating the need to per-
form clipping reduces the complexity and size
of the window system by eliminating the code
needed to construct and maintain the clip list
data structures.
• Applications need not deal with damage
events. In a traditional clipping-based window
system, applications must be able to reconstruct
their presentation data quickly to provide data
for newly visible portions of windows.
• Multiple window image formats can be sup-
ported, including those with translucency in-
formation. By constructing the physical frame
buffer data from the combination of various
window contents, it is possible to perform ar-
bitrary image manipulation operations on those
window contents, including translucency ef-
fects.

In the model supported in the X window system
by the Composite extension, an external appli-
cation is responsible for directing the system
in constructing the final screen image from the
off-screen window contents. TWIN has a sim-
pler model where window contents are com-
posited together through a fixed mechanism.
This, of course, eliminates significant complex-
ity but at the cost of also eliminating significant
generality. TWIN does not, and is not likely to,
support immersive 3D environments.

TWIN tracks rectangular regions of modified
pixels within each window. When updating the
screen, a single scanline of intermediate stor-
age is used to compute new screen contents.
The list of displayed windows is traversed and

any section* of the window overlapping the
scanline is painted into the intermediate scan-
line. When complete, the scanline is sent to
the frame buffer. This single scanline provides
the benefits of a double buffered display with-
out the need for a duplicate frame buffer.

Graphics

The availability of small color screens using ei-
therLCD or OLED technologies combined with
sufficient CPUpower have encouraged the in-
clusion of a rendering model designed to take
maximal advantage of the limited pixel reso-
lution available. Anti-aliasing and sub-pixel
addressing is used to produce higher fidelity
renderings within the limited screen resolu-
tion. Per-pixel translucency is included to ‘see
through’ objects as well as permit arbitrary ob-
ject shapes to minimize unused space on the
screen.

The complete drawing stack provides a
simacrulum of thePDF 1.4 drawing environ-
ment, complete with affine transforms, color
image blending and PostScript path construc-
tion and drawing tools. Leveraging this classic
and well known environment ensures both that
developers will feel comfortable with the tools
and that the system is ‘complete’ in some infor-
mal sense.

Pixel Manipulation

TWIN uses the rendering operational model
from 81/2[5], the window system developed for
the Plan 9 operating system by Cox and Pike,
the same as used in the X render extension[4].
This three-operand rendering operator forms
the base upon which all drawing is built:

28 • T WIN: A Window System for ‘Sub-PDA’ Devices

dst = (src IN mask) OVER|SOURCE

dst

The IN, OVER and SOURCE operators are as
defined by Porter and Duff.[6] By manipulat-
ing the operands, this single operator performs
all of the rendering facilities in theTWIN sys-
tem. Geometric operations are performed by
constructing a suitable mask operand based on
the shape of the geometry.

Pixel data are limited inTWIN to three formats,
8 bit alpha, 32 bitARGB and 16 bitRGB. Lim-
iting formats in this way along with the lim-
ited number of operators in the rendering equa-
tion provided an opportunity to instantiate each
combination in custom compositing code. With
three formats for each operand and two opera-
tors, there are 54 different rendering functions
in 13KB of code.

Geometric Objects

For geometric operations,TWIN uses the model
from PostScript as implemented in the cairo
graphics system.[8] ‘Paths’ are constructed
from a sequence of lines and Bézier splines. An
arbitrary path can be convolved with a convex
path to construct a new path representing the
original path as stroked by the convex path. The
convolution operation approximates the outline
of the Minkowski sum of the two paths.

A path can then be drawn by scan converting
it to a mask for use in the rendering operation
described above. Because the rendering opera-
tion can handle translucency, this scan conver-
sion operation does anti-aliasing by sampling
the path in a 4×4 grid over each pixel to com-
pute approximate coverage data. This sampling
grid can be easily adjusted to trade quality for
performance.

The application interface includes an affine
transformation from an arbitrary 16.16 fixed
point coordinate space to 12.4 fixed point pixel
space. The 16.16 fixed point values provide
reasonable dynamic range for hardware which
does not include floating point acceleration.
The 12.4 fixed point pixel coordinates provide
sufficient resolution to accurately reproduce
object geometry on the screen. Note that the
screen is therefore implicitly limited to 4096
pixels square.

Glyph Representation

Providing text at multiple sizes allows the user
interface to take maximal advantage of the lim-
ited screen size. This can either be done by
storing pre-computed glyphs at multiple sizes
or preparing glyphs at run-time from scalable
data. Commercial scalable font formats all rep-
resent glyphs in outline form. The resulting
glyph is constructed by filling a complex shape
constructed from lines and splines. The out-
line data for one face for theASCII character
set could be compressed to less than 7KB – sig-
nificantly smaller than the storage needed for a
bitmap face at a single size.

However, a straightforward rasterization of an
outline does not provide an ideal presentation
on the screen. Outline fonts often include hint-
ing information to adjust glyph shapes at small
pixel sizes to improve sharpness and readabil-
ity. This hinting information requires signif-
icantly more code and data than the outlines
themselves, making it impractical for the target
device class.

An alternative representation for glyphs is as
stroke data. With only the path of the pen
recorded, the amount of data necessary to rep-
resent each glyph is reduced. More signifi-
cantly, with the stroke width information iso-

2005 Linux Symposium • 29

lated from the stroke path, it is possible to auto-
matically adjust the stroke positions to improve
the presentation on the screen. A secondary ad-
justment of the pen shape completes the hinting
process. The results compare favorably with
fully hinted outline text.

An additional feature of the stroke representa-
tion is that producing oblique and bold variants
of the face are straightforward; slanting the text
without changing the pen shape provides a con-
vincing oblique while increasing the pen width
produces a usable bold.

The glyphs themselves have a venerable his-
tory. The shapes come from work done by
Dr A.V. Hershey for the US National Bureau
of Standards. Those glyphs were designed for
period pen plotters and were constructed from
straight line segments on a relatively low reso-
lution grid. The complete set of glyphs contains
many different letterforms from simple gothic
shapes to letters constructed from multiple par-
allel strokes that provide an illusion of vary-
ing stroke widths. Many additional decorative
glyphs were also designed.

From this set of shapes, a simple gothic set of
letters, numbers and punctuation was chosen.
Additional glyphs were designed to provide a
completeASCII set. The curves within the Her-
shey glyphs, designed as sequences of short
line segments, were replaced by cubic splines.
This served both to improve the appearance of
the glyphs under a variety of transforms as well
as to reduce the storage required for the glyphs
as a single cubic spline can replace many line
segments. Figure 1 shows a glyph as originally
designed with 33 line segments and the same
glyph described as seven Bézier splines. Stor-
age for this glyph was reduced from 99 to 52
bytes.

Figure 1: Converting Lines To Splines

Glyph Hinting

Given the desire to present text at a variety
of sizes, the glyph shapes need to undergo a
scaling transformation and then be rasterized
to create an image. Unless this scaling is re-
stricted to integer values, the edges of the re-
sulting strokes will not necessarily align with
the pixel grid. The resulting glyphs will appear
fuzzy and will be hard to read.

To improve the appearance of the glyphs on the
screen, a straightforward mechanism was de-
veloped to reposition the glyph control points
to improve the rasterized result. The glyph data
was augmented to include a list of X and a list
of Y coordinates. Each ‘snap’ list contains val-
ues along the respective axis where some point
within the glyph is designed to lie on a pixel
boundary. These were constructed automati-
cally by identifying all vertical and horizon-
tal segments of each glyph, including splines
whose ends are tangent to the vertical or hori-
zontal.

The glyph coordinates are then scaled to the de-
sired size. The two snap lists (X and Y) are
used to push glyph coordinates to the nearest
pixel grid line. Coordinates between points on
a snap list are moved so that the relative dis-
tance from the nearest snapped coordinates re-
main the same. The pen width is snapped to the
nearest integer size. If the snapped pen width
is odd, the entire glyph is pushed1/2 a pixel

30 • T WIN: A Window System for ‘Sub-PDA’ Devices

in both directions to align the pen edges with
the pixel edges. Figure 2 shows a glyph being
hinted in this fashion.

Figure 2: Hinting A Glyph

The effect is to stretch or shrink the glyph to
align vertical and horizontal strokes to the pixel
grid. Glyphs designed with evenly spaced ver-
tical or horizontal stems (like ‘m’) may end up
unevenly spaced; a more sophisticated hinting
systems could take this into account by preserv-
ing the relative spacing among multiple strokes.

User Interface Objects

With the window system supporting a single
screen containing many windows, the toolkit
extends this model by creating a single top-
level widget. This top-level widget contains a
single box for layout purposes. Each box can
contain a number of widgets or other boxes.

Layout within each box is done either hori-
zontally or vertically with an algorithm which
comes from the Layout Widget[3] that the au-
thor developed for Xt[1] library. Each wid-
get has a natural size and stretch in both di-
rections. The natural size and stretch of a box
is computed from the objects it contains. This

forms the sole geometry management mecha-
nism within the toolkit and is reasonably com-
petent at both constructing a usable initial lay-
out and adapting to externally imposed size
changes.

Process & Thread Model

TWIN was initially developed to run on a cus-
tom embedded operating system. This operat-
ing system design initially included simple co-
operative threading support, andTWIN was de-
signed to run different parts of the window sys-
tem in different threads:
• Input would run in one thread, events were
dispatched without queuing directly to the re-
ceiving object.
• Each window would have a thread to redis-
play the window contents. These threads would
block on a semaphore awaiting a change in ap-
plication state before reconstructing the win-
dow contents. Per window locks could block
updates until the application state was consis-
tent.
• The window system had a separate thread
to compose the separate window contents into
the final screen display. The global redis-
play thread would block on a semaphore which
the per-window redisplay threads would signal
when any window content changed. A global
system lock could block updates while any ap-
plication state was inconsistent.

This architecture was difficult to manage as
it required per-task locking between input and
output. The lack of actual multi-tasking of the
application processing eliminated much of the
value of threads.

Once this was working, support for threading
was removed from the custom operating sys-
tem.

2005 Linux Symposium • 31

With no thread support at all,TWIN was re-
designed with a global event loop monitoring
input, timers and work queues. The combi-
nation of these three mechanisms replaced the
collection of threads described above fairly eas-
ily, and the complexities of locking between in-
put and output within a single logical task were
removed.

Of course, once this was all working, the
custom operating system was replaced with
ucLinux.

While the single thread model works fine in
ucLinux, it would be nice to split separate out
tasks into processes. Right now, all of the tasks
are linked into a monolithic executable. This
modularization work is underway.

Input Model

A window system is responsible for collecting
raw input data from the user in the form of but-
ton, pointer and key manipulation and distribut-
ing them to the appropriate applications.

TWIN takes a simplistic approach to this pro-
cess, providing a single immutable model.
Pointer events are delivered to the window con-
taining the pointing device. Transparent areas
of each window are excluded from this contain-
ment, so arbitrary shapes can be used to select
for input.

TWIN assumes that any pointing device will
have at least one associated signal – a mouse
button, a screen touch or perhaps something
else. When pressed, the pointing device is
‘grabbed’ by the window containing the pointer
at that point. Motion information is delivered
only to that window until the button is released.

Device events not associated with a pointer,
such as keyboards, are routed to a fixed ‘active’

window. The active window is set under ap-
plication control, such as when a mouse button
press occurs within an inactive window. The
active window need need not be the top-most
window.

Under both the original multi-threaded model
and the current single-threaded model, there is
no event queueing within the window system;
events are dispatched directly upon being re-
ceived from a device. This is certainly easy to
manage and allows motion events to be easily
discarded when the system is too busy to pro-
cess them. However, with the switch to multi-
ple independent processes running on ucLinux,
it may become necessary to queue events be-
tween the input collection agent and the appli-
cation processing them.

Within the toolkit, events are dispatched
through each level of the hierarchy. Within
each box, keyboard events are statically routed
to the active box or widget while mouse events
are routed to the containing box or widget. By
explicitly dispatching down each level, the con-
taining widgets and boxes can enforce whatever
policy they like for event delivery, including
mouse or keyboard grabs, focus traversal and
event replay.

While this mechanism is fully implemented,
much investigation remains to be done to ex-
plore what kinds of operations are useful and
whether portions of what is now application-
defined behavior should be migrated into com-
mon code.

Window Management

TWIN embeds window management right into
the toolkit. Support for resize, move and min-
imization is not under the control of an exter-
nal application. Instead, the toolkit automat-
ically constructs suitable decorations for each

32 • T WIN: A Window System for ‘Sub-PDA’ Devices

window as regular toolkit objects and the nor-
mal event dispatch mechanism directs window
management activities.

While external management is a valuable archi-
tectural feature in a heterogeneous desktop en-
vironment, the additional space, time and com-
plexity rules this out in today’s Sub-PDA world.

Status and Future Work

As computing systems continue to press into
ever smaller environments, the ability to bring
sophisticated user interface technologies along
greatly increases both the value of such prod-
ucts as well as the scope of the potential mar-
ket.

The TWIN window compositing mechanism,
graphics model and event delivery system have
been implemented using a mock-up of the hard-
ware running on Linux using the X window
system. Figure 3 shows most of the current ca-
pabilities in the system.

While the structure of theTWIN window sys-
tem is complete, the toolkit is far from com-
plete, having only a few rudimentary widgets.
And, as mentioned above, the port to ucLinux is
not yet taking advantage of the multiple process
support in that environment. These changes
will likely be accompanied by others asTWIN

is finally running on the target hardware.

In the x86 emulation environment, the window
system along with a small cadre of demonstra-
tion applications now fits in about 50KB of text
space with memory above that limited largely
to the storage of the off-screen window con-
tents. Performance on a 1.2GHz laptop proces-
sor is more than adequate; it will be rather inter-
esting to see how these algorithms scale down
to the targetCPU.

The current source code is available from via
CVS, follow the link from http://keithp.com.
The code is licensed with anMIT -style license,
permitting liberal commercial use.

References

[1] Paul J. Asente and Ralph R. Swick.X
Window System Toolkit. Digital Press,
1990.

[2] William R. Hamburgen, Deborah A.
Wallach, Marc A. Viredaz, Lawrence S.
Brakmo, Carl A. Waldspurger, Joel F.
Bartlett, Timothy Mann, and Keith I.
Farkas. Itsy: Stretching the Bounds of
Mobile Computing.IEEE Computer,
34(4):28–35, April 2001.

[3] Keith Packard. The LayoutWidget: A TeX
Style Constraint Widget Class.The X
Resource, 5, Winter 1993.

[4] Keith Packard. Design and
Implementation of the X Rendering
Extension. InFREENIX Track, 2001
Usenix Annual Technical Conference,
Boston, MA, June 2001. USENIX.

[5] Rob Pike.draw - screen graphics. Bell
Laboratories, 2000. Plan 9 Manual Page
Entry.

[6] Thomas Porter and Tom Duff.
Compositing Digital Images.Computer
Graphics, 18(3):253–259, July 1984.

[7] Robert W. Scheifler and James Gettys.X
Window System. Digital Press, third
edition, 1992.

[8] Carl Worth and Keith Packard. Xr:
Cross-device Rendering for Vector
Graphics. InProceedings of the Ottawa
Linux Symposium, Ottawa, ON, July 2003.
OLS.

2005 Linux Symposium • 33

Figure 3: Sample Screen Image

34 • T WIN: A Window System for ‘Sub-PDA’ Devices

RapidIO for Linux

Matt Porter
MontaVista Software, Inc.

mporter@mvista.com

mporter@kernel.crashing.org

Abstract

RapidIO is a switched fabric interconnect stan-
dard intended for embedded systems. Provid-
ing a message based interface, it is currently
capable of speeds up to 10Gb/s full duplex
and is available in many form factors includ-
ing ATCA for telecom applications. In this pa-
per, the author introduces a RapidIO subsystem
for the Linux kernel. The implementation pro-
vides support for discovery and enumeration of
devices, management of resources, and a con-
sistent access mechanism for drivers and other
kernel facilities. As an example of the use of
the subsystem feature set, the author presents
a Linux network driver implementation which
communicates via RapidIO message packets.

1 Introduction to RapidIO

1.1 Busses and Switched Fabrics

To date, most well known system interconnect
technologies have been shared memory bus de-
signs. ISA, PCI, and VMEbus are all examples
of shared memory bus systems. A shared mem-
ory bus interconnect will have a specific bus
width which is measured by the number of data
lines routed to each participant on the bus. An

arbitration mechanism is required to determine
which participant owns the bus for purposes of
asserting an address-data cycle onto the bus.
Other participants will decode the address-data
cycle and latch data locally if the address cycle
is intended for them. In the shared memory bus
architecture, there is one global address space
shared amongst all participants.

Switched fabric interconnect technology has
been around for some time with proprietary im-
plementations like StarFabric. In recent years
though, standardized switched fabrics like Hy-
perTransport, Infiniband, PCI Express, and Ra-
pidIO have become more familiar names. A
switched fabric interconnect is usually mod-
eled much like a switched network architecture.
However, it provides features that a chip to
chip or intra-chassis conventional shared mem-
ory bus standard would provide. Each node
has at least one link that can be connected
point to point or into a switch element. An
implementation-specific routing method deter-
mines packet routing in the network. Typi-
cally, a switched fabric interconnect incorpo-
rates some method of sending messages and
events through the network. In some cases,
the switched fabric will implement memory
mapped I/O over the network.

• 35 •

36 • RapidIO for Linux

Logical Layer

MMIO Messaging

Transport Layer

8-bit Device ID 16-bit Device ID

Physical Layer

Parallel Serial
8-bit/16-bit x1/x4

Figure 1: RapidIO Layers

1.2 RapidIO Overview

The RapidIO interconnect technology was
originally created by Motorola for use in em-
bedded computing systems. Motorola (now
Freescale Semiconductor) later created the Ra-
pidIO Trade Association (RTA) to guide future
development of the specification. A number of
embedded silicon vendors are active members
of the RTA and are now shipping or announc-
ing RapidIO devices.

The RapidIO specification is divided into three
distinct layers. These layers are illustrated in
Figure 1.

1. Logical Layer
Provides methods for memory mapped I/O
(MMIO) and message-based access to de-
vices. MMIO allows for accesses within a
local memory space to generate read/write
transactions within the address space of a
remote device. Each device has a unique
RapidIO address space that can range from
34-bits to 66-bits in size. RapidIO pro-
vides a messaging model with mailbox
and doorbell facilities. A mailbox is a

hardware port which can send and receive
messages up to 4KB in size. A doorbell
is a specialized message port which can be
used for event notifications similar to mes-
sage signaled interrupts.

2. Transport Layer
Implements the device ID routing method-
ology. In RapidIO, packets are routed by
a unique device ID. Two different sizes of
device IDs are defined , either a small (8-
bit) or large (16-bit) device ID. The small
device ID allows a maximum of 256 de-
vices whereas the large device ID allows a
maximum of 65536 devices.

3. Physical Layer
Offers either parallel or serial implemen-
tations for the physical interconnect. The
parallel version is available in 8-bit or 16-
bit configurations with full duplex speeds
up to 8 Gb/s and 16 Gb/s, respectively.
The serial implementation offers lane con-
figurations of x1 or x4. In the x1 config-
uration, the single lane offers up to 3.125
Gb/s full duplex data throughput. In the
x4 configuration, each lane offers up to
2.5Gb/s full duplex data throughput result-
ing in 10 Gb/s total bandwidth.

1.3 RapidIO versus PCI Express

RapidIO is often compared to PCI Express be-
cause of the popularity of PCI Express in the
commodity PC workstation/server market. On
the surface, both seem very similar, offering
features that improve upon the use of conven-
tional PCI as a system interconnect. RapidIO,
however, is designed with some features tar-
geted at specific embedded system needs that
will likely facilitate its inclusion in many appli-
cations. There are now embedded processors
available which include both PCI Express and
RapidIO support on the chip.

2005 Linux Symposium • 37

PCI Express and RapidIO have similar data rate
capabilities. PCI Express offers lane configura-
tions of x1 through x32 where each lane offers
2 Gb/s full duplex data throughput. In a typical
PC implementation there is a single x16 slot for
graphics that handles 32 Gb/s full duplex and
multiple x1 slots which can handle 4 Gb/s full
duplex.

Both interconnects also have similar discovery
models. A separate set of transactions is used
to access configuration space registers. Con-
figuration space accesses are used to determine
existence of nodes in the system and additional
information about those nodes.

A major difference between PCI Express and
RapidIO is in system topology capability. PCI
Express is backward compatible with PCI and
therefore depends on the host and multiple
slave device model. RapidIO is designed for
multiple hosts in the system performing redun-
dant discovery. In addition, it can be configured
in any network topology allowing direct node
to node communication.

Device addressing is very different as well. In
PCI Express, the globally shared address space
with hierarchical windows of address space is
retained from PCI. This is important for back-
ward compatibility of software and allows rout-
ing of packets via base address assignments.
RapidIO’s device ID based routing simplifies
changes to the network due to device failure or
hot plug events.

PCI Express does not offer a standardized mes-
saging facility. Most modern distributed appli-
cations are based on message passing architec-
tures.

2 RapidIO Hardware

The current generation RapidIO parts use an 8-
bit wide parallel physical layer. These parts can

support up to 8Gb/s full duplex data through-
put. The first RapidIO processor elements
(endpoints with a processor) are Freescale’s
MPC8540 and MPC8560 Systems-on-a-Chip
(SoC). The first RapidIO switch is the Tundra
Tsi500.

The first commercially available system with
these parts is the STx GP3 HIPPS2 de-
velopment platform. This system includes
one or more STx GP3 boards containing the
MPC8560 processor and a HIPPS2 RapidIO
backplane with two Tsi500 switches. The
Linux RapidIO subsystem is being developed
using this platform with two STx GP3 boards
plugged into the HIPPS2 backplane.

3 Linux RapidIO Subsystem

3.1 Subsystem Overview

Due to the discovery mechanism similarities
between PCI and RapidIO, the RapidIO sub-
system has a structure which is similar to that
of the PCI subsystem. The subsystem hooks
into the standard Linux Device Model (LDM)
in a similar fashion to other busses in the ker-
nel. RapidIO specific device and bus types
are defined and registered with the LDM. The
core subsystem is designed such that there is
a clear separation between the generic subsys-
tem interfaces and architecture specific inter-
faces which support RapidIO. Finally, a set of
subsystem device driver interfaces is defined to
abstract access to facilities by device drivers.

3.2 Subsystem Core

The core of the Linux RapidIO subsystem re-
volves around four major components.

38 • RapidIO for Linux

1. Master Port. A master port is an inter-
face which allows RapidIO transactions to
be transmitted and received in a system.
A master port provides a bridge from a
processor running Linux into the switched
fabric network.

2. Device. A RapidIO device is any endpoint
or switch on the network.

3. Switch. A RapidIO switch is a special
class of device which routes packets be-
tween point to point connections to reach
their final destination.

4. Network. A RapidIO network comprises a
set of endpoints and switches that are in-
terconnected.

Each of these components is mapped into a sub-
system structure. The RapidIO subsystem uses
these structures as the root handle for manipu-
lating the hardware components abstracted by
the structures.

struct rio_mport (Figure 2) contains in-
formation regarding a specific master port.
Master port specific resources such as inbound
mailboxes and doorbells are contained in this
structure. If a master port is defined as a enu-
merating host, then the structure will contain
a unique host device ID. The host device ID
is used for multi-host locking purposes during
enumeration.

struct rio_switch (Figure 3) contains
information about a RapidIO switch device.
The structure is populated during enumeration
and discovery of the system with information
such as the number of hops to the switch and
the routing table present in the switch. In ad-
dition, pointers to switch specific routing table
operations reside here.

struct rio_dev (Figure 4) contains infor-
mation about an endpoint or switch that is part

of the RapidIO system. Fields are present to
cache many common configuration space reg-
isters.

struct rio_net (Figure 5) contains in-
formation about a specific RapidIO network
known to the system. It defines a list of all
devices that are part of the network. Another
list tracks all of the local processor master ports
that can access this network. Thehport field
points to the default master port which is used
to communicate with devices within the net-
work.

3.3 Subsystem Initialization

In order to initialize the RapidIO subsystem, an
architecture must register at least one master
port to send and receive transactions within the
RapidIO network. Asubsys_initcall()
is registered which is responsible for any arch-
specific RapidIO initialization. This includes
hardware initialization and registration of ac-
tive master ports in the system. The final
step of the initcall is to executerio_init_
mports() which performs enumeration and
discovery on all registered master ports.

3.4 Enumeration and Discovery

The enumeration and discovery process is im-
plemented to comply with the multiple host
enumeration algorithm detailed in theRapidIO
Interconnect Specification: Annex I[1]. Enu-
meration is performed by a master port which
is designated as a host port. A host port is de-
fined as a master port which has a host device
ID greater than or equal to zero. A host device
ID is assigned to a master port in a platform
specific manner or can be passed on the com-
mand line.

2005 Linux Symposium • 39

struct rio_mport {
struct list_head dbells; / ∗ list of doorbell events ∗ /

struct list_head node; / ∗ node in global list of ports ∗ /

struct list_head nnode; / ∗ node in net list of ports ∗ /

struct resource iores;

struct resource riores[RIO_MAX_MPORT_RESOURCES];

struct rio_msg inb_msg[RIO_MAX_MBOX];

struct rio_msg outb_msg[RIO_MAX_MBOX];

int host_deviceid; / ∗ Host device ID ∗ /

struct rio_ops ∗ops; / ∗ maintenance transaction functions ∗ /

unsigned char id; / ∗ port ID, unique among all ports ∗ /

unsigned char index; / ∗ port index, unique among all port
interfaces of the same type ∗ /

unsigned char name[40];

};

Figure 2: struct rio_mport

struct rio_switch {
struct list_head node;

u16 switchid;

u16 hopcount;

u16 destid;

u16 route_table[RIO_MAX_ROUTE_ENTRIES];

int (∗add_entry)(struct rio_mport ∗mport, u16 destid, u8 hopcount,

u16 table, u16 route_destid, u8 route_port);

int (∗get_entry)(struct rio_mport ∗mport, u16 destid, u8 hopcount,

u16 table, u16 route_destid, u8 ∗route_port);

};

Figure 3: struct rio_switch

40 • RapidIO for Linux

struct rio_dev {
struct list_head global_list; / ∗ node in list of all RIO devices ∗ /

struct list_head net_list; / ∗ node in per net list ∗ /

struct rio_net ∗net; / ∗ RIO net this device resides in ∗ /

u16 did;

u16 vid;

u32 device_rev;

u16 asm_did;

u16 asm_vid;

u16 asm_rev;

u16 efptr;

u32 pef;

u32 swpinfo; / ∗ Only used for switches ∗ /

u32 src_ops;

u32 dst_ops;

struct rio_switch ∗rswitch; / ∗ RIO switch info ∗ /

struct rio_driver ∗driver; / ∗ RIO driver claiming this device ∗ /

struct device dev; / ∗ LDM device structure ∗ /

struct resource riores[RIO_MAX_DEV_RESOURCES];

u16 destid;

};

Figure 4: struct rio_dev

struct rio_net {
struct list_head node; / ∗ node in list of networks ∗ /

struct list_head devices; / ∗ list of devices in this net ∗ /

struct list_head mports; / ∗ list of ports accessing net ∗ /

struct rio_mport ∗hport; / ∗ primary port for accessing net ∗ /

unsigned char id; / ∗ RIO network ID ∗ /

};

Figure 5: struct rio_net

2005 Linux Symposium • 41

During enumeration, maintenance transactions
are used to access the configuration space of de-
vices. A maintenance transaction has two com-
ponents to address a device, a device ID and
a hopcount. The device ID is normally used
for endpoint devices to determine if they should
accept a packet. It is a requirement for all de-
vices to ignore the device ID and accept any
transaction during enumeration. Switches are a
different case, however, as they do not imple-
ment a device ID. Transactions which reach a
switch device must have their hopcount set ap-
propriately. If a maintenance transaction with a
hopcount of 0 reaches a switch, then the switch
will process the packet against its own configu-
ration space. If a maintenance transaction has a
hopcount greater than 0, then the switch decre-
ments the hopcount in the packet and forwards
it along according to the route set for the corre-
sponding device ID in the packet.

The enumeration process walks the network
depth first. Like PCI enumeration, this is eas-
ily implemented by recursion. When a device
is found, the Host Device ID Lock Register is
written to ensure that the enumerator has exclu-
sive enumeration ownership of the device. The
device’s capabilities are then queried to deter-
mine if it is a switch or endpoint device.

If the device is an endpoint, it is allocated a new
unique device ID and this value is written to
the endpoint. A newrio_dev is allocated and
initialized.

If the device is a switch, its vendor and de-
vice ID are queried against a table of known
RapidIO switches. A switch table entry has a
set of switch routing operations which are spe-
cific to the located switch. The routing opera-
tions are used to read and write route entries in
the switch. Newrio_dev andrio_switch
structures are then allocated and initialized.

Enumeration past a switch device is accom-
plished by iterating over each active switch port

on the switch. For each active link, a route to
a fake device ID (0xFF for 8-bit systems and
0xFFFF for 16-bit systems) is written to the
route table. The algorithm recurses by calling
itself with hopcount + 1 and the fake device ID
in order to access the device on the active port.
While traversing the network, the current allo-
cated device ID is tracked. When the depth first
traversal completes, the recursion unwinds and
permanent routes are written into the switch
routing tables. The device IDs that were found
beyond a switch port are assigned route entries
pointing to the port which they were found be-
hind.

When the host has completed enumeration
of the entire network it callsrio_clear_
locks() to clean up. For each device in the
system, it writes a magic "enumeration com-
plete" value to the Component Tag Register.
This register is essentially a scratch pad register
reserved for enumeration housekeeping. After
this process, all Host Device ID Lock Registers
are cleared. Remote nodes that are to initiate
passive discovery of the network wait for the
magic value to appear in the Component Tag
Register and then begin discovery.

The discovery process is similar to the enumer-
ation process that has already been described.
However, the discovery process is performed
passively. This means that all devices in the
network are traversed without modifying de-
vice IDs or routing tables. This is necessary
in the case where there are multiple enumer-
ation capable endpoints in the system. Typ-
ically, only one or two processors with end-
points will be designated as enumerating hosts.
Out of the competing enumeration hosts, only
one host can win. The losing hosts and other
non-enumerating processors are forced to wait
until enumeration is complete. At that point,
they may traverse the network to find all de-
vices without disturbing the network configu-
ration. When discovery completes, the Linux

42 • RapidIO for Linux

Switch

0

3

2

1
Processor
Element

3

Processor
Element

2

Processor
Element

1

Processor
Element

0

(Host)

Figure 6: Example RapidIO System

RapidIO subsystem will have a complete view
of all RapidIO devices in the network.

In the passive discovery process, the network is
walked depth first as with enumeration. How-
ever, the existing route table entries are uti-
lized to generate transactions that pass through
a switch. When an endpoint device is discov-
ered, ario_dev is allocated but the device
ID is retrieved from the value written in the
Base Device ID Register. When a switch de-
vice is found, discovery iterates over each ac-
tive switch port as with enumeration. How-
ever, in order to generate transactions for de-
vices beyond that switch port, the routing ta-
ble is scanned for an entry which is routed out
that switch port. Using the device ID associ-
ated with the switch port, discovery issues a
transaction with the associated device ID and
a hopcount equal to the number of hops into
the network. The process continues in a similar
manner as described with enumeration until all
devices have been discovered.

3.5 Enumeration and Discovery Example

Figure 6 illustrates a typical RapidIO system.
There are four processor elements (PEs) num-
bered zero through three. Each PE provides Ra-
pidIO endpoint functionality and is connected
to each of four ports on the switch in the center.
PE 0 is the only designated enumerating host in
the system and is assigned a host device ID of 0.
PEs 1-3 do not perform enumeration, but rather
wait for the signal indicating that enumeration
has been completed by PE 0.

PE 0 begins enumeration by attempting to ob-
tain the host device ID lock on the adjoining
device. The transaction to configuration space
is issued with a hopcount of 0 and a device ID
of 0xFF. Since the hopcount of the transaction
is 0, the switch will process the request and al-
low PE 0 to obtain the lock. Once the lock
is obtained, PE 0 queries the device to learn
that it is a switch and allocatesrio_dev and
rio_switch structures.

PE 0 queries the switch to determine that there
are 4 ports with active links present. PE 0 then
begins a loop to iterate over the 4 active ports,
skipping the input port which it is using to ac-
cess the switch device. For each active switch
port, PE 0 performs the following:

1. Writes a route entry that assigns device ID
0xFF to the current active switch port.

2. Issues configuration space transactions
with a hopcount of 1 to access the devices
that are one hop from PE 0:

• Obtains the host device ID lock for
each device.

• Queries the device to determine that
it is an endpoint and allocates a
rio_dev structure.

2005 Linux Symposium • 43

• Assigns the next available device ID
to the endpoint. PEs 1-3 are assigned
device IDs 0x01-0x03, respectively.

3. Assigns route entries corresponding to the
switch ports where the PEs were discov-
ered. Route entries for device IDs 0x01-
0x03 are assigned to switch ports 1-3, re-
spectively.

After this process completes, PE 0 writes the
magic "enumeration complete" value into the
Component Tag Register on each device. This
is followed by PE 0 releasing the host device ID
lock on each device in the system. Once PEs 1-
3 detect that enumeration is complete, they are
free to begin their discovery process.

3.6 Driver Interface

RapidIO device drivers are provided a specific
set of functions to use in their implementation.
In order to guarantee proper functioning of the
subsystem, drivers may not access hardware re-
sources directly.

Configuration space access is managed similar
to configuration space access in the PCI sub-
system.

• rio_config_read_8()
rio_config_read_16()
rio_config_read_32()
rio_config_write_8()
rio_config_write_16()
rio_config_write_32()

Read or write a specific size at an offset of
a device.

• rio_local_config_read_8()
rio_local_config_read_16()
rio_local_config_read_32()
rio_local_config_write_8()

rio_local_config_write_16()
rio_local_config_write_32()

Read or write a specific size at an off-
set of the local master port’s configuration
space.

Several calls handle the ownership and initial-
ization of mailbox and doorbell resources on a
master port or remote device.

• rio_request_outb_mbox()
rio_request_inb_mbox()

Claim ownership of an outbound or in-
bound mailbox, initialize the mailbox for
processing of messages, and register a no-
tification callback. The outbound mailbox
callback provides a interrupt context event
when a message has been sent. The in-
bound mailbox callback provides an event
when a message has been received.

• rio_release_outb_mbox()
rio_release_inb_mbox()

Give up ownership of an outbound or in-
bound mailbox and unregister notification
callback.

• rio_request_outb_dbell()

Claim ownership of a range of doorbells
on a remote device. Ownership is only
valid for the local processor.

• rio_request_inb_dbell()

Claim ownership of a range of doorbells
on the inbound doorbell queue, initialize
the doorbell queue, and register a call-
back. The doorbell callback provides an
event when a doorbell within the regis-
tered range is received.

• rio_release_outb_dbell()

Give up ownership of a range of doorbells
on a remote device.

44 • RapidIO for Linux

• rio_release_inb_dbell()

Give up ownership of a range of doorbells
on the inbound doorbell queue.

Several calls provide access to doorbell and
message queues.

• rio_send_doorbell()

Send a doorbell message to a specific de-
vice.

• rio_add_outb_message()

Add a message to an outbound mailbox
queue.

• rio_add_inb_buffer()

Add an empty buffer to an inbound mail-
box queue.

• rio_get_inb_message()

Get the next available message from an in-
bound mailbox queue.

3.7 Architecture Interface

Every architecture must provide implementa-
tions for a set of RapidIO functions. These
functions manage hardware-specific features
of configuration space access, mailbox access,
and doorbell access.

• rio_ops.lcwrite()
rio_ops.lcread()
rio_ops.cwrite()
rio_ops.cread()

Hardware specific implementations for
generation of read and write transac-
tions to configuration space. These mas-
ter port specific routines are assigned to
a struct rio_ops which is in turn
bound to astruct rio_mport . These

low-level operations are used by the driver
interface configuration space access rou-
tines.

• rio_ops.dsend()

Hardware specific implementation for
generation of a doorbell write transaction.
This master port specific routine is as-
signed to astruct rio_mport and
used by therio_send_doorbell()
call.

• rio_hw_open_outb_mbox()
rio_hw_open_inb_mbox()

Hardware specific initialization for out-
bound and inbound mailbox queues.

• rio_hw_close_outb_mbox()
rio_hw_close_inb_mbox()

Hardware specific cleanup for outbound
and inbound mailbox queues.

• rio_hw_add_outb_message()

Hardware specific implementation to add
a message buffer to the outbound mailbox
queue.

• rio_hw_add_inb_buffer()

Hardware specific implementation to add
an empty buffer to the inbound mailbox
queue.

• rio_hw_get_inb_message()

Hardware specific implementation to get
the next available inbound message.

An architecture must also implement inter-
rupt handlers for mailbox and doorbell queue
events. Typically, inbound doorbell and mail-
box hardware will generate a hardware inter-
rupt to indicate that a message has arrived. Out-
bound doorbell hardware will typically gener-
ate a hardware interrupt when a message has

2005 Linux Symposium • 45

been successfully sent. The architecture inter-
rupt handler must process the event in an ap-
propriate manner for the message type and ac-
knowledge the hardware interrupt.

For inbound doorbell messages, the handler
must extract the doorbell message info and
check for a callback that has been regis-
tered for the doorbell message it has re-
ceived. If a callback has been registered (using
rio_request_inb_dbell()) for a door-
bell range that includes the received doorbell
message, the callback is executed. The call-
back indicates the source, destination, and 16-
bit info field (the doorbell message) that was
received.

A mailbox interrupt handler must execute the
registered callback for the mailbox that gen-
erated the hardware interrupt. It may be re-
quired to do some hardware-specific ring buffer
management and must acknowledge the hard-
ware interrupt. The callback is registered us-
ing rio_request_inb_mbox() or rio_
request_outb_mbox()

3.8 Device Model

The RapidIO subsystem ties into the Linux De-
vice Model in a similar way to most other de-
vice subsystems. A RapidIO bus is registered
with the device subsystem and each RapidIO
device is registered as a child of that bus. Ra-
pidIO specificmatch anddev_attrs imple-
mentations are provided.

rio_match_bus() implementation is a
simple device to driver matching implementa-
tion. It compares vendor and device IDs of
a candidate RapidIO device to determine if a
driver will claim ownership of the device.

Therio_dev_attrs[] implementation ex-
ports all of the common register fields in the

rio_dev structure to sysfs. In addition to the
standarddev_attrs sysfs support, aconfig
node is exported similar to the same node in the
PCI subsystem. It provides userspace access to
the 2MB configuration space on each RapidIO
device.

RapidIO specific implementations of
probe() , remove() , and driver register/
unregister are also provided.

4 RapidIO Messaging Network
Driver (rionet)

4.1 rionet Overview

With the subsystem in place, a driver is still
needed to make use of the new functional-
ity. Since the first RapidIO parts available
are processors with RapidIO interfaces, a net-
work driver to provide communication over the
RapidIO switched fabric makes good sense.
The RapidIO messaging model makes this
easy since managing outbound and inbound
messages is much like a managing a modern
descriptor-based network controller.

4.2 rionet Features

rionethas the following features:

• Ethernet driver model for simplicity

• Dynamic discovery of network peers using
doorbell messages

• Unique MAC address generation based on
RapidIO device ID

• Maximum MTU of 4082

• Uses standard RapidIO subsystem mes-
sage model to work on any RapidIO end-
points with mailboxes and doorbells

46 • RapidIO for Linux

4.3 rionet Implementation

The rionet driver is initialized with ario_
register_driver() call. The id_
table is configured to match all RapidIO de-
vices so that therionet_probe() call will
qualify rionet devices. The probe routine ver-
ifies that the device has mailbox and doorbell
capabilities. If the device is mailbox and door-
bell capable, then it is added to a list of poten-
tial rionetpeers. If at least one potential peer is
found, the local RapidIO device is queried for
its device ID. The MAC address is generated by
concatenating 3 bytes of a well known Ethernet
test network address with a 1 byte zero pad and
finally the 2 byte device ID of the local device.

When rionet is opened, it requests a range of
doorbell messages and registers a doorbell call-
back to process doorbell events. Two mes-
sages,RIONET_JOIN andRIONET_LEAVE,
are defined to manage the active peer discovery
process. For each device in the potential peer
list, theRIONET_JOIN andRIONET_LEAVE
outbound doorbell resources are claimed. After
verifying that the potential peer device has ini-
tialized inbound doorbell service, aRIONET_
JOIN doorbell is sent to it.

The doorbell event handler processes a
RIONET_JOIN doorbell by doing the follow-
ing:

1. Adds the originating device ID to the ac-
tive peer list.

2. Sends aRIONET_JOIN doorbell as a re-
ply to the originator.

If a RIONET_LEAVEdoorbell is received, the
originating device ID is removed from the ac-
tive peer list.

rionet is designed such that it defaults to the
maximum allowable MTU size. With a maxi-
mum RapidIO message payload of 4096 bytes,
the default MTU size is 4082 after allowing for
the 14 byte Ethernet header overhead. Due to
the inclusion of the RapidIO device ID in the
generated MAC address, Ethernet packets in
this driver contain all the information required
to send the packets over RapidIO.

The hard_start_xmit() implementation
in rionet is similar to any standard Ethernet
driver except that it must verify that a desti-
nation node is active before queuing a packet.
The active peer list that was created during the
rionet discovery process is used for this verifi-
cation. The least significant 2 bytes of the des-
tination MAC address are used to index into
the active peer list to verify that the node is
active. If the node is active, then the packet
is queued for transmission usingrio_add_
outb_message() . Housekeeping for free-
ing of completed skbs is handled using the out-
bound mailbox transmission complete event.
This is similar to how a standard Ethernet driver
uses a direct hardware interrupt event for TX
complete events.

Ethernet packet reception is also very similar
to standard Ethernet drivers. In this case, it is
driven from the inbound mailbox event handler.
This callback is executed when the hardware
mailbox receives an inbound message in its
queue.rio_get_inb_message() is used
to retrieve the next inbound Ethernet packet
from the inbound mailbox queue. As skbs are
consumed, a ring refill function adds additional
empty skbs to the inbound mailbox queue using
rio_add_inb_buffer() .

The result is an Ethernet compatible driver
which can be used to leverage the huge set
of TCP/IP userspace applications for develop-
ment, testing, and deployment. The Ether-
net implementation allows routing betweenri-
onetand wired Ethernet networks, opening up

2005 Linux Symposium • 47

many interesting application possibilities. It
is possible to provide the root file system to
nodes via NFS over RapidIO. Coupling this
with firmware support for booting over Ra-
pidIO, it is possible to boot an entire network
of RapidIO processor devices over the RapidIO
network.

5 Going Forward

Although the Linux RapidIO subsystem encap-
sulates much of the hardware functionality of
RapidIO, a few areas have been left incomplete.
The following features are in development or
planned for development.

• In the future, the Linux RapidIO sub-
system will add an interface for man-
aging MMIO regions which are mapped
to per-device address spaces. As a part
of this effort, mmapable sysfs nodes for
each region will be exported for use from
userspace.

• Although parallel RapidIO provided the
first available RapidIO hardware, 16-bit
device ID addressable serial RapidIO is
the direction where all future hardware is
heading. The subsystem is being extended
to handle 16-bit device IDs and the serial
RapidIO physical layer.

• In order to make use of the standardized
error reporting facilities in RapidIO, an in-
terface will be required to register and pro-
cess Port Write Events. These are unso-
licited transactions which are reported to a
specified host in RapidIO Typically, they
will be used for error reporting.

6 Conclusion

Today, the Linux RapidIO subsystem provides
a complete layer for initialization of a Ra-
pidIO network and a driver interface for mes-
sage passing based drivers. The message pass-
ing network driver,rionet, provides a simple
mechanism for application developers to take
advantage of RapidIO messaging. As new Ra-
pidIO devices are released,rionet will serve as
a reference driver for authors of new RapidIO
device drivers.

References

[1] RapidIO Trade Association. RapidIO
Interconnect Specification.
http://www.rapidio.org .

48 • RapidIO for Linux

Locating System Problems Using Dynamic
Instrumentation

Vara PrasadIBM
prasadav@us.ibm.com

William CohenRed Hat, Inc.
wcohen@redhat.com

Frank Ch. EiglerRed Hat, Inc.
fche@redhat.com

Martin HuntRed Hat, Inc.
hunt@redhat.com

Jim KenistonIBM
jkenisto@us.ibm.com

Brad ChenIntel Corporation
brad.chen@intel.com

Abstract

Diagnosing complex performance or kernel de-
bugging problems often requires kernel modifi-
cations with multiple rebuilds and reboots. This
is tedious, time-consuming work that most de-
velopers would prefer to minimize.

Systemtap uses the kprobes infrastructure to
dynamically instrument the kernel and user ap-
plications. Systemtap instrumentation incurs
low overhead when enabled, and zero overhead
when disabled. SystemTap provides facilities
to define instrumentation points in a high-level
language, and to aggregate and analyze the in-
strumentation data. Details of the SystemTap
architecture and implementation are presented,
along with an example of its application.

1 Introduction

This paper introduces SystemTap, a new per-
formance and kernel troubleshooting infras-
tructure for Linux. SystemTap provides a
scripting environment that can eliminate the

modify-build-test loop often required for un-
derstanding details of Linux kernel behavior.
SystemTap is designed to be sufficiently ro-
bust and efficient to support applications in pro-
duction environments. Our broad goals are to
reduce the time and complexity for analyzing
problems that involve kernel activity, to greatly
expand the community of engineers to which
such analyses are available, and to reduce the
need to modify and rebuild the kernel as a trou-
bleshooting technique.

Today, identifying functional problems in
Linux systems often involves modifying kernel
source with diagnostic print statements. The
process can be time-consuming and require de-
tailed knowledge of multiple subsystems. Sys-
temTap uses dynamic instrumentation to make
this same level of data available without the
need to modify kernel source or rebuild the ker-
nel. It delivers this data via a powerful scripting
facility. Interesting problem-analysis tools can
be implemented as simple scripts.

SystemTap is also designed for analyzing
system-wide performance problems. While ex-
isting Linux performance tools likeiostat ,
vmstat , top , and oprofile are valuable

• 49 •

50 • Locating System Problems Using Dynamic Instrumentation

for understanding certain types of performance
problems, there are many kinds of problems
that they don’t readily expose, including:

• Interactions between applications and the
operating system

• Interactions between processes

• Interactions between kernel subsystems

• Problems that are obscured by ordinary
behavior and require examination of an ac-
tivity trace

Often these problems are difficult to reproduce
in a test environment, making it desirable to
have a tool that is sufficiently flexible, robust
and efficient to be used in production environ-
ments. These scenarios further motivate our
work on SystemTap.

SystemTap builds on, and extends, the capa-
bilities of the kprobes [6, 7] kernel debug-
ging infrastructure. SystemTap has been influ-
enced by a number of earlier systems, includ-
ing kerninst [9], Dprobes [6], the Linux Trace
Toolkit (LTT) [10], the Linux Kernel State
Tracer (LKST) [1], and Solaris DTrace [5, 8].

This paper starts with a brief discussion of the
existing dynamic instrumentation provided by
Kprobes in the Linux 2.6 kernel, and explains
the disadvantages of this approach. Next we de-
scribe a few key aspects of the SystemTap de-
sign, including the programming environment,
the tapset abstraction, and safety in SystemTap.
We continue with an example that illustrates the
power of SystemTap for troubleshooting per-
formance problems that are difficult to address
with existing Linux tools. We close the paper
with conclusions and future work.

2 Kprobes

Kprobes, a new feature in the Linux 2.6 kernel,
allows for dynamic, in-memory kernel instru-
mentation. To use kprobes, the developer cre-
ates a loadable kernel module with calls into
the kprobes interface. These calls specify a
kernel instruction address, theprobe point, and
an analysis routine orprobe handler. Kprobes
arranges for control flow to be intercepted by
patching the probe point in memory, with con-
trol passed to the probe handler. Kprobes has
been carefully designed to allow safe inser-
tion and removal of probes and to allow in-
strumentation of almost any kernel routine. It
lets developers add debugging code into a run-
ning kernel. Because the instrumentation is dy-
namic, there is no performance penalty when
probes are not used.

The basic control flow interception facility of
kprobes has been enhanced with a number of
additional facilities. Jprobesmakes it easy to
trace function calls and examine function call
parameters. Kretprobes is used to intercept
function returns and examine return values. Al-
though it is a powerful system for dynamic in-
strumentation, a number of limitations prevent
kprobes from broader use:

• Kprobes does very little safety checking
of its probe parameters, making it easy to
crash a system through accidental misuse.

• Safe use of kprobes often requires detailed
knowledge of the code path to be instru-
mented. This limits the group of develop-
ers who will use kprobes.

• Due to references to kernel addresses
and specific kernel symbols, the porta-
bility of the instrumentation code using
the kprobes interface is poor. This lack
of portability also limits re-usability of
kprobes-based instrumentation.

2005 Linux Symposium • 51

• Kprobes does not provide a convenient
mechanism to access a function’s local
variables, except for a jprobe’s access to
the arguments passed into the function.

• Although using kprobes doesn’t require a
kernel build-install-reboot, it does require
knowledge to build a kernel module and
lacks the support library routines for com-
mon tasks. This is a significant barrier for
potential users. A script-based system that
provides the support for common opera-
tions and hides the details of building and
loading a kernel module will serve a much
larger community.

These limitations are part of our motivation for
creating SystemTap.

3 SystemTap

SystemTap [2] is being designed and devel-
oped to simplify the development of system in-
strumentation. The SystemTap scripting lan-
guage allows developers to write custom in-
strumentation and analysis tools to address the
performance problems they are examining. It
also improves the reuse of existing instrumen-
tation. Thus, people can build on the expertise
of other developers who have already created
instrumentation for specific kernel subsystems.

Portability is a concern of SystemTap. The in-
tent is to provide SystemTap on all architec-
tures to which kprobes has been ported.

Safety of the SystemTap instrumentation is an-
other major concern. The tools minimize the
chance that the SystemTap instrumentation will
cause system crashes or corruption.

tapset library

probe script
parse

elaborate

translate to C, compile

load module, start probe

extract output, unload

probe output

probe kernel object

Figure 1: SystemTap processing steps

3.1 SystemTap processing steps

The steps SystemTap uses to convert an instru-
mentation script into executable instrumenta-
tion and extract collected data are shown in Fig-
ure 1. SystemTap takes a compilation approach
to generate instrumentation code, unlike the in-
terpreter approach other similar systems have
taken [6, 5, 8]. A compiler converts the in-
strumentation script and tapset library into C
code for a kernel module. After compilation
and linking with the SystemTap runtime, the
kernel module is loaded to start the data collec-
tion. Data is extracted from module into user-
space via reliable and high performance trans-
port. Data collection ends when the module
is unloaded from the kernel. The elaboration,
translation, and execution steps are described
in greater detail in the following subsections.

3.2 Probe language

The SystemTap input consists of a script, writ-
ten in a simple language described in Section 4.
The language describes an association of han-
dler subroutines with probe points. Aprobe

52 • Locating System Problems Using Dynamic Instrumentation

point may be a particular place in kernel/user
code, or a particular event (timers, counters)
that may occur at any time. Ahandler is a
subroutine that is run whenever the associated
probe point is hit.

The SystemTap language is inspired by the
UNIX scripting languageawk [4] and is sim-
ilar in capabilities toDTrace’s “D” [5]. It
uses a simplified C-like syntax, lacking types,
declarations, and most indirection, but adding
associative arrays and simplified string process-
ing. The language includes some extensions to
interoperate with the target software being in-
strumented, in order to refer to its data and pro-
gram state.

3.3 Elaboration

Elaboration is a processing phase that analyzes
the input script and resolves references to the
kernel or user symbols andtapsets. Tapsets are
libraries of script or C code used to extend the
capability of a basic script, and are described in
Section 5. Elaboration resolves external refer-
ences in the script file to symbolic information
and imported script subroutines in preparation
for translation to C. In this way, it is analogous
to linking an object file with needed libraries.

References to kernel data such as function pa-
rameters, local and global variables, functions,
and source locations all need to be resolved
to actual run-time addresses. This is done by
processing the DWARF debugging information
emitted by the compiler during the kernel build,
as is done in a debugger. All debug data pro-
cessing occurs prior to execution of the result-
ing kernel module.

Debugging data contains enough information to
locate inlined copies of functions (very com-
mon in the Linux kernel), local variables, types,

and declarations beyond what are ordinarily ex-
ported to kernel modules. It enables place-
ment of probe points in the interior of func-
tions. However, the lack of debug data in some
user programs (for example, stripped binaries)
will limit SystemTap’s ability to place probes
in such code.

3.4 Translation

Once a script has been elaborated, it is trans-
lated into C.

Each script subroutine is expanded to a block
of C that includes necessary locking and safety
checks. Looping constructs are augmented
with checks to prevent infinite loops. Each vari-
able shared by multiple probes is mapped to an
appropriate static declaration, and accesses are
protected by locks. To minimize the use of ker-
nel stack space, local variables are placed in a
synthetic call frame.

Probe handlers are registered with the kernel
using one of thekprobes [6, 7] family of reg-
istration APIs. For location-type probe points
in the kernel, probe points are inserted in ker-
nel memory. For user-level locations, the probe
point is inserted in the executable code loaded
into user memory while the probe handler is ex-
ecuted in the kernel.

The translated script includes references to a
common runtime that provides routines for
generic associative arrays, constrained memory
management, startup, shutdown, I/O, and other
functions.

When translation is complete, the generated C
code is compiled and linked with the runtime
into a stand-alone kernel module. The final
module may be cryptographically signed for
safe archiving or remote use.

2005 Linux Symposium • 53

3.5 Execution

After linking, the SystemTap driver program
simply loads the kernel module usinginsmod .
The module will initialize itself, insert the
probes, then wait for probe points to be hit.
When a probe is hit, the associated handler rou-
tine is invoked, suspending the thread of exe-
cution. When all handlers for that probe point
have been executed, the thread of execution re-
sumes. Because thread of execution is sus-
pended, handlers must not block. Probe han-
dlers should hold locks only while manipulat-
ing shared SystemTap variables, or as neces-
sary to access previously unlocked target-side
data.

The SystemTap script concludes when the user
sends an interrupt to the driver program, or
when the script callsexit . At the end of the
run, the module is unloaded and its probes are
removed.

3.6 Data Collection and Presentation

Data collected from SystemTap in the kernel
must be transmitted to user space. This trans-
port must provide high throughput and low la-
tency, and impose minimal performance impact
on the monitored system. Two mechanisms are
currently being tested: relayfs and netlink.

Relayfs provides an efficient way to move large
blocks of data from the kernel to user space.
The data is sent via per-cpu buffers. Relayfs
can be compiled into the kernel or built as a
loadable module.

Netlink allows a simple stream of data to be
sent using the socket APIs. Performance testing
suggests that netlink provides less bandwidth
than relayfs for transferring large amounts of
trace data.

By default, SystemTap output will be processed
in batches and written tostdout at script exit.
The output will also be automatically saved to a
file. SystemTap can optionally produce a real-
time stream as required by the application.

In user-space, SystemTap can report data as
simple text, or in structured computer-parsable
forms for consumption by applications such as
graphics generators.

4 SystemTap Programming Lan-
guage

A SystemTap script file is a sequence of top-
level constructs, of which there are three types:
probe definitions, auxiliary function defini-
tions, and global variable declarations. These
may occur in any order, and forward references
are permitted.

A probe definition identifies one or more probe
points and a body of code to execute when any
of them is hit. Multiple probe handlers may ex-
ecute concurrently on a multiprocessor. Mul-
tiple probe definitions may end up referring to
the same event or program location: all of them
are run in an unspecified sequence when the
probe point is hit. For tapset builders, there is
also a probe aliasing mechanism discussed in
Section 5.1

An auxiliary function is a subroutine for probe
handlers and other functions. In order to con-
serve stack space, Systemtap limits the number
of outstanding nested or recursive calls. The
translator provides a number of built-in func-
tions, which are implicitly declared.

A global variable declaration lists variables that
are shared by all probe handlers and auxiliary
functions. (If a variable is not declared global,
it is assumed to be local to the function or probe
that references it.)

54 • Locating System Problems Using Dynamic Instrumentation

A script may make references to an identi-
fier defined elsewhere in the library of script
tapsets. Such a cross-reference causes the en-
tire tapset file providing the definition to be
merged into the elaborated script, as if it was
simply concatenated. See Section 5 for more
information about tapsets.

Fatal errors that occur during script execution
cause a cleanup of activity associated with the
SystemTap script, and an early abort. Running
out of memory, dividing by zero, exceeding
an operation count limit and calling too many
nested functions are a few types of errors that
will terminate a script.

4.1 Probe points

A probe definition specifies one or more probe
points in a comma-separated list, and an as-
sociated action in the form of a statement
block. A trigger of any of the probe points
will run the block. Each probe point spec-
ification has a “dotted-functor” syntax such
askernel.function("foo").return .
The core SystemTap translator recognizes a
family of these patterns, and tapsets may define
new ones. The basic idea of these patterns is to
provide a variety of user-friendly ways to refer
to program spots of interest, which the transla-
tor can map to a kprobe on a particular PC value
or an event.

The first group of probe point patterns re-
lates to program points in the kernel and ker-
nel modules. The first element,kernel or
module("foo") , identifies the probe’s tar-
get software as kernel or a kernel module
namedfoo.ko . This first element is used to
find the symbolic debug information to resolve
the rest of the pattern.

For a probe point defined on a statically known
symbol or other program structure, the transla-
tor can use debug information to expose local

variables within the scopes of the active func-
tions to the script.

4.1.1 Functions

To identify a function, thefunction("fn")
element does so by name. If the function is in-
lineable, all points of inlining are included in
the set. The function name may be suffixed by
@filename or even@filename:lineno
to identify a source-level scope within which
the identifiers should be searched. The func-
tion name may include wildcard characters*
and? to refer to all suitable matching names.
These may expand to a huge list of matches,
and therefore must be used with discretion. The
optional elementreturn may be added to re-
fer to the moment of each function’s return
rather than the defaultentry . Below are some
sample specifications for function probe points:

kernel.function("sys_read")

.return

A return probe on the named function.

module("ext3").function("*@fs/

ext3/inode.c")

Every function in the named source file,
which is part of ext3fs.

4.1.2 Events

Probe points may be defined on abstract events,
which are not associated with particular loca-
tions in the target program. Therefore, the
translator cannot expose much symbolic infor-
mation about the context of the probe hit to
the script. Examples of probes that would fall
in this category include probes that perform
sampling based on timers or performance mon-
itoring hardware, and probes that watch for
changes in a variable’s value.

2005 Linux Symposium • 55

SystemTap defines special events associated
with initialization and shutdown of the instru-
mentation. The special elementbegin trig-
gers a probe handler early during SystemTap
initialization, before normal probes are en-
abled. Similarly,end triggers a probe dur-
ing late shutdown, after all normal probes have
been disabled.

4.2 Language Elements

Function and probe handler bodies are writ-
ten using standard statement/expression syntax
that borrows heavily from awk and C. The Sys-
temTap language allows the C, C++, and awk
style comments. White space and comments
are treated as in C.

SystemTap identifiers have the same syntax as
C identifiers, except that$ is also a legal char-
acter. Identifiers are used to name variables and
functions. Identifiers that begin with$ are in-
terpreted as references to variables in the target
software, rather than to SystemTap script vari-
ables.

The language includes a small number of data
types, but no type declarations: a variable’s
type is inferred from its use. To support this, the
translator enforces consistent typing of func-
tion arguments and return values, array indexes
and values. Similarly, there are no implicit type
conversions between strings and numbers.

• Numbers are 64-bit signed integers. Liter-
als can be expressed in decimal, octal, or
hexadecimal, using C notation. Type suf-
fixes (e.g.,L or U) are not used.

• Strings. Literals are written as in C. Over-
all lengths are limited by the runtime sys-
tem.

• Associative arrays are as in awk. A given
array may be indexed by any consistent
combination of strings and numbers, and
may contain strings, numbers, or statisti-
cal objects.

• Statistics. These are special objects
that compute aggregations (statistical av-
erages, minima, histograms, etc.) over
numbers.

The language has traditionalif-then-else
statements and expressions of C and awk. The
language also allows structured control state-
ments such asfor andwhile loops. Unstruc-
tured control flow operations such as labels and
goto statements are not supported. The trans-
lator inserts runtime checks to bound the num-
ber of procedure calls and backward branches.

To support associative arrays, the SystemTap
language has iterator anddelete statements.
The iterator statement allows the programmer
to specify an operation to perform on all the el-
ements in the associative array. The delete op-
eration can remove one or all the elements in
the associative array. The associative arrays al-
low selection of an item by one or more keys.
The in operation allows the code to determine
whether an entry exists in the associative array.

The typical set of arithmetic, bit, assignment,
and unary operations in C are available in the
SystemTap language, but they operate on 64-
bit quantities. The assignment and comparison
operations are overloaded for strings.

The SystemTap statistic type allows script writ-
ers to keep track of the typical statistics such as
minimum, maximum, and average. The<<<
operator updates a variable storing statistics in-
formation as shown in the example below:

global avg(s)
probe kernel.syscall("read") {

56 • Locating System Problems Using Dynamic Instrumentation

process->s <<< $size
}
probe end {

trace (s)
}

SystemTap does not support type casts,
address-of operations, or following of arbitrary
pointers through structures. However, macro
operations will allow access to elements of a
particular structure.

4.3 Auxiliary functions

An auxiliary function in SystemTap has es-
sentially the same syntax and semantics as in
awk. Specifically, an auxiliary function defini-
tion consists of the keywordfunction , a for-
mal argument list and a brace-enclosed state-
ment block. SystemTap deduces the types of
the function and its arguments from the expres-
sions that refer to the function. An auxiliary
function must always return a value even if it is
ignored.

5 Tapsets

When diagnosing systemic problems, one is
faced with tracing various subsystems of the
operating system and applications. To facili-
tate such diagnosis, SystemTap includes a li-
brary of instrumentation modules for various
subsystems known astapsets. The list of avail-
able tapsets is published for use in end-user
scripts. There are two ways to create tapsets:
via the SystemTap scripting language and via
the C language.

5.1 Script tapsets

The simplest kind of tapset is one that uses
the SystemTap script language to define new

probes, auxiliary functions, and global vari-
ables, for invocation by an end-user script or
another tapset. One can use this mechanism
to define commonly useful auxiliary functions
like stp_print() for special purpose for-
matting of output data. This facility can also be
used to create global variables that can be ref-
erenced in the end user scripts as built-in func-
tions. In Figure 2 atgid_history global
variable is created that gives a history of the last
few scheduled tasks.

In addition, a script tapset can define aprobe
alias. Aliasing is a way of synthesizing a higher
level probe from a lower level one. The exam-
ple tapset shown in Figure 3 defines aliases for
theread system call, so that a SystemTap user
does not have to know the name of the corre-
sponding kernel function.

Aliasing consists of renaming a probe point,
and may include some script statements. These
statements are all executedbefore the oth-
ers that are within the user’s probe definition
(which referenced the alias), as if they were
simply transcribed there. This way, they can
prepare some useful local variables, or even
conditionally reject a probe hit using thenext
statement.

Aliases can also be used to define a new “event”
and supply some local variables for use by its
handlers as in Figure 4.

An end-user script that uses the probe alias in
Figure 4 may look like Figure 5.

5.2 C language tapsets

To allow kernel developers to work in a fami-
lar programming language, SystemTap sup-
ports a C interface for creating tapsets. A C
tapset is a set of data-collection functions for
a given subsystem. Data collection functions

2005 Linux Symposium • 57

global tgid_history # the last few tgids scheduled

global _histsize

probe begin {
_histsize = 10

}

probe kernel.function("context_switch") {
rotate array
for (i=_histsize-1; i>0; i--)

tgid_history [i] = tgid_history [i-1];
tgid_history [0] = $prev->tgid;

}

Figure 2: SystemTap script using global variable.

probe kernel.syscall.read = kernel.function("sys_read")
{ }

Figure 3: SystemTap script using probe alias.

probe kernel.resource.oom.nonroot =
kernel.statement("do_page_fault").label("out_of_memory") {

if ($tsk->uid == 0) next;

victim_tgid = $tsk->tgid;
victim_pid = $tsk->pid;
victim_uid = $tsk->uid;
victim_fault_addr = $address

}

Figure 4: SystemTap script for new out of memory event.

probe kernel.resource.oom.nonroot {
trace ("OOM for pid " . string (victim_pid))

}

Figure 5: SystemTap script using out of memory event.

58 • Locating System Problems Using Dynamic Instrumentation

in the tapset are called tapset functions. Tapset
functions export data using one or more vari-
ables. The C API requires a tapset writer to
register each probe point, corresponding data-
collection function, and the data exported by
the function. When an end-user script refers to
the data exported by the corresponding tapset
function in the action block, SystemTap calls
the associated tapset function in the probe han-
dler. The result is that local variables in the user
script are initialized with values from the tapset
function.

5.3 System call tapset

SystemTap provides tapsets for various subsys-
tems of the kernel; the system call tapset is an
example of one such tapset. As system calls are
the primary interface for applications to interact
with the kernel, understanding them is a power-
ful diagnostic tool. The system call tapset pro-
vides a probe handler for each system call en-
try and exit. A system call entry probe gives
the values of the arguments to the system call,
and the exit probe gives the return value of the
system call.

6 Safety

SystemTap is designed for safe use in produc-
tion systems. One implication is that it should
be extremely difficult, if not impossible, to dis-
able or crash a system through use or misuse
of SystemTap. Problems like infinite loops, di-
vision by zero, and illegal memory references
should lead to a graceful failure of a SystemTap
script without otherwise disrupting the moni-
tored system. At the same time, we’d like to
compile extensions to native machine code, to
benefit from the stability of the existing tool
chain, minimize new kernel code, and approach
native performance.

Our basic approach to safety is to design a safe
scripting language, with some safety properties
supported by runtime checks. Table 1 provides
some details of our basic approach. System-
Tap compiles the script file into native code and
links it with the SystemTap runtime library to
create a loadable kernel module. Version and
symbol name checks are applied byinsmod .
The elaborator generates instrumentation code
that gracefully terminates loops and recursion,
if they run beyond a configurable threshold. We
avoid privileged and illegal kernel instructions
by excluding constructs in the script language
for inlined assembler, and by using compiler
options used for building kernel modules.

SystemTap incorporates several additional de-
sign features that enhance safety. Explicit
dynamic memory allocation by scripts is not
allowed, and dynamic memory allocation by
the runtime is avoided. SystemTap can fre-
quently use explicitly synthesized frames in
static memory for local variables, avoiding us-
age of kernel stack. Language and runtime sys-
tems ensure that SystemTap-generated code for
probe handlers is strictly terminating and non-
blocking.

SystemTap safety requires controlling access to
kernel memory. Kernel code cannot be invoked
directly from a SystemTap script. SystemTap
language features make it impossible to express
kernel data writes or to store a pointer to ker-
nel data. Additionally, a modified trap handler
is used to safely handle invalid memory ref-
erences. SystemTap supports a “guru” mode
where certain of these constraints can be re-
moved (e.g., in a tapset), allowing a tradeoff
between safety and kernel debugging require-
ments.

6.1 Safety Enhancements

A number of options are planned that extend
the safety and flexibility of SystemTap to match

2005 Linux Symposium • 59

la
ng

ua
ge

de
si

gn

tr
an

sl
at

or

in
sm

od
ch

ec
ks

ru
nt

im
e

ch
ec

ks

m
em

or
y

po
rt

al

st
at

ic
va

lid
at

or

infinite loops x o o
recursion x o o
division by zero x o o
resource constraints x x
locking constraints x x
array bounds errors x x x o
invalid pointers o o o
heap memory bugs x o
illegal instructions x o
privileged instructions x o
memory r/w restrictions x x o o
memory execute restrictions x x o o
version alignment o x
end-to-end safety x x
safety policy specification facility x

Table 1: SystemTap safety mechanisms. An “x” indicates that an aspect of the implementation
(columns) is used to implement a particular safety feature (rows). An “o” indicates optional func-
tionality.

60 • Locating System Problems Using Dynamic Instrumentation

and exceed that of other systems. A memory
and code “portal” directs references to kernel
memory outside the loadable module through
a special-purpose interpeter or “portal.” This
provides a single point of control for related
safety issues, and facilitates a desireable sep-
aration of safety policy from mechanism. Triv-
ial policies would support “guru mode” (no re-
strictions) and default mode (read restrictions
to I/O memory, restricted write and code ac-
cess). Other simple policies expand access
incrementally, for example, allowing external
calls to an explicit list of kernel subroutines.
Eventually, the policy could be extended to sup-
port security goals such as secure non-root exe-
cution and restricting memory access based on
user credentials.

An optional static analyzer examines a dis-
assembled kernel module and confirms that
it satisfies certain safety properties. Simple
checks include disallowing privileged instruc-
tions, locking primitives and instructions that
are illegal in kernel mode. In the future, more
elaborate checks may be included to confirm
that loop counters, memory portals and other
safety features are used.

6.2 Comparision to Other Systems

Solaris DTrace includes a number of unusual
features intended to enhance the safety and se-
curity of the system. These features include
a very restricted scripting language and the
scripts being interpreted rather than compiled.

DTrace’s D language does not support proce-
dure declarations or a general purpose looping
construct. This avoids a number of safety is-
sues in scripts including infinite loops and infi-
nite recursion.

Because D scripts are interpreted rather than
executed directly, it is impossible for them to

include illegal or privileged instructions or to
invoke code outside of the DTrace execution
environment. The interpreter can also catch
invalid pointer dereferences, division by zero,
and other run-time errors.

SystemTap will support kernel debugging fea-
tures in guru mode that DTrace does not, in-
cluding the ability to write arbitrary locations
in kernel memory and the ability to invoke ar-
bitrary kernel subroutines.

Because the language infrastructure used by
SystemTap is common to all C programs, it
tends to be better tested and more robust than
the special-purpose interpreter used by DTrace.

The embedding of an interpreter in the Solaris
kernel represents significant additional kernel
functionality. This introduces an increased risk
of kernel bugs that could lead to security or re-
liability issues.

Dprobes and Dtrace have many safety features
in common. Both use an interpreted language.
Like SystemTap, both use a modified kernel
trap-handler to capture illegal memory refer-
ences. Like kprobes, dprobes is intended for
use primarily by kernel developers. Conse-
quently, it exposes the kprobes layer in such a
way that it is not crashproof. SystemTap seeks
to address these safety issues.

6.3 Security

It is important that SystemTap can be used
without significantly impacting the overall se-
curity of the system. Given that SystemTap is
only available to privileged users, our initial se-
curity concerns are that the system be crash-
proof by design, and that its implementation
is of sufficient quality and simplicity to protect
users from unintentional lapses. A specific con-
cern is the security of the communication layer;

2005 Linux Symposium • 61

that the kernel-to-user transport is secured from
non-privileged users.

Future versions of SystemTap may provide fea-
tures that support secure use of SystemTap by
non-privileged users. Specific features that
might be required include:

• Protection of kernel memory based on user
credentials.

• Protection of kernel-to-user transport
based on user credentials.

• Recognition of a restricted subset of the
SystemTap language that is permissible
for non-privileged users.

A security scheme based on a virtual machine
monitor such as Xen [3] might provide a sim-
pler and general solution to secure SystemTap
use by non-privileged users.

7 Example SystemTap Script

The SystemTap scripting language lends itself
to writing compact instrumentation. The fol-
lowing example demonstrates a simple script
to collect information. On SMP machines, the
interprocessor interrupt is an expensive oper-
ation. One can find how many interproces-
sor interrupts are performed on an SMP ma-
chine by examining theLOC: entry of/proc/
interrupts . However, this entry does not
give a complete picture of what is causing the
interprocessor interrupts.

A developer would like to know the process
(PID), the process name, and the backtrace to
get a better context of what is triggering the
interprocessor interrupts. Figure 6 shows the
SystemTap script used to accumulate that in-
formation into an associative array. Each time

smp_call_function is called, the appro-
priate associative array entry is incremented.
The $pid provides the process id number,
the $pname provides the name of the pro-
cess, andstack() the back trace in the ker-
nel. This data is recorded in an associative ar-
ray traces . When the data collection is over
and the instrumentation is removed, the “end
probe” prints out information.

Figure 7 shows the beginning of the data gen-
erated from a dual processor x86-64 machine
when a DVD has just been loaded on the ma-
chine. From the samples listed below, we see
that process 4010, hald, has caused a number of
interprocessor interrupts. With the stack back-
trace as part of the hash key, we can see that the
first entry has to do with the disk change in the
CDROM drive, and the second entry is caused
by sys_close .

8 Conclusions and Future Work

We have described current dynamic instrumen-
tation facilities in the Linux kernel and the need
for improvements. These motivate the Sys-
temTap architecture and salient features of its
scripting language. We described the tapset li-
brary and its importance in SystemTap. Safety
is a very important consideration of SystemTap
design and we described how safety considera-
tions impacted our SystemTap design. We pre-
sented an example of how SystemTap is used to
gather interesting data to diagnose a problem.
The Systemtap project is still in development.
In our continuing work, we plan to implement
tapset libraries for various kernel subsystems,
and expand SystemTap to trace user-level ac-
tivity.

62 • Locating System Problems Using Dynamic Instrumentation

global traces

probe kernel.function("smp_call_function") {
traces[$pid, $pname, stack()] += 1;

}

probe end {
print(traces);

}

Figure 6: SystemTap script to collect interprocessor interrupt information.

root# stp scf.stp
Press Control-C to stop.
All kprobes removed
traces[4010, hald, trace for 4010 (hald)
0xffffffff8011a551 : smp_call_function+0x1/0x70
0xffffffff80182c0c : invalidate_bdev+0x1c/0x40
0xffffffff8019bc48 : __invalidate_device+0x58/0x70
0xffffffff80188f89 : check_disk_change+0x39/0xa0
0xffffffff80133c90 : default_wake_function+0x0/0x10
0xffffffff802abeef : cdrom_open+0xa0f/0xa60
0xffffffff80133c90 : default_wake_function+0x0/0x10
0xffffffff80132650 : finish_task_switch+0x40/0x90
0xffffffff80346bb9 : thread_return+0x54/0x8b
0xffffffff801419cd : __mod_timer+0x13d/0x150
] = 18
traces[4010, hald, trace for 4010 (hald)
0xffffffff8011a551 : smp_call_function+0x1/0x70
0xffffffff80182c0c : invalidate_bdev+0x1c/0x40
0xffffffff8018856e : kill_bdev+0xe/0x30
0xffffffff801890d6 : blkdev_put+0x76/0x1c0
0xffffffff80181eb2 : __fput+0x72/0x160
0xffffffff801806de : filp_close+0x7e/0xa0
0xffffffff80180793 : sys_close+0x93/0xc0
0xffffffff8010e51a : system_call+0x7e/0x83
] = 27

...

Figure 7: Run of SMP call instrumentation.

2005 Linux Symposium • 63

9 Acknowledgements

We would like to express our thanks to Ananth
N. Mavinakayanahalli, Hien Q. Nguyen,
Prasanna S. Panchamukhi, and Thomas
Zanussi for their valuable contributions to the
project. The authors are indebted to Ulrich
Drepper and Roland McGrath for their help
and advice in the project. Thanks are in order
to Suparna Bhattacharya and Richard Moore
for sharing their knowledge of Kprobes and
Dprobes. We would also like to thank Rohit
Seth, Rusty Lynch, and Anil Keshavamurthy
for Linux kernel and Itanium expertise. Spe-
cial thanks to Doug Armstrong and Victoria
Gromova for their input on features for parallel
program analysis. Thanks to K. Sridharan
and Charles Spirakis for studying support of
common profiling tasks.

10 Trademarks and Disclaimer

This work represents the views of the authors and
does not necessarily represent the view of IBM, Red
Hat or Intel.

IBM is a registered trademark of International Busi-
ness Machines Corporation in the United States
and/or other countries.

Linux is a registered trademark of Linus Torvalds.

Solaris is a registered trademark of Sun Microsys-
tems, Inc.

Red Hat is a registered trademark of Red Hat, Inc.

Other company, product, and service names may be
trademarks or service marks of others.

References

[1] Linux kernel state tracer, May 2005.
http:
//lkst.sourceforge.net/ .

[2] Systemtap, May 2005.http:
//sourceware.org/systemtap/ .

[3] The xen virtual machine monitor, May
2005.http://www.cl.cam.ac.
uk/Research/SRG/netos/xen/ .

[4] Alfred V. Aho, Brian K. Kernighan, and
Peter J. Weinberger.The AWK
Programming Language.
Addison-Wesley, 1988.

[5] Bryan M. Cantrill, Michael W. Shapiro,
and Adam H. Levinthal. Dynamic
Instrumentation of Production Systems.
In Proceedings of the 2004 USENIX
Technical Conference, pages 15–28, June
2004.

[6] Richard J. Moore. A universal dynamic
trace for Linux and other operating
systems. InFREENIX, 2001.

[7] Prasanna S. Panchamukhi. Kernel
debugging with kprobes: Insert printk’s
into linux kernel on the fly, Aug 2004.
http://www-106.ibm.com/
developerworks/library/
l-kprobes.html?ca=dgr-lnx%
w07Kprobe .

[8] Sun Microsystems, Santa Clara,
California. Solaris Dynamic Tracing
Guide, 2004.

[9] Ariel Tamches and Barton P. Miller.
Fine-grained dynamic instrumentation of
commodity operating system kernels. In
Proceedings of the Third Symposium on
Operating Systems Design and
Implementation, 1999.

64 • Locating System Problems Using Dynamic Instrumentation

[10] Karim Yaghmour and Michel R.
Dagenais. Measuring and characterizing
system behavior using kernel-level event
logging. InIn Proceedings of the 2000
USENIX Annual Technical Conference,
2000.

Xen 3.0 and the Art of Virtualization

Ian Pratt, Keir Fraser, Steven Hand, Christian Limpach, Andrew Warfield
University of Cambridge

{first.last}@cl.cam.ac.uk

Dan Magenheimer
Hewlett-Packard Laboratories

{first.last}@hp.com

Jun Nakajima, Asit Mallick
Intel Open Source Technology Center

{first.last}@intel.com

Abstract

The Xen Virtual Machine Monitor will soon be
undergoing its third major release, and is ma-
turing into a stable, secure, and full-featured
virtualization solution for Linux and other op-
erating systems. Xen has attracted consider-
able development interest over the past year,
and consequently the 3.0 release includes many
exciting new features. This paper provides an
overview of the major new features, includ-
ing VM relocation, device driver isolation, sup-
port for unmodified operating systems, and new
hardware support for both x86/64 and IA-64
processors.

1 VM Relocation

While many server applications may be very
long-lived, the hardware that it runs on will in-
variably need service from time to time. A ma-
jor benefit of virtualization is the ability to relo-
cate arunningoperating system instance from
one physical host to another. Relocation allows
a physical host to be unloaded so that hardware
may be serviced, it allows coarse-grained load-
balancing in a cluster environment, and it al-
lows servers to move closer to the users that

they serve. Bypre-copyingVM state to the
destination host while it is still running, relo-
cation down-time can be made very small—
experiments relocating a running Quake server
have achieved repeatable relocation times with
outages of less than 100ms.

In the following subsections we describe some
of the implementation details of our pre-
copying approach. We describe how we use dy-
namic network rate-limiting to effectively bal-
ance network contention against OS downtime.
We then proceed to describe how we ameliorate
the effects of rapid page dirtying, and show re-
sults for the relocation of a running Quake 3
server.

1.1 Managing Relocation

Relocation is performed by daemons running in
the management VMs of the source and desti-
nation hosts. These are responsible for creating
a new VM on the destination machine, and co-
ordinating transfer of live system state over the
network.

When transferring the memory image of the
still-running OS, the control software performs

• 65 •

66 • Xen 3.0 and the Art of Virtualization

roundsof copying in which it performs a com-
plete scan of the VM’s memory pages. Al-
though in the first round all pages are trans-
ferred to the destination machine, in subsequent
rounds this copying is restricted to pages that
were dirtied during the previous round, as indi-
cated by adirty bitmapthat is copied from Xen
at the start of each round.

During normal operation the page tables man-
aged by each guest OS are the ones that are
walked by the processor’s MMU to fill the
TLB. This is possible because guest OSes are
exposed to real physical addresses and so the
page tables they create do not need to be
mapped to physical addresses by Xen.

To log pages that are dirtied, Xen inserts
shadow page tablesunderneath the running OS.
The shadow tables are populated on demand
by translating sections of the guest page tables.
Translation is very simple for dirty logging: all
page-table entries (PTEs) are initially read-only
mappings in the shadow tables, regardless of
what is permitted by the guest tables. If the
guest tries to modify a page of memory, the re-
sulting page fault is trapped by Xen. If write
access is permitted by the relevant guest PTE
then this permission is extended to the shadow
PTE. At the same time, we set the appropriate
bit in the VM’s dirty bitmap.

When the bitmap is copied to the control soft-
ware at the start of each pre-copying round,
Xen’s bitmap is cleared and the shadow page
tables are destroyed and recreated as the relo-
catee OS continues to run. This causes all write
permissions to be lost: all pages that are subse-
quently updated are then added to the now-clear
dirty bitmap.

When it is determined that the pre-copy phase
is no longer beneficial, the OS is sent a con-
trol message requesting that it suspend itself in
a state suitable for relocation. This causes the

OS to prepare for resumption on the destina-
tion machine; Xen informs the control software
once the OS has done this. The dirty bitmap is
scanned one last time for remaining inconsis-
tent memory pages, and these are transferred to
the destination together with the VM’s check-
pointed CPU-register state.

Once this final information is received at the
destination, the VM state on the source ma-
chine can safely be discarded. Control software
on the destination machine scans the memory
map and rewrites the guest’s page tables to re-
flect the addresses of the memory pages that it
has been allocated. Execution is then resumed
by starting the new VM at the point that the old
VM checkpointed itself. The OS then restarts
its virtual device drivers and updates its notion
of wallclock time.

1.2 Dynamic Rate-Limiting

It is not always appropriate to select a single
network bandwidth limit for relocation traffic.
Although a low limit avoids impacting the per-
formance of running services, analysis showed
that we must eventually pay in the form of an
extended downtime because the hottest pages
in the writable working set are not amenable to
pre-copy relocation. The downtime can be re-
duced by increasing the bandwidth limit, albeit
at the cost of additional network contention.

Our solution to this impasse is to dynami-
cally adapt the bandwidth limit during each
pre-copying round. The administrator selects
a minimum and a maximum bandwidth limit.
The first pre-copy round transfers pages at the
minimum bandwidth. Each subsequent round
counts the number of pages dirtied in the pre-
vious round, and divides this by the duration
of the previous round to calculate thedirtying
rate. The bandwidth limit for the next round
is then determined by adding a constant incre-
ment to the previous round’s dirtying rate—we

2005 Linux Symposium • 67

Figure 1: Results of relocating a running Quake 3 server VM.

have empirically determined that 50Mbit/sec
is a suitable value. We terminate pre-copying
when the calculated rate is greater than the ad-
ministrator’s chosen maximum, or when less
than 256KB remains to be transferred. During
the final stop-and-copy phase we minimize ser-
vice downtime by transferring memory at the
maximum allowable rate.

Using this adaptive scheme results in the band-
width usage remaining low during the transfer
of the majority of the pages, increasing only at
the end of the relocation to transfer the hottest
pages in the WWS. This effectively balances
short downtime with low average network con-
tention and CPU usage.

1.3 Rapid Page Dirtying

Analysis shows that every OS workload has
some set of pages that are updated extremely
frequently, and which are therefore not good
candidates for pre-copy relocation even when
using all available network bandwidth. We
observed that rapidly-modified pages are very
likely to be dirtied again by the time we attempt
to transfer them in any particular pre-copying
round. We therefore periodically ‘peek’ at the

current round’s dirty bitmap and transfer only
those pages dirtied in the previous round that
have not been dirtied again at the time we scan
them.

We further observed that page dirtying is often
physicallyclustered—if a page is dirtied then
it is disproportionally likely that a close neigh-
bour will be dirtied soon after. This increases
the likelihood that, if our peeking does not de-
tect one page in a cluster, it will detect none.
To avoid this unfortunate behaviour we scan
the VM’s physical memory space in a pseudo-
random order.

1.4 Low-Latency Server: Quake 3

A representative application for hosting envi-
ronments is a multiplayer on-line game server.
To determine the effectiveness of our approach
in this case we configured a virtual machine
with 64MB of memory running a Quake 3
server. Six players joined the game and started
to play within a shared arena, at which point
we initiated a relocation to another machine. A
detailed analysis of this relocation is shown in
Figure 1.

68 • Xen 3.0 and the Art of Virtualization

Elapsed time (secs)
0 10 20 30 40 50 60 70

P
a
ck

e
t
fli

g
h
t
tim

e
 (

se
cs

)

0

0.02

0.04

0.06

0.08

0.1

0.12

Packet interarrival time during Quake 3 migration

M
ig

ra
tio

n
 1

d
o
w

n
tim

e
:
5
0
m

s

M
ig

ra
tio

n
 2

d
o
w

n
tim

e
:
4
8
m

s

Figure 2: Effect on packet response time of relocating a running Quake 3 server VM.

We were able to perform the live relocation
with a total downtime of 60ms. To determine
the effect of relocation on the live players, we
performed an additional experiment in which
we relocated the running Quake 3 server twice
and measured the inter-arrival time of packets
received by clients. The results are shown in
Figure 2. As can be seen, from the client point
of view relocation manifests itself as a transient
increase in response time of 50ms. In neither
case was this perceptible to the players.

2 Device Virtualization

Xen’s strong isolation guarantees have proved
very useful in solving two major problems with
device drivers: driver availability and reliabil-
ity. Xen is capable of allowing individual vir-
tual machines to have direct access to specific
pieces of hardware. We have taken the ap-
proach of using a single virtual machine to run
the physical driver for a device (such as a disk
or network interface) and then export a virtu-
alized version of the device to all of the other
guestOSes that are running on the host. This
approach means that a device need only be
supported on a single platform (Linux, for in-
stance), and may be available to all the OSes

that Xen runs. Each guest implements an ide-
alized disk and network device, which are ca-
pable of connecting to the hardware specific
driver in an isolateddevice domain. This ap-
proach has the added benefit of making drivers,
which are a major source of bugs in operating
systems, more reliable. By running a driver in
its own VM , driver crashes are limited to the
driver itself—other applications may continue
to run. Device domains can even be rebooted
to recover failed drivers, and result in down-
times on the order of hundreds of miliseconds
in cases where the entire machine would previ-
ously have crashed completely.

This approach will no doubt sound familiar
to anyone who has worked with microkernels
in the past—Xen’s isolation achieves a similar
fragmentation ofOS subsystems. One major
difference between Xen and historical work on
microkernels is that we have forgone the archi-
tecturally pure fixation on IPC mechanisms in
favour of a generalized, shared-memory ring-
based communication primitive that is able to
achieve very high throughputs by batching re-
quests.

To achieve driver isolation, we restrict ac-
cess privileges to device I/O registers (whether
memory-mapped or accessed via explicit I/O

2005 Linux Symposium • 69

ports) and interrupt lines. Furthermore, where
it is possible within the constraints of existing
hardware, we protect against device misbehav-
ior by isolating device-to-host interactions. Fi-
nally, we virtualize the PC’s hardwareconfig-
uration space, restricting each driver’s view of
the system so that it cannot see resources that it
cannot access.

2.1 I/O Registers

Xen ensures memory isolation amongst do-
mains by checking the validity of address-space
updates. Access to a memory-mapped hard-
ware device is permitted by extending these
checks to allow access to non-RAM page
frames that contain memory-mapped registers
belonging to the device. Page-level protection
is sufficient to provide isolation because reg-
ister blocks belonging to different devices are
conventionally aligned on no less than a page
boundary.

In addition to memory-mapped I/O, many pro-
cessor families provide an explicit I/O-access
primitive. For example, the x86 architecture
provides a 16-bit I/O port space to which access
may be restricted on a per-port basis, as speci-
fied by an access bitmap that is interpreted by
the processor on each port-access attempt. Xen
uses this hardware protection by rewriting the
port-access bitmap when context-switching be-
tween domains.

2.2 Interrupts

Whenever a device’s interrupt line is asserted
it triggers execution of a stub routine within
Xen rather than causing immediate entry into
the domain that is managing that device. In
this way Xen retains tight control of the sys-
tem by schedulingexecution of the domain’s

interrupt service routine (ISR). Taking the in-
terrupt in Xen also allows a timely acknowl-
edgement response to the interrupt controller
(which is always managed by Xen) and allows
the necessary address-space switch if a differ-
ent domain is currently executing. When the
correct domain is scheduled it is delivered an
asynchronousevent notificationwhich causes
execution of the appropriate ISR.

Xen notifies each domain of asynchronous
events, including hardware interrupts, via a
general-purpose mechanism calledevent chan-
nels. Each domain can be allocated up to 1024
event channels, each of which comprises a pair
of bit flags in a memory page shared between
the domain and Xen. The first flag is used by
Xen to signal that an event ispending. When an
event becomes pending Xen schedules an asyn-
chronous upcall into the domain; if the domain
is blocked then it is moved to the run queue.
Unnecessary upcalls are avoided by triggering
a notification only when an event first becomes
pending: further settings of the flag are then ig-
nored until after it is cleared by the domain.

The second event-channel flag is used by the
domain to mask the event. No notification
is triggered when a masked event becomes
pending: no asynchronous upcall occurs and
a blocked domain is not woken. By setting
the mask before clearing the pending flag, a
domain can prevent unnecessary upcalls for
partially-handled event sources.

To avoid unbounded reentrancy, a level-
triggered interrupt line must be masked at the
interrupt controller until all relevant devices
have been serviced. After handling an event re-
lating to a level-triggered interrupt, the domain
must calldown into Xen to unmask the inter-
rupt line. However, if an interrupt line is not
shared by multiple devices then Xen can usu-
ally safely reconfigure it as edge-triggering, ob-
viating the need for unmask downcalls.

70 • Xen 3.0 and the Art of Virtualization

When an interrupt line is shared by multiple
hardware devices, Xen must delay unmasking
the interrupt until a downcall is received from
every domain that is managing one of the de-
vices. Xen cannot guarantee perfect isolation
of a domain that is allocated a shared interrupt:
if the domain never unmasks the interrupt then
other domains can be prevented from receiv-
ing device notifications. However, shared in-
terrupts are rare in server-class systems which
typically contain IRQ-steering and interrupt-
controller components with enough pins for ev-
ery device. The problem of sharing is set to
disappear completely with the introduction of
message-based interrupts as part of PCI Ex-
press [1].

2.3 Device-to-Host Interactions

As well as preventing a device driver from cir-
cumventing its isolated environment, we must
also protect against possible misbehavior of the
hardware itself, whether due to inherent design
flaws or misconfiguration by the driver soft-
ware. The two general types of device-to-host
interaction that we must consider are assertion
of interrupt lines, and accesses to host memory
space.

Protecting against arbitrary interrupt assertion
is not a significant issue because, except for
shared interrupt lines, each hardware device has
its own separately-wired connection to the in-
terrupt controller. Thus it is physically impossi-
ble for a device to assert any interrupt line other
than the one that is assigned to it. Furthermore,
Xen retains full control over configuration of
the interrupt controller and so can guard against
problems such as ‘IRQ storms’ that could be
caused by repeated cycling of a device’s inter-
rupt line.

The main ‘protection gap’ for devices, then, is
that they may attempt to access arbitrary ranges

of host memory. For example, although a de-
vice driver is prevented from using the CPU
to write to a particular page of system mem-
ory (perhaps because the page does not belong
to the driver), it may instead program its hard-
ware device to perform a DMA to the page.
Unfortunately there is no good method for pro-
tecting against this problem with current hard-
ware as it is infeasible for Xen to validate the
programming of DMA-related device registers.
Not only would this require intimate knowl-
edge of every device’s DMA engine, it also
would not protect against bugs in the hardware
itself: buggy hardware would still be able to ac-
cess arbitrary system memory.

A full implementation of this aspect of our de-
sign requires integration of an IOMMU into
the PC chipset—a feature that is expected to
be included in commodity chipsets in the very
near future. Similar to the processor’s MMU,
this translates the addresses requested by a de-
vice into valid host addresses. Inappropriate
host addresses are not accessible to the de-
vice because no mapping is configured in the
IOMMU. In our design, Xen would be respon-
sible for configuring the IOMMU in response
to requests from domains. The required val-
idation checks are identical to those required
for the processor’s MMU; for example, to en-
sure that the requesting domain owns the page
frame, and that it is safe to permit arbitrary
modification of its contents.

2.4 Hardware Configuration

The PCI standard defines a genericconfigu-
ration spacethrough which PC hardware de-
vices are detected and configured. Xen restricts
each domain’s access to this space so that it can
read and write registers belonging only to a de-
vice that it owns. This serves a dual purpose:
not only does it prevent cross-configuration of
other domains’ devices, but it also restricts the

2005 Linux Symposium • 71

domain’s view so that a hardware probe detects
only devices that it is permitted to access.

The method of access to the configuration
space is system-dependent, and the most com-
mon methods are potentially unsafe (either
protected-mode BIOS calls, or a small I/O-
port ‘window’ that is shared amongst all device
spaces). Domains are therefore not permitted
direct access to the configuration space, but are
forced to use a virtualized interface provided by
Xen. This has the advantage that Xen can per-
form arbitrary validation and translation of ac-
cess requests. For example, Xen disallows any
attempt to change the base address of an I/O-
register block, as the new location may conflict
with other devices.

2.5 Device Channels

Guest OSs access devices viadevice channel
links with isolated driver domains (IDDs). The
channel is a point-to-point communication link
through which each party can asynchronously
send messages to the other. Channels are estab-
lished by using a privilegeddevice managerto
introduce an IDD to a guest OS, and vice versa.
To facilitate this, the device manager automati-
cally establishes an initial control channel with
each domain that it creates. Figure 3 shows a
guest OS requesting a data transfer through a
device channel. The individual steps involved
are discussed later in this section.

Xen itself has no concrete notion of a control
or device channel. Messages are communi-
cated via shared memory pages that are allo-
cated by the guest OS but are simultaneously
mapped into the address space of the IDD or de-
vice manager. For this purpose, Xen permits re-
strictedsharingof memory pages between do-
mains.

The sharing mechanism provided by Xen dif-
fers from traditional application-level shared

Figure 3: Using device channel to request a
data transfer.

memory in two key respects: shared mappings
are asymmetricand transitory. Each page of
memory is owned by at most one domain at any
time and, with the assistance of Xen and the
device manager, that owner may force reclama-
tion of mappings from within other misbehav-
ing domains.

To add a foreign mapping to its address space,
a domain must present a validgrant refer-
ence to Xen in lieu of the page number. A
grant reference comprises the identity of the
domain that is granting mapping permission,
and an index into that domain’s privategrant
table. This table contains tuples of the form
(grant,D,P,R,U) which permit domainD to
map pageP into its address space; asserting
the boolean flagR restrictsD to read-only map-
pings. The flagU is written by Xen to indicate
whetherD currently mapsP (i.e., whether the
grant tuple isin use).

When Xen is presented with a grant reference
(A,G) by a domainB, it first searches for in-
dexG in domainA’s active grant table(AGT),
a table only accessible by Xen. If no match is
found, Xen reads the appropriate tuple from do-
main A’s grant table and checks thatT=grant

72 • Xen 3.0 and the Art of Virtualization

andD=B, and thatR=false if B is requesting a
writable mapping. Only if the validation checks
are successful will Xen copy the tuple into the
AGT and mark the grant tuple as in use.

Xen tracks grant references by associating a us-
age count with each AGT entry. When a foreign
mapping is created with reference to an existing
AGT entry, Xen increments its count. The grant
reference cannot be reallocated or reused by the
granting domain until the foreign domain de-
stroys all mappings that were created with ref-
erence to it.

Although it is clear that this mechanism allows
strict checking of foreign mappings when they
are created, it is less obvious how these map-
pings might be revoked. For example, if a
faulty IDD stops responding to service requests
then guest OSs could end up owning unusable
memory pages. We handle the possibility of
driver failure by taking a deadline-based ap-
proach: if a guest observes that a grant table
entry is still marked as in use when it deter-
mines that it ought to have been relinquished
(e.g., because it requested that the device chan-
nel should be destroyed), then it signals a po-
tential domain failure to the device manager.

The device manager checks whether the speci-
fied grant reference exists in the notifying do-
main’s AGT and, if so, sets a deadline by
which the suspect domain must relinquish the
stale mappings. If a registered deadline passes
but stale mappings still exist then Xen notifies
the device manager. At this point the device
manager may choose to destroy and restart the
driver, thereby forcibly reclaiming the foreign
mappings.

2.6 Descriptor Rings

I/O descriptor rings are used for asynchronous
transfers between a guest OS and an IDD. Ring

updates are based around two pairs of producer-
consumer indexes: the guest OS places service
requests onto the ring, advancing a request-
producer index, while the IDD removes these
requests for handling, advancing an associated
request-consumer index. Responses are queued
onto the same ring as requests, albeit with the
IDD as producer and the guest OS as consumer.
A unique identifier on each request/response al-
lows reordering if the IDD so desires.

The guest OS and IDD use a sharedinter-
domain event channel to send asynchronous
notifications of queued descriptors. An inter-
domain event channel is similar to the interrupt-
attached channels described in Section 2.2. The
main differences are that notifications are trig-
gered by the domain attached to the opposite
end of the channel (rather than Xen), and that
the channel isbidirectional: each end may in-
dependently notify or mask the other.

We decouple the production of requests or re-
sponses on a descriptor ring from the notifica-
tion of the other party. For example, in the case
of requests, a guest may enqueue multiple en-
tries before notifying the IDD; in the case of
responses, a guest can defer delivery of a noti-
fication event by specifying a threshold number
of responses. This allows each domain to in-
dependently balance its latency and throughput
requirements.

2.7 Data Transfer

Although storing I/O data directly within ring
descriptors is a suitable approach for low-
bandwidth devices, it does not scale to high-
performance devices with DMA capabilities.
When communicating with this class of de-
vice, data buffers are instead allocated out-of-
band by the guest OS and indirectly referenced
within I/O descriptors.

2005 Linux Symposium • 73

When programming a DMA transfer directly to
or from a hardware device, the IDD must first
pin the data buffer. We enforce driver isolation
by requiring the guest OS to pass a grant ref-
erence in lieu of the buffer address: the IDD
specifies this grant reference when pinning the
buffer. Xen applies the same validation rules to
pin requests as it does for address-space map-
pings. These include ensuring that the mem-
ory page belongs to the correct domain, and
that it isn’t attempting to circumvent memory-
management checks (for example, by request-
ing a device transfer directly into its page ta-
bles).

Returning to the example in Figure 3, the
guest’s data-transfer request includes a grant
referenceGR for a buffer pageP2. The request
is dequeued by the IDD which sends a pin re-
quest, incorporating GR, to Xen. Xen reads the
appropriate tuple from the guest’s grant table,
checks thatP2 belongs to the guest, and copies
the tuple into the AGT. The IDD receives the
address ofP2 in the pin response, and then pro-
grams the device’s DMA engine.

On systems with protection support in the
chipset (Section 2.3), pinning would trigger al-
location of an entry in the IOMMU. This is
the only modification required to enforce safe
DMA. Moreover, this modification affects only
Xen: the IDDs are unaware of the presence of
an IOMMU (in either case pin requests return
a bus address through which the device can di-
rectly access the guest buffer).

2.8 Device Sharing

Since Xen can simultaneously host many guest
OSs it is essential to consider issues arising
from device sharing. The control mechanisms
for managing device channels naturally sup-
port multiple channels to the same IDD. We

describe below how our block-device and net-
work IDDs support multiplexing of service re-
quests from different clients.

Within our block-device driver we service
batchesof requests from competing guests in
a simple round-robin fashion; these are then
passed to a standard elevator scheduler be-
fore reaching the disc controller. This bal-
ances good throughput with reasonably fair ac-
cess. We take a similar approach for network
transmission, where we implement a credit-
based scheduler allowing each device channel
to be allocated a bandwidth share of the form
x bytes everyy microseconds. When choosing
a packet to queue for transmission, we round-
robin schedule amongst all the channels that
have sufficient credit.

A shared high-performance network-receive
path requires careful design because, without
demultiplexing packets in hardware [2], it is not
possible to DMA directly into a guest-supplied
buffer. Instead of copying the packet into a
guest buffer after performing demultiplexing,
we insteadexchange ownershipof the page
containing the packet with an unused page pro-
vided by the guest OS. This avoids copying but
requires the IDD to queue page-sized buffers
at the network interface. When a packet is
received, the IDD immediately checks its de-
multiplexing rules to determine the destination
channel—if the guest has no pages queued to
receive the packet, it is dropped.

3 Supporting Unmodified OSes

Xen’s original goal was to provide fast virtu-
alization, which was achieved by ‘paravirtual-
izing’ guest OSes. The downside of paravirtu-
alization is that it requires modification of the
guest OS source code—an approach which is
untenable for closed-source operating systems.

74 • Xen 3.0 and the Art of Virtualization

The alternative, full virtualization of the hard-
ware platform, has traditionally been very diffi-
cult on the x86 processor architecture. How-
ever, new processor extensions promised by
AMD and Intel provide hardware assistance
which makes full virtualization much easier to
provide.

Preliminary support for Intel Virtualization
Technology for x86 processors (VT-x) is al-
ready checked into the Xen repository. This
provides a ‘virtual processor’ abstraction to the
guest OS which, for example, can transparently
notify Xen of any attempt to execute instruc-
tions that would modify privileged processor
state. While these hardware extensions make
transparent virtualization easier, Xen still bears
responsibility for device management and en-
forcing isolation of shared resources such as
CPU time and memory.

3.1 VT-x architecture overview

VT-x augments the x86 architecture with two
new forms of CPU operation: VMX root opera-
tion and VMX non-root operation. Xen runs in
VMX root operation, while guests run in VMX
non-root operation. Both forms of operation
support all four privilege levels (rings 0 through
3), allowing a guest OS to appear to run at its
usual ‘most privileged’ level. VMX root oper-
ation is similar to x86 without VT-x. Software
running in VMX non-root operation is depriv-
ileged in certain ways, regardless of privilege
level.

VT-x defines two new transitions: aVM en-
try that transitions from Xen root operation to
guest non-root operation, and aVM exitwhich
does the opposite transition. Both VM entries
and VM exits load CR3 (the base address of
the page-table hierarchy) allowing Xen and the
guest to run in different address spaces. VT-
x also defines a virtual-machine control struc-

ture (VMCS) that manages VM entries and ex-
its and defines processor behavior during non-
root execution.

Processor behavior changes substantially in
VMX non-root operation. Most importantly,
many instructions and events cause VM exits.
Some instructions cannot be executed in VMX
non-root operation because they cause VM
exits unconditionally; these include CPUID,
MOV from CR3, RDMSR, and WRMSR.
Other instructions, interrupts, and exceptions
can be configured to cause VM exits condition-
ally, using VM-execution control fields in the
VMCS.

VM entry loads processor state from the guest-
state area of the VMCS. Xen can optionally
configure VM entry to inject an interrupt or ex-
ception. The CPU effects this injection using
the guest IDT, just as if the injected event had
occurred immediately after VM entry. This fea-
ture removes the need for Xen to emulate de-
livery of these events. VM exits save processor
state into the guest-state area and load proces-
sor state from the host-state area. All VM exits
use a common entry point into Xen. To sim-
plify the design of Xen, every VM exit saves
into the VMCS detailed information specifying
the reason for the exit; many exits also record
an exit qualification, which provides further de-
tails.

3.2 VT-x Support in Xen

The three major components for adding support
of VT-x and running unmodified OS in Xen are:

1. Extensions to the Xen hypervisor

2. Device models that emulate the PC plat-
form

3. Administrator control panel

2005 Linux Symposium • 75

The hypervisor extensions involve adding sup-
port for the specific hardware features and in-
struction opcodes added by VT-x, and exten-
sions to the user-space control tools for build-
ing and controlling fully-virtualized guests.
Device models provide emulation of the PC
platform devices for a VMX domain. The
software models emulate all the hardware-level
programming interfaces that a normal device
driver uses to perform I/O operation, and sub-
mit requests to a physical device on the VMX
domain’s behalf.

QEMU and Bochs are two open source PC plat-
form emulators that provided most of the func-
tionality we needed for I/O emulation for VMX
domains. Our basic design has been to run the
device models in domain 0 user space and run
one process for each VMX domain. We needed
to remove all CPU emulation code from these
emulators and modify the code that emulated
physical memory (RAM). Normally, they allo-
cate a large array to emulate the physical mem-
ory. We modified the code to map all the phys-
ical memory allocated to the VMX domain.

An example of I/O request handling from VMX
guest is as follows:

1. VM exit due to an I/O access.

2. Xen decodes the instruction.

3. Xen constructs an I/O request describing
the event.

4. Xen sends the request to the device-model
process in domain 0.

5. When reading from a device register, the
VMX domain is blocked until a response
is received from the device model.

4 New Architectures

Xen was originally designed and implemented
to support the x86 architecture. As interest in
Xen has increased, several organisations have
expressed interest in using Xen as a common
hypervisor for other hardware platforms. The
last year has seen fervent development of ar-
chitectural support for both x86/64 and IA-64.

In addition to x86/64 and IA-64, ports of Xen
are underway to the IBM Power platform and
to both of the upcoming fully virtualized ver-
sions of x86, Intel’s VT (described in the pre-
vious section) and AMD’s Pacifica/SVM. Our
experience with IA-64 supports our belief that
Xen will successfully accommodate these new
architectures and any others that come along in
the future.

4.1 x86/64

When extending Xen to support the x86/64 ar-
chitecure, we kept in mind that the platform
is largely identical to x86/32, differing only in
some of the details of the processor architec-
ture. For example, processor registers are ex-
tended to 64 bits and the page-table format is
extended to support the larger address space.
Fortunately, the hardware platfrom is largely
identical: for example, sharing the same I/O
bus and chipset implementations.

This led us to implement x86/64 support as
a sub-architecture of the existing x86 target.
Large swathes of code are shared between sub-
architectures, with the main differences being
in assembly-code stubs and page-table manage-
ment.

From a guest perspective, the most interest-
ing change presented by x86/64 is the modi-
fied protection model. x86/64 provides very
limited segment-level protection which makes

76 • Xen 3.0 and the Art of Virtualization

it impossible to protect the hypervisor, running
in ring 0, from a guest kernel running in ring 1.
This architectural change necessitates running
both the guest kernel and applications in ring 3,
and raises the problem of protecting one from
the other.

The solution is to run the guest kernel in a dif-
ferent address space (i.e., on different page ta-
bles) from its applications. When forking a
new process, the guest kernel creates two new
page tables: one that is used in application
context, and the other in kernel context. The
kernel page table contain all the same map-
pings as the application page table but also in-
clude a mapping of the kernel address space.
All transitions between application and guest-
kernel contexts must pass via Xen, which au-
tomatically switches between the two page ta-
bles.

4.2 IA-64

As of this writing, Xen/ia64 is between its al-
pha release and beta release. All basic hy-
pervisor capability is present: Domain 0 runs
solidly as a ‘demoted’ guest OS, utilizing all
devices while booting to a full graphical con-
sole and executing all Linux/ia64 applications
unchanged. Multiple guest domains can be
launched, but virtual I/O functionality is not
finished so any unprivileged domain boots to
the point where init fails to find a root disk, then
panics and reboots in an infinite cycle. SMP
support is not yet present, either in the hypervi-
sor itself or in the guest.

Full functionality in Xen/ia64 is expected later
this year, but the port is sufficiently complete to
illustrate some similarities and differences that
establish credibility that Xen will prove widely
portable:

1. Hardware-walked page tables must be

carefully managed in Xen/x86 and, in-
deed, handling page tables is one of the
most complex parts of Xen, requiring a
fair amount of code in the hypervisor and
non-trivial changes in the paravirtualiza-
tion of guests. On ia64, hardware page-
table walking is still necessary for per-
formance, but can be much more easily
diverted to hypervisor-managed page ta-
bles. The difference is completely hidden
from common code and implemented in
the arch-specific layer.

2. Like the x86 architecture, ia64 is not
fully virtualizable—certain instructions
have different results when executed at
different privilege levels. Both Xen archi-
tectures ‘demote’ the guest OS and pro-
vide an interface to handle these privilege-
sensitive operations.

3. While the x86 has a small state vector, the
ia64 architecture has well over 500 regis-
ters and two stacks that must be carefully
managed for each thread. Linux solves
this elegantly with multiple state staging
areas and lazy save/restore to optimize
kernel entry and exit and thread switching.
Recognizing the similarity between Linux
threads and Xen domains allows most of
the Linux code to be directly reusable.

4. The page size on x86 is 4kB. Modern ver-
sions of x86 chips support a larger page
size, but its use is limited. IA-64 sup-
ports nine different page sizes and a guest
OS may use all of them simultaneously.
Thus, Xen/ia64 must manage this addi-
tional complexity. Again, this is safely
hidden in Xen through asm macros and
arch-specific modules.

2005 Linux Symposium • 77

5 Conclusion

In this paper, we have presented a brief
overview of the major new features in Xen 3.0
including VM relocation, device driver isola-
tion, support for unmodified operating systems,
and new hardware support for both x86/64 and
IA-64 processors. Xen is quickly maturing into
an enterprise-class VMM and is currently be-
ing used in production environments around the
globe.

References

[1] PCI Express base specification 1.0a.
PCI-SIG, 2002.

[2] I. Pratt and K. Fraser. Arsenic: A
User-Accessible Gigabit Ethernet
Interface. InProceedings of IEEE
INFOCOM-01, pages 67–76, April 2001.

78 • Xen 3.0 and the Art of Virtualization

Examining Linux 2.6 Page-Cache Performance

Sonny Rao, Dominique Heger, Steven Pratt
IBM Corporation

{sonnyrao, dheger, slpratt}@us.ibm.com

Abstract

Given the current trends towards ubiquitous
64-bit server/desktop computing with large
amounts of cheap system memory, the perfor-
mance and structure of the LinuxR© page-cache
will undoubtedly become more important in the
future. An empirical and analytical examina-
tion of performance will be valuable in guiding
future development.

The current 2.6 radix-tree based design repre-
sents a huge leap forward from the old global
hash-table design, but there may be some issues
with the current radix-tree structure itself.

The main goal is to understand performance
of the current implementation, examine per-
formance with respect to other potential data-
structures, and look at ways to improve concur-
rency.

1 The Radix-Tree based Page
Cache in Linux 2.6

The Linux 2.6 page cache is basically a collec-
tion of pages that normally belong to files. The
pages are kept in memory for performance rea-
sons. As on other UNIXR© operating systems,
the page cache may take up the majority of the
available memory. Whenever a thread reads

from or writes to a file, takes a page fault, or
is paged out, the page cache becomes involved.
Hence, the performance of the page cache has
a rather dramatic impact on the performance of
the system. As a particular page is referenced,
the page cache has to be able to locate the page,
or has to determine that the page is not in the
cache, in as efficient and effective way as possi-
ble with a focus on minimal memory overhead.

1.1 Evolution of the Page Cache

In older versions the Linux kernel utilized a
global hash-table based approach to maintain
the pages in the cache. The hash based ap-
proach had some performance issues:

1. A hash key is normally not unique; hence
the system has to resolve collisions. A
hash chain had to be built to hold entries
(each entry used up 8 bytes per referenced
page).

2. A single global lock governed the page
cache; causing scalability issues on SMP
based systems.

The radix-tree based page cache solution ad-
dresses the issues discussed above.

Technically, the Linux 2.6 system consists of
many smaller page cache subsystems, or more

• 79 •

80 • Examining Linux 2.6 Page-Cache Performance

specifically, one for each open file in the sys-
tem.

Segregating page caches has a few advantages:

First, each page cache can have its own lock,
avoiding the global page cache lock that was
necessary in older versions.

Second, search operations work on a smaller
address space, and complete more quickly.

Third, as there is one page cache per open file,
the only index required to look up a specific
page is the offset within the file.

In the radix-tree, the 32-bit or 64-bit file off-
set is divided into subsets whose size is based
on the value ofMAP_SHIFT as defined in
lib/radix.c. The current implementation uses
a MAP_SHIFT of six for 6-bit indices. The
highest-order sub-field (or set) is used to branch
into a 64-entry table in the root of the radix-
tree. An entry in that sub-table serves as a
pointer to the next node in the tree. The next
lower sub-field (from the index) is used to in-
dex that particular node, yielding a third ab-
straction. Eventually, the algorithm will reach
the bottom of the tree and obtain the actual page
pointer or finds an empty entry, signifiying that
the page is not present. Table 2 shows maxi-
mum file offset and number of pages versus tree
height for the shift value of six.

There is some precedent for using a value other
than six for theMAP_SHIFT. Originally, seven
was used for theMAP_SHIFTwhen the struc-
ture was first introduced [7]. Larger values
mean smaller trees in terms of height and the
possiblity of shorter search times. This possi-
bility comes at the expense of bigger nodes in
the slab cache, which means that there is more
potential for wasted entries.

Shift through- delta profile delta
put

6 4.61 N/A 13.21 N/A
8 4.745 (+3)% 12.09 (–8.7)%

10 4.705 (+2)% 12.40 (–6.14)%
12 4.695 (+1.8)% 12.31 (–6.72)%
4 4.683 (+1.6)% 17.22 (+30.4)%

Table 1. Sequential read throughput and
percent of profile ticks forradix_tree_
lookup results for different values ofMAP_
SHIFT . The units for throughput are GB/sec,
and the profile column represents time spent in
radix_tree_lookup . These values repre-
sent the average of four runs.

height maximum maximum
pages file

offset
0 0 0
1 64 256 KB
2 4096 16 MB
3 262144 1 GB
4 16777216 64 GB
5 1073741823 4 TB
6 4294967296 16 TB

Table 2. Max number of pages by radix-tree
height with a 32-bit key andMAP_SHIFTof 6,
file offset assumes 4k pages

One optimization criterion was to ensure that
the radix-tree would only be as deep as nec-
essary. In the case where the system operates
on small files (smaller than 65 pages), only one
level of abstraction (one node) will be used. In
other words, only the least significant sub-field
of the offset is being utilized. This property of
the current implementation allows the normally
detrimental effects of a large key on a radix-
tree to be minimized. The only potential down-
side is in the case of a sparse file where nodes
located at relatively large offsets will force a
higher tree depth than might otherwise be nec-
essary.

2005 Linux Symposium • 81

1.2 Newer Features in 2.6

One of the newer features incorporated in
Linux revolves around ‘tagging’ dirty pages in
the radix-tree. In other words, a dirty page is
only flagged in the radix-tree, and not moved
to a separate list as in the pre 2.6.6 design.
Along the same lines, pages that are being writ-
ten back to disk are flagged as well. A new
set of radix-tree functions was implemented to
locate these pages as necessary. Searching an
entire tree structure for these pages is not as
efficient as just traversing trough a dedicated
list, but based on the feedback from the Linux
community, the performance delta is not con-
sidered a big issue. There is some concern in
the Linux community that with very large files
the 2.6 lock-per-file based approach will be as
bad as the global lock based 2.4 implementa-
tion. The tagging of these pages in the new
design required a lot of changes to the page
cache and the VM subsystems, respectively.
One implication of the changes is that the dirty
pages are now always written in file offset or-
der out to disk. As the Linux community re-
ports, this may cause some performance issues
involving parallel write() operations on large
SMP systems. The tagging of all these pages
in the radix-tree contributes to the complexity
of switching from a radix-tree based approach
to another data structure (if needed). Based
on the current implementation, improving the
radix-tree seems more feasible than a complete
re-design and should therefore be explored first.
TheMAP_SHIFTparameters in the radix code
reveal some potential for performance work.

There is a scalability issue when dealing with
only a small amount of very large files and a
workload that consists of many concurrent read
operations on the files. The single lock govern-
ing the radix-tree will basically eliminate any
potential scalability on SMP systems while ex-
posed to such a workload. Scalability of course
is achieved when the workload consists of n

worker threads reading from n separate files,
hence the locking is distributed over the set of
files being accessed. Table 3 shows the sever-
ity of the locking problems of the current spin-
lock design vs the rwlock design and shows that
even the rwlock implementation spends a good
deal of time overall CPU time in locking func-
tions.

Table 3 shows throughput on an IBM p650 8-
CPU POWER4+ server with 16GB of RAM
and two 7GB files fully cached with differing
numbers of threads attempting to sequentially
read the files. Throughput is in GB/sec and
the profile columns show the percentage of time
from the profile spent in locking functions.

Threads Spinlock Profile Rwlock Profile
1 1.11 0.10% 1.04 0.80%
4 2.26 12.4% 2.47 4.33%
8 2.01 54.1% 2.82 9.75%

12 2.20 51.6% 2.98 9.86%
14 2.31 49.3% 3.03 9.74%
16 2.34 48.9% 3.13 9.52%

Table 3. Read throughput and time spent in
lock functions for spinlock and rwlock kernels.

There has been some ongoing debate over
whether a rwlock solution would be more ac-
ceptable, however as of this writing it has been
held out of mainline due to specific concerns
over the performance of the rwlock solution on
Pentium-4 machines [9, 10]. Although the cost
of locking is substantial on all architectures,
this architecture seems to exhibit particularly
high latency on the unlock operation. This also
seems to indicate that the radix-nodes tend to
be cached and that search times are small [8].

2 Alternative Data-Structures

Given the unique nature of the radix implemen-
tation in the Linux kernel, comparative analysis

82 • Examining Linux 2.6 Page-Cache Performance

of the radix-tree with alternative data-structures
should provide insights into its strengths and
weaknesses. In general, for the application of
page-cache lookup, speed should be paramount
since in the case of a cache hit, the entire read or
write operation should occur at memory speed.
Inserts, on the other hand, will typically be fol-
lowed by disk I/O, and that I/O should become
the limiting factor for the operation rather than
the cache update. Deletes are initiated from a
truncate operation or by the page-scanner when
the system is under memory pressure. This
case of memory pressure is performance crit-
ical since the VM wants to release the pages
selected as soon as possible, and updates to
the caching structures represent pure overhead.
Operations such as “tagging” pages as dirty
are also interesting because they involve both
a lookup and a modification to the state of the
data structure. However this operation is spe-
cific to the Linux 2.6 radix-tree implementation
and is not available on all data-structures. In
some cases it may be possible to graft these ad-
ditional pieces of state information onto other
standard data-structures, but it is not practical
in all cases.

Given these qualities, it seemed appropriate to
test the Linux kernel implementation of radix-
trees against a number of other data-structures
each with slightly different design trade-offs.

2.1 Extendible-Hashing

One idea suggested was that of extendible-
hashing, which is a technique developed for
optimizing lookup operations in database sys-
tems [6]. Among other interesting properties,
extendible hashing guarantees that data can be
accessed in just two “page-faults” in database
terminology, which translates to two pointer
dereferences for our purposes. As the name
suggests, it is capable of extending itself as the
amount of data stored increases, and it can do

this without costly re-hashing of the entire data-
set. Conversely, the extendible hash-table can
be implemented to contract itself as elements
are removed. Naturally, these characteristics
are not free and represent a trade-off for the
fixed number of memory dereferences in the
lookup path.

The extendible hash-table typically is imple-
mented using two structures: buckets, which
contain the pointers to the data, and a directory,
which contains the pointers to the buckets. The
directory is just a large array with a power-of-
two size. The logarithm of the current size is
called the directory depth.

Elements are inserted by computing a hash key
and taking the n most-significant bits of that
key, where n is equal to the directory depth. Us-
ing this value to index into the directory yields
a pointer to the bucket where the new element
will reside. Different strategies exist for plac-
ing an element into a bucket. Depending on the
size of the bucket, the object’s hash value can
be used again to place the item, or if the bucket
is fairly small, a simple linear insert can be ef-
fective.

Each pointer in the directory is not necessarily
unique, and there can be mulitple pointers to
a certain bucket. For this reason, the buckets
keep a local-depth value, which can be used to
compute the number of pointers to it in the di-
rectory. When a bucket becomes full, it must
be split into two separate buckets in an oper-
ation called a bucket-split. After the bucket-
split, each new bucket will get half of the old
pointers in the directory, and the local depth of
the buckets will increase by one. If the bucket
has a local depth equal to the directory depth,
then the directory must be first doubled in size
before the bucket can be split. In this case,
there is only one pointer in the directory to this
particular bucket before the directory doubling
operation, and afterwards there are two point-
ers and the bucket-split can proceed. When a

2005 Linux Symposium • 83

bucket-split occurs, the elements in the original
bucket are redistributed into the new buckets in
such a way that their hash-keys will lead to the
correct bucket from the directory. In this way,
the extendible hash-table avoids having to ever
globally re-hash and instead limits redistribu-
tion to bucket-splits while retaining the original
hash function.

One additional characteristic of the extendible-
hashing is its ability to handle random se-
quences of keys equally as well as sequential
sequences. Though many typical applications
will primarily use sequential I/O patterns, some
applications might find this characteristic ben-
eficial.

2.2 Threaded Red-Black Tree

Threaded red-black trees are a twist on the no-
tion of a traditional red-black tree, which try to
optimize for sequential access sequences by us-
ing normally NULL leaf pointers as “threads”
which keep track of nodes with neighboring
keys [12]. So, if one already has a reference
to a particular leaf node, access to the previous
node (in terms of key order) only requires ac-
cessing that node’s left “thread.”

The regular red-black tree properties still ap-
ply [1,2], but since almost all child pointers
are used in some way, additional state informa-
tion must be kept in the nodes to differentiate
children from threads. Luckily, red-black trees,
such as the one in the Linux kernel, already use
an extra word per node to keep track of color.
This extra word can be overloaded to keep track
of thread information as well with no additional
space cost.

Since one cannot simply test for NULL during
lookups, one must also alter any open-coded
lookup sequences to be thread-aware, which is
to say such code must examine the state infor-
mation in the node. Ideally, this should not be

a significant cost because the flags should typ-
ically have reasonable spatial locality with the
other pointers in the node and would be kept in
the same cache-line.

As with regular red-black trees, performance of
inserts and deletes is traded off to keep the tree
balanced and keep average lookup times down.
In the case of the threaded version this is even
more true as thread information must be kept
consistent through rebalancing operations.

The implementation tested was similar to the
Linux kernel’s present red-black tree imple-
mentation which assumes the node contents are
embedded into another object and passes off re-
sponsibility for memory allocation and imple-
menting lookups onto the tree’s user.

2.3 Treap

A treap is the basic data structure (BST) under-
lying randomized search trees [3]. The name
itself refers to the synthesis of a tree and a heap
structure. More specifically, a treap represents
a set of items where each item has associated
with it a key and a priority. In general a pri-
ority is randomly assigned to a given key by
the implementation. A treap represents a spe-
cial case of a binary search tree, in which the
node set is arranged in order (with respect to
the keys) as well as in heap fashion with re-
gards to the priority. The procedure for lookup
in a treap is the same as for a normal binary
search-tree and the node priorities are simply
ignored. In a treap, the access time is propor-
tional to the depth of an element in the tree. An
insert of a new item basically consists of a two
step process. The first step consists of utiliz-
ing the item’s key to attach to the treap at the
appropriate leaf position, and second to use the
priority of the new element to rotate the new en-
try up in the structure until the item locates the
parent node that has a larger priority. Interest-
ingly, it can be shown in the general case that

84 • Examining Linux 2.6 Page-Cache Performance

an insert will only cause two rotations, which
means updates are much less costly then in the
case of a strictly balanced tree such as an AVL
tree or red-black tree.

The implementation tested used a simple poly-
nomial hash function on the key to generate the
priority. This approach was used instead of the
kernel’s random number generator to keep the
implementation as self-contained as possible.

Again, the implementation tested follows the
Linux kernel’s convention of assuming the user
must allocate the nodes and open-code the
lookup sequences.

2.4 Linux Radix-Tree

The Linux implementation of the radix-tree is
highly optimized and customized for use in
the kernel and differs signifcantly from what
is commonly referred to as a radix-tree [1,4,5]
It avoids paying the memory cost of explictly
keeping keys, child-pointers, and separate data-
pointers on each object but instead uses implicit
ordering along with node height to determine
the meaning of these pointers. For example, if
the tree has a global height of three, then the
pointers on the first two levels only point to
child nodes and the lowest level uses its point-
ers for data objects. Data pointers only exist at
the lowest level.

By aggressively conserving memory and reduc-
ing the tree’s overall size, the radix-tree has an
extremely small cache footprint which is vital
to its success at larger tree sizes.

The main disadvantage of using implicit or-
dering in the implementation is that a highly
sparse file will force the use of more tree-levels
across the entire tree for all offsets. The cur-
rent implementation uses aMAP_SHIFTof six
which means sixty-four pointers per node, and

in the worst case all but one of those pointers
is wasted from the root all the way down to the
leaf. The height is directly related to the offset
of the last object inserted into the tree.

The kernel implementation also supports tag-
ging which means each node not only consists
of an array of pointers but a set of bit-fields for
each pointer which can be used somewhat ar-
bitrarily by the subsystem utilizing the tree. In
the case of the page-cache, these tags are used
to keep track of whether a page is dirty or un-
dergoing writeback.

The meaning of these tags is clear at the leaf
nodes, but at higher levels, tags are used to refer
to the state of any objects in or below the child
node at the corresponding offset.

For example, given a three level radix-tree, and
the page at offset one is dirty, then the dirty-tag
for bit one on the leaf node is set and the tags
for bit zero are set in the two nodes above. This
way, gang-lookups searching for tagged nodes
can be optimized to skip over subtrees without
any tagged descendants.

2.5 Analysis

In all three operations tested, there was no sig-
nificant difference between the data structures
until roughly 128K elements where the differ-
ences begin and are highlighted by the remain-
ing data points.

The extendible-hashing results were initially
very surprising as it seems to perform much
worse than the tree structures at high object
counts. After analyzing performance counter
information, it was determined that the ex-
tremely poor spatial and temporal locality of
the the hash directory and buckets were causing
TLB and similar translation cache misses and
thus large amounts of time were spent doing

2005 Linux Symposium • 85

Figure 1: Sequential Lookup Performance

Figure 2: Sequential Insert Performance

86 • Examining Linux 2.6 Page-Cache Performance

Figure 3: Sequential Delete Performance

page-table walk operations. Also, the poor spa-
tial locality caused a great deal of data-cache
misses which compounded the problems. On
the other hand, for the tree structures, the se-
quential nature of the test yielded significant
benefits to their cache interactions.

The two binary-tree structures offer mixed per-
formance with generally worse performance on
lookups and inserts with only the treap nar-
rowly beating the radix-tree in deletes. The
threaded red-black tree also seems to do worse
than expected in lookups which will require
some further analysis.

The radix-tree scales extremely well into the
very large numbers of pages because the tree it-
self fits into processor caches much better than
the alternative designs. In the case of the delete
operations the radix-tree still does well, but is
beaten in some cases by the treap. Most likely,
this is because of the extensive updates which
must occur to the tagging information up the
tree which typically would not have good spa-

tial or temporal locality with respect to the ini-
tial lookup.

This result has also been observed under a
‘real’ data-base workload where theradix_

tree_delete call shows up higher in ker-
nel profiles than theradix_tree_lookup op-
erations, which was initially rather confus-
ing, as it was expected that most of the time
in the radix-tree code would be spent doing
lookup operations. Table 4 shows this ef-
fect, whereradix_tree_delete shows up as
the third highest kernel function andradix_

tree_lookup is number ten. Overall, this
particular database query is heavily I/O bound,
as dedicated_idle represents time spent
waiting on I/O to complete, and the rest of the
functions indicate memory pressure (shrink_

list , shrink_cache , refill_inactive_

zone , and radix_tree_delete) and other
filesystem activity (find_get_block).

2005 Linux Symposium • 87

DB Workload: Top 10 Kernel Functions

dedicated_idle
__copy_tofrom_user

radix_tree_delete
_spin_lock_irq

__find_get_block
shrink_list

refill_inactive_zone
__might_sleep

shrink_cache
radix_tree_lookup

Table 4: Kernel functions reported by OProfile
from a standard commercial database bench-
mark which simulates a business decision sup-
port workload. The tests were run on IBM
OpenPower 720 4-CPU machine running on
Ext3 with 92% of time spent in the kernel
for this query. Other querys in the work-
load showed similar results where in all cases
radix_tree_delete was ordered higher
thanradix_tree_lookup .

2.6 Continuing Work

In the interests of time, all of these results
were collected in userspace. As time permits,
the tests can be re-done using kernel-space im-
plementations to keep user-space biases to a
minium and to avoid any bias due to the mem-
ory allocator.

These tests also represent best-case cache-
behavior, because actual data pages were not
being moved through the memory sub-system.
Again, these structures should be re-examined
in the future with a mixed workload with sub-
optimal caching behaviors.

3 Going Forward with Improve-
ments to the Page-Cache

As far as improving the radix-tree, there does
not appear to be any reason to outright replace
the current implementation, however perfor-
mance could probably be improved for the class
of workloads desiring concurrent access to the
radix-tree structure by improving the locking
behaviors for the radix-tree. As an example,
a database system using large files for storing
tables and using the page-cache could run into
this issue.

3.1 A Lockless Design

Ultimately, it would be beneficial to imple-
ment a fully lockless design (for readers) us-
ing a Read-Copy-Update (RCU) approach [11].
This would allow the tree to better scale with
many concurrent readers, and should not cause
any difference in performance for a writers.
This could cause a number of issues and race-
conditions where readers seeing “stale” data
could cause problems, and these issues must be

88 • Examining Linux 2.6 Page-Cache Performance

fully explored and understood before an imple-
mentation can be attempted.

Of the data-structures mentioned above, the
radix-tree and the extendible hash-table would
be the best structures suited for a lockless de-
sign, while the binary-tree structures are some-
what more difficult to modify for RCU.

In the case of the extendible hash-table, there
are two cases to consider: bucket-splits and
directory-expansion. In the case of bucket-
splits, two new buckets are typically allocated
to replace the original, so the original could be
left in place for other readers, while the writing
thread copied the data from the original bucket
to the new ones and then updated the point-
ers in the directory. The race between readers
looking at the directory and seeing the origi-
nal bucket and seeing one of the new buckets is
not problematic, since in either case, the appro-
priate data will be in whichever bucket is seen.
The release of the memory for the old bucket
would simply have to wait until all processors
had reached a quiescent state. In the case of
the directory expansion (or contraction) a sim-
ilar technique would apply, where the writing
thread works to update the new directory while
leaving the old one in place. Then it can update
the pointer to the directory after it finishes and
use a deferred release for the old directory.

For the radix-tree, the main update case is
radix-tree extension, where a new offset is in-
serted which requires an increase in the height
of the tree. Luckily, the radix-tree is fairly sim-
ple and does not require complex restructuring
in this case, but instead merely adds new levels
ontop of the exisiting tree. So, in this case the
writer thread creates these new nodes and sets
them up while letting concurrent readers see
the pre-exisiting tree, then when all of the new
radix-nodes are set up, the height of the tree can
be incremented and a new root installed. There
is one problem with doing this today, the radix-
tree root object currently consists of three fields

including the height and a pointer to the root.
For the RCU design to work, it must be able to
atomically update a single field for the readers
to look at, however both the height and the root
pointer require updates. The solution to this is
to add another level of indirection and simply
keep that information in a separate dynamic ob-
ject.

3.2 An Evolutionary Improvement

An alternative approach using gang-lookups,
which is more evolutionary with respect to the
current locking design, was suggested by Su-
parna Bhattacharya1.

The current locking design works one page at
a time where the radix-tree lock is acquired
and released for each page locked. This is one
reason why the rwlock approach may not be
faster, since it uses an atomic operation both
on acquisition and release whereas a spin-lock
only uses one atomic operation on a success-
ful lock acquisition. Her suggestion was to in-
stead use a gang-lookup and lock each page re-
quested one after the other before releasing the
tree-lock. This approach would drastically re-
duce the number of costly atomic operations.
This would come at the cost of increased lock
hold times for the tree, but this could be mit-
igated somewhat by going back to the rwlock
approach. Further, in this case the rwlock be-
comes a more effective solution since the num-
ber of unlock operations is drastically reduced.

method spin-lock rwlock
page by page 2n 3n
gang-lookup n + 1 n + 2

1This idea was suggested in a private email to the au-
thors, where she is working on converting the write-path
to do something similar

2005 Linux Symposium • 89

Table 5. Table showing number of atomic oper-
ations required to lock n pages for the different
locking strategies.

4 Summary

Overall, the performance of the current Linux
2.6 radix-tree is quite good as compared to the
other data-structures chosen. Probably the area
which is most ripe for improvement is the lock-
ing strategy for the radix-tree. A few different
alternatives have been suggested, and hopefully
by using these or other approaches, page-cache
performance can be improved so that it even
better than it is today.

5 Legal

Copyrightc© 2005 IBM.

This work represents the view of the authors and
does not necessarily represent the view of IBM.

IBM and the IBM logo are trademarks or registered
trademarks of International Business Machines Cor-
poration in the United States and/or other countries.

Linux is a registered trademark of Linus Torvalds.

UNIX is a registerd trademark of The Open Group,
Ltd. in the United States and other countries.

Other company, product, and service names may be
trademarks or service marks of others.

References in this publication to IBM products or
services do not imply that IBM intends to make
them available in all countries in which IBM oper-
ates.

Disclaimer: The benchmarks discussed in this paper
were conducted for research purposes only, under

laboratory conditions. Results will not be realized
in all computing environments.

This document is provied “AS IS,” with no express
or implied warranties. Use the information in this
document at your own risk.

6 References

[1] Cormen, T.,Algorithms, Second Edition,
MIT Press, 2001.

[2] Wirth, N., Algorithms + Data Structures =
Programs, Prentice-Hall.

[3] Seidel, R., Aragon, C.,Randomized Search
Trees, Algorithmica 16, 1996.

[4] Andersson, A., Nielsson, S.,A New
Efficient Radix Sort, FOCS, 1994.

[5] Weiss, M.,Data Structures and C
ProgramsAddison-Wesley, 1997.

[6] R. Fagin, J. Nievergelt, N. Pippenger, and
H.R. Strong.Extendible hashing—a fast
access method for dynamic files, September
1979, ACM Transactions on Database
Systems, 4(3):315–344.

[7] Hellwig, C. [PATCH] Radix-tree
pagecache for 2.5, January 2001,
http://www.ussg.iu.edu/hypermail/

linux/kernel/0201.3/1234.html

[8] Morton, A. 2.5.67-mm1, April 2003,
http://www.uwsg.iu.edu/hypermail/

linux/kernel/0304.1/0049.html .

[9] Morton, A. Re: 67-mjb2 vs 68-mjb1 (sdet
degredation), April 2003,
http://www.cs.helsinki.fi/linux/

linux-kernel/2003-16/0426.html .

90 • Examining Linux 2.6 Page-Cache Performance

[10] Morton, A.Re: [PATCH] Fixing address
space lock contention in 2.6.11, March 2005,
http://www.ussg.iu.edu/hypermail/

linux/kernel/0503.0/1098.html .

[11] McKenney, P., Appavoo, J., et al.
Read-Copy Update, July 2001, Ottawa Linux
Symposium.

[12] Pfaff, B.GNU Libavl 2.0.2
Documentationhttp://www.stanford.

edu/~blp/avl/libavl.html/ .

Trusted Computing and Linux

Kylene Hall
IBM

kylene@us.ibm.com

Tom Lendacky
IBM

toml@us.ibm.com

Emily Ratliff
IBM

emilyr@us.ibm.com

Kent Yoder
IBM

yoder1@us.ibm.com

Abstract

While Trusted Computing and LinuxR© may
seem antithetical on the surface, Linux users
can benefit from the security features, including
system integrity and key confidentiality, pro-
vided by Trusted Computing. The purpose of
this paper is to discuss the work that has been
done to enable Linux users to make use of their
Trusted Platform Module (TPM) in a non-evil
manner. The paper describes the individual
software components that are required to en-
able the use of the TPM, including the TPM
device driver and TrouSerS, the Trusted Soft-
ware Stack, and TPM management. Key con-
cerns with Trusted Computing are highlighted
along with what the Trusted Computing Group
has done and what individual TPM owners can
do to mitigate these concerns. Example ben-
eficial uses for individuals and enterprises are
discussed including eCryptfs and GnuPG usage
of the TPM. There is a tremendous opportunity
for enhanced security through enabling projects
to use the TPM so there is a discussion on the
most promising avenues.

1 Introduction

The Trusted Computing Group (TCG) released
the first set of hardware and software specifi-
cations shortly after the creation of that group
in 2003.1 This year, a short two years later,
20 million computers will be sold containing a
Trusted Platform Module (TPM) [Mohamed],
which will largely go unused. Despite the
controversy surrounding abuses potentially en-
abled by the TPM, Linux has the opportunity
to build controls into the enablement of the
Trusted Computing technology to help the end
user control the TPM and take advantage of se-
curity gains that can be made by exercising the
TPM properly. This paper will cover the pieces
needed for a Linux user to begin to make use of
the TPM.

This paper is organized into sections covering
the goals of Trusted Computing, a brief intro-
duction to Trusted Computing, the components
required to make an operating system a trusted
operating system from the TCG perspective,
the current state of Trusted Computing, uses
of the TPM, clarification of common techni-
cal misperceptions, and finally concludes with

1See [Fisher] and [TCGFAQ] for more history of the
Trusted Computing Group.

• 91 •

92 • Trusted Computing and Linux

a section on future work.

2 Goals of Trusted Computing

The Trusted Computing Group (TCG) has cre-
ated the Trusted Computing specifications in
response to growing security problems in the
technology field.

“The purpose of TCG is to develop, define, and
promote open, vendor-neutral industry specifi-
cations for trusted computing. These include
hardware building block and software inter-
face specifications across multiple platforms
and operating environments. Implementation
of these specifications will help manage data
and digital identities more securely, protecting
them from external software attack and phys-
ical theft. TCG specifications can also pro-
vide capabilities that can be used for more
secure remote access by the user and enable
the user’s system to be used as a security
token.”[TCGBackground]

Fundamentally, the goal of the Trusted Com-
puting Group’s specifications is to increase as-
surance of trust by adding a level of verifiability
beyond what is provided by the operating sys-
tem. This does not reduce the requirement for
a secure operating system.

3 Introduction to Trusted Comput-
ing

The Trusted Computing Group (TCG) has re-
leased specifications about the Trusted Plat-
form Module (TPM), which is a “smartcard-
like device,” one per platform, typically real-
ized in hardware that has a small amount of
both volatile and non-volatile storage and cryp-
tographic execution engines. Figure 1 shows

NVRAM

PCRs
(Min 16)

EK

RNG

SHA-1

RSA

Cryptographic
Co-Processor

OPTIONAL
DSA,
Eliptic Curve

Opt-In

Program
Code

Execution
Engine

I/O

Power
Detection

 DIR
(Deprecated in 1.2)

Figure 1: Trusted Platform Module

a logical view of a TPM. The TCG has also
released a specification for APIs to allow pro-
grams to interact with the TPM. The next sec-
tion details the components needed to create
a completely enabled operating system. The
interaction between the components is graph-
ically shown in Figure 2.

For a rigorous treatment of Trusted Comput-
ing and how it compares to other hardware se-
curity designs, please read Sean W. Smith’s
“Trusted Computing Platforms Design and Ap-
plications” [Smith:2005].

2005 Linux Symposium • 93

3.1 Key Concepts

There are a few key concepts that are essential
to understanding the Trusted Computing speci-
fications.

3.1.1 Measurement

A measurement is a SHA-1 hash that is then
stored in a Platform Configuration Register
(PCR) within the TPM. Storing a value in a
PCR can only be done through what is known
as an extend operation. The extend operation
takes the SHA-1 hash currently stored in the
PCR, concatenates the new SHA-1 value to it,
and performs a SHA-1 hash on that concate-
nated string. The resulting value is then stored
in the PCR.

3.1.2 Roots of Trust

In the Trusted Computing Group’s model, trust-
ing the operating system is replaced by trusting
the roots of trust. There are three roots of trust:

• root of trust for measurement

• root of trust for storage

• root of trust for reporting

The root of trust for measurement is the code
that represents the “bottom turtle”2. The root
of trust for measurement is not itself measured;
it is expected to be very simple and immutable.
It is the foundation of the chain of trust. It per-
forms an initial PCR extend and then the per-
forms the first measurement.

2This is an allusion to the folk knowledge of how
the universe is supported.http://en.wikipedia.
org/wiki/Turtles_all_the_way_down

The root of trust for storage is the area where
the keys and platform measurements are stored.
It is trusted to prevent tampering with this data.

The root of trust for reporting is the mechanism
by which the measurements are reliably con-
veyed out of the root of trust for storage. This
is the execution engine on the TPM.[TCGArch]

3.1.3 Chain of Trust

The chain of trust is a concept used by trusted
computing that encompasses the idea that no
code other than the root of trust for measure-
ment may execute without first being measured.
This is also known as transitive trust or induc-
tive trust.

3.1.4 Attestation

Attestation is a mechanism for proving some-
thing about a system. The values of the PCRs
are signed by an Attestation Identity Key and
sent to the challenger along with the measure-
ment log. To verify the results, the challenger
must verify the signature, then verify the values
of the PCRs by replaying the measurement log.

3.1.5 Binding Data to a TPM

Bound data is data that has been encrypted by a
TPM using a key that is part of the root of trust
for storage. Since the root of trust of storage
is different for every TPM, the data can only be
decrypted by the TPM that originally encrypted
the data. If the key used is a migratable key,
however, then it can be migrated to the root of
trust for storage of a different TPM allowing the
data to be decrypted by a different TPM.

94 • Trusted Computing and Linux

PKCS#11

App/
TPM Mgmt

App

TSS

Kernel
Measurement

Linux
Kernel

TPM DD

BIOS/Firmware

TPMHardware
Platform

Boot
Loader

Figure 2: Trusted Computing Enabled Operat-
ing System

3.1.6 Sealing Data to a TPM

Sealed data is bound data that additionally
records the values of selected PCRs at the time
the data is encrypted. In addition to the restric-
tions associated with bound data, sealed data
can only be decrypted when the selected PCRs
have the same values they had at the time of
encryption.

4 Components of Trusted Comput-
ing on Linux

Several components are required to enable an
operating system to use the Trusted Computing
concepts. These components are described in
this section.

4.1 TPM

The Trusted Platform Module (TPM) is a hard-
ware component that provides the ability to se-
curely protect and store keys, certificates, pass-
words, and data in general. The TPM enables

more secure storage of data through asymmet-
ric key operations that include on-chip key gen-
eration (using a hardware random number gen-
erator), and public/private key pair encryption
and signature operations. The TPM provides
hardware-based protection of data because the
private key used to protect the data is never ex-
posed in the clear outside of the TPM. Addi-
tionally, the key is only valid on the TPM on
which it was created unless created migratable
and migrated by the user to a new TPM.

The TPM provides functionality to securely
store hash values that represent platform con-
figuration information. The secure reporting
of these values, if authorized by the platform
owner, enables verifiable attestation of a plat-
form configuration. Data can also be protected
under these values, requiring the platform to be
in the same configuration to access the data as
when the data was first protected.

The owner of the platform controls the TPM.
There are initialization and management func-
tions that allow the owner to turn on and off
functionality, reset the TPM, and take owner-
ship of the TPM. There are strong controls to
protect the privacy of an owner and user.3 The
platform owner must opt-in. Any user, even if
different from the owner, may opt-out.

Each TPM contains a unique Endorsement
Key. This key can be used by a TPM owner
to anonymously establish Attestation Identity
Keys (AIKs). Since privacy concerns prevent
the Endorsement Key from being used to sign
data generated internally by the TPM, an AIK
is used. An AIK is an alias to the Endorsement
Key. The TPM owner controls the creation and
activation of an AIK as well as the data associ-
ated with the AIK.[TCGMain],[TPM]

3See Section 7.1 for more details.

2005 Linux Symposium • 95

4.1.1 A Software-based TPM Emulator for
Linux

If you don’t have a machine that has a TPM but
you’d like to start experimenting with Trusted
Computing and the TSS API, a software TPM
emulator can provide a development environ-
ment in which to test your program. While a
software TPM will provide you with a develop-
ment environment, it can’t provide you with the
“trust” that a hardware TPM can provide.

The advantage of having the TPM be a hard-
ware component is the ability to begin measur-
ing a system almost immediately at boot time.
This is the start of the “chain of trust.” By mea-
suring as early in the boot cycle as possible,
you lessen the chance that an untrusted compo-
nent (hardware or software) can be introduced
without being noticed. There must be an ini-
tial “trusted” measurement established, known
as the root of trust for measurement, and the
measurement “chain” must not be interruped.

With a software TPM emulator, you have de-
layed the initial measurement long into the boot
cycle of the system. Many measurements have
not occurred and so the trust of the system can
not be fully validated. So while you would not
want to rely on a software TPM to validate the
trust of your systemm, it does provide you with
a development environment to begin preparing
to take advantage of trusted computing.

Mario Sasser, a student at the Swiss Federal
Institute of Technology has created a TPM em-
ulator that runs as a kernel module.[Strasser]
It is not a full implementation of the
specification and it is still under develop-
ment. It is available fromhttp://www.
infsec.ethz.ch/people/psevinc/
or https://developer.berlios.de/
projects/tpm-emulator .

4.2 TPM Device Driver

The TPM device driver is a driver for the Linux
kernel to communicate TPM commands and
their results between the TCG Software Stack
(TSS) and the TPM device. Today’s TPMs are
connected to the LPC bus. The TPM hardware
is located by the driver from the PCI device for
the LPC bus and attempts to read manufacturer
specific information at manufacturer specific
offsets from the standard TPM address. Since
the TPM device can only handle one command
at a time and the result must be cleared before
another command is issued, the TPM device
driver takes special care to provide that only
one command is in-flight at a time and that the
data is returned to only the requester. Rather
than tie up all system resources with an ioctl,
the command is transmitted and the result gath-
ered into a driver buffer on a write call. Then
the result is copied to the same user on a sub-
sequent read call. This coupling of write and
read calls is enforced by locks, the file struc-
ture’s private data pointer and timeouts. At
the direction of the Trusted Computing Group
Specification, the TSS is the only interface al-
lowed to communicate with the TPM thus, the
driver only allows one open at a time, which is
done by the TSS at boot time. The driver al-
lows canceling an in-flight command with its
sysfs filecancel . Other sysfs files provided
by the driver arepcrs for reading current pcr
values,caps for reading some basic capability
information about the TPM such as manufac-
turer and version andpubek for reading the
public portion of the Endorsement Key if al-
lowed by the device. The current driver sup-
ports the Atmel and National Semiconductor
version 1.1 TPMs, which are polled to deter-
mine when the result is available. The com-
mon functionality of the driver is in thetpm
kernel module, and the vendor specifics are
in a separate module. The driver is available
on Sourceforge athttp://sourceforge.

96 • Trusted Computing and Linux

net/projects/tpmdd/ under the project
name tpmdd and has been in Linux kernel ver-
sions since 2.6.12.

4.3 TSS

The TCG Software Stack (TSS) is the API that
applications use to interface with the TPM.

4.3.1 TSS Background

The TCG Software Stack (TSS)[TSS] is the set
of software components that supports an ap-
plication’s use of a platform’s TPM. The TSS
is composed of a set of software modules and
components that allow applications to commu-
nicate with a TPM.

The goals of the TSS are:

• Supply one entry point for applications to
the TPM’s functionality. (Provided by the
TSS Service Provider Interface (The TSS
API)).

• Provide synchronized access to the TPM.
(Provided by the TSS Core Services Dae-
mon(TCSD)).

• Hide issues such as byte ordering and
alignment from the application. (Pro-
vided by the TSS Service Provider Inter-
face (TSPI)).

• Manage TPM resources. (Provided by the
TCSD).

All components of the TSS reside in user space,
interfacing with the TPM through the TPM de-
vice driver.

TPM services provided through the TSS API
are:

• RSA key pair generation

• RSA encryption and decryption using
PKCS v1.5 and OAEP padding

• RSA sign/verify

• Extend data into the TPM’s PCRs and log
these events

• Seal data to arbitrary PCRs

• RNG

• RSA key storage

Applications will link with the TSP library,
which provides them the TSS API and the un-
derlying code necessary to connect to local and
remote TCS daemons, which manage the re-
sources of an individual TPM.

4.3.2 The TrouSerS project

The TrouSerS project aims to release a fully
TSS 1.1 specification compliant stack, follow-
ing up with releases for each successive release
of the TSS spec. TrouSerS is released under
the terms of the Common Public License, with
a full API compliance test suite and example
code (both licensed under the GPL) and docu-
mentation. TrouSerS was tested against the At-
mel TPM on i386 Linux and a software TPM on
PPC64. TrouSerS is available in source tarball
form and from CVS athttp://trousers.
sf.net/ .

4.3.3 Technical features not in the TSS
specification

By utilizing udev.permissions for the TPM de-
vice file and creating a UID and GID just for
the TSS, the TrouSerS TCS daemon runs with-
out root owned resources.

2005 Linux Symposium • 97

For machines with no TPM support in the
BIOS, TrouSerS supports an application level
interface to the physical presence commands
when the TCS daemon is executing in sin-
gle user mode. This allows administrators to
enable, disable, or reset their TPMs where a
BIOS/firmware option is not available. This in-
terface is automatically closed at the TCS level
when the TCS daemon is not running in single
user mode, or cannot determine the run level of
the system.

In order to maintain logs of all PCR extend
operations on a machine, TrouSerS supports a
pluggable interface to retrieve event log data.
Presumably, the log data would be provided by
the Integrity Measurement Architecture (IMA)
(see Section 4.6 below). As executable content
is loaded and extended by the kernel, a log of
each extend event is recorded and made avail-
able through sysfs. The data is then retrieved
by the TCS Daemon on the next GetPcrEvent
API call.

To maintain the integrity of BIOS and ker-
nel controlled PCRs, TrouSerS supports con-
figurable sets of PCRs that cannot be extended
through the TSS. This is useful; for example in
keeping users from extending BIOS controlled
PCRs or for blocking access to an IMA con-
trolled PCR.

TCP/IP sockets were chosen as the interface
between TrouSerS’ TSP and TCS daemon, for
both local and remote access. This makes con-
necting to a TCSD locally and remotely essen-
tially the same operation. Access control to the
listening socket of the TCSD should be con-
trolled with firewall rules. Access controls to
the TCSD’s internal functionality was imple-
mented as a set of ‘operations,’ each of which
enable a set of functions to be accessible to a
remote user that will enable that user to accom-
plish the operation. For instance, enabling the
seal operation allows a remote user to open and
close a context, create authorization sessions,

load a key, and seal data. By default, all func-
tionality is available to local users and denied
to remote users.

4.4 TPM Management

Some TPM management functionality was im-
plemented in the tpm-mgmt package and the
openCryptoki package. The tpm-mgmt pack-
age contains support for controlling the TPM
(enabling, activating, and so on) and for initial-
izing and utilizing the PKCS#11 support that is
provided in the openCryptoki package.

4.4.1 Controlling the TPM

The owner of the platform has full control of
the TPM residing on that platform. A TPM
maintains three discrete states: enabled or dis-
abled, active or inactive, and owned or un-
owned. The platform owner controls setting
these states. These states, when combined,
form eight operational modes. Each opera-
tional mode dictates what commands are avail-
able.

Typically, a TPM is shipped disabled, inac-
tive and unowned. In this operational mode,
a very limited set of commands is available.
This limited set of commands consists mainly
of self-test functions, capability functions and
non-volatile storage functions. In order to take
full advantage of the TPM, the platform owner
must enable, activate, and take ownership of the
TPM. Enabling and activating the TPM is typ-
ically performed using the platform BIOS or
firmware. If the BIOS or firmware does not
provide this support, but the TPM allows for
the establishment of physical presence through
software, then TrouSerS can be used to estab-
lish physical presence and accomplish the task
of enabling and activating the TPM. Taking

98 • Trusted Computing and Linux

ownership of the TPM sets the owner password,
which is required to execute certain commands.

The tpm-mgmt package contains the com-
mands that are used to control the TPM as de-
scribed above, as well as perform other tasks.

4.4.2 PKCS#11 Support

The PKCS#11 standard defines an API inter-
face used to interact with cryptographic de-
vices. Through this API, cryptographic devices
are represented as tokens, which provide appli-
cations a common way of viewing and access-
ing the functionality of the device. Providing
a PKCS#11 interface allows applications that
support the PKCS#11 API to take advantage of
the TPM immediately.

The TPM PKCS#11 interface is implemented
in the openCryptoki package as the TPM to-
ken. Each user defined to the system has their
own private TPM token data store that can hold
both public and private PKCS#11 objects. All
private PKCS#11 objects are protected by the
TPM’s root of trust for storage. A symmet-
ric key is used to encrypt all private PKCS#11
objects. The symmetric key is protected by
an asymmetric TPM key that uses the user’s
PKCS#11 user login PIN as the key’s autho-
rization data. A user must be able to success-
fully login to the PKCS#11 token in order to
use a private PKCS#11 object. The TPM token
provides key generation, encryption and signa-
ture operations through the RSA, AES, triple
DES (3DES), and DES mechanisms.

The following RSA mechanisms are supported
(as defined in the PKCS#11 Cryptographic To-
ken Interface Standard[PKCS11]):

• PKCS#1 RSA key pair generation

• PKCS#1 RSA

• PKCS#1 RSA signature with SHA-1 or
MD5

The following mechanisms are supported
AES, 3DES, and DES (as defined in the
PKCS#11 Cryptographic Token Interface
Standard[PKCS11]):

• Key generation

• Encryption and decryption in ECB, CBC
or CBC with PKCS padding modes

The RSA mechanisms utilize the TSS to per-
form the required operations. By utilizing the
TSS, all RSA private key operations are per-
formed securely in the TPM. The symmetric
mechanisms are provided to allow for the pro-
tection of data through symmetric encryption.
The symmetric key used to protect the data is
created on the TPM token and is thus, protected
by the TPM. Since the key is protected by the
TPM, the data is protected by the TPM.

Before any PKCS#11 token is able to be used
it must be initialized. Since each user has their
own TPM token data store, each user must per-
form this intialization step. Once the data store
is initialized it can be used by applications sup-
porting the PKCS#11 API.

The tpm-mgmt package contains commands to
initialize the TPM token data store as well as
perform other tasks. Some of the other tasks
are:

• Import X509 certificates and/or RSA key
pairs

Existing certificates and/or key pairs
can be stored in the data store to be
used by applications.

2005 Linux Symposium • 99

• List the PKCS#11 objects in the data store

In addition to any objects that you im-
port, applications may have created
or generated objects in the data store.
tpm-mgmt lets you get a list of all
the PKCS#11 objects that exist in the
data store.

• Protect data using the “User Data Protec-
tion Key”

Protect data by encrypting it with a
random 256-bit AES key. The key is
created as a PKCS#11 secret key ob-
ject with an label attribute of “User
Data Protection Key.” This label at-
tribute is used to obtain a PKCS#11
handle to the key and perform en-
cryption, or decryption operations on
the data.

• Change the PKCS#11 PINs (Security Of-
ficer and User)

PKCS#11 tokens have security offi-
cer and a user PINs associated with
them. It may be necessary or desir-
able to change one or both of these
PINs at some point in time.

4.5 Boot Loader

To preserve the chain of trust beyond the boot
loader, the boot loader must be instrumented to
measure the kernel before it passes over con-
trol. The root of trust for measurement mea-
sured the BIOS before it transferred control, the
BIOS measured the boot loader. Now the boot
loader must measure the kernel. Seiji Mune-
toh and Y. Yamashita of IBM’s Tokyo Research

Lab have instrumented Grub v.0.94 and v.0.96
to perform the required measurements. Since
Grub is a multi-stage boot loader, each stage
measures the next before it transfers control.
This is a slight simplification. Stage 1 is mea-
sured by the BIOS. Stage 1 measures the first
sector of stage 1.5, which then measures the
rest of stage 1.5 and stage 2. The configuration
file is measured early with additional measure-
ments of files referred to in configuration files
taken in sequence. If stage 1.5 is not loaded,
stage 1 measures the first sector of stage 2 in-
stead and that sector measures the rest of stage
2. The grub measurements are stored in PCR
4, the grub configuration file measurement is
stored in PCR 5, and the kernel measurement
is stored in PCR 8. The PCRs used are config-
urable but the defaults meet the requirements
of the TCG PC Specific Implementation Speci-
fication Version 1.1[TCGPC].

Lilo has also been instrumented to take the
measurements by the Dartmouth Enforcer
team. (See more detail about this project in
Section 6.1.1).

4.6 Kernel Measurement Architecture—
IMA

Reiner Sailer, and others of the IBM T.J. Wat-
son Research Center have extended the chain
of trust to the Linux kernel by implementing
a measurement architecture for the kernel as
a LSM.[SailerIMA] (Note: To effectively pre-
serve the chain of trust, the LSM must be com-
piled into the kernel rather than dynamically
loaded.) Thefile_mmap hook is used to
perform the measurement on anything that is
mapped executable before it is loaded into vir-
tual memory. Kernel modules are measured
just before they are loaded. The measurement
is used to extend one of the PCRs numbered
between 7-16, as configured in the kernel to
allow for somewhat flexible PCR use. PCR 9

100 • Trusted Computing and Linux

is the default. Other files that are read and in-
terpreted, such as bash scripts or Apache con-
figuration files, require application modifica-
tions to measure these files. Measurements are
cached to reduce performance impact. Perfor-
mance, usability, and bypass-protection are all
addressed in the Sailer, et al. report. Enforce-
ment is not part of this architecture. The mea-
surements (and measurement log) are intended
to be used by the challenger during remote at-
testation to determine the integrity of the sys-
tem, rather than by the system to enforce a se-
curity policy.

5 Trusted Computing on Linux
Now and in the Future

Although version 1.1 TPMs provide many fea-
tures usable today, significant hurdles exist to
deploying the full capabilities of Trusted Com-
puting outside a structured or corporate envi-
ronment. Software that exists today basically
enables the use of a TPM as one would use a
smartcard. Other features, such as remote attes-
tation, have more extensive requirements. The
components required to implement remote atte-
sation can be seen in Figure 3.

In order to implement remote attestation, TPM
and Platform Vendor Support is required to:

• Put TPM support in the BIOS of shipping
platforms (currently shipping).

• Record the Public Endorsement Key in
some way (such as make a cryptographic
hash) in order to identify whether a plat-
form has a true TPM.

• Create and ship the TPM credential and
the platform credential.

Record of PubEK
at manufacture time

Credentials supplied
to End Users

Privacy CA

TSS Stack

Creation of
Attestation Identity Key

Operating System
boot loader support

Operating System
PCR extend support

Remote Attestation

TSS Stack

TPM / Platform Vendor
Support

TPM
BIOS Support

Supported (GA)

Supported on some
platforms

Figure 3: Dependencies for Full Trusted Com-
puting Deployment

As long as the platform vendor has included
TPM support in the BIOS, a corporate envi-
ronment can work around the lack of the other
elements by recording the PubEK as machines
are deployed and maintaining a PKI internally.
However, in order to enable remote attestation
for general use by the public, a new infras-
tructure among hardware and software vendors
must be created. This infrastructure would pro-
vide the credentials and a hash of the PubEK
of shipping systems to Privacy CAs. The Pri-
vacy CAs differ from existing CAs in the key
creation, certificate application, and certificate
delivery mechanism, so new CAs are needed or
existing CAs must implement the required soft-
ware and procedures. At best, shipping plat-
forms that fully support remote attestation are
years away. Because of the lack of this infras-
tructure, no currently shipping platforms will
have the capability to provide remote attesta-
tion for general use.

To make use of the more advanced features the
TPM can provide, in addition to the infrastruc-
ture element listed above, a Linux distro would
need to:

• Incorporate the measurement architecture

2005 Linux Symposium • 101

into the kernel.

• Ship measurement support for the boot
loader.

• Include TrouSerS or some TCG Software
Stack.

• Include attestation software.

• Include software for safe handling of the
TPM and Platform credentials.

When this level of TPM hardware support is
achieved, the groundwork will be laid to enable
the software that will be used for attestation.
Ideas for an interoperable attestation interface
include a stand-alone attestation daemon and a
modified TLS protocol that includes attestation.
Until one of these solutions is specified and im-
plemented, attestation solutions are ad hoc at
best.

Finally, before general purpose remote attesta-
tion can be widely used, tools and best practice
guidelines are needed to help define valid poli-
cies and maintain policy currency. Depending
on the measurement architectures implemented
by various operating systems, the policy be-
comes quite complex very quickly.

6 Example Uses of the TPM

Given the passive nature of the TPM device, the
decision about its usefulness rests almost en-
tirely on how one will use the device. Many of
the doomsday scenarios surrounding the TPM
device are based on scenarios involving soft-
ware that Linux users will never agree to run
on their hardware. In this section, some of the
most promising uses of the TPM device are ad-
dressed. See also “Interesting Uses of Trusted
Computing”[Anonymous] and “The Role of

TPM in Enterprise Security”[Sailer] for more
discussion around this topic. Anonymous notes
in the first article “Before wide-scale use of TC
for DRM, it will be necessary for the manufac-
turers, software vendors and content providers
to get past a few tiny details, like setting up
a global, universal, widely trusted and secure
PKI. Hopefully readers . . . will understand that
this is not exactly a trivial problem.” The uses
discussed below do not depend on full deploy-
ment of a complete Trusted Computing infras-
tructure but only on existing capabilities.

6.1 Beyond Measurement –Enforcement

A couple of examples of how the Trusted Com-
puting measurements can be used to enforce a
security policy exist and are described in this
section.

6.1.1 Dartmouth’s Enforcer

Enforcer is an LSM that measures each file
as it is opened.[MacDonald] The measure-
ment is compared against a database of pre-
vious measurements. File attributes (mtime,
inode number, and so on) are also inspected.
If the file has changed, the system will ei-
ther log the condition, deny access to the file,
panic the kernel, or “lock” the TPM (by ex-
tending the PCR used by Enforcer with ran-
dom data, which makes decrypting data sealed
to this PCR fail) based on the setting se-
lected by the administrator. Enforcer does
not require a TPM, but can optionally use the
TPM to protect the database and configura-
tion files. Enforcer also provideshelper ,
which allows encrypting a loopback file system
with a key protected by the TPM. Enforcer is
available athttp://sourceforge.net/
projects/enforcer/ .

102 • Trusted Computing and Linux

6.1.2 Trusted Linux Client

The IMA kernel measurement architecture de-
scribed previously provides no direct enforce-
ment mechanisms. Dave Safford of IBM’s
T.J. Watson Research Center has proposed
an extension to the concept that includes en-
forcement. The idea is to provide a se-
ries of LSMs that provide authenticated boot,
encrypted home directories and file attribute
checking. The first module validates the in-
tegrity of initrd and the kernel, and releases
a TPM based kernel symmetric key. The key
is used to derive keys for encrypted home di-
rectories via loopback file system and authen-
ticated file attribute checking. The next mod-
ule deals with extended attributes that are ap-
plied to every file including a file hash, MAC
label, and others. The derived symmetric key is
used to HMAC these attributes, and the value is
checked and cached once at open/execute. A fi-
nal module provides LOMAC style mandatory
access control. See the presentation ’Putting
Trust into Computing: Where does it Fit?
—RSA Conference 2005’ for an overview of
this concept.[TCGRSA]

6.2 Enterprise Uses

Since the Trusted Computing Group is an in-
dustry led standards organization it is no sur-
prise that compelling use cases exist for the en-
terprise.

6.2.1 Network attach

Enterprise networks are often described as
’hard and crunchy on the outside, but soft and
chewy on the inside’ reflecting the fact that they
typically have very good perimeter defenses,
but are less well protected from the inside. This
poses a problem for enterprises that allow their

employees to take mobile computing devices
on the road and connect to non-protected net-
works. Viruses very often use unprotected mo-
bile devices as a gateway device through which
to invade corporate networks. To defeat viruses
and worms that come in this way, more inter-
nal firewalls and choke points are architected
into the network. A few vendors are now of-
fering compliance checking software that chal-
lenge mobile devices when they attempt to re-
attach to the internal network; this is to prove
that they meet corporate guidelines before al-
lowing them to attach. This is typically done
through agent software running on the mobile
device. The agent software becomes the logi-
cal attack point.

Trusted Computing can make this compliance
checking stronger. The Trusted Network Con-
nect (TNC) subgroup of the Trusted Computing
Group has released a specification[TNC] for
client and server APIs that allow development
of plugins for existing network attach products
to do client integrity measurement and server-
side verification of client integrity. The plug-
ins add remote attestation capabilities to exist-
ing network attach products. The products con-
tinue to operate in their normal manner with the
assurance that the client agents have not been
subverted.

6.2.2 Systems management

Remote attestation is extremely useful when
combined with systems management software.
System integrity of the managed system is ver-
ified through remote attestation periodically, or
on demand. Tied into the intrusion detection
system, systematic integrity checking ensures
that compromises can be quickly detected.

2005 Linux Symposium • 103

6.2.3 Common Criteria Compliance

Common Criteria evaluations are based on a
well-defined and usually strict Security Target.
Installing new software may cause the system
to flip to an unevaluated mode. Remote attes-
tation can be employed to confirm that all sys-
tems that are required to be Common Criteria
compliant, retain adherence to the Security Tar-
get. This is one of the simpler uses of remote
attestation since the policy to which the client
must adhere is so static, strict, and well-defined
that it eliminates the need for much policy man-
agement.

6.3 Uses by Individuals

The TPM can also be used to secure individ-
ual’s computer and data.

6.3.1 TPM Keyring

The TPM Keyring application illustrates us-
age of the TSS API, and some of the proper-
ties of keys created with a TPM. TPM Keyring
is licensed under the GPL and contains ex-
amples of how to wrap a software generated
key with a TPM key, connect to local and re-
mote TCS daemons, store and retrieve keys and
encrypt and decrypt data using the TSS API.
The source is available from CVS athttp:
//trousers.sf.net/ . TPM Keyring will
wrap a software generated OpenSSL key with
the Storage Root Key (SRK) of an arbitrary
number of users. Once each user has a copy
of this wrapped key, all users of the keyring
can send secure messages to one another, but
no user can give the key to anyone else, except
the owner of the original OpenSSL key. Scripts
are also provided to easily encrypt a symmetric
key and use OpenSSL to encrypt large files.

You can imagine usingtpm_keyring itself,
or the concepts presented bytpm_keyring
to create private and secure peer-to-peer net-
works.

Creating a New Keyring tpm_keyring
generates a plaintext RSA key pair in memory
and wraps the private key of that key with the
public key of your TPM’s root key. The plain-
text RSA key is then encrypted with a password
(that you are prompted for), and written to disk.
Once the new key ring is created, you should
move the encrypted software generated key to
a safe place off your machine.

Adding Members to a Keyring After you’ve
created a keyring, you’ll probably want to add
members so that you can start exchanging data.
You’ll need to bring your encrypted key file out
of retirement from off-site backup in order to
wrap it with your friend’s TPM’s root key. Con-
tact this person and ask for their IP address or
hostname. The public portion of your friend’s
root key will be pulled out of their TCS dae-
mon’s persistent storage and used to wrap your
plaintext key. The resulting encrypted key is
stored in your friend’s persistent storage, with
a UUID generated by hashing the name of the
keyring you created. Let your friend know the
name you gave the keyring so that they can im-
port the key.

Importing a Key Once a friend has stored
their key in your persistent store, you can im-
port it so thattpm_keyring can use it. Run
the import command with the same name of the
key ring that your friend created and some host-
name and alias pair to help you remember the
friend who’s keyring you’re joining.

104 • Trusted Computing and Linux

6.3.2 eCryptfs

The need for disk encryption is often over-
looked but well motivated by security events
in the news; for example, this article at
http://sanjose.bizjournals.
com/sanjose/stories/2005/04/04/
daily47.html about a physical theft com-
promising 185,000 patients’ medical records.
eCryptfs [Halcrow:2005], being presented at
OLS 2005 by Michael Halcrow, offers as an
option, file encryption using TPM keys. In
the case mentioned, if the information on disk
had been encrypted with a TPM key, the data
would not have been recoverable by the thief.
Hot swappable drives and mobile storage being
so easy to remove, in particular, benefit from
encryption tied to a TPM key.

6.3.3 mod_ssl

Another use for the TPM is to provide secure
storage for SSL private keys. Many system ad-
ministrators face a problem of securely protect-
ing the SSL private key and still being able to
restart a web server as needed without human
interaction. With the TPM, the private key can
be bound, or optionally, sealed to a certain set
of PCRs allowing it to be unsealed as necessary
for starting SSL in a trusted environment on the
expected platform.

6.3.4 GnuPG

Project Aegypten (http://www.gnupg.
org/aegypten/) has extended GnuPG and
other related projects so that GnuPG can use
keys stored on smartcards. This can be ex-
tended to enable GnuPG to use keys stored on
the TPM.

6.3.5 OpenSSH

Similarly, as the mod_ssl use case mentioned
above, the TPM can be used to provide secure
storage for SSH keys. In addition to the server
key being protected, individuals can use their
own TPM key to protect their SSH keys.

7 Pros and Cons of Trusted Com-
puting

So much emotionally charged material has
been written about Trusted Computing that it
is difficult to separate the wheat from the chaff.

The seminal anti-TCG commentary is available
from [Anderson], [RMS], [Schoen:2003], and
[Moglen] with the seminal pro-TCG commen-
tary available from [Safford].

Seth Schoen has written an excellent paper
“EFF Comments on TCG Design Implementa-
tion and Usage Principles 0.95” with thought-
ful, informed criticism of Trusted Computing.
This paper makes the point “Many [criticisms]
depend on what platform or operating system
vendors do.” [Schoen:2004]

Catherine Flick has written a comprehensive
survey of the criticisms of Trusted Computing
in her honor’s thesis entitled “The Controversy
over Trusted Computing.” [Flick:2004]

This paper will address and attempt to clarify
only the few technical issues that seem to come
up repeatedly.

7.1 Privacy

There were many valid privacy concerns sur-
rounding the 1.1 version of the TPM specifica-
tion requiring ’trusted third parties’ (PKI ven-
dors) to issue AIKs. The concern was that the

2005 Linux Symposium • 105

trusted third party is able to link all pseudony-
mous AIKs back to a single Platform Creden-
tial. To address this concern, v. 1.2 now pro-
vides a new way for requesting AIKs called Di-
rect Anonymous Attestation. DAA is beyond
the scope of this paper, more information can
be found in [Brickell]. In the v.1.1 timeframe,
privacy concerns are mitigated by the fact that
no manufacturer records a hash of the EK be-
fore shipping the TPM.

The measurement log, as maintained by the
IMA kernel measurement architecture contains
an entry about every executable that has run
since boot. Like systems management data,
this measurment log data may be considered
sensitive data that should not be shared be-
yond the confines of the system, or perhaps
the local network. A couple of solutions have
been proposed for this problem. One very
interesting solution calls for a compact veri-
fier which verifies the targeted system and re-
ports the results back to the challenger with-
out leaking data. The verifier is a stock
small entity with no private attributes. In
this solution, the verifier would ideally be
a small neighboring partition or part of the
hypervisor[Garfinkel:2003]. Another solution
calls for attestation based on abstract properties
rather than complete knowledge of the system
attributes. See [SadStu:2004] and [?].

7.2 TPM Malfunction

What happens to my encrypted data if the TPM
on my motherboard dies? This depends on how
the data was encrypted and what type of key
was used to encrypt the data. When TPM keys
are created, you have the option of making the
key migratable. This implies a trade-off be-
tween security and availability so you are en-
couraged to consider their goal for each indi-
vidual key. If the key was created migratable
and the data is bound but not sealed to the TPM,

you can import the key on a new TPM, restore
the encrypted data from a backup, and use the
key on the new TPM to access the data. If the
key was not created as a migratable key or the
data was sealed to the TPM, then the data will
be lost.4 Note that a backup of the migratable
key must be made and stored in a safe place.

7.3 Secure Boot

Will trusted computing help me be able to per-
form secure boot as described by Arbaugh, and
others[Arbaugh:1997] Arbaugh and others de-
scribed “A Secure and Reliable Bootstrap Ar-
chitecture” that is widely believed to be an in-
spiration for Trusted Computing. This paper
describes the AEGIS architecture for establish-
ing a chain of trust, driving the trust to lower
levels of the system, and, based on those ele-
ments, secure boot. Trusted Computing sup-
plies some elements of this architecture, but
the TPM cannot completely replace the PROM
board described in the paper. Commercially
available TPMs currently do not have enough
storage to contain the secure recovery code.
Additionally, the infrastructural5 and procedu-
ral hurdles, described in Section 5, would still
have to be overcome. Trusted Computing en-
hanced BIOSes do not currently perform the
verfication described in the paper, so the secure
recovery has to be added to the BIOS imple-
mentation or enforced at a higher level than de-
scribed in the paper.

4This is a slight simplification. If the PCR(s) selected
for the seal operation on the new machine are exactly
identical to the ones that the data was sealed to, then you
can migrate the sealed data. Depending on the PCR cho-
sen, to have the PCRs be the same the system, kernel,
boot loader, and patch level of the two systems would
have to be identical.

5The assumption of “the existence of a cryptographic
certificate authority infrastructure” and the assumption
that “some trusted source exists for recovery purposes.”

106 • Trusted Computing and Linux

7.4 Kernel Lock-out

Does trusted computing lock me out of being
able to boot my custom kernel? No, this func-
tionality does not exist. The technical, infras-
tructural, and procedural hurdles, described in
Section 5, would have to be overcome to en-
force this technology on a global basis. Will
this technology ever exist? There are cultural
and political forces barring adoption of tech-
nology that takes aways the individual’s right
to run their operating system of choice on their
general purpose computer. There is economic
disincentive to forcibly limiting general pur-
pose computing. The realization of this sce-
nario depends more on political factors than
technical capabilities.

7.5 Free and Open Source BIOS

Will I still be able to replace my computer’s
BIOS with a free BIOS? Trusted Computing
does not prevent you from replacing your sys-
tem BIOS with one of the free BIOS replace-
ments, however, doing so currently violates the
chain of trust. The TPM on the system can
be used as a smartcard, but attestation would
be broken. Free BIOS replacements can im-
plement the relevant measurement architecture
and maintain the chain of trust, if the boot
block remains immutable and measures the
new BIOS before it takes control of the sys-
tem. The challenger during attestation would
see that a different BIOS is loaded and can
choose to trust the system, or not, based on their
level of trust in the free BIOS.

7.6 Specific Additional Concerns

Is the Trusted Computing Group taking
comments about specific concerns? The
Trusted Computing Group has interacted

with many people and organizations who
have expressed concern with the group’s
specifications. Several of the concerns have
resulted in changes to the TPM specifica-
tion, for example, the introduction of Direct
Anonymous Attestation, which solves many
of the privacy problems that the BSI and
individuals expressed. The Trusted Computing
Group invites serious comments to be sent to
admin@trustedcomputinggroup.org, or entered
into their comment web page athttps:
//www.trustedcomputinggroup.
org/about/contact_us/ .

8 Conclusion

This paper has quickly covered a great deal
of ground from Trusted Computing definitions
and components to uses and common concerns;
no discussion about Trusted Computing and
Linux is complete without citing Linus Tor-
vald’s famous email ’Flame Linus to a crisp!’
proclaiming ’DRM is perfectly ok with Linux.’
6 Even though Linus considers DRM okay,
the hope is that this paper makes clear that the
uses of Trusted Computing are not limited to
DRM, and that individual Linux users can use
the TPM to improve their security. The Trusted
Computing Group has shown itself willing to
work with serious critiques and the Linux com-
munity is capabable of defending itself from
abusive technologies being adopted. With es-
timates that more than 20 million computers
have been sold containing a TPM, and the ex-
istence of open source drivers and libraries,
let’s put this technology to productive use in
ways that are compatible with free and open
source philosophies. While the infrastructure
and software for complete support are future
work items, that does not prevent users from

6http://marc.theaimsgroup.com/?l=
linux-kernel&m=105115686114064&w=2

2005 Linux Symposium • 107

utilizing their TPM to gain secure storage for
their personal keys and data through projects
already available or proposed by this and other
papers.

9 Legal Statement

Copyright c©2005 IBM.

This work represents the view of the authors
and does not necessarily represent the view of
IBM.

IBM and the IBM logo are trademarks or regis-
tered trademarks of International Business Ma-
chines Corporation in the United States, other
countries, or both.

Linux is a registered trademark of Linus Tor-
valds in the United States, other countries, or
both.

Other company, product, and service names
may be trademarks or service marks of others.

References in this publication to IBM products
or services do not imply that IBM intends to
make them available in all countries in which
IBM operates.

This document is provided “AS IS,” with no ex-
press or implied warranties. Use this informa-
tion at your own risk.

References

[Anderson] Ross Anderson’Trusted
Computing’ Frequently Asked Questions,
2003,
http://www.cl.cam.ac.uk/
users/rja14/tcpa-faq.html

[Anonymous] AnonymousInteresting Uses of
Trusted Computing, 2004,
http://invisiblog.com/
1c801df4aee49232/article/
0df117d5d9b32aea8bc23194ecc270ec

[Arbaugh:1997] William A. Arbaugh, David
J. Farber, and Jonathan M. SmithA
Secure and Reliable Bootstrap
Architecture, Proceedings of the IEEE
Symposium on Security and Privacy,
May 1997

[Brickell] E. Brickell, J. Camenisch, and L.
ChenDirect Anonymous Attestation,
Proceedings of 11th ACM Conference on
Computer and Communications Security,
2004

[Fisher] Dennis Fisher,Trusted Computing
Group Forms, eWeek, April 8, 2003,
http:
//www.eweek.com/article2/0,
1759,1657467,00.asp

[Flick:2004] Catherine FlickThe Controversy
over Trusted Computing, The University
of Sydney, 2004,http:
//luddite.cst.usyd.edu.au/
~liedra/misc/Controversy_
Over_Trusted_Computing.pdf

[Garfinkel:2003] Tal Garfinkel, Ben Pfaff, Jim
Chow, Mendel Rosenblum, and Dan
BonehTerra: A Virtual Machine-Based
Platform for Trusted Computing,
Proceedings of the 19th Symposium on
Operating System Principles(SOSP
2003), October 2003

[Halcrow:2005] Michael Austin Halcrow
eCryptfs: An Enterprise-class
Cryptographic Filesystem for Linux,
Ottawa Linux Symposium, 2005

[Haldar:2004] Vivek Haldar, Deepak
Chandra, and Michael FranzSemantic

108 • Trusted Computing and Linux

Remote attestation: A Virtual Machine
Directed Approach to Trusted
Computing, USENIX Virtual Machine
Research and Technology Symposium,
2004,http://gandalf.ics.uci.
edu/~haldar/pubs/
trustedvm-tr.pdf

[MacDonald] Rich MacDonald, Sean Smith,
John Marchesini, and Omen WildBear:
An Open-Source Virtual Secure
Coprocessor based on TCPA, Dartmouth
College, August 2003,
http://www.cs.dartmouth.
edu/~sws/papers/msmw03.pdf

[Moglen] Eben MoglenFree Software
Matters: Untrustworthy Computing,
2002,http:
//emoglen.law.columbia.edu/
publications/lu-22.html

[Mohamed] Arif Mohamed,Who Can You
Trust?, ComputerWeekly.com, April 26,
2005,
http://www.computerweekly.
com/articles/article.asp?
liArticleID=
138102&liArticleTypeID=
20&liCategoryID=
2&liChannelID=
22&liFlavourID=1&sSearch=
&nPage=1

[RMS] Richard StallmanCan you trust your
computer?, 2002,http:
//www.gnu.org/philosophy/
can-you-trust.html

[PKCS11] RSA Laboratories PKCS #11
v2.20: Cryptographic Token Interface
Standard, 28 June 2004,
ftp://ftp.rsasecurity.com/
pub/pkcs/pkcs-11/v2-20/
pkcs-11v2-20.pdf

[SadStu:2004] Ahmad-Reza Sadeghi and
Christian StuebleProperty-based
Attestation for Computing Platforms:
Caring about properties, not
mechanisms, 20th Annual Computer
Security Applications Conference,
December 2004,
http://www.prosec.rub.de/
Publications/SadStu2004.pdf

[Safford] David SaffordTCPA
Misinformation Rebuttal, IBM T.J.
Watson Research Center, 2002,http:
//www.research.ibm.com/
gsal/tcpa/tcpa_rebuttal.pdf

[SailerIMA] Reiner Sailer, Xiaolan Zhang,
Trent Jaeger, and Leendert van Doorn,
Design and Implementation of a
TCG-based Integrity Measurement
Architecture, 13th Usenix Security
Symposium, August 2004

[Sailer] Reiner Sailer, Leendert van Doorn,
and James P. WardThe Role of TPM in
Enterprise Security, September 2004,
https://www.
trustedcomputinggroup.org/
press/news_articles/
rc23363.pdf

[Schoen:2003] Seth SchoenTrusted
Computing Promise and Risk, EFF, 2003,
http://www.eff.org/
Infrastructure/trusted_
computing/20031001_tc.pdf

[Schoen:2004] Seth SchoenEFF Comments
on TCG Design, Implementation and
Usage Principles 0.95, EFF, 2004,
http://www.eff.org/
Infrastructure/trusted_
computing/20041004_eff_
comments_tcg_principles.pdf

[Smith:2005] Sean W. SmithTrusted
Computing Platforms Design and

2005 Linux Symposium • 109

Applicatons, Springer, 2005, ISBN
0-387-23916-2

[Strasser] Mario StrasserA Software-based
TPM Emulator for Linux, Swiss Federal
Institute of Technology, 2004,
http://www.infsec.ethz.ch/
people/psevinc/
TPMEmulatorReport.pdf

[TCGArch] TCGTrusted Computing Group
Specification Architectural Overview,
Revision 1.2, April 28, 2004,http://
www.trustedcomputinggroup.
org/downloads/TCG_1_0_
Architecture_Overview.pdf

[TCGBackground] TCGTrusted Computing
Group Backgrounder, January 2005,
http://www.
trustedcomputinggroup.org/
downloads/background_docs/
TCGBackgrounder_revised_
012605.pdf

[TCGFAQ] TCGTrusted Computing Group
Fact Sheet, 2005,http://www.
trustedcomputinggroup.org/
downloads/background_docs/
FACTSHEET_revised_020105.
pdf

[TCGMain] TCGTCG Main Specification
Version 1.1b, 2003,http://www.
trustedcomputinggroup.org/
downloads/specifications/
TCPA_Main_Architecture_v1_
1b.zip

[TCGPC] TCGTCG PC Specific
Implementation Specification Version 1.1,
August 18, 2003,http://www.
trustedcomputinggroup.org/
downloads/TCG_
PCSpecification_v1_1.pdf

[TCGRSA] TCGPutting Trust into
Computing: Where does it Fit? - RSA
Conference 2005, https://www.
trustedcomputinggroup.org/
downloads/Putting_Trust_
Into_Computing_Where_Does_
It_Fit_021405.pdf

[TNC] TCG TCG TNC Architecture Version
1.0, 2005,http://www.
trustedcomputinggroup.org/
downloads/specifications/
TNC_Architecture_v1_0_r4.
pdf

[TPM] TCG TCG TPM Specification Version
1.2, 2004,http://www.
trustedcomputinggroup.org/
downloads/specifications/
mainP1DP_rev85.zip

[TSS] TCGTCG Software Stack Specification
Version 1.1, 2003,http://www.
trustedcomputinggroup.org/
downloads/TSS_Version__1.1.
pdf

110 • Trusted Computing and Linux

NPTL Stabilization Project
NPTL Tests and Trace

Sébastien DECUGIS
Bull S.A.

sebastien.decugis@bull.net

Tony REIX
Bull S.A.

tony.reix@bull.net

Abstract

Our project is a stabilization effort on the
GNU libc thread library NPTL—Native POSIX
Threading Library. To achieve this, we focused
our work on extending the pool of open-source
tests and on providing a tool for tracing the in-
ternal mechanisms of the library.

This paper introduces our work with a short sta-
tus on test coverage of NPTL at the beginning
of the project (February 2004). It explains how
we built the prioritized list of NPTL routines
to be tested. It then describes our methodology
for designing tests in the following areas: con-
formance to POSIX standard, scalability, and
stress. It also explains how we have simplified
the use of the tests and the analysis of the re-
sults. Finally, it provides figures about our re-
sults, and it shows how NPTL has evolved dur-
ing year 2004.

The paper goes on to explain how this NPTL
Trace Tool can help NPTL users, and hackers,
to understand and fix problems. It describes
the features of the tool and presents our cho-
sen architecture. Finally, it shows the current
status of the project and the possible future ex-
tensions.

1 Introduction

NPTL library was first released on September
2002 and merged with the glibc about sixteen
months later. It was meant from the begin-
ning to replace the LinuxThreads implementa-
tion, and therefore become the standard thread
library in GNU systems. The new library pro-
vides full conformance to the POSIX1 require-
ments, including signal support, very good per-
formance and scalability.

Porting from LinuxThreads to NPTL was in-
tended to be transparent; however, there are
several cases where software using NPTL must
be modified. There are some documented
changes, such as signal handling orgetpid()
behavior. There are also changes in the applica-
tion dynamics, such as those caused by threads
being created more quickly. A user applica-
tion coded with incorrect assumptions about
multi-threaded programming can fail because
of some of the semantic changes; such prob-
lems are very difficult to debug. We had the
opportunity to work with IBM on some of their
internalBugZillareports, and in many cases the
problem appeared because of changes in appli-

1The POSIX® standard refers to the IEEE Std 1003.1,
a.k.a. Single UNIX Specification [1] v3. The current
version is the 2004 Edition and includes Technical Cor-
rigendum 1 and 2. POSIX is a registered trademark of
the IEEE, Inc.

• 111 •

112 • NPTL Stabilization Project

cation dynamics. Last but not least, NPTL is
still under development. New features are be-
ing added from time to time. Fixes and op-
timizations are also frequent. All these code
modifications have the potential to introduce
new bugs.

Before NPTL could be used reliably in complex
applications on production systems, it needed
more substantial testing and validation. Any
production system providing reliable applica-
tions should not crash or hang simply because
the threading library is not stable. On the other
hand, the new library provides very good per-
formance and therefore is of great interest for
these same systems.

To continuously improve the stability and qual-
ity of NPTL as it evolves, as well as to shorten
the stabilization period after each change, we
developed a robust set of regression and stress
tests. Ideally, these tests would be run fre-
quently during NPTL development to look for
regressions and the tests can be augmented as
new features are added. These tests should
cover as many APIs, arguments to the APIs,
and threading semantics as possible. The tests
must remain independent of the implementa-
tion of the threading library so that the tests
will not need to be changed each time the im-
plementation changes. We will see in the next
chapter how were specified and developed a list
of tests, how we tried to make these tests runs
as simple and user-friendly as possible, and fi-
nally we will show NPTL evolution, from the
test results point of view, through year 2004.

As we have seen previously, many of the prob-
lems developers have to face when they port
an application from LinuxThreads to NPTL are
due to bugs located in their application, not in
NPTL. Bugs dealing with multi-threading are
particularly difficult to isolate and reproduce
most of the time. As an example, when you
run the program step-by-step in a debugger,
the thread creation time is totally different than

when it runs outside the debugger. These bugs
can also depend on the machine load, on a de-
vice access slowing only one of the threads, or
a multitude of factors, resulting in weeks of re-
search and testing for an application developer.
Moreover, many POSIX standard interfaces are
quite intricate, and many programmers do not
test all return codes from NPTL routines. At
best, an application which receives an unex-
pected error code may crash; at worst, the ap-
plication may corrupt data silently.

To solve these issues, we have developed a
trace tool for NPTL, called POSIX Threads
Trace Tool (PTT). This tool keeps track of all
NPTL related events, such as thread creation,
lock acquisition, with little impact on the appli-
cation. By tracing the library internals, we can
understand the chain of events which lead to a
hang or strange behavior in the application. We
can also understand how the application is re-
ally using NPTL functions, measure lock con-
tention, and optimize both the NPTL imple-
mentation and the application’s use of NPTL.
Finally, these traces can prove that a bug is in
NPTL or in the kernel, rather than in the appli-
cation. The third chapter of this paper is dedi-
cated to this trace tool. It attempts to show the
limitations of existing tools, then describes the
features of our tool and how these features can
be used efficiently to solve real situations. It
also shows the tool internals and its current lim-
itations and future directions.

The paper concludes with an overview of the
remaining work to do on NPTL, NPTL tests,
and NPTL trace tool, in order to obtain a pro-
duction quality level in this open-source prod-
uct. It shows the current use of the tests in the
library and kernel development process. It also
shows that this testing effort is necessarily not a
"one-shot" project, and that more people should
be involved in projects like this one. As for
the trace, it shows how the trace tool can be
extended into a dynamic code checker, or into

2005 Linux Symposium • 113

a profiling tool, with a minimal effort. It also
deals with how this modified NPTL can be set
up in a production environment, and why peo-
ple should use this tool.

2 NPTL Tests

The first part of our project consisted of im-
proving the test coverage for the NPTL library.
Our goal was to be as exhaustive as possible,
at least as far as POSIX requirements are con-
cerned. We focused on the POSIX standard
[1] among all standards the NPTL is supposed
to conform to, because it is largely used on
other platforms, and so is important for ensur-
ing portability of an application, and because
reference is made in the library name—Native
POSIXThread Library—which means it is the
first standard one would expect NPTL to con-
form to.

2.1 Situation on March 2004

When we started our project in early 2004, we
isolated three open-source projects which pro-
vided test cases for NPTL.

The first one is theGNU lib C project [glibc]
itself. NPTL source tree contains test cases that
can be run against the freshly compiled glibc
by issuing themake check command. These
tests—about 160 files at that time—are not doc-
umented at all and hardly commented. Their
naming convention is the only hint to guess
what each test is supposed to do. We had a hard
time reading each test case and writing a short
abstract on what the test is really doing. As a
synthesis, these tests are mostly regression tests
which test for very specific features, and test
coverage for each library routine is far from ad-
equate or complete. Moreover, the tests are of-
ten very close to NPTL internals, which means

more maintenance when the library implemen-
tation changes. These tests are useful for the
glibc developers, but are by design too closely
linked to testing implementation specifics to be
usable as a proof of reliability or indicator of
conformance.

The second project we focused on is theOpen
POSIX Test Suite[OPTS]. This is a pure test
project, with a lite harness—the only constraint
on a test case is its return value—and a simple
structure, at least for the regression tests. For
each library routine, an XML file contains a set
of assertions that describe the POSIX standard
requirements for this routine, and then the test
cases are named according to the assertion they
are testing. Extracting the coverage informa-
tion is quite straightforward from this structure.
The test cases are also often well documented,
with few exceptions where the comments do
not match the content.

The third project we considered is theLinux
Test Project[LTP]. This is the most used open-
source test project for Linux, but it appeared
that it provides very few test cases for NPTL,
aside from those of the OPTS which is in-
cluded. Moreover, the structure is more com-
plex and the format for test cases is more rigid
than in the OPTS.

After this analysis, we decided to release our
test cases to the OPTS, as they would later be
included in LTP with the complete OPTS new
release. In situations where we would have
to write implementation-dependent test cases,
they would be submitted to the glibc project
directly, but we did our best to avoid NPTL-
internals dependent code, as it would require
more maintenance.

2.2 Prioritized list

Our next step was to find what to test. NPTL
contains more than 150 routines, so we had to

114 • NPTL Stabilization Project

establish our priority list based on the following
criteria:

1. functions which are used the most fre-
quently;

2. functions which are complex enough to
possibly contain bugs, based on their al-
gorithm; and

3. functions which are not just a wrapper to
the kernel—as we are not testing the ker-
nel.

To find out which functions are the most
used, we chose seven multi-threaded applica-
tions representative of several computer science
domains where multi-threading is frequently
used. The selected software were: two different
Java Virtual Machines;JOnAS, an open-source
Java application server, compiled withgcj; the
Apacheweb server; thesquid web cache and
proxy; theMySQLdatabase server; andGLu-
cas, a scientific software described in the next
chapter. Each application was analyzed with
thenmutility to find out which NPTL routines
were used. We also included a personal opinion
based on our past experience with each routine,
to establish the list.

This work has resulted in a complete list of
functions split into 4 groups, from the most
important to test to the less important. The
first group (most important) contains 15 func-
tions, dealing withthreads, mutexesandcond-
vars. The second group contains 27 functions,
dealing withthreads, signals, cancellationand
semaphores. The complete list is available on
our website [2]. The remaining functions be-
long to groups three and four. Even if NPTL
contains 150+ functions, many of those func-
tions are only used to change a value in a struc-
ture (attribute), so the bug probability is re-
ally small. With groups 1, 2 and 3 we cover
almost all the functions which can encounter

problems. At this time, only groups 1 and 2
have been completely tested. There is still a
great amount of work remaining to complete
the test coverage—this will be detailed later in
this paper.

2.3 Methodology

We had to design a method for test writing. We
based it on the OPTS method.

For each library routine to test, the first step was
to analyze the POSIX standard and extract each
assertion that the function has to verify to be
compliant. For some functions the standard ap-
peared to be unclear or contradictory. In these
cases, we opened requests for clarification in
the Austin Revision Group [3], so that the next
Technical Corrigendum for the standard would
clarify the obscure parts.

In the next step, these assertions were com-
pared to those already present in the OPTS, and
the assertions.xmlfile was updated according
to the differences we found. Most of the dif-
ferences we encountered so far were due to the
POSIX standard evolution since the OPTS was
first released.

The third step in the design was to check each
existing test case for a given assertion, find out
possible errors, try to check that all situations
were tested, and list the missing cases which
had to be written. For some assertions, we also
had to specify stress tests to be written in order
to be exhaustive, or when we could not figure
another way to test a particular feature. We also
specified scalability tests to be written for some
functions where scalability is important, even if
this is more a quality of implementation issue
than part of the POSIX standard.

At each step of this process, for each function,
we posted an article in our project forum, pub-
licly available and accessible from our website

2005 Linux Symposium • 115

[2]. This allowed other people to check how
they could help or see the rationale for a partic-
ular test.

Once our design was complete, we had to write
the test cases and submit them to the OPTS
project. We wrote three kinds of test cases:
conformance, stressandscalability.

A conformance test runs for a short period of
time and returns a value representing its result:
PASSED, FAILED, UNRESOLVED, etc. See
the OPTS documentation for a detailed expla-
nation of return codes.

A stress test runs forever until it is interrupted
with SIGUSR1 (means success) or a problem
occurs (means failure). Most of the stress tests
are very resource-consuming and are meant to
be run alone in the system. In this way, it is
possible to identify the cause of a failure, when
any occurs.

A scalability test loops on a given operation un-
til the number of iterations is reached or un-
til failure, and saves the duration of each iter-
ation. Then, measures are parsed with a math-
ematical algorithm which tells if the function
is scalable (constant duration) or not (duration
depends on the changing parameter). The al-
gorithm is based on the least squares method
to model the results. The table of measures
can also be output and used to generate a graph
of the results with thegnuplot tool. Figure 1
gives an example of such a graphical output.
It shows the duration ofsem_open() and
sem_close() operations with an increasing
number of opened semaphores in the system.
Other examples can be found in our forum.

2.4 TSLogParser tool

To be useful, the tests must be run frequently,
and the results must be easy to analyze and

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 10000 20000 30000 40000 50000 60000 70000
Semaphores

sem_open/sem_close

sem_open sem_close

Figure 1: Graphical output sample

compare with other runs (references). Whereas
running the tests is quite straightforward with
OPTS (just set up the flags and runmake), the
analysis can be a real pain. As an example, af-
ter we completed the test writing for our first
group of functions, we ran a complete test cam-
paign on several Linux distributions with sev-
eral hardware architectures—i686, PowerPC,
ia64. We got a total of nine different con-
figurations, and three runs on each configura-
tion, which resulted in a total of about 50,000
test case results to digest. Needless to say, we
needed automated tools to extract the useful in-
formation!

In many cases, comparing several runs and
finding quickly what the differences are in de-
tail is all we need. That supposes we have an ar-
bitrary reference, to compare new code results
to. But comparing huge log files is far from be-
ing easy. Using thediff tool is not a solution,
as there are expected differences between the
runs—order of test case execution, timestamps,
random values— and a long time can be spent
doing the analysis.

Another approach is to first make a synthesis of
each run, and then only compare the synthesis.
This is quite easy to achieve with tools such as
grepandwc. The Scalable Test Platform (dis-

116 • NPTL Stabilization Project

cussed in the next section), for example, uses
this kind of summary tool. Anyway, this ap-
proach has some drawbacks. When a new fail-
ure appears, it is not possible to find out which
test is failing. Also, if the success/failure dis-
tribution remains constant, while not involving
the same individual tests, you won’t see any-
thing with your tool.

To address all these issues, we have designed a
new tool: TSLogParser[4]. The main idea is
to parse the log file of a test suite run and save
the results and detailed information about each
test into a database; and then be able to access
all this information through a web interface. It
allows filtering of results, to show only partial
information or to access all details in just a few
clicks. It also makes comparing several runs
quite easy.

The structure of this tool has been designed to
allow several kinds of test suites to be parsed
and displayed the same way. The parser mod-
ule which saves the log file into the database
is written as a plug-in. The visualization and
administration interfaces are not dependent on
the test suite format. The current implementa-
tion is written in PHP and has been used with
Apache and MySQL. It is able to compare up
to 10 OPTS runs at once on a standard work-
station. It also extracts statistical information
from each run and allows filtering according to
test status—for example one may want to hide
all the successful tests or show only tests that
end with a segmentation fault.

This tool has made the analysis of OPTS run
results a fast and easy operation. It is a must-
have—in our opinion—for anyone who is using
the OPTS.

2.5 Scalable Test Platform

Another frequent issue in testing is that the ac-
tive developers often lack the resources—time,

hardware—to run complete test campaigns fre-
quently. This can be solved, thanks to theScal-
able Test Platform[STP] andPatch Lifecycle
Manager [PLM] projects from Open Source
Development Labs(OSDL).

PLM tracks the official kernel patches and al-
lows uploading of new patches (either manu-
ally or automatically). STP allows people to re-
quest runs against tests, against any PLM patch,
with a choice of Linux distributions and ma-
chine hardware. Our project contributed to STP
by making the OPTS runnable through its inter-
face. There is also a work in progress to bring
the same patch feature that PLM provides for
the glibc of the test system.

Once the requested test run completes, an email
is sent to the requester with a summary of the
results, and the complete log file is available for
download. There is another work in progress to
make the results available through the TSLog-
Parser interface, because as we already dis-
cussed a summary can sometimes not contain
enough information.

A very interesting feature of the PLM project
is the ability to automatically pull new ker-
nel patches and run a bunch of tests in STP—
including the OPTS—against the new patched
kernel. This allows very quick detection when
new problems appear.

2.6 Situation on March 2005

After sixteen months of active work on this
project, we are reaching the end of our credits.
During this period, we were able to analyze and
write test cases for all our 42 most important
NPTL functions. A total of 246 conformance
tests, 9 scalability tests and 16 stress tests have
been written. These 42 functions correspond
to 283 distinct assertions in POSIX, of which
246 (90%) are now covered by the OPTS and

2005 Linux Symposium • 117

135 (55% of OPTS) were contributed within
our project. Figure 2 shows the evolution of
the number of test cases (upper plot) and func-
tions tested (lower plot) during our project. It
only refers to our contribution, not to the com-
plete OPTS project. The horizontal step dur-
ing November 2004 corresponds to our first
test campaign. The vertical step on February
2005 is due to semi-automated test generation
for some signal-related functions. It is interest-
ing to note that both plots are almost identical.
This means that the amount of work required
for each function to complete the OPTS work is
almost the same for all functions. This needed
work can be due to POSIX evolutions, as well
as incomplete or invalid OPTS test cases.

Figure 2: Project progression

Thanks to these test cases, a total of 22 de-
fect reports have been issued—21 in the glibc
and 1 in the kernel—most of which have been
fixed in recent releases. The kernel defect
deals with the scheduler and theSCHED_RR
policy behavior on SMP machines. The glibc
defects are either conformance bugs (wrong
error code returned, bad#include files or
symbol requirements), or functional bugs (flags
role in sigaction() , behavior of timeouts
with condvars), or else just bugs (segmentation
faults, hangs, unexpected behaviors). We’ve
also found a scalability issue with the func-

tion sem_close() , the duration of which de-
pends on the number of opened semaphores.

In the meantime, 5 enhancement requests
have been issued to the Austin Revision
Group, about obscure or incomplete points
in the POSIX standard. These requests ad-
dressed issues inpthread_mutex_lock() ,
pthread_cond_wait() , pthread_cond_

timedwait() , sigaction() , and sem_

open() . All have been accepted or are still
pending.

The most important part of our project is not the
number of bugs we have found, but the num-
ber of assertions which are now tested. For
42 functions we analyzed, almostall of what
can be testedis now tested in OPTS. The test
cases for these 42 functions cover all the cur-
rent POSIX requirements.

2.7 NPTL Evolution over year 2004

As an example, we have run the current OPTS
release withFedora Core 1(FC1),Fedora Core
2 (FC2) andFedora Core 3(FC3) distributions,
as well as an ’unstable’ Fedora Core 3 update.
After analyzing the results with the TSLog-
Parser tool, we have come to find some inter-
esting conclusions, detailed in the next para-
graphs. This kind of analysis is very easy to
achieve and can help tracking new bugs very
quickly. Anyway, as the TSLogParser tool is
interactive, we cannot reproduce its output in
this document, and encourage the reader to
check the tool web site [4] for examples, in-
cluding the data discussed here.

AIO operations. Some test cases related to
Asynchronous I/O operations, such asaio_
read() or aio_write() , returned PASS
with FC1 and FC2 and return FAIL or hang
with the more recent distributions. This may
indicate a bug in the new kernels or in the glibc.

118 • NPTL Stabilization Project

Clock routines. Some tests related to the clock
routines (clock_settime() , nanosleep())
did not pass in FC1, but things have been fixed
since FC3.

Message queues. The message queues routines
were not implemented in FC1, so the related
tests reported a ’build failure’ status. Every-
thing is fine since FC2.

Sched routines. A few test cases related
to the sched routines (sched_setparam() ,
sched_setscheduler()) won’t compile
in the latest FC3 update, whereas they passed
in the previous releases.

There are some other test cases which would
be worth a deeper investigation, but we won’t
enter into the details here. Reproducing these
results is quite easy, and it would be valuable
for Linux and the glibc that more people carry
on this kind of work.

3 NPTL Trace

The second part of our work was dedicated to
tracing NPTL.

3.1 Why Tracing?

Since more and more HyperThreaded or Multi-
Core processors are available, it is expected
that the design of many new applications will
use multi-threading for running several tasks si-
multaneously and concurrently, in order to take
profit of nearly all the available power of the
machine.

Writing a portable multi-threaded application is
a complex task: the POSIX Thread standard is
not easy to understand. It provides ten kinds
of objects: Thread, Mutex, Barrier, Conditional

Variable, Semaphore, Spinlock, Timer, Read-
Write lock, Message queues, and TLD (Thread
Local Data). These objects are available under
eighteen options:BAR, CS, MSG, PS, RWL ,
SEM, SPI, SS,TCT , THR , TMO , TPI, TPP,
TPS,TSA, TSH, TSP,TSS2 that may be sup-
ported or not by Operating Systems. (See [1]
for the meaning of each option). NPTL pro-
vides about 150 different routines to manage
the POSIX objects.

Also, “anything can occur at any time”: a
program must not assume that an Event A al-
ways occurs before—or after—Event B. That
may be true on a small machine; but it will cer-
tainly be untrue some day on a bigger and faster
machine at a customer site. That makes writ-
ing a multi-threaded application more complex
than initially expected.

On Linux, NPTL is quite perfectly compliant
with the POSIX Threads standard. Since sev-
eral parts of the POSIX Threads standard are
unspecified, they can be provided differently
by two POSIX Threads libraries. So porting
an application from another Operating System
(though providing the same POSIX Threads
objects and routines) to Linux may lead to bad
surprises. Being able to quickly understand
why an application behaves badly (hang, unex-
pected behavior, etc.) is critical for customers.
Often, reproducing the problem in support labs
is not possible since it may appear after days of
computation. This may require sending a Linux
guru to the customer site. Also, understanding
quickly if the problem is in the application, in
NPTL, or in the Linux Kernel is critical.

Analyzing a multi-threaded application show-
ing a race condition or a hang with a debug-
ger is not the right approach because it will
certainly modify the way threads are sched-
uled, possibly causing the problem to disap-

2The options provided by recent GNU libc are high-
lighted inbold.

2005 Linux Symposium • 119

pear. The right approach is by using a less in-
trusive method, such as a trace tool. A NPTL
trace tool enables recording of the most impor-
tant multi-threading operations of an applica-
tion or the main steps of NPTL with a min-
imal impact to the application (performances
and flow of execution of threads). The trace can
be analyzed once the problem has appeared and
the application has stopped: it isPost-Mortem
Analysis. If the impact on a critical application
is acceptable, one can even continuously record
the last few thousand traces so that analyzing a
failure can be done when it occurs for the first
time: it is First Failure Data Capture .

Why not use Linux Trace Toolkit [LTT]? First,
LTT is designed to trace events in the kernel
and not to trace programs in the user space.
Second, LTT uses functions (likewrite())
that cannot be used when tracing NPTL. (See
section 3.3.1 on page 120).

Why not simply use somewrapper enabling
trace of only the calls of the application to
NPTL routines? Because such a tool does not
enable to analyze both the behavior of NPTL
and that of the application. And, since it also
requires to put in place a complex mechanism
for collecting and storing traces, it is worth
also tracing the behavior of NPTL routines, by
adding traces inside its code.

So, as explained hereafter, we finally decided
to design our own NPTL tracing tool.

3.2 Goals

At the beginning of 2004, when we started to
add new tests for NPTL, we also started to
study a NPTL trace tool. After discussing the
design of such a tool with people involved in
thread technology and in the glibc (IBM: F.
Levine, E. Farchi; HP: J. Harrow; Intel: I.
Perez-Gonzalez; etc.), we decided to propose

to students from French Universities to study
the architecture of the tool and to build it.

The POSIX Threads NPTL Trace Tool[PTT]
has been designed to provide a solution to the
requirements discussed previously. It addresses
the three kinds of users described hereafter.

3.2.1 Users

We have studied the needs of three different
kinds of users:

A developer in charge of writing, porting or
maintaining a multi-threaded application. He
mainly needs to see when his program calls
NPTL routines and when it exits from them,
with details about the parameters. He wants
to be able to easily and quickly switch from
a fast untraced NPTL to a traced NPTL, and
vice-versa, without recompiling his applica-
tion. When using the traced NPTL, the maxi-
mum acceptable decrease in the performances
of his application is 10%.

A member of asupport team that provides
Linux skills to other people who write, test or
use applications. This kind of user has skills
about the Linux kernel and the GNU libc and
he needs to see what is happening inside NPTL.
Also he is very interested in generating traces at
customer sites and to analyze them in his own
offices.

A hacker of NPTL. Since analyzing why
NPTL does not perform as expected is not an
easy task, it is crucial to provide help. This
way, more people could contribute to analyzing
the behavior of NPTL and fix problems.

3.2.2 Features

Using PTT is a four step process:

120 • NPTL Stabilization Project

1. build or get a traced NPTL library;

2. trace the application and build a binary
trace;

3. translate the binary file into a text file that
will be parsed by another program or that
will be read manually;

4. analyze the trace, possibly with a tool
helping to handle many objects and traces.

Several features are required:

• do not break the POSIX conformance
rules (mainly cancellation).

• enable several people to trace different ap-
plications at the same time.

• handle large volumes of traces due to an
application running days and weeks before
the problem occurs: keep only last traces
or manage very large trace files.

• give meaningful names to NPTL objects
rather than hexadecimal addresses, since
the application may create hundreds or
thousands of objects of each kind.

• dynamically switch from a light trace to a
richer or full trace.

• filter the decoded trace based on various
criteria (name or kind of object, etc).

• start/stop the trace while the application
is running, and provide solutions for han-
dling incomplete traces.

• handle applications that fork new pro-
cesses that must be traced.

• handle bad situations (hang, crash, kill).

3.3 Architecture

The main idea is to handle a buffer in shared
memory: the threads of the application write
the traces in the buffer, while a daemon
(launched as a separate process) concurrently
and periodically reads the traces in the buffer
and writes them into the binary file. Traces
are concurrently added by the threads into the
buffer at the time the events occur. Figure 3
provides a simplified description of the archi-
tecture of PTT.

Figure 3: Architecture

3.3.1 POSIX Constraints

The architecture must take into account the fol-
lowing constraints.

• First, thePOSIX Threads standard de-
fines which routines can be aCancella-
tion Point(CP)3. POSIX defines three cat-
egories: the routines that shall be a CP,

3A Cancellation Point is a place where a thread can
be canceled by means ofpthread_cancel() . Such
places appear when the cancellationstate is set toen-
abled, andtypeis deferred.

2005 Linux Symposium • 121

those that cannot, and those that are un-
defined (free). It means that adding a CP
into a routine that cannot have a CP is
forbidden: routines likeprintf() can-
not be called by trace code from inside
NPTL routines. In few words, a NPTL
trace mechanism can almost only write
into memory !

• Second, tracing an application must have
a minimumimpact. It means that the ap-
plication must not run significantly slower
and must not behave very differently than
without the trace: the application must
produce the same results and its threads
should continue executing in the same or-
der so that problems do not disappear.

3.3.2 Components

Events are written into a buffer. Then a daemon
copies them to a binary file.

The basic component of the trace is anevent.
An event shows either a change in an attribute
(state, owner, value, . . .) of a NPTL object,
or the calls (in / out) to any NPTL routine
by the application. Sixty events have been
defined for the four objects: Threads, Mutex,
Barrier, CondVar. About 200 different events
are expected to be defined when all routines
are traced. As an example, eleven events
have been defined for the Thread object:
THREAD_JOIN, _DETACH, _STATE_DEAD,

_STATE_WAIT, _STATE_WAKE, _INIT,

_CREATE_IN, _CREATE_OUT, _JOIN_IN,

_JOIN_OUT, _SET_PD. Each event is
recorded in the buffer with useful data:
time-stamp (for computing the elapsed time
between two events), process Id, thread Id, and
parameters. Events contain various amounts
and kinds of data.

Adjacent events are grouped as atrace point in
order to reduce the impact of the trace mecha-

nism: only one call is done instead of two or
more.

A circular buffer allocated in shared memory
is used for storing the traces. If the buffer is not
appropriately sized (too small for a given num-
ber of threads and processors), there is a risk of
overflow: new traces are written over the oldest
traces that the daemon is attempting to copy to
the binary file. Buffer overflow is managed and
produces a clear message. But its probability is
nearly null, as explained hereafter.

A daemon is in charge of continuously mon-
itoring the filling rate of the buffer. When
a threshold is crossed, the daemon copies the
traces to the binary file. One instance of the
daemon is launched per application and be-
haves as the parent process of the application
process.

One binary file is filled with traces for each
traced application. It can be converted to text
by means of a decoding tool. And its size can
be greater than 2 Gigabytes.

3.3.3 Managing the Buffer

Correctly and efficiently managing the trace
buffer was a quite complex task. Since using
NPTL objects and routines (mutex) is forbid-
den, we used the atomic macros provided by
the glibc.

We considered several solutions for managing
the trace buffer:

• use two buffers: when one is full the
buffers are switched and the threads write
traces in the other one, enabling the dae-
mon to save the traces to file without
blocking the application threads, but with
the risk of loosing traces.

122 • NPTL Stabilization Project

• the same, but with blocking the threads
and with no risk of loosing traces.

• use one buffer per processor in order to re-
duce the contention between traces.

• use one buffer per thread, suppressing all
contention.

• use one buffer per process launched by the
command to be traced.

• use one buffer for all processors, all pro-
cesses and all threads launched by the
command to be traced.

Each of these solutions has drawbacks and ben-
efits about complexity, reliability and perfor-
mance. We started looking in detail at the last
solution. It appeared to be reliable, efficient,
and not too complex, based on experiments we
made on bi- and quad-processor machines.

The solution is based on the following two
mechanisms:

1) When a thread needs to store trace data
into the buffer, it firstreservesthe appropri-
ate amount of space by increasing thereserved
pointer in oneatomic operation. Then it writes
the trace data in the reserved space. And finally
it increases thewrittenpointer with the amount
of written bytes by means of anotheratomic
operation. With this approach, the buffer is
never locked when threads reserve space and
write traces.

2) The daemon continuously monitors the per-
centage of buffer already filled with traces.
When the daemon decides that it is time to save
the filled and reserved parts of the buffer, the
daemon blocks all threads attempting to reserve
more space in the buffer. Once all threads have
completed writing events in the buffer (when
written has reachedreserved), the daemon re-
leases the threads which restart reserving space

in the buffer. Then the daemon writes the filled
part of the buffer into the binary file. The goal
is not to lose traces.

The figure 4 explains the main steps:

Figure 4: Buffer management

1) Start: No space has been reserved.

2) Threads 1, 2 and 3 have successively re-
served the space they need for writing their
trace. The reserved space has crossed the High-
Water mark: the daemon now blocks the other
threads attempting to reserve space. Threads

2005 Linux Symposium • 123

1 and 3 have started writing the trace data
whereas thread 2 has not started yet.

3) Threads 1 and 3 have finished writing: an
amount ofa+c bytes of data has already been
written. Thread 2 has started writing. Thread 4
is blocked.

4) Thread 2 has finished writing. Now the
written space (a+c+b) is equal to the reserved
space. The daemon knows which area must be
saved to disk: Thread 4 is released.

5) The daemon is writing the trace data to the
binary file. Thread 4 has reserved the needed
space.

6) The daemon has finished writing the trace
data. Thread 4 is writing its trace data.

An overflow may occur when threads write data
in the buffer faster than the daemon empties
it. Experiments have shown that it may appear
only if the buffer is very small (let’s say: 1 MB
for one fast processor) and if the application is
continuously writing traces due to many com-
peting threads. Using a larger buffer is a good
solution. By default, the threshold (indicating
when it is time to empty the buffer) is set to
half the size of the buffer. The size of the buffer
for small and medium machines is computed
as: (MemSize∗NberO f Processors)/K where
K = 128 by default. Thus, with a 1GB machine
with 2 processors, the size of the buffer is 16
MB. We monitored the maximum usage of the
buffer with various applications and the con-
clusion is that even an unrealistic application
designed for writing PTT traces as fast as pos-
sible cannot overflow the buffer when K is 64.
The applications we used never fill the buffer
more than 60% before the daemon empties it.
If needed, the user is able to use a more ade-
quate buffer size, as a parameter given to the
PTT launcherptt-view .

If an overflow occurs, the threads of the appli-
cation hang. After a time-out, the application is

stopped by the daemon.

Other problems may also occur when a thread
is canceled, hangs or dies.

• A thread can be canceled by means of
the pthread_cancel() routine. The
POSIX standard defines that an applica-
tion can switch from and to two differ-
ent cancellation modes: asynchronous or
deferred (synchronous). In asynchronous
mode, the thread can be canceled any-
where (if the cancellation state isenabled).
In deferred mode, the thread can only be
canceled in Cancellation Points.

In order to guarantee that the trace data
written in the buffer are always complete,
the execution of the PTT trace mechanism
is done in deferred mode (the previous
cancellationmode is stored and then re-
stored).

• A hang of the application can lead to 2
different cases. If an application thread
hangs after it has reserved space in the
trace buffer and before it has written its
trace data, the daemon saves the last traces
after waiting a time-out. If a thread hangs
elsewhere, one must kill the application.

• When a thread runs into a Segmentation
Fault or receives a kill signal, the dae-
mon is warned and saves the last unsaved
traces.

Moreover—as expected—once the application
has completed its task and has returned, the
daemon saves the last unsaved traces.

In order to simplify the design and to speed up
the writing of traces into the buffer, all informa-
tion to be stored within each event are a multi-
ple of 32 bits.

124 • NPTL Stabilization Project

Using syscalls likegettimeofday() to
time-stamp the event introduces too much over-
head. We must directly read a register of the
machine whenever it is possible. This has been
done on IA32 by using the TSC register. This
will need to be studied for other architectures
(PPC, IA64, . . .) and for NUMA4 machines
where each node may have its own counter.

3.3.4 Using the patched NPTL

PTT is made of three parts:

• A patch that adds the PTT trace points into
the NPTL routines.

• A patch that adds into NPTL the PTT code
that writes the traces into the buffer.

• The code of the daemon and the four PTT
commands.

PTT is delivered with instructions explaining
how a version of NPTL can be patched and
compiled. As explained above, no modification
or recompilation of the application is required.

There are two cases for using the patched
NPTL:

• For simple programs, it is easy to force the
library loader to use the appropriate NPTL
library. A script is delivered with PTT.

• For complex programs like JVMs, it is
a bit more complex. Thejava com-
mand acts as a library loader: it looks
at /proc/self/exe in order to find
its path and name, then it loads li-
braries (libjava.so , . . .) based on
its path, and finally it reloads itself with

4Non-Uniform Memory Access

execve() . So one cannot simply use
ld.so .

There are 3 solutions:

1. If your system glibc is the same ver-
sion as the patched one, then you can
useLD_PRELOAD.

2. You can edit the ELF header in
order to change the library loader
name/path. Not so easy. . .

3. Or you can build achroot environ-
ment with the patched library as de-
fault glibc.

If the patched NPTL is delivered with a
distribution, then theLD_PRELOADsolu-
tion seems appropriate.

3.3.5 Measures and Performances

We have measured the impact of PTT on sev-
eral applications: GLucas, Volano™Mark5 and
SPECjbb20006 for Java, and an unrealistic pro-
gram performing only calls to the tracing mech-
anism. We have also compared the impact of
PTT with that of thestrace command. All
results are done with the subset of traced NPTL
routines that were available in April: Threads,
Mutexes, Barriers and CondVars. This means
that the following results are preliminary and
will probably be different once PTT is final-
ized.

On average, one call to the PTT trace mecha-
nism leads to 30 bytes of trace data.

• GLucas [5] is an HPC7 program dedicated
to proving the primality of Mersenne num-
bers (2q − 1). It is an open-source C pro-
gram that implements a specific FFT8 by means

5Volano™ is a trademark of Volano LLC. [6]
6SPECjbb® is a registered trademark of the Standard

Performance Evaluation Corporation (SPEC®). [7]
7High Performance Computing
8Fast Fourier Transform

2005 Linux Symposium • 125

of threads. This is a perfect tool for mea-
suring the impact of PTT: its consumption of
multi-threading is much higher than a simple
producer-consumermodel, it can be configured
to use as many threads as wanted and it can be
launched for a variable amount of time,

• Volano™Mark [6] was designed for com-
paring JVMs when used by the Volano™ chat
product. It is a pure Java server benchmark
characterized by long-lasting network connec-
tions and high thread counts. It is an unofficial
Java benchmark that can be configured to use
many (thousands) threads for exchanging data
between one client and one server by means of
sockets. It creates client connections in groups
of 20 (aroom). It is a stress Java program which
often makes a JVM crash or hang and which
has been used by several studies of Linux per-
formances in the past [9].

• SPECjbb®2000[7] is an official SPEC Java
benchmark simulating a 3-tier system, mainly
the middle tier (business logic and object ma-
nipulation). It uses a small number of threads
(2 to 3 times the number of processors).

We have made measures on a 2x IA32 machine
with 2.8 GHz processors. We observed that
the maximum throughput before buffer over-
flow was obtained with the unrealistic applica-
tion running one thread: ~1,800,000 traces per
second. Due to contention, using more threads
led to a lower throughput.

When runningGLucas with 1000 iterations
and with small (2×106) to medium (16×106)
values for the exponentq , we measured that
the system and user CPU cost of the daemon
was negligible, less than 10/00 of the CPU time
consumed by GLucas. The throughput of traces
ranged between 5,000 and 50,000 traces per
second: 40 times lower than the maximum.

When runningVolano™Mark with 10 rooms,
the results depended greatly on the JVM. It ap-

peared that the three main JVMs available on
ia32 do not use NPTL in the same way (this
may also be due to the fact that only a subset of
NPTL routines were traced at that time), lead-
ing to quite different results. First, the impact
of using the patched NPTL with tracing dis-
abled compared to using the original NPTL is
nearly negligible: less than 2% with the fastest
JVM, and less than∼ 5% with the slowest one.
Second, the impact of running the bench with
the patched NPTL with full tracing compared
to the original NPTL was about 16% with the
fastest JVM and about 47% with the slowest
one. Leading to a volume of traces (client +
server) that depends on the JVM: from 215 MB
to 1,000 MB.

When runningSPECjbb®200065 times with
10 warehouses on a bi-processors machine, the
impact of PTT could not be measured since it
was lower than the precision of the measure.

We used the strace tool for tracing
Volano™Mark in two ways. First, when
tracing all system calls and only the Volano™

server, the performances were divided by 14.6.
Second, when tracing only the calls to the
futex system call and only the client, the
performances were divided by 3.2. Although
strace and PTT trace different things, this
clearly shows that PTT is much lighter than
strace.

3.3.6 Testing

PTT is delivered with a set of tests.

First, there are tests verifying that the features
provided by PTT work fine. Examples: a pro-
gram checks that thefork() is correctly han-
dled; another one checks in detail concurrent
accesses to the buffer; and a program checks
that overloading the buffer and the daemon

126 • NPTL Stabilization Project

leads to a nice message warning the end-user
that he may loose traces.

Second, there are tests verifying in detail that
the traces generated by each patched NPTL
routine are correct.

Third, two versions of aproducer-consumer
model have been written, using condvars or
semaphores.

GLucas and Java (Volano™Mark) are used for
verifying that PTT does not modify the behav-
ior of a large and complex application.

Also theOPTS is run in order to check that the
PTT-patched NPTL is still compliant with the
POSIX Threads standard.

3.4 User Interface

3.4.1 Commands

Several commands are delivered:

ptt-trace for launching the application and
generating a binary trace file

ptt-view for translating the binary trace file
into a human or machine readable text format—
see Figure 5. (It will enable the end-user to fil-
ter the trace. Filters can be applied on: Process
Id, Thread Id, name of POSIX Thread Objects,
name of Events.)

ptt-stat for providing statistics about the
use of POSIX Threads objects, etc

ptt-paje for translating the binary trace file
into a Pajé trace file.

3.4.2 GUI

The analysis of the trace may be very difficult
without the help of a graphical tool. Such a tool

may simply help the user to navigate through
the traces (filter information, find interacting
objects, follow the status and the activity of
objects, etc.); or it may also display traces in
an easier-to-understand graphical way. Both
directions are useful, but we decided to focus
only on the second one, because we found a
sophisticated open-source tool named Pajé that
provides nearly all required features without
the pain of designing and coding a tool dedi-
cated to PTT.

Pajé [8] was designed for visualizing the traces
of a parallel and distributed language (Athapas-
can) and was developed in a laboratory of the
French Research Center IMAG in Grenoble.
Pajé is flexible and scalable and can be used
quite easily for visualizing the traces of any par-
allel or distributed system. It can provide views
at different scales with different levels of de-
tails and one can navigate back and forth in a
large file of traces. It is built on the GNUstep
[11] platform: an object-oriented framework
for desktop application development, based on
the OpenStep specification originally created
by NeXT—now Apple. Several important com-
panies (France Telecom, . . .) have already used
Pajé for visualizing complex traces. Pajé is now
available in thesid (unstable) Debian distribu-
tion and soon in thesarge(stable) Debian dis-
tribution.

We have done preliminary studies and exper-
iments with Pajé, showing that it seems quite
easy to produce traces in the format expected
by Pajé.

The figure 6 is an example of how a trace could
be visualized: the objects (threads, barriers,
. . .) appear as horizontal bars, with different
colors according to their status; and the inter-
actions between objects (when a thread creates
or cancels other threads, etc.) are displayed as
vertical arrows. The scenario of the example is:
the main thread initializes a barrier (count=2)
and creates a thread. Then the two threads call

2005 Linux Symposium • 127

Raw machine format:
0.001724:START_USER_FUNC : 29336 : 0xb7ecb6b0
0.001908:BARRIER_INIT_IN : 29336 : 0xb7ecb6b0 : 0x8049d28 : (nil) : 2
0.001909:BARRIER_INIT : 29336 : 0xb7ecb6b0 : 0x8049d28 : 2
0.001909:BARRIER_INIT_OUT : 29336 : 0xb7ecb6b0 : 0

Text human format:
0.001724 : Pid 29336, Thread 0xb7ecb6b0 starts user function
0.001908 : Pid 29336, Thread 0xb7ecb6b0 enters function pthread_barrier_init.
0.001909 : Pid 29336, Thread 0xb7ecb6b0 initializes barrier 0x8049d28, left=2
0.001909 : Pid 29336, Thread 0xb7ecb6b0 leaves function pthread_barrier_init.

Figure 5: An example of a trace written in human or machine readable text formats.

Figure 6: An example of visualizing a PTT trace with Pajé.

128 • NPTL Stabilization Project

pthread_barrier_wait : the two threads
are freed by the barrier. Finally, the main thread
calls pthread_thread_join on the sec-
ond thread and destroys the barrier.

The Pajé tool will enable the user of PTT to
clearly see the interactions between the objects
involved in his program. Pajé will help the de-
veloper of a multi-threaded application to see
how his code executes in reality. He will be
able to find possible dead-locks, understand
which lock is blocking threads thus reducing
the performances, and analyze bugs. For ana-
lyzing large traces, specific tools (naming, fil-
tering, . . .) must be designed and added in or-
der to manage hundreds of objects and millions
of events.

3.5 Status & Future work

Two students work on PTT up to mid July this
year. Hereafter, we describe: the status of their
work end of April; what they plan to provide in
mid July; known limitations; and future poten-
tial tasks.

3.5.1 Status in April

At the end of April, PTT already provides the
following:

• User and Internal documentations are
available.

• PTT is quite reliable and efficient.

• A patch is available for the glibc 2.3.4 (and
soon for 2.3.5).

The patch and the sources under CVS are avail-
able on SourceForge.net [10].

3.5.2 Expected Status in July

At the end of July, PTT should provide the fol-
lowing:

• Be reliable, efficient, and scalable;

• be available on 3 architectures: IA32,
PPC, IA64; handle the most important
NPTL objects and routines; provide basic
filtering;

• and enable use of Pajé for visualizing
small and medium volumes of traces.

3.5.3 Known Limitations

In order to know how much time has elapsed
between two events, a time-stamp is recorded
within each event. Since this time-stamp is ob-
tained before the event space is reserved in the
buffer, it may occur that an event appears in the
buffer before older events. Although this could
be fixed at the time of decoding the binary trace
file, we consider that the error is negligible.

Time-stamping the events on NUMA ma-
chines: the actual solution does not take into
account the time difference that may appear on
such machines.

3.5.4 Next Steps

The main concern when tracing multi-threaded
applications is to be able to link the informa-
tion shown by the trace tool with the traced
program. Even with only a dozen threads and
mutexes, it is not easy for the user to link the
traced thread he is looking at through PTT with
the thread managed by his code. Being able to
give a name to each instance of NPTL objects

2005 Linux Symposium • 129

is very important. Several ways should be stud-
ied and provided in order to replace the internal
names (like:0x401598c0) by easily under-
standable names (like:SocketThread_1):

• automatically give the thread the name
of the routine that was started when the
thread was created,

• enable the user to iteratively give names to
objects as the user recognizes the objects,

• enable reuse of some existing name table
(JVMs).

PTT should be ported on other popular archi-
tectures. On machines using several time coun-
ters, like NUMA machines, the current version
would deliver dates that sometimes could lead
to mistakes. This needs to be solved.

Optimizations should be studied: manage the
buffer differently; reduce the amount of data
stored with each event. More work must be
done in order to check the usability and scala-
bility of PTT when used with big and complex
applications on large machines with many and
fast processors.

We expect people facing complex problems
with multi-threaded applications to experiment
with PTT, in order to find and fix remaining
bugs, and to provide requirements for new fea-
tures making PTT easier to use and more pro-
ductive.

PTT could also be a basis for dynamically
checking if the application is compliant with
the POSIX Thread standard. It is so easy not
to fulfill all the constraints of the standard.

The next step of the project is to prove that
PTT is really a useful tool: it shortens the
time needed for understanding a multi-threaded
problem, it speeds up the work of Linux or Java

support teams, and it simplifies the analysis of
the behavior of NPTL when a misfunction is
suspected.

Then PTT could be integrated into Linux Dis-
tros. The final goal is to have PTT accepted
by the community and then integrated into the
GNU libc.

3.5.5 Contributors

PTT has been designed by Sébastien Decugis,
Mayeul Marguet, Tony Reix and the devel-
opers. The developers are: Nadège Griesser
(ENSIMAG-Telecom, Grenoble), Laetitia
Kameni-Djinou (UTC, Paris) and Matthieu
Castet (ENSIMAG, Grenoble).

4 Conclusion

As we demonstrated in this document, our
project has completed some of its objectives,
but more work remains pending.

Our testing effort is not complete yet. We
have tested only 42 functions of the 150 NPTL
contains. Some of the remaining functions
may contain bugs or at least are worth testing
deeply. The remaining domains areread-write
locks, barriers, spinlocks, thread-specific data,
timers, andmessage queues.

Anticipating future problems by writing test
cases before someone runs into a bug usually
saves a lot of money for everybody. For this
reason, we’re calling for volunteers to continue
our work and complete the testing. This work
shall be a continued effort, because the POSIX
Standard is changing regularly, therefore if the
test suite is not updated regularly it will be dep-
recated sooner or later. To avoid this situation

130 • NPTL Stabilization Project

for the OPTS, the best bet is to have many peo-
ple use it.

The targeted users are mostly developers of
POSIX-compliant implementations. Automat-
ing the use of OPTS is easy and, thanks to the
TSLogParser tool, collecting and analyzing the
results is also quite simple. The next step to-
wards quality for NPTL is to have a real testing
process integrated into its development cycle.

The glibc addition to the STP project may be a
good solution to solve this, as it is already used
for the kernel development and has proved to
be useful by detecting new bugs very early in
the process.

As we’ve already told about our Trace Tool, we
need more beta testers to try it and give us their
comments. This way, we should be able to de-
velop smart tools to use the traces, for example
by parsing them in order to find possible prob-
lems in threads synchronization or locks con-
tention.

We will also be able to propose our tool to dis-
tribution makers, the final goal being that this
trace tool be present on all systems. This way,
debugging and profiling multi-threaded soft-
ware will be much easier than it is currently.
Is it a utopia? We don’t think so. . .

References

[1] Single UNIX® Specification:
http://www.unix.org/single_
unix_specification/

[2] NPTL Stabilization:
http:
//nptl.bullopensource.org/

[3] Austin Revision Group:
http:
//www.opengroup.org/austin/

[4] TSLogParser project:
http://tslogparser.
sourceforge.net/

[5] GLucas:
http:
//www.oxixares.com/glucas/

[6] Volano™Mark:
http://www.volano.com/

[7] SPECjbb®2000:
http:
//www.spec.org/jbb2000/

[8] Pajé homepage:
http://forge.objectweb.org/
projects/paje/

[9] Linux Kernel Performance Measurement
and Evaluation (IBM):
http://linuxperf.
sourceforge.net/lwesf-duc_
vianney-chat.pdf

[10] PTT on SourceForge.net:
http://sourceforge.net/
projects/nptltracetool/

[11] GNUstep project:
http://www.gnustep.org/

[glibc] GNU Lib C:
http://www.gnu.org/
software/libc/libc.html

[OPTS] Open POSIX Test Suite:
http://posixtest.
sourceforge.net/

[LTP] Linux Test Project:
http://ltp.sourceforge.net/

[STP] Scalable Test Platform:
http://www.osdl.org/lab_
activities/kernel_testing/
stp

2005 Linux Symposium • 131

[PLM] Patch Lifecycle Manager:
http:
//www.osdl.org/plm-cgi/plm

[LTT] Linux Trace Toolkit:
http://www.opersys.com/LTT/

[PTT] PTT (NPTL Traces) project:
http://nptltracetool.
sourceforge.net/

132 • NPTL Stabilization Project

Networking Driver Performance and Measurement -
e1000 A Case Study

John A. Ronciak
Intel Corporation

john.ronciak@intel.com

Jesse Brandeburg
Intel Corporation

jesse.brandeburg@intel.com

Ganesh Venkatesan
Intel Corporation

ganesh.venkatesan@intel.com

Mitch Williams
Intel Corporation

mitch.a.williams@intel.com

Abstract

Networking performance is a popular topic in
Linux and is becoming more critical for achiev-
ing good overall system performance. This pa-
per takes a look at what was done in the e1000
driver to improve performance by (a) increas-
ing throughput and (b) reducing of CPU utiliza-
tion. A lot of work has gone into the e1000 Eth-
ernet driver as well into the PRO/1000 Giga-
bit Ethernet hardware in regard to both of these
performance attributes. This paper covers the
major things that were done to both the driver
and to the hardware to improve many of the as-
pects of Ethernet network performance. The
paper covers performance improvements due to
the contribution from the Linux community and
from the Intel group responsible for both the
driver and hardware. The paper describes opti-
mizations to improve small packet performance
for applications like packet routers, VoIP, etc.
and those for standard and jumbo packets and
how those modifications differs from the small
packet optimizations. A discussion on the tools
and utilities used to measure performance and
ideas for other tools that could help to measure
performance are presented. Some of the ideas

may require help from the community for re-
finement and implementation.

Introduction

This paper will recount the history of e1000
Ethernet device driver regarding performance.
The e1000 driver has a long history which
includes numerous performance enhancements
which occurred over the years. It also shows
how the Linux community has been involved
with trying to enhance the drivers’ perfor-
mance. The notable ones will be called out
along with when new hardware features be-
came available. The paper will also point out
where more work is needed in regard to perfor-
mance testing. There are lots of views on how
to measure network performance. For various
reasons we have had to use an expensive, closed
source test tool to measure the network perfor-
mance for the driver. We would like to engage
with the Linux community to try to address this
and come up with a strategy of having an open
source measurement tool along with consistant
testing methods.

• 133 •

134 • Networking Driver Performance and Measurement - e1000 A Case Study

This paper also identifies issues with the system
and the stack that hinder performance. The per-
formance data also indicates that there is room
for improvement.

A brief history of the e1000 driver

The first generation of the IntelR© PRO/1000
controllers demonstrated the limitation of the
32-bit 33MHz PCI bus. The controllers were
able to saturate the bus causing slow response
times for other devices in the system (like slow
video updates). To work with this PCI bus
bandwidth limitation, the driver team worked
on identifying and eliminating inefficiencies.
One of the first improvements we made was
to try to reduce the number of DMA transac-
tions across the PCI bus. This was done using
some creative buffer coalescing of smaller frag-
ments into larger ones. In some cases this was
a dramatic change in the behavior of the con-
troller on the system. This of course was a long
time ago and the systems, both hardware and
OS have changed considerably since then.

The next generation of the controller was a 64-
bit 66MHz controller which definitely helped
the overall performance. The throughput in-
creased and the CPU utilization decreased just
due to the bus restrictions being lifted. This was
also when new offload features were being in-
troduced into the OS. It was the first time that
interrupt moderation was implemented. This
implementation was fairly crude, based on a
timer mechanism with a hard time-out time set,
but it did work in different cases to decrease
CPU utilization.

Then a number of different features like de-
scriptor alignment to cache lines, a dynamic
inter-frame gap mechanism and jumbo frames
were introduced. The use of jumbo frames re-
ally helped transferring large amounts of data

but did nothing to help normal or small sized
frames. It also was a feature which required
network infrastructure changes to be able to
use, e.g. changes to switches and routers to sup-
port jumbo frames. Jumbo frames also required
the system stacks to change. This took some
time to get the issues all worked out but they
do work well for certain environments. When
used in single subnet LANs or clusters, jumbo
frames work well.

Next came the more interesting offload of
checksumming for TCP and IP. The IP offload
didn’t help much as it is only a checksum across
twenty bytes of IP header. However, the TCP
checksum offload really did show some perfor-
mance increases and is widely used today. This
came with little change to the stack to support
it. The stack interface was designed with the
flexibility for a feature like this. Kudos to the
developers that worked on the stack back then.

NAPI was introduced by Jamal Hadi, Robert
Olsson, et al at this time. The e1000 driver
was one of the first drivers to support NAPI.
It is still used as an example of how a driver
should support NAPI. At first the development
team was unconvinced that NAPI would give
us much of a benefit in the general test case.
The performance benefits were only expected
for some edge case situations. As NAPI and
our driver matured however, NAPI has shown
to be a great performance booster in almost all
cases. This will be shown in the performance
data presented later in this paper.

Some of the last features to be added were
TCP Segment Offload (TSO) and UDP frag-
ment checksums. TSO took work from the
stack maintainers as well as the e1000 develop-
ment team to get implemented. This work con-
tinues as all the issues around using this have
not yet been resolved. There was even a rewrite
of the implementation which is currently un-
der test (Dave Miller’s TSO rewrite). The UDP

2005 Linux Symposium • 135

fragment checksum feature is another that re-
quired no change in the stack. It is however
little used due to the lack of use of UDP check-
summing.

The use of PCI Express has also helped to
reduce the bottleneck seen with the PCI bus.
The significantly larger data bandwidth of
PCIe helps overcome limitations due to laten-
cies/overheads compared to PCI/PCI-X buses.
This will continue to get better as devices sup-
port more lanes on the PCI Express bus further
reducing bandwidth bottlenecks.

There is a new initiative called IntelR© I/O Ac-
celeration Technology (I/OAT) which achieves
the benefits of TCP Offload Engines (TOE)
without any of the associated disadvantages.
Analysis of where the packet processing cycles
are spent was performed and features designed
to help accelerate the packet processing. These
features will be showing up over the next six to
nine months. The features include Receive Side
Scaling (RSS), Packet Split and Chipset DMA.
Please see the [Leech/Grover] paper “Acceler-
ating Network Receive Processing: IntelR© I/O
Acceleration Technolgy” presented here at the
symposium. RSS is a feature which identifies
TCP flows and passes this information to the
driver via a hash value. This allows packets
associated with a particular flow to be placed
onto a certain queue for processing. The feature
also includes multiple receive queues which are
used to distribute the packet processing onto
multiple CPUs. The packet split feature splits
the protocol header in a packet from the pay-
load data and places each into different buffers.
This allows for the payload data buffers to be
page-aligned and for the protocol headers to be
placed into small buffers which can easily be
cached to prevent cache thrash. All of these
features are designed to reduce or eliminate the
need for TOE. The main reason for this is that
all of the I/OAT features will scale with proces-
sors and chipset technologies.

Performance

As stated above the definition of performance
varies depending on the user. There are a lot of
different ways and methods to test and measure
network driver performance. There are basi-
cally two elements of performance that need to
be looked at, throughput and CPU utilization.
Also, in the case of small packet performance,
where packet latency is important, the packet
rate measured in packets per second is used as
a third type of measurement. Throughput does
a poor job of quantifying performance in this
case.

One of the problems that exists regarding per-
formance measurements is which tools should
be used to measure the performance. Since
there is no consistent open source tool, we use
a closed source expensive tool. This is mostly
a demand from our customers who want to be
able to measure and compare the performance
of the Intel hardware against other vendors on
different Operating Systems. This tool, IxChar-
iot by IXIA 1, is used for this reason. It does
a good job of measuring throughput with lots
of different types of traffic and loads but still
does not do a good job of measuring CPU uti-
lization. It also has the advantage that there are
endpoints for a lot of different OSes. This gives
you the ability to compare performance of dif-
ferent OSes using the same system and hard-
ware. It would be nice to have and Open Source
tool which could do the same thing. This is
discussed in Section , “Where do we go from
here.”

There is an open source tool which can be used
to test small packet performance. The tool is
the packet generator or ‘pktgen’ and is a ker-
nel module which is part of the Linux kernel.
The tool is very useful for sending lots of pack-
ets with set timings. It is the tool of choice for

1Other brands and names may be claimed as the prop-
erty of others.

136 • Networking Driver Performance and Measurement - e1000 A Case Study

anyone testing routing performance and routing
configurations.

All of the data for this section was collected us-
ing Chariot on the same platform to reduce the
number of variables to control except as noted.

The test platform specifications are:

• Blade Server

• Dual 2.8GHz PentiumR© 4 XeonTM CPUs,
512KB cache 1GB RAM

• Hyperthreading disabled

• Intel R© 80546EB LAN-on-motherboard
(PCI-X bus)

• Competition Network Interface Card in a
PCI-X slot

The client platform specifications are:

• Dell2 PowerEdgeR© 1550/1266

• Dual 1266MHz PentiumR© III CPUs,
512KB cache, 1GB RAM,

• Red Hat2 Enterprise Linux 3 with 2.4.20-
8smp kernel,

• Intel R© PRO/1000 adapters

Comparison of Different Driver Versions

The driver performance is compared for a num-
ber of different e1000 driver versions on the
same OS version and the same hardware. The
difference in performance seen in Figure 1 was
due to the NAPI bug that Linux community
found. It turns out that the bug was there for a

2Other brands and names may be claimed as the prop-
erty of others.

long time and nobody noticed it. The bug was
causing the driver to exit NAPI mode back into
interrupt mode fairly often instead of staying in
NAPI mode. Once corrected the number of in-
terrupts taken was greatly reduced as it should
be when using NAPI.

Comparison of Different Frames Sizes
verses the Competition

Frame size has a lot to do with performance.
Figure 2 shows the performance based on frame
size against the competition. As the chart
shows, frame size has a lot to do with the to-
tal throughput that can be reached as well as
the needed CPU utilization. The frame sizes
used were normal 1500 byte frames, 256 bytes
frames and 9Kbyte jumbo frames.

NOTE: The competition could not accept a 256
byte MTU so 512 bytes were used for perfor-
mance numbers for small packets.

Comparison of OS Versions

Figure 3 shows the performance comparison
between OS versions including some different
options for a specific kernel version. There was
no reason why that version was picked other
than it was the latest at the time of the tests.
As can be seen from the chart in Figure 3, the
2.4 kernels performed better overall for pure
throughput. This means that there is more im-
provement to be had with the 2.6 kernel for net-
work performance. There is already new work
on the TSO code within the stack which may
have improved the performance already as the
TSO code has been known to hurt the overall
network throughput. The 2.4 kernels do not
have TSO which could be accounting for at
least some of the performance differences.

2005 Linux Symposium • 137

Driver Version Performance

1310

1320

1330

1340

1350

1360

1370

1380

5.6.11 5.7.6.1 6.0.58 6.1.4
Driver Version

Th
ro

ug
hp

ut
 (M

bp
s)

91

91.2

91.4

91.6

91.8

92

92.2

92.4

92.6

CP
U

Us
ag

e
(%

)

Throughput (Mbps)
CPU Utilization

Figure 1: Different Driver Version Comparison

Frame Size Performance

0

200

400

600

800

1000

1200

1400

1600

1800

1500 256/512 9000
Frame Size (bytes)

To
ta

l T
hr

ou
gh

pu
t (

M
bp

s)

0

10

20

30

40

50

60

70

80

90

100

CP
U

Us
ag

e
(%

)
e1000 Throughput
Comp. Throughput
e1000 CPU Usage
Comp. CPU Usage

Figure 2: Frame Size Performance Against the Competition

Results of Tuning NAPI Parameters

Initial testing showed that with default NAPI
settings, many packets were being dropped on
receive due to lack of buffers. It also showed
that TSO was being used only rarely (TSO was
not being used by the stack to transmit).

It was also discovered that reducing the driver’s
weight setting from the default of 64 would

eliminate the problem of dropped packets. Fur-
ther reduction of the weight value, even to
very small values, would continue to increase
throughput. This is shown in Figure 4.

The explanation for these dropped packets is
simple, because the weight is smaller, the driver
iterates through its packet receive loop (in
e1000_clean_rx_irq) fewer times, and
hence writes the Receive Descriptor Tail regis-

138 • Networking Driver Performance and Measurement - e1000 A Case Study

OS Version Performance

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2.6.5 2.6.9 2.6.10 2.6.11 2.6.12 2.6.12-
no-napi

2.6.12-
up

2.6.12-
up-no-
napi

2.4.30 2.4.30-
no-napi

2.4.30
UP

OS Version

To
ta

l T
hr

ou
gh

pu
t (

M
bp

s)

82

84

86

88

90

92

94

96

98

100

102

CP
U

Us
ag

e
(%

)

Throughput (Mbps)
CPU Utilization

Figure 3: OS Version Performance

ter more often. This notifies the hardware that
descriptors are available more often and elimi-
nates the dropped packets.

It would be obvious to conclude that the in-
crease in throughput can be explained by the
dropped packets, but this turns out to not be the
case. Indeed, one can eliminate dropped pack-
ets by reducing the weight down to 32, but the
real increase in throughput doesn’t come until
you reduce it further to 16.

The answer appears to be latency. With the
higher weights, the NAPI polling loop runs
longer, which prevents the stack from running
its own timers. With lower weights, the stack
runs more often, and processes packets more
often.

We also found two situations where NAPI
doesn’t do very well compared to normal in-
terrupt mode. These are 1) when the NAPI poll
time is too fast (less than time it takes to get
a packet off the wire) and 2) when the proces-
sor is very fast and I/O bus is relatively slow.
In both of these cases the driver keeps enter-
ing NAPI mode, then dropping back to inter-
rupt mode since it looks like there is no work

to do. This is a bad situation to get into as the
driver has to take a very high number of inter-
rupts to get the work done. Both of these situ-
ations need to be avoided and possibly have a
different NAPI tuning parameter to set a mini-
mum poll time. It could even be calculated and
used dynamically over time.

Where the Community Helped

The Linux community has been very helpful
over the years with getting fixes back to cor-
rect errors or to enhance performance. Most re-
cently, Robert Olsson discovered the NAPI bug
discussed earlier. This is just one of countless
fixes that have come in over the years to make
the driver faster and more stable. Thanks to all
to have helped this effort.

Another area of performance that was helped
by the Linux community was the e1000 small
packet performance. There were a lot of com-
ments/discussions in netdev that helped to get
the driver to perform better with small packets.
Again, some of the key ideas came from Robert

2005 Linux Symposium • 139

Throughput vs Weight

1200

1220

1240

1260

1280

1300

1320

1340

1360

1380

4 5 6 7 8 12 16 20 24 32 48 64
Weight

Th
ro

ug
hp

ut
 (M

bp
s)

Dropped packets seen
at weights 48 and 64.

Figure 4: NAPI Tuning Performance Results

Olsson with the work he has done on packet
routing. We also added different hardware fea-
tures over the years to improve small packet
performance. Our new RSS feature should help
this as well since the hardware will be better
able to scale with the number of processor in
the system. It is important to note that e1000
benefitted a lot from interaction with the Open
Source Community.

Where do we go from here

There are a number of different things that the
community could help with. A test tool which
can be used to measure performance across OS
versions is needed. This will help in compar-
ing performance under different OSes, different
network controllers and even different versions
of the same driver. The tool needs to be able to
use all packet sizes and OS or driver features.

Another issue that should be addressed is the
NAPI tuning as pointed out above. There are
cases where NAPI actually hurts performance
but with the correct tuning works much better.

Support the new I/OAT features which give
most if not all the same benefits as TOE with-
out the limitations and drawbacks. There are
some kernel changes that need to be imple-
mented to be able to support features like this
and we would like for the Linux community to
be involved in that work.

Conclusions

More work needs to be done to help the net-
work performance get better on the 2.6 kernel.
This won’t happen overnight but will be a con-
tinuing process. It will get better with work
from all of us. Also, work should continue to
make NAPI work better in all cases. If it’s in
your business or personal interest to have better
network performance, then it’s up to you help
make it better.

Thanks to all who have helped make everything
perform better. Let us keep up the good work.

140 • Networking Driver Performance and Measurement - e1000 A Case Study

References

[Leech/Grover] Accelerating Network Receive
Processing: IntelR© I/O Acceleration Tech-
nolgy; Ottawa Linux Symposium 2005

nfsim: Untested code is buggy code

Rusty Russell
IBM Australia, OzLabs

rusty@rustcorp.com.au

Jeremy Kerr
IBM Australia, OzLabs

jk@ozlabs.org

Abstract

The netfilter simulation environment (nfsim)
allows netfilter developers to build, run, and
test their code without having to touch a real
network, or having superuser privileges. On top
of this, we have built a regression testsuite for
netfilter and iptables.

Nfsim provides an emulated kernel environ-
ment in userspace, with a simulated IPv4 stack,
as well as enhanced versions of standard kernel
primitives such as locking and a proc filesys-
tem. The kernel code is imported into the
nfsim environment, and run as a userspace
application with a scriptable command-line in-
terface which can load and unload modules,
add a route, inject packets, run iptables, control
time, inspect/proc , and so forth.

More importantly we can test every single per-
mutation of external failures automatically—
for example, packet drops, kmalloc failures and
timer deletion races. This makes it possible to
check error paths that very rarely happen in real
life.

This paper will discuss some of our experiences
with nfsim and the progression of the netfil-
ter testsuite as new features became available
in the simulator, and the amazing effect on de-
velopment. We will also show the techniques
we used for exhaustive testing, and why these
should be a part of every project.

1 Testing Netfilter Code

The netfilter code is complicated. Technically,
netfilter is just the packet-interception and man-
gling framework implemented in each network
protocol (IPv4, IPv6, ARP, Decnet and bridg-
ing code)[3]. IPv4 is the most complete im-
plementation, with packet filtering, connection
tracking and full dynamic Network Address
Translation (NAT). Each of these, in turn, is
extensible: dozens of modules exist within the
tree to filter on different packet features, track
different protocols, and perform NAT.

There were several occasions where code
changes unintentionally broke extensions, and
other times where large changes in the network-
ing layer (such as non-linearskb s1) caused
subtle bugs. Network testing which relies on
users is generally poor, because no single user
makes use of all the extensions, and intermit-
tent network problems are never reported be-
cause users simply hit “Reload” to work around
any problem. As an example, the Linux 2.2
masquerade code would fail on one in a thou-
sand FTP connections, due to a control message
being split over two packets. This was never re-
ported.

1skb s are the kernel representation of network pack-
ets, and do not need to be in contiguous virtual memory.

• 141 •

142 • nfsim: Untested code is buggy code

2 The Existing Netfilter Testsuite

Netfilter had a testsuite from its early develop-
ment. This testsuite used the ethertap2 devices
along with a set of helper programs; the tests
themselves consisted of a series of shell scripts
as shown in Figure 1.

Unfortunately, this kind of testing requires root
privileges, a quiescent machine (nossh -ing in
to run the testsuite!) and a knowledge of shell
slightly beyond cut-and-paste of other tests.
The result was that the testsuite bit-rotted, and
was no longer maintained after 2000.

2.1 Lack of Testing

The lack of thorough testing had pervasive ef-
fects on the netfilter project which only became
clear as the lack was remedied. Most obviously,
the quality of the code was not all that it could
have been—the core functionality was solid,
but the fringes contained longstanding and sub-
tle bugs.

The less-noticed effect is the fear this knowl-
edge induces in the developers: rewrites such
as TCP window tracking take years to enter
the kernel as the developers seek to slowly add
users to test functionality. The result is a cy-
cle of stagnation and patch backlog, followed
by resignation and a lurch forward in function-
ality. It’s also difficult to assess test coverage:
whether users are actually running the changed
code at all.

Various hairy parts of the NAT code had not
been significantly altered since the initial im-
plementation five years ago, and there are few
developers who actually understand it: one of

2ethertap devices are virtual network interfaces that
allow userspace programs to inject packets into the net-
work stack.

these, Krisztian Kovacs, found a nasty, previ-
ously unnoticed bug in 2004. This discovery
caused Rusty to revisit this code, which in turn
prompted the development ofnfsim .

3 Testsuite Requirements

There are several requirements for a good test-
suite here:

• It must be trivial to run, to encourage de-
velopers and others to run it regularly;

• It must be easy to write new tests, so non-
core developers can contribute to testing
efforts;

• It must be written in a language the devel-
opers understand, so they can extend it as
necessary;

• It must have reasonable and measurable
coverage;

• It should encourage use of modern debug-
ging tools such as valgrind; and

• It must make developerswantto use it.

4 The New Testsuite—nfsim

It was a long time before the authors had the
opportunity to write a new testsuite. The aim
of nfsim was to provide a userspace environ-
ment to import netfilter code (from a standard
kernel tree) into, which can then be built and
run as a standalone application. A command-
line interface is given to allow events to be sim-
ulated in the kernel environment. For example:

• generate a packet (either from a device or
the local network stack); or

2005 Linux Symposium • 143

tools/intercept PRE_ROUTING DROP 2 1 > $TMPFILE &
sleep 1

tools/gen_ip $TAP0NET.2 $TAP1NET.2 100 1 8 0 55 57 > /dev/tap0

if wait %tools/intercept; then :
else

echo Intercept failed:
tools/rcv_ip 1 1 < $TMPFILE
exit 1

fi

Figure 1: Shell-script style test for old netfilter testsuite

• advance the system time; or

• inspect the kernel state (e.g., through the
/proc/ file system).

Upon this we can build a simple testsuite.

Figure 2 shows a simple configure-build-
execute session ofnfsim .

Help text is automatically generated from doc-
book XML comments in the source, which also
form the man page and printable documenta-
tion. There is a “trivial” XML stripper which
allows building if the required XML tools are
not installed.

When the simulator is started, it has a default
network setup consisting of a loopback inter-
face and two ethernet interfaces on separate
networks. This basic setup allows for the ma-
jority of testing scenarios, but can be easily re-
configured. Figure 3 shows the default network
setup as shown by theifconfig command.

The presence of this default network configu-
ration was a decision of convenience over ab-
straction. It would be possible to have no inter-
faces configured at startup, but this would re-
quire each test to initialise the required network
environment manually before running. From

further experience, we have found that the sig-
nificant majority of tests do not need to alter the
default network setup.

Although the simulator can be used interac-
tively, running predefinednfsim test scripts
allows us to automate the testing process. At
present, a netfilter regression testsuite is be-
ing developed in the main netfilter subversion
repository.

To assist in automated testing, the builtin
expect command allows us to expect a string
to be matched in the output of a specific com-
mand that is to be executed. For example, the
command:

expect gen_ip rcv:eth0

will expect the string “rcv:eth0 ” to be
present in the output the next time that the
gen_ip command (used to generate IPv4
packets) is invoked. If the expectation fails,
the simulator will exit with a non-zero exit sta-
tus. Figure 4 shows a simplenfsim test which
generates a packet destined for an interface on
the simulated machine, and fails if the packet
is not seen entering and leaving the network
stack.

144 • nfsim: Untested code is buggy code

$./configure --kerneldir=/home/rusty/devel/kernel/linux-2.6.12-rc4/
...
$ make
...
$./simulator --no-modules
core_init() completed
nfsim 0.2, Copyright (C) 2004 Jeremy Kerr, Rusty Russell
Nfsim comes with ABSOLUTELY NO WARRANTY; see COPYING.
This is free software, and you are welcome to redistribute
it under certain conditions; see COPYING for details.
initialisation done
> quit
$

Figure 2: Building and runningnfsim

Note that there’s a helpful
test-kernel-source script in the
nfsim-testsuite/ directory. Given
the source directory of a Linux kernel, builds
nfsim for that kernel and runs all the tests. It
has a simple caching system to avoid rebuilding
nfsim unnecessarily.

During early development, a few benefits of
nfsim appeared.

Firstly, compared to a complete kernel, build
time was very short. Aside from the code under
test, the only additional compilation involved
the (relatively small) simulation environment.

Secondly, ‘boot time’ is great:

$ time ./simulator < /dev/null
real 0m0.006s
user 0m0.003s
sys 0m0.002s

4.1 The Simulation Environment

As more (simulated) functionality is required
by netfilter modules, we needed to “bring in”
more code from the kernel, which in turn

depends on further code, leading to a large
amount of dependencies. We needed to decide
which code was simulated (reimplemented in
nfsim), and which was imported from the ker-
nel tree.

Reimplementing functionality in the simulator
gives us more control over the “kernel.” For ex-
ample, by using simulated notifier lists, we are
able to account for each register and deregister
on all notifier chains, and detect mismatches.
The drawback of reimplementation is that more
nfsim code needs to be maintained; if the ker-
nel’s API changes, we need to update our local
copy too. We also need to ensure that any be-
havioural differences between the real and sim-
ulated code do not cause incorrect test results.

Importing code allows us to bring in func-
tionality ‘for free,’ and ensures that the im-
ported functionality will mirror that of the ker-
nel. However, the imported code will often re-
quire support in another area, meaning that fur-
ther functionality will need to be imported or
reimplemented.

For example, we were faced with the decision
to either import or reimplement the IPv4 rout-
ing code. Importing would guarantee that we
would deal with the ‘real thing’ when it came

2005 Linux Symposium • 145

> ifconfig
lo

addr: 127.0.0.1 mask: 255.0.0.0 bcast: 127.255.255.255
RX packets: 0 bytes: 0
TX packets: 0 bytes: 0

eth0
addr: 192.168.0.1 mask: 255.255.255.0 bcast: 192.168.0.255
RX packets: 0 bytes: 0
TX packets: 0 bytes: 0

eth1
addr: 192.168.1.1 mask: 255.255.255.0 bcast: 192.168.1.255
RX packets: 0 bytes: 0
TX packets: 0 bytes: 0

Figure 3: Default network configuration ofnfsim

packet to local interface
expect gen_ip rcv:eth0
expect gen_ip send:LOCAL {IPv4 192.168.0.2 192.168.0.1 0 17 3 4}
gen_ip IF=eth0 192.168.0.2 192.168.0.1 0 udp 3 4

Figure 4: A simplenfsim test

time to test, but required a myriad of other com-
ponents to be able to import. We decided to
reimplement a (very simple) routing system,
having the additional benefit of increased con-
trol over the routing tables and cache.

Generic functions, or functions strongly tied
to kernel code were reimplemented. We have
a single kernelenv/kernelenv.c file,
which defines primitives such askmalloc() ,
locking functions and lists. The kernel environ-
ment contains around 1100 lines of code.

IPv4 code is implemented in a separate module,
with the intention of making a ‘pluggable pro-
tocol’ structure, with an IPv6 implementation
following. The IPv4 module contains around
1700 lines of code, the majority being in rout-
ing and checksum functions.

Ideally, the simulation environment should be

as clean and simple as possible; adding com-
plexity here may cause problems when the code
under test fails.

4.2 Interaction with Userspace Utilities

The most often-used method of interacting with
netfilter code is through theiptables com-
mand, run from userspace. We needed some
way of providing this interface, without either
modifying iptables, or reimplementing it in the
simulator.

To allow iptables to interface with netfilter code
under test, we’ve developed a shared library, to
beLD_PRELOAD-ed when running an unmod-
ified iptables binary. The shared library
intercepts calls to{set,get}sockopt() ,
and diverts these calls to the simulator.

146 • nfsim: Untested code is buggy code

4.3 Exhaustive Error Testing

During netfilter testing with an early version
of nfsim , it became apparent that almost all
of the error-handling code was not being exer-
cised. A trivial example fromip_tables.c :

counters = vmalloc(countersize);
if (counters == NULL)

return -ENOMEM;

Because we do not usually see out-of-memory
problems in the simulator (nor while running in
the kernel), the error path (wherecounters
is NULL) will almost certainly never be tested.

In order to test this error, we need the
vmalloc() to fail; other possible failures
may be due to any number of possible exter-
nal conditions when calling these ‘risky’ func-
tions (such ascopy_{to,from}_user() ,
semaphores or skb helpers).

Ideally, we would be able to simulate the fail-
ure of these risky functions in every possible
combination.

One approach we considered is to save the state
of the simulation when we reach a point of fail-
ure, test one case (perhaps the failure), restore
to the previous state, then test the other case
(success). This left us with the task of having
to implement checkpointing to save the simu-
lator state; while not impossible, it would have
been a large amount of work.

The method we implemented is based on
fork() . When we reach a risky function, we
fork() the simulator, test the error case in the
child process, and the normal case in the parent.
This produces a binary tree of processes, with
each node representing a risky function. To pre-
vent an explosion in the number of processes,

the parent blocks (inwait()) while the child
executes3.

The failure decision points are handled by a
function namedshould_i_fail() . This
handles the process creation, error testing and
failure-path replay; the return value indicates
whether or not the calling function should fail.
Figure 5 shows thenfsim implementation of
vmalloc , an example of a function that is
prone to failure. The single (string) argument
to should_i_fail() is unique per call site,
and allowsnfsim to track and replay failure
patterns.

The placement ofshould_i_fail() calls
needs to be carefully considered—while each
failure test will increase test coverage, it can
potentially double the test execution time. To
prevent combinatorial increase in simulation
time, nfsim also has ashould_i_fail_
once() function, which will test the failure
case once only. We have used this for functions
whose failure does not necessarily indicate an
error, for exampletry_module_get() .

When performing this exhaustive error testing,
we cannot expect a successful result from the
test script; if we are deliberately failing a mem-
ory allocation, it is unreasonable to expect that
the code will handle this without problems.
Therefore, when running these failure tests, we
don’t require a successful test result, only that
the code will handle the failure gracefully (and
not cause a segmentation fault, for example).
Running the simulator under valgrind[1] can be
useful in this situation.

If a certain failure pattern causes unexpected
problems, the sequence of failures is printed
to allow the developer to trace the pattern,
and can be replayed using the--failpath

3Although it would be possible to implement parallel
failure testing on SMP machines by allowing a bounded
number of concurrent processes.

2005 Linux Symposium • 147

struct sk_buff *alloc_skb(unsigned int size, int priority)
{

if (should_i_fail(__func__))
return NULL;

return nfsim_skb(size);
}

Figure 5: Example of a risky function innfsim

command-line option, running under valgrind
or a debugger.

One problem that we encountered was the use
of iptables while in exhaustive failure testing
mode: we need to be able tofork() while in-
teracting with iptables, but can not allow both
resulting processes to continue to use the sin-
gle iptables process. We have solved this by
recording all interactions with iptables up un-
til the fork() . When it comes time to ex-
ecute the second case, a new iptables process
is invoked, and we replay the recorded session.
However, we intend to replace this with a sys-
tem that causes the iptables process to fork with
the simulator.

Additionally, the failure testing is very time-
consuming. A full failure test of the 2.6.11 net-
filter code takes 44 minutes on a 1.7GHz x86
machine, as opposed to 5 seconds when run-
ning without failure testing.

At present, the netfilter testsuite exercises 61%
of the netfilter code, and 65% when running
with exhaustive error checking. Although the
increase in coverage is not large, we are now
able to test small parts of code which are very
difficult to reliably test in a running kernel.
This found a number of long-standing failure-
path bugs.

4.4 Benefits of Testing in Userspace

Becausenfsim allows us to execute kernel
code in userspace, we have access to a number
of tools that aren’t generally available for ker-
nel development. We have been able to expose
a few bugs by runningnfsim under valgrind.

The GNU Coverage tool,gcov [2], has allowed
us to find untested areas of netfilter code; this
has been helpful to find which areas need atten-
tion when writing new tests.

Andrew Trigell’s talloc library[4] gives us
clean memory allocation routines, and allows
for leak-checking in kernel allocations. The
‘contexts’ thattalloc uses allows developers
to identify the source of a memory leak.

5 Wider Kernel Testing:
kernsim ?

The nfsim technique could be usefully ap-
plied to other parts of the kernel to allow a
Linux kernel testsuite to be developed, and
speed quality kernel development. The Linux
kernel is quite modular, and so this approach
which worked so well for netfilter could work
well for other sections of the kernel.

Currentlynfsim is divided intokernelenv ,
ipv4 and thenetfilter (IPv4) code. The

148 • nfsim: Untested code is buggy code

first two are nfsim-specific testing implemen-
tations of the kernel equivalents, such as
kmalloc and spin_lock . The latter is
transplanted directly from the kernel source.

The design of a more completekernsim
would begin with dividing the kernel into other
subsystems. Some divisions are obvious, such
as the SCSI layer and VFS layer. Others are
less obvious: the slab allocator, the IPv4 rout-
ing code, and the IPv4 socket layer are all
potential subsystems. Subsystems can require
other subsystems, for example the IPv4 socket
layer requires the slab allocator and the IPv4
routing code.

For most of these subsystems, a simulated ver-
sion of the subsystem needs to be written,
which is a simplified canonical implementa-
tion, and contains additional sanity checks. A
good example innfsim is the packet gener-
ator which always generates maximally non-
linear skb s. A configuration language simi-
lar to the Linux kernel ‘Kconfig’ configuration
system would then be used to select whether
each subsystem should be the simulator version
or imported from the kernel source. This al-
lows testing of both the independent pieces and
the combinations of pieces. The latter is re-
quired because the simulator implementations
will necessarily be simplified.

The current nfsim commands are very
network-oriented: they will require signifi-
cant expansion, and probably introduction of a
namespace of some kind to prevent overload.

5.1 Benefits of akernsim

It is obvious to the nfsim authors that
wider automated testing would help speed and
smooth the continual redevelopment which oc-
curs in the Linux kernel. It is not clear that the
Linux developers’ antipathy to testing can be

overcome, however, so the burden of maintain-
ing akernsim would fall on a small external
group of developers, rather than being included
in the kernel source in a series oftest/ sub-
directories.

There are other possibilities, including the sug-
gestion by Andrew Tridgell that a host kernel
helper could allow development of simple de-
vice drivers withinkernsim . The potential
for near-exhaustive testing of device drivers, in-
cluding failure paths, against real devices is sig-
nificant; including a simulator subsystem inside
kernsim would make it even more attractive,
allowing everyone to test the code.

6 Lessons Learnt fromnfsim

Nfsim has proven to be a valuable tool for easy
testing of the complex netfilter system. By pro-
viding an easy-to-run testsuite, we have been
able to speed up development of new compo-
nents, and increase developer confidence when
making changes to existing functionality. Net-
filter developers can now be more certain of any
bugfixes, and avoid inadvertent regressions in
related areas.

Unfortunately, persuading some developers to
use a new tool has been more difficult than ex-
pected; we sometimes see testsuite failures with
new versions of the Linux kernel. However, we
are confident thatnfsim will be adopted by a
wider community to improve the quality of net-
filter code. Ideally we will see almost all of the
netfilter code covered by a nfsim test some time
in the near future.

Adopting the simulation approach to testing is
something that we hope other Linux kernel de-
velopers will take interest in, and use in their
own projects.

2005 Linux Symposium • 149

Downloadingnfsim

nfsim is available from:

http://ozlabs.org/~jk/projects/nfsim/

Legal Statement

This work represents the view of the authors and
does not necessarily represent the view of IBM.

IBM is a registered trademark of International Busi-
ness Machines Corporation in the United States,
other countries, or both. Linux is a trademark of
Linus Torvalds in the United States, other countries,
or both. Other company, product, and service names
may be trademarks or service marks of others.

References in this publication to IBM products or
services do not imply that IBM intends to make
them available in all countries in which IBM op-
erates. This document is provided as is, with no
express or implied warranties. Use the information
in this document at your own risk.

References

[1] Valgrind Developers. Valgrind website.
http://valgrind.org/ .

[2] Free Software Foundation. GCOV — a
Test Coverage Program.
http://gcc.gnu.org/
onlinedocs/gcc/Gcov.html .

[3] Netfilter Core Team. Netfilter/iptables
website.http://netfilter.org .

[4] Andrew Tridgell. talloc website.
http://talloc.samba.org/ .

150 • nfsim: Untested code is buggy code

Hotplug Memory Redux

Joel Schopp, Dave Hansen, & Mike Kravetz
IBM Linux Technology Center

jschopp@austin.ibm.com, haveblue@us.ibm.com, kravetz@us.ibm.com

Hirokazu Takahashi & IWAMOTO Toshihiro
VA Linux Systems Japan

taka@valinux.co.jp, iwamoto@valinux.co.jp

Yasunori Goto & KAMEZAWA Hiroyuki
Fujitsu

y-goto@jp.fujitsu.com, kamezawa.hiroyu@jp.fujitsu.com

Matt Tolentino
Intel

matthew.e.tolentino@intel.com

Bob Picco
HP

bob.picco@hp.com

Abstract

Memory Hotplug is one of the most antici-
pated features in the Linux Kernel. The pur-
poses of memory hotplug are memory replace-
ment, dynamic workload management, or Ca-
pacity on Demand of Partitioned/Virtual ma-
chines. In this paper we discuss the history
of Memory Hotplug and the LinuxVM includ-
ing mistakes made along the way and technolo-
gies which have already been replaced. We
also discuss the current state of the art in Mem-
ory Hotplug including user interfaces, CON-
FIG_SPARSEMEM, the no bitmap buddy al-
locator, free area splitting within zones, and
memory migration on PPC64, x86-64, and
IA64. Additionally, we give a brief discussion
on the overlap between Memory Hotplug and
other areas including memory defragmentation
and NUMA memory management. Finally, we
gaze into the crystal ball to the future of Mem-

ory Hotplug.

1 Introduction

At the 2004 Ottawa Linux Symposium Andrew
Morton had this to say in the keynote:

“Some features do tend to encapsulate poorly
and they have their little sticky fingers into lots
of different places in the code base. An exam-
ple which comes to mind is CPU hot plug, and
memory hot unplug. We may not, we may end
up not being able to accept such features at all,
even if they’re perfectly well written and per-
fectly well tested due to their long-term impact
on the maintainability of those parts of the soft-
ware which they touch, and also to the fact that
very few developers are likely to even be able
to regression test them.” [1]

152 • Hotplug Memory Redux

It has been one year since that statement. An-
drew Morton is a clever man who knows that
the way to get developers to do something is to
tell them it can’t be done. CPU hot plug has
been accepted[15]. The goal of this paper is to
lay out how developers have been planning and
coding to prove the memory half of that state-
ment wrong.

2 Motivation

Memory hotplug was named for the ability
to literally plug and unplug physical memory
from a machine and have the Operating System
keep running.

In the case of plugging in new physical mem-
ory the motivation is being able to expand sys-
tem resources while avoiding downtime. The
proverbial example of the usefulness is the
slashdot effect. In this example a sysadmin
runs a machine which just got slashdotted. The
sysadmin runs to the parts closet, grabs some
RAM, opens the case, and puts the RAM into
the computer. Linux then recognizes the RAM
and starts using it. Suddenly, Apache runs
much faster and keeps up with the increased
traffic. No downtime is needed to shutdown,
insert RAM, and reboot.

Conversely, unplugging physical memory is
usually motivated by physical memory failing.
Modern machines often have the ability to re-
cover from certain physical memory errors and
to use those errors to predict that the physical
memory is likely to have an unrecoverable error
in the future. With memory hotplug the mem-
ory can be automatically disabled. The disabled
memory can then be removed and/or replaced
at the system administrator’s convenience with-
out downtime to the machine [31].

However, the ability to plug and unplug phys-
ical memory has been around awhile and no-

body has previously taken it upon themselves
to write memory hotplug for the Linux kernel.
Fast forward to today and we have most major
hardware vendors paying developers to write
memory hotplug. Some things have changed;
capacity upgrade on demand, partitioning, and
virtualization all have made the resources as-
signed to an operating system much more fluid.

Capacity Upgrade On Demand came on the
leading edge of this new wave. Manufactur-
ers of hardware thought of a very clever and
useful way to sell more hardware. The manu-
facturer would give users more hardware than
they paid for. This extra unpaid for hardware
would be disabled, and could be enabled if the
customer later decided to pay for it. If the cus-
tomer never decided to pay for it then the hard-
ware would sit unused. Users got an afford-
able seamless upgrade path for their machines.
Hardware manufacturers sold enough of the ex-
tra hardware they had already shipped they still
made a profit on it. In business terms it was a
win-win.

Without hotplug, capacity upgrades still require
a reboot. This is bad for users who have to de-
lay upgrades for scheduled downtime. The de-
layed upgrades are bad for hardware manufac-
turers who don’t get paid for unupgraded sys-
tems. With hotplug the upgrades can be done
without delay or downtime. It is so convenient
that the manufacturers can even entice users
with free trials of the upgrades and the ability
to upgrade temporarily for a fraction of the per-
manent upgrade price.

The idea of taking a large machine and divid-
ing up its resources into smaller machines is
known as partitioning. Linux looks at a parti-
tion like it is a dedicated machine. This brings
us back to our slashdotting example from phys-
ical hotplug. The reason that example didn’t
drive users to want hotplug was that it was only
useful if there was extra memory in a closet
somewhere and the system administrator could

2005 Linux Symposium • 153

open the machine while it was running. With
partitioning the physical memory is already in
the machine, it’s just probably being used by
another partition. So now hotplug is needed
twice. Once to remove the memory from a par-
tition that isn’t being slashdotted and again to
add it to a partition that is. The system admin-
istrator could even do this “hotplug” remotely
from a laptop in a coffee house. Better yet
management software could automatically de-
cide and move memory around where it was
needed. Because memory would be allocated
more efficiently users would need less of it,
saving them some money. Hardware vendors
might even encourage selling less hardware be-
cause they could sell the management software
cheaper than they sold the extra hardware it re-
places and still make more money.

Virtualization then takes partitioning to the next
level by removing the strict dependency on
physical resources [10][17]. At first glance it
would seem that virtualization ends the need for
hotplug because the resources aren’t real any-
way. This turns out not to be the case because
of performance. For example, if a virtual par-
tition is created with 4GB of virtual RAM the
only way to increase that to 256GB and have
Linux be able to use that RAM is to hotplug add
252GB of virtual RAM to Linux. On the other
side of the coin, if a partition is using 256GB of
virtual RAM and whatever is doing the virtual-
izing only has 4GB of real honest-to-goodness
physical RAM to use, performance will make it
unusable. In this case the virtualization engine
would want to hotplug remove much of that vir-
tual RAM.

So there are a variety of forces demanding
memory hotplug from hardware vendors to
software vendors. Some want it for reliability
and uptime. Others want it for workload bal-
ancing and virtualization.

Thankfully for developers it is also an interest-
ing problem technically. There are lots of diffi-

cult problems to be overcome to make memory
hotplug a success, and if there is one thing a
developer loves it is solving difficult problems.

3 CONFIG_SPARSEMEM

3.1 Nonlinear vs Sparsemem

Previous papers[6] have discussed the concept
of nonlinear memory maps: handling systems
which have non-trivial relationships between
the kernel’s virtual and physical address spaces.

In 2004, Dave McCracken from IBM created
a quite complete implementation of nonlin-
ear memory handling for the hotplug mem-
ory project. As presented in[6], this imple-
mentation solved two problems: separating the
mem_map[] into smaller pieces, and the non-
linear layout.

The nonlinear layout component turned out
to be quite an undertaking. Its implemen-
tation required changing the types of some
core VM macros: virt_to_page() and
page_to_virt() . It also required changing
many core assumptions, especially in boot-time
memory setup code, which impaired other de-
velopment. However, the component that sep-
arated themem_map[]s turned out to be rela-
tively problem-free.

The decision was made to separate the two
components. Nonlinear layouts are not re-
quired by simple memory addition. However,
the split-outmem_map[]s are. The memory
hotplug plan has always been to merge hot-add
alone, before hot-remove, to minimize code im-
pact at one time. Themem_map[] splitting
feature was named sparsemem, short for sparse
memory handling, and the nonlinear portion
will not be implemented until hot-remove is
needed.

154 • Hotplug Memory Redux

3.2 What Does Sparsemem Do?

Sparsemem has several of the same design
goals as DISCONTIGMEM, which is currently
in use in the kernel for similar purposes. Both
of them allow the kernel to efficiently han-
dle gaps in its address space. The normal
method for machines without memory gaps is
to have astruct page for each physical
page of RAM in memory. If there are gaps from
things like PCI config space, there arestruct
page ’s, but they are effectively unused.

Although a simple solution, simply not using
structures like this can be an extreme waste
of memory. Consider a system with 100 1GB
DIMM slots that support hotplug. When the
system is first booted, only 1 of these DIMM
slots is populated. Later on, the owner decides
to hotplug another DIMM, but puts it in slot
100 instead of slot 2. This creates a 98GB gap.
On a 64-bit system, eachstruct page is 64
bytes.

(98GB
4096bytes

page

)∗ (64 bytes
struct page)≈ 1.5GB

The owner of the system might be slightly dis-
pleased at having anet lossof 500MB of mem-
ory once they plug in a new 1GB DIMM. Both
sparsemem and discontigmem offer an alterna-
tive.

3.3 How Does Sparsemem Work?

Sparsemem uses an array to provide different
pfn_to_page() translations for each "sec-
tion" of physical memory. The sections are ar-
bitrarily sized and determined at compile-time
by each specific architecture. Each one of these
sections effectively gets its own, tiny version of
themem_map[] .

However, one must also consider the storage
cost of such an array which must represent ev-
ery possible physical address. Let’s take PPC64

as an example. Its sections are 16MB in size
and there are, today, systems with 1TB of mem-
ory in a single system. To keep future expan-
sion in mind (and for easy math), assume that
the limit is 16TB. This means 220 possible sec-
tions and, with 1 64-bitmem_map[] pointer
per section, that’s 8MB of memory used. Even
on the smallest (256MB) configurations, this
amount is a manageable price to pay for ex-
pandability all the way to 16TB.

In order to do quickpfn_to_page() opera-
tions, the index into the large array of the page’s
parent section is encoded inpage->flags .
Part of the sparsemem infrastructure enables
sharing of these bits more dynamically (at
compile-time) between thepage_zone()
and sparsemem operations.

However, on 32-bit architectures, the number
of bits is quite limited, and may require grow-
ing the size of thepage->flags type in cer-
tain conditions. Several things might force this
to occur: a decrease in the size of each section
(if you want to hotplug smaller, more granu-
lar, areas of memory), an increase in the physi-
cal address space (very unlikely on 32-bit plat-
forms), or an increase in the number of con-
sumedpage->flags .

One thing to note is that, once sparsemem is
present, the NUMA node information no longer
needs to be stored in thepage->flags . It
might provide speed increases on certain plat-
forms and will be stored there if there are un-
used bits. But, if there are inadaquate unused
bits, an alternate (theoretically slower) mech-
anism is used;page_zone(page)->zone_

pgdat->node_id .

3.4 What happens to Discontig?

As was noted earlier sparsemem and discontig-
mem have quite similar goals, although quite

2005 Linux Symposium • 155

different implementations. As implemented
today, sparsemem replaces DISCONTIGMEM
when enabled. It is hoped that SPARSEMEM
can eventually become a complete replacement
as it becomes more widely tested and graduates
from experimental status.

A significant advantage sparsemem has over
DISCONTIGMEM is that it’s completely sepa-
rated from CONFIG_NUMA. When producing
this implementation, it became apparent that
NUMA and DISCONTIG are often confused.

Another advantage is that sparse doesn’t re-
quire each NUMA node’s ranges to be contigu-
ous. It can handle overlapping ranges between
nodes with no problems, where DISCONTIG-
MEM currently throws away that memory.

Surprisingly, sparsemem also shows some
marginal performance benefits over DISCON-
TIGMEM. The base causes need to be investi-
gated more, but there is certainly potential here.

As of this writing there are ports for sparsemem
on i386, PPC64, IA64, and x86_64.

4 No Bitmap Buddy Allocator

4.1 Why Remove the Bitmap?

When memory is hotplug added or removed,
memory management structures have to be re-
allocated. The buddy allocator bitmap was one
of these structures.

Reallocation of bitmaps for Memory Hotplug
has the following problems:

• Bitmaps were one of the things which
assumed that memory is linear. This
assumption didn’t fit SPARSEMEM and
Memory Hotplug.

• For resizing, physically contiguous pages
for new bitmaps were needed. This in-
creased possibility of failure of Memory
Hotplug because of difficulty of large size
page allocation.

• Reallocation of bitmaps is complicated
and computationally expensive

For Memory Hotplug, bitmaps presented a
large obstacle to overcome. One proposed
solution was dividing and moving bitmaps
from zones to sections as was done with
memmaps. The other proposed solution, elimi-
nating bitmaps altogether, proved simpler than
moving them.

4.2 Description of the Buddy Allocator

The buddy allocator is an memory allocator
which coalesces pages into groups of 2X length.
X is usually 0-10 in Linux. Pages are coalesced
into a group of length of 1, 2, 4, 8, 16, 32,
64, 128, 256, 512, 1024. X is called an ”or-
der”. Only a head page of a buddy is linked to
free_area[order] .

This grouping is called a buddy. A pair of
buddies in order X, which are length of 2X,
can be coalesced into a buddy of 2(X+1) length.
When a pair of buddies can be coalesced in or-
der X, offset of 2 buddies are 2(X+1) ∗Y and
2(X+1) ∗Y + 2X. Hence, another buddy of a
buddy in order X can be calculated as (Offset
of a buddy) XOR(1 << (X)).

For example, page 4 (0x0100) can be coa-
lesced with page 5 (0x0101) in order 0, page
6 (0x0110) in order 1, page 0 (0x0000) in order
2.

4.3 Bitmap Buddy Allocator

The role of bitmaps was to record whether a
page’s buddy in a particular order was free or

156 • Hotplug Memory Redux

not. Consider a pair of buddies at 2(X+1) ∗Y
and 2(X+1) ∗Y +2X.

When free_area[X].bitmap[Y] was 1,
one of the buddies was free. Sofree_
pages() can determine whether a buddy can
be coalesced or not from bitmaps. When both
buddies were freed, they were coalesced and
free_area[X].bitmap[Y] set to 0.

4.4 No Bitmap Buddy Allocator

When it comes to the no bitmap buddy alloca-
tor, instead of recording whether a page has its
buddy or not in a bitmap, the free buddy’s order
is recorded inmemmap. The following expres-
sion is used to check a buddy page’s status:

page_count(page) == 0 &&
PG_private is set &&
page->private == X

The three elements that make up this expression
are:

• When page_count(page) == 0 ,
page is not used.

• Even if page_count(page) == 0 ,
it’s not sure that the page is linked to the
free area. When a page is linked to the
free area,PG_private is set.

• When page_count(page)==0 &&
PG_private is set,page->private
indicates its order.

Here, offset of an another buddy of a buddy in
order X can be calculated as (Offset of page)
XOR 2X. The following code is the core of no
bitmap buddy allocator’s coalescing routine:

struct page *base = zone->zone_mem_map;
int page_idx = page - base;
while (order < MAX_ORDER) {

int buddy_idx = page_idx ^ (1 << order);
struct page *buddy = base + buddy_idx;
if (!(page_count(buddy) == 0 &&

PagePrivate(buddy) &&
buddy->private == order))

break;
remove buddy from zone->free_area[order]
ClearPagePrivate(buddy);
if (buddy_idx < page_idx)

page_idx = buddy_idx;
order++;

}
page = page_idx + base;
SetPagePrivate(page);
page->private = order;
link page to zone->free_area[order]

There is no significant performance difference
either way between bitmap and no bitmap coa-
lescing.

With SPARSEMEM,base in the above code
is removed and following the relative offset cal-
culation is used. Thus, the buddy allocator can
manage sparse memory very well.1

page_idx = pfn_to_page(page);
buddy_idx = page_idx ^ (1 << order);
buddy = page + (buddy_idx - page_idx);

5 Free Area Splitting Within Zones

The buddy system provides an efficient algo-
rithm for managing a set of pages within each
zone [7][16][18][11]. Despite the proven effec-
tiveness of the algorithm in its current form as
used in the kernel, it is not possible to aggre-
gate a subset of pages within a zone accord-
ing to specific allocation types. As a result,
two physically contiguous page frames (or sets
of page frames) may satisfy allocation requests
that are drastically different. For example, one
page frame may contain data that is only tem-
porarily used by an application while the other

1SPARSEMEM guarantees that memmap is contigu-
ous at least up to MAX_ORDER.

2005 Linux Symposium • 157

is in use for a kernel device driver. While this
is perfectly acceptable on most systems, this
scenario presents a unique challenge on mem-
ory hotplug systems due to the variances in re-
claiming pages that satisfy each allocation type.

One solution to this problem is to explicitly
manage pages according to allocation request
type. This approach avoids the need to radi-
cally alter existing page allocation and recla-
mation algorithms, but does require additional
structure within each zone as well as modifica-
tion of the existing algorithms.

5.1 Origin of Page Allocation Requests

Memory allocations originate from two dis-
tinct sources—user and kernel requests. User
page allocations typically result from a write
into a virtual page in the address space of a
process that is not currently backed by physi-
cal memory. The kernel responds to the fault
by allocating a physical page and mapping the
virtual page to the physical page frame via
page tables. However, when the system is
under memory pressure, user pages may be
paged out to disk in order to reclaim physical
page frames for other higher priority requests
or tasks. The algorithms and techniques used
to accomplish this function constitute much
of the virtual memory research conducted to
date[22][23][24][25][26][27].

In Linux, user level allocations may be sat-
isfied from pages contained in any zone, al-
though they are preferably allocated from the
HIGHMEM zone if that zone is employed by
the architecture. This is reasonable consider-
ing these pages are not permanently mapped by
the kernel. Architectures that do not employ
the HIGHMEM zone direct user level alloca-
tions to one of the other two zone types, NOR-
MAL or DMA. Unlike user allocations, kernel
allocations must be satisfied from memory that

is permanently mapped in the virtual address
space. Once a suitable zone is chosen, an ap-
propriately sized region is plucked from the re-
spective free area list via the buddy algorithm
without regard for whether it satisfies a kernel
allocation or a user allocation.

5.2 Distinguishing Page Usage

During a page allocation, attributes are pro-
vided to the memory allocation interface func-
tions. Each attribute provides a hint to the al-
location algorithm in order to determine a suit-
able zone from which to extract pages; how-
ever, these hints are not necessarily provided
to the buddy system. In other words, the re-
gion from which the allocation is satisified is
only determined at a zone granularity. On sys-
tems such as PPC64 this may include the en-
tirety of system memory! In order to enable the
distinction of user allocation from kernel allo-
cations within a zone, additional flags that spec-
ify whether the region must be provided to the
buddy algorithm. These flags include:

• User Reclaimable

• Kernel Reclaimable

• Kernel Non-Reclaimable

Using these flags, the buddy allocation algo-
rithm may further differentiate between page
allocations and attempt to maintain regions that
satisfy similar allocations and more signifi-
cantly, have similar presence requirements.

5.3 Multiple Free Area Lists

Existing kernels employ one set of free area
lists per zone as shown in figure1. In order

158 • Hotplug Memory Redux

Figure 1: Existing free area list structure

to explicitly manage the user versus kernel dis-
tinction of memory with zones, multiple sets of
free area lists are used within each zone, specif-
ically one set of free area lists per allocation
type. The basic strategy of the buddy algo-
rithm remains unchanged despite this modifi-
cation. Each set of free area lists employs the
exact same splitting and coalescing steps dur-
ing page allocation and reclamation operations.
Therefore the functional integrity of the overall
algorithm is maintained. The novelty of the ap-
proach involves the decision logic and account-
ing involved in directing allocations and free
operations to the appropriate set of free area
lists.

Mel Gorman posted a patch that imple-
ments exactly this approach in an attempt
to minimize external memory fragmentation,
a consistent issue with the buddy algorithm
[19][8][7][11][16]. This approach introduces a
new global free area list with MAX_ORDER
sized memory regions and three new free area
lists of size MAX_ORDER-1 as depicted in fig-
ure 2 below.

Figure 2: New free area list structure for frag-
mentation

Although Mel’s approach provides the basic
infrastructure needed by memory hotplug, ad-
ditional structure is required. In addition to
the set of free area lists for each allocation
type, an additional global free area list for con-
tiguous regions of MAX_ORDER size is also
maintained as depicted in figure three. The
addition of this global list enables account-
ing for MAX_ORDER sized memory regions
according to the capability to hotplug the re-
gion. Thus, during initialization, memory re-
gions within each zone are directed to the ap-
propriate global free area list based on the po-
tential to hotplug the region at a later time. This
translates directly to the type of allocation a
page satisfies. For example, many kernel pages
are pinned in memory and will never be freed.
Hence, these pages will be obtained from the
globalpinnedlist. On the other hand nearly ev-
ery user page may be reclaimed, so these pages
will be obtained from the globalhotpluglist.

2005 Linux Symposium • 159

Figure 3: New free area list structure for mem-
ory hotplug

5.4 Memory Removal

The changes detailed in this section enable the
isolation of sets of pages according to the type
of allocation they may satisfy. Because user
pages are relatively easy to reclaim, those page
allocations will be directed to the regions that
are maintained in the globalhotplug free area
list. During boot time or during a memory
hot-add operation, the system firmware details
which regions may be removed at runtime. This
information provides the context for initializing
the globalhotplug list. As pages are allocated
thus depleting the user and kernel reclaimable
free area lists, additional MAX_ORDER re-
gions may be derived from the globalhotplug
list. Similarly, the globalpinned list provides
pages to the kernel non-reclaimable lists upon
depletion of available pages of sufficient size.

Because pages that may be hot-removed at run-
time are isolated such that they satisfy user

or kernel reclaimable allocations, memory re-
moval is possible. This was not previously
possible with the existing buddy algorithm due
to the likelihood that a pinned kernel non-
reclaimable page could be located within the
range to be removed. Thus, kernels that only
employ a subset of the potential zones may sup-
port hot-remove transparently.

5.5 Configurability

While satisfying allocation requests from dis-
crete memory regions according to allocation
type does enable removal of memory within
zones, there is still the potential for one type of
allocation to run out of pages due to the assign-
ment of pages to each global free list. Mel dealt
with this issue for the fragmentation problem
by allowing allocations tofallback to another
free area list should one become depleted[19].

While this is reasonable for most systems, it
compromises the capability to remove mem-
ory should a non-reclaimable kernel allocation
be satisfied by some set of pages in a hotplug
region. As this type of fallback policy deci-
sion largely depends on the intended use of
the system, one approach is to allow for the
fallback decision logic to be configured by the
system administrator. Therefore, systems that
aren’t likely to need to remove memory, even
though the functionality is available, may allow
the fallback to occur as the workload demands.
Other systems in which memory removal is
more critical may disable the fallback mecha-
nism, thus preserving the integrity of hotplug
memory regions.

160 • Hotplug Memory Redux

6 Memory migration

6.1 Overview

In memory hotplug removal events, all the
pages in some memory region must be freed in
a timely fashion, while processes are running
as usual. Memory migration achieves this by
blocking page accesses and moves page con-
tents to new locations.

Although usingshrink_list() function—
which is the core ofkswapd —sounds sim-
pler, it cannot reliably free pages and causes
many disk I/Os. Additionally, the function
cannot handle pages which aren’t associated
with any backing stores. Pages on a ramdisk
are an example of this. The memory migra-
tion is designed to solve these issues. Page
accesses aren’t a problem because they are
blocked, whileshrink_list() cannot pro-
cess pages that are being accessed. Unlike
shrink_list() , most dirty pages can be
processed without writing them back to disk.

6.2 Interface to Migrate Page

To migrate pages, create a list of pages to
migrate and call the following function:
int try_to_migrate_pages(struct

list_head *page_list)

It returns zero on success, otherwise sets
page_list to a list of pages that cannot migrate
and returns a non-zero value. Callers must
check return values and retry failed pages if
necessary.

This function is primarily for memory hotplug
remove, but also can be used for memory de-
fragmentation (see Section 8.1) or process mi-
gration (see Section 8.2.3).

6.3 How does the memory migration
work?

A memory migration operation consists of the
following steps. The operation of anonymous
pages is slightly different.

1. lockoldpage , which is the target page

2. allocate and locknewpage

3. modify oldpage entry in page_

mapping(oldpage)->page_tree

with newpage

4. invoke try_to_unmap(oldpage,

virtual_address_list) to unmap
oldpage from the process address
spaces.

5. wait until !PageWriteback(oldpage)

6. write backoldpage if oldpage is dirty
andPagePrivate(oldpage) and no
file system specific method is available

7. wait until page_count(oldpage)
drops to 2

8. memcpy(newpage, oldpage,
PAGE_SIZE)

9. makenewpage up to date

10. unlocknewpage to wakeup the waiters

11. freeoldpage

The key is to block accesses to the page un-
der operation by modifying thepage_tree .
After the page_tree has been modified, no
new access goes tooldpage . The accesses
are redirected tonewpage and blocked until
the data is ready because it is locked and isn’t
up to date (Figure 4).

2005 Linux Symposium • 161

page_tree

address_space

oldpage

newpage

PG_uptodate

PG_locked
blocked

page faults

system calls

PTE

Figure 4: page_tree rewrite and page ac-
cesses

To handle mlock() ed pages, try_to_
unmap() now takes two arguments. If the sec-
ond argument is non-NULL, the function un-
mapsmlock()ed pages also and records un-
mapped virtual addresses, which are used to
reestablish the PTEs when the migration com-
pletes.

Because the direct I/O code protects target
pages with incrementedpage_count , mem-
ory migration doesn’t interfere with the I/O.

In some cases, a memory migration operation
needs to be rolled back and retried later. This
is a bit tricky because it is likely that some pro-
cesses have already looked up thepage_tree
and are waiting for its lock. Such processes
need to discardnewpage and look up the
page_tree again, asnewpage is now in-
valid.

6.3.1 Anonymous Memory Migration

The memory migration depends on
page_tree lists of inodes, while anony-
mous pages may not correspond to any of
them. This structure is strictly required
to block all accesses to pages on it during
migration.

Therefore, anonymous pages should be moved
into the swap-cache prior to migrating them.

After that these pages are placed in the
page_tree of swapper_space , which
manages all pages in the swap-cache. These
pages can be migrated just like pages in the
page-cache without any disk I/Os.

The important issue of systems without swap
devices remains. To solve it, Marcelo Tosatti
has proposed the idea of “migration cache”[2]
and he’s working on its implementation. The
migration cache is very similar to the swap-
cache except it doesn’t require any swap de-
vices.

6.4 Keeping Memory Management Aware
of Memory Migration

The memory migration functionality is de-
signed to fit the existing memory management
semantics and most of the code works without
a modification. However, the memory manage-
ment code should satisfy the following rules:

• Multiple lookups of a page from its
page_tree should be avoided. If a ker-
nel function looks up apage_tree loca-
tion multiple times, a memory migration
operation can rewrite thepage_tree
in the meanwhile. When such a
page_tree rewrite happens, it usually
results in a deadlock between the kernel
function and the memory migration opera-
tion. The memory migration implements a
timeout mechanism to resolve such dead-
locks, but it is preferable to remove the
possibility of deadlocks by avoiding mul-
tiple page_tree lookups of the same
page. Another option is to use non-
hotremovable memory for such pages.

• The pages which may be grabbed for
an unpredictably long time must be al-
located from non-hotremovable memory,

162 • Hotplug Memory Redux

even though it may be in the page-cache or
anonymous memory. For instance, pages
used as ring buffers for asynchronous in-
put/output (AIO) events are pinned not to
be freed.

• For a swap-cache page, its PG_swapcache
flag bit needs checking after obtaining the
page lock. This is due to how the mem-
ory migration is implemented for swap-
cache pages and not directly related to un-
winding. Such a check code is added in
do_swap_page() .

• Functions that calllock_page() must
be aware of the unwinding of memory
migration. Basically, a page must be
checked if it is still valid after every
lock_page() call. If it isn’t, one has to
restart the operation from looking up the
page_tree again. A good example of
such restart is infind_lock_page() .

6.5 Tuning

6.5.1 Implementing File System Specific
Methods for Memory Migration

Memory migration works regardless of file sys-
tems in use. However, it is desirable that file
systems which are intensively used implement
the helper functions which are described in this
subsection.

There are various things that refer to pages,
and some of these references need time con-
suming operations such as disk I/Os to com-
plete in order for the reference to be dropped.
This subsection focuses on one of these—the
handling of dirty buffer structures pointed by
page->private .

When a dirty page is associated with a buffer,
the page must be made clean by issuing a write-

back operation and the buffer must be freed un-
less there is an available file system specific op-
eration defined.

The above operation can be too slow to be prac-
tical because it has to wait a writeback I/O
completion. A file system specific operation
can be defined to avoid this problem by im-
plementing themigrate_page() method in
the address_space_operations struc-
ture.

For example, thebuffer_head structures
that belong to ext2 file systems are handled by
themigrate_page_buffer function. This
function enables page migration without write-
back operations by havingnewpage to take
over thebuffer_head structure pointed by
page->private . It is implemented as fol-
lows:

• Wait until the page_count drops
to the prescribed value (3 when the
PG_private page flag is set, 2 oth-
erwise). While waiting, issue the
try_to_unmap() function calls.

• If the PG_private flag is set, process
the buffer_head structure by calling
the generic_move_buffer() func-
tion. The function waits until the
buffer_count drops and the buffer
lock is released. Then, it hasnewpage
to take over the buffer_head struc-
ture by modifying page->private ,
newpage->private and theb_page
member in thebuffer_head struc-
ture. To adjustpage_count due to the
buffer_head structure, increment the
page_count of newpage by one and
decrement the one ofpage by one.

• At this point, thepage_count of page
is 2 regardless of the original state of the
PG_private flag.

2005 Linux Symposium • 163

6.5.2 Combination With
shrink_list()

Memory pressure caused by memory migra-
tion can be reduced. This memory pressure
can cause reclaim of pages as replacements.
Inactive pages are not worth migrating when
the resultant migration causes other valid pages
be reclaimed. This undesirable effect perturbs
the LRUness of pages reclaimed. It would be
preferable to just release these pages without
migrating them.

The current implementation[3] invokes
shrink_list() to release inactive pages
and moves only active pages to new locations
in case of memory hotplug removal.

6.6 Hugetlb Page Migration.

Due to certain workloads like databases and
high performance computing (HPC) large page
capability is critical for good performance. Be-
cause these pages are so critical to these work-
loads it follows that page migration must sup-
port migration of large pages to be widely used.

6.6.1 Interface to Migrate Hugetlb Pages

The prototype[5] interface for hugetlb migra-
tion seperates normal page migration from
huge page migration.

When a caller notices the page needing to be
migrated is a hugetlb page, it has to pass the
page totry_to_migrate_hugepage() ,
migrating it without any system freeze or any
process suspension.

6.6.2 Design of hugetlb page migration

The migration can be done in the same way for
normal pages, using the same memory migra-

tion infrastructure. Luckily, it’s not so hard
to implement because Linux kernel manages
large pages—often called hugetlb pages—via
the pseudo file system known as hugetlbfs.

Linux kernel handles them in a similar manner
as it handles normal pages in the page-cache.
It inserts each of them into thepage_tree
of the associated inode in hugetlbfs and
maps them into process address spaces using
mmap() system call.

There is one additional requirement for migra-
tion of large pages. Demand paging against
hugetlb pages must be blocked, with all ac-
cesses via process address spaces to pages un-
der migration blocked in a pagefault handler
until the migration is completed.

Therefore, the hugetlb page management re-
lated to demand paging feature has to be en-
hanced as follows:

• A pagefault handler for hugetlb
pages must be implemented. The
implementation[4] Chen, Kenneth W and
Christoph Lameter are working on can be
used with some modification, making the
processes block in the pagefault handler if
the page is locked. This is similar to what
the pagefault handler for normal pages
does.

• The function try_to_unmap() must
be able to handle hugetlb pages to un-
map them from process address spaces.
This meansobjrmap —the object-based
reverse mapping VM—also has to be in-
troduced so that page table entries associ-
ated with any pages can be found easily.

Another interesting topic is hugetlb page allo-
cation, which is almost impossible to do dy-
namically. Physically contiguous memory allo-

164 • Hotplug Memory Redux

target hugetlb page

migrate

page

page

migrate

migrate

memory
defragmentation

page

Figure 5:hugetlb page migration

cation is one of the well known issues remain-
ing to be solved. The current hugetlb page man-
agement chooses the approach that all pages
should be reserved at system start-up time.

Despite its current state, hugetlb page migra-
tion can not continue to use this approach. On
demand allocation is strictly required. Fortu-
nately, this is going to be solved with “Memory
defragmentation” (see Section 8.1). Marcelo
Tosatti is working on “Free area splitting within
zones” effort (see section 5).

6.6.3 How hugetlb Page Migration
Works

There really isn’t much difference between
hugetlb page migration and normal page migra-
tion. The following is the algorithm flow for
this migration.

1. Allocate a new hugetlb page from the page
allocator also known as the buddy allo-
cator. This may require memory defrag-
mentation to make a sufficient contiguous
range (figure 5).

2. Lock the newly allocated page and
keep it non-uptodate, without the
PG_uptodate flag on it.

3. Replace a target hugetlb page with the new
page onpage_tree of the correspond-
ing inode in hugetlbfs.

4. Unmap the target page from the process
address spaces, clearing all page table en-
tries mapping it.

5. Wait until all references on the target page
are gone.

6. Copy from the target page to the new page.

7. Make the new page uptodate, setting the
PG_uptodate flag on it.

8. Release the target page into the page allo-
cator directly.

9. Unlock the new page to wake up all wait-
ers.

6.7 Restriction

Under some rare situations, pages cannot mi-
grate, and making those migrations functional
would require too much code to be practical.

• NFS page-cache may have a non-
responding NFS server. NFS I/O requests
cannot complete if the server isn’t
responding. The pages with such out-
standing NFS I/O requests cannot migrate.
It is technically possible to handle this
situation by updating all the references to
an oldpage with ones to a newpage, but
the code modification would be very large
and probably not maintainable.

• Page-cache of which the file is used
by sendfile() are also problematic.
When a page-cache page is used by
sendfile() , its page_count is kept
raised until corresponding TCP packets
are ACKed. This becomes a problem
when a connection peer doesn’t read data
from the TCP connection.

2005 Linux Symposium • 165

• RDMA client/server memory use may
also be an issue but further investigation
is required.

6.8 Future Work

Currently, nonlinear mmaped pages2 cannot
migrate astry_to_unmap() doesn’t unmap
such pages. This must be addressed.

All file systems should have their own
migrate_page() method. This will help
performance considerably as the filesystems
can make more intelligent decisions about their
own data.

Kernel memory should be migratable too. A
first approach would be migrating page ta-
ble pages which consume significant memory.
This migration should be reasonably straight-
forward.

7 Architecture Implementation
Specifics

Memory hotplug has been implemented on
many different architectures. Each of these ar-
chitectures have unique hardware and conse-
quently do memory management in different
ways. They each present unique challenges and
solutions that should be of interest to future im-
plementators on the other architectures that cur-
rently don’t support memory hotplug. Addi-
tionally, those whose architectures are already
covered can better understand their own archi-
tectures by comparing them side by side with
others.

2With remap_file_pages() system call, sev-
eral pieces of a file can be mapped into one contiguous
virtual memory.

7.1 PPC64 Implementation

The PPC64 architecture is perhaps the most
mature with respect to the support of memory
hotplug. This is because there are other operat-
ing systems that currently support memory hot-
plug on this architecture.

7.1.1 Logical Partition Environment

Operating Systems running on PPC64 oper-
ate in a Logical Partition (LPAR) of the ma-
chine. These LPARs are managed by a under-
lying level of firmware known as the hypervi-
sor. The hypervisor manages access to the ac-
tual underlying hardware resources. It is possi-
ble to dynamically modify the resources asso-
ciated with an LPAR. Such dynamically mod-
ifiable LPARS are known as Dynamic LPARS
(DLPARs)[29].

Memory is one of the resources that can be
dynamically added to or removed from a DL-
PAR on PPC64. In a PPC64 system, physical
memory is divided into memory blocks that are
then assigned to LPARs. The hypervisor per-
forms remapping of real physical addresses to
addresses that are given to the LPAR3 These
memory blocks with remapped addresses ap-
pear as physical memory to the Operating Sys-
tems in the LPAR. When an OS is started on
an LPAR, the LPAR will have a set of mem-
ory blocks assigned to it. In addition, mem-
ory blocks can be added or removed to the
LPAR while the OS is active. The size of mem-
ory blocks managed by the hypervisor is scaled
based on the total amount of physical mem-
ory in the machine. The minimum size block

3To Linux the addresses given to it are considered
physical addresses, but they are not in actuality physical
addresses. This causes no end of confusion in developers
conversations because developers get confused over what
is a virtual address, physical address, remapped address,
etc.

166 • Hotplug Memory Redux

is 16MB4. As a result, the default SPARSE-
MEM section size for PPC64 is a relatively
small 16MB.

7.1.2 Add/Remove Operations

On PPC64, the most common case of mem-
ory hotplug is not expected to be the actual ad-
dition or removal of DIMMs. Rather, mem-
ory blocks will be added to or removed from
a DLPAR by the hypervisor. These add or re-
move operations are initiated on the Hardware
Management Console (HMC). When memory
is added to an LPAR, the HMC will notify a
daemon running in the OS of the desire to add
memory blocks. The daemon in turn makes
a special system call that results in calls be-
ing made to the hypervisor. The hypervisor
then makes additional memory blocks available
to the OS. As part of the special system call
processing, the physical address5 of these new
blocks is obtained. With the physical address
known, scripts called via the daemon use the
sysfs memory hotplug interface to create new
memory sections associated with the memory
blocks.

For memory remove operations, the HMC once
again contacts the daemon running in the OS.
The OS then executes a script that uses the sysfs
interfaces to offline a memory section. Once a
section is offlined, a special system call is made
that results in calls to the hypervisor to isolate
the memory from the DLPAR.

4256MB is a more typical minimum block size. On
some machines the user can actually change the mini-
mum block size the machine will use

5This is not the real physical address, but the
remapped address that Linux thinks is a real physical ad-
dress

7.1.3 Single Zone and Defragmentation

PPC64 makes minimal use of memory zones.
This is because DMA operations can be per-
formed to any memory address. As a result,
only a single DMA zone is created on PPC64
and no HIGHMEM or NORMAL zones. Of
course, there may be multiple DMA zones (one
per node) on a NUMA architecture. Having
a single zone makes things simpler but it does
nothing to segregate memory allocations of dif-
ferent types. For example, on architectures that
support HIGHMEM, allocations for user pages
mostly come from this zone. Having multiple
zones provides a very basic level of segrega-
tion of different allocation types. Since we have
no such luxury on PPC64, we must employ
other methods to segregate allocation types.
The memory defragmentation work done by
Mel Gorman is a good starting point for this
effort[19]. Mel’s work segregates memory al-
locations on the natural MAX_ORDER PAGE
size blocks managed by the page allocator. Be-
cause PPC64 has a relatively small default sec-
tion size of 16 MB, it should be possible to ex-
tend this concept in an effort to segregate allo-
cations to segment size blocks.

7.1.4 PPC64 Hypervisor Functionality

The PPC64 hypervisor provides functionality
to aid in the removal of memory sections. The
H_MIGRATE_DMA call aids in the remapping
of DMA mapped pages. This call will selec-
tively suspend bus traffic while migrating the
contents of DMA mapped pages. It also mod-
ifies the Translation Control Entries (TCEs)
used for DMA accesses. Such functionality
will allow for the removal ofdifficult memory
sections on PPC64.

2005 Linux Symposium • 167

7.2 x86-64 Implementation

Although much of the memory hot-plug infras-
tructure discussed in this paper, such as the
sparsememimplementation, is generic across
all platforms, architecture specific support is
still required due to the variance in memory
management requirements for specific proces-
sor architectures. Fortunately, the changes to
the x86-64 Linux kernel beyondsparsememto
support memory hotplug have been minimized
to the following:

• Kernel Page Table Initialization (capacity
addition)

• ZONE_NORMAL selection

• Kernel Page Table Tear Down (capacity
reduction)

The x86-64 kernel doesn’t require the HIGH-
MEM zone due to the large virtual address
space provided by the architecture [28][12].
Thus, new memory regions discovered during
memory hot-add operations result in expan-
sion of the NORMAL zone. Conversely, be-
cause the x86-64 kernel only uses the DMA and
NORMAL zones, removal of memory within
each zone as discussed in 5 is required.

Much of the development of the kernel sup-
port for memory hotplug has relied onlogi-
cal memory add and remove operations, which
has enabled the use of existing platforms for
prototyping. However, the x86-64 kernel has
been tested and used on real hardware that sup-
ports memory hotplug. Specifically, the x86-64
memory hotplug kernels have been tested on a
recently released Intel XeonR©6 platform that
supports physical memory hotplug operations.

6Xeon is a registered trademark of the Intel Corpora-
tion

One of the key pieces of supporting physi-
cal memory hotplug is notification of memory
capacity changes from the hardware/firmware.
The ACPI specification outlines basic informa-
tion on memory devices that is used to con-
vey these changes to the kernel. Accordingly,
in order to fully support physical memory hot-
plug in the kernel the x86-64 kernel uses the
ACPI memory hotplug driver to field notifica-
tions from firmware and notify the VM of the
addition or reduction at runtime using the same
interface employed by the logical operations.
Further information on the ACPI memory hot-
plug driver support in the kernel may be found
in [21].

7.3 IA64 Implementation

IA64 is one of architectures where Memory
Hotplug is eagerly desired. From the view
of Memory Hotplug, IA64 linux has following
characteristics:

• The memory layout of IA64 is very sparse
with lots of holes.

• For managing holes,VIRTUAL_MEM_
MAPis used in some configurations.

• MAX_ORDER is not 11 but 18.

• IA64 supports a physical address bits of 50

Early lmbench2 data has shown that SPARSE-
MEM performs equivalently to DISCONTIG-
MEM+VIRTUAL_MEM_MAP. The data was
taken on a non-NUMA machine. Further work
should be done with other benchmarks and
NUMA hardware.

168 • Hotplug Memory Redux

7.3.1 SPARSEMEM and VIRTUAL MEM
MAP

The VM uses amemmap[], a linear ar-
ray of page structures. With DISCONTIG-
MEM, memmap[] is divided into several
node_mem_maps. In general,memmap[] is
allocated in physically contiguous pages at boot
time.

The memory layout of IA64 is very sparse
with lots of holes. Sometimes there are GBs
of memory holes, even for a non-NUMA
machine. In IA64 DISCONTIGMEM, a
vmemmapis used to avoid wasting memory. A
vmemmapis amemmapwhich uses contiguous
region of virtual address instead of contiguous
physical memory.7

It is useful to hide holes and to create sparse
memmap[]s. It resides in region 5 of the vir-
tual address space, which uses virtual page ta-
ble 8 like vmalloc.

Unfortunately, VIRTUAL_MEM_MAP is
quite complicated. Because of the compli-
cations VIRTUAL_MEM_MAP presents,
early designs for MEMORY_HOTPLUG
were too complicated to be successfully
implemented. SPARSEMEM cleanly re-
moves VIRTUAL_MEM_MAP and thus
avoids the associated complexity altogether.
Because SPARSEMEM is simpler than
VIRTUAL_MEM_MAP it is a logical re-
placement for VIRTUAL_MEM_MAP for
situations other than just hotplug. SPARSE-
MEM divides the whole memmap into
the section’s section_memmap s. All
section_memmap s reside in region 7 of the
virtual address space. Region 7 is an identity
mapped segment and handled by the fast TLB

7VIRTUAL_MEM_MAP is configurable indepen-
dent of DISCONTIGMEM

8VHPT, Virtual Hash Page Table, is a hardware sup-
ported function to fill TLB

miss handler with big page size. If a hole
covers the whole section, section_memmap is
not allocated. Holes in a section are treated as
reserved pages. For example, an HP rx2600
with 4GB of memory has the available physical
memory at two locations with sizes of 1Gb and
3Gb. For VIRTUAL_MEM_MAP the holes
would be represented by empty virtual space
with vmemmap. SPARSEMEM handles a hole
which covers an entire section with an invalid
section.

7.3.2 SPARSEMEM NUMA

The mem_section[] array is on the BP’s
node. Becausepfn_to_page() accesses it,
a non BP nodepfn_to_page() is slightly
more expensive. Besides boot time the section
array is modified only during a hotplug event.
These events should happen infrequently. This
frequently accessed but rarely changing data
suggests replicating the array into all nodes in
order to eliminate the non BP node penalty.
Hotplug memory updates would have to notify
each node of modifications to the array.

7.3.3 Size of Section and MAX_ORDER

One feature which is very aggresive
on IA64 is the configuration parameter
FORCE_MAX_ZONEORDER. This over-
writes MAX_ORDER to 18. For a 16kb page
size the resultant MAX_ORDER region is
4Gb(18+14). This is done for supporting
4Gb HugetlbFS. SPARSEMEM constrains
PAGE_SIZE ∗ 2(MAX_ORDER−1) to be less
than or equal to section size. For HugetlbFS
we have: (1)the smallest size of section
is 4GB and (2)holes smaller than 4GB
consume reserved page structures. 18 of
MAX_ORDER seems to be rather optimistic

2005 Linux Symposium • 169

value for Memory Hotplug. Currently, con-
figuation of FORCE_MAX_ZONEORDER
is modified at compile time. At configu-
ration time, if HUGETLB isn’t selected,
FORCE_MAX_ZONEORDER can be con-
figured to 11−20. If HUGETLB is selected,
MAX_ORDER and SECTION_SIZE are
adjusted to support 4Gb HUGETLB Page.

7.3.4 Vast 50 Bits Address Space of IA64

The IA64 architecture supports a physical ad-
dress bit limit of 50, which can addresss up to
1 petabyte of memory. A section array with a
256Mb section size requires 32Mb of data to
cover the whole address range. The Linux ker-
nel by default is configured to only use 44 bits
maximum, which can address 16 terabytes of
memory. This only requires 512Kb of data to
cover the whole address range. The number of
bits used is configurable at compile time.

8 Overlap with other efforts

During the development of memory hotplug the
developers discovered two surprising things.

• Parts of the memory hotplug code were
very useful to those who don’t care at all
about memory hotplug.

• Code others were developing without so
much as a thought of memory hotplug
proved useful for memory hotplug.

This section attempts to briefly mention these
surprising overlaps with other independent de-
velopment without straying too far from the
topic of memory hotplug.

8.1 Memory Defragmentation

The primary concern for memory defragmen-
tation within the VM subsystem is at the page
level. At the heart of this concern is the page al-
locator and management of contiguous groups
of pages. Memory requests can be made for
for sizes in the range of a single page up to
2(MAX_ORDER−1) contiguous pages. As time
goes by, various size allocations are obtained
and freed. The page allocator attempts to in-
telligently group adjacent pages via the use of
buddy allocator as previously described. How-
ever, it still may become difficult to satisfy re-
quests for large size allocations. When a suit-
able size block is not found on the free lists,
an attempt is made to reclaim pages so that a
sufficiently large block can assembled. Unfor-
tunately, not all pages can be reclaimed. For
example, those in use for kernel data. The free
area splitting concepts previously discussed ad-
dress this issue. By grouping pages based on
usage characteristics, the likelihood that a large
block of pages can be reclaimed and ultimately
allocated is greatly increased.

With memory hotplug, removing a memory
section is somewhat analogous to allocating all
the pages within the memory section. This is
because all pages within the section must be
free (not in use) before the section can be re-
moved. Therefore, the concept of free list split-
ting can also be applied to memory sections
for memory removal operations. Unfortunately
however, memory sections do not map directly
to memory blocks managed by the page allo-
cator. Rather, a memory section consists of
multiple contiguous 2(MAX_ORDER−1) page size
blocks. The number of blocks is dependent
on architecture specific SECTION_SIZE and
MAX_ORDER definitions. Future work within
the memory hotplug project is to extend the
concepts used to avoid fragmentation to that of
memory section size blocks. This will increase

170 • Hotplug Memory Redux

the likelihood that memory sections can be re-
moved.

8.2 NUMA Memory Management

In a NUMA system, memory hotplug must con-
sider the case where all of the memory on a
node might be added/removed. Structures to
manage the node must be updated.

In addition, a user can specify nodes which are
used by a user’s tasks by usingmbind() or
set_mempolicy() in order to support load
balancing among cpusets/dynamic partitioning.
Memory hotplug has to not only update mem-
policy information, but also make interfaces for
load balancing scripts to move memory con-
tents from nodes to other appropriate nodes.

8.2.1 Hotplug of Management Structures
for a Node.

Structures which manage memory of a node
must be updated in order to hotplug the node
This section describes some of the structures.

pgdat To reduce expensive cross node mem-
ory accesses, Linux usespgdat struc-
tures which include zone and zonelists.
These structures are allocated on each
node’s local memory in order to reduce ac-
cess costs. If a new node is hotplug added,
its pgdat structure should be allocated on
its own node. Normally, there are no mm
structures for the node until the pgdat is
initialized, so pgdat has to be allocated by
special routine early in the boot process.
This allocation (getting a virtual address
and mapping physical address to it) is like
a ioremap() , but it should be mapped
on cached area unlikeioremap() .

zonelist The zonelist is an array of zone ad-
dresses, and it is ordered by which zone
should be used for its node. Its order is
determined by access cost from a cpu to
memory and the zone’s attributes. This
implies when a node with memory is hot-
plugged, all the node’s zonelists which are
being accessed must be updated. For up-
dating, the options are:

• getting locks

• giving up reordering

• stop other cpus while updating

Stopping other cpus while updating may
be the best way, because there is no im-
pact on performance of page allocation un-
less a hotplug event is in progress. In ad-
dition, more structures than just zonelists
need updating. For example, mempoli-
cies of each process have to be updated to
avoid using a removed node. To update
them, the system has to remember all of
the processes’ mempolicies. Linux does
not currently do this, so further develop-
ment is necessary.

8.2.2 Scattered Clone Structures Among
Nodes

Pgdat, which includes zone and zonelist, is
used to manage its own node, but some of data
structures’ clones are allocated on each of the
nodes for light weight accesses. One current
example isNODE_DATA() on IA64 imple-
mentation. NODE_DATA(node_id) macro
points to eachnode_id ’s pgdat. In the IA64
implementation,NODE_DATA(node_id) is
not just an array like it is in the IA32 imple-
mentation. This data is localized on each node
and it can be obtained fromper_cpu data.
In this case, all of the nodes have clones of
pg_data_ptrs[] array.

2005 Linux Symposium • 171

#define local_node_data \
local_cpu_data->node_data

#define NODE_DATA(nid) \
local_node_data->pg_data_ptrs[nid]

Besides NODE_DATA(), many other data
structures which are often accessed are local-
ized to each node. This implies that all of
the node copies must also be updated when
a hotplug event occurs. To update them,
stop_machine_run may prove to be the
best method of serializing access.

8.2.3 Process Migration on NUMA

It is important to determine what the best des-
tination node is for migration of memory con-
tents. This applies not only automatic migra-
tion, but also “manual page migration” as pro-
posed by Ray Bryant at SGI. With manual page
migration a load balancer script can specify the
destination node for migrating existing mem-
ory. A potential interface would be a simple
system call likesys_migrate_pages(pid,

oldnode, newnode) .

However, if there are too many nodes (ex, 128
nodes) and tasks (ex, 256 processes) in the sys-
tem, this system call will be called too fre-
quently. Therefore, Ray Bryant is proposing
an array interface to specify each node to avoid
too many calls:sys_migrate_pages(pid,

count, old_nodes, new_nodes) .

The arguments tosys_migrate_pages()
old_nodes andnew_nodes are the sets of
source and destination nodes and count is the
number of elements in each array. Therefore, a
user can just callsys_migrate_pages()
once for each task. If each task uses shared
message blocks, there will be a large reduction
in the number of system calls.

9 Conclusion

Hotplug Memory is real and achievable due to
the dedication of its developers. This paper
has shown that the issues with memory hotplug
have been well thought out. Most of memory
hotplug has already been implemented and is
maintained in the-mhp tree[3]—broken down
into the smallest possible independent pieces
for continued development. These small pieces
are released early and often. As individual
pieces of this code become ready for consump-
tion by the general public they are merged up-
stream. By maintaining this separate tree which
is updated at least once per -rc release, hotplug
developers have been able to test and stabilize
an increasing amount of memory hotplug code.
Thus, the pieces that get merged upstream are
small, non-disruptive, and well tested.

Memory hotplug is a model of how a large, dis-
ruptive feature can be developed and merged
into a continuously stable kernel. In fact, hav-
ing a stable kernel has made development much
more disciplined, debugging easier, conflicts
with other developers easier to identify, feed-
back more thorough, and generally has been a
blessing in disguise.

If in a parallel universe somewhere Andrew
Morton gave his keynote today instead of a
year ago I suspect he would say something dif-
ferent. The parallel universe Andrew Morton
might say:

“Some features tend to be pervasive and have
their little sticky fingers into lots of different
places in the code base. An example of which
comes to mind is CPU hot plug, and memory
hot unplug. We may not be able to accept these
features into a 2.7 development kernel due to
their long-term impact on stabilizing that ker-
nel. To make it easier on the developers of fea-
tures like these we have decided to never have a

172 • Hotplug Memory Redux

2.7 development kernel. Because of this, I ex-
pect CPU hot plug and memory hot unplug to
be merged with relative ease as they reach the
level of stability of the rest of the kernel.”

10 Acknowledgments

Special thanks to Ray Bryant of SGI for his re-
view on NUMA migration, New Energy and
Industrial Technology Development Organiza-
tion for funding some of the contributions from
the authors who work at Fujitsu, Martin Bligh
for his NUMA work and his work on IBMs test
environment, Andy Whitcroft for his work on
SPARSEMEM, Andrew Morton and the quilt
developers for giving us something to manage
all of these patches, Sourceforge for hosting our
mailing list, OSDL for the work of the Hot-
plug SIG—especially their work on testing, and
Martine Silbermann for valuable feedback.

11 Legal Statement

This work represents the view of the authors and
does not necessarily represent the view of IBM, In-
tel, Fujitsu, or HP.

IBM is a trademark or registered trademark of In-
ternational Business Machines Corporation in the
United Sates and/or other countries.

Intel is a trademark or registered trademark of Intel
Corporation in the United States, other countries, or
both.

Fujitsu is a trademark or registered trademark of Fu-
jitsu Limited in Japan and/or other countries.

Linux is a registered trademark of Linus Torvalds.

References

[1] http:
//www.groklaw.net/article.
php?story=20040802115731932

[2] M. Tosatti (marcelo.tosatti@
cyclades.com) (14 Oct 2004),Patch:
Migration Cache. Email to Dave Hansen,
Iwamoto Toshihiro, Hiroyuki Kamezawa,
linux-mm@kvack.org (http:
//lwn.net/Articles/106977/)

[3] http://sr71.net/patches/

[4] C. Lameter (clameter@sgi.com) (21 Oct
2004)Patch: Hugepages demand paging
V1[0/4]: Discussion and Overview.
Email to Kenneth Chen, William Lee
Irwin III, Ray Bryant,
linux-kernel@vger.kernel.
org (http:
//lwn.net/Articles/107719/)

[5] H. Takahashi, 2004 [online]. Linux
memory hotplug for Hugepages.
Available from:
http://people.valinux.co.
jp/~taka/hpageremap.html
[Accessed 2004].

[6] D. Hansen, M. Kravetz, B. Christiansen,
M. Tolentino. Hotplug Memory and the
Linux VM. In Proceedings of the Ottawa
Linux Symposium,Ottawa, Ontario,
Canada, pages 278–294, July 2004.

[7] K. Knowlton. A Fast Storage Allocator.
In Communications of the ACM,Vol. 8,
Issue 10, pages 623–624, October 1965.

[8] M. Gorman. Understanding the Linux
Virtual Memory Manager, Prentice Hall,
NJ, 2004.

[9] W. Bolosky, R. Fitzgerald, M. Scott.
Simple But Effective Techniques for

2005 Linux Symposium • 173

NUMA Memory Management. In
Proceedings of the 12th ACM Symposium
on Operating Systems Principles,pages
19–31, 1989.

[10] P. Barham, B. Dragovic, K. Fraser, S.
Hand, T. Harris, A. Ho, R. Neugebauer, I.
Pratt, A. Warfield. Xen and the Art of
Virtualization. InProceedings of the
Nineteenth ACM Symposium on
Operating System Principles,pages
164–177, October 2003.

[11] E. Demaine, J. Munro. Fast Allocation
and Deallocation with an Improved
Buddy System. InProceedings of the
19th Conference on Foundations of
Software Technology and Theoretical
Computer Science,pages 84–96, 1999.

[12] Intel Corporation. 64-Bit Extension
Technology Software Developer’s Guide.
2004.

[13] K. Li and K. Peterson. Evaluation of
Memory System Extensions. In
Proceedings of 18th Annual International
Symposium on Computer Architecture,
pages 84–93, 1991.

[14] D. Mosberger, S. Eranian. ia-64 Linux
Kernel Design and Implementation.
Prentice Hall, NJ, 2002.

[15] Z. Mwaikambo, A. Raj, R. Russell, J.
Schopp, S. Vaddagiri. Linux Kernel
Hotpug CPU Support. InProceedings of
the Ottawa Linux Symposium,pages
467–479, July 2004.

[16] J. Peterson, T. Norman. Buddy Systems.
In Communications of the ACM,Vol. 20,
Issue 6, pages 421–431, June 1977.

[17] C. Waldspurger. Memory Resource
Management in VMware ESX Server. In
Procedings of the 5th Symposium on

Operating System Design and
Implementation,pages 181–194, 2002.

[18] M.S. Johnstone, P.R. Wilson. The
Memory Fragmentation Problem:
Solved? InInternational Symposium on
Memory Management,pages 26–36,
Vancouver, British Columbia, Canada,
1998.

[19] Linux Weekly News, 2005 [online]. Yet
another approach to memory
fragmentation. Available from
http://lwn.net/121618/
[Accessed Feb. 2005]

[20] ACPI Specification Version 3.0http:
//www.acpi.info/spec.htm

[21] L. Brown,et al. The State of ACPI in the
Linux Kernel. InProceedings of the
Ottawa Linux Symposium, Ottawa,
Ontario, Canada, July 2005.

[22] B. Jacob, T. Mudge. Virtual Memory in
Contemporary Microprocessors, IEEE
Micro, pages 60–75, July 1998

[23] R. Rashid, A. Tevanian, M. Young, D.
Golub, R. Baron, D. Black, W. Bolosky,
J. Chew. Machine Independent Virtual
Memory Management for Paged
Uniprocessor and Multiprocessor
Architectures, InProceedings of Second
International Conference on
Architectural Support for Programming
Languages and Operating Systems,pages
31–39, 1987.

[24] S. Hand. Self-Paging in the Nemesis
Operating System, InProceedings of the
Third Symposium on Operating Systems
Design and Implementation,pages
73–86, February 1999.

[25] P. Denning. Virtual Memory, InACM
Computing Surveys (CSUR),Vol. 2, Issue
3, pages 153–189, September 1970.

174 • Hotplug Memory Redux

[26] A. Bensoussan, C. Clingen, R. Daley.
The Multics Virtual Memory, In
Communications of the ACM,Vol. 15,
Issue 5, pages 308–318, May 1972.

[27] V. Abrossimov, M. Rozier. Generic
Virtual Memory Management for
Operating System Kernels. In
Proceedings of the 12th ACM Symposium
on Operating System Principles,pages
123–136, November 1989.

[28] A. Kleen. Porting Linux to x86-64. In
Proceedings of the Ottawa Linux
Symposium,, Ottawa, Ontario, Canada,
July 2001.

[29] IBM. Dynamic Logical Partitioning in
IBM eserver pSeries. October 2002.

[30] D.H. Brown Associates, Inc. Capacity on
Demand A Requirement for the
e-Business Environment. IBM White
Paper. September 2003.

[31] L.D. Paulson. Computer System, Heal
Thyself. InIEEE Computer,Vol. 35,
Issue 8, August 2002.

Enhancements to Linux I/O Scheduling

Seetharami Seelam, Rodrigo Romero, Patricia Teller
University of Texas at El Paso

{seelam, romero, pteller}@cs.utep.edu

Bill Buros
IBM Linux Technology Center

wmb@us.ibm.com

Abstract

The Linux 2.6 release provides four disk I/O
schedulers: deadline, anticipatory, noop, and
completely fair queuing (CFQ), along with an
option to select one of these four at boot time
or runtime. The selection is based ona pri-
ori knowledge of the workload, file system,
and I/O system hardware configuration, among
other factors. The anticipatory scheduler (AS)
is the default. Although the AS performs
well under many situations, we have identi-
fied cases, under certain combinations of work-
loads, where the AS leads to process starvation.
To mitigate this problem, we implemented an
extension to the AS (called Cooperative AS or
CAS) and compared its performance with the
other four schedulers. This paper briefly de-
scribes the AS and the related deadline sched-
uler, highlighting their shortcomings; in addi-
tion, it gives a detailed description of the CAS.
We report performance of all five schedulers
on a set of workloads, which represent a wide
range of I/O behavior. The study shows that
(1) the CAS has an order of magnitude im-
provement in performance in cases where the
AS leads to process starvation and (2) in sev-
eral cases the CAS has performance compa-
rable to that of the other schedulers. But, as

the literature and this study reports, no one
scheduler can provide the best possible perfor-
mance for all workloads; accordingly, Linux
provides four I/O schedulers from which to se-
lect. Even when dealing with just four, in sys-
tems that service concurrent workloads with
different I/O behaviors,a priori selection of
the scheduler with the best possible perfor-
mance can be an intricate task. Dynamic se-
lection based on workload needs, system con-
figuration, and other parameters can address
this challenge. Accordingly, we are developing
metrics and heuristics that can be used for this
purpose. The paper concludes with a descrip-
tion of our efforts in this direction, in particular,
we present a characterization function, based
on metrics related to system behavior and I/O
requests, that can be used to measure and com-
pare scheduling algorithm performance. This
characterization function can be used to dy-
namically select an appropriate scheduler based
on observed system behavior.

1 Introduction

The Linux 2.6 release provides four disk I/O
schedulers: deadline, anticipatory, completely
fair queuing (CFQ), and noop, along with an

• 175 •

176 • Enhancements to Linux I/O Scheduling

option to select one of these at boot time or run-
time. Selection is based ona priori knowledge
of the workload, file system, and I/O system
hardware configuration, among other factors.
In the absence of a selection at boot time, the
anticipatory scheduler (AS) is the default since
it has been shown to perform better than the
others under several circumstances [8, 9, 11].

To the best of our knowledge, there are no
performance studies of these I/O schedulers
under workloads comprised of concurrent I/O
requests generated by different processes that
exhibit different types of access patterns and
methods. We call these types of workloads
“mixed workloads.” Such studies are of in-
terest since, in contemporary multiprogram-
ming/multiprocessor environments, it is quite
natural to have several different types of I/O
requests concurrently exercising the disk I/O
subsystem. In such situations, it is expected
that the I/O scheduler will not deprive any pro-
cess of its required I/O resources even when
the scheduler’s performance goals are met by
the processing of concurrent requests gener-
ated by other processes. In contrast, due to the
anticipatory nature of the AS, there are situa-
tions, which we identify in this paper, when
the AS leads to process starvation; these situ-
ations occur when a mixed workload stresses
the disk I/O subsystem. Accordingly, this pa-
per answers the following three questions and
addresses a fourth one, which is posed in the
next paragraph.

Q1. Are there mixed workloads that potentially
can starve under the AS due to its anticipatory
nature?

Q2. Can the AS be extended to prevent such
starvation?

Q3. What is the impact of the extended sched-
uler on the execution time of some realistic
benchmarks?

In this paper we also explore the idea of dy-
namic scheduler selection. In an effort to de-
termine the best scheduler, [13] quantifies the
performance of the four I/O schedulers for dif-
ferent workloads, file systems, and hardware
configurations. The conclusion of the study is
that there is “no silver bullet,” i.e., none of the
schedulers consistently provide the best possi-
ble performance under different workload, soft-
ware, and hardware combinations. The study
shows that (1) for the selected workloads and
systems, the AS provides the best performance
for sequential read requests executed on sin-
gle disk hardware configurations; (2) for mod-
erate hardware configurations (RAID systems
with 2-5 disks), the deadline and CFQ sched-
ulers perform better than the others; (3) the
noop scheduler is particularly suitable for large
RAID (e.g., RAID-0 with tens of disks) sys-
tems consisting of SCSI drives that have their
own scheduling and caching mechanisms; and
(4) the AS and deadline scheduler provide sub-
stantially good performance in single disk and
2-5 disk configurations; sometimes the AS per-
forms better than the deadline scheduler and
vice versa. The study infers that to get the
best possible performance, scheduler selection
should be dynamic. So, the final question we
address in this paper is:

Q4. Can metrics be used to guide dynamic se-
lection of I/O schedulers?

The paper is organized as follows. Section 2
describes the deadline and anticipatory sched-
ulers, highlighting similarities and differences.
The first and second questions are answered in
Sections 3 and 4, respectively, by demonstrat-
ing that processes can potentially starve under
the AS and presenting an algorithm that ex-
tends the AS to prevent process starvation. To
answer the third question, Section 5 presents
a comparative analysis of the deadline sched-
uler, AS, and extended AS for a set of mixed
workloads. Furthermore, the execution times

2005 Linux Symposium • 177

of a set of benchmarks that simulate web, file,
and mail servers, and metadata are executed un-
der all five schedulers are compared. Finally,
the fourth question is addressed in Section 6,
which presents microbenchmark-based heuris-
tics and metrics for I/O request characterization
that can be used to guide dynamic scheduler se-
lection. Sections 7, 8, and 9 conclude the paper
by highlighting our future work, describing re-
lated work, and presenting conclusions, respec-
tively.

2 Description of I/O Schedulers

This section describes two of the four sched-
ulers provided by Linux 2.6, the deadline
scheduler and the anticipatory scheduler (AS).
The deadline scheduler is described first be-
cause the AS is built upon it. Similarities
and differences between the two schedulers are
highlighted. For a description of the CFQ and
noop schedulers, refer to [13].

2.1 Deadline Scheduler

The deadline scheduler maintains two separate
lists, one for read requests and one for write
requests, which are ordered by logical block
number—these are called thesort lists. During
the enqueue phase, an incoming request is as-
signed an expiration time, also calleddeadline,
and is inserted into one of the sort lists and one
of two additional queues (one for reads and one
for writes) ordered by expiration time—these
are called thefifo lists. Scheduling a request to
a disk drive involves inserting it into a dispatch
list, which is ordered by block number, and
deleting it from two lists, for example, the read
fifo and read sort lists. Usually a set of contigu-
ous requests is moved to the dispatch list. A
request that requires a disk seek is counted as

16 contiguous requests. Requests are selected
by the scheduler using the algorithm presented
below.

Step 1: If there are write requests in the write
sort list and the last two scheduled requests
were selected using step 2 and/or step 3, then
select a set of write requests from the write sort
list and exit.

Step 2: If there are read requests with expired
deadlines in the read fifo list, then select a set
of read requests from this list and exit.

Step 3: If there are read requests in the read sort
list, then select a set of read requests from this
list and exit.

Step 4: If there are write requests in the write
sort list, then select a set of write requests from
this list and exit.

When the scheduler assigns deadlines, it gives
a higher preference to reads; a read is satisfied
within a specified period of time—500ms is the
default—while a write has no strict deadline. In
order to prevent write request starvation, which
is possible under this policy, writes are sched-
uled after a certain number of reads.

The deadline scheduler is work-conserving—
it schedules a request as soon as the previous
request is serviced. This can lead to poten-
tial problems. For example, in many applica-
tions read requests aresynchronous, i.e., suc-
cessive read requests are separated by small
chunks of computation, and, thus, successive
read requests from a process are separated by
a small delay. Ifp (p > 1) processes of this
type are executing concurrently, then ifp re-
quests, one from each process, arrive during
a time interval, a work-conserving scheduler
may first select a request from one process and
then select a request from a different process.
Consequently, the work-conserving nature of
the deadline scheduler may result in deceptive

178 • Enhancements to Linux I/O Scheduling

idleness [7], a condition in which the sched-
uler alternately selects requests from multiple
processes that are accessing disjoint areas of
the disk, resulting in a disk seek for each re-
quest. Such deceptive idleness can be elimi-
nated by introducing into the scheduler a short
delay before I/O request selection; during this
time the scheduler waits for additional requests
from the process that issued the previous re-
quest. Such schedulers are called non-work-
conserving schedulers because they trade off
disk utilization for throughput. The anticipa-
tory scheduler, described next in Section 2.2,
is an example of such a scheduler. The de-
ceptive idleness problem, with respect to the
deadline scheduler, is illustrated in Section 5,
which presents experimental results for various
microbenchmarks and real workloads. A study
of the performance of the deadline scheduler
under a range of workloads also is presented in
the same section.

The Linux 2.6 deadline scheduler has several
parameters that can be tuned to obtain better
disk I/O performance. Some of these param-
eters are the deadline time for read requests
(read_expire), the number of requests to
move to the dispatch list (fifo_batch),
and the number of times the I/O sched-
uler assigns preference to reads over writes
(write_starved). For a complete descrip-
tion of the deadline scheduler and various tun-
able parameters, refer to [13].

2.2 Anticipatory Scheduler

Theseek-reducing anticipatory scheduleris de-
signed to minimize the number of seek op-
erations in the presence of synchronous read
requests and eliminate the deceptive idleness
problem [7]. Due to some licensing issues [14],
the Linux 2.6 implementation of the AS, which
we refer to asLAS, is somewhat different from
the general idea described in [7]. Nonetheless,

the LAS follows the same basic idea, i.e., if the
disk just serviced a read request from process
p then stall the disk and wait (some period of
time) for more requests from processp.

The LAS is comprised of three components:
(1) the original, non-anticipatory disk sched-
uler, which is essentially the deadline scheduler
algorithm with the deadlines associated with re-
quests, (2) the anticipation core, and (3) the an-
ticipation heuristic. The latter two serve read
requests. After scheduling a request for dis-
patch, the deadline scheduler selects a pending
I/O request for dispatch. In contrast, the LAS,
selects a pending I/O request, using the same
criteria as the deadline scheduler, and evaluates
it via its anticipation heuristic.

The anticipation core maintains statistics re-
lated to all I/O requests and decaying frequency
tables of exit probabilities, mean process seek
distances, and mean process think times. The
exit probabilityindicates the probability that an
anticipated request, i.e., a request from thean-
ticipated process, i.e., the process that gener-
ated the last request, will not arrive. Accord-
ingly, it is decremented when an anticipated
request arrives and is incremented otherwise,
e.g., when a process terminates before generat-
ing a subsequent I/O request. If the exit proba-
bility exceeds a specified threshold, any request
that arrives at the anticipation core is scheduled
for dispatch. The seek distance (think time) is
the difference between the logical block num-
bers (arrival times) of two consecutive requests.
These metrics—exit probability, mean process
seek distance, and mean process seek time—
are used by the anticipation heuristic, in combi-
nation with current head position and requested
head position, to determine anticipation time.

The anticipation heuristic evaluates whether to
stall the disk for a specific period of time (wait
period or anticipation time), in anticipation of
a “better request", for example from the an-
ticipated process, or to schedule the selected

2005 Linux Symposium • 179

request for dispatch. The anticipation heuris-
tic used in the LAS is based on the shortest
positioning time first (SPTF) scheduling pol-
icy. Given the current head position, it evalu-
aes which request, anticipated or selected, will
potentially result in the shortest seek distance.
This evaluation is made by calculating the po-
sitioning times for both requests. If the logical
block of the selected request is close to the cur-
rent head position, the heuristic returns zero,
which causes the request to be scheduled for
dispatch. Otherwise, the heuristic returns a pos-
itive integer, i.e., the anticipation time, the time
to wait for an anticipated request. Since syn-
chronous requests are initiated by a single pro-
cess with interleaved computation, the process
that issued the last request may soon issue a re-
quest for a nearby block.

During the anticipation time, which usually is
small (a few milliseconds—6ms is the default)
and can be adjusted, the scheduler waits for the
anticipated request. If a new request arrives
during the wait period, it is evaluated immedi-
ately with the anticipation heuristic. If it is the
anticipated request, the scheduler inserts it into
the dispatch list. Otherwise, the following al-
gorithm is executed. If the algorithm does not
result in the new request being scheduled for
dispatch, the core continues to anticipate and
the disk is kept idle; this leads to potential prob-
lems, some of which are described in Section 3.

Step 1: If anticipation has been turned off, e.g.,
as a result of a read request exceeding its dead-
line, then update process statistics, schedule the
starving request for dispatch, and exit.

Step 2: If the anticipation time has expired then
update process statistics, schedule the request
for dispatch, and exit.

Step 3: If the anticipated process has termi-
nated, update the exit probability, update pro-
cess statistics, schedule the new request for dis-
patch, and exit.

Step 4: If the request is a read request that will
access a logical block that is “close” to the cur-
rent head position, then update process statis-
tics, schedule the new request for dispatch, and
exit. In this case, there is no incentive to wait
for a “better” request.

Step 5: If the anticipated process just started
I/O and the exit probability is greater than 50%,
update process statistics, schedule the new re-
quest for dispatch, and exit; this process may
exit soon, thus, there is no added benefit in fur-
ther anticipation. This step creates some prob-
lems, further described in Section 3, when co-
operative processes are executing concurrently
with other processes.

Step 6: If the mean seek time of the anticipated
process is greater than the anticipation time, up-
date process statistics, schedule the request for
dispatch, and exit.

Step 7: If the mean seek distance of the an-
ticipated process is greater than the seek dis-
tance required to satisfy the new request, up-
date process statistics, schedule the request for
dispatch, and exit.

Unlike the deadline scheduler, the LAS allows
limited back seeks. A back seek occurs when
the position of the head is in front of the head
position required to satisfy the selected request.
In deadline and other work-conserving sched-
ulers, such requests are placed at the end of
the queue. There is some cost involved in back
seeks, thus, the number of back seeks is limited
to MAXBACK(1024*1024) sectors; see [13]
for more information.

As described, the essential differences between
the LAS and deadline scheduler are the antici-
pation core and heuristics, and back seeks. Per-
formance of the LAS under a range of work-
loads is studied in Section 5, which highlights
its performance problems.

180 • Enhancements to Linux I/O Scheduling

3 Anticipatory Scheduler Problems

The anticipatory scheduler (LAS) algorithm is
based on two assumptions: (1) synchronous
disk requests are issued by individual processes
[7] and, thus, anticipation occurs only with re-
spect to the process that issued the last request;
and (2) for anticipation to work properly, the
anticipated process must be alive; if the an-
ticipated process dies, there is no further an-
ticipation for requests to nearby sectors. In-
stead, any request that arrives at the scheduler
is scheduled for dispatch, irrespective of the re-
quested head position and the current head po-
sition. These two assumptions hold true as long
as synchronous requests are issued by individ-
ual processes. However, when a group of pro-
cesses collectively issue synchronous requests,
the above assumptions are faulty and can result
in (1) faulty anticipation, but not necessarily
bad disk throughput, and (2) a seek storm when
multiple sets of short-lived groups of processes,
which are created and terminated in a very
short time interval, issue synchronous requests
collectively and simultaneously to disjoint sets
of disk area, resulting in poor disk through-
put. We call processes that collectively issue
synchronous requests to a nearby set of disk
blocks cooperative processes. Examples of
programs that generate cooperative processes
include shell scripts that read the Linux source
tree, different instances ofmake scripts that
compile large programs and concurrently read
a small set of source files, and different pro-
grams or processes that read several database
records. We demonstrate related behavior and
associated performance problems using the two
examples below.

3.1 Concurrent Streaming and Chunk
Read Programs

First, we demonstrate how the first assump-
tion of the LAS can lead to process starvation.

Consider two programs, A and B, presented in
Figure 2. Program A generates a stream of
synchronous read requests by a single process,
while program B generates a sequence of de-
pendent chunk read requests, each set of which
is generated by a different process.

Assume that Program B is reading the top-level
directory of the Linux source tree. The pro-
gram reads all the files in the source tree, in-
cluding those in the subdirectories, one file at
a time, and does not read any file outside the
top-level directory. Note that each file is read
by a different process, i.e., when Program B is
executed, a group of processes is created, one
after the other, and each issues synchronous
disk read requests. For this program, con-
sider the performance effect of the first assump-
tion, i.e., the per-process anticipation built into
the LAS. Recall that LAS anticipation works
only on a per-process basis and provides im-
proved performance only under multiple out-
standing requests that will access disjoint sets
of disk blocks. When Program A or B is ex-
ecuted while no other processes are accessing
the disk, anticipation does not reap a benefit
because there is only a small set of pending I/O
requests (due to prefetching) that are associated
with the executing program. There are no disk
head seeks that are targets for performance im-
provement.

Now consider executing both programs concur-
rently. Assume that they access disjoint disk
blocks and the size of thebig-file read
by Program A is larger than that of the buffer
cache. In this case, each read request results
in a true disk access rather than a read from
the buffered file copy. Since the two programs
are executing concurrently, at any point in time
there are at least two pending I/O requests, one
generated by each of the processes. Program B
sequentially creates multiple processes that ac-
cess the disk and only a small set of the total
number of I/O requests generated by Program

2005 Linux Symposium • 181

B corresponds to a single process; all read re-
quests associated with a particular file are gen-
erated by one process. In contrast, the execu-
tion of Program A involves only one process
that generates all I/O requests. Since the antic-
ipation built into the LAS is associated with a
process, it fails to exploit the disk spatial local-
ity of reference of read requests generated by
the execution of Program B; however, it works
well for the requests generated by Program A.
More important is the fact that concurrent ex-
ecution of these two programs results in star-
vation of processes generated by Program B.
Experimental evidence of this is presented in
Section 5.

3.2 Concurrent Chunk Read Programs

This section demonstrates how the second as-
sumption of the LAS can fail and, hence, lead
to poor disk throughput. Consider the concur-
rent execution of two instances of Program B,
instances 1 and 2, reading the top-level direc-
tory of two separate Linux source trees that
are stored in disjoint sets of disk blocks. As-
sume that there areF files in each source tree.
Accordingly, each instance of Program B cre-
atesF different processes sequentially, each of
which reads a different file from the disk.

For this scenario, consider the performance ef-
fect of the second assumption, i.e., once the
anticipated process terminates, anticipation for
requests to nearby sectors ceases. When two
instances of program B are executing concur-
rently, at any point in time there are at least
two pending I/O requests, one generated by
each program instance. Recall that requests
to any one file correspond to only one pro-
cess. In this case, the anticipation works well
as long as only processess associated with one
program instance, say instance 1, are reading
files. When there are processess from the two

instances reading files then the second assump-
tion does not allow the scheduler to exploit
the disk spatial locality of reference of read
requests generated by another process associ-
ated with instance 1. For example, given pend-
ing I/O requests generated by two processes,
one associated with instance 1 and one asso-
ciated with instance 2, anticipation will work
well for each process in isolation. However,
once a process from one instance, say instance
1, terminates, even if there are pending requests
from another process of instance 1, the sched-
uler schedules for dispatch a request of the pro-
cess of instance 2. This results in a disk seek
and anticipation on the instance 2 process that
generated the request. This behavior iterates
for the duration of the execution of the pro-
grams. As a result, instead of servicing all read
requests corresponding to one source tree and,
thus, minimizing disk seeks, an expensive se-
quence of seeks, caused by alternating between
processes of the two instances of Program B,
occurs. For this scenario, at least 2F −1 seeks
are necessary to service the requests generated
by both instances of Program B. As demon-
strated, adherence to the second assumption of
the LAS leads to seek storms that result in poor
disk throughput. Experimental evidence of this
problem is presented in Section 5.

4 Cooperative Anticipatory Sched-
uler

In this section we present an extension to the
LAS that addresses the faulty assumptions de-
scribed in Section 3 and, thus, solves the prob-
lems of potential process starvation and poor
disk throughput. We call this scheduler the
Cooperative Anticipatory Scheduler (CAS). To
address potential problems, the notion of antic-
ipation is broadened. When a request arrives
at the anticipation core during an anticipation

182 • Enhancements to Linux I/O Scheduling

time interval, irrespective of the state of the an-
ticipated process (alive or dead) and irrespec-
tive of the process that generated the request,
if the requested block is near the current head
position, it is scheduled for dispatch and an-
ticipation works on the process that generated
the request. In this way, anticipation works not
only on a single process, but on a group of pro-
cesses that generate synchronous requests. Ac-
cordingly, the first assumption of the LAS and
the associated problem of starvation of coop-
erative processes is eliminated. Since the state
of the anticipated process is not taken into ac-
count in determining whether or not to schedule
a new request for dispatch, short-lived coopera-
tive processes accessing disjoint disk block sets
do not prevent the scheduler from exploiting
disk spatial locality of reference. Accordingly,
the second assumption is broadened and the as-
sociated problem of reduced disk throughput is
eliminated.

The CAS algorithm appears below. As in the
LAS algorithm, during anticipation, if a re-
quest from the anticipated process arrives at the
scheduler, it is scheduled for dispatch immedi-
ately. In contrast to the LAS, if the request is
from a different process, before selecting the
request for scheduling or anticipating for a bet-
ter request, the following steps are performed
in sequence.

Step 1: If anticipation has been turned off, e.g.,
as a result of a read request exceeding its dead-
line, then update process statistics, schedule the
starving request for dispatch, and exit.

Step 2: If the anticipation time has elapsed,
then schedule the new request, update process
statistics and exit.

Step 3: If the anticipation time has not elapsed
and the new request is a read that accesses
a logical block number “close” to the current
head position, schedule the request for dispatch
and exit. A request is considered close if the

requested block number is within some delta
distance from the current head position or the
process’ mean seek distance is greater than the
seek distance required to satisfy the request.
Recall that this defines a request from a coop-
erative process. At this point in time the an-
ticipated process could be alive or dead. If it
is dead, update the statistics for the request-
ing process and increment the CAScoopera-
tive exit probability, which indicates the exis-
tence of cooperative processes related to dead
processes. If the anticipated process is alive,
update the statistics for both processes and in-
crement the cooperative exit probability.

Step 4: If the anticipated process is dead, up-
date the system exit probability and if it is less
than 50% then schedule the new request and
exit. Note that this request is not from a co-
operative process.

Step 5: If the anticipated process just started
I/O, the system exit probability is greater than
50%, and the cooperative exit probability is less
than 50%, schedule the new request and exit.

Step 6: If the mean think time of the antic-
ipated process is greater than the anticipation
time, schedule the new request and exit.

This concludes the extensions to the anticipa-
tory scheduler aimed at solving the process
starvation and reduced throughput problems.

5 Experimental Evaluation

This section first presents a comparative perfor-
mance analysis, using a set of mixed workload
microbenchmarks, of the deadline scheduler,
LAS, and CAS. The workloads are described in
Sections 5.4, 5.5, and 5.6. The goal of the anal-
ysis is to highlight some of the problems with
the deadline scheduler and LAS, and to show

2005 Linux Symposium • 183

that the CAS indeed solves these problems.
Second, we compare the execution times, under
all five schedulers, of a set of benchmark pro-
files that simulate web, file, and mail servers,
and metadata. A general description of these
profiles is provided in Section 5.1 and individ-
ual workloads are described in Sections 5.7-
5.10. The goal of this comparison is to show
that the CAS, in fact, performs better or as good
as the LAS under workloads with a wide range
of characteristics. Using these benchmarks, we
show that (1) the LAS can lead to process star-
vation and reduced disk throughput problems
that can be mitigated by the CAS, and (2) un-
der various workload scenarios, which are dif-
ferent from those used to demonstrate process
starvation or reduced throughput, the CAS has
performance comparable to the LAS.

5.1 Workload Description

The Flexible File System Benchmark (FFSB)
infrastructure [6] is the workload generator
used to simulate web, file, and mail servers,
and metadata. The workloads are specified us-
ing profiles that are input to the FFSB infras-
tructure, which simulates the required I/O be-
havior. Initially, each profile is configured to
create a total of 100,000 files in 100 directo-
ries. Each file ranges in size from 4 KB to 64
KB; the total size of the files exceeds the size
of system memory so that the randomopera-
tions (file read, write, append, create, or delete
actions) are performed from disk and not from
memory. File creation time is not counted in
benchmark execution time. A profile is config-
ured to create four threads that randomly ex-
ecute a total of 80,000 operations (20,000 per
thread) on files stored in different directories.
Each profile is executed three times under each
of the five schedulers on our experimental plat-
form (described in Section 5.2). The average of
the three execution times, as well as the stan-
dard deviation, are reported for each scheduler.

5.2 Experimental Platform

We conducted the following experiments on a
dual-processor (2.28GHz Pentium 4 Xeon) sys-
tem, with 1 GB main memory and 1 MB L2
cache, running Linux 2.6.9. Only a single pro-
cessor is used in this study. In order to elim-
inate interference from operating system (OS)
I/O requests, benchmark I/O accesses an ex-
ternal 7,200 RPM Maxtor 20 GB IDE disk,
which is different from the disk hosting the
OS. The external drive is configured with the
ext3 file system and, for every experiment,
is unmounted and re-mounted to remove buffer
cache effects.

5.3 Metrics

For the microbenchmark experiments, two ap-
plication performance metrics, application ex-
ecution time (in seconds) and aggregate disk
throughput (in MB/s), are used to demonstrate
the problems with different schedulers. With no
other processes executing in the system (except
daemons), I/O-intensive application execution
time is inversely proportional to disk through-
put. In such situations, the scheduler with the
smallest application execution time is the best
scheduler for that workload. In mixed work-
load scenarios, however, the execution time of
any one application cannot be used to compare
schedulers. Due to the non-work-conserving
nature of the LAS and CAS, these schedulers,
when serving I/O requests, introduce delays
that favor one application over another, some-
times at the cost of increasing the execution
times of other applications. Hence, in the pres-
ence of other I/O-intensive processes, the ap-
plication execution time metric must be cou-
pled with other metrics to quantify the relative
merit of different schedulers. Consequently,
we use the aggregate disk throughput metric in
such scenarios. Application execution time in-
dicates the performance of a single application

184 • Enhancements to Linux I/O Scheduling

while true
do

Program 1:

done

Program 2:
time cat 200mb-file > /dev/null

 dd if=/dev/zero of=file \
 count=2048 bs=1M

Figure 1: Program 1—generates stream write
requests; Program—2 generates stream read re-
quests

and disk throughput indicates overall disk per-
formance. Together, these two metrics help ex-
pose potential process starvation and reduced
throughput problems with the LAS.

5.4 Experiment 1: Microbenchmarks—
Streaming Writes and Reads

This experiment uses a mixed workload com-
prised of two microbenchmarks [9], shown in
Figure 1, to compare the performance of the
deadline scheduler, LAS, and CAS. It demon-
strates the advantage of the LAS and CAS over
the deadline scheduler in a mixed workload
scenario. One microbenchmark, Program 1,
generates a stream of write requests, while the
other, Program 2, generates a stream of read re-
quests. Note that the write requests generated
by Program 1 are asynchronous and can be de-
layed to improve disk throughput. In contrast,
Program 2 generates synchronous stream read
requests that must be serviced as fast as possi-
ble.

When Programs 1 and 2 are executed concur-
rently under the three different schedulers, ex-
perimental results, i.e., application execution
times and aggregate disk throughput, like those

shown in Table 1 are attained. These results in-
dicate the following. (1) For synchronous read
requests, the LAS performs an order of mag-
nitude better, in terms of execution time, and
it provides 32% more disk throughput than the
deadline scheduler. (2) The CAS has perfor-
mance similar to that of the LAS.

The LAS and CAS provide better performance
than the deadline scheduler by reducing un-
necessary seeks and serving read requests as
quickly as possible. For many such workloads,
these schedulers improve request latency and
aggregate disk throughput.

Scheduler Execution Time Throughput
(sec.) (MB/s)

Deadline 129 25
LAS 10 33
CAS 9 33

Table 1: Performance of Programs 1 and 2 un-
der the Deadline Scheduler, LAS, and CAS

5.5 Experiment 2: Microbenchmarks—
Streaming and Chunk Reads

To compare the performance of the deadline
scheduler, LAS, and CAS, illustrate the process
starvation problem of the LAS, and show that
the CAS solves this problem, this experiment
uses a mixed workload microbenchmark com-
prised of two microbenchmarks [9], shown in
Figure 2. One microbenchmark, Program A,
generates a stream of read requests, while the
other, Program B, generates a sequence of de-
pendent chunk read requests. Concurrent exe-
cution of the two programs results in concur-
rent generation of read requests from each pro-
gram. Thus, assume that the read requests of
these two programs are interleaved. In general,
the servicing of a read request from one of the
programs will be followed by an expensive seek

2005 Linux Symposium • 185

Program A:
while true
do
 cat big-file > /dev/null
done

Program B:
time find . -type f -exec \
 cat ’{}’ ’;’ > /dev/null

Figure 2: Program—A generates stream read
requests; Program—B generates chunk read re-
quests

in order to service a request from the other pro-
gram; this situation repeats until one program
terminates. However, if a moderate number of
requests are anticipated correctly, the number
of expensive seeks is reduced. For each cor-
rect anticipation, two seek operations are elim-
inated; an incorrect anticipation costs a small
delay. Accordingly, anticipation can be advan-
tageous for a workload that generates depen-
dent read requests, i.e., that exhibit disk spatial
locality of reference. However, as described
previously, the LAS can anticipate only if de-
pendent read requests are from the same pro-
cess. In this experiment the dependent read re-
quests of Program A are from the same pro-
cess, while the dependent chunk read requests
of Program B are from different processes.

Assume that Program B is reading the top-level
directory of the Linux source tree, as described
in Section 3.1. In this case, thefind command
finds each file in the directory tree, then thecat
command (spawned as a separate process) is-
sues a read request to read the file, with the
file name provided by thefindprocess from the
disk. The newcat process reads the entire file,
then the file is closed. This sequence of ac-
tions is repeated until all files in the directory
are read.

Note that, in this case, each file read operation
is performed by a different process, while LAS
anticipation works only on a per-process basis.
Thus, if these processes are the only ones ac-
cessing the disk, there will be no delays due
to seek operations to satisfy other processes.
However, when run concurrently with Program
A, the story is different, especially if, to elim-
inate disk cache effects, we assume that the
big-file read by Program A is larger than
the buffer cache. Note that during the execu-
tion of Program A a single process generates
all read requests.

When these two programs are executed con-
currently, anticipation works really well for the
streaming reads of Program A but it does not
work at all for the dependent chunk reads of
Program B. The LAS is not able to recognize
the dependent disk spatial locality of reference
exhibited by thecat processes of Program B;
this leads to starvation of these processes. In
contrast, the CAS identifies this locality of ref-
erence and, thus, as shown in Table 2, provides
better performance both in terms of execution
time and aggregate disk throughput. In addi-
tion, it does not lead to process starvation.

Scheduler Execution Throughput
Time (sec.) (MB/s)

Deadline 297 9
LAS 4767 35
CAS 255 34

Table 2: Performance of Program A and B un-
der the Deadline Scheduler, LAS, and CAS

The results in Table 2 show the following. (1)
The LAS results in very bad execution time;
this is likely because LAS anticipation does
not work for Program B and, even worse, it
works really well for Program A, resulting in
good disk utilization for Program A and a very
small amount of disk time being allocated for
requests from Program B. (2) The execution

186 • Enhancements to Linux I/O Scheduling

time under the deadline scheduler is 16 times
smaller than that under the LAS; this is likely
because there is no anticipation in the deadline
scheduler. (3) Aggregate disk throughput un-
der the deadline scheduler is 3.9 times smaller
than under the LAS; this is likely because LAS
anticipation works really well for Program A.
(4) The CAS alleviates the anticipation prob-
lems exhibited in the LAS for both dependent
chunk reads (Program B) and dependent read
workloads (Program A). As a result, CAS pro-
vides better execution time and aggregate disk
throughput.

5.6 Experiment 3: Microbenchmarks—
Chunk Reads

To illustrate the reduced disk throughput prob-
lem of the deadline scheduler and LAS and to
further illustrate the performance of the CAS,
this experiment first uses one instance of a mi-
crobenchmark that generates a sequence of de-
pendent chunk reads and then uses two con-
currently executing instances of the same pro-
gram, Program B of Figure 2, that access dis-
joint Linux source trees. The results of this ex-
periment are shown in Table 3 and Figure 3.

Scheduler Throughput (MB/s)
1 Instance 2 Instances

Deadline 14.5 4.0
LAS 15.5 4.0
CAS 15.5 11.6

Table 3: Chunk Reads under the Deadline
Scheduler, LAS, and CAS

As described before, in Program B a differ-
ent cat process reads each of the files in the
source tree, thus, each execution of the program
generates, in sequence, multiple processes that
have good disk spatial locality of reference.
With two concurrently executing instances of
Program B accessing disjoint sections of the

AS

Deadline

CAS

single

double

0

20

40

60

80

100

120

E
x
e
c
u
ti
o
n
 t
im
e
 (
s
e
c
o
n
d
s
)

Figure 3: Reading the Linux Source: multi-
ple, concurrent instances cause seek storms
with the deadline scheduler and LAS, which are
eliminated by the CAS

disk, the deadline scheduler seeks back and
forth several thousand times. The LAS is not
able to identify the dependent read requests
generated by the differentcat processes and,
thus, does not anticipate for them. As a re-
sult, like the deadline scheduler, the LAS be-
comes seek bound. In contrast, the CAS cap-
tures the dependencies and, thus, provides bet-
ter disk throughput and execution time. Recall
that, in this case, throughput is inversely pro-
portional to execution time.

As shown in Figure 3 and Table 3, with one in-
stance of Program B the three schedulers have
a performance difference of about 7%. One
would normally expect the execution time to
double for two instances of the program, how-
ever, for the reasons described above the dead-
line scheduler, LAS, and CAS increase their ex-
ecution times by a factor of 7, 7, and 2.5, re-
spectively. Again, the CAS has a smaller factor
increase (2.5) in execution time because it de-
tects the dependencies among cooperative pro-
cesses working in a localized area of disk and,
thus, precludes the seek storms that occur oth-
erwise in the deadline scheduler and LAS.

2005 Linux Symposium • 187

5.7 Experiment 4: Web Server Benchmark

This benchmark simulates the behavior of a
web server by making read requests to ran-
domly selected files of different sizes. The
mean of the three execution times for each
scheduler are reported in Figure 4 and Table 4.
The numbers in the table are in seconds, and
bold numbers indicate the scheduler with the
best execution time for each benchmark. It is
worthwhile to point out that the standard de-
viations of the results are less than 4% of the
average values, which is small for all practi-
cal purposes. From the table we can conclude
that the CAS has the best performance of all the
schedulers in the case of random reads and the
CFQ has the worst performance. The LAS has
very good execution time performance which is
comparable to that of CAS; it trails the CAS by
less than 1%. The deadline, CFQ, and noop
schedulers trail the CAS by 8%, 8.9%, and
6.5%, respectively.

Scheduler Web Mail File Meta
Server Server Server Data

Deadline 924 118 1127 305
LAS 863 177 916 295
CAS 855 109 890 288
CFQ 931 112 1099 253
noop 910 125 1127 319

Table 4: Mean Execution Times (seconds) of
Different Benchmark Programs

5.8 Experiment 5: File Server Benchmark

This benchmark simulates the behavior of a
typical file server by making random read and
write operations in the proportions of 80% and
20%, respectively. The average of the three ex-
ecution times are reported in Figure 4 and Ta-
ble 4. The standard deviations of the results are
less than 4.5% of the average values. Here we

CAS
AS

Deadline

CFQ

NOOP

Mail Server

MetaData

Web Server

File Server

0

200

400

600

800

1000

1200

E
x
e
c
u
ti
o
n
 T
im
e
 (
s
e
c
o
n
d
s
)

Figure 4: Mean Execution Time (seconds) on
ext3 File System

can conclude that the CAS has the best perfor-
mance; the LAS trails the CAS by 2.9%; and
the other schedulers trail the CAS by at least
23%.

5.9 Experiment 6: Mail Server Benchmark

This benchmark simulates the behavior of a
typical mail server by executing random file
read, create, and delete operations in the pro-
portions of 40%, 40%, and 20%, respectively.
The average of the three execution times are
reported in Figure 4 and Table 4. The stan-
dard deviations of the results are less than 3.5%
of the average values except for the LAS for
which the standard deviation is about 11%.
From these results we can conclude that the
CAS has the best performance and the LAS has
the worst performance, the LAS trails the CAS
by more than 62%. The CFQ scheduler has
very good execution time performance com-
pared to the CAS; it trails by a little more than
3%. The deadline and noop schedulers trail the
CAS by 8% and 14%, respectively.

188 • Enhancements to Linux I/O Scheduling

5.10 Experiment 7: MetaData Program

This benchmark simulates the behavior of a
typical MetaData program by executing ran-
dom file create, write-append, and delete opera-
tions in the proportions of 40%, 40%, and 20%,
respectively. Note that in this benchmark there
are no read requests. The average of the three
execution times are reported in Figure 4 and Ta-
ble 4. The standard deviations of the results
are less than 3.5% of the average values except
for the noop scheduler for which the standard
deviation is 7.7%. From these results, we can
conclude that the CFQ scheduler has the best
performance. The LAS trails the CAS by 2%.
The deadline, LAS, CAS, and noop schedulers
trail the CFQ, the best, scheduler by as much as
26%.

6 I/O Scheduler Characterization
for Scheduler Selection

Our experimentation (e.g., see Figure 4) as
well as the study in [13] reveals that no one
scheduler can provide the best possible per-
formance for different workload, software, and
hardware combinations. A possible approach
to this problem is to develop one scheduler that
can best serve different types of these com-
binations, however, this may not be possible
due to diverse workload requirements in real
world systems [13, 15]. This issue is further
complicated by the fact that workloads have
orthogonal requirements. For example, some
workloads, such as multimedia database appli-
cations, prefer fairness over performance, oth-
erwise streaming video applications may suffer
from discontinuity in picture quality. In con-
trast, server workloads, such as file servers, de-
mand performance over fairness since small de-
lays in serving individual requests are well tol-
erated. In order to satisfy these conflicting re-

quirements, operating systems provide multi-
ple I/O schedulers—each suitable for a differ-
ent class of workloads—that can be selected, at
boot time or runtime, based on workload char-
acteristics.

The Linux 2.6.11 kernel provides four different
schedulers and an option to select one of them
at boot time for the entire I/O system and switch
between them at runtime on a per-disk basis [2].
This selection is based ona priori understand-
ing of workload characteristics, essentially by a
system administrator. Moreover, the scheduler
selection varies based on the hardware config-
uration of the disk (e.g., RAID setup), software
configuration of the disk, i.e., file system, etc.
Thus, static or dynamic scheduler selection is
a daunting and intricate task. This is further
complicated by two other factors. (1) Systems
that execute different kinds of workloads con-
currently (e.g., a web server and a file server)—
that require, individually, a different scheduler
to obtain best possible performance—may not
provide best possible performance with a sin-
gle scheduler selected at boot time or runtime.
(2) Similarly, workloads with different phases,
each phase with different I/O characteristics,
will not be best served bya priori scheduler
selection.

We propose a scheduler selection methodol-
ogy that is based primarily on runtime work-
load characteristics, in particular the average
request size. Ideally, dynamic scheduler selec-
tion would be transparent to system hardware
and software. Moreover, a change in hard-
ware or software configurations would be de-
tected automatically and the scheduler selec-
tion methodology would re-evaluate the sched-
uler choice. With these goals in mind, we de-
scribe below ideas towards the realization of a
related methodology.

We propose that runtime scheduler selection
be based ona priori measurements of disk

2005 Linux Symposium • 189

Comparison of Different I/O Schedulers on RAID-0

0

9

18

27

36

45

1KB 4KB 16KB 32KB 65KB 256KB 1MB

Read Size

B
a
n
d
w
id
th
 (
M
B
/s
)

 .

CFQ

AS

Deadline

NOOP

Points of interests

AS

Deadline

CFQ

Figure 5: Scheduler Ranking using a Mi-
crobenchmark

throughput under the various schedulers and re-
quest sizes. These measurements are then used
to generate a function that at runtime, given the
current average request size, returns the sched-
uler that gives the best measured throughput for
the specified disk. Using the four schedulers
on our experimental system, described in Sec-
tion 5.2, augmented by a RAID-0 device with
four IDE 10 GB drives, we tooka priori mea-
surements by executing a program that creates
and randomly reads data blocks of various sizes
from several large files. The system is config-
ured with the ext3 file system; it runs the Linux
2.6.11 kernel to permit switching schedulers.
The ranking of the schedulers based on aver-
age request size and disk throughput is shown
in Figure 5. Experiments using this proposed
methodology to guide dynamic scheduler se-
lection are in progress.

7 Future Work

Our cooperative anticipatory scheduler elim-
inates the starvation problem of the AS by
scheduling requests from other processes that
access disk blocks close to the current head
position. It updates statistics related to re-
quests on a per-process basis such that future-
scheduling decisions can be made more appro-

priately. This scheduler has several tunable pa-
rameters, e.g., the amount of time a request
spends in the queue before it is declared expired
and the amount of time the disk is kept idle in
anticipation of future requests.

Because we were interested in investigating the
possible starvation problem and proposing a
solution, we did not investigate the effects of
changing these parameters; however, we have
begun to do so. We are especially interested in
studying the performance effects of the CAS,
with various parameter sets, on different disk
systems. Given that the study shows that differ-
ent parameter sets provide better performance
for systems with different disk sizes and config-
urations [13], a methodology for dynamically
selecting parameters is our goal. Furthermore,
we intend to experiment with maintaining other
statistics that can aid in making scheduling de-
cisions for better disk performance. An exam-
ple statistic is the number of times a process
consumes its anticipation time; if such a met-
ric exceeds a certain threshold, it indicates that
there is a mismatch between the workload ac-
cess pattern and the scheduler and, hence, such
a process should not be a candidate for antici-
pation.

With these types of advances, we will develop
a methodology for automatic and dynamic I/O
scheduler selection to meet application needs
and to maximize disk throughput.

8 Related Work

To our knowledge the initial work on antici-
patory scheduling, demonstrated on FreeBSD
Unix, was done in [7]. Later, the general idea
was implemented in the Linux kernel by Nick
Piggin and was tested by Andrew Martin [11].
To our surprise, during the time we were ex-
ploring the I/O scheduler, the potential starva-

190 • Enhancements to Linux I/O Scheduling

tion problem was reported to the Linux com-
munity independently on Linux mailing lists,
however, no action was taken to fix the prob-
lem [3].

Workload dependent performance of the four
I/O schedulers is presented in [13]; this work
points out some performance problems with
the anticipatory scheduler in the Linux oper-
ating system. There is work using genetic al-
gorithms, i.e., natural evolution, selection, and
mutation, to tune various I/O scheduler param-
eters to fit workload needs [12]. In [15] the au-
thors explore the idea of using seek time, av-
erage waiting time in the queue, and the vari-
ance in average waiting time in a utility func-
tion that can be used to match schedulers to
a wide range of workloads. This resulted in
the development of a maximum performance
two-policy algorithm that essentially consists
of two schedulers, each suitable for different
ranges of workloads. There also have been
attempts [2] to include in the CFQ scheduler
priorities and time slicing, analogous proces-
sor scheduler concepts, along with the antic-
ipatory statistics. This new scheduler, called
Time Sliced CFQ scheduler, incorporates the
“good” ideas of other schedulers to provide the
best possible performance; however, as noted
in posts to the Linux mailing list, this may not
work well in large RAID systems with Tagged
Command Queuing.

To the best of our knowledge, we are the first
to present a cooperative anticipatory scheduling
algorithm that extends traditional anticipatory
scheduling in such a way as to prevent process
starvation, mitigate disk throughput problems
due to limited anticipation, and present a pre-
liminary methodology to rank schedulers and
provide ideas to switch between them at run-
time.

9 Conclusions

This paper identified a potential starvation
problem and a reduced disk throughput prob-
lem in the anticipatory scheduler and proposed
a cooperative anticipatory scheduling (CAS) al-
gorithm that mitigates these problems. It also
demonstrated that the CAS algorithm can pro-
vide significant improvements in application
execution times as well as in disk throughput.
At its core, the CAS algorithm extends the LAS
by broadening anticipation of I/O requests; it
gives scheduling priority to requests not only
from the process that generated the last request
but also to processes that are part of a coop-
erative process group. We implemented this
methodology in Linux.

In addition, the paper evaluated performance
for different workloads under the CAS and the
four schedulers in Linux 2.6. Microbench-
marks were used to demonstrate the problems
with the Linux 2.6 schedulers and the effective-
ness of the solution, i.e., the CAS. It was shown
that under the CAS web, mail, and file server
benchmarks run as much as 62% faster.

Finally, the paper describes our efforts in rank-
ing I/O schedulers based on system behavior as
well as workload request characteristics. We
hypothesize that these efforts will lead to a
methodology that can be used to dynamically
select I/O schedulers and, thus improve perfor-
mance.

10 Acknowledgements

We are grateful to Nick Piggin for taking the
time to answer a number of questions related
to the implementation of the LAS and sharing
some of his thoughts. Also, we thank Steven
Pratt of IBM Linux Technology Center (LTC)

2005 Linux Symposium • 191

at IBM-Austin, TX for valuable discussions,
Santhosh Rao of IBM LTC for his help with
the FFSB benchmark, and Jayaraman Suresh
Babu, UTEP, for his help with related experi-
ments. This work is supported by the Depart-
ment of Energy under Grant No. DE-FG02-
04ER25622, an IBM SUR (Shared University
Research) grant, and the University of Texas-
El Paso.

11 Legal Statement

This work represents the view of the authors, and
does not necessarily represent the view of the Uni-
versity of Texas-El Paso or IBM. IBM is a trade-
mark or registered trademark of International Busi-
ness Machines Corporation in the United States,
other countries, or both. Pentium is a trademark of
Intel Corporation in the United States, other coun-
tries, or both. Other company, product, and service
names may be trademarks or service marks of oth-
ers. All the benchmarking was conducted for re-
search purposes only, under laboratory conditions.
Results will not be realized in all computing envi-
ronments.

References

[1] Axboe, J., “Linux Block IO—Present
and Future,”Proceedings of the Ottawa
Linux Symposium 2004, Ottawa, Ontario,
Canada, July 21–24, 2004, pp. 51–62

[2] Axobe, J., “Linux: Modular I/O
Schedulers,”http:
//kerneltrap.org/node/3851

[3] Chatelle, J., “High Read Latency Test
(Anticipatory I/O Scheduler),”
http://linux.derkeiler.com/
Mailing-Lists/Kernel/
2004-02/5329.html

[4] Corbet, J., “Anticipatory I/O
Scheduling,”http:
//lwn.net/Articles/21274

[5] Godard, S., “SYSSTAT Utilities Home
Page,”http://perso.wanadoo.
fr/sebastien.godard/

[6] Heger, D., Jacobs, J., McCloskey, B., and
Stultz, J., “Evaluating Systems
Performance in the Context of
Performance Paths,”IBM Technical
White Paper, IBM-Austin, TX, 2000

[7] Iyer, S., and Druschel, P., “Anticipatory
Scheduling: a Disk Scheduling
Framework to Overcome Deceptive
Idleness in Synchronous I/O,”18th ACM
Symposium on Operating Systems
Principles (SOSP 2001), Banff, Alberta,
Canada, October 2001, pp. 117–130

[8] Love, R.,Linux Kernel Development,
Sams Publishing, 2004

[9] Love, R., “Kernel Korner: I/O
Schedulers,”Linux Journal, February
2004, 2004(118): p. 10

[10] Madhyastha, T., and Reed, D.,
“Exploiting Global Input/Output Access
Pattern Classification,”Proceedings of
SC ’97, San Jose, CA, November 1997,
pp. 1–18

[11] Martin, A., “Linux: Where the
Anticipatory Scheduler Shines,”
http://www.kerneltrap.org/
node.php?id=592

[12] Moilanen, J., “Genetic Algorithms in the
Kernel,” http:
//kerneltrap.org/node/4751

[13] Pratt, S., and Heger, D., “Workload
Dependent Performance Evaluation of
the Linux 2.6 I/O Schedulers,”
Proceedings of the Ottawa Linux

192 • Enhancements to Linux I/O Scheduling

Symposium 2004, Ottawa, Ontario,
Canada, July 21–24, pp. 425–448

[14] Private communications with Nick Piggin

[15] Teory, T., and Pinkerton, T., “A
Comparative Analysis of Disk
Scheduling Policies,”Communications of
the ACM, 1972, 15(3): pp. 177–184

Chip Multi Processing aware Linux Kernel Scheduler

Suresh Siddha
suresh.b.siddha@intel.com

Venkatesh Pallipadi
venkatesh.pallipadi@intel.com

Asit Mallick
asit.k.mallick@intel.com

Abstract

Recent advances in semiconductor manufactur-
ing and engineering technologies have led to
the inclusion of more than one CPU core in a
single physical processor package. This, pop-
ularly know as Chip Multi Processing (CMP),
allows multiple instruction streams to execute
at the same time. CMP is in addition to today’s
Simultaneous Multi Threading (SMT) capabil-
ities, like IntelR© Hyper-Threading Technology
which allows a processor to present itself as two
logical processors, resulting in best use of ex-
ecution resources. With CMP, today’s Linux
Kernel will deliver instantaneous performance
improvement. In this paper, we will explore
ideas for further improving peak performance
and power savings by making the Linux Kernel
Scheduler CMP aware.

1 Introduction

To meet the growing requirements of proces-
sor performance, processor architects are look-
ing at new technologies and features focusing
on enhanced performance at a lower power dis-
sipation. One such technology is Simultane-
ous Multi-Threading (SMT). Hyper-Threading
(HT) Technology[5] introduced in 2002, is In-
tel’s implementation of SMT. HT delivers two

logical processors running on the same execu-
tion core, sharing all the resources like func-
tional execution units and cache hierarchy. This
approach interleaves the execution of two in-
struction streams, making the most effective
use of processor resources. It maximizes the
performance vs. transistor count and power
consumption.

Recent advances in semiconductor manufactur-
ing and engineering technologies are leading to
rapid increase in transistor count on a die. For
example, forthcoming ItaniumR© family proces-
sor code named Montecito will have more than
1.7 billion transistors on a die! As the next
logical step to SMT, these extra transistors are
put to effective use by including more than one
execution core with in a single physical pro-
cessor package. This is popularly known as
Chip Multi Processing (CMP). Depending on
the number of execution cores in a package,
it’s either called a dual-core[4] (two execution
cores) or multi-core (more than two execution
cores) capable processors. In multi-threading
and multi-tasking environment, CMP allows
for significant improvement in performance at
the system level.

In this paper, in Section 2 we will look at
an overview of CMP and some implementa-
tion examples. Section 3 will talk about the
generic OS scheduler optimization opportuni-
ties that are appropriate in CMP environment.

• 193 •

194 • Chip Multi Processing aware Linux Kernel Scheduler

Linux Kernel Scheduler implementation details
of these optimizations will be dwelled in Sec-
tion 4. We will close the paper with a brief look
at CMP trends in future generation processors.

2 Chip Multi Processing

In a Chip Multi Processing capable physical
processor package, more than one execution
core reside in a physical package. Each core
has its own resources (architectural state, reg-
isters, execution units, up-to a certain level of
cache, etc.). Shared resources between the
cores in a physical package vary depending on
the implementation. Some of the implementa-
tion examples are

a) each core could have a portion of on-die
cache (for example L1) exclusively for itself
and then have a portion of on-die cache (for
example L2 and above) that is shared between
the cores. An example of this is the upcom-
ing first mobile dual-core processor from Intel,
code named Yonah.

b) each core having its own on-die cache hier-
archy and its own communication path to the
Front Side Bus (FSB). An example of this is
the IntelR© PentiumR© D processor.

Figure 1 shows a simplified block diagram of
a physical package which is CMP capable,
where two execution cores reside in one physi-
cal package, sharing the L2 cache and front side
bus resources.

A physical package can be both CMP and SMT
capable. In that case, each core in the physical
package can in turn contain more than one log-
ical thread. For example, a dual-core with HT
will enable a single physical package to appear
as four logical processors, capable of running
four processes or threads simultaneously. Fig-
ure 2 shows an example of a CMP with two

Figure 1: CMP implementation with two cores
sharing L2 cache and Bus interface

Figure 2: CMP implementation with two cores,
each having two logical threads. Each core has
their own cache hierarchy and communication
path to FSB.

logical threads in each core and with each core
having their own cache hierarchy and their own
communication path to the FSB. An example of
this is the IntelR© PentiumR© D Extreme Edition
processor.

3 CMP Optimization opportunities

A multi-threaded application that scales well
and is optimized on SMP systems will have an
instantaneous performance benefit from CMP
because of these extra logical processors com-
ing from cores and threads. Even if the appli-

2005 Linux Symposium • 195

cation is not multi-threaded, it can still take ad-
vantage of these extra logical processors in a
multi-tasking environment.

CMP also brings in new optimization oppor-
tunities which will further improve the sys-
tem performance. One of the optimization op-
portunity is in the area of Operating System
(OS) scheduler. Making the OS scheduler CMP
aware will result in an improved peak perfor-
mance and power savings.

In general, OS scheduler will try to equally dis-
tribute the load among all the available proces-
sors. In a CMP environment, OS scheduler can
be further optimized by looking at micro archi-
tectural information(like L2 cache misses, Cy-
cles Per Instruction (CPI), . . .) of the running
tasks. OS scheduler can decide which tasks can
be scheduled on same core/package and which
can’t be scheduled together based on this micro
architectural information. Based on these deci-
sions, scheduler tries to decrease the resource
contentions in a CPU core or a package and
thereby resulting in increased throughput. In
the past, some work[10, 9] has been done in this
area and because of the complexities involved
(like what micro architectural information need
to be tracked for each task and issues in incor-
porating this processor architecture specific in-
formation into generic OS scheduler) this work
is not quite ready for the inclusion in today’s
Operating Systems.

We will not address the micro architectural in-
formation based scheduler optimizations in this
paper. Instead this paper talks about the OS
CMP scheduler optimization opportunities in
the case where the system is lightly loaded (i.e.,
the number of runnable tasks in the system are
less compared to the number of available pro-
cessors in the system). These optimization op-
portunities are simple and straight forward to
leverage in today’s Operating Systems and will
help in improving peak performance or power
savings.

3.1 Opportunities for improving peak per-
formance

In a CMP implementation where there are no
shared resources between cores sharing a phys-
ical package, cores are very similar to individ-
ual CPU packages found in a multi-processor
environment. OS scheduler which is optimized
for SMT and SMP will be sufficient for deliv-
ering peak performance in this case.

However, in most of the CMP implementations,
to make best use of the resources cores in a
physical package will share some of the re-
sources (like some portion of cache hierarchy,
FSB resources, . . .). In this case, kernel sched-
uler should schedule tasks in such a way that it
minimizes the resource contention, maximizes
the system throughput and acts fair between
equal priority tasks.

Let’s consider a system with four physical CPU
packages. Assume that each CPU package has
two cores sharing the last level cache and FSB
queue. Let’s further assume that there are four
runnable tasks, with two tasks scheduled on
package 0, one each on package 1, 2 and pack-
age 3 being idle. Tasks scheduled on package
0 will contend for last level cache shared be-
tween cores, resulting in lower throughput. If
all the tasks are FSB intensive (like for exam-
ple Streams benchmark), because of the shared
FSB resources between cores, FSB bandwidth
for each of the two tasks in package 0 will be
half of what individual tasks get on package
1 and 2. This scheduling decision isn’t quite
right both from throughput and fairness per-
spective. The best possible scheduling decision
will be to schedule the four available tasks on
the four different packages. This will result in
each task having independent, full access to last
level shared cache in the package and each will
get fair share of the FSB bandwidth.

On CMP with shared resources between cores

196 • Chip Multi Processing aware Linux Kernel Scheduler

in a physical package, for peak performance
scheduler must distribute the load equally
among all the packages. This is similar to
SMT scheduler optimizations in todays operat-
ing systems.

3.2 Opportunities for improving power
savings

Power management is a key feature in today’s
processors across all market segments. Dif-
ferent power saving mechanisms like P-states
and C-States are being employed to save more
power. The configuration and control infor-
mation of these power saving mechanisms are
exported through Advanced Configuration and
Power Interface (ACPI)[2]. Operating System
directed Configuration and Power Management
(OSPM) uses these controls to achieve desired
balance between performance and power.

ACPI defines the power state of processors and
are designated as C0, C1, C2, C3, . . . , Cn. The
C0 power state is an active power state where
the CPU executes instructions. The C1 through
Cn power states are processor sleeping (idle)
states where the processor consumes less power
and dissipates less heat.

While in the C0 state, ACPI allows the perfor-
mance of the processor to be altered through
performance state (P-state) transitions. Each
P-state will be associated with a typical power
dissipation value which depends on the operat-
ing voltage and frequency of that P-state. Us-
ing this, a CPU can consume different amounts
of power while providing varying performance
at C0 (running) state. At a given P-state, CPU
can transit to numerically higher numbered C-
states in idle conditions. In general, numeri-
cally higher the P states (i.e., lower the CPU
voltage) and C-states, the lesser will be power
consumed, heat dissipated.

3.2.1 CMP implications on P and C-states

P-states

In a CMP configuration, typically all cores in
one physical package will share the same volt-
age plane. Because of this, a CPU package
will transition to a higher P-state, only when
all cores in the package can make this transi-
tion. P-state coordination between cores can
be either implemented by hardware or soft-
ware. With this mechanism, P-state transition
requests from cores in a package will be co-
ordinated, causing the package to transition to
target state only when the transition is guar-
anteed to not lead to incorrect or non-optimal
performance state. If one core is busy running
a task, this coordination will ensure that other
idle cores in that package can’t enter lower
power P-states, resulting in the complete pack-
age at the highest power P-state for optimal per-
formance. In general, this coordination will en-
sure that a processor package frequency will be
the numerically lowest P-state (highest voltage
and frequency) among all the logical processors
in the processor package.

C-states

In a CMP configuration with shared resources
between the cores, processor package can be
broken up into different blocks, one block for
each execution core and one common block
representing the shared resources between all
the cores (as shown in Figure 1). Depending on
the implementation, each core block can inde-
pendently enter some/all of the C-state’s. The
common block will always reside in the numer-
ically lowest (highest power) C-state of all the
cores. For example, if one core is in C1 and
other core is in C0, shared block will reside in
C0.

2005 Linux Symposium • 197

3.2.2 Scheduling policy for power savings

Let’s consider a system having two physical
packages, with each package having two cores
sharing the last level cache and FSB resources.
If there are two runnable tasks, as observed
in the Section 3.1 peak performance will be
achieved when these two tasks are scheduled
on different packages. But, because of the P-
state coordination, we are restricting idle cores
in both the packages to run at higher power P-
state. Similarly the shared block in both the
packages will reside in higher power C0 state
(because of one busy core) and depending on
the implementation, idle cores in both the pack-
ages may not be able to enter the available
lowest power C-state. This will result in non-
optimal power savings.

Instead, if the scheduler picks the same package
for both the tasks, other package with all cores
being idle, will transition slowly into the lowest
power P and C-state, resulting in more power
savings. But as the cores share last level cache,
scheduling both the tasks to the same package,
will not lead to optimal behavior from perfor-
mance perspective. Performance impact will
depend on the behavior of the tasks and shared
resources between the cores. In this particular
example, if the tasks are not memory/cache in-
tensive, performance impact will be very min-
imal. In general, more power can be saved
with relatively smaller impact on performance
by scheduling them on the same package.

On CMP with no shared resources between the
cores in a physical package, scheduler should
distribute the load among the cores in a pack-
age first, before looking for an idle package. As
a result, more power will be saved with no im-
pact on performance.

4 Linux Kernel Scheduler enhance-
ments

Process scheduler in 2.6 Linux Kernel is based
on hierarchical scheduler domains constructed
dynamically depending on the processor topol-
ogy in the system. Each domain contains a
list of CPU groups having a common property.
Load balancer runs at each domain level and
scheduling decisions happen between the CPU
groups at any given domain.

All the references to “Current Linux Kernel” in
the coming sections, stands for version 2.6.12-
rc5[6]. Current Linux Kernel domain scheduler
is aware of three different domains represent-
ing SMT (calledcpu_domain), SMP (called
phys_domain) and NUMA (callednode_
domain). Current Linux kernel has core de-
tection capabilities for x86, x86_64, ia64 ar-
chitectures. This will place all CPU cores in a
node into different sched groups in SMP sched-
uler domain, even though they reside in dif-
ferent physical packages. The first step nat-
urally is to add a new scheduler domain rep-
resenting CMP (calledcore_domain). This
will help the kernel scheduler identify the cores
sharing a given physical package. This will en-
able the implementation of scheduling policies
highlighted in Section 3.

Figure 3 shows the scheduler domain hierarchy
setup with current Linux Kernel on a system
having two physical packages. Each package
has two cores and each core having two logical
threads. Figure 4 shows the scheduler domain
hierarchy setup with the new CMP scheduler
domain.

4.1 Scheduler enhancements for improv-
ing peak performance

As noted in Section 3.1, when the CPU cores in
a physical package share resources, peak per-

198 • Chip Multi Processing aware Linux Kernel Scheduler

Figure 3: Scheduler domain hierarchy with cur-
rent Linux Kernel on a system having two phys-
ical packages, each having two cores and each
core having two logical threads.

formance will be achieved when the load is
distributed uniformly among all physical pack-
ages. Following subsections will look into the
enhancements required for implementing this
policy.

4.1.1 Active load balance in presence of
CMP and SMT

With SMT and SMP domains in current Linux
Kernel, load balance at SMP domain will help
in detecting a situation where all the SMT sib-
lings in one physical package are completely
idle and more than one SMT sibling is busy
in another physical package. Load balance on
processors in idle package will detect this situa-
tion and will kick active load balance on one of
the non idle SMT siblings in the busiest pack-
age. Active load balance then looks for a pack-
age with all the SMT threads being idle and
pushes the task (which was just running before
active load balance got kicked in) to one of the
siblings of the selected idle package, resulting
in optimal performance.

Similarly in the presence of new scheduler do-
main for CMP, load balance in SMP domain

will help detect a situation where more than one
core in a package is busy, with another package
being completely idle. Similar to the above,
active load balance will get kicked on one of
the non-idle cores in the busiest package. In
the presence of SMT and CMP, active load bal-
ance needs to pick up an idle package if one is
available; otherwise it needs to pick up an idle
core. This will result in load being uniformly
distributed among all the packages in a SMP
domain and all the cores with in a package.

In pre 2.6.12 -mm kernels, there is a change in
active load balance code which leverage the do-
main scheduler topology more effectively. In-
stead of looking for an idle package, active load
balance code is modified in such a way, that it
simply moves the load to the processor which
detects the imbalance. In some of the cases[1]
this will take few extra hops in finding a correct
processor destination for a process but because
of simplicity reasons this was pursued. This
modification to active load balance also works
in the presence of both SMT and CMP.

Figures 4 and 5 show how active balance plays
a role in distributing the load equally among
the physical packages and CPU cores in pres-
ence of CMP and SMT. Figure 6 shows how
the new active balance will help in distributing
the load equally among the physical packages,
even though there is no idle package available.
This will help from the fairness perspective.

4.1.2 cpu_power selection

One of the key parameters of a scheduler do-
main is the scheduler group’scpu_power .
It represents effective CPU horsepower of the
scheduler group and it depends on the under-
neath domain characteristics. With SMP and
SMT domains in current Linux Kernel,cpu_
power of sched groups in the SMP domain is

2005 Linux Symposium • 199

Figure 4: Demonstration of active load balance
with 4 tasks, on a system having two physical
packages, each having two cores and each core
having two logical threads. Active load balance
kicks in at the core domain for the first package,
distributing the load equally among the cores

Figure 5: Demonstration of active load balance
with 2 tasks, on a system having two physical
packages, each having two cores and each core
having two logical threads. Active load bal-
ance kicks in at SMP domain between the two
physical packages, distributing the load equally
among the physical packages

Figure 6: Demonstration of active load balance
with 6 tasks, on a system having two physi-
cal packages, each having four cores. Active
load balance kicks in at SMP domain between
the two physical packages, distributing the load
equally among the physical packages

calculated with the assumption that each ex-
tra logical processor in the physical package
will contribute 10% to thecpu_power of the
physical package.

With the new CMP domain,cpu_power for
CMP domains scheduler group will be same
as cpu_power of schedule group in current
Linux Kernel’s SMP domain (as the under-
neath SMT domain will remain same). Be-
cause of the new CMP domain underneath, new
cpu_power for SMP domains sched group
needs to be selected.

If the cores in a physical package don’t share
resources, then thecpu_power of groups in
SMP domain, will simply be the horsepower
sum of all the cores in that physical package.
On the other hand, if the cores in a physical
package share resources, then thecpu_power
of groups in SMP domain has to be smaller
than the no resource sharing case. We will dis-
cuss more about this in the power saving Sec-
tions 4.2.1 and 4.2.2 and determine how much
smaller this needs to be for the peak perfor-
mance mode policy.

200 • Chip Multi Processing aware Linux Kernel Scheduler

4.1.3 exec, fork balance

Pre 2.6.12 mm kernels has exec, fork
balance[3] introduced by Nick Piggin. Setting
SD_BALANCE_{EXEC, FORK}flags to do-
mains SMP and above, will enable exec, fork
balance. Because of this, whenever a new pro-
cess gets created, it will start on the idlest pack-
age and idlest core with in that package. This
will remove the dependency on the active load
balance to select the correct physical package,
CPU core for a new task. This makes the pro-
cess of picking the right processor more opti-
mal as it happens at the time of task creation,
instead of happening after a task starts running
on a wrong CPU.

exec, fork balance will select the optimal CPU
at the beginning itself and if dynamics change
later during the process run, active load bal-
ance will kick in and distribute the load equally
among the physical packages and the CPU
cores with in them.

4.2 Scheduler enhancements for improv-
ing power savings

As observed in Section 3.2, when the system
is lightly loaded, optimal power savings can be
achieved when all the cores in a physical pack-
age are completely loaded before distributing
the load to another idle package.

When the cores in a physical package share re-
sources, this scheduling policy will slightly im-
pact the peak performance. Performance im-
pact will depend on the application behavior,
shared resources between cores and the number
of cores in a physical package. When the cores
don’t share resources, this scheduling policy
will result in an improved power savings with
no impact on peak performance.

For the CMP implementations which don’t
share resources between cores, we can make

this power savings policy as default. For the
other CMP implementations, we can allow the
administrator to choose a scheduling policy of-
fering either peak performance (covered in Sec-
tion 4.1) or improved power savings. Depend-
ing on the requirements one can select either of
these policies.

Following subsections highlights the changes
required in kernel scheduler for implementing
improved power savings policy on CMP.

4.2.1 cpu_power selection

The first step in implementing this power sav-
ings policy is to allow the system under light
load conditions to go into the state with one
physical package having more than one core
busy and with another physical package be-
ing completely idle. Using scheduler group’s
cpu_power in SMP domain and with modifi-
cations to load balance, we can achieve this.

In the presence of CMP domain, we will set
cpu_power of scheduling group in SMP do-
main to the sum of all the cores horsepower
in that physical package. And if the load bal-
ance is modified such that, the maximum load
in a physical package can grow up to thecpu_
power of that scheduling group, then the sys-
tem can enter a state, where one physical pack-
age has all its cores busy and another physical
package in the system being completely idle.

We will leave thecpu_power for the CMP
domain as before (same as the one used for
SMP domain in the current Linux Kernel) and
this will result in active load balance when
it sees a situation where more than one SMT
thread in a core is busy, with another core be-
ing completely idle. As the performance con-
tribution by SMT is not as large as CMP, this
behavior will be retained in power saving mode
as well.

2005 Linux Symposium • 201

4.2.2 Active load balance

Next step in implementing this power savings
policy is to detect the situation where there are
multiple packages being busy, each having lot
of idle cores and move the complete load into
minimal number of packages for optimal power
savings (this minimal number depends on the
number of tasks running and number of cores
in each physical package).

Let’s take an example where there are two
packages in the system, each having two cores.
There can be a situation where there are two
runnable tasks in the system and each end up
running on a core in two different packages,
with one core in each package being idle. This
situation needs to be detected and the complete
load needs to be moved into one physical pack-
age, for more power savings.

For detecting this situation, scheduler will cal-
culate watt wastage for each scheduling group
in SMP domain. Watt wastage represents num-
ber of idle cores in a non-idle physical pack-
age. This is an indirect indication of wasted
power by idle cores in each physical package
so that non-idle cores in that package run un-
affected. Watt wastage will be zero when all
the cores in a package are completely idle or
completely busy. Scheduler can try to mini-
mize watt wastage at SMP domain, by moving
the running tasks between the groups. During
the load balance at SMP domain level, if the
normal load balance doesn’t detect any imbal-
ance, idle core (in a package which is not wast-
ing much power compared to others in SMP
domain) can run this power saving scheduling
policy and see if it can pull a task (using active
load balance) from a package which is wasting
lot of power.

In the last example, idle core in package 0
can detect this situation and can pickup the
load from busiest core in package 1. To pre-

Figure 7: Demonstration of active load balance
for improved power savings with 4 tasks, on
a system having two physical packages, each
having four cores. Active load balance kicks in
between the two physical packages, resulting in
movement of the complete load to one physical
package, resulting in improved power savings

vent the idle core in package 1 doing the same
thing to the busiest core in package 0 (caus-
ing unnecessary ping-pong) load balance algo-
rithm needs to follow the ordering. Figure 7
shows a demonstration of this active load bal-
ance, which will result in improved power sav-
ings.

As the number of cores residing in a physical
package increase, shared resources between the
cores will become bottle neck. As the con-
tention for the resources increase, power sav-
ing scheduling policy will result in an increased
impact on peak performance. As shown in Fig-
ure 7, moving the complete load to one physi-
cal package will indeed consume lesser power
compared to keeping both the packages busy.
But if the cores residing in a package share
last level cache, the impact of sharing the last
level cache by 4 tasks may outweigh the power
saving. To limit such performance impact, we
can let the administrator choose the allowed
watt wastage for each package. Allowed watt
wastage is an indirect indication of the schedul-
ing group’s horsepower.cpu_power of the
scheduling group in SMP domain can be mod-

202 • Chip Multi Processing aware Linux Kernel Scheduler

ified proportionately based on the allowed watt
wastage. Load balance modifications in Sec-
tion 4.2.1 will limit the maximum load that
a package can pickup (under light load con-
ditions) and hence the impact to peak perfor-
mance. More power will be saved with smaller
allowed watt wastage. In the case shown in Fig-
ure 7, administrator for example can say, under
light load conditions don’t overload one physi-
cal package with more than 2 tasks.

Setting the scheduler groupscpu_power of
SMP domain to the sum of all the cores horse-
power (i.e., allowed watt wastage is zero) will
result in a package picking up the max load
depending on the number of cores. This will
result in maximum power saving. Setting the
cpu_power to a value less than the combined
horsepower of two cores (i.e., allowed watt
wastage is one less than the number of cores
in a physical package) will distribute the load
equally among the physical packages. This
will result in peak performance. Any value for
cpu_power in between will limit the impact
to peak performance and hence the power sav-
ings.

Administrator can select the peak performance
or the power savings policy by setting appro-
priate value to the scheduler group’scpu_
power in SMP domain.

4.2.3 exec, fork balance

SD_BALANCE_{EXEC, FORK} flags need
to be reset for domains SMP and above, caus-
ing the new process to be started in the same
physical package. Normal load balance will
kick in when the load of a package is more than
the package’s horsepower (cpu_power) and
there is an imbalance with respect to another
physical package.

5 Summary & Future work

CMP related scheduler enhancements dis-
cussed in this paper fits naturally to the 2.6
Linux Kernel Domain Scheduler environment.
Depending on the requirements, administra-
tor can select the peak performance or power
saving scheduler policy. We have prototyped
peak performance policy discussed in this pa-
per. We are currently experimenting with the
power saving policy, so that it behaves as ex-
pected under the presence of CMP, SMT and
under the light, heavy load conditions. Once
we complete the performance tuning and anal-
ysis with real world workloads, these patches
will hit the Linux Kernel Mailing List.

For the future generation CMP imple-
mentations, researchers and scientists are
experimenting[8] with “many tens of cores,
potentially even hundreds of cores per package
and these cores supporting tens, hundreds,
maybe even thousands of simultaneous execu-
tion threads.” Probably we can extend Moore’s
law[7] to CMP and can dare say that number
of cores per die will double approximately
every two years. This sounds plausible for
the coming decade at least. With more CPU
cores per physical package, kernel scheduler
optimizations addressed in this paper will
become critical. In future, more experiments
and work need to be focused on bringing micro
architectural information based scheduling to
the mainline.

Acknowledgments

Many thanks to the colleague’s at Intel Open
Source Technology Center for their continuous
support.

Thanks to Nick Piggin and Ingo Molnar for al-
ways providing quick comments on our sched-
uler patches.

2005 Linux Symposium • 203

References

[1] Active load balance modification in pre
2.6.12 -mm kernels.http:
//www.ussg.iu.edu/hypermail/
linux/kernel/0503.1/0057.html .

[2] Advanced configuration and power interface
spec 3.0.http://www.acpi.info/
DOWNLOADS/ACPIspec30.pdf .

[3] Balance on exec and fork in pre 2.6.12 -mm
kernels.http:
//www.ussg.iu.edu/hypermail/
linux/kernel/0502.3/0037.html .

[4] Intel dual-core processors.
http://www.intel.com/
technology/computing/dual-core .

[5] Intel hyper-threading technology.
http://www.intel.com/
technology/hyperthread .

[6] Linux kernel.
http://www.kernel.org .

[7] Moore’s law. http://www.intel.com/
research/silicon/mooreslaw.htm .

[8] Processor and platform evolution for the next
decade.http://www.intel.com/
technology/techresearch/idf/
platform-2015-keynote.htm .

[9] Daniel Nussbaum Alexandra Fedorova,
Christopher Small and Margo Seltzer.Chip
Multithreading Systems Need a New
Operating System Scheduler. SIGOPS, ACM,
2004.

[10] Jun Nakajima and Venkatesh Pallipadi.
Enhancements for Hyper-Threading
Technology in the operating System: Seeking
the Optimal Scheduling. WIESS, USENIX,
December 2002.

204 • Chip Multi Processing aware Linux Kernel Scheduler

SeqHoundRWeb.py: interface to a comprehensive online
bioinformatics resource

Peter St. Onge
University of Toronto

pete@{seul.org|economics.utoronto.ca}

Paul Osman
paul@eval.ca

Abstract

In the post-genomic era, getting useful answers
to challenging biological questions often de-
mands significant expertise and resources not
only to acquire the requisite biological data
but also to manage it. The storage required
to maintain a workable genomic or proteomic
database is usually out of reach for most bi-
ologists. Some toolsets already exist to facil-
itate some aspects of data analysis, and oth-
ers for access to particular data stores (e.g.,
NCBI Toolkit), but there is a substantial learn-
ing curve to these tools and installation is often
non-trival. SeqHoundRWeb.py grew out of a
common frustration in bioinformatics—the ini-
tiate bioinformaticist often has substantial bio-
logical knowledge, but little experience in com-
puting; Python is often held up as a good first
scripting language to learn, and in our experi-
ence new users can be productive fairly rapidly.

Introduction

The discovery of DNA by Watson and Crick
marked the beginnings of massive upheaval in
biology, and ultimately, in the ways biologists
work. Research today, in the so-called post-
genomic era, has embraced computing technol-

ogy as never before, with repercussions affect-
ing all areas of biology[15].

One of the greatest hurdles a novice bioinfor-
maticist must face is the learning curve when
learning an approach to biology that does not
involve the use of any of the classical or well-
known laboratory techniques.

Perl is probably the most commonly used
bioinformatics language currently[13], and has
substantial and rich object-oriented facilities
to deal with biological data[2]. While Perl
is highly versatile and effective in the hands
of experienced bioinformaticists[14], my ex-
perience shows that initiates to programming
through academic bioinformatics courses often
have considerable difficulty understanding the
breadth of Perl approaches and idioms suffi-
ciently for it to be useful.

Like Perl, other languages have seen special-
ized facilities to handle biological informa-
tion develop considerably. Java[1], Ruby[4],
Python[3], amongst others, all have have been
used successfully in research projects. In par-
ticular, use of Python is becoming increasingly
commonplace in research[12].

A second issue is the ability to obtain
and effectively exploit data in order to test
the research hypotheses of interest. Fortu-
nately, there are many research sites provid-

• 205 •

206 • SeqHoundRWeb.py: interface to a comprehensive online bioinformatics resource

ing substantial data for research use, includ-
ing the US National Center for Biotechnol-
ogy Information[7] (NCBI), the Gene Ontology
Consortium[5] (GO) and the European Bioin-
formatics Institute[8] (EBI). Each of these sites
host a considerable amount of data, in both size
and breadth, typically database table dumps al-
lowing others to reconstitute and further de-
velop the data for individual research needs.
Although the data files are normally well un-
der a gigabyte in size (compressed), typical
processing requires some skill even for simple
parsing and data work up, particularly because
of the file sizes involved.

Not surprisingly, most research questions tend
to be more complex and require more ro-
bust approaches to managing data, such as
relational databases (e.g. MySQL and Post-
GreSQL) which in turn often mean having sub-
stantial hardware and some system administra-
tion skills.

Other types of data processing, such as
genome-level comparisons between species
through Basic Local Alignment Search
Tool[10] (BLAST) can be highly CPU inten-
sive for hours or even days depending on the
size of the genomes being searched and the
underlying hardware. As this data updates on
an ongoing basis, the need to rebuild result sets
dictates the availability of large quantities of
substantial computing power.

One project to assemble much of the data from
these various sources and carry out many of
the more demanding data process steps was
SeqHound[11], merging biological sequence
(genomic and proteomic), taxonomy, annota-
tion and 3-D structure within an object-oriented
database management system and exposed via
a web-based API. Although most of SeqHound
is F/OSS, hosting it locally locally would be
difficult for most researchers without substan-
tial hardware and technical expertise, as the
current (as of Oct ’04) recommendation is to

have a system able to store some 650 GB of
data[9].

In order to make access to SeqHound simpler
for novice bioinformaticists, my approach was
to trade off some speed for flexibility, and build
a Python wrapper around SeqHound’s HTTP
API, exposing much of the rich data provided
by SeqHound to the ease-of-use of Python and
its language features.

Overview

The primary prerequisites for SeqHoundR-
Web.py are the urllib and os modules, so this
means that SeqHoundRWeb.py should be able
to work on any platform supported by Python.
Installation of the package will be via the typi-
cal Python installation techniques, and we ex-
pect that it will be made available through
the normal distribution channels soon. Until
then, the code can be imported into Python,
as shown below as long as the location of the
SeqHoundRWeb.py file is provided—novice
Python users can take full advantage of the
functions provided in this module without the
need for root or Administrator-level access!

Table 1 shows a straightforward example of re-
trieval of a GenInfo (GI) identifier given a par-
ticular accession number for a hypothetical pro-
tein for a species of rat (specifically, the Nor-
way Rat,Rattus norvegicus).

Acknowledgements

This project came about thanks to a number of
people: Alexander Ignachenko, Shaun Ghanny,
Robin Haw, Henry Ling, Bianca Tong, Kayu
Chin, Thomas Kislinger, and Ata Ghavidel all
provided constructive criticism and support, for

2005 Linux Symposium • 207

import os
import SeqHoundRWeb

Set the proper URL for seqhound
os.environ["SEQHOUNDSITE"] = "http://seqhound.blueprint.org"

accs = [
"CAA28783",
"CAA28784",
"CAA28786"

]

for acc in accs:
result = SeqHoundRWeb.SeqHoundFindAcc([acc])
if result[0] == ’SEQHOUND_OK’: # found it

print result[1]

Table 1: Simple SeqHoundRWeb Example - Rat

which I remain grateful. Katerina Michalick-
ova, Michel Dumontier and others from the
Hogue Lab at Mount Sinai Hospital for cre-
ating SeqHound and exposing its functionality
via HTTP. An initial proof of concept, which
became the basis for this project, was built in
the Emili Lab at the University of Toronto, and
I would like to thank the Department of Eco-
nomics for allowing me the opportunity to con-
tinue working on it as part of my professional
responsibilities. Thanks also to Alex Brotman,
Ales Hvezda and others from the SEUL Project
for their keen eyes in finding mistakes in the
text. Any errors or omissions are, of course,
my own[6].

References

[1] BioJava web site.
http://www.biojava.org/ .

[2] BioPerl web site.
http://bio.perl.org/ .

[3] BioPython web site.
http://www.biopython.org/ .

[4] BioRuby web site.
http://www.bioruby.org/ .

[5] Gene Ontology Consortium FTP site.
http://archive.godatabase.
org/latest-full/ .

[6] It’s All Pete’s Fault website.http:
//www.itsallpetesfault.org/ .

[7] NCBI FTP site.http:
//www.ncbi.nlm.nih.gov/Ftp/ .

[8] Catherine Brooksbank, Evelyn Camon,
Midori A. Harris, Michele Magrane,
Maria Jesus Martin, Nicola Mulder,
Claire O’Donovan, Helen Parkinson,
Mary Ann Tuli, Rolf Apweiler, Ewan
Birney, Alvis Brazma, Kim Henrick,
Rodrigo Lopez, Guenter Stoesser, Peter
Stoehr, and Graham Cameron. The
European Bioinformatics Institute’s data
resources.Nucl. Acids Res., 31(1):43–50,
2003.

208 • SeqHoundRWeb.py: interface to a comprehensive online bioinformatics resource

[9] Ian Donaldson, Katerina Michalickova,
Hao Lieu, Renan Cavero, Michel
Dumontier, Doron Betel, Ruth Isserlin,
Marc Dumontier, Michael Matan, Rong
Yao, Zhe Wang, Victor Gu, and Elizabeth
Burgess. The SeqHound Manual,
Release 3.01, October 2004.

[10] Mark Yandell Ian Korf and Joseph
Bedell. BLAST. O’Reilly, 2003.

[11] Katerina Michalickova, Gary Bader,
Michel Dumontier, Hao Lieu, Doron
Betel, Ruth Isserlin, and Christopher
Hogue. Seqhound: biological sequence
and structure database as a platform for
bioinformatics research.BMC
Bioinformatics, 3(1):32, 2002.

[12] J. Daniel Navarro, Vidya Niranjan, Suraj
Peri, Chandra Kiran Jonnalagadda, and
Akhilesh Pandey. From biological
databases to platforms for biomedical
discovery.Trends in Biotechnology,
21(6):263–268, 2003.

[13] James Tisdall.Beginning Perl for
Bioinformatics. O’Reilly, 2001.

[14] James D. Tisdall.Mastering Perl for
Bioinformatics. O’Reilly, 2003.

[15] Johnathan D. Wren. Engineering in
genomics.IEEE Engineering in
Medicine and Biology Magazine, pages
87–98, March/April 2004.

Ho Hum, Yet Another Memory Allocator. . .
Do We Need Another Dynamic Per-CPU Allocator?

Ravikiran G Thirumalai
kiran.th@gmail.com

Dipankar Sarma
Linux Technology Center, IBM India Software Lab

dipankar@in.ibm.com

Manfred Spraul
manfred@colorfullife.com

Abstract

The LinuxR© kernel currently incorporates
a minimalistic slab-based dynamic per-CPU
memory allocator. While the current alloca-
tor exists with some applications in the form of
block layer statistics and network layer statis-
tics, the current implementation has issues.
Apart from the fact that it is not even guar-
anteed to be correct on all architectures, the
current implementation is slow, fragments, and
does not do true node local allocation. A new
per-CPU allocator has to be fast, work well
with its static sibling, minimize fragmentation,
co-exist with some arch-specific tricks for per-
CPU variables and get initialized early enough
during boot up for some users like the slab sub-
system. In this paper, we describe a new per-
CPU allocator that addresses all issues men-
tioned above, along with possible uses of this
allocator in cache friendly reference counters
(bigrefs), slab head arrays, and performance
benefits due to these applications.

1 Introduction

The Linux kernel has a number of alloca-
tors, including the page allocator for allocating
physical pages, the slab allocator for allocat-
ing objects with caching, and vmalloc alloca-
tor. Each of these allocators provide ways to
manage kernel memory in different ways. With
the introduction of symmetric multi-processing
(SMP) support in the Linux kernel, managing
data that are rarely shared among processors
became important. While statically allocated
per-CPU data has been around for a while, sup-
port for dynamic allocation of per-CPU data
was added during the development of 2.6 ker-
nel. Dynamic allocation allowed per-CPU data
to be used within dynamically allocated data
structures making it more flexible for users.

The dynamic per-CPU allocator in the 2.6 ker-
nel was, however only the first step toward bet-
ter management of per-CPU data. It was a com-
promise given that the use of dynamically allo-
cated per-CPU data was limited. But with the
need for per-CPU data increasing and support
for NUMA becoming important, we decided to
revisit the issue.

• 209 •

210 • Ho Hum, Yet Another Memory Allocator. . .

In this paper, we present a new dynamic per-
CPU data allocator that saves memory by in-
terleaving objects of the same processor, sup-
ports allocating objects from memory close to
the CPUs (for NUMA platforms), works during
early boot and is independent of the slab allo-
cator. We also show it allows implementation
of more complex synchronization primitives
like distributed reference counters. We discuss
some preliminary results and future course of
action.

2 Background

Over the years, CPU speed has been increas-
ing at a much faster rate then speed of mem-
ory access. This is even more important in
multi-processor systems where accessing mem-
ory shared between the processors could be
significantly more costly if the corresponding
cache line is not available in that processor’s
cache.

Operation Cost (ns)

Instruction 0.7
Clock Cycle 1.4
L2 Cache Hit 12.9
Main Memory 162.4

Table 1: 700 MHz P-III Operation Costs

Table 1 shows the cost of memory opera-
tions on a 700 MHz Pentium

TM
III processor.

When global data is shared between proces-
sors, cache lines bouncing between processors
reduce memory bandwidth and thereby nega-
tively impact scalability. As scalability im-
proved during the development of the 2.6 ker-
nel, the need for efficient management of in-
frequently shared data also increased. The first
step towards this was interleaved static per-
CPU areas proposed by Rusty Russell [3]. This

struct abc *ptr = alloc_percpu(struct abc);

cpu_to_node(i));
 kmem_find_general_cachep(size, GFP_KERNEL)
kmem_cache_alloc_node(

struct percpu_data.ptrs[]

NR_CPUS

Figure 1: Current allocator

allowed better management of cache lines by
sharing them between CPU-local versions of
different objects. As the need for per-CPU data
increased beyond what could be declared stati-
cally, the first RFC for a dynamic per-CPU data
allocator was proposed [6] along with a refer-
ence implementation [7].

Subsequent discussions led to a simplified im-
plementation of a dynamic allocator in the 2.5
kernel as shown in Figure 1. This allocator pro-
vides an interfacealloc_percpu() that re-
turns a pointer cookie. The pointer cookie is
the address of an array of pointers to CPU-local
objects each corresponding to a CPU in the
system. The array and the CPU-local objects
are allocated from the slab. Simplicity was the
most important factor with this allocator, but it
clearly had a number of problems.

1. The slab allocations are no longer padded
to cache line boundaries. This means that
the current implementation would lead to
false sharing.

2. An additional memory access (array of
CPU-local object pointers) has a perfor-
mance penalty, mostly due to associativity
miss.

3. The array itself is not NUMA-friendly.

2005 Linux Symposium • 211

4. It wastes space.

We therefore implemented a new dynamic al-
locator that worked around the problems of
the current one. This allocator is based on
the reference implementation [7] published ear-
lier. The key improvement has been the use of
pointer arithmetics to determine the address of
the CPU-local objects, which reduces derefer-
encing overhead.

3 Interleaved Dynamic Per-CPU
Allocator

3.1 Design Goals

In order to address the inadequacies in the cur-
rent per-CPU allocation schemes in the Linux
kernel, a new allocator must do the following:

1. Fast pointer dereferencing to get to the
per-CPU object

2. Allocate node local memory for all CPUs

3. Save on memory, minimize fragmentation,
maximize cache line utilization

4. Work well with CPU hotplug and memory
hotplug, sparse CPU numbers.

5. Get initialized early during boot

6. Independent of the slab allocator

7. Work well with its static sibling (static per-
CPU areas)

A typical memory allocator returns a record
(usually a pointer) that can be used to access the
allocated object. A per-CPU allocator needs to
return a record that can be used to access every

BLOCK_MANAGEMENT_SIZE

BLOCK

PCPU_BLK_SIZE

PCPU_BLK_SIZE

CONTIGUOUS VM SPACE

obj1

objN

CPU0 CHUNK

obj1

CPU1 CHUNK

objN
obj1

CPU2 CHUNK

objN
obj1

CPU3 CHUNK

objN
obj1

CPUn CHUNK

objN

BLOCK MANAGEMENT

memory/pages

memory/pages

memory/pages

CPU0 local

CPU1 local

CPUN local

Figure 2: A block

copy of the object’s private data to the corre-
sponding CPU. In our allocator, this record is a
cookie and the CPU-local versions of the allo-
cated objects can be accessed using it. Deref-
erencing speeds are very important, since this
is the fast path for all users of per-CPU data.
The CPU-local versions of the object also need
to be allocated from the memory nearest to the
CPU on NUMA systems. Also, in order to
avoid the overhead of an extra memory access
in the current per-CPU data implementation,
we needed to use pointer arithmetics to access
the object corresponding to a given CPU. The
pointer arithmetic should be simple and should
use as few CPU cycles as possible.

3.2 Allocating a Block

The internal allocation unit of the interleaved
per-CPU allocator is ablock . Requests for
per-CPU objects are served from ablock of
memory. Theblock s are allocated on demand
for new per-CPU objects. Ablock is a con-
tiguous virtual memory space (VA space) that
is reserved to contain a chunk of objects cor-
responding to every CPU. It also contains ad-
ditional space that is used to maintain internal
structures for managing the blocks.

212 • Ho Hum, Yet Another Memory Allocator. . .

Figure 2 shows the layout of ablock . The VA
space within ablock consists of two sections:

1. The top section consists ofNR_CPU
chunks of VA space each of sizePCPU_
BLK_SIZE . PCPU_BLKSIZE is a com-
pile time constant. It represents the capac-
ity of oneblock . Each CPU has one such
per-CPU chunk within ablock . Cur-
rently the size of each per-CPU chunk is
two pages. PCPU_BLKSIZE is the size
limit of a per-CPU object.

2. The bottom section of ablock con-
sists of memory used to maintain the
per-CPU object buffer control information
for this block and plus block descrip-
tor size. This section is of sizeBLOCK_
MANAGEMENT_SIZE.

While the VA for the entireblock is allo-
cated, the actual pages for each per-CPU chunk
are allocated only if the corresponding CPU is
present in thecpu_possible_mask . This
has two benefits—it avoids unnecessary waste
of memory and each chunk can be allocated so
it is closest to the corresponding CPU.alloc_
page_node() is used to get pages nearest to
the CPU. The management pages at the bottom
of a block are always allocated. Once the
pages are allocated, VA space is then mapped
with pages for the CPU-local chunks.

Also, as shown in Figure 3, there won’t be map-
pings for any VA space corresponding to CPUs
that are “not possible” on the system. The VA
space is contiguous forNR_CPUSprocessors
and this allows us to use pointer arithmetics to
calculate the address of an object correspond-
ing to a given CPU. We also save memory
by not allocating for CPUs that are not in the
cpu_possible mask.

���

���

���

���

�����������������������������
�����������������������������
�����������������������������
�����������������������������

�����������������������������
�����������������������������
�����������������������������
�����������������������������

�����������������������������
�����������������������������
�����������������������������
�����������������������������

�����������������������������
�����������������������������
�����������������������������
�����������������������������

	�	�	�	�	�	�	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	�	�	�	�	�	�	

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
����������������������
�����������
�����������

�����������
�����������
�����������

�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
���������������������������������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
����������������������

���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���

������
������
������
������
������
������
������
������
������
���

������
������
������
������
������
������
������
������
������
���

CPU 0
Node Local

CPU 1

Empty

Empty

CPU4

Node Local

Node Local

Block
Management

 X
 NR_CPUS

NUMA MP

CPU5
CPU4

CPU1
CPU0

Node Local

PCPU_BLK_SIZE

BLK_MANAGEMENT_SIZE

VIRTUALLY CONTIGUOUS BLOCK

CPU5

Figure 3: Page allocation for a block

3.3 Allocating Objects from a block

The per-CPU chunks inside ablock are fur-
ther divided into units ofcurrency . A
currency is the size of the smallest object
that can be allocated in this scheme. The cur-
rency size is defined assizeof(void *) in
the current implementation. Any object in this
allocator consists of one or more contiguous
units ofcurrency .

Eachblock in the system has a descriptor as-
sociated with it. The descriptor is defined as
below:

struct pcpu_block {
void *start_addr;
struct page *pages[PCPUPAGES_PER_BLOCK * 2];
struct list_head blklist;
unsigned long bitmap[BITMAP_ARR_SIZE];
int bufctl_fl[OBJS_PER_BLOCK];
int bufctl_fl_head;
unsigned int size_used;

};

This is embedded into the block management
part of the block. In the current implementa-
tion, it is at the beginning of the block man-
agement section of ablock . Each per-CPU
object is allocated from one suchblock main-
tained by the interleaved allocator. The block
descriptor records the base effective address of

2005 Linux Symposium • 213

���
���
���

���
���
��
���
���

���
���
���

���������������������������������������
���������������������������������������
���������������������������������������

���������������������������������������
���������������������������������������
��������������������������������������� �������

��������������
�������

	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

bitmap

start_addr
pages[]

blklist

bufctl_fl bufctl_fl_head

Pecpu memory block

Block of memory out of which per−cpu objects\
are served

struct pcpu_block

bufctls

size_used

Block management

BLOCK MANAGEMENT STRUCTURE

buf_ctls

Figure 4: Managing blocks

the block (start_addr) as well as the al-
location state of eachcurrency within the
block . The allocation state is recorded using
a bitmap wherein each bit represents an isomor-
phic currency of every per-CPU chunk in
that block. There are as many bits as the num-
ber ofcurrency in one chunk of the block.

Figure 4 shows the organization of the block
management area. Block descriptor has an
array of pointers, each pointing to a CPU-
local chunk of physical pages allocated for this
block. Each object allocated from ablock
is represented by abufctl data structure.
Thesebufctl structures are embedded in the
block management section of theblock and
they start right after the block descriptor. The
block descriptor also has an array-based free
list to allocatebufctl or object descriptors.
bufctl_fl is the array-based free list and
bufctl_head stores the head of this free list.

During allocation of a per-CPU object, the
bitmap indicatingcurrency allocation state
is sorted and saved. This array is sorted in as-
cending order of available object sizes in that
block due to contiguouscurrency regions.
This array is traversed and the first element that
fits the allocation requirement is used and the

���������������
���������������
���������������

���������������
���������������
���������������

���������
���������
���������

���������
���������
���������

���������������������������
���������������������������
���������������������������

���������������������������
���������������������������
���������������������������

���������
���������
���������

���������
���������
���������

	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

���
���
���

���
���
���

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

���������������������������
���������������������������
���������������������������

���������
���������
���������

���������
���������
���������

���������
���������
���������

���������
���������
���������

���������������
���������������
���������������

���������������
���������������
���������������

���������������
���������������
���������������

���������������
���������������
���������������

1 1 1 1 1 0 1 1 1 1 0 0 0 0 0

CPU0 chunk

CPU1 chunk

struct pcpu_block.bitmap

OBJ1 OBJ2

bufctl

addr

size
20

next

(OBJ1)

(OBJ2)

addr

size
20

next

BLOCK

OBJ1 OBJ2

OBJ2OBJ1

BLOCK

bufctl

Object block list

0xf8880000

0xf8880018

0xf8880000

Figure 5: Object layout

correspondingcurrency units are allocated.

Figure 5 shows the relation between ablock
in the allocator, per-CPU objects allocated from
theblock , the bitmap corresponding to these
objects,bufctl structures andbufctl list
for these objects. In this example, a per-CPU
block starts at 0xf8880000. The currency size
is assumed to be 4 (sizeof (void *) on
x86). The squares in CPU chunks represent
the allocator currency. The first five consecu-
tive currencies make OBJ1 (shaded currencies
in the block). Each currency is represented by
a bit in the bitmap. Hence, bits 0–4 of the
bitmap correspond to OBJ1. OBJ1 starts at ad-
dress 0xf8880000. OBJ2 starts at 0xf8888018.
The figure also depicts the bufctl structures and
bufctl list for OBJ1 and OBJ2.

3.4 Managing blocks

The amount of per-CPU objects served by a sin-
gle block is limited. So, our allocator allows
allocation of newblock on demand. When-
ever a request for a per-CPU object cannot be
met with anyblock currently in the system, a
newblock is added to the system that is iso-
morphic to existing ones.

214 • Ho Hum, Yet Another Memory Allocator. . .

Sorted list of allocator blocks

firstnotfull

Memory used

Figure 6: Managing block lists

These blocks are linked to one another in a
circular doubly linked sorted list (Figure 6).
pcpu_block counts the amount of memory
used in the block (size_used). This list is
sorted in descending order usingsize_used .
Thefirstnotfull field contains the list po-
sition of the firstblock in the list that has
available memory for allocation. On an al-
location request, the list traversed from the
firstnotfull position and the first avail-
able block with sufficient space is chosen for
allocation. If no such block is found, a new
block is created and added to this list. The
blocks are repositioned in the list to preserve
the sorted nature of the list upon every allo-
cation and free request. During the course of
freeing per-CPU objects, if the allocator notices
thatblkp->size_used goes to zero, the en-
tire block—VA space, per-CPU pages, block
management pages and the VA mapping are de-
stroyed.

3.5 Accessing Per-CPU Data

A per-CPU allocation returns a pointer that is
used as a cookie to access CPU-local version
of the object for any given CPU. This pointer
effectively points to address of the CPU-local

object for CPU 0. To get to the CPU-local
version of CPU N, the following arithmetics
is used—cpu_local_address = p + N *

PCPU_BLKSIZE, where p is the cookie re-
turned by the interleaved allocator. Since
PCPU_BLKSIZE is a carefully chosen com-
pile time constant of a proper page order, the
above arithmetics is optimized to a simple add
and bit shift operations. The most expensive
operation in accessing the CPU-local object is
usually the determination of the current CPU
number (smp_processor_id()). This is
true for static per-CPU areas as well. To avoid
the cost ofsmp_processor_id() during
per-CPU data access, kernel developers like
Rusty Russell have been contemplating using
a dedicated processor register to get a handle to
that processor’s CPU-local data. The current
static per-CPU area in the Linux kernel uses
an array (__per_cpu_offset[]) to store
a handle to each CPU’s per-CPU data. With
a dedicated processor register,__per_cpu_
offset[cpuN] would be loaded into the reg-
ister and users of per-CPU data would not need
to make a call tosmp_processor_id() to
get to the CPU-local versions—simple arith-
metic on the contents of the processor ded-
icated register will suffice. In fact,smp_
processor_id() could be derived from the
register based__per_cpu_offset[] ta-
ble. This scheme can co-exist with our per-
CPU allocator.

4 Using Dynamic Per-CPU Alloca-
tor

4.1 Per-CPU structures within the slab al-
locator

The Linux slab allocator uses arrays of object
pointers to speed up object allocation and re-
lease. This avoids doing costly linked list or

2005 Linux Symposium • 215

struct kmem_cache_s {
struct array_cache *array[NR_CPUS];
/* ... additional members, only

* touched from slow path ... */
};
struct array_cache {

unsigned int avail;
unsigned int limit;
void * objects[];

};

Table 2: Main structures in the fast-path—
before

spinlock operations in each operation. Each ob-
ject cache contains one array for each CPU. If
an array is not empty, then an allocation little
more than looking up the per-CPU array and
returning one entry from that array. There-
fore the time required for the pointer lookup
is the most significant part of the execution
time for kmem_cache_alloc and kmem_
cache_free .

At present, the lookup code mimics the imple-
mentation of the dynamic per-CPU variables:
kmem_cache_create returns a pointer to
the structure that contains the array of pointers
to the per-CPU variables. Each allocation or
release looks up the correct per-CPU structure
and returns an object from the array. Table 2
shows the (slightly simplified) structures.

While this is a simple implementation, it has
several disadvantages:

• It is a code duplication and it would be bet-
ter if slab could reuse the primitives pro-
vided by the dynamic per-CPU variables.
This is not possible, because it would cre-
ate a cyclic dependency: the dynamic per-
CPU variable implementation relies on the
slab allocator for its own allocations.

• It is a simple per-CPU allocator, therefore
each access required a table lookup. De-
pending on the value ofNR_CPUS, there
might be even frequent write operations,

struct kmem_cache_s { /* per-CPU variable */
struct kmem_globalcache *global;
unsigned int avail;
unsigned int limit;
void * objects[];

};
struct kmem_globalcache { /* one instance */

/* ... additional members, only
* touched from slow path ... */

};

Table 3: Main structures for fast-path—after

and thus cache line transfers on the cache
line that contains the table.

• The implementation is fixed within
slab.c , it’s not possible to override it
with arch specific code, even if an archi-
tecture supports a fast per-CPU variable
lookup.

Therefore the slab code was rearranged to
use per-CPU variables natively for the ob-
ject caches:kmem_cache_create returns
the pointer to the per-CPU structure that con-
tains the members that are needed in the fast-
path of the allocator. The other members
are stored in a new structure (structkmem_
globalcache). The new structure layout is
shown in Table 3.

The functionskmem_cache_alloc() and
kmem_cache_free() only need to access
avail , limit , andobjects , thus there are
no accesses to the global structure from the
fast-path.

4.2 Statistics counters

As part of the scalable statistics counter work
we carried out earlier, it has already been es-
tablished that per-CPU data is useful for ker-
nel statistics counters, and solves the problem
of cache line bouncing on NUMA and multi-
processor systems [5]. During the development

216 • Ho Hum, Yet Another Memory Allocator. . .

of the 2.6 kernel, a number of kernel statistics
were converted to use a dynamic per-CPU al-
locator. These include networking MIBs, disk
statistics and thepercpu_counter used in
ext2 and ext3 filesystems. With our allocator,
the per-CPU statistics counters become more
efficient. In addition to faster dereferencing and
node-local allocation, our allocator savesNR_

CPUS x sizeof(void *) bytes of memory
for each per-CPU counter by avoiding the array
storing the CPU-local object pointers.

4.3 Distributed reference counters (bi-
grefs)

Rusty Russell has an experimental patch that
makes use of the dynamic per-CPU memory
allocator to avoid global atomic operations on
reference counters[4].

A “bigref” reference counter would con-
sist of two counters internally; one of type
atomic_t which is the global counter, and
another per-CPU counter of typelocal_t ,
the distributed counter. Per-CPU memory for
the local_t is allocated when the bigref ref-
erence counter is initialized. The reference
counter usually operates in the “fast” mode—
it just increments or decrements the CPU-
local local_t counter whenever the bigref
reference counter needs to be incremented or
decremented (get() andput() operations in
Linux parlance). This operation onlocal_t
per-CPU counters is much cheaper compared
to operations on a globalatomic_t type. In
fact on x86, local increment is just anincl in-
struction.

The reference counter switches to a “slow”
mode when the element being protected by the
reference counter is no longer needed in the
system and is being released or ’disowned’.
This switch from fast mode to slow mode is
done by usingsynchronize_kernel() to

make sure all CPUs recognize slow mode op-
eration before the ’disowning’ completes. The
reference counter is biased with a high value
by setting theatomic_t counter with the high
bias value before the switch to slow mode is ini-
tiated. In fact this biasing itself indicates begin-
ning of the switch. This bias value is subtracted
from the reference counter after the switch to
slow mode.

Bigrefs save on space and dereference speeds
when they use our per-CPU allocator. In ad-
dition to space saving, our allocator interlaces
counters on cache lines too, which results in in-
creased cache utilization.

5 Results

5.1 Slab enhancements

The new slab implementation discussed in
Section 4.1 was tested with both micro-
benchmarks and real-world test loads.

• Micro-benchmarks showed no change be-
tween the old and the new implemen-
tation; In a tight loop,kmem_cache_
alloc needed around 35 CPU cycles on
an 64-bit AMD Athlon

TM
. The lack of im-

provement is not unexpected because a ta-
ble lookup is only slow on a cache miss.

• Tests with tbench (version 3.03 with
warm-up) on a 4-CPU HT Pentium 4
(2.8GHz Xeon) system showed an im-
provement of around 1%.

6 Future Work

The new allocator is not without its own limita-
tions:

2005 Linux Symposium • 217

1. One major drawback of our allocator de-
sign is increased TLB footprint. Since our
allocator uses the Linux vmalloc VM area
to stitch all node local and block man-
agement pages into one contiguous block,
hot per-CPU data may take too many TLB
entries when there are too many alloca-
tor blocks within the system. Node-local
page allocation and fast dereferencing are
of utmost importance, so we have to use
a virtually contiguous area for fast pointer
arithmetic. But to limit the increased TLB
usage, in the future, we may want to use
large pages for blocks, and fit all per-CPU
data in one block. This way, we can limit
the number of TLB entries taken up by the
dynamic per-CPU allocator.

2. The allocation operation is slow. It is not
designed for allocation speed. It is de-
signed for maximum utilization and min-
imum fragmentation. Given the current
users of dynamic per-CPU allocator, it
may not be valuable to improve allocation
operation.

With the interleaved dynamic per-CPU alloca-
tor, it has also become possible to implement
distributed locks [1] [2] and reference coun-
ters [4].

7 Conclusion

The interleaved per-CPU allocator we imple-
mented is a step forward from where we are
in the Linux kernel. The current allocator in
the Linux kernel leads to false sharing and it is
not optimized. Our allocator overcomes all of
those problems. As the Linux kernel matures,
this will allow use of more sophisticated prim-
itives in the Linux kernel without adding any
overhead. The design has evolved over a num-
ber of discussions and it is mature enough to
handle all architectures.

8 Acknowledgments

Rusty Russell started the ball rolling by first im-
plementing the static per-CPU areas and later
advising us. We thank him for all of his contri-
butions. We would also like to thank a number
of Linux kernel hackers, including Dave Miller
and Andrew Morton, all of whom advised us in
many different situations. We are indebted to
Gerrit Huizenga, Paul McKenney, Jim Wasko
Jr., and Vijay Sukthankar for being so support-
ive of this effort.

9 Legal Statement

This work represents the view of the authors and
does not necessarily represent the view of IBM.

IBM is a registered trademark of International Busi-
ness Machines Corporation in the United States,
other countries, or both.

Linux is a registered trademark of Linus Torvalds.

Pentium is a registered trademark of Intel Corpora-
tion in the United States, other countries or both.

AMD Athlon is a registered trademark of Advanced
Micro Devices Inc. in the United States, other coun-
tries or both.

Other company, product, and service names may be
trademarks or service marks of others.

References

[1] M ELLOR-CRUMMEY, J. M., AND SCOTT,
M. L. Algorithms for scalable
synchronization on shared-memory
multiprocessors.Transactions of
Computer Systems 9, 1 (February 1991),
21–65.

218 • Ho Hum, Yet Another Memory Allocator. . .

[2] M ELLOR-CRUMMEY, J. M., AND SCOTT,
M. L. Scalable reader-writer
synchronization for shared-memory
multiprocessors. InProceedings of the
Third PPOPP(Williamsburg, VA, April
1991), pp. 106–113.

[3] RUSSELL, R. Subject: [patch] 2.5.1-pre5:
per-cpu areas. Available:
http://marc.theaimsgroup.
com/?l=linux-kernel&m=
100759080903883&w=2 , December
2001.

[4] RUSSELL, R. Subject: Re: [patch] mm:
Reimplementation of dynamic percpu
memory allocator. Available:
http://marc.theaimsgroup.
com/?l=linux-kernel&m=
110569951013489&w=2 , January
2005.

[5] SARMA , D. Scalable statistics counters.
Available:
http://lse.sourceforge.net/
counters/statctr.html , May
2002.

[6] SARMA , D. Subject: [lse-tech] [rfc]
dynamic percpu data allocator. Available:
http://marc.theaimsgroup.
com/?l=lse-tech&m=
102215919918354&w=2 , May 2002.

[7] SARMA , D. Subject: [rfc][patch]
kmalloc_percpu. Available:
http://marc.theaimsgroup.
com/?l=linux-kernel&m=
102761936921486&w=2 , July 2002.

Beagle: Free and Open Desktop Search

Jon Trowbridge
Novell

trow@novell.com

Abstract

I will be discussing Beagle, a desktop search
system that is currently being developed by
Novell. It acts as a search aggregator, pro-
viding a simple API for simultaneously query-
ing multiple data sources. Pluggable backends
do the actual searching while Beagle handles
the details, such as consolidating and ranking
the hits and passing them back to client appli-
cations. Beagle includes a core set of back-
ends that build full-text indexes of your per-
sonal data, allowing you to efficiently search
your files, e-mail, contacts, calendar, IM logs,
notes and web history. These indexes are up-
dated in real time to ensure that any search re-
sults will always reflect the current state of your
data.

Check Online

This author did not provide the body of this paper by deadline. Please check online for any updates.

• 219 •

220 • Beagle: Free and Open Desktop Search

Glen or Glenda
Empowering Users and Applications with Private Namespaces

Eric Van Hensbergen
IBM Research

bergevan@us.ibm.com

Abstract

Private name spaces were first introduced into
L INUX during the 2.5 kernel series. Their use
has been limited due to name space manipu-
lation being considered a privileged operation.
Giving users and applications the ability to cre-
ate private name spaces as well as the ability to
mount and bind resources is the key to unlock-
ing the full potential of this technology. There
are serious performance, security and stability
issues involved with user-controlled dynamic
private name spaces in LINUX . This paper pro-
poses mechanisms and policies for maintain-
ing system integrity while unlocking the power
of dynamic name spaces for normal users. It
discusses relevant potential applications of this
technology including its use with FILESYSTEM

IN USERSPACE[24], V9FS[8] (the LINUX port
of the PLAN 9 resource sharing protocol) and
PLAN 9 FROM USER SPACE[4] (the PLAN 9
application suite including user space synthetic
file servers ported to UNIX variants).

1 What’s in a name?

Names are used in all aspects of computer
science[21]. For example, they are used to ref-
erence variables in programing languages, in-
dex elements in a database, identify machines

in a network, and reference resources within
a file system. Within each of these cate-
gories names are evaluated in a specific con-
text. Program variables have scope, database
indexes are evaluated within tables, networks
machine names are valid within a particular
domain, and file names provide a mapping to
underlying resources within a particularname
space. This paper is primarily concerned with
the evaluation and manipulation of names and
name space contexts for file systems under the
L INUX operating system.

File systems evolved from flat mappings of
names to multi-level mappings where each cat-
alog (or directory) provided a context for name
resolution. This design was carried further
by MULTICS[1] with deep hierarchies of di-
rectories including the concept of links be-
tween directories within the hierarchy[5]. Den-
nis Ritchie, Rudd Canaday and Ken Thomp-
son built the first UNIX file system based
on MULTICS, but with an emphasis on
simplicity[22]. All these file systems had a sin-
gle, global name space.

In the late 1980s, Thompson joined with Rob
Pike and others in designing the PLAN 9 oper-
ating system. Their intent was to explore po-
tential solutions to some of the shortcomings
of UNIX in the face of the widespread use of
high-speed networks[19]. It was designed from
first principles as a seamless distributed system

• 221 •

222 • Glen or Glenda

with integrated secure network resource shar-
ing.

The configuration of an environment to use
remote application components or services in
place of their local equivalent is achieved with a
few simple command line instructions. For the
most part, application implementations operate
independent of the location of their actual re-
sources. PLAN 9 achieves these goals through
a simple well-defined interface to services, a
simple protocol for accessing both local and re-
mote resources, and through dynamic, stack-
able, per-process private name spaces which
can be manipulated by any user or application.

On the other hand, the LINUX file system name
space has traditionally been a global flat name
space much like the original UNIX operat-
ing system. In November of 2000, Alexander
Viro proposed implementing PLAN 9 style per-
process name space bindings[28], and in late
February 2001 released a patch[2] against the
2.4 kernel. This code was later adopted into
the mainline kernel in 2.5. This support, which
is described in more detail in section 4, estab-
lished an infrastructure for private name spaces
but restricted the creation and manipulation of
name spaces as privileged.

This paper presents the case for making name
space operations available to common users
and applications while extending the existing
L INUX dynamic name space support to have
the power and flexibility of PLAN 9 name
spaces. Section 2 describes the design, imple-
mentation and advantages of the PLAN 9 dis-
tributed system. Example applications of this
technology are discussed in Section 3. The ex-
isting LINUX support is described in more de-
tail in Section 4. Perceived barriers and solu-
tions to extended LINUX name space support
are covered in Section 5. Section 6 overviews
related work and recent proposals as alterna-
tives to our approach and Section 7 summarizes
our conclusions and recommendations.

2 Background: Plan 9

In PLAN 9, all system resources and interfaces
are represented as files. UNIX pioneered the
concept of treating devices as files, providing a
simple, clear interface to system hardware. In
the 8th edition, this methodology was taken fur-
ther through the introduction of the /proc syn-
thetic file system to manage user processes[10].
Synthetic file systems are comprised of ele-
ments with no physical storage, that is to say
the files represented are not present as files on
any disk. Instead, operations on the file com-
municate directly with the sub-system or ap-
plication providing the service. LINUX con-
tains multiple examples of synthetic file sys-
tems representing devices (DEVFS), process
control (PROCFS), and interfaces to system ser-
vices and data structures (SYSFS).

PLAN 9 took the file system metaphor fur-
ther, using file operations as the simple, well-
defined interface to all system and application
services. The design was based on the knowl-
edge that any programmer knows how to inter-
act with files. Interfaces to all kernel subsys-
tems from the networking stack to the graphics
frame buffer are represented within synthetic
file systems. User-space applications and ser-
vices export their own synthetic file systems in
much the same way as the kernel interfaces.
Common services such as domain name ser-
vice (DNS), authentication databases, and win-
dow management are all provided as file sys-
tems. End-user applications such as editors and
e-mail systems export file system interfaces as a
means for data exchange and control. The ben-
efits and details of this approach are covered in
great detail in the existing PLAN 9 papers[18]
and will be covered to a lesser extent by appli-
cation examples in section 3.

9P[15] represents the abstract interface used to
access resources under PLAN 9. It is somewhat
analogous to the VFS layer in LINUX [11].

2005 Linux Symposium • 223

In PLAN 9, the same protocol operations are
used to access both local and remote resources,
making the transition from local resources to
cluster resources to grid resources completely
transparent from an implementation standpoint.
Authentication is built into the protocol and
was extended in its INFERNO[20] derivative
Styx[14] to include various forms of encryption
and digesting.

It is important to understand that all 9P opera-
tions can be associated with different active se-
mantics in synthetic file systems. Traversal of a
directory hierarchy can allocate resources or set
locks. Reading or writing data to a file interface
can initiate actions on the server. The dynamic
nature of these semantics makes caching dan-
gerous and in-order synchronous execution of
file system operations a must.

The 9P protocol itself requires only a reliable,
in-order transport mechanism to function. It is
commonly used on top of TCP/IP[16], but has
also been used over RUDP[13], PPP[23], and
over raw reliable mechanisms such as the PCI
bus, serial port connections, and shared mem-
ory. The IL protocol was designed specifically
to provide 9P with a reliable, in order transport
on top of an IP stack without the overhead of
TCP[17].

The final key design point of PLAN 9 is the
organization of all local and remote resources
into a dynamic private name space. Manipulat-
ing an element’s location within a name space
can be used to configure which services to use,
interpose stackable layers onto service inter-
faces, and create restricted "sandbox" environ-
ments. Under PLAN 9 and INFERNO, the name
space of each process is unique and can be ma-
nipulated by ordinary users through mount and
bind system calls.

Mount operations allow a client to attach new
interfaces and resources which can be provided
by the operating system, a synthetic file server,

or from a remote server. Bind commands al-
low reorganization of the existing name space,
allowing certain services to be bound to well-
known locations. Bind operations can sub-
stitute one resource for another, for example,
binding a remote device over a local one. Bind-
ing can also be used to create stackable layers
by interposing one interface over another. Such
interposer interfaces are particularly useful for
debugging and statistics gathering.

The default mount and bind behavior is to re-
place the mount-point. However, PLAN 9 also
allows multiple directories to be stacked at a
single point in the name space, creating aunion
directory. Within such a directory, each compo-
nent is searched to resolve name lookups. Flags
to the mount and bind operations determine the
position of a particular component in the stack.
A special flag determines whether or not file
creation is allowed within a particular compo-
nent.

By default, processes inherit an initial name
space from their parent, but changes made to
the child’s name space are not reflected in the
parent’s. This allows each process to have a
context-specific name space. The PLAN 9 fork
system call may be called with several flags al-
lowing for the creation of processes with shared
name spaces, blank name spaces, and restricted
name spaces where no new file systems can be
mounted. PLAN 9 also provides library func-
tions (and associated system calls) for creating
a new name space without creating a process
and for constructing a name space based on a
file describing mount sources, destinations, and
options.

3 Applications

There are many areas where the pervasive use
of private dynamic name spaces under PLAN 9

224 • Glen or Glenda

can be applied in similar ways under LINUX .
Many of these are detailed in the foundational
PLAN 9 papers [19, 18] as well as the PLAN

9 manual pages[15]. We will step through a
subset of these applications and provide some
additional potential applications in the LINUX

environment.

Under PLAN 9, one of the more straightfor-
ward uses of dynamic name space is to bind
resources into well-known locations. For ex-
ample, instead of using a PATH environment
variable, various executables are bound into a
single/bin union directory. PLAN 9 clusters
use a single file server providing resources for
multiple architectures. Typical startup profiles
bind the right set of binaries to the/bin direc-
tory. For example, if you logged in on an x86
host, the binaries from/386/bin would be
bound to/bin , while on PPC/power/bin
would be bound over bin. Then the user’s pri-
vate binary directory is bound on top of the sys-
tem binaries. This has a side benefit of search-
ing the various directories in a single lookup
system call versus individually walking to ele-
ments in the path list from the shell.

Another use of stackable binds in PLAN 9
is within a development environment. You
can bind directories (or even individual files)
with your changes over read-only versions of a
larger hierarchy. You can even recursively bind
a blank hierarchy over the read-only hierarchy
to deposit compiled object files and executa-
bles. The PLAN 9 development environment
at Bell Labs has a single source tree which peo-
ple bind their working directories and private
object/executable trees over. Once they are sat-
isfied with their changes, they can push them
from the local versions to the core directories.
Using similar techniques developers can also
keep distinct groups of changes separated with-
out having to maintain copies of the entire tree.

Crafting custom name spaces is also a good
way to provide tighter security controls for ser-

vices. Daemons exporting network services
can be locked into a very restrictive name
space, thus helping to protect system integrity
even if the daemon itself becomes compro-
mised. Similarly, users accessing data from
other domains over mounted file systems don’t
run as much risk of other users gaining access
if they mount the resources in a private name
space. Users can craft custom sandboxes for
untrusted applications to help protect against
potential malicious software and applets.

As mentioned earlier, PLAN 9 combines dy-
namic name space with a remote resource shar-
ing protocol to enable transparent distributed
resource utilization. Remote resources are
bound into the local name space as appropri-
ate and applications run completely oblivious
to what resources they are actually using. A
straightforward example of this is mounting
a networked stereo component’s audio device
from across the room instead of using your
workstation’s sound card before starting an au-
dio jukebox application. A more practical ex-
ample is mounting the external network proto-
col stack of a firewall device before running a
web browser client. Since the external network
protocol stack is only mounted for the particu-
lar browser client session, other services run-
ning in separate sessions with separate name
spaces (and protocol stacks) are safe from ex-
ternal access. The PLAN 9 paradigm of mount-
ing any distributed resource and transparently
replacing local resources (or providing a net-
work resource when a local resource isn’t avail-
able) provides an interesting model for imple-
menting grid and utility based computing.

Another example of this is the PLAN 9 cpu(1)
command which is used to connect from a ter-
minal to a cluster compute node. Note that
this command doesn’t operate like ssh or telnet.
The cpu(1) command will export to the server
the current name space of the process from
which it was executed on the client. Server side

2005 Linux Symposium • 225

scripts take care of binding the correct archi-
tectural binaries for the cpu server over those
of the client terminal. Interactive I/O between
the cpu and the client is actually performed by
the cpu server mounting the client’s keyboard,
mouse, and display devices into the session’s
private name space and binding those resources
over its own. Custom profiles can be used to
limit the resources exported to the cpu server,
or to add resources such as local audio devices
or protocol stacks. It represents a more ele-
gant approach to the problems of grid, cluster,
and utility-based computing providing a mech-
anism for the seamless integration and orga-
nization of local resources with those spread
across the network.

Similar approaches can be provided to virtu-
alization and para-virtualization environments.
At the moment, the LINUX kernel is plagued by
a plethora of “virtual” device drivers supporting
various devices for various virtualized environ-
ments. Separate gateway devices are supported
for Xen[7], VMware[30], IBM Hypervisors[3],
User Moder Linux[9], and others. Additionally,
each of these virtualization engines requires
separate gateways for each class of device. The
PLAN 9 paradigm provides a unified, simple,
and secure method for supporting these vari-
ous virtual architectures and their device, file
system, and communication needs. Dynamic
private name spaces enable a natural environ-
ment for sub-dividing and organizing resources
for partitioned environments. Application file
servers or generic plug-in kernel modules pro-
vide a variety of services including copy-on-
write file systems, copy-on-write devices, mul-
tiplexed network connections, and command
and control structures. IBM Research is cur-
rently investigating usingV9FS together with
private name spaces and application synthetic
file servers to provide just such an approach for
partitioned scale-out clusters executing high-
performance computing applications.

4 Linux Name Spaces

The private name space support added in the
2.5 kernel revolved around the addition of a
CLONE_NEWNSflag to the LINUX clone(2)
system call. The clone(2) system call allows
the creation of new threads which share a cer-
tain amount of context with the parent process.
The flags to clone specify the degree of sharing
which is desired and include the ability to share
file descriptor tables, signal handlers, memory
space, and file system name space. The current
default behavior is for processes and threads
to start with a shared copy of the global name
space.

When theCLONE_NEWNSflag is specified, the
child thread is started with a copy of the name
space hierarchy. Within this thread context,
modifications to either the parent or child’s
name space are not reflected in the other. In
other words, when a new name space is re-
quested during thread creation, file servers
mounted by the child process will not be vis-
ible in the parent’s name space. The converse
is also true. In this way, a thread’s name space
operations can be isolated from the rest of the
system. The use of theCLONE_NEWNSflag is
protected by theCAP_SYS_ADMINcapability,
making its use available only to privileged users
such as root.

L INUX name spaces are currently manipu-
lated by two system calls:mount(2) and
umount(2) . Themount(2) system call at-
taches a file system to a mount-point within
the current name space and theumount(2)
system call detaches it. More recently in the
2.4 kernel series, theMS_BINDflag was added
to allow an existing file or directory subtree
to be visible at other mount-points in the cur-
rent name space. Both system calls are only
valid for users withCAP_SYS_ADMINcapa-
bility, and so are predominately used only by
root. The table of mount points in a thread’s

226 • Glen or Glenda

current name space can be viewed by looking
at the/proc/xxx/mounts file.

Users may be granted the ability to mount
and unmount file systems through the mount(1)
application and certain flags in the fstab(5)
configuration file. This support requires that
the mount application be configured with set-
uid privileges and that the exact mount source
and destination be specified in the fstab(5).
Certain network file systems (such asSMBFS,
CIFS, and V9FS) which have a more user-
centric paradigm circumvent this by having
their own set-uid mount utilities: smbmnt(8),
cifs.mount(8), and 9fs(1). More recently, there
has been increased interest in user-space file
servers such as FILESYSTEM IN USERSPACE

(FUSE)[24] with its own set-uid mount appli-
cation fusermount(8).

The proliferation of these various set-uid ap-
plications that circumvent the kernel protection
mechanisms indicates the need to re-evaluate
the existing restrictions so that a more practi-
cal set of policies can be put in place within
the kernel. Users should be able to mount file
systems when and where appropriate. Private
name spaces seem to be a natural fit for pre-
venting global name space pollution with in-
dividual user mount and bind activities. They
also provide a certain degree of isolation from
user mounted synthetic file systems, providing
an additional degree of protection to system
demons and other users who might otherwise
unwittingly access a malicious user-level file
server.

Private name space support in LINUX is un-
der utilized primarily due to the classification
of name space operations as privileged. It is
further crippled by the lack of stackable name
space semantics and application file servers.
Unlocking applications and environments such
as those described in Section 3 by removing
some of the restrictions enforced by the LINUX

kernel would create a much more elegant and

powerful computing environment. Addition-
ally, providing a more flexible, yet consistent
set of kernel enforced policies would be far su-
perior to the wide range of semantics currently
enforced by file system specific set-uid mount
applications.

5 Barriers and Solutions

PLAN 9 is not LINUX , and LINUX is not PLAN

9. There are significant security model and file
system paradigm differences between the two
systems. Concerns related to these differences
have been broken down into four major cate-
gories: concerns with user name space manipu-
lation, problems with users being able to mount
arbitrary file systems, potential problems with
user file systems, and problems with allowing
users to create their own private name spaces.

5.1 Binding Concerns

The mount(1) command specified with the
-bind option, hereafter referred to as a bind
operation, is an incredibly useful tool even in
a shared global name space. When combined
with the notion of private name spaces, it allows
users and applications to craft custom environ-
ments in which to work. However, the ability to
dynamically bind directories and/or files over
one another creates several security concerns
that revolve around the ability to transparently
replace system configuration and common data
with potentially compromised versions.

PLAN 9 places no restrictions on bind op-
erations. Users are free to bind over any
system directory or file regardless of access
permissions—binding writable layers over oth-
erwise read-only directories can be one of the
more useful operations. However, PLAN 9’s

2005 Linux Symposium • 227

authentication and system configuration mech-
anisms are constructed in such a way as to
not rely on accessing files when running under
user contexts. In other words, authentication
and configuration are system services which are
started at boot (or reside on different servers),
and so aren’t affected by user manipulations of
their private name spaces.

Under LINUX , system services are constructed
differently and there is still heavy reliance on
well-known files which are accessed through-
out user sessions. Examples include such
sensitive files as/etc/passwd and /etc/
fstab .

Similar concerns apply to certain system direc-
tories which multiple users may have write ac-
cess to, such as/tmp or /usr/tmp . If users
are able to bind over these public directories
under the global name space, they could poten-
tially compromise the data of another user who
inadvertently used a bound/tmp instead of the
system/tmp .

These problems can be addressed with a sim-
ple policy of only allowing a user to bind over
a directory they have explicit write access to.
This solves the problem of system configura-
tion files, but doesn’t cover globally writable
spaces such as/usr/tmp . A simple solu-
tion to protecting such shared spaces is to only
allow user initiated binds within private name
spaces. A slightly more complicated form of
protection is based on the assumption that such
public spaces have thesticky bitset in the di-
rectory permissions.

When used within directory permissions, the
sticky bit specifies that files or subdirectories
can only be renamed or deleted by their origi-
nal owner, the owner of the directory, or a priv-
ileged process. This prevents users from delet-
ing or otherwise interfering with each other’s
files in shared public spaces. A simple policy to

extend this protection to user name space ma-
nipulation is to return a permissions error when
a normal user attempts to bind over a directory
in which the sticky bit is set.

While limiting binds to sticky-bit directories is
reasonable enough, it is an unnecessary restric-
tion. The use of private name spaces solves sev-
eral security concerns with user-modifications
to name space, and does so without overly
limiting the user’s ability to mount over these
shared spaces. Another benefit of requiring
user binds to be within a private name space
is that it prevents such binds from polluting the
global system name space.

5.2 Mounting Concerns

Another set of concerns has to do with allowing
users to mount new file systems into a name
space. As discussed previously, this is some-
thing currently accomplished through set-uid
mount applications which check the user’s per-
missions versus particular policies. A more
global policy would give administrators more
consistent control over users and help eliminate
the potential problems caused by the use of set-
uid applications

One of the primary problems with giving users
the ability to mount arbitrary file systems is
the concern that they may mount a file system
with set-uid scripts allowing them to gain ac-
cess to privileged accounts (i.e., root). It is
relatively trivial for a user to construct a file
system image, floppy, or CD-ROM on a per-
sonal machine with set-uid shells. If they were
allowed to mount these on an otherwise se-
cure system, they could instantly compromise
it. The existing mount applications circum-
vent such a vulnerability by providing aNO-
SUID flag which disables interpretation of set-
uid and set-gid permission flags. A similar

228 • Glen or Glenda

mechanism enforced as the default for all user-
mounts would provide a certain level of protec-
tion against such an attack.

Another possible attack vector would be the im-
age being mounted. Most file systems are writ-
ten on the assumption that the backing store is
somewhat secure and reputable. LINUX kernel
community members have expressed concern
that disk images could be constructed specifi-
cally to crash or corrupt certain file systems, so
as to disable or disrupt system activity. This is
particularly difficult to protect against, but not
all file systems are vulnerable to such attacks.
In particular, network file systems are written
defensively to prevent such corruption from af-
fecting the rest of the system. Such defensively
written file systems could be marked with an
additional file system flag marking them as safe
for users to mount.

Each mounted file system uses a certain amount
of system resources. Unlocking the ability to
mount a new file system also unlocks the abil-
ity for the user to abuse the system resources
by mounting new file systems until all sys-
tem memory is expended. This sort of activity
is easily controlled with per-user mount limits
maintained using the kernel resource limit sys-
tem with a policy set by the system administra-
tor.

A slightly different form of resource abuse
mentioned earlier is name space pollution. If
users are granted the ability to mount and bind a
large number of file systems, the resulting name
space pollution could prove to be distracting, if
not damaging to performance. Enforcing a pol-
icy in which users are only able to mount new
file systems within a private name space eas-
ily contains such pollution to the user’s session.
Additionally, the current name space garbage
collection will take care of conveniently un-
mounting file servers and recovering resources
when the session associated with the private
name space closes.

5.3 User File System Concerns

A driving motivation behind providing users
the ability to mount and bind file systems is the
increase in popularity of user-space file servers.
These predominantly synthetic file systems are
enabled through a number of different pack-
ages includingV9FS and more predominantly
FUSE. These packages export VFS interfaces
or equivalent APIs to user space, allowing ap-
plications to act as file servers. Practical uses
for such file servers include the exporting of
archive file contents as mountable name spaces,
adding cryptographic layers, and mapping of
network transports such as ftp to synthetic file
hierarchies.

Since they are implemented as user applica-
tions, these synthetic file servers pose an even
greater danger to system integrity by allow-
ing users to implement arbitrary semantics for
operations. These implementations can easily
provide corrupt data to system calls or block
system call resolution indefinitely, bringing the
entire system to a grinding halt. Because of
this, application file servers have fallen under
harsh criticism from the LINUX kernel commu-
nity. However their many practical uses makes
the engineering of a safe and reliable mecha-
nism allowing their use in a LINUX environ-
ment highly desirable.

Many of the prior solutions mentioned can be
used to limit the damage done by a malicious
user-space file servers. Private name spaces can
protect system daemons and other users from
stumbling into a synthetic file system trap. Re-
strictions preventing set-uid and set-gid inter-
pretation within user mounts can prevent mali-
cious users from using application file servers
to gain access to privileged accounts or infor-
mation.

A different sort of permissions problem is also
introduced by application file servers. Typi-

2005 Linux Symposium • 229

cally, the file servers are started by a certain
user and information within the file system is
accessed under that user’s authority, potentially
in a different authentication domain. For ex-
ample, if a user mounts a ftpfs or an sshfs by
logging into a remote server domain, they are
potentially exposing the data from that domain
to other users and administrators on the local
domain. As this is undesirable, it is important
that other users (besides the initiator) do not
obtain direct access to mounted file systems.
While there are several ways of approaching
this (including overloaded permissions checks
that deny access to anyone but the mounter),
private name spaces seem to handle this nicely
without changing other system semantics.

5.4 Private Name Space Concerns

While they are limited, several barriers do exist
to user creation and use of private name spaces.
One objection to allowing users to create their
own private name spaces is the existence of a
vulnerability in thechroot(1) infrastructure
in the presence of such private name spaces.
The chroot(1) command is used to estab-
lish a new root for a particular user’s name
space. However, if a private name space is cre-
ated with theCLONE_NSflag, the new thread is
allowed to traverse out of the chroot “jail” sim-
ply using the dot-dot traversal. This appears to
be more of a bug than a feature and should be
easy to defend against by never allowing a user
to traverse out of the root of their current name
space.

The same resource concerns that apply to user
mounts also apply to private name spaces.
However, since the user can have no more pri-
vate name spaces than processes, there is a pre-
existing constraint. Additionally, due to the
copy semantics present in the existing LINUX

name space infrastructure, the user will be

charged for every mount he inherits when cre-
ating a private name space. If these two limita-
tions are deemed insufficient, an additional per-
user limit can be established for private name
spaces.

More prevalent among these perceived prob-
lems is the change in basic paradigm. No
longer can the same file system environment
be expected from every session on a particu-
lar system. In fact, depending on the extent to
which private name spaces are used there may
even be different file system views in different
windows on the same session. The plurality of
name spaces across processes and sessions pro-
vides a great deal of flexibility in construction
of private environments, but is quite a departure
from expected behavior.

The ability to maintain a certain degree of tra-
ditional semantics is desirable during a transi-
tion in paradigms. Further, having to mount
core resources for each session is rather te-
dious and undesirable. To a certain extent this
can be mitigated by more advanced inheritance
techniques within the private name spaces—
allowing changes in parents to be propagated
to children but not vice versa. This is further
discussed in the Related Work section regard-
ing Alexander Viro’s shared subtrees proposal.

Another possibility is a per-session name space
created when a user logs into the system. This
provides a single name space for that session
separate from the global name space insulat-
ing user modifications from the unsuspecting.
However, in simpler embodiments it doesn’t
provide the per-user name space semantics
some desire (ie. the name space wouldn’t ac-
tually bridge two different SSH sessions). One
possibility here is to tightly bind creation and
adoption of the per-user name space to the lo-
gin process (potentially as part of the PAM in-
frastructure). Another possibility would be to
use the name space description present in the

230 • Glen or Glenda

/proc/xxxx/mounts synthetic file to cre-
ate a duplicate name space in different process
groups. This would work well for network file
systems, binds, andV9FS but may not work
well for certain user file servers such as FUSE.

V9FS enables multi-session user file servers
without problems as it separates mount-point
from the file system semantics. In other words,
when you run aV9FS application file server, it
creates a mount point which could be used by
several different clients to mount the resulting
file system. Besides giving the ability to share
the resulting file system between user sessions,
this technique potentially allows other users to
access the mount-point. User credentials are
part of theV9FSmount protocol, so each user is
authenticated on the file system based on their
own credentials instead of the credentials of the
user who initially started the file server applica-
tion.

6 Related Work

There are several historical as well as ongoing
attempts to provide more dynamic name space
operations in LINUX and/or open up those op-
erations to end-users and not just privileged ad-
ministrators. There are also several outstanding
request-for-comments on extensions to the ex-
isting name space support.

The originalV9FS project had tried to integrate
private name space support into the file sys-
tem and remote-resource sharing [12]. While
this worked in practice, Alexander Viro’s re-
lease of private name space support within the
L INUX kernel suspended work on theV9FSpri-
vate name space implementation.

As a follow-up to Viro’s initial name space sup-
port, he released a shared sub-tree request-for-
comments[29] detailing specific policies for

propagating name space changes from parent to
children. This provides a more convenient form
of inheritance allowing name space changes in
parents to also take effect in children with pri-
vate name spaces.

Miklos Szeredi, the project leader of FUSE has
proposed several patches related to opening up
and expanding name space support. Among
these were an altered permission semantics[25]
to prevent users other than the mounting user
from accessing FUSE mounts. After this met
from some resistance from the LINUX ker-
nel community, Miklos proposed an invisible
mount patch[26] which tries to protect other
users from potentially malicious mounts by
hiding them from other users without the use
of private name spaces. A separate patch[27]
attempted to unlock mount privileges by en-
forcing a static policy on user-mounts includ-
ing some of the protections we have described
previously (only writable directories can be
mounted over, only safe file systems can be
mounted, and set-uid/set-gid permissions are
disabled). To date, none of these patches have
been incorporated into the mainline, but most
of these events are happening concurrently with
the writing and revision of this paper.

One of the responses to the FUSE patches was
the assertion that the job may have been bet-
ter done in user-space by an extended form of
the mount(1) application. The advantage to us-
ing a user-space policy solution is a much wider
and dynamic set of policies than would be de-
sirable to incorporate directly into the kernel.
Such an application would have set-uid style
permissions, which several in the community
have criticized as undesirable. An alternative
to this approach would be to use up-calls from
the kernel to a user-space policy daemon.

Another outcome of the FUSE discussion was
a patch[6] providing an unshare system call
which could be used to create private name
spaces in a pre-existing thread. In other words,

2005 Linux Symposium • 231

this would allow a thread to request a private
name space without having been spawned with
one, making the creation of private name spaces
more accessible. The unshare patch also pro-
vides similar facilities for controlling other re-
sources originally only available via flags dur-
ing the clone system call.

The file system translator project (FIST)[33]
takes a different approach, offering users the
ability to add incremental features to existing
file systems. It provides a set of templates
and a toolkit which allow for relatively easy
creation of kernel file system modules which
sit atop pre-existing conventional file systems.
The resulting modules have to be installed and
mounted by a privileged user. Instead of re-
lying on set-uid helper applications, FIST al-
lows use of “private” instances of the file sys-
tem through a special ioctl attach command and
per-user sub-hierarchies. Several example file
system layers are provided with the standard
FIST distribution including cryptographic lay-
ers and access control list enforcement layers.

One of the more interesting FIST file system
layers isUNIONFS[32][31]. It provides a fan-
out file system which goes beyond the rel-
atively simple semantics of PLAN 9’s union
directories by providing additional flexibility
and granular control of specific components.
There is also support for rudimentary sandbox-
ing without the use of private name spaces.

Among the additional features ofUNIONFS is
recursive unification allowing deep binds of di-
rectories. In PLAN 9 and the existing LINUX

name space implementations, a bind only af-
fects a single file or directory. The recursive
unification feature of UNIONFS allows entire
hierarchies to be bound. This is particularly
useful in the context of copy-on-write file sys-
tem semantics. While such functionality can
be provided with scripts under PLAN 9 and
L INUX , theUNIONFS approach would seem to
provide a more efficient and scalable solution.

7 Conclusions

Opening up name space operations to com-
mon users will enable better working environ-
ments and transparent cluster computing. Users
should be granted the permission to establish
private name spaces through flags provided to
the clone(2) system call or using the newly
proposed unshare system call. Once isolated
in a private name space, normal users should
be granted the ability to mount new resources
and organize existing resources in ways they
see fit. A simple set of system-wide restric-
tions on these activities will prevent malicious
users from obtaining privileged access, disrupt-
ing system operation, or compromising pro-
tected data. Adding stackable file name spaces
into the kernel file system interfaces would fur-
ther extend these benefits.

8 Acknowledgements

Between the time this paper was proposed and
published, much debate has occurred on the
L INUX kernel mailing list and the LINUX file
systems developers mailing list. I’ve incorpo-
rated a great deal of that discussion and com-
mentary into this document and many of the
ideas represented here come from that commu-
nity.

I’d like to thank Alexander Viro for laying the
ground work by adding the initial private name
space support to LINUX . I’d also like to thank
Miklos Szeredi and the FUSE team for push-
ing the ideas of unprivileged mounts and user
application file servers.

Support for this paper was provided in part
by the Defense Advance Research Projects
Agency under Contract No. NBCH30390004.

232 • Glen or Glenda

References

[1] F. J. Corbato and V.A. Vyssotsky.
Introduction and overview of the multics
system.Joint Computer Conference,
1965.

[2] Jonathan Corbet. Kernel development.
LWN.NET Weekly News, 0301, March
2001.

[3] IBM Corp. Virtualization engine.
http://www.ibm.com/ .

[4] Russ Cox. Plan 9 from user space.
http://swtch.com/plan9port .

[5] R.C. Daley and P.G. Neumann. A
general-purpose file system for
secondary storage.Fall Joint Computer
Conference, 1965.

[6] Janak Desai. new system call, unshare.
EMAIL, May 2005.
http://marc.theaimsgroup.
com/?l=linux-fsdevel&m=
111573064706562&w=2 .

[7] B. Dragovic, K. Fraser, S. Hand,
T. Harris, A. Ho, I. Pratt, A. Warfield,
P. Barham, and R. Neugebauer. Xen and
the art of virtualization. InProceedings
of the ACM Symposium on Operating
Systems Principles, October 2003.

[8] E. Van Hensbergen and R. Minnich.
Grave robbers from outer space: Using
9p200 under linux. InProceedings of
Freenix Annual Conference, pages
83–94, 2005.

[9] Hans jorg H Oxer, Hans jorg Hoxer,
Kerstin Buchacker, and Volkmar Sieh.
Implementing a user mode linux with
minimal changes from original kernel.
unknown, 2002.

[10] T.J. Killian. Processes as files. In
USENIX Summer Conf. Proceedings, Salt
Lake City, UT, June 1984.

[11] Robert Love.Linux Kernel Development.
Sam’s Publishing, 800 E. 96th Street,
Indianapolis, Indiana 46240, 2nd edition,
August 2003.

[12] Ron Minnich. V9fs: A private name
space system for unix and its uses for
distributed and cluster computing. In
Conference Francaise sur les Systemes,
June 1999.

[13] C. Partridge and r. Hinden. Reliable data
protocol. Internet RFC/STD/FYI/BCP
Archives, April 1990.

[14] R. Pike and D. M. Ritchie. The styx
architecture for distributed systems.Bell
Labs Technical journal, 4(2):146–152,
April-June 1999.

[15] Rob Pike et al.Plan 9 Programmer’s
Manual - Manual Pages. Vita Nuova
Holdings Limited, 3rd edition, 2000.

[16] J. Postel. Transmission control protocol
darpa internet program protocol
specification. Internet
RFC/STD/FYI/BCP Archives,
September 1981.

[17] D. Presotto and P. Winterbottom.The IL
Protocol, volume 2, pages 277–282.
AT&T ell Laboratories, Murray Hill, NJ,
1995.

[18] D. Presotto R. Pike et al. The use of name
spaces in plan 9.Operating Systems
Review, 27(2):72–76, April 1993.

[19] K. Thompson R. Pike et al. Plan 9 from
bell labs.Computing Systems, Vol
8(3):221–254, Summer 1995.

2005 Linux Symposium • 233

[20] R. Pike S. Dorward et al. The inferno
operating system.Bell Labs Technical
Journal, 2(1):5–18, Winter 1997.

[21] J. H. Saltzer.Lecture Notes in computer
Science, 60, Operating systems - An
Advanced Course, chapter 3.A.: Naming
and Binding of Objects, pages 99–208.
Springer-Verlag, 1978.

[22] Peter H. Salus.The Daemon, the GNU,
and the Penguin, chapter 2 & 3: UNIX.
Groklaw, 2005.

[23] W. Simpson. The point-to-point protocol
(ppp) for the transmission of
multi-protocol datagrams over
point-to-point links. Internet
RFC/STD/FYI/BCP Archives, May
1992.

[24] Miklos Szeredi. Filesystem in userspace.
http://fuse.sourceforge.net .

[25] Miklos Szeredi. Fuse permission modell.
EMAIL, April 2005.
http://marc.theaimsgroup.
com/?l=linux-fsdevel&m=
111323066112311&w=2 .

[26] Miklos Szeredi. Private mounts. EMAIL,
April 2005.
http://marc.theaimsgroup.
com/?l=linux-fsdevel&m=
111437333932219&w=2 .

[27] Miklos Szeredi. Unpriviledged
mount/umount. EMAIL, May 2005.
http://marc.theaimsgroup.
com/?l=linux-fsdevel&m=
111513156417879&w=2 .

[28] Alexander Viro. Re: File system
enhancement handled above the file
system level. Email, November 2000.

[29] Alexander Viro. Shared subtrees.
EMAIL, January 2005.

http://marc.theaimsgroup.
com/?l=linux-fsdevel&m=
110565591630267&w=2 .

[30] VMware. Vmware home page.
http://www.vmware.com .

[31] C. P. Wright et al. Versatility and unix
semantics in a fan-out unification file
system. Technical Report FSL-04-01B,
Computer Science Department, Stony
Brook University, October 2004.http:
//www.fsl.cs.sunysb.edu/
docs/unionfs-tr/unionfs.pdf .

[32] C.P. Wright and E. Zadok. Unionfs:
Bringing file systems together.Linux
Journal, December 2004.

[33] E. Zadok. Writing stackable file systems.
Linux Journal, pages 22–25, May 2003.

234 • Glen or Glenda

LINUX R© Virtualization on Virtual IronTM VFe

Alex Vasilevsky, David Lively, Steve Ofsthun
Virtual Iron Software, Inc.

{alex,dflively,sofsthun}@virtualiron.com

Abstract

After years of research, the goal of seamlessly
migrating applications from shared memory
multi-processors to a cluster-based computing
environment continues to be a challenge. The
main barrier to adoption of cluster-based com-
puting has been the need to make applications
cluster-aware. In trying to solve this problem
two approaches have emerged. One consists
of the use of middleware tools such as MPI,
Globus and others. These are used to rework
applications to run on a cluster. Another ap-
proach is to form a pseudo single system image
environment by clustering multiple operating
system kernels[Pfister-98]. Examples of these
are Locus, Tandem NonStop Kernel, OpenSSI,
and openMosix.

However, both approaches fall far short of their
mark. Middleware level clustering tools re-
quire applications to be reworked to run a clus-
ter. Due to this, only a handful of highly spe-
cialized applications sometimes referred to as
embarrassingly parallel —have been
made cluster-aware. Of the very few commer-
cial cluster-aware applications, the best known
is OracleR©Database Real Application Cluster-
ing. OS kernel clustering approaches present
other difficulties. These arise from the sheer
complexity of supporting a consistent, single
system image to be seen on every system call
made by every program running on the sys-
tem: applications, tools, etc; to making ex-

isting applications that use SystemV shared-
memory constructs to run transparently, with-
out any modifications, on this pseudo single
system.

In 2003, Virtual Iron Software began to investi-
gate the potential of applying virtual machine
monitors (VMM) to overcome difficulties in
programming and using tightly-coupled clus-
ters of servers. The VMM, pioneered by IBM
in the 1960s, is a software-abstraction layer that
partitions hardware into one or more virtual
machines[Goldberg-74], and shares the under-
lying physical resource among multiple appli-
cations and operating systems.

The result of our efforts is Virtual Iron VFe,
a purpose-built clustered virtual machine mon-
itor technology, which makes it possible to
transparently run any application, without mod-
ification, on a tightly-coupled cluster of com-
puters. The Virtual Iron VFe software elegantly
abstracts the underlying cluster of computers
with a set of Clustered Virtual Machine Moni-
tors (CVMM). Like other virtual machine mon-
itors, the CVMM layer takes complete con-
trol of the underlying hardware and creates vir-
tual machines, which behave like independent
physical machines running their own operating
systems in isolation. In contrast to other virtual
machine monitors, the VFe software transpar-
ently creates a shared memory multi-processor
out of a collection of tightly-coupled servers.

Within this system, each operating system has

• 235 •

236 • LINUX R© Virtualization on Virtual IronTM VFe

the illusion of running on a single multi-
processor machine withN CPUs on top of
M physical servers interconnected by high
throughput, low latency networks.

Using a cluster of VMMs as the abstraction
layer greatly simplifies the utilization and pro-
grammability of distributed resources. We
found that the VFe software can run any ap-
plication without modification. Moreover, the
software supports demanding workloads that
require dynamic scaling, accomplishing this in
a manner that is completely transparent to OSs
and their applications.

In this paper we’ll describe Linux virtualiza-
tion on Virtual Iron VFe, the virtualization ca-
pabilities of the Virtual Iron Clustered VMM
technology, as well as the changes made to the
LINUX kernel to take advantage of this new
virtualization technology.

1 Introduction

The CVMM creates virtual shared memory
multi-processor servers (Virtual Servers) from
networks of tightly-coupled independent phys-
ical servers (Nodes). Each of these virtual
servers presents an architecture (the Virtual
Iron Machine Architecture, or ViMA) that
shares the user mode instruction set with the
underlying hardware architecture, but replaces
various kernel mode mechanisms with calls to
the CVMM, necessitating a port of the guest
operating system (aka guest OS) kernel in-
tended to run on the virtual multi-processor.

The Virtual Iron Machine Architecture ex-
tends existing hardware architectures, virtualiz-
ing access to various low-level processor, mem-
ory and I/O resources. The software incorpo-
rates a type of Hybrid Virtual Machine Mon-
itor [Robin-00], executing non-privileged in-
structions (a subset of the hardware platform’s

Instruction Set Architecture) natively in hard-
ware, but replacing the ISA’s privileged instruc-
tions with a set of (sys)calls that provide the
missing functionality on the virtual server. Be-
cause the virtual server does not support the full
hardware ISA, it’s not a virtual instance of the
underlying hardware architecture, but rather a
virtual instance of the Virtual Iron Machine Ar-
chitecture (aka Virtual Hardware), having the
following crucial properties:

• The virtual hardware acts like a multi-
processor with shared memory.

• Applications can run natively “as is,”
transparently using resources (memory,
CPU and I/O) from all physical servers
comprising the virtual multi-processor as
needed.

• Virtual servers are isolated from one an-
other, even when sharing underlying hard-
ware. At a minimum, this means a soft-
ware failure in one virtual server does
not affect1 the operation of other virtual
servers. We also prevent one virtual server
from seeing the internal state (including
deallocated memory contents) of another.
This property is preserved even in the
presence of a maliciously exploitive (or
randomly corrupted) OS kernel.

Guaranteeing the last two properties si-
multaneously requires a hardware plat-
form with the following key architectural
features[Goldberg-72]:

• At least two modes of operation (aka privi-
lege levels, or rings) (but three is better for
performance reasons)

1Unreasonably, that is. Some performance degrada-
tion can be expected for virtual servers sharing a CPU,
for example. But there should be no way for a misbe-
having virtual server to starve other virtual servers of a
shared resource.

2005 Linux Symposium • 237

• A method for non-privileged programs to
call privileged system routines

• A memory relocation or protection mech-
anism

• Asynchronous interrupts to allow the I/O
system to communicate with the CPU

Like most modern processor architectures, the
Intel IA-32 architecture has all of these fea-
tures. Only the Virtual Iron CVMM is allowed
to run in kernel mode (privilege level 0) on
the real hardware. Virtual server isolation im-
plies the guest OS cannot have uncontrolled ac-
cess to any hardware features (such as the CPU
control registers) nor to certain low-level data
structures (such as the paging directories/tables
and interrupt vectors).

Since the IA-32 has four privilege levels, the
guest OS kernel can run at a level more highly
privileged than user mode (privilege level 3),
though it may not run in kernel mode (privi-
lege level 0, reserved for the CVMM). So the
LINUX kernel runs in supervisor mode (privi-
lege level 1) in order to take advantage of the
IA-32’s memory protection hardware to keep
applications from accessing pages meant only
for the kernel.

2 System Design

In the next few sections we describe the basic
design of our system. First, we mention the
features of the virtualization that our CVMM
provides. Next, we introduce the architecture
of our system and how virtual resources are
mapped to physical resources. And lastly we
describe the LINUX port to this new virtual
machine architecture.

2.1 Virtual Machine Features

The CVMM creates an illusion of a shared
memory virtual multi-processor. Key features
of our virtualization are summarized below:

• The CVMM supports an IntelR© ISA
architecture of modern Intel processors
(such as Intel XEONTM).

• Individual VMMs within the CVMM are
not implemented as a traditional virtual
machine monitor, where a complete pro-
cessor ISA is exposed to the guest op-
erating system; instead a set of data
structures and APIs abstract the underly-
ing physical resources and expose a “vir-
tual processor” architecture with a con-
ceptual ISA to the guest operating sys-
tem. The instruction set used by a guest
OS is similar, but not identical to that
of the underlying hardware. This results
in a greatly improved performance, how-
ever it does require modifications to the
guest operating system. This approach
to processor virtualization is known in
the industry as hybrid virtualization or as
paravirtualization[Whitaker-00].

• The CVMM supports multiple virtual ma-
chines running concurrently in complete
isolation. In the Virtual Iron architecture,
the CVMM provides a distributed hard-
ware sharing layer via the virtual multi-
processor machine. This virtual multi-
processor machine provides access to the
basic I/O, memory and processor abstrac-
tions. A request to access or manipulate
these items is handled via the ViMA APIs
presented by the CVMM.

• Being a clustered system Virtual Iron VFe
providesdynamic resource management,
such as node eviction or addition visible

238 • LINUX R© Virtualization on Virtual IronTM VFe

Figure 1: A Cluster of VMMs supporting a four
processor VM.

to the Virtual Machine as hot-plug proces-
sor(s), memory and device removal or ad-
dition respectively.

We currently support LINUX as the guest OS;
however the underlying architecture of the Vir-
tual Iron VFe is applicable to other operating
systems.

2.2 Architecture

This section outlines the architecture of Vir-
tual Iron VFe systems. We start with differing
views of the system to introduce and reinforce
the basic concepts and building blocks. The
Virtual Iron VFe system is an aggregation of
component systems that provide scalable capa-
bilities as well as unified system management
and reconfiguration. Virtual Iron VFe software
creates a shared memory multi-processor sys-
tem out of component systems which then runs
a single OS image.

2.2.1 Building Blocks

Each system is comprised of elementary build-
ing blocks: processors, memory, intercon-

nect, high-speed I/O and software. The ba-
sic hardware components providing processors
and memory are called nodes. Nodes are likely
to be packages of several components such as
processors, memory, and I/O controllers. All
I/O in the system is performed over intercon-
nect fabric, fibre channel, or networking con-
trollers. All elements of the system present a
shared memory multiprocessor to the end appli-
cations. This means a unified view of memory,
processors and I/O. This level of abstraction is
provided by the CVMM managing the proces-
sors, memory and the interconnect fabric.

2.2.2 Server View

Starting from the top, there is a virtual server
running guest operating system, such as RHAS,
SUSE, etc. The guest operating system
presents the expected multi-threaded, POSIX
server instance running multiple processes and
threads. Each of these threads utilizes resources
such as processor time, memory and I/O. The
virtual server is configured as a shared mem-
ory multi-processor. This results in a number
of processors on which the guest operating sys-
tem may schedule processes and threads. There
is a unified view of devices, memory, file sys-
tems, buffer caches and other operating system
items and abstractions.

2.2.3 System View

The Building Blocks View differs from the pre-
viously discussed Server View in significant
ways. One is a collection of unshared com-
ponents. The other is a more typical, unified,
shared memory multi-processor system. This
needs to be reconciled. The approach that we
use is to have the CVMM that presents Virtual
Processors (VPs) with unified logical memory
to the guest OS, and maps these VPs onto the

2005 Linux Symposium • 239

physical processors and logical memory onto
distributed physical memory. A large portion
of the instruction set is executed by the ma-
chine’s physical processor without CVMM in-
tervention, the resource control and manage-
ment is done via ViMA API calls into the
CVMM. This is sufficient to create a new ma-
chine model/architecture upon which we run
the virtual server. A virtual server is a collec-
tion of virtual processors, memory and virtual
I/O devices. The guest OS runs on the virtual
server and the CVMM manages the mapping of
VPs onto the physical processor set, which can
change as the CVMM modifies the available re-
sources.

Nodes are bound into sets known as Virtual
Computers (VC). Each virtual computer must
contain at least one node. The virtual com-
puters are dynamic in that resources may join
and leave a virtual computer without any sys-
tem interruption. Over a longer time frame,
virtual computers may be created, destroyed
and reconfigured as needed. Each virtual com-
puter may support multiple virtual servers, each
running a single instance of an operating sys-
tem. There are several restrictions on virtual
servers, virtual computers, and nodes. Each vir-
tual server runs on a single virtual computer,
and may not cross virtual computers. An indi-
vidual node is mapped into only a single virtual
computer.

The virtual server guest operating system,
LINUX for instance, is ported to run on a
new virtual hardware architecture (more details
on this further in the document). This new
virtual hardware architecture is presented by
the CVMM. From the operating system point
of view, it is running on a shared memory
multi-processor system. The virtual hardware
still performs the computational jobs that it al-
ways has, including context switching between
threads.

In summary, the guest operating system runs

on a shared memory multi-processor system of
new design. The hardware is managed by the
CVMM that maps physical resources to virtual
resources.

3 Implementation of the CVMM

In this section we describe how the CVMM vir-
tualizes processors, memory and I/O devices.

3.1 Cluster of VMMs (CVMM)

The CVMM is the software that handles all of
the mapping of resources from the physical to
virtual. Each node within a CVMM cluster
runs an instance of the VMM, and these in-
stances form a shared-resource cluster that pro-
vides the services and architecture to support
the virtual computers and appear as a single
shared memory multi-processor system. The
resources managed by the CVMM include:

• Nodes

• Processors

• Memory, local and remote

• I/O (devices, buses, interconnects, etc)

• Interrupts, Exceptions and Traps

• Inter-node communication

Each collection of communicating and co-
operating VMMs forms a virtual computer.
There is a one-to-one mapping of virtual com-
puter to the cluster of VMMs. The CVMM
is re-entrant and responsible for the scheduling
and management of all physical resources. It is
as thin a layer as possible, with a small budget
for the overhead as compared to a bare LINUX
system.

240 • LINUX R© Virtualization on Virtual IronTM VFe

Figure 2: Virtual Iron paravirtualization (Intel
IA-32).

3.2 Virtualizing Processors

Each of the physical processors is directly man-
aged by the CVMM and only by the CVMM.
A physical processor is assigned to a single vir-
tual computer, and may be used for any of the
virtual servers that run on that virtual computer.
As we stated before, the method of virtualizing
the processors that is used in the Virtual Iron
VFe isparavirtualization. The diagram inFig-
ure 2 illustrates our implementation of the par-
avirtualization concept on the IA-32 platform:

In this scheme, the vast majority of the vir-
tual processor’s instructions are executed by the
real processor without any intervention from
the CVMM, and certain privileged instructions
used by the guest OS are rewritten to use the
ViMA APIs. As with other VMMs, we take
advantage of underlying memory protection in
the Intel architecture. The CVMM runs in the
privilege ring-0, the guest OS runs in ring-1 and
the user applications run in ring-3. The CVMM
is the only entity that runs in ring-0 of the pro-
cessor and it is responsible for managing all op-
erations of the processor, such as booting, ini-
tialization, memory, exceptions, and so forth.

Virtual processors are mapped to physical pro-

cessors by the CVMM. There are a number of
rules that are followed in performing this map-
ping:

• Virtual processors are scheduled concur-
rently, and there are never more virtual
processors than physical processors within
a single virtual server.

• The CVMM maintains the mapping of vir-
tual processors to physical processors.

• Physical processors may belong to a vir-
tual computer, but are not required to be
used or be active for any particular virtual
server.

These rules lead to a number of conclusions.
First, any number of physical processors may
be assigned to a virtual computer. However, at
any given moment, the number of active phys-
ical processors is the same as the number of
virtual processors in the current virtual server.
Moreover, the number of active virtual proces-
sors in a virtual server is less than or equal
to the number of physical processors available.
For instance, if a node is removed from a vir-
tual computer, it may be necessary for a vir-
tual server on that virtual computer to reduce
the number of active virtual processors.

3.3 Interrupts, Traps and Exceptions

The CVMM is set-up to handle all inter-
rupts, traps and exceptions. Synchronous traps
and exceptions are mapped directly back into
the running virtual processor. Asynchronous
events, such as interrupts, have additional logic
such that they can be mapped back to the ap-
propriate virtual server and virtual processor.

2005 Linux Symposium • 241

3.4 Virtualizing Memory

Memory, like processors, is a resource that is
shared across a virtual computer and used by
the virtual servers. Shared memory imple-
mented within a distributed system naturally
results in non-uniform memory access times.
The CVMM is responsible for memory man-
agement, initialization, allocation and sharing.
Virtual servers are not allowed direct access to
the page tables. However, these tables need
to be managed to accommodate a number of
goals:

• First, they need to be able to specifically
locate an individual page which may re-
side in any one of the physical nodes

• They must be able to allow several levels
of cost. That is, the virtual server should
be able to manipulate page tables at the
lowest possible cost in most instances to
avoid round-trips through the CVMM.

• Isolation is a requirement. No virtual
server should be able to affect any other
virtual server. If several virtual servers
are running on the same virtual computer,
then any failures, either deliberate or acci-
dental, should not impact the other virtual
servers.

The illusion of a shared memory multi-
processor system is maintained in the Virtual
Iron architecture by the sharing of the memory
resident in all of the nodes in a virtual com-
puter. As various processors need access to
pages of memory, that memory needs to be res-
ident and available for local access. As pro-
cesses, or the kernel, require access to pages,
the CVMM is responsible for insuring the rel-
evant pages are accessible. This may involve
moving pages or differences between the mod-
ified pages.

3.5 Virtualizing I/O Devices

Just as with the other resources, the CVMM
manages all I/O devices. No direct access by
a virtual server is allowed to any I/O device,
control register or interrupt. The ViMA pro-
vides APIs to access the I/O devices. The vir-
tual server uses these APIs to access and con-
trol all I/O devices.

All I/O for the virtual computer is done via
interfaces and mechanisms that can be shared
across all the nodes. This requires a set of
drivers within the CVMM that accommodate
this, as well as a proper abstraction at the level
of a virtual server to access the Fibre Channel
and Ethernet.

With the previous comments in mind, the job
of the CVMM is to present a virtualized I/O in-
terface between the virtual computer physical
I/O devices and the virtual servers. This inter-
face provides for both sharing and isolation be-
tween virtual servers. It follows the same style
and paradigm of the other resources managed
by the CVMM.

4 LINUX Kernel Port

This section describes our port of the LINUX
2.6 kernel to the IA-32 implementation of the
Virtual Iron Machine Architecture. It doesn’t
specify the architecture in detail, but rather de-
scribes our general approach and important pit-
falls and optimizations, many of which can ap-
ply to other architectures real and virtual. First
we’ll look at the essential porting work required
to make the kernel run correctly, then at the
more substantial work to make it run well, and
finally at the (substantial) work required to sup-
port dynamic reconfiguration changes.

242 • LINUX R© Virtualization on Virtual IronTM VFe

4.1 Basic Port

We started with an early 2.6 LINUX kernel, de-
riving our architecture port from the i386 code
base. The current release as of this writing
is based on the 2.6.9 LINUX kernel. As the
burden of maintaining a derived architecture is
substantial, we are naturally interested in co-
operating with various recent efforts to refac-
tor and generalize support for derived (e.g.,
x86_64) and virtualized (e.g., Xen) architec-
tures.

The ViMA interface is mostly implemented via
soft interrupts (like syscalls), though memory-
mapped interfaces are used in some special
cases where performance is crucial. The
data structures used to communicate with the
CVMM (e.g., descriptor tables, page tables) are
close, if not identical, to their IA-32 equiva-
lents.

The basic port required only a single modifica-
tion to common code, to allow architectures to
overridealloc_pgd()and free_pgd(). Though
as we’ll see later, optimizing performance and
adding more dynamic reconfiguration support
required more common code modifications.

The virtual server configuration is always avail-
able to the LINUX kernel. As mentioned ear-
lier, it exposes the topology of the underlying
hardware: a cluster ofnodes, each providing
memory and (optionally) CPUs. The configura-
tion also describes the virtual devices available
to the server. Reading virtual server configu-
ration replaces the usual boot-time BIOS and
ACPI table parsing and PCI bus scanning.

4.2 Memory Management

The following terms are used throughout this
section to describe interactions between the

Page Type Meaning
Physical page A local memory instance

(copy) of a ViMA logical
page. The page contents
are of interest to the own-
ing virtual server.

Physical page
frame

A local memory con-
tainer, denoted by a
specific physical address,
managed by the CVMM.

Logical page A virtual server page,
the contents of which are
managed by the guest op-
erating system.The phys-
ical location of a logical
page is not fixed, nor even
exposed to the guest oper-
ating system.

Logical page
frame

A logical memory con-
tainer, denoted by a spe-
cific logical address, man-
aged by the guest operat-
ing system.

Replicated page A logical page may be
replicated on multiple
nodes as long as the
contents are quaranteed
to be identical. Writing to
a replicated logical page
will invalidate all other
copies of the page.

Table 1: Linux Memory Management in Virtual
Iron VFe

LINUX guest operating system and the Virtual
Iron CVMM.

Isolating a virtual server from the CVMM and
other virtual servers sharing the same hardware
requires that memory management be carefully
controlled by the CVMM. Virtual servers can-
not see or modify each other’s memory under
any circumstances. Even the contents of freed
or “borrowed” physical pages are never visible
to any other virtual server.

2005 Linux Symposium • 243

Accomplishing this isolation requires explicit
mechanisms within the CVMM. For example,
CPU control register cr3 points to the top-level
page directory used by the CPU’s paging unit.
A malicious guest OS kernel could try to point
this to a fake page directory structure map-
ping pages belonging to other virtual servers
into its own virtual address space. To prevent
this,only the CVMM can create and modify the
page directories / tables used by the hardware,
and it must ensure that cr3 is set only to a top-
level page directory that it created for the ap-
propriate virtual server.

On the other hand, the performance of memory
management is also of crucial importance. Tak-
ing a performance hit on every memory access
is not acceptable; thecommon case(in which
the desired logical page is in local memory,
mapped, and accessible)suffers no virtualiza-
tion overhead.

The MMU interface under ViMA 32-bit archi-
tecture is mostly the same as that of the IA-32
in PAE mode, with three-level page tables of
64-bit entries. A few differences exist, mostly
that ours map 32-bit virtual addresses to 40-
bit logical addresses, and that we use software
dirty and access bits since these aren’t set by
the CVMM.

The page tables themselves live in logical
memory, which can be distributed around the
system. To reduce possibly-remote page table
accesses during page faults, the CVMM im-
plements fairly aggressive software TLB. Un-
like the x86 TLB, the CVMM supports Ad-
dress Space Number tags, used to differenti-
ate and allow selective flushing of translations
from different page tables. The CVMM TLB is
naturally kept coherent within a node, so a lazy
flushing scheme is particularly useful since (as
we’ll see later) we try to minimize cross-node
process migration.

4.3 Virtual Address Space

The standard 32-bit LINUX kernel reserves the
last quarter (gigabyte) of virtual addresses for
its own purposes. The bottom three quarters of
virtual addresses makes up the standard process
(user-mode) address space.

Much efficiency is to be gained by having the
CVMM share its virtual address space with the
guest OS. So the LINUX kernel is mapped into
the top of the CVMM’s user-space, somewhat
reducing the virtual address space available to
LINUX users. The amount of virtual address
space required by the CVMM depends on a
variety of factors, including requirements of
drivers for the real hardware underneath. This
overhead becomes negligible on 64-bit archi-
tectures.

4.4 Booting

As discussed earlier, a guest OS kernel runs
at privilege level 1 in the IA-32 ViMA. We
first replaced the privileged instructions in the
arch code by syscalls or other communication
with the CVMM. Kernel execution starts when
the CVMM is told to start a virtual server and
pointed at the kernel. The boot virtual proces-
sor then starts executing the boot code. VPs are
always running in protected mode with paging
enabled, initially using anull page table sig-
nifying direct (logical = virtual) mapping. So
the early boot code is fairly trivial, just estab-
lishing a stack pointer and setting up the ini-
tial kernel page tables before dispatching to C
code. Boot code for secondary CPUs is even
more trivial since there are no page tables to
build.

4.5 Interrupts and Exceptions

The LINUX kernel registers handlers for inter-
rupts with the CVMM via a virtualized Inter-

244 • LINUX R© Virtualization on Virtual IronTM VFe

rupt Descriptor Table. Likewise, the CVMM
provides a virtualized mechanism for masking
and unmasking interrupts. Any information
(e.g., cr2, etc.) necessary for processing an in-
terrupt or exception that is normally readable
only at privilege level 0 is made available to
the handler running at level 1. Interrupts actu-
ally originating in hardware are delivered to the
CVMM, which processes them and routes them
when necessary to the appropriate virtual server
interrupt handlers. Particular care is taken to
provide a “fast path” for exceptions (like page
faults) and interrupts generated and handled lo-
cally.

Particularly when sharing a physical proces-
sor among several virtual servers, interrupts
can arrive when a virtual server is not cur-
rently running. In this case, the interrupt(s) are
pended , possibly coalescing several for the
same device into a single interrupt. Because
the CVMMs handle all actual device communi-
cation, LINUX is not subject to the usual hard-
ware constraints requiring immediate process-
ing of device interrupts, so such coalescing is
not dangerous, provided that the interrupt han-
dlers realize the coalescing can happen and act
accordingly.

4.6 I/O

The ViMA I/O interface is designed to be
flexible and extensible enough to support new
classes of devices as they come along. The
interface is not trying to present something
that looks likereal hardware , but rather
higher-level generic conduits between the guest
OS and the CVMM. That is, the ViMA itself
has no understanding of I/O operation seman-
tics; it merely passes data and control signals
between the guest operating system and the
CVMM. It supports the following general ca-
pabilities:

• device discovery

• device configuration

• initiation of (typically asynchronous) I/O
operations

• completion of asynchronous I/O opera-
tions

Because I/O performance is extremely impor-
tant, data is presented in large chunks to mit-
igate the overhead of going through an extra
layer. The only currently supported I/O devices
are Console (VCON), Ethernet (VNIC), and Fi-
bre Channel storage (VHBA). We have imple-
mented thebottom layer of three new de-
vice drivers to talk to the ViMA, while the in-
terface from above remains the same for drivers
in the same class. Sometimes the interface
from above is used directly by applications, and
sometimes it is used by higher-level drivers. In
either case, the upper levels work “as is.”

In almost all cases, completion interrupts are
delivered on the CPU that initiated the opera-
tion. But since CPUs (and whole nodes) may
be dynamically removed, LINUX can steer out-
standing completion interrupts elsewhere when
necessary.

4.7 Process and Thread Scheduling

The CVMM runs one task per virtual proces-
sor, corresponding to its main thread of control.
The LINUX kernel further divides these tasks
to run LINUX processes and threads, starting
with the vanilla SMP scheduler. This approach
is more like the one taken by CoVirt[King-03]
and VMWare Workstation[Sugerman-01], as
opposed to having the underlying CVMM
schedule individual LINUX processes as done
in L4[Liedtke-95] . This is consistent with our

2005 Linux Symposium • 245

general approach of exposing as much informa-
tion and control as possible (without compro-
mising virtual server isolation) to the guest OS,
which we assume can make better decisions be-
cause it knows the high-level context. So, other
than porting the architecture-specific context-
switching code, no modifications were neces-
sary to use the LINUX scheduler.

4.8 Timekeeping

Timekeeping is somewhat tricky on such a
loosely coupled system. Because thejiffies
variable is used all over the place, updating
the global value on every clock interrupt gener-
ates prohibitively expensive cross-node mem-
ory traffic. On the other hand, LINUX ex-
pects jiffies to progress uniformly. Normally
jiffies is aliased tojiffies_32, the lower 32 bits
of the full 64-bit jiffies_64counter. Through
some linker magic, we makejiffies_32 point
into a special per-node page (a page whose log-
ical address maps to a different physical page
on each node), so each node maintains its own
jiffies_32. The globaljiffies_64is still updated
every tick, which is no longer a problem since
most readers are looking atjiffies_32. The
local jiffies_32values are adjusted (incremen-
tally, without going backwards) periodically to
keep them in sync with the global value.

4.9 Crucial Optimizations

The work described in the previous sections is
adequate to boot and run LINUX, but the re-
sulting performance is hardly adequate for all
but the most contrived benchmarks. The tough-
est challenges lie in minimizing remote mem-
ory access (and communication in general).

Because the design space of potentially useful
optimizations is huge, we strive to focus our op-
timization efforts by guiding them with perfor-
mance data. One of the advantages of a virtual

machine is ease of instrumentation. To this end,
our CVMM has a large amount of (optional)
code devoted to gathering and reporting per-
formance data, and in particular for gathering
information about cross-node memory activity.
Almost all of the optimizations described here
were driven by observations from this perfor-
mance data gathered while running our initial
target applications.

4.9.1 Logical Frame Management and
NUMA

When LINUX runs on non-virtualized hard-
ware, page frames are identified by physical
address, but when it runs on the ViMA, page
frames are described bylogical address.
Though logical page frames are analogous to
physical page frames, logical page frames have
somewhat different properties:

• Logical page frames are dynamically
mapped to physical page frames by the
CVMM in response to page faults gener-
ated while the guest OS runs

• Logical page frames consume physical
page frames only when mapped and ref-
erenced by the guest OS.

• The logical page frames reserved by the
CVMM are independent of the physical
page frames reserved for PC-compatible
hardware and BIOS.

Suppose we have a system consisting of four
dual-processor SMP nodes. Such a system
can be viewed either as a “flat” eight-processor
SMP machine or (viaCONFIG_NUMA) as
a two-level hierarchy of four two-processor
nodes (i.e., the same as the underlying hard-
ware). While the former view works correctly,

246 • LINUX R© Virtualization on Virtual IronTM VFe

hiding the real topology has serious perfor-
mance consequences. The NUMA kernel as-
sumes each node manages its own range of
physical pages. Though pages can be used any-
where in the system, the NUMA kernel tries to
avoid frequent accesses to remote data.

In some sense, the ViMA can be treated is a
virtual cache coherent NUMA (ccNUMA) ma-
chine, in that access to memory is certainly
non-uniform.

By artificially associating contiguous logical
page ranges with nodes, we can make our
virtual server look like a ccNUMA machine.
We realized much better performance by treat-
ing the virtual machine as a ccNUMA ma-
chine reflecting the underlying physical hard-
ware. In particular the distribution of mem-
ory into more zones alleviates contention for
the zone lock and lru_lock. Furthermore, the
optimizations that benefit most ccNUMA ma-
chines benefit ours. And the converse is true
as well. We’re currently cooperating with other
NUMA LINUX developers on some new op-
timizations that should benefit all large cc-
NUMA machines.

For various reasons, the most important be-
ing some limitations of memory removal sup-
port, we currently have a fictitious CPU-less
node 0 that manages all of low memory (the
DMA and NORMAL zones). So HIGHMEM
is divvied up between the actual nodes in pro-
portion to their relative logical memory size.

4.9.2 Page Cache Replication

To avoid the sharing of page metadata by nodes
using replicas of read-only page cache pages,
we have implemented a NUMA optimization
to replicate such pages on-demand from node-
local memory. This improves benchmarks that
do a lot of exec’ing substantially.

4.9.3 Node-Aware Batch Page Updates

Both fork() andexit()update page metadata for
large numbers of pages. As currently coded,
they update the metadata in the order the pages
are walked. We see measurable improvements
by splitting this into multiple passes, each up-
dating the metadata only for pages on a specific
node.

4.9.4 Spinlock Implementation

The i386 spinlock implementation also turned
out to be problematic, as we expected. The
atomic operation used to try to acquire a spin-
lock requires write access to the page. This
works fine if the lock isn’t under contention,
particularly if the page is local. But if some-
one else is also vying for the lock, spinning
as fast as possible trying to access remote data
and causing poor use of resources. We con-
tinue to experiment with different spinlock im-
plementations (which often change in response
to changes in the memory access characteris-
tics of the underlying CVMM). Currently we
always try to get the lock in the usual way first.
If that fails, we fall into our ownspinlock_
wait() that does a combination of “remote”
reads and yielding to the CVMM before trying
the atomic operation again. This avoids over-
loading the CVMM to the point of restricting
useful work from being done.

4.9.5 Cross-Node Scheduling

The multi-level scheduling domains intro-
duced in 2.6 LINUX kernel match very nicely
with a hierarchical system like Virtual Iron
VFe. However, we found that the cross-node
scheduling decisions in an environment like
this are based on much different factors than the
schedulers for more tightly-coupled domains.

2005 Linux Symposium • 247

Moreover, because cross-node migration of a
running program is relatively expensive, we
want to keep such migrations to a minimum. So
the cross-node scheduler can runmuchless of-
ten than the other domain schedulers, so it be-
comes permissible to take a little longer mak-
ing the scheduling decision and take more fac-
tors into account. In particular, task and node
memory usage are crucial—much more impor-
tant than CPU load. So we have implemented a
different algorithm for the cross-node schedul-
ing domain.

The cross-node scheduling algorithm repre-
sents node load (and a task’s contribution
to it) with a 3-d vector whose compo-
nents represent CPU, memory, and I/O us-
age. Loads are compared by taking the vector
norm[Bubendorfer-96]. While we’re still ex-
perimenting heavily with this scheduler, a few
conclusions are clear. First, memory matters
far more than CPU or I/O loads in a system like
ours. Hence we weight the memory component
of the load vector more heavily than the other
two. It’s also important to be smart about how
tasks share memory.

Scheduling and logical memory management is
tightly intertwined. Using the default NUMA
memory allocation, processes try to get mem-
ory from the node on which they’re running
when they allocate. We’d prefer that processes
use such local pages so they don’t fight with
other processes or the node’s swap daemon
when memory pressure rises. This implies that
we would rather avoid moving a process af-
ter it allocates its memory. Redistributing a
process to another node atexec()time makes
a lot of sense, since the process will have its
smallest footprint at that point. Processes often
share data with other processes in the same pro-
cess group. So we’ve modifiedsched_exec()to
consider migrating an exec’ing process to an-
other node only if it’s a process group leader
(and with even more incentive—via a lower im-

balance threshold—for session group leaders).
Furthermore, whensched_exec()does consider
migrating to another node, it looks at the 3-
d load vectors described earlier. This policy
has been particularly good for distributing the
memory load around the nodes.

4.10 Dynamic Reconfiguration Support
(Hotplug Everything)

When resources (CPU or memory) are added or
removed from a the cluster, the CVMM noti-
fies the guest OS via a special “message” inter-
rupt also used for a few other messages (“shut-
down,” “reboot,” etc.). LINUX processes the
interrupt by waking a message handler thread,
which then reads the new virtual server config-
uration and starts taking the steps necessary to
realize it. Configuration changes occur in two
phases. During the first phase, all resources
being removed are going away. LINUX ac-
knowledges the change when it has reduced
its resource usage accordingly. The resources
are, of course, not removed until LINUX ac-
knowledges. During the second phase, all re-
sources being added are added (this time be-
fore LINUX acknowledges), so LINUX simply
adds the new resources and acknowledges that
phase. This implies certain constraints on con-
figuration changes. For example, there must be
at least one VP shared between the old and new
configurations.

4.10.1 CPU and Device Hotplug

Adding and removing CPUs and devices re-
quired some porting to our methods of start-
ing and stopping CPUs and devices, but for the
most part this is much easier with idealized vir-
tual hardware than with the real thing.

248 • LINUX R© Virtualization on Virtual IronTM VFe

4.10.2 Node Hotplug

Adding and removing whole nodes was a little
more problematic as most iterations over nodes
in the system assumes online nodes are con-
tiguous going from 0 tonumnodes-1. Node re-
moval can leave a “hole” which invalidates this
assumption. The CPUs associated with a node
are made “physically present” or absent as the
node is added or removed.

4.10.3 Memory Hotplug

Memory also comes with a node (though
nodes’ logical memory can be increased or de-
creased without adding or removing nodes),
and must be made hotpluggable. Unfortunately
our efforts in this area proceeded independently
for quite a while until we encountered the
memory hotplug effort being pursued by other
members of LINUX development community.
We’ve decided to combine our efforts and plan
on integrating with the new code once we move
forward from 2.6.9 code base. Adding memory
isn’t terribly hard, though some more synchro-
nization is needed. At the global level, a mem-
ory hotplug semaphore, analogous to the CPU
hotplug semaphore, was introduced. Careful
ordering of the updates to the zones allows
most of the existing references to zone memory
info to continue to work without locking.

Removing memory is much more difficult. Our
existing approach removes only high memory,
and does so by harnessing the swap daemon. A
new page bit,PG_capture, is introduced (name
borrowed from the other memory hotplug ef-
fort) to mark pages that are destined for re-
moval. Such pages are swapped out more ag-
gressively so that they may be reclaimed as
soon as possible. Freed pages marked for cap-
ture are taken off the free lists (and out of the
per-cpu pagesets), zeroed (so the CVMM can

forget them), then counted as removed. During
memory removal, the swap daemons on nodes
losing memory are woken often to attempt to
reclaim pages marked for capture. In addi-
tion, we try reclaiming targeted pages from the
shrinking zones’ active lists.

This approach works well on a mostly idle (or
at least suspended) machine, but has a num-
ber of weaknesses, particularly when the mem-
ory in question is being actively used. Direct
page migration (bypassing swap) would be an
obvious performance improvement. There are
pages that can’t be removed for various rea-
sons. For example, pages locked into memory
via mlock()can’t be written to disk for security
reasons.

But because our logical pages aren’t actually
tied to nodes (but just artificially assigned to
them for management purposes), we can tol-
erate a substantial number of “unremovable”
pages. A node that has been removed, but still
has some “unremovable” pages is known as a
“zombie” node. No new pages are allocated
from the node, but existing pages and zone data
are still valid. We’ll continue to try and re-
claim the outstanding pages via the node’s swap
daemon (now running on a different node, of
course). If another node is added in its place
before all pages are removed, the new node can
subsume the “unremovable” pages and it be-
comes a normal page again. In addition, it is
also possible to exchange existing free pages
for “unremovable” pages to reclaim space for
replicas. While this scheme is currently far
from perfect or universal, it works predictably
in enough circumstances to be useful.

5 Conclusion

In this paper we have presented a Clustered
Virtual Machine Monitor that virtualizes a set

2005 Linux Symposium • 249

of distributed resources into a shared mem-
ory multi-processor machine. We have ported
LINUX Operating System onto this platform
and it has shown to be an excellent platform
for deploying a wide variety of general purpose
applications.

6 Acknoweledgement

We would like to thank all the members of the
Virtual Iron Software team without whom Vir-
tual Iron VFe and this paper would not be pos-
sible. Their contribution is gratefully acknowl-
edged.

Virtual Iron and Virtual Iron VFe are trademarks of
Virtual Iron Software, Inc. LINUXR© is a registered
trademark of Linus Torvalds. XEON is a trademark
of Intel Corp. All other other marks and names men-
tioned in this paper may be trademarks of their re-
spective companies.

References

[Pfister-98] Gregory F. Pfister.In Search of
Clusters, Second Edition, Prentice Hall
PTR, pp. 358–369, 1998.

[Goldberg-74] R.P. Goldberg. Survey of Vir-
tual Machines Research.Computer, pp.
34–45, June 1974.

[Robin-00] J.S. Robin and C.E. Irvine. Analy-
sis of the Intel Pentium’s Ability to Sup-
port a Secure Virtual Machine Monitor. In
Proceedings of the 9th USENIX Security
Symposium, pp. 3–4, August 20, 2000.

[Goldberg-72] R.P. Goldberg.Architectural
Principles for Virtual Computer Systems.
Ph.D. Thesis, Harvard University, Cam-
bridge, MA, 1972.

[Whitaker-00] A. Whitaker, M. Shaw, and S.
Gribble. Scale and Performance in the De-
nali Isolation Kernel. InACM SIGOPS
Operating System Rev., vol. 36, no SI, pp.
195–209, Winter 2000.

[King-03] S. King, G. Dunlap, and P. Chen
Operating System Support for Virtual
Machines. InProceedings of the 2003
USENIX Technical Conference, 2003.

[Sugerman-01] J. Sugerman, G. Venkitacha-
lam, and B. Lim. Virtualizing I/O Devices
on VMWare Workstation’s Hosted Vir-
tual Machine Monitor. InProceedings of
the 2001 USENIX Technical Conference,
June, 2001.

[Liedtke-95] Dr. Jochen Liedtke. On Micro-
Kernel Construction. InProceedings of
the 15th ACM Symposium on Operating
Systems Principles, December, 1995.

[Bubendorfer-96] K.P. Bubendorfer.Resource
Based Policies for Load Distribution.
Masters Thesis, Victoria University of
Wellington, Wellington, New Zealand,
1996.

250 • LINUX R© Virtualization on Virtual IronTM VFe

Clusterproc: Linux Kernel Support for Clusterwide
Process Management

Bruce J. Walker
Hewlett-Packard

bruce.walker@hp.com

Laura Ramirez
Hewlett-Packard

laura.ramirez@hp.com

John L. Byrne
Hewlett-Packard

john.l.byrne@hp.com

Abstract

There are several kernel-based clusterwide pro-
cess management implementations available
today, providing different semantics and ca-
pabilities (OpenSSI, openMosix, bproc, Ker-
righed, etc.). We present a set of hooks to allow
various installable kernel module implementa-
tions, with a high degree of flexibility and vir-
tually no performance impact. Optional capa-
bilities that can be implemented via the hooks
include: clusterwide unique pids, single init,
heterogeneity, transparent visibility and access
to any process from any node, ability to dis-
tribute processes at exec or fork or thru mi-
gration, file inheritance and full controlling ter-
minal semantics, node failure cleanup, cluster-
wide /proc/<pid> , checkpoint/restart and
scale to thousands of nodes. In addition, we
describe an OpenSSI-inspired implementation
using the hooks and providing all the features
described above.

1 Background

Kernel based cluster process management
(CPM) has been around for more than 20
years, with versions on Unix by Locus[1] and
Mosix[2]. The Locus system was a general pur-
pose Single System Image (SSI) cluster, with a

single root filesystem and a single namespace
for processes, files, networking and interpro-
cess communication objects. It provided high
availability as well as a simple management
paradigm and load balancing of processes.
Mosix focused on process load balancing. The
concepts of Locus have moved to Linux via the
OpenSSI[3] open source project. Mosix has
moved to Linux via the openmosix[4] project.

OpenSSI and Mosix were not initially tar-
geted at large scale parallel programming clus-
ters (eg. those using MPI). The BProc[5]
CPM project has targeted that environment to
speed up job launch and simplify process man-
agement and cluster management. More re-
cent efforts by Kerrighed[6] and USI[7] (now
Cassat[8]) were also targeted at HPC environ-
ments, although Cassat is now interested in
commercial computing.

These 5 CPM implementations have somewhat
different cluster models (different forms of SSI)
and thus fairly different implementations, in
part driven by the environment they were orig-
inally developed for. The “Introduction to SSI”
paper[10] details some of the differences. Here
we outline some of the characteristics relevant
to CPM. Mosix started as a workstation tech-
nology that allowed a user on one workstation
to utilize cpu and memory from another work-
station by moving running processes (process
migration) to the other workstation. The mi-

• 251 •

252 • Clusterproc: Linux Kernel Support for Clusterwide Process Management

grated processes had to see the OS view of the
original workstation (home node) since there
was no enforced common view of resources
such as processes, filesystem, ipc objects, bina-
ries, etc. To accomplish the home-node view,
most system calls had to be executed back on
the home node—the process was effectively
split, with the kernel part on the home node
and the application part elsewhere. What this
means to process ids is that home nodes gener-
ate ids which are not clusterwide unique. Mi-
grated processes retain their home node pid in
a private data structure but are assigned a lo-
cal pid by the current host node (to avoid pid
conflicts). The BProc model is similar except
there is a single home node (master node) that
all processes are created on. These ids are thus
clusterwide unique and a local id is not needed
on the host node.

The model in OpenSSI, Kerrighed and Cassat is
different. Processes can be created on any node
and are given a single clusterwide pid when
they are created. They retain that pid no matter
where they execute. Also, the node the process
was created on does not retain part of the pro-
cess. What this means to the CPM implementa-
tion is that actions to be done against processes
are done where the process is currently execut-
ing and not on the creation or home node.

There are many other differences among the
CPM implementations. For example, OpenSSI
has a single, highly available init process while
most/all other implementations do not. Addi-
tionally, BProc does not retain a controlling ter-
minal (or any other open files) when processes
move, while other implementations do. Some
implementations, like OpenSSI, support clus-
terwide ptrace, while others do not.

With some of these differences in mind, we
next look at the goals for a set of CPM hooks
that would satisfy most of the CPM implemen-
tations.

2 Goals and Requirements for the
Clusterproc Hooks

The general goals for the hooks are to enable
a variety of CPM implementations while being
non-invasive enough to be accepted in the base
kernel. First we look at the base kernel require-
ments and then some of the functional require-
ments.

Changes to the base kernel should retain the ar-
chitectural cleanliness and not affect the per-
formance. Base locking should be used and
copies of base routines should be avoided. The
clusterproc implementations should be instal-
lable modules. It should be possible to build
the kernel with the hooks disabled and that ver-
sion should have no impact on performance. If
the hooks are enabled, the module should be
optional. Without the module loaded, perfor-
mance impact should be negligible. With the
module loaded, one would have a one node
cluster and performance will depend on the
CPM implementation.

The hooks should enable at least the following
functionality:

• optionally have a per process data struc-
ture maintained by the CPM module;

• allowing for the CPM module to allocate
clusterwide process ids;

• support for distributed process rela-
tionships including parent/child, process
group and session; optional support for
distributed thread groups and ptrace par-
ent;

• optional ability to move running pro-
cesses from one node to another either at
exec/fork time or at somewhat arbitrary
points in their execution;

2005 Linux Symposium • 253

• optional ability to transparently check-
point/restart processes, process groups and
thread groups;

• optional ability to have process continue to
execute even if the node they were created
on leaves the cluster;

• optional ability to retain relationships of
remaining processes, no matter which
nodes may have crashed;

• optional ability to have full controlling ter-
minal semantics for processes running re-
motely from their controlling terminal de-
vice;

• full, but optional/proc/<pid> capabil-
ity for all processes from all nodes;

• capability to support either an “init” pro-
cess per node or a single init for the entire
cluster;

• capability to function within a shared root
environment or in an environment with a
root filesystem per node;

• capability to be an installable module
that can be installed either from the
ramdisk/initramfs or shortly thereafter;

• support for clusters of up to 64000 nodes,
with optional code to support larger;

In the next section we detail a set of hooks de-
signed to meet the above set of goals and re-
quirements. Following that is the design of the
OpenSSI 3.0, as adapted to the proposed hooks.

3 Proposed Hook Architecture,
Hook Categories and Hooks

To enable the optional inclusion of clusterwide
process management (referred also as “clus-
terproc” or CPM) capability, very small data

structure additions and a set of entry points
are proposed. The data structure additions are
a pointer in the task structure (CPM imple-
mentations could then allocate a per process
structure that this pointer points to), and 2 flag
bits. The infrastructure for the hooks is pat-
terned after the security hooks, although not ex-
actly the same. IfCONFIG_CLUSTERPROCis
not set, the hooks are turned into inline func-
tions that are either empty or return the de-
fault value. WithCONFIG_CLUSTERPROCde-
fined, the hook functions call clusterproc ops if
they are defined, otherwise returning the default
value. The ops can be replaced, and the clus-
terproc install-able module will replace the ops
with routines to provide the particular CPM im-
plementation. The clusterproc module would
be loaded early in boot. All the code to sup-
port the clusterwide process model would be
under GPL. To enable the module some addi-
tional symbols will have to exported to GPL
modules.

The proposed hooks are grouped into cat-
egories below. Each CPM implementation
can provide op functions for all or some
of the hooks in each category. For each
category we list the relevant hook functions
in pseudo-C. The names would actually be
clusterproc_xxx but to fit here we leave
out the clustproc_ part. The parameters
are abreviated. For each category, we de-
scribe the general purpose of the hooks in
that category and how the hooks could be
used in different CPM implementations. The
categories are: Init and Reaper; Allocation/
Free; Update Parent; Process lock/unlock;
Exit/Wait/Reap; Signalling; Priority and Capa-
bility; Setpgid/Setsid; Ptrace; Controlling Ter-
minal; and Process movement;

3.1 Init and Reaper

void single_init();

254 • Clusterproc: Linux Kernel Support for Clusterwide Process Management

void child_reaper(*pid);

One of the goals was to allow the cluster to
run with a single init process for the cluster.
The single_init hook in init/main.c ,
init() can be used in a couple of ways. First,
if there is to be a single init, this routine can
spawn a “reaper” process that will locally reap
the orphan processes that init normally reaps.
On the node that is going to have the init, the
routine returns to allow init to be exec’d. On
other nodes it can exit so there is no process
1 on those nodes. The other hook in this cat-
egory ischild_reaper , which is in timer.c,
sys_getppid() . It returns 1 if the process’s
parent was thechild_reaper process. Nei-
ther of these hooks would be used in those CPM
implementations that have an init process per
node.

3.2 Allocation/ Free

int fork_alloc(*tsk);
void exit_dealloc(*tsk);
int pid_alloc(pid);
int local_pid(pid);
void strip_pid(*pid);

There are 5 hooks functions in this category.
First isfork_alloc , which is called incopy_

process() in fork.c . This routine is called
to allow the CPM to allocate a private data
structure pointed to byclusterproc pointer
which is added to the task structure. Free-
ing that structure is done via the hookexit_

dealloc() which is called in release_

task() in exit.c and under error condi-
tions in copy_process() in fork.c The
exit_dealloc routine can also be used to do
remote notifications necessary for pgrp and ses-
sion management. All CPM implementations
will probably use these hooks. The other 3
hooks deal with pid allocation and freeing and

are only used in those implementations present-
ing a clusterwide single pid space. Thepid_

alloc hook is called inalloc_pidmap() in
pid.c . It takes a locally unique pid and re-
turns a clusterwide unique pid, possibly by en-
coding a node number in some of the high order
bits. Thelocal_pid andstrip_pid hooks
are in free_pidmap() , also in pid.c The
local_pid hook returns 1 if this pid was gen-
erated on this node and the process id is no
longer needed clusterwide. Otherwise return
0. Thestrip_pid hook is called to undo the
effects ofpid_alloc so the base routines on
each node can manage their part of the cluster-
wide pid space.

3.3 Update parent

int update_parent(*ptsk,*ctsk,
flag,sig,siginfo);

Update_parent is a very general hook called
in several places. It is used by a child pro-
cess to notify a parent process if the parent
process is executing remotely. Inptrace.
c , it is called in __ptrace_unlink() and
__ptrace_link() . In the arch version of
ptrace.c it is called insys_ptrace() . In
exit.c it is called inreparent_to_init()

and infork.c , copy_process() , it is called
in the CLONE_PARENTcase. Although not all
CPM implementations will support distributed
ptrace orCLONE_PARENT, support for some of
the instances of this hook will probably be in
each CPM implementation.

3.4 Process lock/unlock

void proc_lock(*tsk,base_lock);
void proc_unlock(*tsk,base_lock);

2005 Linux Symposium • 255

Theproc_lock andproc_unlock hooks al-
low the CPM implementation to either use the
basetsk->proc_lock (default) or to intro-
duce a sleep lock in their private process data
structure. In some implementations, a sleep
lock is needed because remote operations may
be executed while this lock is held. In addition,
calls to proc_lock and proc_unlock are
added inexit_notify() , in exit.c , be-
causeexit_notify() may not be atomic and
may need to be interlocked withsetpgid()

and with process movement (the locking calls
for setpgid and process movement would be in
the CPM implementation.

3.5 Exit/Wait/Reap

int rmt_reparent_children(*tsk);
int is_orphan_pgrp(pgrp);
void rmt_orphan_pgrp(newpgrp,*ret);
void detach_pid(*tsk,nr,type);
int rmt_thread_group_empty(*tsk,pid,opt);
int rmt_wait_task_zombie(*tsk,noreap,

*siginfo,*stat_addr, *rusage);
int rmt_wait_stopped(*tsk,int,noreap,

*siginfo,*stat_addr,*rusage);
int rmt_wait_continued(*tsk,noreap,

*siginfo,*stat_addr, *rusage);

There are several hooks proposed to accom-
plish all the actions around the exit of a process
and wait/reap of that process. One early action
in exit is to reparent any children to thechild_

reaper . This is done inforget_original_

parent() in exit.c . Thermt_reparent_

children hook provides an entry to repar-
ent those children not executing with the par-
ent. Accurate orphan process group process-
ing can be difficult with other pgrp members,
children and parents all potentially executing
on different nodes. The “home-node” model
implementations will have all the necessary in-
formation at the home node. For non–home-
node implementations like OpenSSI, two hooks
are proposed—is_orphan_pgrp and rmt_

orphan_pgrp . is_orphan_pgrp is called

in is_orphan_pgrp() , in exit.c . It re-
turns 1 if orphaned and 0 if non-orphaned. If
not provided, the existing base algorithm is
used. rmt_orphan_pgrp is called inwill_

become_orphaned_pgrp() in exit.c . It
is called if there are no local processes remain-
ing that make the process group non-orphan. In
that case it determines if the pgrp will become
orphan and if so it effects the standard action
on the pgrp members. Adetach_pid hook
in detach_pid() is proposed to allow CPM
implementations to update any data structures
maintained for process groups and sessions.

There are 4 proposed hooks in wait. The
first, in eligible_child() , exit.c , is
rmt_thread_group_empty . This is used
to determine if the thread group is empty,
for thread groups in which the thread group
leader is executing remotely. If it is
empty, the thread group leader can be
reaped; otherwise it cannot. The other 3
hooks arermt_wait_task_zombie , rmt_

wait_stopped and rmt_wait_continued

which are called inwait_task_zombie() ,
wait_task_stopped() and wait_task_

continued() respectively. These hooks al-
low the CPM implementation to move the re-
spective functions to the node where the pro-
cess is and then execute the base call there, re-
turning an indication if the child was reaped or
if there was an error.

3.6 Signalling

void rmt_sigproc(pid,sig,*siginfo,*error);
int pgrp_list_local(pgrp,*flag);
int rmt_sigpgrp(pgrp,sig,*signfo);
void sigpgrp_rmt_members(pgrp,sig,*siginfo,

*reg,flag);
int kill_all(sig,*siginfo,*count,*ret,tgid);
void rmt_sig_tgkill(tgid,*siginfo,pid,flag,

tsk,*error);
void rmt_send_sigio(*tsk,*fown,fd,band);
int rmt_pgrp_send_sigio(pgid,*fown,fd,band);
void rmt_send_sigurg(*tsk,*fown);
int rmt_pgrp_send_sigurg(pgid,*fown);
void timedwait(timeout,*timespec,*ret);

256 • Clusterproc: Linux Kernel Support for Clusterwide Process Management

There are many places in the kernel that may
signal a process, for a variety of of reasons.
Hooks inkill_proc_info() andkill_pg_

info() handle many cases. One could define a
general hook function that handles many of the
cases (process, pgrp, killall, sigio, sigurg, etc.).
Doing so would reduce the number of different
hook functions but would require a superset of
parameters and the op would have to relearn the
reason it was called. For now we have proposed
them as separate hooks.rmt_sigproc is the
hook in kill_proc_info() , called only if
the process is not found locally. It tries to find
the process on another node and deliver the sig-
nal. For the process group case we currently
have 3 hooks inkill_pg_info() . Based on
the assumption that some node knows the list
of pgrp members (or at least the nodes they
are on), the first hook (pgrp_list_local)
determines if such a list is local. If not, it
calls rmt_sigpgrp which will transfer con-
trol to such a node, so the basekill_pg_

info() can be called. Given we are now
executing on the node where the list is, the
pgrp_list_local hook can lock the list so
that no members will be missed during the sig-
nal operation. After that, the base code to signal
locally executing pgrp members is executed,
followed by the code to signal remote mem-
bers (sigpgrp_rmt_members). That hook
also does the list unlock. Support for cluster-
wide kill –1 is provided by a hook inkill_

something_info() . A CPM implementation
could loop thru all the nodes in the cluster, call-
ing kill_something_info() on each one.
Linux has 2 system calls for thread signalling—
sys_tkill() andsys_tgkill() . The pro-
posed hookrmt_sig_tgkill is inserted in
each of these system calls to find the thread(s)
and deliver the signal, if the threads were not al-
ready found locally. Thesend_sigio() func-
tion in fcntl.c can send process or pgrp sig-
nals. Thermt_send_sigio or rmt_pgrp_

send_sigio hook is called if the process or
process group is remote. Similar hooks are

needed insend_sigurg() in fcntl.c (with
different parameters). The final signal related
hook istimedwait , which is called fromsys_

rt_sigtimedwait() , in signal.c . It is
called only if a process was in a scheduled
timeout and was woken up to do a migrate.
It restarts thesys_rt_sigtimedwait() af-
ter the migrate.

3.7 Priority and Capability

void priority(cmd,who,niceval,*tsk,*err);
int pgrp_priority(cmd,who,niceval,*ret);
int prio_user(cmd,who,niceval,*err);
int capability(cmd,pid,header,data,*reg);
int pgrp_capset(pgrp,*effective,*inherit,

*permitted,*ret);
int capset_all(*effective,*inherit,

*permitted,*ret);

In sys_setpriority() (sys.c), schedul-
ing priority can be set on processes, pro-
cess groups or “all processes owned by
a given user.” A get-priority can be
done for a process or a pgrp. The
priority , pgrp_priority andprio_user

hooks are proposed to deal with distribu-
tions issues for these functions. Capabil-
ity setting/getting (sys_capset() and sys_

capget() in capability.c) are quite sim-
ilar and capability , pgrp_capset and
capset_all hooks are proposed for those
functions.

3.8 Setpgid/Setsid

int is_process_local(pid,pgid);
int rmt_setpgid(pid,pgid,caller,sid);
int verify_pgid_session(pgid,sid);
void pgrp_update(*tsk);
void setpgid_done(*tsk,pid);
void rmt_proc_getattr(pid,*pgid,*siod);
void setsid(void);

Setpgid (sys.c) may be quite straightforward
to handle in the home/master node implementa-
tions because all the process, process group and

2005 Linux Symposium • 257

session information will be at the home/master
node. For the more peer-oriented implementa-
tions, in the most general case there could be
several nodes involved. First, while the setpgid
operation is most often done against oneself, it
doesn’t have to be, so there is a hook set early
in sys_setpgid to move execution to the
node on which the setpgid is to be done (is_

process_local and rmt_setpgid). is_

process_local can also acquire a sleep lock
on the process since setpgid may not be atomic
to the tasklist_lock . One of the tests in
setpgid is to make sure there is someone in the
proposed process group in the same session as
the caller. If that check isn’t satisfied locally,
verify_pgid_session is called to check the
rest of the process group. Given the operation
is approved, thepgrp_update hook is called
to allow the CPM implementation to adjust or-
phan pgrp information, to create or update any
central pgrp member list and to update any
cached information that might be at the pro-
cess’s parent’s execution site (to allow him to
easily do waits). A final hook insys_setpgid

(setpgid_done) is called to allow the CPM
implementation to release the process lock ac-
quired inis_process_local .

The rmt_proc_getattr hook in sys_
getpgid() and sys_getsid() supplies
the pgid and/or sid for processes not executing
locally.

The setsid hook in sys_setsid() can be
used by the CPM implementation to update
cached information at the parent’s execution
node, at children execution nodes and at any
session or pgrp list management nodes.

3.9 Ptrace

void rmt_ptrace(request,pid,addr,data,*ret);
*tsk rmt_find_pid(pid);
int ptrace_lock(*tsk,*tsk)
void ptrace_unlock(*tsk,*tsk);

Clusterwide ptrace support is not provided in
all CPM implementations (eg. BProc) but
can be supported with the help of a few
hooks. Unfortunatelysys_ptrace() is in
the arch tree, inptrace.c . The rmt_

ptrace hook is needed if the process to be
ptraced is not local. It reissues the call on
the node where the process is running. In
ptrace_attach() , in the non-arch version
of ptrace.c , the rmt_find_pid hook is
used in the scenario that the request was gen-
erated remotely. This hook helps ensure that
the the process being traced is attached to the
process debugging and not to a server daemon
acting on behalf of that process. Theptrace_

lock and ptrace_unlock hooks are used
in do_ptrace_unlink() (ptrace.c) and
de_thread() (exec.c). They can be used
to provide atomicity across operations that re-
quire remote messages.

3.10 Controlling Terminal

void clear_my_tty(*tsk);
void update_ctty_pgrp(pgrp,npgrp);
void rmt_vhangup(*tsk);
void get_tty(*tsk,*tty_nr,*tty_pgrp);
void clear_tty(sid,*tty,flag);
void release_rmt_tty(*tsk,flag);
int has_rmt_ctty();
int rmt_tty_open(*inode,*file);
void rmt_tty_write_message(*msg,*tty);
int rmt_is_ignored(pid,sig);

Some CPM implementation do not support
controlling terminal for processes after they
move (eg. BProc). In the home-node style
CPM, the task structure on the home node will
havetty pointer. On the node where the pro-
cess migrated, the task structure has notty
pointer. As long as any interrogation or up-
dating using that pointer is done on the home
node, this strategy works. For CPM imple-
mentations where system calls are done locally,
some hooks are needed to deal with a poten-
tially remote controlling terminal. The pro-
posed strategy is that if the controlling terminal

258 • Clusterproc: Linux Kernel Support for Clusterwide Process Management

is remote, thetty pointer would be null but
there would be information in the CPM private
data structure.

Daemonize(), inexit.c , normally clears
the tty pointer in the task structure. Ad-
ditionally it calls the hookclear_my_tty

to do any other bookkeeping in the case
where the controlling terminal is remote.
In drivers/char/tty_io.c , the routines
do_tty_hangup() , disassociate_dev() ,
release_dev() andtiosctty() all call the
hook clear_tty , which clears the tty in-
formation for all members of the session on
all nodes. release_rmt_tty is called by
disassociate_ctty() if the tty is not local;
the hook callsdisassociate_ctty() on the
node where the tty is.get_tty is called in
proc_pid_stat() in fs/proc/array.c to
gather the foreground pgrp and device id for the
task’s controlling terminal. The hookupdate_

ctty_pgrp is called by tiocspgrp() , in
drivers/char/tty_io.c and can be used
by the CPM to inform all members of the old
pgrp that they are no longer in the control-
ling terminal foreground pgrp and to inform the
new pgrp members as well. Distributed knowl-
edge of which pgrp is the foreground pgrp is
important for correct behavior in the situation
when the controlling terminal node crashes.
Sys_vhangup() , in fs/open.c , has a call to
rmt_vhangup() if tty is not set (if there is a
remote tty, the CPM can callsys_vhangup()

on that node). Indrivers/char/tty_io.c ,
tiosctty() and tty_open() call the hook
has_rmt_ctty to determine if the process
already has a controlling terminal that is re-
mote. Also indrivers/char/tty_io.c , the
tty_open() function calls rmt_tty_open

for opens of/dev/tty if the controlling ter-
minal is remote. Theis_ignored() function
in drivers/char/n_tty.c calls rmt_is_

ignored if it is called by an agent for a process
that is actually running remotely. Finally,rmt_

tty_write_message is called in kernel/

printk.c , tty_write_message() if the tty
it wants to write to is remote.

3.11 Process movement

int do_rexec(*char,*argv,*envp,
*regs,*reg);

void rexec_done();
int do_rfork(flags,stk,*regs,size,

*ptid,*ctid,pid,*ret);
int do_migrate(*regs,signal,flags);

As mentioned in the goals, the hooks should
allow for process movement at exec() time, at
fork() time and during execution. Earlier ver-
sions of OpenSSI accomplished this via new
system calls. The proposal here does not re-
quire any system calls although that is an op-
tion. For fork() and exec(), a hook is put indo_

fork() anddo_execve() respectively. Ops
behind the hooks can determine if the operation
should be done on another node. A load balanc-
ing algorithm can be consulted or the process
could have been marked (eg. via a procfs file
like /proc/<pid>/goto) for remote move-
ment. An additional hook,rexec_done is pro-
vided so the CPM implementation can get con-
trol after the exec on the new node has com-
pleted but before returning to user mode, so that
process setup can be completed and the original
node can be informed that the remote execve()
was successful.

A single hook is needed for process migration.
The proposed mechanism is that via/proc/
<pid>/goto or a load balancing subsystem,
processes haveTIF_MIGPENDING flag (added
flag in flags field ofthread_info structure)
set if they should move. That flag is checked
just before going back to user space, indo_

notify_resume() , in arch/xxx/kernel/

signal.c and calls thedo_migrate hook.
Checkpoint and restart can be invoked via the
same hook (migrate to/from disk).

2005 Linux Symposium • 259

Determining if these hooks are sufficient to al-
low an implementation that satisfies the goals
and requirements outlined earlier is best done
by implementing a CPM using the hooks. The
OpenSSI 3.0 CPM, which provides almost all
the requirements, including optional ones, has
been adapted to work via the hooks described
above. Work to ensure that other CPM im-
plementations can also be adapted needs to be
done. The OpenSSI 3.0 CPM design is de-
scribed in the next section.

4 Clusterproc Design for OpenSSI

In this section we describe a Cluster Process
Management (CPM) implementation adapted
from OpenSSI 2.0. It is part of a functional
cluster which is a subset of OpenSSI. The sub-
set does not have a cluster filesystem, a single
root or single init. It does not have clusterwide
device naming, a clusterwide IPC space or a
cluster virtual ip. It does not have connection
or process load balancing. All those capabil-
ities will be subsequently added to this CPM
implementation to produce OpenSSI 3.0.

To allow the CPM implementation to be part of
a functional cluster, several other cluster com-
ponents are needed. A loadable membership
service is needed, together with an intra-node
communication service layered on tcp sockets.
To enable the full ptrace and remote control-
ling terminal support, a remote copy–to/from–
user capability is needed. Also, a set of re-
mote file ops is needed to allow access to re-
mote controlling terminals. Finally, a couple of
files are added to/proc/<pid> to provide
and get information for CPM. Implementations
of all needed capability are available and none
require significant hooks. Like the clusterproc
hooks, however, these hooks must be studied
and included if they are general and allow for
different implementations.

In this section we describe the process id and
process tracking design, the module initializa-
tion, and per process private data. Then we
describe how all the process relationships are
managed clusterwide, followed by sections on
/proc and process movement.

4.1 Process Ids and Process Tracking

As in OpenSSI, process ids are created by first
having the local base kernel generate a locally
unique id and then, using the hooks, adding the
local node number in the higher order bits of
the pid. This is the only pid the process will
have and when the pid is no longer in use, the
locally unique part is returned to the pool on the
node it was generated on. The node who gener-
ated the process id (creation or origin node) is
responsible for tracking if the process still ex-
ists and where it is currently running so opera-
tions on the process can be routed to the correct
node and so ultimately the pid can be reused.
If the origin node leaves the cluster, tracking is
taken over by a designated node in the cluster
(surrogate origin node) so processes are always
findable without polling.

4.2 Clusterproc Module Initialization and
Per Process Clusterproc Data Struc-
ture

The clusterproc module is loaded during the
ramdisk processing although it could be done
later. It assumes the membership, intra-node
communication remote copy-in/copy-out and
remote file ops modules are already loaded and
registers with them. It sets up its data structures
and installs the function pointers in the cluster-
proc op table. It also allocates and initializes
clusterproc data structures for all existing pro-
cesses, linking the structures into the task struc-
ture. After this initialization, each new process
created will get a private clusterproc data struc-
ture via thefork_alloc hook.

260 • Clusterproc: Linux Kernel Support for Clusterwide Process Management

XYZ

Child B

Figure 2: xyz children’s execution node

Local
Child CLocal

Child A

Remote
Child B

XYZ
siblingchildren sibling

parent

parent

parent

pid_chain

pid_chain

Figure 1: Parent xyz’s execution node

parent

Child D

Remote
Child D

children parent

sibling

sibling

parentsurrogate_hash

pid_hash
[PIDTYPE_PID]

pid_hash
[PIDTYPE_PID]

surrogate_hash

pids[0].pid_chain

pids[0].pid_chainpid_chain

pid_chain

pid_chain

4.3 Parent/Child/Ptrace Relationships

To minimize hooks and changes to the base
Linux, the complete parent/child/sibling rela-
tionship is maintained at the current execution
node of the parent, using surrogate task struc-
tures for any children that are not currently ex-
ecuting on that node. Surrogate task structures
are just structtask_struct but are not hashed
into the any of the base pid hashes and thus
only visible to the base in the context of the
parent/child relationship. Surrogate task struc-
tures have cached copies of the fields the parent
will need to executesys_wait() without hav-
ing to poll remote children. The reap operation
does involve an operation to the child execu-
tion node. Theupdate_parent hook is used
to maintain the caches of child information. For

each node that has children but no parent, there
is a surrogate task structure for the parent and a
partial parent/child/sibling list. Surrogate task
structures are hashed off a hash header private
to the CPM module. Figure 1 shows how parent
process XYZ is linked to his children on his ex-
ecution node and Figure 2 shows the structures
on a child node where XYZ is not executing.

Ptrace parent adds some complexity because a
process’s parent changes over time andreal_

parent can be different fromparent . The
update_parent hook is used to maintain all
the proper links on all the nodes.

2005 Linux Symposium • 261

Figure 3: Pgrp Leader XYZ Origin Node (leader executing locally)

Local
member C

Local
member A

XYZ
pids[2].pid_list

pids[2].pid_list

For clusterprocs, a supplemental structure with
a nodelist where other pgrp members are executing
and the pgrp_list_sleep_lock

pids[0]pid_chain

Figure 4: Pgrp Leader XYZ Origin Node (leader not executing locally)

Local
member C

Local
member A pids[2].pid_list

b

pid_hash
[PIDTYPE_PID]

pid_hash
[PIDTYPE_PID]

pid_hash
[PIDTYPE_PGID]

pid_hash
[PIDTYPE_PGID]

pid_chain

For clusterprocs, a supplemental structure with
a nodelist where other pgrp members are executing
and the pgrp_list_sleep_lock

pids[0]pid_chain

pid_chain

pid_chain

pid_chain

pid_chain

pid_chain

pid_chain

4.4 Process Group and Session Relation-
ships

With the process tracking described above, ac-
tions on an individual process is pretty straight-
forward. Actions on process groups and ses-
sions are more complicated because the mem-
bers may be scattered. For this CPM imple-
mentation, we keep a list of nodes where mem-
bers are executing on the origin/surrogate ori-
gin node for the pid that is the name of the pgrp
or session. On that origin node any local mem-
bers are linked together as in the base but an ad-
ditional structure is maintained that records the
other nodes where members are on. This struc-
ture also has a sleep lock in it to make certain
pgrp or session operations are atomic. Figures
3 and 4 shows the data structure layout on the

origin node with and without the pgrp leader
executing on that node. As with process track-
ing, this origin node role is assumed by the sur-
rogate origin if the origin node fails and is thus
not a single point of failure.

Operations on process groups are directed to
the origin node (aka the list node). On that node
the operation first gets the sleep lock. Then
the operation can be done on any locally exe-
cuting members by invoking the standard base
code. Then the operation is sent to each node
in the node list and the standard base operation
is done for any members on that node.

A process group is orphan if no member has
a parent in a different pgrp but with the same
session id (sid). Linux needs to know if a pro-
cess group is orphan to determine if processes

262 • Clusterproc: Linux Kernel Support for Clusterwide Process Management

can stop (SIGTSTP, SIGTTIN, SIGTTOU). If
a process group is orphan, they cannot. Linux
also needs to know when a process group be-
comes orphan, because at that point any mem-
bers that are stopped get SIGHUP and SIG-
CONT signals. A process exit might effect
its own pgrp and the pgrp on all its children,
which could involve looking at all the pgrp
members (and their parents) of all the pgrps of
all the exiting process’s children. When all the
pgrps and processes are distributed, this could
be very expensive. The OpenSSI CPM, through
the described hooks, has each pgrp list cache
whether it is orphan or not, and if not, which
nodes have processes contributing to its non-
orphaness. Process exit can locally determine
if it necessary to update the current process’s
pgrp list. Each child must be informed of the
parents exit, but they can locally determine if
they have to update the pgrp list orphan infor-
mation. With a little additional information this
mechanism can survive arbitrary node failures.

4.5 Controlling Terminal Management

In the OpenSSI cluster, the controlling terminal
may be managed on a node other than that of
the session leader or any of the processes using
it. There is a relationship in that processes need
to know who their controlling terminal is (and
where it is) and the controlling terminal needs
to know which session it is associated with and
which process group is the foreground process
group.

In the base linux, processes have atty pointer
to their controlling terminal. Thetty_struct

has apgrp and asession field. In cluster-
proc, the base structures are maintained as is,
with the pgrp and session fields in the tty struc-
ture and the tty pointer in the task’s signal struc-
ture. The tty pointer will be maintained if the
tty is local to the process. If the tty is not lo-
cal, the clusterproc structure will have cttynode

and cttydev fields to allow CPM code to deter-
mine if and where the controlling terminal is.
To avoid hooks in some of the routines being
executed at the controlling terminal node, svr-
procs (agent kernel threads akin to nfsd’s) do-
ing opens, ioctls, reads and writes of devices
at the controlling node will masquerade as the
process doing the request (pid, pgrp, session,
and tty). To avoid possible problems their mas-
querading might cause, svrprocs will not be
hashed on thepid_hash[PIDTYPE_PID] .

4.6 Clusterwide/proc

Clusterwide/proc is accomplished by stack-
ing a new pseudo filesystem (cprocfs) over
an unmodified/proc . Hooks may be needed
to do the stacking but will be modest. In
addition, a couple of new files are added to
/proc/<pid> —agoto file to facilitate pro-
cess movement and awhere file to display
where the process is currently executing. The
proposed semantics forcprocfs would be
that:

• readdir presents all processes from all
nodes and other proc files would either be
an aggregation (sysvipc, uptime, net/unix,
etc.) or would pass thru to the local
/proc

• cprocfs function ships all ops on pro-
cesses to the nodes where they are execut-
ing and then calls theprocfs on those
nodes;

• cprocfs inodes don’t point at task struc-
tures but at small structures which have
hints as to where the process is executing.

• /proc/node/# directories are redi-
rected to the/proc on that node so one
can access all the hardware information
for any node.

2005 Linux Symposium • 263

• readdir of /proc/node/# only shows
the processes executing on that node.

4.7 Process Movement

Via the hooks described earlier, the OpenSSI
CPM system provides several forms of process
movement, including a couple of forms of re-
mote exec, an rfork and somewhat arbitrary
process migration. In addition, these interfaces
allow for transparent and programmatic check-
point/restart.

The external interfaces to invoke process move-
ment are library routines which in turn use the
/proc/<pid>/goto interface to affect how
standard system calls function. Writes to this
file would take a buffer and length. To allow
considerable flexibility in specifying the form
of the movement and characteristics/functions
to be performed as part of the movement, the
buffer consists of a set of stanzas, each made
up of a command and arguments. The ini-
tial set of commands is: rexec, rfork, migrate,
checkpoint, restart, and context, but additional
commands can be added. The arguments to
rexec, rfork and migrate() are a node number.
The argument to checkpoint and restart are a
pathname for the checkpoint file. The context
command indicates whether the process is to
have the context of the node it is moving to
or remain the way it was.Do_execve() and
do_fork() have hooks which, if clusterproc
is configured, will check thegoto informa-
tion that was stored off the clusterproc struc-
ture, and if appropriate, turn an exec into an
rexec or a fork into an rfork.

The goto is also used to enable migrations.
Besides saving thegoto value, the write to
the goto sets a new bit in thethread_info

structure (TIF_MIGPENDING). Each time the
process leaves the kernel to return to user space
(did a system call or serviced an interrupt),

the do_notify_resume() function is called
if any of the flags inthread_info.flags are
set (normally there are none set). The function
do_notify_resume() now has a hook which
will check for theTIF_MIGPENDING flag and
if it is set, the process migrates itself. This
hook only adds pathlength when any of the
flags are set (TIF_SIGPENDING, etc.), which
is very rarely.

OpenSSI currently has checkpoint/restart ca-
pability and this can be adapted to use the
goto file and migration hook. Two forms
of kernel-based checkpoint/restart have been
done in OpenSSI. The first is transparent to
the process, where the action is initiated by
another process. The other is when the pro-
cess is checkpoint/restart aware and is doing the
checkpoint on itself. In that case, the process
may wish to “know” when it is being restarted.
To do that, we propose that the process open
the /proc/self/goto file and attach a sig-
nal and signal handler to it. Then, when the
process is restarted, the signal handler will be
called. Checkpoint/restart are variants of mi-
grate. The argument field to thegoto file is
a pathname. In the case of checkpoint, the
TIF_MIGPENDING will be set and at the end
of the next system call, the process will save
its state in the filename specified. Another ar-
gument can determine whether the process is
to continue or destroy at that point. Restart is
done by first creating a new process and then
doing the “restart”goto command to populate
the new process with the saved image in the file
which is specified as an argument.

A more extensive design document is available
on the OpenSSI web site[9].

5 Summary

Process management in Linux is a compli-
cated subsystem. There are several differ-

264 • Clusterproc: Linux Kernel Support for Clusterwide Process Management

ent relationships—parent/child, process group,
session, thread group, ptrace parent and con-
trolling terminal (session and foreground pgrp).
There are some intricate rules, like orphan pro-
cess groups andde_thread with ptrace on the
thread group leader. Making all this function in
a completely single system way requires quite a
few different hook functions, as defined above
(some could be combined to reduce this num-
ber), but there is no performance impact and
the footprint impact on the base kernel is very
small (patch file touches 23 files with less than
500 lines of total changes, excluding the new
clusterproc.h file).

References

[1] Popek, G., Walker, B.The LOCUS
Distributed System Architecture, MIT
Press, 1985.

[2] Barak, A., Guday, S., Wheeler, R.The
MOSIX Distributed Operating System,
Load Balancing for UNIXvolume 672 of
Lecture Notes in Computer Science,
Spinger-Verlag, 1993

[3] http://www.openssi.org

[4] http://www.openmosix.org

[5] http:
//bproc.sourceforge.net

[6] Valle’e, G., Morin, C., et.al.,Process
migration based on gobelins distributed
shared memory, in proceedings of the
workshop on Distributed Shared Memory
(DSM’02) in CCGRID 2002, pg.
325–330, IEEE Computer Society, May
2002.

[7] Private communication

[8] http://www.cassatt.com

[9] http://openssi.org/
proc-hooks/proc-hooks.pdf

[10] http:
//openssi.org/ssi-intro.pdf

Flow-based network accounting with Linux

Harald Welte
netfilter core team / hmw-consulting.de / Astaro AG

laforge@netfilter.org

Abstract

Many networking scenarios require some form
of network accounting that goes beyond some
simple packet and byte counters as available
from the ‘ifconfig’ output.

When people want to do network accouting, the
past and current Linux kernel didn’t provide
them with any reasonable mechanism for doing
so.

Network accounting can generally be done in
a number of different ways. The traditional
way is to capture all packets by some userspace
program. Capturing can be done via a num-
ber of mechanisms such asPF_PACKETsock-
ets,mmap() ed PF_PACKET, ipt_ULOG , or
ip_queue . This userspace program then ana-
lyzes the packets and aggregates the result into
per-flow data structures.

Whatever mechanism used, this scheme has a
fundamental performance limitation, since all
packets need to be copied and analyzed by a
userspace process.

The author has implemented a different ap-
proach, by which the accounting information is
stored in the in-kernel connection tracking table
of the ip_conntrack stateful firewall state
machine. On all firewalls, that state table has to
be kept anyways—the additional overhead in-
troduced by accounting is minimal.

Once a connection is evicted from the state ta-
ble, its accounting relevant data is transferred
to userspace to a special accounting daemon for
further processing, aggregation and finally stor-
age in the accounting log/database.

1 Network accounting

Network accounting generally describes the
process of counting and potentially summariz-
ing metadata of network traffic. The kind of
metadata is largely dependant on the particular
application, but usually includes data such as
numbers of packets, numbers of bytes, source
and destination ip address.

There are many reasons for doing accounting
of networking traffic, among them

• transfer volume or bandwisth based billing

• monitoring of network utilization, band-
width distribution and link usage

• research, such as distribution of traffic
among protocols, average packet size, . . .

2 Existing accounting solutions for
Linux

There are a number of existing packages to do
network accounting with Linux. The follow-

• 265 •

266 • Flow-based network accounting with Linux

ing subsections intend to give a short overview
about the most commonly used ones.

2.1 nacctd

nacctd also known asnet-acct is proba-
bly the oldest known tool for network account-
ing under Linux (also works on other Unix-
like operating systems). The author of this pa-
per has usednacctd as an accounting tool
as early as 1995. It was originally developed
by Ulrich Callmeier, but apparently abandoned
later on. The development seems to have con-
tinued in multiple branches, one of them being
the netacct-mysql1 branch, currently at version
0.79rc2.

Its principle of operation is to use anAF_

PACKETsocket vialibpcap in order to cap-
ture copies of all packets on configurable net-
work interfaces. It then does TCP/IP header
parsing on each packet. Summary information
such as port numbers, IP addresses, number of
bytes are then stored in an internal table for
aggregation of successive packets of the same
flow. The table entries are evicted and stored
in a human-readable ASCII file. Patches ex-
ist for sending information directly into SQL
databases, or saving data in machine-readable
data format.

As a pcap-based solution, it suffers from the
performance penalty of copying every full
packet to userspace. As a packet-based solu-
tion, it suffers from the penalty of having to in-
terpret every single packet.

2.2 ipt_LOG based

The Linux packet filtering subsystem iptables
offers a way to log policy violations via the

1http://netacct-mysql.gabrovo.
com

kernel message ring buffer. This mechanism
is calledipt_LOG (or LOG target). Such
messages are then further processed byklogd
and syslogd , which put them into one or
multiple system log files.

As ipt_LOG was designed for logging policy
violations and not for accounting, its overhead
is significant. Every packet needs to be inter-
preted in-kernel, then printed in ASCII format
to the kernel message ring buffer, then copied
from klogd to syslogd, and again copied into
a text file. Even worse, most syslog installa-
tions are configured to write kernel log mes-
sages synchronously to disk, avoiding the usual
write buffering of the block I/O layer and disk
subsystem.

To sum up and anlyze the data, often custom
perl scripts are used. Those perl scripts have to
parse the LOG lines, build up a table of flows,
add the packet size fields and finally export the
data in the desired format. Due to the inefficient
storage format, performance is again wasted at
analyzation time.

2.3 ipt_ULOG based (ulogd, ulog-acctd)

The iptablesULOG target is a more effi-
cient version of theLOG target described
above. Instead of copying ascii messages via
the kernel ring buffer, it can be configured to
only copies the header of each packet, and
send those copies in large batches. A special
userspace process, normally ulogd, receives
those partial packet copies and does further in-
terpretation.

ulogd 2 is intended for logging of security vi-
olations and thus resembles the functionality of
LOG. it creates one logfile entry per packet. It

2http://gnumonks.org/projects/
ulogd

2005 Linux Symposium • 267

supports logging in many formats, such as SQL
databases or PCAP format.

ulog-acctd 3 is a hybrid betweenulogd
and nacctd . It replaces thenacctd libp-
cap/PF_PACKET based capture with the more
efficient ULOG mechanism.

Compared toipt_LOG , ipt_ULOG reduces
the amount of copied data and required ker-
nel/userspace context switches and thus im-
proves performance. However, the whole
mechanism is still intended for logging of se-
curity violations. Use for accounting is out of
its design.

2.4 iptables based (ipac-ng)

Every packet filtering rule in the Linux packet
filter (iptables , or even its predecessor
ipchains) has two counters: number of
packets and number of bytes matching this par-
ticular rule.

By carefully placing rules with no target (so-
calledfallthrough) rules in the packetfilter rule-
set, one can implement an accounting setup,
i.e., one rule per customer.

A number of tools exist to parse the iptables
command output and summarized the coun-
ters. The most commonly used package is
ipac-ng 4. It supports advanced features such
as storing accounting data in SQL databases.

The approach works quite efficiently for small
installations (i.e., small number of accounting
rules). Therefore, the accounting granularity
can only be very low. One counter for each
single port number at any given ip address is
certainly not applicable.

3http://alioth.debian.org/
projects/pkg-ulog-acctd/

4http://sourceforge.net/
projects/ipac-ng/

2.5 ipt_ACCOUNT (iptaccount)

ipt_ACCOUNT5 is a special-purpose iptables
target developed by Intra2net AG and avail-
able from the netfilter project patch-o-matic-ng
repository. It requires kernel patching and is
not included in the mainline kernel.

ipt_ACCOUNT keeps byte counters per IP
address in a given subnet, up to a ‘/8’ net-
work. Those counters can be read via a special
iptaccount commandline tool.

Being limited to local network segments up to
‘/8’ size, and only having per-ip granularity are
two limiteations that defeatipt_ACCOUNT as
a generich accounting mechainism. It’s highly-
optimized, but also special-purpose.

2.6 ntop (including PF_RING)

ntop 6 is a network traffic probe to show
network usage. It useslibpcap to cap-
ture the packets, and then aggregates flows in
userspace. On a fundamental level it’s there-
fore similar to whatnacctd does.

From the ntop project, there’s alsonProbe , a
network traffic probe that exports flow based in-
formation in Cisco NETFLOW v5/v9 format.
It also contains support for the upcoming IETF
IPFIX7 format.

To increase performance of the probe, the au-
thor (Luca Deri) has implementedPF_RING8,
a new zero-copy mmap()ed implementation for

5http://www.intra2net.com/
opensource/ipt_account/

6http://www.ntop.org/ntop.html
7IP Flow Information Export

http://www.ietf.org/html.charters/
ipfix-charter.html

8http://www.ntop.org/PF_RING.
html

268 • Flow-based network accounting with Linux

packet capture. There is a libpcap compatibil-
ity layer on top, so any pcap-using application
can benefit fromPF_RING.

PF_RING is a major performance improve-
ment, please look at the documentation and the
paper published by Luca Deri.

However, ntop / nProbe / PF_RING are
all packet-based accounting solutions. Every
packet needs to be analyzed by some userspace
process—even if there is no copying involved.
Due to PF_RING optimiziation, it is probably
as efficient as this approach can get.

3 New ip_conntrack based ac-
counting

The fundamental idea is to (ab)use the connec-
tion tracking subsystem of the Linux 2.4.x /
2.6.x kernel for accounting purposes. There are
several reasons why this is a good fit:

• It already keeps per-connection state in-
formation. Extending this information to
contain a set of counters is easy.

• Lots of routers/firewalls are already run-
ning it, and therefore paying its per-
formance penalty for security reasons.
Bumping a couple of counters will intro-
duce very little additional penalty.

• There was already an (out-of-tree) system
to dump connection tracking information
to userspace, called ctnetlink.

So given that a particular machine was already
running ip_conntrack , adding flow based
acconting to it comes almost for free. I do not
advocate the use ofip_conntrack merely
for accounting, since that would be again a
waste of performance.

3.1 ip_conntrack_acct

ip_conntrack_acct is how the in-kernel
ip_conntrack counters are called. There is
a set of four counters: numbers of packets and
bytes for original and reply direction of a given
connection.

If you configure a recent (>= 2.6.9) kernel,
it will prompt you for CONFIG_IP_NF_CT_

ACCT. By enabling this configuration option,
the per-connection counters will be added, and
the accounting code will be compiled in.

However, there is still no efficient means of
reading out those counters. They can be ac-
cessed viacat /proc/net/ip_conntrack, but that’s
not a real solution. The kernel iterates over
all connections and ASCII-formats the data.
Also, it is a polling-based mechanism. If the
polling interval is too short, connections might
get evicted from the state table before their fi-
nal counters are being read. If the interval is too
small, performance will suffer.

To counter this problem, a combination of con-
ntrack notifiers and ctnetlink is being used.

3.2 conntrack notifiers

Conntrack notifiers use the core kernel no-
tifier infrastructure (struct notifier_
block) to notify other parts of the kernel about
connection tracking events. Such events in-
clude creation, deletion and modification of
connection tracking entries.

The conntrack notifiers can help us
overcome the polling architecture. If we’d only
listen toconntrack deleteevents, we would al-
ways get the byte and packet counters at the end
of a connection.

However, the events are in-kernel events and
therefore not directly suitable for an account-
ing application to be run in userspace.

2005 Linux Symposium • 269

3.3 ctnetlink

ctnetlink (short form for conntrack
netlink) is a mechanism for passing connection
tracking state information between kernel and
userspace, originally developed by Jay Schulist
and Harald Welte. As the name implies, it uses
Linux AF_NETLINK sockets as its underlying
communication facility.

The focus ofctnetlink is to selectively read
or dump entries from the connection tracking
table to userspace. It also allows userspace pro-
cesses to delete and create conntrack entries as
well asconntrack expectations.

The initial nature ofctnetlink is there-
fore again polling-based. An userspace process
sends a request for certain information, the ker-
nel responds with the requested information.

By combining conntrack notifiers
with ctnetlink , it is possible to register a
notifier handler that in turn sendsctnetlink
event messages down theAF_NETLINK socket.

A userspace process can now listen for such
DELETEevent messages at the socket, and put
the counters into its accounting storage.

There are still some shortcomings inherent to
thatDELETEevent scheme: We only know the
amount of traffic after the connection is over.
If a connection lasts for a long time (let’s say
days, weeks), then it is impossible to use this
form of accounting for any kind of quota-based
billing, where the user would be informed (or
disconnected, traffic shaped, whatever) when
he exceeds his quota. Also, the conntrack en-
try does not contain information about when
the connection started—only the timestamp of
the end-of-connection is known.

To overcome limitation number one, the ac-
counting process can use a combined event and

polling scheme. The granularity of accounting
can therefore be configured by the polling in-
terval, and a compromise between performance
and accuracy can be made.

To overcome the second limitation, the ac-
counting process can also listen forNEW
event messages. By correlating theNEW and
DELETEmessages of a connection, accounting
datasets containign start and end of connection
can be built.

3.4 ulogd2

As described earlier in this paper,ulogd is a
userspace packet filter logging daemon that is
already used for packet-based accounting, even
if it isn’t the best fit.

ulogd2 , also developed by the author of this
paper, takes logging beyond per-packet based
information, but also includes support for per-
connection or per-flow based data.

Instead of supporting onlyipt_ULOG in-
put, a number of interpreter and output plug-
ins, ulogd2 supports a concept calledplugin
stacks. Multiple stacks can exist within one
deamon. Any such stack consists out of plu-
gins. A plugin can be a source, sink or filter.

Sources acquire per-packet or per-connection
data from ipt_ULOG or ip_contnrack_
acct .

Filters allow the user to filter or aggregate in-
formation. Filtering is requird, since there
is no way to filter the ctnetlink event mes-
sages within the kernel. Either the function-
ality is enabled or not. Multiple connections
can be aggregated to a larger, encompassing
flow. Packets could be aggregated to flows (like
nacctd), and flows can be aggregated to even
larger flows.

270 • Flow-based network accounting with Linux

Sink plugins store the resulting data to some
form of non-volatile storage, such as SQL
databases, binary or ascii files. Another sink
is a NETFLOW or IPFIX sink, exporting in-
formation in industy-standard format for flow
based accounting.

3.5 Status of implementation

ip_conntrack_acct is already in the ker-
nel since 2.6.9.

ctnetlink and the conntrack event
notifiers are considered stable and will be
submitted for mainline inclusion soon. Both
are available from the patch-o-matic-ng reposi-
tory of the netfilter project.

At the time of writing of this paper,ulogd2
development was not yet finished. How-
ever, the ctnetlink event messages can already
be dumped by the use of the “conntrack”
userspace program, available from the netfilter
project.

The “conntrack” prorgram can listen to the
netlink event socket and dump the information
in human-readable form (one ASCII line per ct-
netlink message) to stdout. Custom accounting
solutions can read this information from stdin,
parse and process it according to their needs.

4 Summary

Despite the large number of available account-
ing tools, the author is confident that inventing
yet another one is worthwhile.

Many existing implementations suffer from
performance issues by design. Most of them
are very special-purpose. nProbe/ntop together
with PF_RING are probably the most universal

and efficient solution for any accounting prob-
lem.

Still, the new ip_conntrack_acct ,
ctnetlink based mechanism described in
this paper has a clear performance advantage if
you want to do acconting on your Linux-based
stateful packetfilter—which is a common case.
The firewall is suposed to be at the edge of
your network, exactly where you usually do
accounting of ingress and/or egress traffic.

Introduction to the InfiniBand Core Software

Bob Woodruff
Intel Corporation

robert.j.woodruff@intel.com

Sean Hefty
Intel Corporation

sean.hefty@intel.com

Roland Dreier
Topspin Communications

roland@topspin.com

Hal Rosenstock
Voltaire Corporation
halr@coltaire.com

Abstract

InfiniBand support was added to the kernel in
2.6.11. In this paper, we describe the vari-
ous modules and interfaces of the InfiniBand
core software and provide examples of how and
when to use them. The core software consists
of the host channel adapter (HCA) driver and a
mid-layer that abstracts the InfiniBand device
implementation specifics and presents a con-
sistent interface to upper level protocols, such
as IP over IB, sockets direct protocol, and the
InfiniBand storage protocols. The InfiniBand
core software is logically grouped into 5 ma-
jor areas: HCA resource management, memory
management, connection management, work
request and completion event processing, and
subnet administration. Physically, the core
software is currently contained within 6 ker-
nel modules. These include the Mellanox HCA
driver, ib_mthca.ko, the core verbs module,
ib_core.ko, the connection manager, ib_cm.ko,
and the subnet administration support modules,
ib_sa.ko, ib_mad.ko, ib_umad.ko. We will also
discuss the additional modules that are under
development to export the core software inter-
faces to userspace and allow safe direct access
to InfiniBand hardware from userspace.

1 Introduction

This paper describes the core software compo-
nents of the InfiniBand software that was in-
cluded in the linux 2.6.11 kernel. The reader is
referred to the architectural diagram and foils
in the slide set that was provided as part of the
paper’s presentation at the Ottawa Linux Sym-
posium. It is also assumed that the reader has
read at least chapters 3, 10, and 11 of Infini-
Band Architecture Specification [IBTA] and is
familiar with the concepts and terminology of
the InfiniBand Architecture. The goal of the pa-
per is not to educate people on the InfiniBand
Architecture, but rather to introduce the reader
to the APIs and code that implements the In-
finiBand Architecture support in Linux. Note
that the InfiniBand code that is in the kernel has
been written to comply with the InfiniBand 1.1
specification with some 1.2 extensions, but it is
important to note that the code is not yet com-
pletely 1.2 compliant.

The InfiniBand code is located in the ker-
nel tree under linux-2.6.11/drivers/

infiniband . The reader is encouraged to read
the code and header files in the kernel tree. Sev-
eral pieces of the InfiniBand stack that are in
the kernel contain good examples of how to use

• 271 •

272 • Introduction to the InfiniBand Core Software

the routines of the core software described in
this paper. Another good source of informa-
tion can be found at the www.openib.org web-
site. This is where the code is developed prior
to being submitted to the linux kernel mailing
list (lkml) for kernel inclusion. There are sev-
eral frequently asked question documents plus
email lists <openib-general@openib.
org> . where people can ask questions or sub-
mit patches to the InfinBand code.

The remainder of the paper provides a high
level overview of the mid-layer routines and
provides some examples of their usage. It is
targeted at someone that might want to write
a kernel module that uses the mid-layer or
someone interested in how it is used. The pa-
per is divided into several sections that cover
driver initialization and exit, resource manage-
ment, memory management, subnet adminis-
tration from the viewpoint of an upper level
protocol developer, connection management,
and work request and completion event pro-
cessing. Finally, the paper will present a sec-
tion on the user-mode infrastructure and how
one can safely use the InfiniBand resource di-
rectly from userspace applications.

2 Driver initialization and exit

Before using InfiniBand resources, kernel
clients must register with the mid-layer. This
also provides the way, via callbacks, for
the client to discover the available Infini-
Band devices that are present in the system.
To register with the InfiniBand mid-layer, a
client calls theib_register_client rou-
tine. The routine takes as a parameter a
pointer to aib_client structure, as defined
in linux-2.6.11/drivers/infiniband/

include/ib_verbs.h . The structure takes a
pointer to the client’s name, plus two function
pointers to callback routines that are invoked

when an InfiniBand device is added or removed
from the system. Below is some sample code
that shows how this routine is called:

static void my_add_device(
struct ib_device *device);

static void my_remove_device(
struct ib_device *device);

static struct ib_client my_client = {
.name = "my_name",
.add = my_add_device,
.remove = my_remove_device

};
static int __init my_init(void)
{

int ret;

ret = ib_register_client(
&my_client);

if (ret)
printk(KERN_ERR

"my ib_register_client failed\n");
return ret;

}
static void __exit my_cleanup(void)
{

ib_unregister_client(
&my_client);

}
module_init(my_init);
module_exit(my_cleanup);

3 InfiniBand resource management

3.1 Miscellaneous Query functions

The mid-layer provides routines that allow a
client to query or modify information about the
various InfiniBand resources.

ib_query_device
ib_query_port
ib_query_gid
ib_query_pkey

2005 Linux Symposium • 273

ib_modify_device
ib_modify_port

The ib_query_device routine allows a
client to retrieve attributes for a given hardware
device. The returneddevice_attr structure
contains device specific capabilities and limi-
tations, such as the maximum sizes for queue
pairs, completion queues, scatter gather entries,
etc., and is used when configuring queue pairs
and establishing connections.

The ib_query_port routine returns infor-
mation that is needed by the client, such as the
state of the port (Active or not), the local iden-
tifier (LID) assigned to the port by the subnet
manager, the Maximum Transfer Unit (MTU),
the LID of the subnet manager, needed for
sending SA queries, the partition table length,
and the maximum message size.

The ib_query_pkey routine allows the
client to retrieve the partition keys for a port.
Typically, the subnet manager only sets one
pkey for the entire subnet, which is the default
pkey.

The ib_modify_device and ib_modify_

port routines allow some of the device or port
attributes to be modified. Most ULPs do not
need to modify any of the port or device at-
tributes. One exception to this would be the
communication manager, which sets a bit in the
port capabilities mask to indicate the presence
of a CM.

Additional query and modify routines are dis-
cussed in later sections when a particular re-
source, such as queue pairs or completion
queues, are discussed.

3.2 Protection Domains

Protection domains are a first level of access
control provided by InfiniBand. Protection do-
mains are allocated by the client and associated

with subsequent InfiniBand resources, such as
queue pairs, or memory regions.

Protection domains allow a client to associate
multiple resources, such as queue pairs and
memory regions, within a domain of trust. The
client can then grant access rights for send-
ing/receiving data within the protection domain
to others that are on the Infinband fabric.

To allocate a protection domain, clients call the
ib_alloc_pd routine. The routine takes and
pointer to the device structure that was returned
when the driver was called back after register-
ing with the mid-layer. For example:

my_pd = ib_alloc_pd(device);

Once a PD has been allocated, it is used in sub-
sequent calls to allocate other resources, such
as creating address handles or queue pairs.

To free a protection domain, the client calls
ib_dealloc_pd , which is normally only
done at driver unload time after all of the other
resources associated with the PD have been
freed.

ib_dealloc_pd(my_pd);

3.3 Types of communication in InfiniBand

Several types of communication between
end-points are defined by the InfiniBand ar-
chitecture specification [IBTA]. These include
reliable-connected, unreliable-connected,
reliable-datagram, and unreliable datagrams.
Most clients today only use either unreliable
datagrams or reliable connected commu-
nications. An analogy in the IP network
stack would be that unreliable datagrams
are analogous to UDP packets, while a
reliable-connected queue pairs provide a

274 • Introduction to the InfiniBand Core Software

connection-oriented type of communication,
similar to TCP. But InfiniBand communication
is packet-based, rather than stream oriented.

3.4 Address handles

When a client wants to communicate via un-
reliable datagrams, the client needs to create
an address handle that contains the information
needed to send packets.

To create an address handle the client calls
the routineib_create_ah() . An example
code fragment is shown below:

struct ib_ah_attr ah_attr;
struct ib_ah *remote_ah;

memset(&ah_attr, 0, sizeof ah_attr);
ah_attr.dlid = remote_lid;
ah_attr.sl = service_level;
ah_attr.port_num = port->port_num;

remote_ah = ib_create_ah(pd, &ah_attr);

In the above example, the pd is the protection
domain, theremote_lid and service_
level are obtained from an SA path record
query, and theport_num was returned in the
device structure through theib_register_
client callback. Another way to get the
remote_lid and service_level infor-
mation is from a packet that was received from
a remote node.

There are also core verb APIs for destroying the
address handles and for retrieving and modify-
ing the address handle attributes.

ib_destroy_ah
ib_query_ah
ib_modify_ah

Some example code that callsib_create_
ah to create an address handle for a multicast
group can be found in the IPoIB network driver
for InfiniBand, and is located inlinux-2.6.

11/drivers/infiniband/ulp/ipoib .

3.5 Queue Pairs and Completion Queue
Allocation

All data communicated over InfiniBand is done
via queue pairs. Queue pairs (QPs) contain
a send queue, for sending outbound messages
and requesting RDMA and atomic operations,
and a receive queue for receiving incoming
messages or immediate data. Furthermore,
completion queues (CQs) must be allocated and
associated with a queue pair, and are used to re-
ceive completion notifications and events.

Queue pairs and completion queues are allo-
cated by calling theib_create_qp andib_
create_cq routines, respectively.

The following sample code allocates separate
completion queues to handle send and receive
completions, and then allocates a queue pair as-
sociated with the two CQs.

send_cq = ib_create_cq(device,
my_cq_event_handler,
NULL,
my_context,
my_send_cq_size);

recv_cq = ib_create_cq(device,
my_cq_event_handler,
NULL,
my_context,
my_recv_cq_size);

init_attr->cap.max_send_wr = send_cq_size;
init_attr->cap.max_recv_wr = recv_cq_size;
init_attr->cap.max_send_sge = LIMIT_SG_SEND;
init_attr->cap.max_recv_sge = LIMIT_SG_RECV;

init_attr->send_cq = send_cq;
init_attr->recv_cq = recv_cq;
init_attr->sq_sig_type = IB_SIGNAL_REQ_WR;
init_attr->qp_type = IB_QPT_RC;
init_attr->event_handler = my_qp_event_handler;

my_qp = ib_create_qp(pd, init_attr);

After a queue pair is created, it can be con-
nected to a remote QP to establish a connec-
tion. This is done using the QP modify routine
and the communication manager helper func-
tions described in a later section.

There are also mid-layer routines that allow de-
struction and release of QPs and CQs, along

2005 Linux Symposium • 275

with the routines to query and modify the queue
pair attributes and states. These additional core
QP and CQ support routines are as follows:

ib_modify_qp
ib_query_qp
ib_destroy_qp
ib_destroy_cq
ib_resize_cq

Note thatib_resize_cq is not currently im-
plemented in the mthca driver.

An example of kernel code that allocates QPs
and CQs for reliable-connected style of com-
munication is the SDP driver [SDP]. It can be
found in the subversion tree at openib.org, and
will be submitted for kernel inclusion at some
point in the near future.

4 InfiniBand memory management

Before a client can transfer data across Infini-
Band, it needs to register the corresponding
memory buffer with the InfiniBand HCA. The
InfiniBand mid-layer assumes that the kernel
or ULP has already pinned the pages and has
translated the virtual address to a Linux DMA
address, i.e., a bus address that can be used by
the HCA. For example, the driver could call
get_user_pages and thendma_map_sg
to get the DMA address.

Memory registration can be done in a couple of
different ways. For operations that do not have
a scatter/gather list of pages, there is a memory
region that can be used that has all of physical
memory pre-registered. This can be thought of
as getting access to the “Reserved L_key” that
is defined in the InfiniBand verbs extensions
[IBTA].

To get the memory region structure that has
the keys that are needed for data transfers, the
client calls theib_get_dma_mr routine, for
example:

mr = ib_get_dma_mr(my_pd,
IB_ACCESS_LOCAL_WRITE);

If the client has a list of pages that are not
physically contiguous but want to be virtually
contiguous with respect to the DMA opera-
tion, i.e., scatter/gather, the client can call the
ib_reg_phys_mr routine. For example,

*iova = &my_buffer1;

buffer_list[0].addr = dma_addr_buffer1;
buffer_list[0].size = buffer1_size;
buffer_list[1].addr = dma_addr_buffer2;
buffer_list[1].size = buffer2_size;

mr = ib_reg_phys_mr(my_pd,
buffer_list,
2,
IB_ACCESS_LOCAL_WRITE |
IB_ACCESS_REMOTE_READ |
IB_ACCESS_REMOTE_WRITE,
iova);

The mr structure that is returned contains the
necessary local and remote keys, lkey and
rkey, needed for sending/receiving messages
and performing RDMA operations. For exam-
ple, the combination of the returned iova and
the rkey are used by a remote node for RDMA
operations.

Once a client has completed all data transfers to
a memory region, e.g., the DMA is completed,
the client can release to the resources back to
the HCA using theib_dereg_mr routine, for
example:

ib_dereg_mr(mr);

There is also a verb,ib_rereg_phys_mr
that allows the client to modify the attributes of

276 • Introduction to the InfiniBand Core Software

a given memory region. This is similar to do-
ing a de-register followed by a re-register but
where possible the HCA reuses the same re-
sources rather than deallocating and then real-
locating new ones.

status = ib_rereg_phys_mr(mr,
mr_rereg_mask,
my_pd,
buffer_list,
num_phys_buf,
mr_access_flags,

iova_start);

There is also a set of routines that allow a tech-
nique called fast memory registration. Fast
Memory Registration, or FMR, was imple-
mented to allow the re-use of memory regions
and to reduce the overhead involved in regis-
tration and deregistration with the HCAs. Us-
ing the technique of FMR, the client typically
allocates a pool of FMRs during initialization.
Then when it needs to register memory with
the HCA, the client calls a routine that maps
the pages using one of the pre-allocated FMRs.
Once the DMA is complete, the client can un-
map the pages from the FMR and recycle the
memory region and use it for another DMA op-
eration. The following routines are used to al-
locate, map, unmap, and deallocate FMRs.

ib_alloc_fmr
ib_unmap_fmr
ib_map_phys_fmr
ib_dealloc_fmr

An example of coding using FMRs can be
found in the SDP [SDP] driver available at
openib.org .

NOTE: These FMRs are a Mellanox specific
implementation and are NOT the same as the
FMRs as defined by the 1.2 InfiniBand verbs

extensions [IBTA]. The FMRs that are imple-
mented are based on the Mellanox FMRs that
predate the 1.2 specification and so the develop-
ers deviated slightly from the InfiniBand speci-
fication in this area.

InfiniBand also has the concept of memory
windows [IBTA]. Memory windows are a way
to bind a set of virtual addresses and attributes
to a memory regions by posting an operation
to a send queue. It was thought that people
might want this dynamic binding/unbinding in-
termixed with their work request flow. How-
ever, it is currently not used, primarily because
of poor H/W performance in the existing HCA,
and thus is not implemented in the mthca driver
in Linux.

However, there are APIs defined in the mid-
layer for memory windows for when it is im-
plemented in mthca or some future HCA driver.
These are as follows:

ib_alloc_mw
ib_dealloc_mw

5 InfiniBand subnet administration

Communication with subnet administra-
tion(SA) is often needed to obtain information
for establishing communication or setting
up multicast groups. This is accomplished
by sending management datagram (MAD)
packets to the SA through InfiniBand special
QP 1 [IBTA]. The low level routines that
are needed to send/receive MADs along with
the critical data structures are defined in
linux-2.6.11/drivers/infiniband/

include/ib_mad.h .

Several helper functions have been imple-
mented for obtaining path record information
or joining multicast groups. These relieve

2005 Linux Symposium • 277

most clients from having to understand the
low level MAD routines. Subnet adminis-
tration APIs and data structures are located
in linux-2.6.11/drivers/infiniband/

include/ib_sa.h and the following sections
discuss their usage.

5.1 Path Record Queries

To establish connections, certain information is
needed, such as the source/destination LIDs,
service level, MTU, etc. This information
is found in a data structure known as a path
record, which contains all relevant informa-
tion of a path between a source and destina-
tion. Path records are managed by the In-
finiBand subnet administrator(SA). To obtain a
path record, the client can use the helper func-
tion:

ib_sa_path_rec_get

This function takes the device structure, re-
turned by the register routine callback, the local
InfiniBand port to use for the query, a timeout
value, which is the time to wait before giving
up on the query, and two masks,comp_mask
and gfp_mask . The comp_mask specifies
the components of theib_sa_path_rec to
perform the query with. Thegfp_mask is
the mask used for internal memory alloca-
tions, e.g., the ones passed to kmalloc,GFP_
KERNEL, GFP_USER, GFP_ATOMIC, GFP_
USER. The**query parameter is a returned
identifier of the query that can be used to
cancel it, if needed. For example, given a
source and destination InfiniBand global identi-
fier (sgid/dgid) and the partition key, here is an
example query call taken from the SDP [SDP]
code.

query_id = ib_sa_path_rec_get(

info->ca,
info->port,
&info->path,
(IB_SA_PATH_REC_DGID |

IB_SA_PATH_REC_SGID |
IB_SA_PATH_REC_PKEY |

IB_SA_PATH_REC_NUMB_PATH),
info->sa_time,
GFP_KERNEL,
sdp_link_path_rec_done,
info,
&info->query);

if (result < 0) {
sdp_dbg_warn(NULL,

"Error <%d> restarting path query",
result);

}

In the above example, when the query com-
pletes, or times-out, the client is called back
at the provided callback routine,sdp_link_

path_rec_done . If the query succeeds, the
path record(s) information requested is re-
turned along with the context value that was
provided with the query.

If the query times out, the client can retry the
request by calling the routine again.

Note that in the above example, the caller
must provide the DGID, SGID, and PKEY
in the info->path structure, In the SDP
example, theinfo->path.dgid , info->
path.sgid , and info->path.pkey are
set in the SDP routinedo_link_path_
lookup .

5.2 Cancelling SA Queries

If the client wishes to cancel an SA query, the
client uses the returned**query parameter
and query function return value (query id), e.g.,

ib_sa_cancel_query(
query_id,
query);

278 • Introduction to the InfiniBand Core Software

5.3 Multicast Groups

Multicast groups are administered by the sub-
net administrator/subnet manager, which con-
figure InfiniBand switches for the multicast
group. To participate in a multicast group, a
client sends a message to the subnet adminis-
trator to join the group. The APIs used to do
this are shown below:

ib_sa_mcmember_rec_set
ib_sa_mcmember_rec_delete
ib_sa_mcmember_rec_query

The ib_sa_mcmember_rec_set routine
is used to create and/or join the multicast group
and the ib_sa_mcmember_rec_delete
routine is used to leave a multicast group.
The ib_sa_mcmember_rec_query rou-
tine can be called get information on avail-
able multicast groups. After joining the mul-
ticast group, the client must attach a queue
pair to the group to allow sending and receiv-
ing multicast messages. Attaching/detaching
queue pairs from multicast groups can be done
using the API shown below:

ib_attach_mcast
ib_detach_mcast

The gid and lid in these routines are the mul-
ticast gid(mgid) and multicast lid (mlid) of
the group. An example of using the multi-
cast routines can be found in the IP over IB
code located inlinux-2.6.11/drivers/

infiniband/ulp/ipoib .

5.4 MAD routines

Most upper level protocols do not need to send
and receive InfiniBand management datagrams

(MADs) directly. For the few operations that
require communication with the subnet man-
ager/subnet administrator, such as path record
queries or joining multicast groups, helper
functions are provided, as discussed in an ear-
lier section.

However, for some modules of the mid-layer
itself, such as the communications manager,
or for developers wanting to implement man-
agement agents using the InfiniBand special
queue pairs, MADs may need to be sent
and received directly. An example might be
someone that wanted to tunnel IPMI [IPMI]
or SNMP [SNMP] over InfiniBand for re-
mote server management. Another exam-
ple is handling some vendor-specific MADs
that are implemented by a specific Infini-
Band vendor. The MAD routines are defined
in linux-2.6.11/drivers/infiniband/

include/ib_mad.h .

Before being allowed to send or receive MADs,
MAD layer clients must register an agent with
the MAD layer using the following routines.
The ib_register_mad_snoop routine can
be used to snoop MADs, which is useful for
debugging.

ib_register_mad_agent
ib_unregister_mad_agent
ib_register_mad_snoop

After registering with the MAD layer, the MAD
client sends and receives MADs using the fol-
lowing routines.

ib_post_send_mad
ib_coalesce_recv_mad
ib_free_recv_mad
ib_cancel_mad
ib_redirect_mad_qp
ib_process_mad_wc

2005 Linux Symposium • 279

The ib_post_send_mad routine allows the
client to queue a MAD to be sent. After a
MAD is received, it is given to a client through
their receive handler specified when register-
ing. When a client is done processing an in-
coming MAD, it frees the MAD buffer by call-
ing ib_free_recv_mad . As one would ex-
pect, theib_cancel_mad routine is used to
cancel an outstanding MAD request.

ib_coalesce_recv_mad is a place-holder
routine related to the handling of MAD seg-
mentation and reassembly. It will copy re-
ceived MAD segments into a single data buffer,
and will be implemented once the InfiniBand
reliable-multi-packet-protocol (RMPP) support
is added.

Similarly, the routineib_redirect_mad_
qp and the routineib_process_mad_wc
are place holders for supporting QP redirec-
tion, but are not currently implemented. QP re-
direction permits a management agent to send
and receive MADs on a QP other than the
GSI QP (QP 1). As an example, a protocol
which was data intensive could use QP redi-
rection to send and receive management data-
grams on their own QP, avoiding contention
with other users of the GSI QP, such as connec-
tion management or SA queries. In this case,
the client can re-redirect a particular Infini-
Band management class to a dedicated QP us-
ing theib_redirect_mad_qp routine. The
ib_process_mad_wc routine would then
be used to complete or continue processing a
previously started MAD request on the redi-
rected QP.

6 InfiniBand connection manage-
ment

The mid-layer provides several helper func-
tions to assist with establishing connec-
tions. These are defined in the header file,

linux-2.6.11/drivers/infiniband/

include/ib_cm.h Before initiating a con-
nection request, the client must first register
a callback function with the mid-layer for
connection events.

ib_create_cm_id
ib_destroy_cm_id

The ib_create_id routine creates a com-
munication id and registers a callback handler
for connection events. Theib_destroy_
cm_id routine can be used to free the commu-
nication id and de-register the communication
callback routine after the client is finished us-
ing their connections.

The communication manager implements a
client/server style of connection establishment,
using a three-way handshake between the client
and server. To establish a connection, the server
side listens for incoming connection requests.
Clients connect to this server by sending a con-
nection request. After receiving the connection
request, the server will send a connection re-
sponse or reject message back to the client. A
client completes the connection setup by send-
ing a ready to use (RTU) message back to the
server. The following routines are used to ac-
complish this:

ib_cm_listen
ib_send_cm_req
ib_send_cm_rep
ib_send_cm_rtu
ib_send_cm_rej
ib_send_cm_mra
ib_cm_establish

The communication manager is responsible for
retrying and timing out connection requests.
Clients receiving a connection request may re-
quire more time to respond to a request than the

280 • Introduction to the InfiniBand Core Software

timeout used by the sending client. For exam-
ple, a client tries to connect to a server that pro-
vides access to disk storage array. The server
may require several seconds to ready the drives
before responding to the client. To prevent the
client from timing out its connection request,
the server would use theib_send_cm_mra
routine to send a message received acknowl-
edged (MRA) to notify the client that the re-
quest was received and that a longer timeout is
necessary.

After a client sends the RTU message, it can be-
gin transferring data on the connection. How-
ever, since CM messages are unreliable, the
RTU may be delayed or lost. In such cases,
receiving a message on the connection notifies
the server that the connection has been estab-
lished. In order for the CM to properly track
the connection state, the server callsib_cm_
establish to notify the CM that the connec-
tion is now active.

Once a client is finished with a connection,
it can disconnect using the disconnect request
routine (ib_send_cm_dreq) shown below.
The recipient of a disconnect request sends a
disconnect reply.

ib_send_cm_dreq
ib_send_cm_drep

There are two routines that support path migra-
tion to an alternate path. These are:

ib_send_cm_lap
ib_send_cm_apr

The ib_send_cm_lap routine is used to re-
quest that an alternate path be loaded. The
ib_send_cm_apr routine sends a response
to the alternative path request, indicating if the
alternate path was accepted.

6.1 Service ID Queries

InfiniBand provides a mechanism to allow ser-
vices to register their existence with the subnet
administrator. Other nodes can then query the
subnet administrator to locate other nodes that
have this service and get information needed to
communicate with the other nodes. For exam-
ple, clients can discover if a node contains a
specific UD service. Given the service ID, the
client can discover the QP number and QKey
of the service on the remote node. This can
then be used to send datagrams to the remote
service. The communication manager provides
the following routines to assist in service ID
resolution.

ib_send_cm_sidr_req
ib_send_cm_sidr_rep

7 InfiniBand work request and
completion event processing

Once a client has created QPs and CQs, reg-
istered memory, and established a connec-
tion or set up the QP for receiving data-
grams, it can transfer data using the work
request APIs. To send messages, perform
RDMA reads or writes, or perform atomic
operations, a client posts send work request
elements (WQE) to the send queue of the
queue pair. The format of the WQEs along
with other critical data structures are located
in linux-2.6.11/drivers/infiniband/

include/ib_verbs.h . To allow data to
be received, the client must first post receive
WQEs to the receive queue of the QP.

ib_post_send
ib_post_recv

2005 Linux Symposium • 281

The post routines allow the client to post a list
of WQEs that are linked via a linked list. If
the format of WQE is bad and the post routine
detects the error at post time, the post routines
return a pointer to the bad WQE.

To process completions, a client typically sets
up a completion callback handler when the
completion queue (CQ) is created. The client
can then callib_req_notify_cq to request
a notification callback on a given CQ. The
ib_req_ncomp_notif routine allows the
completion to be delivered after n WQEs have
completed, rather than receiving a callback af-
ter a single one.

ib_req_notify_cq
ib_req_ncomp_notif

The mid-layer also provides routines for
polling for completions and peeking to see how
many completions are currently pending on the
completion queue. These are:

ib_poll_cq
ib_peek_cq

Finally, there is the possibility that the client
might receive an asynchronous event from the
InfiniBand device. This happens for certain
types of errors or ports coming online or going
offline. Readers should refer to section 11.6.3
of the InfiniBand specification [IBTA] for a list
of possible asynchronous event types. The mid-
layer provides the following routines to register
for asynchronous events.

ib_register_event_handler
ib_unregister_event_handler

8 Userspace InfiniBand Access

The InfiniBand architecture is designed so that
multiple userspace processes can share a sin-
gle InfiniBand adapter at the same time, with
each the process using a private context so that
fast path operation can access the adapter hard-
ware directly without requiring the overhead of
a system call or a copy between kernel space
and userspace.

Work is currently underway to add this sup-
port to the Linux InfiniBand stack. A kernel
moduleib_uverbs.ko implements charac-
ter special devices that are used for control path
operations, such as allocating userspace con-
texts and pinning userspace memory as well
as creating InfiniBand resources such as queue
pairs and completion queues. On the userspace
side, a library called libibverbs will provide an
API in userspace similar to the kernel API de-
scribed above.

In addition to adding support for accessing the
verbs from userspace, a kernel module (ib_
umad.ko) allows access to MAD services
from userspace.

There also now exists a kernel module to proxy
CM services into userspace. The kernel module
is calledib_ucm.ko .

As the userspace infrastructure is still under
construction, it has not yet been incorporated
into the main kernel tree, but it is expected to
be submitted to lkml in the near future. Peo-
ple that want get early access to the code can
download it from the InfiniBand subversion de-
velopment tree available fromopenib.org .

9 Acknowledgments

We would like to acknowledge the United
States Department of Energy for their fund-

282 • Introduction to the InfiniBand Core Software

ing of InfiniBand open source work and for
their computing resources used to host the
openib.org web site and subversion data
base. We would also like to acknowledge the
DOE for their work in scale-up testing of the
InfiniBand code using their large clusters.

We would also like to acknowledge all of the
companies of theopenib.org alliance that
have applied resources to theopenib.org
InfiniBand open source project.

Finally we would like the acknowledge the help
of all of the individuals in the Linux community
that have submitted patches, provided code re-
views, and helped with testing to ensure the In-
finiBand code is stable.

10 Availability

The latest stable release of the InfiniBand code
is available in the Linux releases (starting in
2.6.11) available fromkernel.org .

ftp://kernel.org/pub

For those that want to track the latest Infini-
Band development tree, it is located in a sub-
version database at openib.org.

svn checkout
https://openib.org/svn/gen2

References

[IBTA] The InfiniBand Architecture
Specification, Vol. 1, Release 1.2
http://www.ibta.org

[SDP] The SDP driver, developed by Libor
Michalek
http://www.openib.org

[IPMI] Intelligent Platform Management
Interface
http://developer.intel.com

[SNMP] Simple Network Management
Protocol
http://www.ietf.org

[LJ] May 2005 Linux Journal—InfiniBand
and Linux
http://www.linuxjournal.com

Linux Is Now IPv6 Ready

Hideaki Yoshifuji
Keio University / USAGI/WIDE Project

yoshfuji@linux-ipv6.org

Abstract

Linux has included an IPv6 protocol stack for a
long time. Its quality, however, was not quite
good at the early stage. The USAGI Project
was founded to promote this situation and pro-
vide high quality IPv6 stack for Linux systems.
As a result of 5 years of our intensive activity,
our stack is now certified as IPv6 Ready. It has
been merged into main-line kernel so that the
Linux IPv6 stack has enough quality to get the
IPv6 Ready Logo now. To maintain the stack
stable, we developed an automatic testing sys-
tem, which greatly helps us saving our time. In
this paper and the relevant presentation, we will
show our efforts and technology to get the Logo
and to maintain the quality of kernel. In addi-
tion, we will discuss our future plan.

1 Introduction

The current Internet has been running with the
Internet Protocol Version 4, so called as IPv4,
since the end of 1960s. At the end of 1980,
the internet experts working at the IETF (In-
ternet Engineering Task Force) recognized that
we needed a new version of Internet Protocol to
cope with rapid growth of the Internet. In 1992,
this new version of protocol was named as IPng
(IP next generation).

The first full-scale technical discussion on the
IPng started in 1992 at the IETF. IPng, i.e., In-
ternet Protocol Version 6 (IPv6), was intended
to solve the various problems on the traditional
IPv4, such as performance of packet forward-
ing, protocol extensibility, security and privacy.

According to the above principles, the basic
specification of IPv6 was defined in 1994. Af-
ter a series of experimental implementation and
network operation (e.g., 6bone), the IPv6 tech-
nology is now getting into professional phase
and applied to production. Commercial IPv6
services by Internet Service Providers and the
applications running with IPv6 have been al-
ready available around us. This means that
IPv6 stack implemented in any devices must be
of production quality.

Linux system has also supported the IPv6 pro-
tocol as well as other operating systems such as
FreeBSD, Sun Solaris and Microsoft Windows
XP. Linux has included IPv6 stack since 1996
when early Linux 2.1.x version released. How-
ever, Linux IPv6 stack was not actively devel-
oped nor maintained for some time.

Considering above circumstances, USAGI
Project was lunched in October, 2000. To de-
ploy IPv6, it aims at providing improved IPv6
stack on Linux, which is one of the most popu-
lar open-source operating system in the world.

With a number of developments and treatments
on problems, the quality has been remarkably

• 283 •

284 • Linux Is Now IPv6 Ready

improved. It is now good enough to be certified
to the IPv6 Ready Logo Phase-1.

2 Quality Assessment of IPv6

There are some basic concepts about the quality
assessment of IPv6. Among them, TAHI Con-
formance Test Suite, IPv6 Ready Logo Pro-
gram Phase-1 and Phase-2 are most important
ones.

2.1 TAHI Conformance Test Suite

TAHI Conformance Teat Suite is designed to
examine the conformity to the IPv6 specifica-
tions. The details of the test are described in
the test-scripts including the following fields;
e.g.

• IPv6 Core

• ICMPv6

• Neighbor Discovery

• Stateless Address Autoconfiguration

• Path MTU Discovery

• Tunneling

• Robustness

• IPsec

This test suite is considered one of the de-facto
standard tools for judgment of conformance of
IPv6 stack. Linux IPv6 stack can also be exam-
ined by this suite.

2.2 IPv6 Ready Logo Program

IPv6 Ready Logo Program is a worldwide au-
thorization activity for the interoperability on
the IPv6. To obtain the certification, applicants
should submit corresponding results of self test
and pass the examination of the interoperabil-
ity for the test scenario prior to the judgment.
Some test sets, such as TAHI Conformance Test
Tool that is a core part of TAHI Conformance
Test Suite, are admitted as a tool for the Self
Test.

2.2.1 Phase-1

The IPv6 Ready Logo Phase-1 indicates that
the product includes IPv6 mandatory core pro-
tocols and can interoperate with any other IPv6
equipments. Self Test covers mandatory fea-
tures of IPv6 core, ICMPv6, Neighbor Discov-
ery, and Stateless Address Autoconfiguration.
On the other hand, simple trial for the interop-
erability is carried out.

2.2.2 Phase-2

Phase-2 logo indicates that a product has suc-
cessfully satisfied strong requirements stated
by the IPv6 Logo Committee (v6LC). The
v6LC defines the test profiles with associated
requirements for specific functionalities.

The Core Protocols Logo covers the fields of
IPv6 core, NDP, Addrconf, PMTU, ICMPv6,
is designed to examine the MUST- and
SHOULD- items in specifications, and its tests
for interoperability are much more complicated
than those of Phase-1. Other discussions are
underway on the tests for IPsec, MLDv2, Mo-
bile IPv6.

2005 Linux Symposium • 285

3 Quality Improvement Activities
on Linux

As mentioned above, when the USAGI Project
started, the quality of IPv6 stack is far beyond
satisfaction though it was available on Linux.
Linux IPv6 stack could not get good scores in
the fields of Neighbor Discovery and Stateless
Address Autoconfiguration in TAHI IPv6 Con-
formance Test Suite.

The members of USAGI Project and other con-
tributers analyzed the problems of the stack,
which are categorized as follows:

Improper State Transition. In Neighbor Dis-
covery, improper state transition to the
specification had been carried out. To
solve the problem, the mutual dependency
was sorted out in state machine to make
the maintenance easier.

Inadequate time management.Time man-
agement at Neighbor Discovery and
Stateless Address Auto-configuration did
not have enough time accuracy. We con-
ducted the structural reform mentioned
above which enable the simplification of
the management and more accurate time
control.

Inadequate use of routing. In the previous
method, there were some occasions where
invalid route was used in an improper way.

Improper treatment against wrong input.
Checks of input from outer sources were
not adequate, improper treatments were
going on for the wrong or malicious input.

The project results dealing with the above prob-
lems have been applied in main-line kernel step
by step, until the version 2.6.11-rc2.

4 TAHI Automatic Running Sys-
tem

USAGI Project has been seeking for more fea-
tured and higher functional code, improving
IPv6 stack for Linux, its libraries and applica-
tions. The results have been gradually accepted
in the Linux community. For example, many
improvements on IPv6 stack have been added
in main-line kernels.

These good results are obtained by introduc-
ing TAHI Automatic Running System, which
is improved system of TAHI Conformance Test
Suite.

4.1 Background

The main objective of USAGI Project is to pro-
vide a better environment of IPv6 for Linux,
and all the member of this project have been
working hard for this purpose. One of those ac-
tivities is to merge USAGI kernel patches to the
main-line kernel.

Active improvement and amendment of the
main-line kernel are under way on daily ba-
sis. As for the codes around the network, other
patches as well as those by USAGI are tried to
be taken in. Many maintainers and contribu-
tors are always wary of not being involved in
mixing up bugs, but it is very difficult to avoid
completely the possibility of regression after al-
ternation.

The improved code is accepted widely in Linux
community. While it is important to continue
developing new functionality further more, to
maintain the quality of present code is defi-
nitely necessary.

In order to solve these problems, a system
was developed, which enables us to test the

286 • Linux Is Now IPv6 Ready

configure

build

install

wait for
new release

summarizeperform
test

serious error

more tests/modes

NG

NG

NG

NG

reboot
NG

OK OK

no more
tests/modes

OK

OK

OK

found

reboot
for test

Figure 1: The Flowchart of the system

functions of IPv6 stack at each release of
the snapshots of main-line kernel that is pub-
lished every day. TAHI IPv6 Conformance
Test Tool (http://www.tahi.org) pro-
vided by TAHI Project is used in order to test
the functions of IPv6. Using this system that
runs the test automatically, immediate amend-
ment and tackling of the problems are possible
even if some regression may be observed on the
functions of IPv6. The system is open to the
general public, and you can see it athttp://

testlab.linux-ipv6.org through the con-
nect via IPv6.

4.2 Procedure of the System

The system is a bunch of some procedures, each
of which consists of waiting for new release
of the kernel, building-up, and testing. Those
procedures are repeated, and the results are ob-
served. The state transition of each procedure
is shown in Figure 1.

The system waits for new kernel release when
the test is not performed. The release objectives
are not only stable version, but also rc version
that is a preparing stage for stable version, to-

gether with bk version1 that is released every
night.

When the system finds a new release of a ver-
sion, it begins to build up the kernel with auto-
matic procedures of configuration, building-up,
and installment. The logs in each procedure are
preserved in the system, so that building errors
can be analyzed. When the treatment of each
procedure fails, the system assumes that the
source contained the cause of problem, waiting
for next release of version.

Once the building-up of the kernel has finished,
the system carries out the test. This system is
designed to run multiple tests with several set-
tings for one kernel. For this purpose, NUT, the
test target, is rebooted with proper mode such
as router or host, and with proper settings such
as IP address, prior to the launch of each test,
and then the test is carried out. Each time when
the test is finished, the result is shown in a table,
which is compared with the previous records.
That enable us to make sure if the regression
might have occurred after the introduction of
a new patch. The logs of each rebooting pro-
cess and test result are preserved. If the system
failed to reboot the target, it will stop its au-
tomatic operation and wait for manual resume
after checking.

After the test of kernel, the system will be back
to the stage of waiting for a new release of ker-
nel. Before this transition to the waiting stage,
the test target will be rebooted in order to get it
back to the stable stage, with putting it back to
a stable kernel verified. The logs at the stage of
rebooting are also preserved.

4.3 Collected Data and Access to the Infor-
mation

The system collects many kinds of data, such
as the results of tests, the differences between

1as of April 2005

2005 Linux Symposium • 287

ct-v6ready1.host
ct-v6ready1.router
ct-v6ready2-core.host
ct-v6ready2-core.router
diff-ct-v6ready1.host
diff-ct-v6ready1.router
diff-ct-v6ready2-core.host
diff-ct-v6ready2-core.router

log configure.txt
install.txt
reboot_ct-v6ready1.host.txt
reboot_ct-v6ready1.router.txt
reboot_ct-v6ready2-core.host.txt
reboot_ct-v6ready2-core.router.txt
reboot_recover.txt

testkernel

Result of each test set

Difference of result of each test set
from previous kernel

Logs of each stage

Source, configuration and binaries

.

Figure 2: Data Collected by the Autorun Sys-
tem

each test result and its previous equivalent test,
the source and the compiled binaries, or various
logs in each process of tests like kernel-build.
Figure 2 shows what kinds of data should be
collected at each release of kernel.

Each datum is exported by HTTP daemon and
people can browse it using web browsers. The
browser window is designed to seek the objec-
tive data open to the public as quick as possible.
Figure 3 shows an access example through the
web browser.

4.4 Development in Future

As of April in 2005, according to this system,
IPv6 Ready Logo Phase 1 Self Test and Phase
2 Core Protocols Self Test are conducted only
on the version 2.6 in main-line kernel. The ex-
pecting developments in future are as follows;

1. parallel proceedings to different kernel re-
lease, such as USAGI kernel and main-line
kernel

2. supporting other tests, such as those for
IPsec, MLDv2 and Mobile IPv6

3. General definition to the test target and test
sets

Figure 3: Access Example through Web
Browser

These items are now being discussed under de-
velopment.

5 Linux Is IPv6 Ready

As described in Section 2.2, IPv6 Ready Logo
Program is an international activity for proof of
interoperability. As of December 2004, more
than 120 products have been approved with
gaining the Phase-1 certification, which means
those products have the basic interoperability in
IPv6.

IPv6 used to be classified as EXPERIMENTAL
in Linux, so that people are worrying for long
time that IPv6 in the Linux would not be useful.
Getting this logo, however, the anxiety would
be expelled completely.

288 • Linux Is Now IPv6 Ready

5.1 USAGI Project

USAGI Project decided to join this program
to gain the international certificate, which will
show what credible results we are offering.

In 2004, USAGI Project took part in IPv6
Ready Logo Program with its patched kernel
and tool. In February, the Project obtained IPv6
Ready Logo Phase-1 on both functions of host
and router with its product based on 2.6 kernel
and with its enhanced tool. In September 2004,
and in April 2005, it gained IPv6 Ready Logo
Phase-1 on 2.4-based kernel, in addition to 2.6-
based one, on the functions of host and router.

5.2 Main-line

Many improvements by USAGI Project mem-
bers and other developers were unified into
the main-line kernel in the 2.6.11 timeframe,
and the version 2.6.11-rc2, with patched radvd
(router advertisement daemon), is finally ap-
proved with IPv6 Ready Logo Phase-1.

In addition to this, the version 2.6.12 will in-
clude the kernel function that is needed to get
IPv6 Ready Logo Phase-2 certificate.

5.3 KNOPPIX/IPv6

USAGI Project collaborated with KNOP-
PIX/IPv6 (http://www.alpha.co.

jp/knoppix/ipv6/), which uses the
provided code by USAGI to their prod-
ucts, and helped them to take part in
IPv6 Ready Logo Program. KNOPPIX
(http://www.knopper.net/knoppix/)
is one of the major Linux distributions which
makes it possible to boot with single CD
without any special installing operation.
USAGI Project collaborated with AIST

(National Institute of Advanced Industrial
Science and Technology), Alpha Systemss
Inc. to develop special IPv6-aware KNOPPIX
based on KNOPPIX Japanese Edition (http:

//unit.aist.go.jp/itri/knoppix/).
The code provided by USAGI Project
was integrated, and the resulting prod-
uct was named “KNOPPIX/IPv6” (http:

//www.alpha.co.jp/knoppix/ipv6/).
With KNOPPIX/IPv6, together with the merit
of KNOPPIX that “only starting of CD-ROM
is needed without installment and setting-up”
and the high quality IPv6 protocol stack by
USAGI Project, a new technical 1 CD OS
world has been achieved where beginners can
easily experience the IPv6 world.

To summarize the dealing with situation of
KNOPPIX/IPv6, major desktop applications
such as web browsers (Mozilla, Konqueror),
mail clients (Sylpheed, Kmail) support IPv6.
On the other hand, as for coping with funda-
mental IPv6 networking, 6to4 is adopted. This
function is supported, because users do not al-
ways connect their machines to the global IPv6
Internet. Even if a user connects to the IPv4-
only network, KNOPPIX/IPv6 automatically
detects it and configures 6to4 tunnel to the out-
side local network. Therefore, from now on, it
is possible for users to enjoy more sophisticated
network without realizing whether it is IPv4 or
IPv6.

In September 2004, KNOPPIX/IPv6 could ob-
tain IPv6 Ready Logo Phase-1 on both ker-
nel versions based on 2.4 and 2.6. The neces-
sary tests to confirm interoperability were con-
ducted at laboratory of USAGI Project in Keio
University as a cooperative work of the Project
and developers of the KNOPPIX Japanese Edi-
tion.

2005 Linux Symposium • 289

5.4 Development in Future

USAGI Project is going to participate in IPv6
Ready Logo Phase-1 Program to improve the
quality of interoperability.

On the other hand, in the new IPv6 Ready Logo
Phase-2 Program, the aim of which is verifica-
tion of the system whether it is available in the
real network environment, not only basic IPv6
functions but also IPsec, MIPv6, and MLD are
subject to verification. USAGI Project is going
to participate actively in the Phase-2 Program,
and will play an initiative role in the quality im-
provement.

The Self Test for IPv6 Ready Logo contains a
lot of its functions, playing a great role for the
quality improvement and maintenance of the
Linux, contributing to the less personal burden
of labor. However, it does not warrant liabil-
ity against the stress and attack from the out-
side, nor the stability in SMP (symmetric multi-
processing). Now, IPv6 is enabled by default in
Linux, it is more important to maintain the sta-
bility of the system on the more complicated
in higher stage. The members of this project
will continue to achieve this objective through
fulfillment of the experiments and the practical
environment.

Acknowledgements

This work was performed based on the USAGI
Project and the author is grateful to valuable
comments and helpful discussion with Prof.
Jun Murai at Keio University and Prof. Hiroshi
Esaki at The University of Tokyo.

290 • Linux Is Now IPv6 Ready

The usbmon: USB monitoring framework

Pete Zaitcev
Red Hat, Inc.

zaitcev@redhat.com

Abstract

For years, Linux developers usedprintk()
to debug the USB stack, but this approach
has serious limitations. In this paper we dis-
cuss “usbmon,” a recently developed facility to
snoop USB traffic in a more efficient way than
can be done withprintk() .

From far away, usbmon is a very straightfor-
ward piece of code. It consists of circular
buffers which are filled with records by hooks
into the USB stack and a thin glue to the user
code which fetches these records. The devil,
however, is in details. Also the user mode tools
play a role.

1 Introduction

This paper largely deals with the kernel part
of the USB monitoring infrastructure, which is
properly called “usbmon” (all in lower case).
We describe usbmon’s origins, overall design,
internals, and how it is used, both by C code in
kernel and by human users. To conclude, we
consider if experience with usbmon is applica-
ble to subsystems other than USB.

2 Origins

Although the need to have a robust, simple,
and unobtrusive method of snooping appears
to be self-evident, Linux USB developers were
getting by with layers of macros on top of
printk() for years. Current debugging fa-
cilities are represented by a patchwork of build-
time configuration settings, such asCONFIG_
USB_STORAGE_DEBUG. To make the use of
systems with tracing included more palatable,
usbserial and several other modules offer
“debug” parameter.

Limitations of the this approach became pro-
nounced as more users running preconfigured
kernels appeared. For a developer, it is often
undesirable to make users to rebuild their ker-
nels with CONFIG_USB_STORAGE_DEBUG
enabled. These difficulties could be overcome
by making tracing configurable at runtime, by
a module parameter. Nonetheless, this style of
tracing is still not ideal, for several reasons.
Output to the system console and/or log file
is lossy when a large amount of data is piped
through though the syslog subsystem. Tim-
ing variations introduced by formatted print-
outs skew results, which makes it harder to pin-
point problems when peripherals require delays
in the access pattern. And finally,printk()
calls have to be added all the time to capture
what is important. Often it seems as if the one
key printk() is missing, but once added, it

• 291 •

292 • The usbmon: USB monitoring framework

stays in the code forever and serves to obscure
printouts needed at that time.

A facility similar to tcpdump(8) would be a
great help for USB developers. The usbmon
aims to provide one.

David Harding proposed a patch to address this
need back in 2002, but for various reasons that
effort stalled without producing anything suit-
able to be accepted into the Linus’ kernel. The
usbmon picks up where the previous work left
and is available in the mainline kernel starting
with version 2.6.11.

3 Architecture

The USB monitoring or snooping facilities for
Linux consist of the kernel part, or usbmon,
and the user mode part, or user mode tools. To
jump-start the development, usbmon took the
lead while tools lagged.

At highest level of architecture, usbmon is un-
complicated. It consists of circular buffers, fed
by hooks in the USB stack. Every call puts an
event into a buffer. From there, user processes
fetch these events for further processing or pre-
sentation to humans. Events for all devices on
a particular bus are delivered to users together,
separately from other buses. There is no filter-
ing facility of any sort.

At the lower level, a couple of interesting de-
cisions were made regarding the placement of
hooks and the formatting of events when pre-
sented to user programs.

An I/O request in the USB stack is rep-
resented by so-called “URB.” A peripheral-
specific driver, such as usb-storage, initializes
and submits URB with a call to the USB stack
core. The core dispatches URB to a Host Con-
troller Driver, or HCD. When I/O is done, HCD

invokes a specified callback to notify the core
and the requesting driver. The usbmon hooks
reside in the core of USB stack, in the sub-
mission and callback paths. Thus, usbmon re-
lies on HCD to function properly and is only
marginally useful in debugging of HCDs. Such
an arrangement is accepted for two reasons.
First, it allows usbmon to be unobtrusive and
significantly less buggy itself. Second, the vast
majority of bugs occur outside of HCDs, in in
upper level drivers or peripherals.

The user interface to the usbmon answers to
diverse sets of requirements with priorities
changing over time. Initially, a premium is
placed on ease of implementation and the pos-
sibility to access the information with simple
tools. But in perspective, performance starts to
play a larger role. The first group of require-
ments favors an interface typified by/proc

filesystem, the one of pseudo text files. The
second group pulls toward a binary and ver-
sioned API.

Instead of forcing a choice between text and bi-
nary interfaces, usbmon adopts a neutral solu-
tion. Its data structures are set up to facilitate
several distinct types of consumers of events
(called “readers”). Various reader classes can
provide text and binary interfaces. At this time,
only text-based interface class is implemented.

Every instance of a reader has its own circular
buffer. When hooks are called, they broadcast
events to readers. Readers replicate events into
all buffers which are active for a given bus. To
be sure, this entails an extra overhead of data
copying. However, the complication of hav-
ing all aliasing properly tracked and resolved
turned out to be insurmountable in the time
frame desired, and the performance impact was
found manageable.

2005 Linux Symposium • 293

struct mon_bus {
struct list_head bus_link;

spinlock_t lock;

struct dentry ∗dent_s; / ∗ Debugging file ∗ /

struct dentry ∗dent_t; / ∗ Text interface file ∗ /

struct usb_bus ∗u_bus;

/ ∗ Ref ∗ /

int nreaders; / ∗ Under mon_lock AND mbus->lock ∗ /

struct list_head r_list; / ∗ Chain of readers (usually one) ∗ /

struct kref ref; / ∗ Under mon_lock ∗ /

/ ∗ Stats ∗ /

unsigned int cnt_text_lost;

};

struct mon_reader { / ∗ An instance of a process which opened a file ∗ /

struct list_head r_link;

struct mon_bus ∗m_bus;

void ∗r_data;

void (∗rnf_submit)(void ∗data, struct urb ∗urb);

void (∗rnf_complete)(void ∗data, struct urb ∗urb);

};

Figure 1: The bus and readers.

4 Implementation

The usbmon is implemented as a Linux ker-
nel module, which can be loaded and unloaded
at will. This arrangement is not intrinsic to
the design; it is intended to serve as a con-
venience to developers only. Hooks and ad-
ditional data fields remain built into the USB
stack core at all times as long as usbmon is
configured on. In a proprietary OS, usbmon
would have to be implemented in a different
way. It is entirely possible to make the usb-
mon an add-on that stacks on top of HCDs by
manipulating existing function pointers. Such
an implementation would make usbmon effec-
tively non-existing when not actively monitor-
ing. However, this approach introduces a sig-
nificant complexity of tracking of active URBs
which had their function pointers replaced, and
brings only a marginal advantage for an open-

source OS. In present, when usbmon is not run-
ning, it adds 8 bytes of memory use per bus
(on a 32-bit system) and an additionalif()
statement in submit and callback paths. This
was deemed an acceptable price for the lack of
tracking.

The key data structure that keeps usbmon to-
gether isstruct mon_bus (See Figure 1).
One of them is allocated for every USB bus
present. It holds a list of readers attached to
the bus, pointer to the corresponding bus struc-
ture, statistic counters, reference count, and a
spinlock. The manner in which circular buffers
are arranged is encapsulated entirely within a
reader.

The locking model is straightforward. All
hooks execute with the bus spinlock taken, so
readers do not do any extra locking. The only
time instances ofstruct mon_bus may in-

294 • The usbmon: USB monitoring framework

fluence each other is when buses are added or
removed. Data words touched at that time, such
as linked list entries, are covered with a global
semaphore,mon_lock .

The reference count is needed because buses
are added and removed while user processes ac-
cess devices. Captured events may remain in
buffers after a bus was removed. The count is
implemented with a predefined kernel facility
calledkref . Themon_lock is used to sup-
port kref as required by API.

5 Interfaces

The usbmon provides two principal interfaces:
the one into the USB core and the other facing
the user processes.

The USB core interface is conventional for an
internal Linux kernel API. It consists of regis-
tration and deregistration routines provided by
the core, operations table that is passed to the
core upon registration, and inline functions for
hooks called by the core. It all comes down to
the code shown in Figure 2.

As was mentioned previously, only one type of
interface to user processes exists at present: text
interface. It is implemented with the help of a
pseudo filesystem called “debugfs ” and con-
sists of a few pseudo files, same group per every
USB bus in the system. Text records are pro-
duced for every event, to be read from pseudo
files. Their format is discussed below.

6 Use (user mode)

A common way to access usbmon without any
special tools is as following:

mount -t debugfs none /sys/kernel/debug
modprobe usbmon
cat /sys/kernel/debug/usbmon/3t
dfa105cc 1578069602 C Ii:001:01 0 1 D
dfa105cc 1578069644 S Ii:001:01 -115 2 D
d6bda284 1578069665 S Ci:001:00 -115 4 <
d6bda284 1578069672 C Ci:001:00 0 4 = 01010100
........

The number 3 in the file name is the number of
the USB bus as reported by/proc/bus/usb/

devices .

Each record copied bycat starts with a tag that
is used to correlate various events happening to
the same URB. The tag is simply a kernel ad-
dress of the URB. Next words are: a timestamp
in milliseconds, event type, a joint word for the
type of transfer, device number, and endpoint
number, I/O status, data size, data marker and
a varying number of data words. More precise
documentation exists within the kernel source
code, in fileDocumentation/usb/usbmon.

txt .

This format is terse, but it can be read by hu-
mans in a pinch. It is also useful for postings to
mailing lists, Bugzilla attachments, and other
similar forms of data exchange.

Tools to ease dealing with usbmon are being
developed. Only one such tool exists today:
the USBMon (written with upper case letters),
originally written by David Harding. It is a tool
with a graphical interface.

7 Lessons

When compared to tcpdump(8) or Ethereal(1),
usbmon today is rudimentary. Despite that, in
the short time it has existed, usbmon helped
the author to quickly pinpoint several bugs that
otherwise would take many kernel rebuilds and
gaining an understanding of unfamiliar system

2005 Linux Symposium • 295

struct usb_mon_operations {
void (∗urb_submit)(struct usb_bus ∗bus, struct urb ∗urb);

void (∗urb_submit_error)(struct usb_bus ∗bus, struct urb ∗urb, int err);

void (∗urb_complete)(struct usb_bus ∗bus, struct urb ∗urb);

void (∗bus_add)(struct usb_bus ∗bus);

void (∗bus_remove)(struct usb_bus ∗bus);

};

extern struct usb_mon_operations ∗mon_ops;

static inline void usbmon_urb_submit(struct usb_bus ∗bus, struct urb ∗urb)

{
if (bus →monitored)

(∗mon_ops→urb_submit)(bus, urb);

}

static inline void usbmon_notify_bus_remove(struct usb_bus ∗bus)

{
if (mon_ops)

(∗mon_ops→bus_remove)(bus);

}

int usb_mon_register(struct usb_mon_operations ∗ops);

void usb_mon_deregister(void);

Figure 2: The interface to the USB core.

log messages. Having any sort of usable uni-
fied tracing is helpful when developers have to
work with an explicitly programmed message
passing bus.

A large part of usbmon’s utility comes from
being always enabled, which requires its over-
head to be undetectable when inactive and low
enough not to change the system’s behaviour
when active. So it probably is unreasonable to
implement an equivalent of usbmon for PCI:
performance overhead may be too great; the
level of messages is too low; there are no stan-
dard protocols to be parsed by upper level tools.
But developers of subsystems such as SCSI or
Infiniband are likely to benefit from introduc-
tion of “scsimon” or “infinimon” into their set

of tools.

8 Future Work

The usbmon and user mode tools have a long
way to go before they can be as developed
as tcpdump(8) is today. Below we list issues
which are prominent now.

• When USB buses are added and removed,
tools have to be notified, which is not done
at present. As a workaround, tools res-
can file/proc/bus/usb/devices peri-
odically. A solution may be something as

296 • The usbmon: USB monitoring framework

simple as select(2) working on a special
file.

• Users often observe records which should
carry data, but do not. For example:

c07835cc 1579486375 S Co:002:00 -115 0
d2ac6054 1579521858 S Ii:002:02 -115 4 D

In the first case, setup packet of a control
transfer is not captured, and in the second
case, data part of an interrupt transfer is
missing. The ’D’ marker means that, ac-
cording to the flags in the URB, the data
was not mapped into the kernel space, and
was only available for the DMA. The code
to handle these cases has yet to be devel-
oped.

• The raw text data is difficult to interpret
for people. So, it is desirable to decode
the output to higher level protocols: SCSI
commands, HID reports, hub control mes-
sages. This task belongs to the tools such
as USBMon.

• Some tool developers express preferences
for a binary and versioned API to compli-
ment the existing text-based interface to
usbmon. These requests need to be ad-
dressed.

References

Van Jacobson et al.tcpdump(8), the manual.
In tcpdump version 3.8.2, 2004.

Greg Kroah-Hartman.kobjects and krefs.In
Proceedings of the Linux Symposium (former
OLS) 2004.

Adopting and Commenting the Old Kernel Source Code
for Education

Jiong Zhao
University of TongJi, Shanghai

gohigh@gmail.com

Trent Jarvi
University of Denver

taj@www.linux.uk.org

Abstract

Dissecting older kernels including their prob-
lems can be educational and an entertaining re-
view of where we have been. In this session,
we examine the older Linux kernel version 0.11
and discuss some of our findings. The pri-
mary reason for selecting this historical kernel
is that we have found that the current kernel’s
vast quantity of source code is far too complex
for hands-on learning purposes. Since the 0.11
kernel has only 14,000 lines of code, we can
easily describe it in detail and perform some
meaningful experiments with a runnable sys-
tem effienctly. We then examine several as-
pects of the kernel including the memory man-
agement, stack usage and other aspects of the
Linux kernel. Next we explain several aspects
of using Bochs emulator to perform experi-
ments with the Linux 0.11 kernel. Finally, we
present and describe the structure of the Linux
kernel source including thelib/ directory.

1 Introduction

As Linus once said, if one wants to understand
the details of a software project, one should
“RTFSC—Read The F**king Source Code.”
The kernel is a complete system, the parts re-
late to each other to fulfill the functions of a

operating system. There are many hidden de-
tails in the system. If one ignores these details,
like a blind men trying to size up the elephant
by taking a part for the whole, its hard to under-
stand the entire system and is difficult to under-
stand the design and implementations of an ac-
tual system. Although one may obtain some of
the operating theory through reading classical
books like the “The design of Unix operating
system,” [4] the composition and internal rela-
tionships in an operating system are not easy to
comprehend. Andrew Tanenbaum, the author
of MINIX[1], once said in his book, “teaching
only theory leaves the student with a lopsided
view of what an operating system is really like.”
and “Subjects that really are important, such as
I/O and file systems, are generally neglected
because there is little theory about them.” As
a result, one may not know the tricks involved
in implementing a real operating system. Only
after reading the entire source code of a oper-
ating system, may one get a feeling of sudden
enlightened about the kernel.

In 1991 Linus made a similar statements[5] af-
ter distributing kernel version 0.03, “TheGNU
kernel (Hurd) will be free, but is currently not
ready, and will be too big to understand and
learn.” Likewise, the current Linux kernel is
too large to easily understand. Due to the small
amount of code (only 14,000 lines) as shown
in Figure 1, the usability and the consistency

• 297 •

298 • Adopting and Commenting the Old Kernel Source Code for Education

with the current kernel, it is feasible to choose
Linux 0.11 kernel for students to learn and per-
form experiments. The features of the 0.11 ker-
nel are so limited, it doesn’t even contain job
control or virtual memory swapping. It can,
however, still be run as a complete operating
system. As with an introductory book on oper-
ating systems, we need not deal with the more
complicated components such asVFS, ext3,
networking and more comprehensive memory
management systems in a modern kernel. As
students understand of the main concepts con-
cerning how an operating system is generally
implemented, they can learn to understand the
advanced parts for themselves. Thus, both the
teaching and learning become more efficient
and consume considerably less time. The lower
barrier to entry for learning can even stimulate
many young people to take part in and involve
in the Linux activities.

Comparison of total line counts of Linux kernels

V1.2.13

V1.0

V1.1.52

V0.01

V0.11
V0.12

V0.95 V0.96a

V0.97 V0.98

V0.99

V2.0.38

V2.2.20

V2.4.17 V2.6.0

Y axis unit: 1000 Lines

Figure 1: Lines of code in various kernel ver-
sions

From teaching experience and student feed-
back, we found the most difficult part of study-
ing the 0.11 kernel is the memory management.
Therefore, in the following sections we mainly
deal with how the 0.11 kernel manages and uses
memory in the protected mode of the IntelIA-
32 processor along with the different kinds of
stacks used during the kernel initialization of
each task.

2 Linux Kernel Architecture

The Linux kernel is composed of five mod-
ules: task scheduling, memory management,
file system, interprocess communication (IPC)
and network. The task scheduling module is re-
sponsible for controlling the usage of the pro-
cessor for all tasks in the system. The strat-
egy used for scheduling is to provide reason-
able and fair usage between all tasks in the sys-
tem while at the same time insuring the pro-
cessing of hardware operations. The memory
management module is used to insure that all
tasks can share the main memory on the ma-
chine and provide the support for virtual mem-
ory mechanisms. The file system module is
used to support the driving of and storage in
peripheral devices. Virtual file system modules
hide the various differences in details of the
hardware devices by providing a universal file
interface for peripheral storage equipment and
providing support for multiple formats of file
systems. TheIPC module is used to provide
the means for exchanging messages between
processes. The network interface module pro-
vides access to multiple communication stan-
dards and supports various types of network
hardware.

The relationship between these modules is il-
lustrated in Figure 2. The lines between them
indicates the dependences of each other. The
dashed lines and dashed line box indicate the
part not implemented in Linux 0.1x.

The figure shows the scheduling module rela-
tionship with all the other modules in the kernel
since they all depend on the schedules provided
to suspend and restart their tasks. Generally, a
module may hang when waiting for hardware
operations, and continue running after the hard-
ware operation finishes. The other three mod-
ules have like relationships with the schedule
module for similar reasons.

2005 Linux Symposium • 299

Figure 2: The relationship between Linux ker-
nel modules

The remaining modules have implicit depen-
dences with each other. The scheduling subsys-
tem needs memory management to adjust the
physical memory space used by each task. The
IPC subsystem requires the memory manage-
ment module to support shared memory com-
munication mechanisms. Virtual file systems
can also use the network interface to support
the network file system (NFS). The memory
management subsystem may also use the file
system to support the swapping of memory data
blocks.

From the monolithic model structure, we can
illustrate the main kernel modules in Figure 3
based on the structure of the Linux 0.11 kernel
source code.

3 Memory Usage

In this section, we first describe the usage of
physical memory in Linux 0.1x kernel. Then
we explain the memorysegmentation, paging,
multitasking and theprotection mechanisms.
Finally, we summarize the relationship between
virtual, linear, and physical address for the code
and data in the kernel and for each task.

Figure 3: Kernel structure framework

3.1 Physical Memory

In order to use the physical memory of the ma-
chine efficiently with Linux 0.1x kernel, the
memory is divided into several areas as shown
in Figure 4.

Figure 4: The regions of physical memory

As shown in Figure 4, the kernel code and
data occupies the first portion of the physi-
cal memory. This is followed by the cache
used for block devices such as hard disks and
floppy drives eliminating the memory space
used by the adapters andROM BIOS. When a

300 • Adopting and Commenting the Old Kernel Source Code for Education

task needs data from a block device, it will be
first read into the cache area from the block de-
vice. When a task needs to output the data to a
block device, the data is put into the cache area
first and then is written into the block device
by the hardware driver in due time. The last
part of the physical memory is the main area
used dynamically from programs. When kernel
code needs a free memory page, it also needs
to make a request from the memory manage-
ment subsystem. For a system configured with
virtual RAM disksin physical memory, space
must be reserved in memory.

Physical memory is normally managed by the
processor’s memory management mechanisms
to provide an efficient means for using the sys-
tem resources. The Intel 80X86 CPU provides
two memory management mechanisms: Seg-
mentation and paging. The paging mechanism
is optional and its use is determined by the
system programmer. The Linux operating sys-
tem uses both memory segmentation and pag-
ing mechanism approaches for flexibility and
efficiency of memory usage.

3.2 Memory address space

To perform address mapping in the Linux ker-
nel, we must first explain the three different
address concepts used invirtual or logical ad-
dress space, the CPUlinear address space, and
the actualphysicaladdress space. Thevirtual
addresses used in virtual address space are ad-
dresses composed of thesegment selectorand
offset in the segment generated by program.
Since the two part address can not be used to
access physical memory directly, this address
is referred to as a virtual address and must use
at least one of the address translation mecha-
nisms provided by CPU to map into the phys-
ical memory space. The virtual address space
is composed of theglobal address spacead-
dressed by the descriptors in global descriptor

table (GDT) and thelocal address spacead-
dressed by the local descriptor table (LDT). The
index part of asegment selectorhas thirteen bits
and one bit for the table index. The Intel 80X86
processor can then provide a total of 16384 se-
lectors so it can addresses a maximum of 64T
of virtual address space[2]. The logical address
is the offset portion of a virtual address. Some-
times this is also referred to as virtual address.

Linear address is the middle portion of address
translation from virtual to physical addresses.
This address space is addressable by the pro-
cessor. A program can use alogical address
or offset in a segment and the base address of
the segment to get a linear address. Ifpaging
is enabled, the linear address can be translated
to produced a physical address. If thepagingis
disabled, then the linear address is actually the
same as physical address. The linear address
space provided by Intel 80386 is 4 GB.

Physical addressis the address on the proces-
sor’s external address bus, and is the final result
of address translation.

The other concept that we examine isvirtual
memory. Virtual memory allows the computer
to appear to have more memory than it actu-
ally has. This permits programmers to write a
program larger than the physical memory that
the system has and allows large projects to be
implemented on a computer with limited re-
sources.

3.3 Segmentation and paging mechanisms

In a segmented memory system, the logical ad-
dress of a program is automatically mapped or
translated into the middle 4 GB linear address
space. Each memory reference refers to the
memory in a segment. When programs refer-
ence a memory address, a linear address is pro-
duced by adding the segment base address with

2005 Linux Symposium • 301

Figure 5: The translation between virtual or
logical, linear and physical address

the logical address visible to the programmer.
If pagingis not enabled, at this time, the linear
address is sent to the external address bus of the
processor to access the corresponding physical
address directly.

If pagingis enabled on the processor, the linear
address will be translated by thepagingmech-
anism to get the final physical corresponding
physical address. Similar to the segmentation,
paging allow us to relocate each memory ref-
erence. The basic theory of paging is that the
processor divides the whole linear space into

pages of 4 KB. When programs request mem-
ory, the processor allocates memory in pages
for the program.

Since Linux 0.1x kernel uses only onepage di-
rectory, the mapping function from linear to
physical space is same for the kernel and pro-
cesses. To prevent tasks from interfering with
each other and the kernel, they have to occupy
different ranges in the linear address space. The
Linux 0.1x kernel allocates 64MB of linear
space for each task in the system, the system
can therefor hold at most 64 simultaneous tasks
(64MB * 64 = 4G) before occupying the entire
Linear address space as illustrated in Figure 6.

Figure 6: The usage of linear address space in
the Linux 0.1x kernel

3.4 The relationship between virtual, lin-
ear and physical address

We have briefly described the memory segmen-
tation and paging mechanisms. Now we will
examine the relationship between the kernel
and tasks in virtual, linear and physical address
space. Since the creation oftasks 0and1 are
special, we’ll explain them separately.

3.4.1 The address range of kernel

For the code and data in the Linux 0.1x ker-
nel, the initialization inhead.s has already
set the limit for the kernel and data segments to

302 • Adopting and Commenting the Old Kernel Source Code for Education

be 16MB in size. These two segments over-
lap at the same linear address space starting
from address 0. Thepage directoryandpage
table for kernel space are mapped to 0-16MB
in physical memory (the same address range in
both spaces). This is all of the memory that
the system contains. Since one page table can
manage or map 4MB, the kernel code and data
occupies four entries in thepage directory. In
other words, there are four secondary page ta-
bles with 4MB each. As a result, the address
in the kernel segment is the same in the physi-
cal memory. The relationship of these three ad-
dress spaces in the kernel is depicted in Figure
7.

Figure 7: The relationship of the three address
spaces in a 0.1x kernel

As seen in Figure 7, the Linux 0.1x kernel
can manage at most 16MB of physical mem-
ory in 4096 page frames. As explained ear-
lier, we know that: (1) the address range of
kernel code and data segments are the same as
in the physical memory space. This configura-
tion can greatly reduce the initialization oper-
ations the kernel must perform. (2)GDT and

Interrupt Descriptor Table (IDT) are in the ker-
nel data segment, thus they are located in the
same address in both address spaces. In the
execution of code insetup.s in real mode,
we have setup both temporaryGDT andIDT at
once. These are required before entering pro-
tected mode. Since they are located by physical
address0x90200 and this will be overlapped
and used for block device cache, we have to
recreateGDT and IDT in head.s after en-
tering protected mode. The segment selectors
need to be reloaded too. Since the locations of
the two tables do not change after entering pro-
tected mode, we do not need to move or recre-
ate them again. (3) All tasks excepttask 0need
additional physical memory pages in different
linear address space locations. They need the
memory management module to dynamically
setup their own mapping entries in thepage di-
rectoryandpage table. Although the code and
static data oftask 1are located in kernel space,
we need to obtain new pages to prevent interfer-
ence withtask 0. As a result,task 1also needs
its own page entries.

While the default manageable physical mem-
ory is 16MB, a system need not contain 16MB
memory. A machine with only 4MB or even
2MB could run Linux 0.1x smoothly. For a ma-
chine with only 4MB, the linear address range
4MB to 16MB will be mapped to nonexistent
physical space by the kernel. This does not dis-
rupt or crash the kernel. Since the kernel knows
the exact physical memory size from the initial-
ization stage, no pages will be mapped into this
nonexistent physical space. In addition, since
the kernel has limited the maximum physical
memory to be 16MB at boot time (inmain()
corresponding tostartkernel()), memory
over 16MB will be left unused. By adding
some page entries for the kernel and chang-
ing some of the kernel source, we certainly can
make Linux 0.1x support more physical mem-
ory.

2005 Linux Symposium • 303

3.4.2 The address space relationship for
task 0

Task 0is artificially created or configured and
run by using a special method. The limits of its
code and data segments are set to the 640KB in-
cluded in the kernel address space. Nowtask 0
can use the kernel page entries directly without
the need for creating new entries for itself. As
a result, its segments are overlapped in linear
address space too. The three space relationship
is shown in Figure 8.

Figure 8: The relationship of three address
spaces for task 0

As task 0 is totally contained in the kernel
space, there is no need to allocate pages from
the main memory area for it. The kernel stack
and the user stack fortask 0are included the
kernel space.Task 0still has read and write
rights in the stacks since the page entries used
by the kernel space have been initialized to be
readable and writable with user privileges. In
other words, the flags in page entries are set as
U/S=1, R/W=1.

3.4.3 The address space relationship for
task 1

Similar totask 0, task 1is also a special case in
which the code and data segment are included
in kernel module. The main difference is that
when forkingtask 1, one free page is allocated
from the main memory area to duplicate and
storetask 0’s page table entries fortask 1. As
a result,task 1has its ownpage tableentries in
thepage directoryand is located at range from
64MB to 128MB (actually 64MB to 64MB +
640KB) in linear address space. One additional
page is allocated for task 1 to store itstask
structure (PCB)and is used as its kernel mode
stack. The task’sTask State Segment (TSS)is
also contained in task’s structure as illustrated
in Figure 9.

Figure 9: The relationship of the three address
spaces in task 1

Task 1and task 0will share their user stack
user_stack[] (refer tokernel/sched.
c , lines 67-72). Thus, the stack space should be
‘ ‘clean” beforetask 1uses it to ensure that there

304 • Adopting and Commenting the Old Kernel Source Code for Education

is no unnecessary data on the stack. When fork-
ing task 1, the user stack is shared betweentask
0 andtask 1. However whentask 1starts run-
ning, the stack operating intask 1would cause
the processor to produce a page fault because
the page entries have been modified to be read
only. The memory management module will
therefor need allocate a free page fortask 1’s
stack.

3.4.4 The address space relationship for
other tasks

For task 2and higher, the parent istask 1or the
init process. As described earlier, Linux 0.1x
can have 64 tasks running synchronously in the
system. Now we will detail the address space
usage for these additional tasks.

Beginning withtask 2, if we designatenr as
the task number, the starting location fortask
nr will be at nr * 64MB in linear address
space.Task 2, for example, begins at address 2
* 64MB = 128MB in the linear address space,
and the limits of code and data segments are set
to 64MB. As a result, the address range occu-
pied by task 2is from 128MB to 192MB, and
has 64MB/4MB = 16 entries in the page direc-
tory. The code and data segments both map
to the same range in the linear address space.
Thus they also overlap with the same address
range as illustrated in Figure 10.

After task 2has forked, it will call the func-
tion execve() to run a shell program such as
bash. Just after the creation oftask 2and be-
fore callexecve() , task 2is similar totask 1
in the three address space relationship for code
and data segments except the address range oc-
cupied in linear address space has the range
from 128MB to 192MB. Whentask 2’scode
calls execve() to load and run a shell pro-
gram, the page entries are copied fromtask 1
and corresponding memory pages are freed and

Figure 10: The relationship of the three address
spaces in tasks beginning with task 2

new page entries are set for the shell program.
Figure 10 shows this address space relation-
ship. The code and data segment fortask 1are
replaced with that of the shell program, and one
physical memory page is allocated for the code
of the shell program. Notice that although the
kernel has allocated 64MB linear space fortask
2, the operation of allocating actual physical
memory pages for code and data segments of
the shell program is delayed until the program
is running. This delayed allocation is called de-
mand paging.

Beginning with kernel version 0.99.x, the usage
of memory address space changed. Each task
can use the entire 4G linear space by changing
the page directory for each tasks as illustrated
in Figure 11. There are even more changes are
in current kernels.

2005 Linux Symposium • 305

Figure 11: The relationship of the three address
space for tasks in newer kernels

4 Stack Usage

This section describes several different meth-
ods used during the processing of kernel boot-
ing and during normal task stack operations.
Linux 0.1x kernel uses four different kinds of
stacks: the temporary stack used for system
booting and initialization under real address
mode; The kernel initialization stack used after
the kernel enters protected mode, and the user
stack fortask 0after moving into task 0; The
kernel stack of each task used when running in
the kernel and the user stacks for each task ex-
cept fortasks 0 and 1.

There are two main reasons for using four dif-
ferent stacks (two used only temporarily for
booting) in Linux. First, when entering pro-
tected from real mode, the addressing method
used by the processor has changed. Thus the
kernel needs to rearrange the stack area. In ad-
dition, to solve the protection problems brought
by the new privilege level on processor, we
need to use different stacks for kernel code at

level 0 and for user code at level 3 respectively.
When a task runs in the kernel, it uses the ker-
nel mode stack pointed by the values inss0
andesp0 fields of itsTSSand stores the task’s
user stack pointer in this stack. When the con-
trol returns to the user code or to level 3, the
user stack pointer will be popped out, and the
task continues to use the user stack.

4.1 Initialization period

When theROM BIOScode boots and loads
the bootsect into memory at physical address
0x7C00 , no stack is used until it is moved
to the location0x9000:0 . The stack is then
set at0x9000:0xff00 . (refer to line 61–
62 in boot/bootsect.s). After control is
transferred tosetup.s , the stack remains un-
changed.

When control is transferred tohead.s , the
processor runs in protected mode. At this time,
the stack is setup at the location ofuser_
stack[] in the kernel code segment (line 31
in head.s). The kernel reserves one 4 KB
page for the stack defined at line 67–72 in
sched.c as illustrated in Figure 12.

This stack area is still used after the control
transfers intoinit/main.c until the execu-
tion of move_to_user_mode() to hand the
control over totask 0. The above stack is then
used as a user stack fortask 0.

4.2 Task stacks

For the processor privilege levels 0 and 3 used
in Linux, each task has two stacks: kernel mode
stack and user mode stack used to run kernel
code and user code respectively. Other than the
privilege levels, the main difference is that the
size of kernel mode stack is smaller than that
of the user mode stack. The former is located

306 • Adopting and Commenting the Old Kernel Source Code for Education

Figure 12: The stack used for kernel code after
entering protected mode

at the bottom in a page coexisting with task’s
structure, and no more than 4KB in size. The
later can grow down to nearly 64MB in user
space.

As described, each task has its own 64MB log-
ical or linear address space except fortask 0
and1. When a task was created, the bottom of
its user stack is located close to the end of the
64MB space. The top portion of the user space
contains additional environmental parameters
and command line parameters in a backwards
orientation, and then the user stack as illus-
trated in Figure 13.

Task code at privilege level 3 uses this stack all
of the time. Its corresponding physical memory
page is mapped by paging management code
in the kernel. Since Linux utilizes thecopy-
on-write[3] method, both the parent and child
process share the same user stack memory until
one of them perform a write operation on the

Figure 13: User stack in task’s logical space

stack. Then the memory manager will allocate
and duplicate the stack page for the task.

Similar to the user stack, each task has its own
kernel mode stackused when operating in the
kernel code. This stack is located in the mem-
ory to pointed by the values inss0 , esp0
fields in task’sTSS. ss0 is the stack segment
selector like thedata selectorin the kernel.
esp0 indicates the stack bottom. Whenever
control transfers to the kernel code from user
code, the kernel mode stack for the task always
starts fromss0:esp0 , giving the kernel code
an empty stack space. The bottom of a task’s
kernel stack is located at the end of a mem-
ory page where the task’s data structure begins.
This arrangement is setup by making the privi-
lege level 0 stack pointer inTSSpoint to the end
of the page occupied by the task’s data struc-
ture when forking a new task. Refer to line 93
in kernel/fork.c as below:

p->tss.esp0 = PAGE_SIZE+(long)p;
p->tss.ss0 = 0x10;

p is the pointer of the new task structure,tss
is the structure of the task status segment. The
kernel request a free page to store the task struc-
ture pointed byp. The tss structure is a field in
the task structure. The value oftss.ss0 is
set to the selector of kernel data segment and
the tss.esp0 is set to point to the end of the
page as illustrated in Figure 14.

As a matter of fact,tss.esp0 points to the
byte outside of the page as depicted in the fig-

2005 Linux Symposium • 307

Figure 14: The kernel mode stack of a task

ure. This is because the Intel processor de-
creases the pointer before storing a value on the
stack.

4.3 The stacks used by task 0 and task 1

Both task 0or idle task andtask 1or init task
have some special properties. Althoughtask 0
and task 1have the same code and data seg-
ment and 640KB limits, they are mapped into
different ranges in linear address space. The
code and data segments oftask 0begins at ad-
dress 0, andtask 1 begins at address 64MB
in the linear space. They are both mapped
into the same physical address range from 0
to 640KB in kernel space. After calling the
function move_to_user_mode() , the ker-
nel mode stacks oftask 0andtask 1are located
at the end of the page used for storing their
task structures. The user stack oftask 0is the
same stack originally used after entering pro-
tected mode; the space foruser_stack[]
array defined insched.c program. Sincetask
1 copiestask 0’s user stack when forking, they
share the same stack space in physical memory.
When task 1starts running, however, a page
fault exception will occur whentask 1writes
to its user stack because the page entries for
task 1have been initialized as read-only. At
this moment, the kernel will allocate a free page

in main memory area for the stack oftask 1in
the exception handler, and map it to the loca-
tion of task 1’s user stack in the linear space.
From now on,task 1has its own separate user
stack page. As a result, the user stack fortask
0 should be “clean” beforetask 1uses the user
stack to ensure that the page of stack duplica-
tion does not contain useless data fortask 1.

The kernel mode stack fortask 0is initialized
in its static data structure. Then its user stack is
set up by manipulating the contents of the stack
originally used after entering protected mode
and emulating the interrupt return operation us-
ing IRET instruction as illustrated in Figure 15.

031

Figure 15: Stack contents while returning from
privilege level 0 to 3

As we know, changing the privilege level will
change the stack and the old stack pointers
will be stored onto the new stack. To emu-
late this case, we first push thetask 0’s stack
pointer onto the stack, then the pointer of the
next instruction intask 0. Finally we run the
IRET instruction. This causes the privilege
level change and control to be transferred to
task 0. In the Figure 15, the oldSSfield stores
the data selector ofLDT for task 0(0x17) and
the oldESPfield value is not changed since the
stack will be used as the user stack fortask 0.
The oldCSfield stores the code selector (0x0f)
for task 0. The oldEIP points to the next in-
struction to be executed. After the manipula-
tion, aIRET instruction switches the privileges

308 • Adopting and Commenting the Old Kernel Source Code for Education

from level 0 to level 3. The kernel begins run-
ning in task 0.

4.4 Switch between kernel mode stack and
user mode stack for tasks

In the Linux 0.1x kernel, all interrupts and ex-
ceptions handlers are in mode 0 so they belong
to the operating system. If an interrupt or ex-
ception occurs while the system is running in
user mode, then the interrupt or exception will
cause a privilege level change from level 3 to
level 0. The stack is then switched from the
user mode stack to the kernel mode stack of the
task. The processor will obtain the kernel stack
pointersss0 and esp0 from the task’sTSS
and store the current user stack pointers into
the task’s kernel stack. After that, the processor
pushes the contents of the currentEFLAGSreg-
ister and the next instruction pointers onto the
stack. Finally, it runs the interrupt or exception
handler.

The kernelsystem callis trapped by using a
software interrupt. Thus anINT 0x80 will
cause control to be transferred to the kernel
code. Now the kernel code uses the current
task’s kernel mode stack. Since the privilege
level has been changed from level 3 to level 0,
the user stack pointer is pushed onto the kernel
mode stack, as illustrated in Figure 16.

If a task is running in the kernel code, then
an interrupt or exception never causes a stack
switch operation. Since we are already in the
kernel, an interrupt or exception will never
cause a privilege level change. We are using the
kernel mode stack of the current task. As a re-
sult, the processor simply pushes theEFLAGS
and the return pointer onto the stack and starts
running the interrupt or exception handler.

Figure 16: Switching between the kernel stack
and user stack for a task

5 Kernel Source Tree

Linux 0.11 kernel is simplistic so the source
tree can be listed and described clearly. Since
the 0.11 kernel source tree only has 14 directo-
ries and 102 source files it is easy to find spe-
cific files in comparison to searching the much
larger current kernel trees. The mainlinux/
directory contains only one Makefile for build-
ing. From the contents of the Makefile we can
see how the kernel image file is built as illus-
trated in Figure 17.

Figure 17: Kernel layout and building

There are three assembly files in theboot/
directory: bootsect.s , setup.s , and
head.s . These three files had corresponding
files in the more recent kernel source trees un-
til 2.6.x kernel. Thefs/ directory contains
source files for implementing aMINIX version

2005 Linux Symposium • 309

1.0 file system. This file system is a clone of the
traditional UN*X file system and is suitable for
someone learning to understand how to imple-
ment a usable file system. Figure 18 depicts the
relationship of each files in thefs/ directory.

Figure 18: File relationships in fs/ directory

The fs/ files can be divided into four types.
The first is the block cache manager file
buffer.c . The second is the files concern-
ing with low level data operation files such
inode.c . The third is files used to process
data related to char, block devices and regular
files. The fourth is files used to execute pro-
grams or files that are interfaces to user pro-
grams.

The kernel/ directory contains three kinds
of files as depicted in Figure 19.

The first type is files which deal with hardware
interrupts and processor exceptions. The sec-
ond type is files manipulating system calls from

Figure 19: Files in the kernel/ directory

user programs. The third category is files im-
plementing general functions such as schedul-
ing and printing messages from the kernel.

Block device drivers for hard disks, floppy
disks and ram disks reside in a subdirectory
blk_drv/ in the kernel/ , thus the Linux
0.11 kernel supports only three classical block
devices. Because Linux evolved from a ter-
minal emulation program, the serial terminal
driver is also included in this early kernel in
addition to the necessary console character de-
vice. Thus, the 0.11 kernel contains at least two
types of char device drivers as illustrated in Fig-
ure 20.

The remaining directories in the kernel source
tree include, init, mm, tools, and
math . The include/ contains the head files
used by the other kernel source files.init/
contains only the kernel startup filemain.c ,
in which, all kernel modules are initialized and
the operating system is prepared for use. The
mm/ directory contains two memory manage-
ment files. They are used to allocate and free
pages for the kernel and user programs. As
mentioned, the mm in 0.11 kernel uses demand
paging technology. Themath/ directory only
contains math source code stubs as 387 emula-

310 • Adopting and Commenting the Old Kernel Source Code for Education

Figure 20: Character devices in Linux 0.11 ker-
nel

tion did not appear until the 0.12 kernel.

6 Experiments with the 0.1x kernel

To facilitate understanding of the Linux 0.11
kernel implementation, we have rebuilt a
runnable Linux 0.11 system, and designed sev-
eral experiments to watch the kernel internal
activities using theBochs PC emulator. Bochs
is excellent for debugging operating systems.
TheBochssoftware package contains an inter-
nal debugging tool, which we can use to ob-
serve the dynamic data structures in the kernel
and examine the contents of each register on the
processor.

It is an interesting exercise to install the Linux
0.11 system from scratch. It is a good learning
experience to build a root file system image file
under Bochs.

Modifying and compiling the kernel source
code are certainly the most important experi-
ments for learning about operating systems. To
facilitate the process, we provide two environ-
ments in which, one can easily compile the ker-
nel. One is the originalGNU gcc environment

under Linux 0.11 system in Bochs. The other
is for more recent Linux systems such asRed
Hat 9 or Fedora. In the former environment,
the 0.11 kernel source code needs no modifi-
cations to successfully compile. For the later
environment one needs to modify a few lines
of code to correct syntax errors. For people
familiar with MASM andVC environment un-
der windows, we even provide modified 0.11
kernel source code that can compile. Offer-
ing source code compatible with multiple envi-
ronments and providing forums for discussion
helps popularize linux and the linux community
with new people interested in learning about
operating systems:-)

7 Summary

From observing people taking operating system
courses with the old Linux kernel, we found
that almost all the students were highly inter-
ested in the course. Some of them even started
programming their own operating systems.

The 0.11 kernel contains only the basic features
that an operating system must have. As a result,
there are many important features not imple-
mented in 0.11 kernel. We now plan to adopt
either the 0.12 or 0.98 kernel for teaching pur-
poses to include job control, virtualFS, virtual
console and even network functions. Due to
time limitations in the course, several simpli-
fications and careful selection of material will
be needed.

References

[1] Albert S. Woodhull Andrew
S. Tanenbaum.OPERATING SYSTEMS:
Design and Implementation.
Prentice-Hall, Inc., 1997.

2005 Linux Symposium • 311

[2] Patrick P. Gelsinger John H. Crawford.
Programming the 80386. SYBEX Inc.,
1987.

[3] Robert Love.Linux Kernel Development.
Sams Inc., 2004.

[4] M.J.Bach.The Design of Unix Operating
System. Prentice-Hall, Inc., 1986.

[5] Linus Torvalds. LINUX – a free unix-386
kernel. October 1991.

312 • Adopting and Commenting the Old Kernel Source Code for Education

