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kobjects and krefs

lockless reference counting for kernel structures

Greg Kroah-

Hartman

Linux Technology Center
IBM Corp.
greg@kroah.com
gregkh@us.ibm.com

Abstract

functions to implement this feature.

developers to create their own logic and
Dur-

This paper will describe the current kobject andnd the development of the Linux Kernel

kref kernel structures in detail. It will cover
why they were created, how to use them, an
how the internals work. It will also cover a few

directions that these structures might be takin@Piect. Unfortunatelystruct kobject

in the future.

1 Introduction

The Linux kernel file Documentation/
CodingStyle  has the following statement
about reference counting:

Data structures that have visibil-

ity outside the single-threaded en-
vironment they are created and de-
stroyed in should always have refer-
ence counts. In the kernel, garbage
collection doesn't exist (and outside

the kernel garbage collection is slow
and inefficient), which means that

you absolutely _have_ to reference
count all your uses.

This requirement of providing proper refer-

ence counting for kernel structures has cause

*This work represents the view of the author and
does not necessarily represent the view of IBM.

Driver model[4], a simple structurestruct

¢object , was created that provided auto-

matic reference counting for any user of the
IS
closely tied to the kernel driver model, and for
any data structure that does not want to show
up in sysfs, and participate in the global kernel
“web woven by a spider on drugs”[2], using
a struct kobject only for reference counting is
a big waste of memory resources and is much
more complex than needed. To this end, the
data structurestruct kref , was created
to provide a simple, and hopefully failproof
method of adding proper reference counting to
any kernel data structure.

2 Howtouse it

To use thestruct kref structure, simply
embed it within the structure that reference
counting is needed for. For example, to add ref-
erence counting to a structure callgtuct

foo then it would be defined as:

%Iruct foo {

struct kref kref;
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}; foo structure */
kref_put(&foo->kref);

It is not important that thestruct kref
structure be the first or last element of theThis function should also be called after the

structure that it is embedded in. The only re-original creator of the structure that the kref

quirement is that the wholstruct kref variable is in, is finished with the structure. The
structure be in the structure being referencéfree function mustNOT be directly called
counted, not a pointer to thestruct kref because other portions of the kernel could have
structure. valid references to this structure.

When thestruct foo  structure is initial- After the kref_put  function is called, the
ized, thekref variable must also be initialized structure can not be referred to by any future
before reference counting can be used. This isode, as the memory for that structure could be
done with a call to thé&ref_init function:  now gone.

When the last reference count is released, the
function that was passed to the origikedf

init  function is called to release the mem-
GFP_KERNEL); ory used by the structure. The prototype of this

kref_init(&foo->kref, function must accept a pointer tosaruct
foo_release); kref :

struct foo *foo;
foo = kmalloc(sizeof(*foo),

The parameterfoo_release is a pointer yoid foo_release(struct kref
The first parameter ddref_init is a pointer *kref)
to the struct kref structure that is to be {

initialized. The second parameter is a pointer struct foo *foo;

to the release function for the structure. This

release function is described in detail below. foo = container_of(foo,
struct foo,
After the kref structure has been initialized, the kref);

internal reference count of the structure is set to kfree(foo);
1. Now the reference count can be incrementedl
and decremented at will.

To increment the reference count of a krefA ; :)Zikatt())orr?e i):?mi?“jgtn?ggn Shsc;\r’:ﬁ_ o
structure, the functiokref_get s called: g g

ture location, thecontainer_of macro is
used. For a complete description of how the

I* get a new reference to our container_of macro works, please see[1].
foo structure */
kref_get(&foo->kref); As there are not any locks within theef

structure, there are three rules that need to be

When a user of the structure is finished withfollowed when using this reference counting
it, thekref_put  function should be called to logic:
release the reference:

* If the code accessing the variable already
[* finished with this has a valid reference to the structure, it is
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safe, and required to increment that ref-structure. Theelease variable is a pointer
erence with a call t&kref_get in order to a function that will be called when the last
to give the variable to any other piece of user of the structure is finished with the struc-
code. ture.

« If the code accessing the variable already! hekref_init function is a mere three lines
has a valid reference to the structure, thero"9:

it is safe to release that reference with a o
call tokref_put void kref_init(struct kref *kref,

void (*release)

« If the code wanting to access the variable, (struct kref *kref))

does not ha\./e.a va_lid reference., t'hen it \WARN_ON(release == NULL);
needs to serialize with a place within the atomic_set(&kref->refcount,1);
code where the last call toef_put  put kref->release = release;

could happen. }

First a warning is printed out to the syslog if

This last rule can not be emphasized enough, rglease  callback is not provided, as this
The only reason that thetruct kref — can s not allowed. Then theefcount  vari-

work without any internal locks is because aype s initialized to 1 as the structure needs to

call tokref_get  can not happen at the same 56 4 single initial reference count. After that
time thatkref_put is happening. In orderto q release  function pointer is stored in the
ensure this, a simple lock for the driver or sub-rajcase  variable in the structure.

system that owns the specitruct kref

reference can be used. The kref_get  function is also only three

lines of code:

An example of using such a lock can be seenin
Fi gure 1 struct kref *kref_get(struct kref *kref)

. . ) WARN_ON(!atomic_read(&kref->refcount));
So, with the three simple functiongref atttJmic_kin<:f<_&kref->refcount):
init , kref_get , and kref_put , com- , "
bined with a release function that the caller

provides, complete reference counting can b@gain, a warning is printed out to the syslog if

added to any kernel structure. therefcount  variable is zero. This catches

the very common error of callingref_get

without first callingkref_init . After that,

the refcount  variable is incremented, and

_ _ ~ then a pointer to the same structure is returned.

struct kref is a very tiny structure with Thjs return type makes it easier for code to do

only two elements: things pass the result &fef get as a func-
tion parameter:

3 How it works

struct kref {
atomic_t refcount;
void (*release)(struct kref *kref); do_foo(kref_get(my_kref));

Keeping with the tradition of tiny functions, the
Therefcount  variable is an atomic counter kref put function weighs in at a whopping
that is used to hold the reference count of théwo lines:
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/* prevent races between open() and disconnect() */
static DECLARE_MUTEX (disconnect_sem);

static int skel_open(struct inode *inode, struct file *file)

{

struct usb_skel *dev;
struct usb_interface *interface;

/* prevent disconnects */
down (&disconnect_sem);

interface = usb_find_interface(&skel_driver, iminor(inode));
dev = usb_get_intfdata(interface);

/* increment our usage count for the device */
kref_get(&dev->kref);
up(&disconnect_sem);

}

static void skel_disconnect(struct usb_interface *interface)

{

struct usb_skel *dev;
int minor = interface->minor;

/* prevent skel open() from racing skel disconnect() */
down (&disconnect_sem);

dev = usb_get intfdata(interface);
usb_set _intfdata(interface, NULL);

/* give back our minor */
usb_deregister_dev(interface, &skel_class);

/* decrement our usage count */
kref_put(&dev->kref);

up(&disconnect_sem);

}

Figure 1: Using a lock to ensure safe accedgéb put
void kref_put(struct kref *kref) kref->release(kref);
{ }

if (atomic_dec_and_test
(&kref->refcount))
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This function decrements the value stored in call to kobject_del , which will also
the refcount  variable, and if the result is call kobject_put on the struct
zero, this was the last reference to the struc-  kobject . After astruct kobject

ture

, SO the function stored in threlease has hadkobject_del called for it,

variable is called to clean up the memory used  the kboject_get function can not be
by this structure. called on the variable without having a

4

previous reference count already on the
variable. This is the same as the previ-
ously mentioned issue for callingef

put without serializing the access.

kref vs. kobject

This paper has focused on on hatruct

kref  works, and ignored struct - Before using astruct kobject  , the
kobject . For the most part, both struc- structure must be initialized to zero by us-
tures work identically, with the following ing memset beforekobject_init or
minor differences: kobject_register is called. If not, a
warning will be printed out to the syslog.
* struct kobject does not contain a
release function. When astruct 5 Future

kobject s last reference count is decre-
mented, the release function of the
struct kset that is associated with
the struct kobject is called. For
more details on howtruct kobject
andstruct kset is related, please see

[3].

In future releases of the Linux kernel, the
struct kobject will probably loose its in-
ternal reference count and use theuct

kref instead. If this happensstruct

kref might have to be changed in order to
support passing threlease  callback as a pa-

A struct kobject can be ini- rameter to thekref_put function, in order
tialized with two different functions, tO save the storage size of the function pointer
kobject_register or kobject_ from the structure.

init . kobject_register calls

Other kernel uses of atomic_t variable
will probably be converted to use tise&ruct

kref interface instead of providing their own
logic to handle reference counting.

kobject_init and then calls
kobject_add to add the kobject
to the sysfs hierarchy. If atruct
kobject is to not be used within the
sysfs hierarchy, thenkobject add

should never be called. 6 Legal Statement

A struct kobject can have its ref-
erence count incremented with a call to!BMis aregistered trademark of International Busi-

kobject_get and decremented with N€SS Machines in the United States and/or other
a call to kobject_put . But if the countries.

kobject_ was initializeql with t_he SYsfs |inux is a registered trademark of Linus Torvalds
core with a call to eitherkobject
add or kobject_register , then it Other company, product, and service names may be

needs to be removed from it with a trademarks or service marks of others.
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The Cursor Wiggles Faster: Measuring Scheduler
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Abstract ize new loads, and to more clearly identify
scheduler shortcomings.

Trying to pin down whether changes to the 2.5

and 2.6 scheduler have helped or hurt perford  |ntroduction

mance, especially on interactive programs, has

been both difficult to quantify and very subjec- o o

tive. One favored test has been to create youfS the 2.5 code revisions came out in mid- to
favorite load and then move your cursor around@t€ 2003, the scheduler, like much of the 2.5
and observe how slow or fast it is. Another ong'€/€ase, became more and more stable. True,

is to drag a window across your desktop an&here was still work to be done in some areas,
see how quickly it gets redrawn. And | would k€ SMP and NUMA. Although an increas-

certainly be skewered if | didn’t mention what N9 number of dual-CPU desktops and even
is probably the favorite: playing your favorite 12Ptops introduced more users to the world

music while under load and listening intently ©f SMP, it was the high end users with 16,
for skips. 32, 128, or even more CPUs that really were

stretching the existing SMP and NUMA code.
Unfortunately, all these measurements are subFhe increasing load on the existing infrastruc-
jective, and even, at times, argumentativeture was causing developers to realize that
With scheduler statistics installed, one can aceode paths they previously thought “impossi-
curately measure such things as the amount dfle” were really “rarely,” and paths deemed
time processes are spending on the processor tinfrequent” were unfortunately morphing to
the amount of time they are waiting for the pro-“once or twice a day.”
cessor. This means that on SMP and NUMA _
machines, load balancing efforts can be objec£And an odd thing happened on the way to bet-
tively evaluated, and process migration decier code for the high end machines. Those
sions more effectively reviewed. And all of this PESKY desktop and laptop users got in the way.

can be done with no measurable impact to th&Vith every fix that would demonstrably im-
system. prove the situation for the big iron, dozens of

desktop and laptop owners would immediately
This paper will describe what information can pick up the new code, try it out, and more of-
be captured, use that information to characten than not, pronounce it faulty. Why? Be-
terize some simple loads, and describe hoveausetheir 2-proc SMP machines were used
that same information may be coordinated withvery differently than the file servers and web
other system measurements both to characteservers that the 128-proc systems had become.
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The testing and measurements that had goneg testing was inadequate to find. In fact, there
into verifying the patch did not test the systemwere two main problems that needed to be
the same way the desktop users did. Consesolved. One was to close the testing hole by re-
guently, these desktop users saw very differliably repeating the tests that the desktop users
ent results, and formed very different opinionswere running, and repeating them on as wide a
about the correctness and usefulness of thesariety of hardware as the original patches had
high-end SMP fixes. been run on. The other was that even the desk-
) _ o top users quibbled among themselves, some-
And Whl_le thelr_ opinions mattereq,_of COUrse, jimes, about whether wiggles, skips, and re-
addressing their concerns was difficult. Theyy,aws had degraded. It was important to find

were using human eyes and ears—notoriously, 4y to measure this “wiggle effect” in some
unreliable biological components known to bequantifiable, objective way so you could reli-

fraught with frequent failure and highly subjec- ably tell whether a new patch worsened it or
tive readouts—to detect problems with COdeimproved it

These observations needed to be backed up
with numbers somehow. Server software, for its part, didn't need mu-
sic to function, didn’t need cursors to point
with, and it sure didn’t care how fast windows
were redrawn. These highly interactive ac-
tivities had no place in server evaluations. It
So why weren't the big iron folks seeing the was typically all abouthroughput and plac-
same problems as the desktop people if thejng stress on some subsystem or another: disk,
were both utilizing the same code? The animemory, or network, typically. Stress on the
swer lay in usage patterns. People with laptopscheduler was a given. Even though dozens of
and desktops did not run two dozen instancebenchmarks exist for measuring the throughput
of a server daemon that depended on ultra fasif high-end machines, producing megabytes or
cache and great amounts of parallelism. Theven gigabytes of analysis and data, there was
did not have petabytes of disk, and typicallyno easy way to automate the type of subjective
did not have gigabytes of memory either. Theyhuman observation that desktop users were us-
didn't read terabytes of disk per minute, noring. There was no way to have weekly regres-
expect to fully utilize their bus bandwidth on a sion tests pick it up, nor any way to precisely
regular basis. duplicate the environment in which these ob-
servations were being made. In short, there
as no way to quantify the observations being
'made, S0 no existing tests could detect regres-
sions in this area.

2 Why is the wiggle so important?

These folks browsed the web, sorted mail, an
compiled kernels while, in the background
they listened to their favorite playlist. While
doing this, they would notice that with the new
scheduler mods, their windows took longer toPrevious scheduler modifications had labeled
redraw. Or their cursor moved more sluggishlyapplications that tended to spend a lot of time
under this relatively heavy load. Or their mu- waiting for 1/O as “interactive,” and attempted
sic skipped now and then because their musito give scheduler bonuses to those tasks when
player didn’'t get back on the CPU soon enougtthe I/O they had been waiting for completed.
to catch the next few notes. This wassupposedo provide the exact behav-
ior the desktops wenmgotseeing. The suspicion

That's not to make light of their complaints; o that either these types of applications were
they were uncovering real problems that exist-
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not being correctly recognized, or they wereslow interprocess communication or slow sig-
not being given sufficient bonuses. nal delivery, but it should be easy to rule out
these causes if we were to measure the time a

) ) task spent in a queue waiting for a processor.
3 Isolating the wiggle P g gforap

A patch for scheduler statistics has been avail-
The first part of the solution was recognizing@ble since 2.5.59 However, it was with the
that the “wiggle effect” comes from tasks not 2-6.0-test5 release in September of 2003 that it
regaining the CPU fast enough. The second’as updated to include code to measure task
part was recognizing that the audible stuttef@l€ncy. The task is given a new timestamp
from a music player, or the delay in redraw-When itis placed in a run queue, placed on a

ing a window, were showing the same problemProcessor, or removed from a processor. This
as wiggling the cursor. makes it trivial to determine how long the task

spent in the run queue before making it to the
In the case of a cursor, coordinates from a serigbrocessor. It has the side effect of allowing us
mouse are presented as a stream of input to thte also measure, on average, how long a task
windowing system. If the task that moves theremains on the processor before relinquishing
cursor is not brought to a CPU quickly enoughiit, usually voluntarily. This allows us to easily
there will be a lag between the time the move-characterize the kind of load a benchmark may
ment is initiated and the time it appears on theplace on a system.

screen. With all the input consumed, the task o .
again goes to sleep even though a split seconfydding statistics counting to the scheduler path

later more input appears as the mouse continas & dicey task. This is one of the most heav-
ues to move. While this is an efficient way to Il uséd paths in the system, and anything that
handle a serial mouse, it is dependent on hitSlows down this path can have a catastrophic
ting the processor quickly enough to guarante&fféct on the system as a whole. Consequently,
the input stream doesn’t back up too much. ithe statistics patch tries to do what it can to
the consuming task does not get to run quickl)gather accurate statistics without the use of a
enough, the cursor will appear to move acrosock.

the screen in a staccato fashion, even though

the mouse itself is being moved smoothly. « Per-CPU counters are used. and incre-

In the case of a music player, the application ~ mented only by their respective CPU. This
(say,xmm3 will read a certain amount of input makes update collisions (and loss of data)
from a file, but it will take longer to play it to impossible.

the speaker. Even though this is, in general, a
very 1/O-intensive task, there are times when
xmmswill go to sleep either waiting for output
to drain to the speaker or input to come from
f[he file. Waking up too_slowly from these self-_ « Counters are only incremented, so minor
imposed interruptions is what causes the music 4 iations from unflushed caches that may
to pause or stutter. be observed while reading another CPU’s
counters can be safely ignored. (The

» Even so, when possible, these counters are
incremented while a per-CPU runqueue
lock is already acquired.

Slow window redrawing is a case of applica-
tions taking too long after notification to wake  1hp://0ss.software.ibm.com/developerworks/
up and redraw. Thimightalso be attributed to opensource/linux/patches/?patch_id=730
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counters are declared unsigned long, so
user-level utilities on 32-bit architectures
must take note that the counters could
wrap. While theoretically possible on 64-
bit machines, wrapping is far less likely
than on 32-bit machines.)

Measurements were taken across several dif-
ferent releases using several different bench-

may find it collects statistics roughly ev-
ery 10 seconds when the system is lightly
loaded, but every 15-20 seconds or more
when the system is heavily loaded. The
code to note the timestamp is just a few
lines before the data is totaled in the ker-
nel, and on a non-preemptible kernel is an
inexpensive way of identifying the time at
which the snapshot wasctuallytaken.

marks to see if any statistical impact could cpuNnnnnnnnn...

be found on the benchmarks when scheduler
statistics were utilized. To date, none have
been found.

After the patch is applied, the counters can be
obtained by readingproc/schedstat A

full description of the statistics collected can be
found in Documentation/schedstats.

txt in the kernel source. The patch itself in-
troduces a config option SCHEDSTATS that is
on by default; if it is turned off, all the addi-
tional code is compiled out. There are three
important fields:

timestamp N
This line indicates a timestamp, in jiffies,
of when this output was produced. The
statistics are most effectively utilized
when collected at small regular intervals,
since this allows you to more accurately
see how the behavior of a load or bench-

These are the values of the counters for
cpu N. The precise meaning of these

counters will vary depending on the ver-

sion of scheduler statistics being utilized.

A few examples of data collected are:

1. number of times some functions
were called

2. number of times certain functions
were called under certain circum-
stances (i.e., were the runqueues un-
balanced? was this processor idle?)

3. total number of milliseconds that
tasks on this processor have used,
not including the current one

4. total number of milliseconds that
tasks that ran here had to wait in
gueue

mark may change over its lifetime. Any ersionN

process reading this file, however, is sub-
ject to the same scheduler delays it is try-
ing to measure. Consequently, a simple
script like

while true
do
sleep 10
cat /proc/schedstats >> \
/tmp/stat.out
done

identifies the version of output being pro-
duced. Since the meaning of fields (and
the number of fields) in thepuN line,
above, can vary in different versions of
scheduler statistics, this allows tools to be
as flexible or inflexible as desired when
processing input.

A sample of the output from/proc/
schedstat

is provided in Appendix A.
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4 What would | use statistics for?  indicates how long the task may run before it is
forced off. Processes are usually given gener-
ous timeslices (100 ms is the default) but typi-

Scheduler statistics can serve three basic pueally don’t use all of them at one shot. A task

poses. In many cases, they are doing no mormay need to put itself to sleep, perhaps to wait

than providing some detailed code path andor input, before it has used up that full 100

profiling data. Knowing, for instance, that ms. It will have any unused amount available

a particular function was called 50,000 timesto it when the event awakens it, but how long

during a benchmark run may be key if it is ex-it spends on the processor can be an impor-

pected to be called a dozen times—or a miltant characteristic of the system load. If a task
lion. Similarly, knowing that 22,000 of those spends only a few milliseconds before giving
calls were made while the processor was idleup the processor, it may be 1/0-bound. By the
or made on just one of eight CPUs, may alscsame token, if it uses its full timeslice every
be quite informative. About half the counterstime before being kicked off, then it is CPU-

provide this sort of information, and it must be bound.

coupled with a knowledge of what to expect
lies. ized as CPU- or I/O-bound, they are rarely that

way from beginning to end. Seeing this behav-
Another purpose is to provide information be-ior graphed over a period of time can be very
yond just counting. There is a counter thatinformative to a person trying to tune the sys-
sums the imbalance found when queues artem or the benchmark.
inspected. Combine this with the number of
times you called this function and you can de-5
termine the average imbalance between run-
gueues. In most cases you wouldn’t want this
to exceed 1. Truth is, though, that a ﬂurryThe data that the scheduler statistics collect can
of forking or even I/O completions might sud- Pe utilized in several different ways.
denly cause a processor to suddenly find it-
self with significantly more runnable tasks than®-1 Using the function counts to characterize
other processors. Seeing where these spikes behavior

happen during the test run, and how often they
happen, may help to suggest better “defaylrReCENtlY @ colleague remarked that he was run-

behavior in the scheduler or even tuning in th1iNg & benchmark that he expected to fully load
benchmark itself. a machine; yet profiling was reporting that the

system was in the idle routine 50% of the time.
The last purpose has already been mentioned-He increased the load significantly on the ma-
task latency. We already need to note when &hine and idle time only dropped to 49%. He
task is queued on a processor and when it aczouldn’t believe the machine still had spare cy-
quires a processor. By noting one more thing—les, so we used the scheduler statistics to de-
when it leaves the processor—we can also deermine what was happening.
termine what | call theunslice

Diagnostic examples

From the beginning of the benchmark, we cap-
The runslice is the amount of time a tasktured the counters ifproc/schedstat ev-
spendson the processor before yielding it. In ery 10 seconds with a shell script. When the
contrast, theimeslicealloted by the scheduler benchmark exited, we killed the shell script.
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Figure 1:load_balance() andsched_balance_exec() counts

The two pieces of information that proved mostthis information in hand, simple observation of
useful were the number of calls per secondop(1l)while running the benchmark confirmed
(cp9 for load_balance() and sched_ what the scheduler statistics suggested. The
balance_exec() . In Figure 1, you can benchmark had a fairly lengthy single-threaded
see that thepsfor load_balance() varies setup: creating log files, making directories for
markedly between plateaus of around 4000fesults, and compiling short programs it would
4500, and valleys of 100-200. When the sys-use. It then forked many tasks and set them
tem is idle, it calldoad_balance() as of- all running to actually start the benchmark.
ten as once a millisecond to try to find work. When the test was over, there was again a sin-
When it is busy, it backs off to five times a gle threaded task that collected the data created
second. The graph here is clearly indicatingoefore several tasks organized the data.

that this benchmark has at least two periods of

about 100 seconds each out of about 450 se&.2 Using latency and runslice information

onds total where it is largely idle.

In another situation, a disk-intensive bench-
mark was doing much worse with a different
version of the scheduler. Figure 2 shows a mea-
surement of the latency from the two runs.

At about the same time that tlepsfor load_
balance() is high, thecps for sched
balance_exec() is low. This function is
called when tasks issue thlexec() system
call, and is used to do some OppOrtuNIStic réyy, the “proken” run, the latencies were nearly
balancing. We observed that just as the SySgyice that of the “working” run. Tasks were

tem starts to get busysched_balance_ taking longer to reach the CPU in the bro-
exec() tails off. ken case. Yet the runslice information shows

The data suggested that this benchmark had §PMParable (and very short) times spent on the
notable rampup and cooldown period. WithCP_US' If tasks were running very short periods
of time, but waiting longer to run, what could
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Enlightenment was finally attained by viewing g 10
the average imbalance (Figure 3) during each £ 2 AN it
. ) . s S s '
of the runs. On the average, the imbalancewas E 7. / '
twice as great in the broken run as in the work-  § &/
ing run. Since the runslice was so small, this 2 Z /\—’\’ i
suggested that tasks were becoming runnable 3 ;
quickly but simply not being balanced often 2 ‘
. . 0 1000 2000 3000 4000 5000 6000
enough. Some queues were getting quite long Test run in seconds
while others (presumably) were staying short.
Additional debugging showed that tasks were Figure 3: Average load imbalances

indeed awakening (probably by completed I/O)

quite frequently but most of the balancing was

happening only when one CPU fell idle andgp, they are retuned.

went looking for work. These longer queues

in the broken run were persisting longer thanThere is also some evidence that NUMA ma-

those in the working run, and tasks stuck inchines may benefit from device, task, or mem-

them were waiting a fraction of a millisecond ory affinitization strategies which try to keep

longer than before. data from crossing NUMA node boundaries.
Scheduler statistics can be used to reliably
demonstrate whether these strategies are being

6 Conclusion effective.

Lastly, the data provided by scheduler statis-
There is still work to do. tics probably ought to be moved out of /proc

eventually, as there is an ongoing effort to re-

Recent scheduler changes present in Andrey,m proc to its original task of just listing pro-
Morton's -mm tree will dramatically change aogges.

what is important to measure in the sched-

uler. Additionally, these same changes in-Scheduler statistics provide a quantifiable
troduce some self-tuning characteristics whichmeans of measuring scheduler changes. Much
may benefit from statistics describing how of-as disk statistics can be used to a variety



308 e Linux Symposium 2004 ¢ Volume Two

of ends—measuring disk utilization, through-and applications using these counters should
put rates, and transfer rates, for example—be prepared to deal with that. Since all coun-
scheduler statistics can help with analysis of ders start at zero at boot time, the most useful
variety of situations. The latest revisions goway to use them is to get periodic snapshots of
to lengths to avoid creating “Heisenbugs,” orthe counters, then subtract one set from a pre-
bugs which disappear when you try to examineviously obtained one to obtain the delta. All
them closely. Perhaps best of all, developersounters are per-processor.

need not rely on mice and windowing systems

to measure .their test r.esults. Latency num- sched_yield() . number of times
bers, in particular, provide a key way of mea- v the active and the expired queue were
suring scheduler success, and runslice figures empty

can help characterize the load that tests create

so that the best set of tests can be chosen to tesk. in sched_yield() , humber of times
a particular feature or system. Cursor wiggles just the active queue was empty

and audible skips can be set aside until they are

needed again. 3. in sched_yield() , humber of times

just the expired queue was empty

4. in sched_yield() , humber of times

Disclaimer
sched_yield() was called

This work represents the view of the author and 5. inschedule() , number of times the ac-

does not necessarily represent the views of IBM. tive queue had at least one other task on it
IBM is registered trademark of International Busi- 6. in schedule() , number of times we
ness Machines Corporation in the United States  switched to the expired queue and reused
and/or other countries worldwide. it

Other company, product, and service names may be 7. number of timesschedule() was
trademarks or service marks of others. called

8. number of timesload_balance()
Appendix A was called at an idle tick

9. number of timesload_balance()
Table 1 is a sample of whatproc/ was called at a busy tick
schedstat might look like for a 2-proc ma-
chine. The actual format and number of coun-10- number of timesload_balance()
ters will vary between different versions. For ~ Was called fromschedule()
purposes of this example, the last three line
are artificially folded for readability, but in ac-
tual output, each would be one long line.

S11. number of timesload_balance()
was called

12. sum of imbalances discovered (if any)

This is a brief description of each of the 23 with each call tdoad_balance()

counters for version 4 output. Applications can

check theversion field to make sure they 13. number of timesload_balance()

look for and correctly interpret the counters. was called when we did not find a “bus-
Note that all counters may wrap back to zero, iest” queue
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version 4

timestamp 4295814751

cpu0 8909 9103 612 11869 264585 9821 392921 1065335 406 140662 1206403 62905
1192940 0 13440 13469 0 0 O 0 82278 1497607 264615

cpul 5138 5328 577 8126 265205 6270 402877 943453 1005 149999 1094457 77670
1074828 0 13469 13440 0 0 O 0 200998 448842 265175

totals 14047 14431 1189 19995 529790 16091 795798 2008788 1411 290661 2300860
140575 2267768 0 26909 26909 0 0 0 O

Table 1. Sample output frofproc/schedstat

14. number of timesload_balance() time tasks had to wait after being scheduled to
was called fronbalance_node() run but before actually running.
15. number of timegpull_task() moved /proc/<pid>/stat

a task to this cpu ) _
This version of the patch also changes the

16. number of timepull_task() stole a stat output of individual tasksto include
task from this cpu the same latency and runslice information de-
) scribed above. Three new fields, correspond-
17. number of timepull_task() moved

) ing to the last three fields described above, are
a task to this cpu from another node (ré-5q4eq to the end of the per-tastat  file, but
quiresCONFIG_NUMA apply only for that task rather than a whole pro-

18. number of timepull_task() stole a  C€SSON-
task from this cpu for another node (re-
quiresCONFIG_NUMA

19. number of timesbalance node()
was called

20. number of timesbalance_node()
was called at an idle tick

21. sum of all time spent running by tasks (in
ms)

22. sum of all time spent waiting by tasks (in
ms)

23. number of tasks (not necessarily unique)
given to the processor

The last three make it possible to find the aver-
age latency on a particular runqueue or, if taken
from thetotals fields, the overall system.
Given two points in time, A and B22B —
22A)/(23B — 23A) will give you the average
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On a Kernel Events Layer and User-space Message
Bus System

Robert Love
Novell
rml@ximian.com

Abstract level components—and the upper levels of the
system, such as the desktop environment on

Various Linux usage scenarios, particularly the?€Sktop machines.

widely accepted server and the rapidly growinga narticularly important, but missing, compo-
desktop, require a lightweight, simple, asyn-pgnt of the Linux system is an ubiquitous IPC

chronous mechanism for kernel to user-spacg,achanism and events system. Such a com-

communication.  Such a mechanism is Cruponent would facilitate the dissemination of

cial for the transmissions of events to userinformation up the system stack, better inte-

space in a type-safe and clean manner. Furthegating the Linux system from the kernel up
a system-level messaging bus, which can deg,rq,gh the system layers, the desktop, and the
liver messages up the system stack on both @,q ,ser applications and daemons. With well
system-wide and per-user level, is required tQyefined interfaces, such integration could occur
further the integration of the Linux system. \yhile continuing the current separation and in-

This talk will discuss the design and imple- teroperability of Linux components.

mentation for two specific solutions, the Kernel\y/hat would such an IPC mechanism and event
Events Layer and D-BUS, to these two prob-gysiem allow? Quite a bit. Photo applications
lems. Finally, usefql solqtlons pwlt on the sum 4 ,1d start automatically in response to cam-
of these technologies will be discussed—suchy 5 insertion. The volume of your music player
as a fully integrated Linux desktop, from the ¢, 4 automatically lower in response to your
kernel up through the GNOME desktop. phone ringing. System shutdown, reboot, and

suspend messages could be trasmitted up the
1 Introduction stagk. HA applications could receive instant
notifications from the kernel. No longer need

. components in the system live separate lives
Usually considered a plus of open source defrom the kernel, the layers below them, and

velopment, the Linux system is developedyemselves. Now, applications can communi-
piece-meal, resulting in cleanly separated lay¢ate Jisten. and evolve

ers and properly defined interfaces. This sep-

aration, however, also results in a lack of in-Such a system may be broken into three re-
tegration among the various components comeguirements:

prising the system stack. In particular, the lack

of integration is readily manifest between the < Kernel support implementing a kernel-to-
lower levels of the stack—kernel and system- user event mechanism
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» A user-space message transport and IP@.2 Implementation
mechanism
The Kernel Events Layer implements an event

» Application nding and r ivin h . .
pplications sending and receiving suc system satisfying these requirements.

messages
Usage is simple:
This paper will discuss two specific implemen-
tations of these requirements: send_event (int type, char
*interface, char *fmt, ...)
» The Kernel Events Layer

Thetype parameter specifies a constant value

« D-BUS . :
representing the type of message being sent.
The interface value specifies the origina-
2 The Kernel Events Layer tor of the message. It is used to provide an in-
terface object for object-based component and
2.1 Goals and Design IPC systems such as CORBA and D-BUS. Fi-

nally, fmt and any following arguments pro-

Current user-space grokking of the kernel typ-Vide the usuaba_list  of format and argu-
ically requires some combination of periodic MeNts.

polling, parsing of unformatted text files from
/proc , and luck. The Linux kernel currently

lacks a mechanism for kernel to user-space
communication. send_event (DBUS_NORMAL,

"org.kernel.arch.cpu”,
The requirements for such a system include: "overheating”)

Example:

» simple and clean This specifies a message from the
org.kernel.arch.cpu interface with a

* low overhead and scalable value ofoverheating

« asynchronous transport accessible withtha actual

) implementation of the Kernel
out polling

Events Layer uses netlink. In fact, the Kernel
. type-safe Event Layer is simply specific netlink socket
into user-space in which the event is formated
* generic enough for use in multiple usageand then reconstructed by user-space. Netlink
scenarios is fast, simple, and already in the kernel. Thus

: . it was a natural choice.
 support for formalized sender interfaces,

allowing standardized messaging The Kernel Events Layer code uses
netlink_broadcast() internally.
Event systems have been proposed and even
implemented, but they generally receive min-2.3 Real World Usage
imal community buyin, presumably due to a
lack of one or moe of these requirements (mor&he Kernel Events Layer is independent
than likely, the “simple” bit). of any specific user-space transport mecha-
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nism. The assumed use case is to creatitom the system-wide bus. The per-user dae-
a new daemon (or modify an existing dae-mon is generally used for traditional point-to-
mon, like the D-BUS system message buspoint IPC.

dbus-system-1 ). This daemon listens on _ ) _ )
the netlink socket, reading each event as it ocP-BUS is the name given to this system. Itis
curs. The events are parsed and reconstruct&@MpPosed of several architectural layers:

into the format native to the user-space trans-
port mechanism. « The message bus daemon

In the case of D-BUS, thdbus-system-1 « The D-BUS library, libdbus , which
daemon sends the kernel events out the System connects to app”cations together
message bus. Components up the system stack

may then receive the kernel events right off the * Wrapper libraries and bindings that wrap

D-BUS system bus, along with other system- libdbus for direct use on various appli-
wide messages. cation frameworks, such as Glib or QT,

and various languages, such as C# and
Python. The wrapper libraries and bind-
3 D-BUS ings provide the API that most program-
mers should use as they both simplify the
rather low-levellibdbus APl and pro-
vide an API more familiar and fit for that
D-BUS varies from other IPC mechanisms in particular environment.
that it provides a bus system (as opposed to
point-to-point) over which messages (as 0p3 1 p.BUS Concepts
posed to byte streams) are transported. Mes-
sages include a he_:ader containing mEta.d.atB-BUS introduces various concepts that com-
about the message itself and a body contammgrise the IPC system
the data. The bus system is created by form* '
ing a point-to-point connection between the D-
BUS daemon and each listener. The daemon ¢ Thebus is either the system-wide global
acts as the hub and the listeners as the spokes bus or the per-user session bus.
of a wheel.

D-BUS is a user-space IPC system.

» Objectsrepresent an instance of a specific
D-BUS provides both a system-wide and a listener of a D-BUS message. Objects
per-user session bus. The system-wide bus is are contained within the applications that
used to dissemenate information on a machine-  use D-BUS, and generally map to objects
global scale. A single system daemon provides  in object-oriented languages. Because D-
this service, allowing applications up the stack BUS would not find using a pointer or ref-
to receive messages from components down erence to identify an object very friendly,
the stack. A security system implements ac- it introduces a name for each object. The
cess control. name resembles a UNIX filesystem path,

. . such as /org/kernel/fs/filesystem.
The per-user session bus exists on a per-user

basis, with one daemon created for each user e Interfaces represent methods or signals
session. The per-user daemon is used for gen- implemented on an object. Each object
eral application IPC and is physically separate  supports at least one interface.
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* Messagesare sent to and from a defined 4.1 Example: libinput
method or signal. D-BUS supports mul-

tiple message types: method invocationjipinput  is a simple library for managing
method return, error message, and signalinput devices that sits on top of HAL and com-
municates to HAL beneath it and the appli-
cations above it via D-BUSIlibinput is
used to enumerate all input devices on the sys-
tem. libinput also provides an interface
D-BUS's simplicity, performance, and use of for gpplications to register callbacks, and in-
the message and bus paradigm set it up for usggrate these callbacks into its mainloop. The

across the entire Linux system and make it &3|Ibacks are invoked when input devices are
pel‘feCt replacement fOI‘ CORBA, DCOP, andadded to or removed from the System.

other IPC mechanisms.

3.2 Use of D-BUS

_ . _ Sample usage of enumerating all input devices
Multiple projects are taking advantage of D-gn the system:

BUS. They include:

struct input *devices;

Project Utopia uses D-BUS as the IPC; (input_init ()
mechanism to link the kernel, udev, HAL, T x error .. ¥
and the GNOME desktop.
devices = input_devices_get ();
A CUPS patch uses D-BUS to transmit in- While (devices) {

o H
formation about the printer spool. devices = devices->next.

. }
« Jamboree uses D-BUS to automaticallyinput devices_put (devices):
mute the volume.

A Gconf patch uses D-BUS as the GeonfGiven a specifistruct input , the library
transport mechanism. provides wrappers for opening and closing the

device viaopen (2) andclose (2). This is not
strictly required, but furthers the abstracting of

D- device nodes not only from the user but even
from the application.

4 The Kernel Events Layer,

BUS, and Project Utopia
Example:

D-BUS is used as the backbone of Project

Utopia, an umbrella project aiming to bring fd = input_device_open (device, 0);
improved hardware management and system
integration to the Linux system and GNOME’
desktop. Project Utopia uses D-BUS to linkjyout device close (device):

the kernel, up through hotplug, udev and HAL

to the rest of the system. Libraries utilizing o .

D-BUS and built on top of HAL provide en- Registering of the callbacks is also easy:
hanced hardware support. Applications at the

desktop level can then reap the benefits. void my_mainloop

*/



(DBusConnection *dbus_connection)

{
dbus_connection_setup_with_g main
(dbus_connection, NULL);

}

void my_added
(struct input *device)
{
printf
("%s was just "
"hotplugged\n"”,
device->product);

}

void my_removed
(struct input *device)
{
printf
("%s was just "
"hotunplugged\n",
device->product);

* ..
input_init_with_callbacks
(&my_mainloop,
&my_added,
&my_removed);

gtk_main ();

When an input device is added or re-
moved from the systenmy_added andmy_
removed are invoked as appropriate.

The goals behind such a library are twofold:
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5 Conclusion

The Kernel Events Layer and D-BUS are two
crucial components in better unifying and in-
tegrating the Linux system. They provide the
infrastructure required for a future rich with in-
formation exchange. Where all levels of the
desktop can communicate—talking, listening,
evolving.

» Abstract away concepts of device nodes

and low-level system-specific behavior

and allow application developers to search
for enumerate the devices on a system

through simple interfaces.

» Allow asynchronous poll-free hack-free
callbacks into the application to notify the

program of changes in events, such as a

new joystick on the system.
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Linux-tiny And Directions For Small Systems

Matt Mackall
Digeo, Inc.
mpm@digeo.com

Abstract been targeting high end computing and ris-
ing demand for hardware has seen prices drop

Linux-tiny is a project to reduce the mem- remendously.

ory and storage footprint of the 2.6 Linux ker- gt there are still small machines! Hand-helds
nel for embedded, handheld, legacy, and otheg,q embedded systems are perennially pressed
small systems. | describe strategies for kemelor gpace to match their desktop counterparts
size reduction, some of the major areas already, many people throughout the world still rely
investigated and the results achieved, as well ag, legacy machines to get their work done.
some avenues for further exploration. What can be done to recapture the ‘small is
beautiful’ utility of those early systems?

1 Introduction
1.2 Where is the growth?

Historically, Linux had a reputation for run-

ning on very modest systems. My first dedi-The process by which any large software
cated Linux box, running a 0.99 kernel circaproject grows can aptly be describeddesath
1994, provided mail, FTP, web, dial-in, and by a thousand cutsThe accumulation of bloat
shell services on a 16MHz 386SX with a mereoccurs change by change and creeps in from
4 megabytes of RAM. In the 10 years sinceseveral different directions.

then, Linux has grown to the point where it o -

runs on machines with over a thousand proces-€'haps the most visible is the addition of new
sors and a terabyte of RAM. Not surprisingly, featgres, which generally requires the intro-
a modern Linux distribution can have difficulty duction of wholly-new code. Frequently fea-
getting to a shell prompt on machines with lesdures are considered so small or so essential

than 8 megabytes of RAM, let alone doing use-that no thought is given to making them op-
ful work. tional. As the median system size grows, this

new code tends to be more verbose and less

11 What happened? concerned with space issues.

The next, more subtle culprit gerformance.
In the time between the 0.99 and 2.6 kernelsGiven the fundamental importance of kernel
we've seen Linux become a serious commerperformance to overall system performance,
cial endeavor, we've seen kernel hackers getrade-offs of size for speed are easy to justify.
jobs (and get big machines on their desks), antUnfortunately the accumulation of many such
we've seen a massive boom in Internet use anttade-offs can leave us with a system that no
personal computing. Linux developers haveonger boots. Ironically, the evolution of pro-
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cessors has brought us to a point where cache wins for all systems should be config-
footprint can be critical to performance so a lot urable so that users can make their own
of the choices that have been made in this area  trade-offs

bear rethinking. _ .
Y * non-invasive patches should be small,

Next we havecompatibility andcorrectness self-contained, and largely independent so
Every time the system is extended to better  thatintegrators can cherrypick the patches
support a slightly different piece of hardware they'd like to use

or work around another corner case, more code
is added. Occassionally cleanups and unifica-
tions make some of this code redundant, but
this is the exception. A related phenomenon is
the evolution of the kernel APIs and the accu-

mulation of obsolete code for the sake of back- N , )
ward compatibility. In addition to patches focusing on reducing

kernel footprint, I've also added a number of
_ _ patches to do debugging and auditing includ-
2 Linux-Tiny for the small system ing netconsole, kgdb, and kgdb-over-ethernet

niche support.

* mergeable while not mandatory, patches
should try to be acceptable to the mainline
kernel in both style and approach; merg-
ing to mainline is a priority

There have been numerous efforts to addreszs'2 Setting goals

the above phenomena for various components _ ] _
of Linux systems, but most of the attention Everyone has a different set of functionality re-

has been addressed at userspace (arguably tigirements in mind for small systems. The fea-
biggest offender). Experiments with pre-2.6.0tures needed on a handheld are very different

kernels however suggested it was time to payom those needed for a network appliance or
some more attention to the kernel itself. So2 KIoSk. Thus, choosing a subset of features to

in December of 2003, | decided to create ai€velop towards is tricky.

new 2.6-based tree dedicated to small systemgy e 5nnr0ach I've taken is to choose a series
which I named Linux-Tiny [3] (someone had ¢ (4rgets to optimize, and the first is a min-
already borrowed my initials for their tree). imal x86 kernel with filesystem, console, and
TCP/IP support. How small can we make this
kernel? This puts a focus on the most of the
common core functionality of Linux and pro-
With stated targets of embedded, hand-heldvides a useful benchmark for progress.
and legacy machines, the -tiny tree attempts
to tailor the kernel to the needs of small sys-
tems. The tree is maintained as a series of sma
patches stacked on top of mainline kernel re-
leases, managed with the quilt tool [1] (previ-As mentioned above, there are many sources
ously with Andrew Morton’s patch scripts [4]). of bloat. There are also several forms it can
take: as superfluous code, statically or dy-
Patches try to observe the following criteria: namically allocated data, inline functions or
macros, compiler mis-optimizations, or cut-n-
 configurable: changes that are not clearly paste coding.

2.1 Methodology

Finding bloat
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Given that the kernel is on the order of severabrch/i386/kernel/semaphore.c:58:

hundred kilobytes, tackling bloat is going to warning:  ‘get_current’ is

be a matter of trimming several kilobytes heredeprecated (declared at

and a couple kilobytes there. While one couldinclude/asm/current.h:16)

simply pick any source file and read through it _ _ )
searching for cleanup opportunities, there ar&Y POSt-processing these voluminous warning

some more straightforward ways of finding theMessages, we can determine which inline func-
“low-hanging fruit”. tions are instantiated directly in C files as well

as which are called as parts of other inlines and
3.1 Using nm(1) and size(1) finqlly cglculatg the total number of direct or
indirect instantiations of each (see Table 3).

The easiest place to begin is by using tile  The second part of this puzzle was more chal-
tool to find large functions and data structuresjenging. While we know in which modules
Comparing the (hexadecimal) numbers fromand how often inlines are instantiated, we can-
nm(1) with size(1) gives us a good start not yet calculate their sizes. | made several
at understanding the relative sizes of some Oéttempts to generate approximate size data by
the major subsystems and their componentgoking at GCC’s symbolic debugging output,
compared to the kernel as a whole. For inpyt this tended to be easily confused by inlin-

stance, we can see by comparing Table 1 anﬁhg and was too inaccurate for use.
Table 2 that the staticdle_hwifs  data struc-

ture alone takes 15360 bytes, over 2% of théRecently Denis Vlasenko took another stab

data portion of the default kernel. at this and wrote a set of scripts called in-
line_hunter [5] to generate a set of dummy
3.2 Measuring function inlining functions wrapping single calls to inlines.

While these sizes won'’t directly reflect the

Function inlining and macro expansion preseniz€ of inline instantiations due to function

forts. In the early 1990s, inlining was a very tie_s, for larger in_Iine functions, it has proven
popular performance technique to avoid funcfairly rep.rese.ntatlve. Some of the Iarger inlines
tion call branches. A great number of key func-found with this approach are shown in Table 4.
tions are marked for inlining in the kernel and

their usage and size impact is obscured because3 Tracking dynamic allocations

they become a seamless part of the functions

that use them. Auditing their usage become®f course much of the kernel's memory foot-
a matter of convincing the compiler to tell us print is from dynamic allocations. Memory
when inlines are being instantiated in a buildused for page tables, tracking running pro-
and then estimating how large these functiongesses, indexing hashes and so forth is allo-
are when expanded inline. cated at runtime and can vary with the size of

o o the load. A number of these are hash tables to
Rather than modifying the compiler itself, the jncrease Iook-up performance, which for small

first part of this puzzle was hacked around bySystems can be less important than simply fit-
redefininginline  to include the GCC exten- ting in memory.

sion __ attribute__ ((deprecated))
This causes a very useful warning like the fol-There are several important allocators in the
lowing to be generated: kernel. First, the bootmem allocator which
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2.6.5\$ nm --size -r vmlinux | head -20
00008000 b _ log_buf

00007000 D irg_desc

00004e78 d pci_vendor_list
00004000 b bh_wait_queue_heads
00003c00 B ide_hwifs
0000213a T vt _ioctl
00002000 D init_thread_union
00001880 D contig_page_data
0000163b T journal_commit_transaction
00001500 b irg_2_pin

000012f5 T tcp_sendmsg

00001162 t n_tty receive_buf
00001080 d per_cpu__tvec bases
00001000 t translation_table

00001000 b sd_index_bits

00001000 D init_tss

00001000 b doublefault_stack
00001000 B con_buf

00001000 b cache_defer_hash
00000fe0 T cdrom_ioctl

Table 1: nm output for 2.6.5 default config

handles a number of critical allocations atTo address this deficiency, I've created a
startup. As there are not terribly many of small footprint tool for tracking allocations via
these, they can be audited very simply with/proc/kmalloc (see Table 5). This works
printk() techniques. by tracking the address of each allocation along

_ _ with the address of the allocating function in
Second, the SLAB allocator is used to quickly 5 simple hash table. Also tracked are net and
allocate sets of objects of the same size anf;qss allocation sizes and counts per caller.

type. The kernel provides a way to track thes@yhen akfree()  call is made, it is matched
allocations with/proc/slabinfo : up to its caller for accounting purposes and re-
moved from the hash. Thus it is possible not
donly to determine how much dynamic memory
is used by each function but also to easily iden-

The more generatmalloc()  allocator has
been rebuilt on top of the aforementione
SLAB allocator, translating kmalloc requests
into requests from a set of ascending generi(t:'fy memory leaks.

SLAB sizes. Thus allkmalloc() allo-

fatiOZ‘Sl zfef lumped togethTer: by SiEe ri]nlthe4 Some notable opportunities for
proc/slabinfo output. That can be help- - -

ful if you know what you're looking for, but code trimming

doesn’t give many hints as to which parts of
the kernel are using that memory. The above methods have revealed numerous

opportunities for cutting back the kernel’s
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hex filename

48000 1480084 169594 drivers/built-in.o
c2ea5 fs/built-in.o
506b init/built-in.o
56¢9 ipc/built-in.o
35425 kernel/built-in.o
b36 lib/built-in.o
22935 mm/built-in.o
9a8f7 net/built-in.o
74d security/built-in.o
53055 sound/built-in.o

text data bss dec
3366220 673296 166824 4206340 402f04 vmlinux
1181276 250808
735152 32593 30628 798373
18151 1120 1316 20587
21841 172 204 22217
159632 16115 42402 218149
2870 0 0 2870
129669 9068 2884 141621
580407 33816 18856 633079
1869 0 0 1869
325923 11114 3016 340053
134 0 0 134

86 usr/built-in.o

Table 2: size output for 2.6.5 default config

memory footprint, many of which remain to be 4.2 Optional interfaces

examined. What follows are some of the more
notable areas that have been explored.

For systems with well-defined application re-

quirements, many of the kernel's APIs are

4.1 Debugging data

unnecessary. Cutting-edge, obsolete, or ob-
scure features are obvious candidates for con-

figurable removal.

The kernel has numerous facilities for trapping
and reporting problem conditions and other
status information, includingprintk()
bug() ,warn() , panic() , and friends. In
ideal circumstances, these facilities go unexer-
cised. And in the extreme, embedded boxes
may have no means of reporting this data, due
to lack of a display, writable storage, or the
like. Unfortunately, not only do these facilities
use a substantial amount of code, their users
need extra space for error message strings, file-
names, and line numbers.

Linux-tiny has a set of configuration options
to compile out most of this code and remove
the debugging strings and data from the kernel.
Disabling support fomprintk() saves well
over 100K. Independent options control the in-
clusion of thebug() infrastructure and sup-
port for trapping panics and doublefaults.

» sysfs The new sysfs filesystem makes

substantial memory demands (which can
be more than half a megabyte even on
the smallest systems) but its features may
well not be essential to current systems.
The -tiny tree was a testbed for options to

entirely remove sysfs or to use a lighter

“backing store” version.

ptrace, aio, posix-timers These fea-
tures are among those that are only used
by a small set of applications. These
and other Linux-tiny options are enabled
under the CONFIG_EMBEDDED menu,
which marks them as making the kernel
non-standard.

uid16, vm8a Some of the many legacy
interfaces in the kernel. Modern appli-
cations and libraries use 32-bit user and
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group IDs and vm86 supportis used to runsome cases, it can even arrange for objects to
16-bit code for emulators like DOSEMU be pre-initialized without any additional over-
and Wine and for some video drivers usednead. SLAB also has some resistance to trou-
by X. blesome memory fragmentation issues. While
. _ simple in principle, the SLAB code ends up be-
* ethtool, tcpdiag, igmp, rtnetlink: One of o4 qjite complex from its efforts to squeeze

the most complicated parts of the kernel iy maximum possible performance out of the
the networking layer, which has grown a gllocator.

variety of APIs to gain access to its many
features. But for most users, the interfacesThe primary downside to SLAB is that because

used by the classidconfig(8) and it maintains a collection of independent caches
route(8) tools are sufficient. which are all one or more pages, it ends up
leaving quite a bit of unused space in each

4.3 4K stacks SLAB cache. In addition, asmalloc is im-

plemented on top of SLAB using a set of preset

During the 2.1 kernel series (circa 1998), theObject size SLABs, there is quite a bit of ex-

x86 kernel increased the size of the per-tasIEra space allocated for the averagealloc

kernel stacks from 4K to 8K to work around call. Measurements with the previously de-

issues with stack depth. In addition to the ob_scnbed/proc/ kmalloc tool report that ex-

. . . - 0,
vious increase in overhead for every userspac’i—.(a overhe;'lid catm dagmunltl 10 25-30% of the total
process, several new kernel daemons have pedEMory allocate kmalloc

added, all with their own stacks. Another is- Linux-tiny provides an optional replacement
sue is that finding pairs of contiguous pagesgy, | AB that I've dubbedSLOB (simple list

to build an 8K stack can be very difficult on a of piocks). SLOB trades performance for space
machine with memory pressure and especiallficiency by implementing a more traditional
so on machines with a small number of totaljist-hased allocator that also understands re-
pages. quests for objects with particular alignments.

Many of the problems that made 4K stacksThe APIs used by SLAB an_ldnalloc() are
Rrowded by a small emulation layer.

problematic have since been addressed and 4

stacks are now practical for most applicationsg| o manages all objects at a granularity of 8
Linux-tiny has served as an early testbed folytes so overhead for odd object sizes is min-
reintroducing 4K stack support to the mainlinejmized. It also does away with the numer-
2.6 kernel and includes a developer tool called, ;g partly-used caches of the SLOB approach.
checkstack that will automatically disas- Finally, the SLOB code is much simpler and
semble a kernel to find the most extreme stackyyeg up less than one tenth of the space of the
Space users. standard SLAB allocator.

4.4 The SLOB allocator )
4.5 TinyVvT

Most memory in the kernel is managed ei-

ther directly or indirectly through the SLAB As you can see from Table 1, the largest single
allocator. SLAB maintains separate cachegunction inthe default kernel i _ioctl() ,

for objects of given sizes and types and carwhich manages many of the special features
very quickly manage allocations for them. Inof the Linux console. As most early Linux
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users didn't have the memory for running a6 Further directions

full-fledged X desktop, the native Linux text
console is very powerful, with support for
scrollback, selection, virtual console switch-
ing, Unicode translation and character sets
screen blanking, and so on.

These features can be very handy for some
users, but on a palmtop or kiosk running a
GUI, or for a minimal rescue disk, they're
dead weight. Linux-tiny includes a heavily
trimmed down replacement for the standard
console code which drops many of these fea-
tures and can trim a couple percent off the size
of the kernel image.

5 Results

Recent releases of Linux-tiny contain the

above options and numerous others. My test
configuration, with support for a text console,

IDE disks, the Ext2 filesystem, TCP/IP, and a

PCl-based network card results in a 363K com-
pressed kernel image. Other users of Linux-
tiny have reported kernel configurations result-
ing in images as small as 191K.

Booting the test configuration witmem=2M\
which gives a total of of 1664K after account-
ing for BIOS memory holes, still leaves ample
room for a lightweight userspace (see Table 6).
A similarly configured mainline kernel without
the -tiny patches compiles to a kernel image
of over 500K and has difficulty booting with
mem=4M

For comparison, the earliest Linux distribution
kernel I've been able to locate, a 0.99pl15 ker-
nel from Slackware 1.1.2 circa 1994, is a mere
301K. Modernhighly-modularized 2.6

There are many further avenues to pursue and
subsystems to trim. Some of the more aggres-
Sive ideas on the to-do list include:

* A lightweight replacement network stack:

Minimal TCP stacks like ulP [2] have suf-
ficient functionality for simple network

applications and have extremely small
footprints.

Replacements for fixed-sized hash tables:
Existing kernel hash tables have difficulty
scaling with workloads and memory sizes.
Other approaches like radix trees might
be better in some areas and avoid wasted
memory when the indexes are empty.

Support for bunzip2: Linux-tiny now has
a simplified interface to the boot-time de-
compressor and allows for replacements
to be easily dropped in. While bzip2 com-
pression won’'t save any memory at run-
time, it will save valuable storage space
on embedded systems.

Pageable kernel memory: Following an
approach similartothe init approach

in current kernels, it should be possible
to mark specific functions and data in the
kernel core as pageable, provided they
meet some specific requirements.

Tracking kernel growth: Using automated
tools to track the size of kernel functions
and subsystems from release to release
will help catch new bloat when it appears.

kernels from Fedora Core 2 and SuSE 9.10fcourse, as most of the bloat in the kernel has
weigh in at 1.2M and 1.5M respectively while been introduced in small increments, most of

the default 2.6.5 kernel config builds a 1.9Mthe improvements will be of the same variety.
compressed kernel. Contributions are encouraged!
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1560 get _current (1294 in *.c)

calls:

callers: <other>(336) capable(122) unlock kernel(44) lock_kernel(33)
flush_tlb_page(11) flush_tlb_mm(10) find_process_by pid(6)
flush_tlb_range(4) current_is_kswapd(4) current_is_pdflush(3)
rwsem_down_failed_common(2) on_sig_stack(2) do_mmap2(2) __ exit_mm(2)
walk_init_root(1) scm_check creds(1l) save i387_fsave(1)
sas_ss_flags(l) restore_i387_fsave(1l) read_zero_pagealigned(1)
handle_group_stop(1) get close_on_exec(1l) fork traceflag(l)
ext2_init_acl(1) exec_permission_lite(1) dup_mmap(1l) do_tty write(1)
de_thread(1) copy_signal(1) copy_sighand(1) copy_fs(1) check_sticky(1)
cap_set_all(1) cap_emulate_setxuid(1) arch_get unmapped_area(l)

546 current_thread_info (286 in *.c)

calls:

callers: <other>(207) copy_to_user(95) copy_from_user(86)
tcp_set_state(22) test_thread_flag(20) verify_area(13)
tcp_enter_memory_pressure(6) sock orphan(3) icmp_xmit_lock(2)
csum_and_copy_to_user(2) tcp_v4_lookup(l) sock_graft(1)
set_thread_flag(1) neigh_update_hhs(1) ip_finish_output2(1) gfp_any(1)
fn_flush_list(1) do_getname(1) clear_thread_flag(1) alloc_buf(1)
activate_task(1)

413 atomic_dec_and_test (55 in *.c)

calls:

callers: put_page(103) kfree_skb(101) <other>(47) mntput(34)
in_dev_put(23) neigh_release(19) tcp_tw put(18) fib_info_put(17)
sock_put(15) put_namespace(6) mmdrop(6) __ put_fs_struct(4)
tcp_listen_unlock(3) ipg_put(3) finish_task switch(2) _ detach_pid(2)
task_state(1) de_thread(1)

255 tcp_sk (134 in *.c)

calls:

callers: <other>(117) tcp_reset _xmit_timer(30) tcp_set state(22)
tcp_current_mss(13) tcp_initialize_rcv_mss(6) tcp_free skb(6)
tcp_check space(6) tcp_data snd_check(5) tcp_clear_xmit_timer(5)
tcp_synqg_removed(3) tcp_select window(3) westwood_update_rttmin(2)
westwood_acked(2) tcp_syng_len(2) tcp_syng_drop(2)

tcp_ack _snd_check(2) __ tcp_inherit_port(2) tcp_use_frto(1)
tcp_syng_young(1l) tcp_syng_is_full(1) tcp_syng_added(1)
tcp_prequeue(1) tcp_listen_poll(1) tcp_event_ack sent(1)
tcp_connect_init(1) tcp_acceptqg_queue(l) do_pmtu_discovery(1)

Table 3: Some large inline counts and users for 2.6.5-tiny1
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Size Uses Wasted Name and definition
56 461 16560 copy_ from_user
122 119 12036 skb_dequeue
164 78 11088 skb_queue_purge
97 141 10780 netif_wake_queue
43 468 10741 copy_to_user
43 461 10580 copy_from_user
145 77 9500 put_page
49 313 9048 skb_put
109 101 8900 skb_queue_tall
381 21 7220 sock _queue_rcv_skb
55 191 6650 init MUTEX
61 163 6642 unlock kernel
59 165 6396 lock_kernel
127 59 6206 dev_kfree_skb_any
41 289 6048 list_del
73 83 4346 dev_kfree_skb _irq
131 39 4218 netif_device attach
110 44 3870 skb_queue_head
84 59 3712 seq_puts
57 75 2738 skb_trim
45 96 2375 skb_queue_head_init
41 111 2310 list_del_init
102 23 1804 _ nimsg_put

include/asm/uaccess.h
include/linux/skbuff.h
include/linux/skbuff.h
include/linux/netdevice.h
include/asm/uaccess.h
include/asm/uaccess.h
include/linux/mm.h
include/linux/skbuff.h
include/linux/skbuff.h
include/net/sock.h
include/asm/semaphore.h
include/linux/smp_lock.h
include/linux/smp_lock.h
include/linux/netdevice.h
include/linux/list.h

include/linux/netdevice.h
include/linux/netdevice.h

include/linux/skbuff.h
include/linux/seq_file.h
include/linux/skbuff.h

include/linux/skbuff.h
include/linux/list.h

include/linux/netlink.h

Table 4: Size estimates found by inline_hunter
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# cat /proc/kmalloc
total bytes allocated: 266848

slack bytes allocated: 37774
net bytes allocated: 145568
number of allocs: 732
number of frees: 282
number of callers: 71
lost callers: 0
lost allocs: 0
unknown frees: 0
total slack net alloc/free caller
256 203 256 8/0 alloc_vfsmnt+0x73
8192 3648 4096 2/1 atkbd_connect+0x1b
192 48 64 3/2 seq_open+0x10
12288 0 4096 3/2 seq_read+0x53
8192 0 0 2/2 alloc_skb+0x3b
960 0 0 10/10 load_elf_interp+0xal
1920 288 0 10/10 load_elf_binary+0x100
320 130 0 10/10 load_elf _binary+0x1d8
192 48 96 6/3 request_irq+0x22
7200 1254 7200 75/0 proc_create+0x74
64 43 64 2/0 proc_symlink+0x40
4096 984 0 1/1 check_partition+0x1b
69632 0 45056 17/6 dup_task_struct+0x38
128 48 128 2/0 netlink_create+0x84
128 20 128 1/0 ext2_fill_super+0x2f
32 28 32 1/0 ext2_fill_super+0x385
32 31 32 1/0 ext2_fill_super+0x3b6
608 76 384 19/7 __request_region+0x18
64 32 64 2/0 rand_initialize_disk+0xd
8192 2016 8192 2/0 alloc_tty struct+0x10
128 56 128 2/0 init_dev+0xba
128 56 128 2/0 init_dev+0xf3
128 0 128 2/0 create_workqueue+0x28
8960 1680 8960 70/0 tty_add_class_device+0x20
2048 960 2048 4/0 alloc_tty driver+0x10
9280 2332 9280 4/0 tty_register_driver+0x2d
288 0 288 9/0 mempool_create+0x16
1280 196 1280 9/0 mempool_create+0x41
1536 384 1536 8/0 mempool_create+0x8f
64 28 64 1/0 kbd_connect+0x3e
928 348 0 29/29 kmem_cache_create+0x235
28288 1448 28288 81/0 do_tune_cpucache+0x2c

Table 5: Tracking usage of kmalloc/kfree in -tiny
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Uncompressing Linux... Ok, booting the kernel.
# mount /proc
# cat /proc/meminfo

MemTotal: 980 kB
MemFree: 312 kB
Buffers: 32 kB
Cached: 296 kB
SwapCached: 0 kB
Active: 400 kB
Inactive: 48 kB
HighTotal: 0 kB
HighFree: 0 kB
LowTotal: 980 kB
LowFree: 312 kB
SwapTotal: 0 kB
SwapFree: 0 kB
Dirty: 0 kB
Writeback: 0 kB
Mapped: 380 kB
Slab: 0 kB
Committed_AS: 132 kB
PageTables: 24 kB
VmallocTotal: 1032172 kB
VmallocUsed: 0 kB
VmallocChunk: 1032172 kB
#

Table 6: Boot log for a 2.6.5-tiny1 test configuration with mem=2m
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Abstract Mode Linux as well as existing commercial
VM products.

Virtual machine (VM) technology has been
around for 40 years and has been experiencing |ntroduction
a resurgence with commodity machines. VMs

have been shown to improve system and netIVIodern computers are sufficiently powerful

work flexibility, availability, and security in a to use virtualization to present the illusion of

variety of novel ways. This paper mtroducesmany smaller virtual machines (VMs), each

Xen, an efficient secure open source VM mon- ; ) .
. . . running a separate operating system instance.
itor, to the Linux community.

This has led to a resurgence of interest in VM
Key features of Xen are: technology. In this paper we present Xen,
a high performance resource-managed virtual
machine monitor (VMM) which enables ap-
'plications such as server consolidation, co-
located hosting facilities, distributed web ser-
2. provides secure protection between VMs VICES, secure computing platforms, and appli-
cation mobility.

3. allows flexible partitioning of resources o _
between VMs (CPU, memory, network Successful partitioning of a machine to support

bandwidth, disk space, and bandwidth) the concurrent execution of multiple operating
systems poses several challenges. Firstly, vir-

4. very low overhead, even for demandingtual machines must be isolated from one an-

server applications other: it is not acceptable for the execution
of one to adversely affect the performance of
another. This is particularly true when vir-
tual machines are owned by mutually untrust-
ing users. Secondly, it is necessary to support
We discuss the interface that Xen/x86 exporta variety of different operating systems to ac-
to guest operating systems, and the kernetommodate the heterogeneity of popular appli-
changes that were required to Linux to portcations. Thirdly, the performance overhead in-
it to Xen. We compare Xen/Linux to User troduced by virtualization should be small.

1. supports different OSes (e.g. Linux 2.4
2.6, NetBSD, FreeBSD, etc.)

5. support for seamless, low-latency migra-
tion of running VMs within a cluster
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Xen hosts commodity operating systems, albeiment algorithms. Performing multiplexing at a
with some source modifications. The prototypelow level can mitigate this problem; uninten-
described and evaluated in this paper can sugional or undesired interactions between tasks
port multiple concurrent instances of our Xen-are minimized. Xen multiplexes physical re-
Linux guest operating system; each instancasources at the granularity of an entire operat-
exports an application binary interface identi-ing system and is able to provide performance
cal to a non-virtualized Linux 2.6. Xen ports of isolation between them. This allows a range
NetBSD and FreeBSD have been completedof guest operating systems to gracefully coex-
along with a proof of concept port of Windows ist rather than mandating a specific application
XP1l binary interface. There is a price to pay for this
] flexibility—running a full OS is more heavy-
There are a number of ways to build & SySyygight than running a process, both in terms of
tem to host multiple applications and ServerSpitialization (e.g. booting or resuming an OS

on a shared machine. Perhaps the simplest jssance versutork /exec ), and in terms of
to deploy one or more hosts running a stanyegource consumption.

dard operating system such as Linux or Win-
dows, and then to allow users to install files and~or our target of 10-100 hosted OS instances,
start processes—protection between applicane believe this price is worth paying: It allows
tions being provided by conventional OS tech-individual users to run unmodified binaries, or
niques. Experience shows that system adminiszollections of binaries, in a resource controlled
tration can quickly become a time-consumingfashion (for instance an Apache server along
task due to complex configuration interactionswith a PostgreSQL backend). Furthermore it
between supposedly disjoint applications. provides an extremely high level of flexibility

_ since the user can dynamically create the pre-
More importantly, such systems do not ad-Gise execution environment their software re-
equately support performance isolation; theyires. Unfortunate configuration interactions
scheduling priority, memory demand, networkpenyeen various services and applications are

traffic and disk accesses of one process impacg},5iged (for example, each Windows instance
the performance of others. This may be acinintains its own registry).

ceptable when there is adequate provisioning
and a closed user group (such as in the case @&xperience with deployed Xen systems sug-
computational grids, or the experimental Plan-gests that the initialization overheads and ad-
etLab platform [11]), but not when resourcesditional resource requirements are in practice
are oversubscribed, or users uncooperative. quite low: An operating system image may be
) . _resumed from an on-disk snapshot in typically
One way to address this problgm is to retroflt]-ust over a second (depending on image mem-
support for performance isolation to the op-qry sjze), and although multiple copies of the
erating system, but a difficulty with such ap- gnerating system code and data are stored in
proaches is ensuring thall resource usage is memory, the memory requirements are typi-
accounted to the correct process—consider, fo(ga||y small compared to those of the applica-
example, the complex interactions between apgons that will run on them. As we shall show
plications due to buffer cache or page replaceyier in the paper, the performance overhead of
the virtualization provided by Xen is low, typ-

1The Windows XP port required access to Microsoftically just a few percent, even for the most de-
source code, and hence distribution is currently remanding applications.
stricted, even in binary form.
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2 XEN: Approach & Overview ing [7].

We avoid the drawbacks of full virtualization
In a traditional VMM the virtual hardware ex- by presenting a virtual machine abstraction
posed is functionally identical to the underly- that is similar but not identical to the under-
ing machine [14]. Althouglfull virtualization  lying hardware—an approach which has been
has the obvious benefit of allowing unmodifieddubbedparavirtualization[17]. This promises
operating systems to be hosted, it also has mnproved performance, although it does re-
number of drawbacks. This is particularly truequire modifications to the guest operating sys-
for the prevalent Intex86 architecture. tem. It is important to note, however, that we

do not require changes to the application bi-

Support for full yirtualization.was never part nary interface (ABI), and hence no modifica-
of the x86 architectural design. Certain SU-;qnc are required to gueapplications

pervisor instructions must be handled by the

VMM for correct virtualization, but executing We distill the discussion so far into a set of de-
these with insufficient privilege fails silently sign principles:

rather than causing a convenient trap [13]. Effi-
ciently virtualizing the x86 MMU is also diffi-
cult. These problems can be solved, but only at
the cost of increased complexity and reduced tion to Xen. Hence we must virtualize all
performance. VMware's ESX Server [3] dy- architectural features required by existing
namically rewrites portions of the hosted ma- standard ABIs.

chine code to insert traps wherever VMM in-

tervention might be required. This translation 2. Supporting full multi-application operat-

1. Support for unmodified application bina-
ries is essential, or users will not transi-

is applied to the entire guest OS kernel (with ing systems is important, as this allows
associated translation, execution, and caching complex server configurations to be virtu-
costs) since all non-trapping privileged instruc- alized within a single guest OS instance.

tions must be caught and handled. ESX Server ) S _
implements shadow versions of system struc- 3. RaraV|rtuaI|zat|on IS necessary to obt‘aln
tures such as page tables and maintains consis- Nigh performance and strong resource iso-
tency with the virtual tables by trapping every lation on uncooperative machine architec-
update attempt—this approach has a high cost ~ tUres such as x86.

for update-intensive operations such as creat- 4

: AR Even on cooperative machine architec-
ing a new application process.

tures, completely hiding the effects of

Notwithstanding the intricacies of the x86, resource virtualization from guest OSes
there are other arguments against full virtual-  1SkS both correctness and performance.
ization. In particular, there are situations in

which it is desirable for the hosted operatingln the following section we describe the virtual
systems to see real as well as virtual resourcesnachine abstraction exported by Xen and dis-
providing both real and virtual time allows a cuss how a guest OS must be modified to con-
guest OS to better support time-sensitive taskgprm to this. Note that in this paper we reserve
and to correctly handle TCP timeouts and RT Tthe termguest operating systeta refer to one
estimates, while exposing real machine adof the OSes that Xen can host and we use the
dresses allows a guest OS to improve perforterm domainto refer to a running virtual ma-
mance by using superpages [10] or page colorehine within which a guest OS executes; the
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distinction is analogous to that betweepra-  when transferring execution.

gram and aprocessin a conventional system.
We call Xen itself thenypervisorsince it oper-  Unfortunately, x86 does not have a software-

ates at a higher privilege level than the superManaged TLB; instead TLB misses are ser-

visor code of the guest operating systems thaficed automatically by the processor by walk-
it hosts. ing the page table structure in hardware. Thus

to achieve the best possible performance, all
valid page translations for the current ad-
dress space should be present in the hardware-
accessible page table. Moreover, because the
The paravirtualized x86 interface can be fac-TB is not tagged, address space switches typ-
tored into three broad aspects of the systemially require a complete TLB flush. Given
memory management, the CPU, and devicghese limitations, we made two decisions: (i)
/0. In the following we address each machineguest OSes are responsible for allocating and
subsystem in turn, and discuss how each is prenanaging the hardware page tables, with mini-
sented in our paravirtualized architecture. Notgnal involvement from Xen to ensure safety and
that although certain parts of our implemen-jsplation; and (ii) Xen exists in a 64MB section
tation, such as memory management, are spext the top of every address space, thus avoiding

cific to the x86, many aspects (such as our virg TLB flush when entering and leaving the hy-
tual CPU and /O devices) can be readily appervisor.

plied to other machine architectures. Further-

more, x86 representsveorst casen the areas Each time a guest OS requires a new page
where it differs significantly from RISC-style table, perhaps because a new process is be-
processors—for example, efficiently virtualiz- ing created, it allocates and initializes a page
ing hardware page tables is more difficult thanfrom its own memory reservation and regis-
virtualizing a software-managed TLB. ters it with Xen. At this point the OS must
relinquish direct write privileges to the page-
table memory: all subsequent updates must be
validated by Xen. This restricts updates in a
number of ways, including only allowing an

_ . . OS to map pages that it owns, and disallow-
Virtualizing memory is undoubtedly the most i, \yritable mappings of page tables. Guest
difficult part_ of paravirtualizing an a_rchltec- OSes maybatch update requests to amortize
ture, both in terms of the mechanisms reynq oyerhead of entering the hypervisor. The
quired in the hypervisor and modifications re-tOIO 64MB region of each address space, which

quired to port each guest OS. The task ig reserved for Xen, is not accessible or remap-
easier if the architecture provides g‘softwar‘e-pable by guest OSes. This address region is
managed TLB as these can be efficiently vir-

) : _ not used by any of the common x86 ABIs how-
tualized in a simple manner [5]. A tagged

; ever, so this restriction does not break applica-
TLB is another useful feature supported by, compatibility.

most server-class RISC architectures, includ-

ing Alpha, MIPS and SPARC. Associating an Segmentation is virtualized in a similar way,
address-space identifier tag with each TLB enby validating updates to hardware segment de-
try allows the hypervisor and each guest OSscriptor tables. The only restrictions on x86
to efficiently coexist in separate address spacesegment descriptors are: (i) they must have
because there is no need to flush the entire TLB

2.1 The Virtual Machine Interface

2.1.1 Memory management
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lower privilege than Xen, and (ii) they may not Exceptions, including memory faults and soft-
allow any access to the Xen-reserved portiorware traps, are virtualized on x86 very straight-
of the address space. forwardly. A table describing the handler for
each type of exception is registered with Xen
for validation. The handlers specified in this
table are generally identical to those for real
212 CPU x86 hardware; this is possible because the ex-
ception stack frames are unmodified in our par-
, . ... avirtualized architecture. The sole modifica-
Virtualizing the CPU has several implications i, is to the page fault handler, which would

for guest OSes. Principally, the insertion of &, ma)ly read the faulting address from a priv-
hypervisor below the operating system V'Olatesileged processor registeER2); since this is

the usual assumption that the OS is the Mogtq; hossible, we write it into an extended stack
privileged entlty in the system. 'In order.to Pro- ¢ame. When an exception occurs while exe-
tect the hypervisor from OS misbehavior (andcuting outside ring 0, Xen's handler creates a

domains from one another) guest OSes must bg, ' of the exception stack frame on the guest
modified to run at a lower privilege level. OS stack and returns control to the appropriate

Efficient virtualizion of privilege levels is pos- "€gistered handler.

sible on x86 because it supports four diStinCtTypically only two types of exception oc-

privilege levels in hardware. _The_ X86 privi- frequently enough to affect system perfor-
lege levels are generally describediags, and mance: system calls (which are usually im-

are numbered from zero (most privileged) t0pemented via a software exception), and page
three (least privileged). OS code typically exe-y ,its. We improve the performance of sys-

cutes in ring 0 because no other ring can exXgem calls by allowing each guest OS to reg-
ecute privileged instructions, while ring 3 is ictar 4 ‘fast exception handler which is ac-

generally used for application code. To OUrcegseq directly by the processor without indi-
knowledge, rings 1 and 2 have not been usegy.ting via ring 0: this handler is validated be-
by any well-known x86 OS since OS/2. ANY fqq installing it in the hardware exception ta-
OS which follows this common arrangementy e - ynfortunately it is not possible to apply
can be ported to Xen by modifying it 0 exe- \he same technique to the page fault handler
cute inring 1. This prevents the guest OS ffoMya4,,5e only code executing in ring 0 can read
directly executing privileged instructions, yetit 4, faulting address from regist@R2 page
remains safely isolated from applications run-, ;s myst therefore always be delivered via
hing inring 3. Xen so that this register value can be saved for

Privileged instructions are paravirtualized by&ccess inring 1.

requiring them to be validated and executedsycery is ensured by validating exception han-
within Xen—this applies to operations such yars \when they are presented to Xen. The

as installing a new page table, or yielding the,,y yequired check is that the handler's code

processor when idle (rather than attempting t%egment does not specify execution in ring O.

hit it). Any guest OS attempt to directly ex- gjnce no guest OS can create such a segment,
ecute a privileged instruction is failed by the

processor, either silently or by taking a fault, 2In hindsight, writing the value into a pre-agreed

since only Xen executes at a sufficiently privi- shared memory location rather than modifying the
leged level. stack frame would have simplified the XP port.
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it suffices to compare the specified segment se- Linux subsection # lines
lector to a small number of static values which Architecture-independent 78
are reserved by Xen. Apart from this, any other Virtual network driver 484
handler problems are fixed up during excep- Virtual block-device driver 1070
tion propagation—for example, if the handler's Xen-specific (non-driver) 1363
code segment is not present or if the handler Total 2995

is not paged into memory then an appropri- Portion of total x86 code base 1.36%
ate fault will be taken when Xen executes the_I_ ble 1: The simplicity of . di
iret  instruction which returns to the handler. - o2'¢ - & simplicity of porting commodity
Xen detects these “double faults” by checkingOses to Xen.

the faulting program counter value: if the ad-

dress resides within the exception-virtualizingsim“ar to hardware interrupts, Xen supports
code then the offending guest OS is terminated, jghweight event-delivery mechanism which
Note that this “lazy” checking is safe even for IS used for sending asynchronous notifications

the direct system-call handler: access faultd0 & domain. These notifications are made by
will occur when the CPU attempts to directly UPdating a bitmap of pending event types and,

jump to the guest OS handler. In this case th@Ptionally, by calling an event handler speci-
faulting address will be outside Xen (since Xenfi€d by the guest OS. These callbacks can be

will never execute a guest OS system call) and€!d Off’ at the discretion of the guest OS—to
so the fault is virtualized in the normal way. If @V0id extra costs incurred by frequent wake-up

propagation of the fault causes a further “dou-N0tifications, for example.

ble fault” then the guest OS is terminated as
described above. 2.2 The Cost of Porting an OS to Xen

Table 1 demonstrates the cost, in lines of code,
_ of porting commodity operating systems to
2.1.3 Device l/O Xen'’s paravirtualized x86 environment.

. . The architecture-specific sections are effec-
Rather than emulating existing hardware de-. ,
tively a port of the x86 code to our paravirtual-

vices, as is typically done in fully-virtualized , ed architecture. This involved rewriting rou-

: |
environments, Xen exposes a set of clean anﬁ ) L ) :

: , : : ines which used privileged instructions, and
simple device abstractions. This allows us to

design an interface that is both efficient and saticmoving a large amount of low-level system
o : : _initialization code.

isfies our requirements for protection and iso-

lation. To this end, I/O data is transferred to

and from each domain via Xen, using shared?-3 Control and Management

memory, asynchronous buffer-descriptor rings.

These provide a high-performance communi-Throughout the design and implementation of
cation mechanism for passing buffer informa-Xen, a goal has been to separate policy from
tion vertically through the system, while al- mechanism wherever possible. Although the
lowing Xen to efficiently perform validation hypervisor must be involved in data-path as-
checks (for example, checking that buffers argects (for example, scheduling the CPU be-
contained within a domain’s memory reserva-tween domains, filtering network packets be-

tion). fore transmission, or enforcing access control
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v deletion of virtual network interfaces (VIFs)
ser User User . .
Software  Software  Software and block devices (VBDs). These virtual 1/0
devices have associated access-control infor-
gggfitngg ngggs%? %Sﬁi%s mation which determlnes Whlch.d(.)malns can
Yono-n Yonon Yoron access them, and with what restrictions (for ex-
Device Drivers Device Drivers Device Drivers Device Drivers

ample, a read-only VBD may be created, or
a VIF may filter IP packets to prevent source-

v v v v address spoofing or apply traffic shaping).
H/W (SMP x86, phy mem, enet, SCSI/IDE)

Domain0 — yjrtyaj virtual virtual virtual )E(

control
et x86 CPU phy mem network blockdev

This control interface, together with profil-

Figure 1: The structure of a machine runninging statistics on the current state of the sys-
the Xen hypervisor, hosting a number of dif-tem, is exported to a suite of application-
ferent guest operating systems, includibg-  level management software running Do-

mainOrunning control software in a XenLinux mainQ  This complement of administrative
environment. tools allows convenient management of the en-

tire server: current tools can create and destroy
domains, set network filters and routing rules,

when reading data blocks), there is no need fofonitor per-domain network activity at packet
it to be involved in, or even aware of, higher and flow granularity, and create and delete vir-

level issues such as how the CPU is to bdual network interfaces and virtual block de-
shared, or which kinds of packet each domair!C€s-

may transmit. Snapshots of a domains’ state may be captured

The resulting architecture is one in which thend saved to disk, enabling rapid deployment
hypervisor itself provides only basic control Of @pplications by bypassing the normal boot
operations. These are exported through af€lay. Further, Xen supporis/e migration
interface accessible from authorized domainsWhich enables running VMs to be moved dy-
potentially complex policy decisions, such asnamically between different Xen servers, with
admission control, are best performed by manéXecution interrupted only for a few millisec-
agement software running over a guest o$nds. We are in the process of developing

rather than in privileged hypervisor code. higher-level tools to further automate the ap-
plication of administrative policy, for example,

The overall system structure is illustrated inload balancing VMs among a cluster of Xen
Figure 1. Note that a domain is created at booservers.

time which is permitted to use thentrol in-

terface This initial domain, terme@®omainQ

is responsible for hosting the application-level3 Detailed Design

management software. The control interface

provides the ability to create and terminate

other domains and to control their associatedn this section we introduce the design of the
scheduling parameters, physical memory alloMaor subsystems that make up a Xen-based

cations and the access they are given to the m&ErVer- In each case we present both Xen and
chine’s physical disks and network devices. guest OS functionality for clarity of exposition.
In this paper, we focus on the XenLinux guest

In addition to processor and memory resources)S; the *BSD and Windows XP ports use the
the control interface supports the creation anen interface in a similar manner.
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Request Consumer Request Producer

3.1 Control Transfer: Hypercalls and Events Private pointer Shared pointer
in Xen \ A/ updated by guest OS

Response Producer
Shared pointer
updated by Response Consumer

R e
Two mechanisms exist for control interactionS  —request queue - Descriptors queued by the VM but not et accepted by Xen
between Xen and an overlying domain: syn- St bocr s o i
chronous calls from a domain to Xen may be  [Junused descriptors
made using &ypercall while notifications are
delivered to domains from Xen using an asyn-Figure 2: The structure of asynchronous 1/O
chronous event mechanism. rings, which are used for data transfer between

_ _ Xen and guest OSes.
The hypercall interface allows domains to per-

form a synchronous software trap into the

hypervisor to perform a privileged o_|oerat|on,3_2 Data Transfer: /O Rings
analogous to the use of system calls in conven-
tional operating systems. An example use of a

hypercall is to request a set of page-table upThe presence of a hypervisor means there is
dates, in which Xen validates and applies a lisen additional protection domain between guest
of updates, returning control to the calling do-OSes and I/O devices, so it is crucial that a
main when this is completed. data transfer mechanism be provided that al-

o o lows data to move vertically through the sys-
Communication from Xen to a domain is pro- ;o m with as little overhead as possible.

vided through an asynchronous event mech-

anism, which replaces the usual deliveryTwo main factors have shaped the design of
mechanisms for device interrupts and allowsour I/O-transfer mechanism: resource manage-
lightweight notification of important events ment and event notification. For resource ac-
such as domain-termination requests. Akin tacountability, we attempt to minimize the work
traditional Unix signals, there are only a smallrequired to demultiplex data to a specific do-
number of events, each acting to flag a particmain when an interrupt is received from a
ular type of occurrence. For instance, eventslevice—the overhead of managing buffers is
are used to indicate that new data has been rearried out later where computation may be ac-
ceived over the network, or that a virtual disk counted to the appropriate domain. Similarly,
request has completed. memory committed to device 1/O is provided

by the relevant domains wherever possible to

Pending events are stored in a per-domain bitseyent the crosstalk inherent in shared buffer
mask which is updated by Xen before invok-pq4s: /0 buffers are protected during data

ing an event-callback handler specified by thansfer by pinning the underlying page frames
guest OS. The callback handler is responsiblgiinin Xen.

for resetting the set of pending events, and re-

sponding to the notifications in an appropriateFigure 2 shows the structure of our I/O descrip-
manner. A domain may explicitly defer eventtor rings. A ring is a circular queue of descrip-
handling by setting a Xen-readable softwaretors allocated by a domain but accessible from
flag: this is analogous to disabling interruptswithin Xen. Descriptors do not directly con-
on a real processor. tain /O data; instead, 1/0 data buffers are al-
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located out-of-band by the guest OS and inhow this virtualization is achieved for CPU,
directly referenced by I/O descriptors. Ac- timers, memory, network and disk.

cess to each ring is based around two pairs

of producer-consumer pointers: domains place

requests on a ring, advancing a request pro3 3.1 CPU scheduling

ducer pointer, and Xen removes these requests

for handling, advancing an associated requeié

. en currently schedules domains according to
consumer pointer. Responses are placed ba . : .
) - ) e Borrowed Virtual Time (BVT) scheduling
on the ring similarly, save with Xen as the pro-

ducer and the guest OS as the consumer. Theglgorlthr.n [4].' .We chose this partlgular algo
. : rithms since it is both work-conserving and has
is no requirement that requests be processed Iin ) .

) . . : a special mechanism for low-latency wake-up
order: the guest OS associates a unique |dentt-

. : L . (or dispatch) of a domain when it receives an
fier with each request which is reproduced Mevent. Fast dispatch is particularly important
the associated response. This allows Xen t ) P P y Imp

: . o minimize the effect of virtualization on OS
unambiguously reorder 1/O operations due to

scheduling or priority considerations. subs_ystems that are designed_ torunin a.timely

fashion; for example, TCP relies on the timely
This structure is sufficiently generic to supportdelivery of acknowledgments to correctly es-
a number of different device paradigms. Fortimate network round-trip times. BVT pro-
example, a set of ‘requests’ can provide buffer/ides low-latency dispatch by using virtual-
for network packet reception; subsequent ‘retime warping, a mechanism which temporarily
sponses’ then signal the arrival of packets into/iolates ‘ideal’ fair sharing to favor recently-
these buffers. Reordering is useful when dealwoken domains. However, other scheduling al-
ing with disk requests as it allows them togorithms could be trivially implemented over
be scheduled within Xen for efficiency, and our generic scheduler abstraction. Per-domain
the use of descriptors with out-of-band buffersscheduling parameters can be adjusted by man-
makes implementing zero-copy transfer easy. agement software running bomainQ

We decouple the production of requests or re-
sponses from the notification of the other party’3 3 5 Time and timers
in the case of requests, a domain may enqueue

multiple entries before invoking a hypercall to . . .
alert Xen: in the case of responses, a domaif€n Provides guest OSes with notions of real
time, virtual time and wall-clock time. Real

can defer delivery of a notification event by . ] i )
specifying a threshold number of reSporlseSt_|me is expressed in hanoseconds passed since

This allows each domain to trade-off latencyMachine boot and is maintained to the accu-
and throughput requirements, similarly to theacy Of the processor’s cycle counter and can

flow-aware interrupt dispatch in the ArseNIC be frequency-loc_:ked to an external_ time_source
Gigabit Ethernet interface [12]. (for example, via NTP). A domain’s virtual

time only advances while it is executing: this
is typically used by the guest OS scheduler to
ensure correct sharing of its timeslice between
application processes. Finally, wall-clock time
The control and data transfer mechanisms dds specified as an offset to be added to the cur-
scribed are used in our virtualization of the var-rent real time. This allows the wall-clock time
ious subsystems. In the following, we discusgo be adjusted without affecting the forward

3.3 Subsystem Virtualization



338 ¢ Linux Symposium 2004 ¢ Volume Two

progress of real time. To aid validation, we associate a type and ref-
) erence count with each machine page frame.
Each guest OS can program a pair of alarh frame may have any one of the following
tlmer_s, one for real time and the other for V|r_- mutually-exclusive types at any point in time:
tu_al t_|me. Gu_est OSes are expected to malnpage directory (PD), page table (PT), local de-
tain internal timer queues and use the Xenycrinior table (LDT), global descriptor table
provided alarm timers to trigger the earllest(GDT), or writable (RW). Note that a guest
timeout. Time_outs are delivered using Xen'sng may always create readable mappings to
event mechanism. its own page frames, regardless of their current
types. A frame may only safely be retasked
when its reference count is zero. This mecha-
3.3.3 Virtual address translation nism is used to maintain the invariants required
for safety; for example, a domain cannot have

As with other subsystems, Xen attempts to vir-& Writable mapping to any part of a page table
tualize memory access with as little overhead®S this would require the frame concerned to
as possible. As discussed in Section 2.1.15Imultaneously be of types PT and RW.

this goal is made somewhat more difficult byThe type system is also used to track which
the x86 architecture’s use of hardware page g mes have already been validated for use in
bles. The approach taken by VMware is to pro,, e tahles. To this end, guest OSes indicate
vide each guest OS with a virtual page table, nap, 5 frame is allocated for page-table use—
not visible to the memory-management Unityis requires a one-off validation of every en-
(MMU) [3]. The hypervisor is then responsible try in the frame by Xen, after which its type
for trapping accesses to the virtual page tableg pinned to PD or PT as appropriate, until a
validating updates, and propagating changeg,psequent unpin request from the guest OS.
back and forth between itand the MMU-visible rps i particularly useful when changing the
shadow’ page table. This greatly _mcreasesﬁjage table base pointer, as it obviates the need
the cost .of certain .guest OS operations, sucly \alidate the new page table on every context
as creating new virtual address spaces, anditch. Note that a frame cannot be retasked
requires explicit propagation of hardware Up-ynjl it js both unpinned and its reference count
dates to ‘accessed’ and ‘dirty’ bits. has reduced to zero — this prevents guest OSes
¢ from using unpin requests to circumvent the

Although full virtualization forces the use o ’ )
reference-counting mechanism.

shadow page tables, to give the illusion of con
tiguous physical memory, Xen is not so con-

strained. Indeed, Xen need only be involved in .

page tableipdatesto prevent guest OSes from 3-3-4  Physical memory

making unacceptable changes. Thus we avoid

the overhead and additional complexity assoThe initial memory allocation, oreservation
ciated with the use of shadow page tables—théor each domain is specified at the time of
approach in Xen is to register guest OS page tats creation; memory is thus statically parti-
bles directly with the MMU, and restrict guest tioned between domains, providing strong iso-
OSes to read-only access. Page table updat&gtion. A maximum-allowable reservation may
are passed to Xen via a hypercall; to ensuralso be specified: if memory pressure within
safety, requests analidatedbefore being ap- a domain increases, it may then attempt to
plied. claim additional memory pages from Xen, up
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to this reservation limit. Conversely, if a management system to optimize memory ac-
domain wishes to save resources, perhaps tess. For example, a guest OS might allo-
avoid incurring unnecessary costs, it can recate particular hardware pages so as to opti-
duce its memory reservation by releasing memmize placement within a physically indexed
ory pages back to Xen. cache [7], or map naturally aligned contigu-

_ _ _ ous portions of hardware memory using super-
XenLinux implements &alloon driver [16], pages [10].

which adjusts a domain’s memory usage by
passing memory pages back and forth be-
tween Xen and XenLinux’s page allocator.
Although we could modify Linux's memory- 3.3.5 Network
management routines directly, the balloon

driver makes adjustments by using existingxen provides the abstraction of a virtual
OS functions, thus simplifying the Linux port- firewall-router (VFR), where each domain has
ing effort. However, paravirtualization can be gne or more network interfaces (VIFs) logi-
used to extend the capabilities of the baIIoorha”y attached to the VFR. A VIF looks some-
driver; for example, the out-of-memory han-\yhat like a modern network interface card:
dling mechanism in the guest OS can be Modiere are two 1/0 rings of buffer descriptors,
ified to automatically alleviate memory pres- one for transmit and one for receive. Each di-
sure by requesting more memory from Xen.  yaction also has a list of associated rules of the
g]wm (<pattern>, <action>)—if the pattern

Most operating systems assume that memor . . )
P g sy atches then the associatattionis applied.

comprises at most a few large contiguous ex-

tents. Because Xen does not guarantee to ahomainQis responsible for inserting and re-
locate contiguous regions of memory, guesingying rules. In typical cases, rules will be
OSes will typically create for themselves thejnstajled to prevent IP source address spoof-
illusion of contiguousphysical memoryeven  jng and to ensure correct demultiplexing based
though their underlying allocation éfrdware o destination IP address and port. Rules may
memoryis sparse. Mapping from physical 10 gjsq be associated with hardware interfaces on
hardware addresses is entirely the responsibihe VER. In particular, we may install rules to
ity of the guest OS, which can simply main- herform traditional firewalling functions such

tain an array indexed by physical page framéys preventing incoming connection attempts on
number. Xen supports efficient hardware-tongecure ports.

physical mapping by providing a shared trans-

lation array that is directly readable by all do- To transmit a packet, the guest OS simply en-

mains — updates to this array are validated byjueues a buffer descriptor onto the transmit

Xen to ensure that the OS concerned owns theng. Xen copies the descriptor and, to ensure

relevant hardware page frames. safety, then copies the packet header and ex-

_ ~ ecutes any matching filter rules. The packet
Note that even if a guest OS chooses 10 igpayload is not copied since we use scatter-

nore hardware addresses in most cases, it Mughther DMA; however note that the relevant
use the translation tables when accessing it§age frames must be pinned until transmission
page tables (which necessarily use hardwarg complete. To ensure fairness, Xen imple-

addresses). Hardware addresses may also Bgants a simple round-robin packet scheduler.
exposed to limited parts of the OS’s memory-

To efficiently implement packet reception, we
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require the guest OS to exchange an unuseidble are installed and managed Bpmain0
page frame for each packet it receives; thisvia a privileged control interface. On receiving
avoids the need to copy the packet betweea disk request, Xen inspects the VBD identi-
Xen and the guest OS, although it requiredier and offset and produces the corresponding
that page-aligned receive buffers be queued atector address and physical device. Permission
the network interface. When a packet is re-checks also take place at this time. Zero-copy
ceived, Xen immediately checks the set of re-data transfer takes place using DMA between
ceive rules to determine the destination VIFthe disk and pinned memory pages in the re-
and exchanges the packet buffer for a pageguesting domain.

frame on the relevant receive ring. If no frame

is available, the packet is dropped. Xen servicesbatchesof requests from com-

peting domains in a simple round-robin fash-
ion; these are then passed to a standard ele-
vator scheduler before reaching the disk hard-
ware. Domains may explicitly pass dowsa-
order barriersto prevent reordering when this
Only DomainO has direct unchecked accessis necessary to maintain higher level seman-
to physical (IDE and SCSI) disks. All other tics (e.g. when using a write-ahead log). The
domains access persistent storage through thew-level scheduling gives us good through-
abstraction of virtual block devices (VBDs), put, while the batching of requests provides
which are created and configured by managereasonably fair access. Future work will in-
ment software running withilbomainQ Al-  vestigate providing more predictable isolation
lowing DomainOto manage the VBDs keeps and differentiated service, perhaps using exist-
the mechanisms within Xen very simple anding techniques and schedulers [15].

avoids more intricate solutions such as the

UDFs used by the Exokernel [6].

3.3.6 Disk

_ _ _ 4 Evaluation
A VBD comprises a list of extents with asso-

ciated ownership and access control informa-

tion, and is accessed via the I/O ring mechain this section we present a subset of our eval-
nism. A typical guest OS disk scheduling al-uation of Xen against a number of alternative
gorithm will reorder requests prior to enqueu-virtualization techniques. A more complete
ing them on the ring in an attempt to reduceevaluation, as well as detailed configuration
response time, and to apply differentiated serand benchmark specs, can be found in [1] For
vice (for example, it may choose to aggres-these measurements, we used our 2.4.21-based
sively schedule synchronous metadata requeskenLinux port as, at the time of this writing,

at the expense of speculative readahead re¢he 2.6-port was not stable enough for a full
guests). However, because Xen has more conipattery of tests.

plete knowledge of the actual disk layout, we o _

also support reordering within Xen, and so re-1h€re are a number of preexisting solutions
sponses may be returned out of order. A vBpfor running multiple copies of Linux on the

thus appears to the guest OS somewhat like §2Me machine. VMware offers several com-
SCSI disk. mercial products that provide virtual x86 ma-

chines on which unmodified copies of Linux
A translation table is maintained within the hy- may be booted. The most commonly used ver-
pervisor for each VBD; the entries within this sion is VMware Workstation, which consists
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of a set of privileged kernel extensions to aanalysis. UMLinux is similar in concept to
‘host’ operating system. Both Windows and UML but is a different code base and has yet
Linux hosts are supported. VMware also offerto achieve the same level of performance, so
an enhanced product called ESX Server whichwve omit the results. Work to improve the per-
replaces the host OS with a dedicated kerneformance of UMLinux through host OS modi-
By doing so, it gains some performance benefications is ongoing [8]. Although Plex86 was
fit over the workstation product. We have sub-originally a general purpose x86 VMM, it has
jected ESX Server to the benchmark suites derow been retargeted to support just Linux guest
scribed below, but sadly are prevented from reOSes. The guest OS must be specially com-
porting quantitative results due to the terms ofpiled to run on Plex86, but the source changes
the product’s End User License Agreement. Infrom native x86 are trivial. The performance of
stead we present results from VMware Work-Plex86 is currently well below the other tech-
station 3.2, running on top of a Linux host niques.
OS, as it is the most recent VMware product
without that benchmark publication restriction. 4 1 Relative Performance
ESX Server takes advantage of its native archi-
tecture to equal or outperform VMware Work- _ _ _

The first cluster of bars in Figure 3 repre-

station and its hosted architecture. While Xen

of course requires guest OSes to be ported, gents a relatively easy scenario for the VMMs.

takes advantage of paravirtualization to notice-] "¢ SPEC CPU suite contains a series of

ably outperform ESX Server long-running computationally-intensive appli-
cations intended to measure the performance

We also present results for User-mode Linuxof a system’s processor, memory system, and
(UML), an increasingly popular platform for compiler quality. The suite performs little 1/0
virtual hosting. UML is a port of Linux to run and has little interaction with the OS. With
as a user-space process on a Linux host. Likalmost all CPU time spent executing in user-
XenLinux, the changes required are restrictecspace code, all three VMMs exhibit low over-
to the architecture dependent code base. Howhkead.

ever, the UML code bears little similarity to ,
the native x86 port due to the very different na-1N€ Next set of bars show the total elapsed time
ture of the execution environments. Althought@ken to build a default configuration of the
UML can run on an unmodified Linux host, we LiNux 2.4.21 kernel on a local ext3 file sys-
present results for the ‘Single Kernel AddressieM With gcc 2.96. Native Linux spends about

Space’ (skas3) variant that exploits patches td 7 Of the CPU time in the OS, mainly per-
the host OS to improve performance. forming file I/O, scheduling and memory man-
agement. In the case of the VMMs, this ‘sys-

We also investigated three other virtualiza-tem time’ is expanded to a greater or lesser de-
tion techniques for running ported versions ofgree: whereas Xen incurs a mere 3% overhead,
Linux on the same x86 machine. Connec-the other VMMs experience a more significant
tix's Virtual PC and forthcoming Virtual Server slowdown.

products (now acquired by Microsoft) are sim- i .
ilar in design to VMware’s, providing full x86 WO experiments were performed using the

virtualization. Since all versions of Virtual pc P0ostgreSQL 7.1.3 database, exercised by

have benchmarking restrictions in their licensg€ Open Source Database Benchmark suite

agreements we did not subject them to closefOSPB) In its default configuration.  We
present results for the multi-user Information
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Figure 3: Relative performance of native Linux (L), XenLinux (X), VMware workstation 3.2 (V)
and User-Mode Linux (U).

Retrieval (IR) and On-Line Transaction Pro-the offered load. XenLinux fares well, achiev-
cessing (OLTP) workloads, both measured inng within 1% of native Linux performance.
tuples per second. PostgreSQL places consid/Mware and UML both struggle, supporting
erable load on the operating system, and this ikss than a third of the number of clients of the
reflected in the substantial virtualization over-native Linux system.

heads experienced by VMware and UML. In

particular, the OLTP benchmark requires many4.2 Operating System Benchmarks
synchronous disk operations, resulting in many

protection domain transitions. To more precisely measure the areas of over-
Thedbench program is a file system bench- head within Xen and the other VMMs, we per-

mark derived from the industry-standard ‘Net-fo"_ned a nymber of smaller experiments _tar-
Bench’. It emulates the load placed on a file9eting particular subsystems. We examined

server by Windows 95 clients. Here, we eX_the overhead of virtualization as measured by
amine the throughput experienced by a singl«{;\"cvc’y'S 'mbenChp';O%raT [9]. Lhe OS per-
client performing around 90,000 file system!ormance subset of the Imbench suite consist
operations. of 37 microbenchmarks.

SPEC WEB99 is a complex application-levelln 24 of the 37 microbenchmarks, XenLinux

benchmark for evaluating web servers and thé)erforms similarly to native Linux, tracking the
systems that host them. The benchmark ii_inux kernel performance closely. In Tables 2
CPU-bound, and a significant proportion of thet© 4 we show results which exhibit interest-

time is spent within the guest OS kernel, per_ing performance variations among the test sys-

forming network stack processing, file system€MS: Particularly large penalties for Xen are

operations, and scheduling between the man§hown in bold face.
httpd  processes that Apache needs to handig, the process microbenchmarks (Table 2), Xen
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Config nullll %" Olpenil(cztp _Sigt Eigdl fork execsh ing set sizes (perhaps more representative of
ca close NS n roC proc proc : H :
| 045 050 1.02 570 0,68 2.4 110 530 4ko €2 @pplications) show that the overhead is
xen | 0.46 050 1.88 5.69 069 17098 768 akg Small compared with cache effects. Unusually,
VMW | 0.73 0.83 2.99 11.1 1.02 4.63 874 2k3 10k VMware Workstation is inferior to UML on
UML | 24.7 25.1 62.8 39.9 26.0 46.0 21k 33k 58k these microbenchmarks; however, this is one
area where enhancements in ESX Server are

able to reduce the overhead.

Table 2:Imbench : Processes - times jms

Config2p 2p 2p 8p 8p 16p 16p )
OK 16K 64K 16K 64K 16K B4K The mmap latencyand page fault latencye

Cinux| 077 091 1.06 1.03 243 361 376 SultsshowninTable 4 are interesting since they
Xen | 1.97 2.22 2.67 3.07 28.7 7.089.4 require two transitions into Xen per page: one
VMW| 18.1 17.6 21.3 224 51.6 417 722 to take the hardware fault and pass the details
UML | 155 146 144 163 368 236 520 g the guest OS, and a second to install the up-
dated page table entry on the guest OS’s behalf.
Despite this, the overhead is relatively modest.

Table 3:Imbench : Context switching times
in s
One small anomaly in Table 2 is that Xen-
Config  OK File 10K File  Mmap Prot Page Linux has lower signal-handling latency than
create delete create delete lat  fault faultnative Linux. This benchmark does not re-
Linux| 32.1 6.08 66.0 125 68.0 1.06 1.42 quire any calls into Xen at all, and the 0,4
Xen | 325 586 682 13.6139 1.40 273 o is presumabl fortu-
VMW| 353 93 856 214 620 7.53 124 (t?’O 0) Spﬁedl;p S P ?S.u Xabﬁl. due :10 a fortu
UML | 130 657 250 113 1k4 218 263 ''OUScCachealignmentin AenLtinux, hence un-
derlining the dangers of taking microbench-
Table 4:Imbench : File & VM system laten- marks too seriously.
ciesinus

4.3 Additional Benchmarks

exhibits sloweffork, exe¢ andsh performance :
. . g . We have also conducted comprehensive exper-
than native Linux. This is expected, since these ] ,
: . iments that: evaluate the overhead of virtual-
operations require large numbers of page ta-

ble updates which must all be verified by Xen.'“!N9 th_e netwqu; compare the_perfo_rmance
of running multiple applications in their own

However, th ravirtualization roach al- : :
owever, The paravirualization approach a guest OS against running them on the same

lows XenLinux to batch update requests. Cre~> " " . )
: . native operating system; demonstrate perfor-
ating new page tables presents an ideal case

. . ._Mmance isolation provided by Xen; and examine
because there is no reason to commit pendin

. . r%en’s ability to scale to its target of 100 do-
updates sooner, XenLinux can amortize eac

. mains. All of the experiments showed promis-
hypercall across 2048 updates (the Maximuriy results and details have been separatel
size of its batch buffer). Hence each update g P y

hypercall constructs 8MB of address space. published [1].

Table 3 shows context switch times betwee .

different numbers of processes with di1‘feren?5 Conclusion

working set sizes. Xen incurs an extra over-

head between;is and 3:s, as it executes a hy- We have presented the Xen hypervisor which
percall to change the page table base. Howpartitions the resources of a computer between
ever, context switch results for larger work- domains running guest operating systems. Our



344 « Linux Symposium 2004 * Volume Two

paravirtualizing design places a particular emdizing Linux driver source, suspend/resume and
phasis on protection, performance and resourcleve migration features, much improved con-

management. We have also described and evadole access, etc. Though final implementation,
uated XenLinux, a fully-featured port of the testing, and documentation was not complete
Linux kernel that runs over Xen. at the deadline for this paper, we hope to de-

_ _scribe these in more detail at the symposium
Xen and the 2.4-based XenLinux are SUffI-and in future pUb”C&tiOﬂS.

ciently stable to be useful to a wide audi-
ence. Indeed, some web hosting provider®s always, there are more tasks to do than there
are already selling Xen-based virtual serversare resources to do them. We would like to
Sources, documentation, and a demo ISO cagrow Xen into the premier open source virtual-
be found on our project pagje ization solution, with breadth and features that

_ rival proprietary commercial products.
Although the 2.4-based XenLinux was the ba-

sis of our performance evaluation, a 2.6-basedVe enthusiastically welcome the help and con-
portis well underway. In this port, much care istributions of the Linux community.

been given to minimizing and isolating the nec-

essary changes to the Linux kernel and mea-

suring the changes against benchmark resulté\cknowledgments

As paravirtualization techniques become more
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As well as further guest OS ports, Xen it- References
self is being ported to other architectures. An
x86_64 port is well underway, and we are keen
to see Xen ported to RISC-style architectures
(such as PPC) where virtual memory virtual-
ization will be much easier due to the software-
managed TLB.
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Abstract lines of C code. The code implements a Linux
kernel driver, a design that has made it possible

Transparent Inter Process Communicatiod© improve performance (35% faster than TCP)

(TIPC) is a protocol specially designed for ef-and minimize code footprint.

ficient intra cluster communication, leveraging

the particular conditions present within clus-

ters of loosely coupled nodes. Socket API Adspter Port API Adapter

Other API Adapters

TIPC provides a powerful infrastructure for de- 4
signing distributed, site-independent, scalable it i

highly- available and high-performing applica- et  Rowellink Seecton
tions, as well as a good support for cluster, net

work and software management functionality.
In this paper, we will discuss the motives for
developing TIPC and describe its architecture Merlesion
Then, we will present the most important fea- SequencelReransmisson .
tures of TIPC, such as its functional, location;

transparent, addressing scheme, Ilghtwelgrﬁﬁ

reactive connections, reliable multicast, sig-
nalling link protocol, topology subscription Figure 1:Functional View of TIPC
services and more. We will also discuss the
various design decisions that influenced the im-
plementation of these features. We conclude

by describing the current implementation sta-The current version is available under a dual

Neighbour Detection

Reliable Multicast Link Establish/Supervision/Failover

Node
Internal
Fragmentation/De-fragmentation

tus and our planned roadmap for TIPC. BSD/GPL license from [1]. TIPC is supported
on Linux 2.4 and 2.6; and several proprietary
1 Introduction portations to other OS’es (OSE, True64, Vx-

Works) also exist.

For the last six years, telecom equipment venTIPC offers an interesting combination of fea-

dor Ericsson has been developing and deploytures, some of them quite unique, to achieve
ing a tailor-made reliable communication pro-the overall goal: to make the cluster act as one
tocol, TIPC,for their cluster-based products.single computer from a communication view-

This protocol has recently undergone a sigpoint, while helping applications to keep track

nificant redesign, and is now available as af and adapt to topology changes. Figure 1 il-
portable source code package of about 12,50istrates a functional view of TIPC.
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2 Motivation

There are no standard protocols available today
that fully satisfy the special needs of applica-
tion programs working within highly available,
dynamic cluster environments. Clusters may
grow or shrink by orders of magnitude; mem-
ber nodes may crash and restart, routers may
fail and be replaced, services may be moved
around due to load balancing considerations,
etc. All this must be possibe to handle without
significant disturbances of the service offered
by the cluster. In order to minimize the effort
by the application programmers to deal with
such situations, and to maximize the chance
that they are handled in a correct and optimal
way, the cluster internal communication ser-
vice should provide special support, helping
the applications to adapt to changes in the clus-
ter. It should also, when possible, leverage the
special conditions present within cluster envi-
ronments to present a more efficient and fault-
tolerant communication service than more gen-

intra-node communication, other more ef-
ficient mechanisms are available, at least
on Unix, but then the location of the des-
tination process has to be assumed, and
can not be changed. It is desirable to
have a protocol working efficiently for
both intra-node and inter-node messaging,
without forcing the user to distinguish be-
tween these cases in his code.

* The heavy connection setup/shutdown

scheme of TCP is a disadvantage in a dy-
namic environment. The minimum num-
ber of packets exchanged for even the
shortest TCP transaction is nine (SYN,
SYNACK, etc.), while with TIPC this can
be reduced to two, or even to one if con-
nectionless mode is used.

The connection-oriented nature of TCP
makes it impossible to support true mul-
ticast.

eral protocols are capable of. Stream Control Transmission Protocol (SCTP)
[3] is message oriented; it provides some
level of user connection supervision, message
bundling, loss-free changeover, and a few more
TCP [2] has the advantage of being ubiquitousfeatures that may make it more suitable than

proven, and wellknown by most programmers_TCP as an intra-cluster protocol. Otheryvise,
Its most significant shortcomings in a real-timeit has all the drawbacks of TCP already listed

cluster environment are the following: above.

2.1 Existing Protocols

Apart from these weaknesses, neither TCP
« TCP lacks any notion of functional nor SCTP provide any topology informa-
addressing and addressing transparencyon/subscription service, something that has
Mechanisms exist (DNS, CORBA Nam- proven very useful both for applications and
ing Service) for transparent and dynamicfor management functionality operating within
lookup of the correct IP-adress of a desti-cluster environments.

nation, but those are in general too static
and too inefficient to be useful in a dy- Both TCP and SCTP are general purpose pro-
namic, real-time environment. tocols, in the sense that they can be used safely

over the Internet as well as within a closed

» Performance is not as good as it could beg¢luster. This virtual advantage is also their
especially for intra-node communication major weakness: they require funtionality and
and for short messages in general. Foheader space to deal with situations that will
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never happen, or only infrequently, within clus-3  Five-Layer Network Topology
ters.

) From a TIPC viewpoint the network is orga-
2.2 Assumptions nized in a five-layer structure (Figure 2).

The TIPC design is based on the following Zone <1>
assumptions, empirically known to be valid
within most clusters.

Zone <2>

Cluster <2.1>

Internet/
Intranet

* Most messages cross only one direct hop
» Transfer time for most messages is short.

 Most messages are passed over intra- _
cluster connections. Figure 2:TIPC Network Topology

* Packet loss rate is normally low; retrans-
mission is infrequent. The top level is theTIPC network This is
the ensemble of all computers (nodes) inter-
* Available bandwidth and memory volume connected via TIPC, i.e., the domain where
is normally high. any node can reach any other node by using
a TIPC network address. A TIPC network is
* For all relevant bearers packets are CheCkaistringuished from other networks by itet-
summed by hardware. work identity a 32-bit value that is known by

« The number of inter-communicating all nodes.

nodes is relqtlv_ely static and limited at The next level in the hierarchy is an entity
any moment in time. called zone This “cluster of clusters” is
Security is a less crucial issue in closedth_e maximum Scope of Iocation_transparency
within a network, i.e., the domain where any
process can reach any other process by using
a functional address rather than a network ad-

Because of the above one can use a simplélresses.

traffic-driven, fixed-size sliding window proto- he third level is wh Il thel hi
col located at the signalling link level, rather.T @ third level s what we call theluster This

than a timer-driven transport level protocol. 'S @ 9roup of nodes interconnected all-to-all via
This in turn gives a lot of other advantages,one or two TIPC links.

such as earlier release of transmission buffersrhe fourth level is the individuaystem node

e_arlier packe'; loss de'Fection and retran_sm?sbrjustnode There may be up to 2047 system
sion, and earlier detection of node unavailabil+,,qes in a cluster.

ity, only to mention some. Of course, situations

with long transfer delays, high loss rates, longThe lowest level is thelave nodeSlave nodes
messages, security issues, etc. must be degitovide the same properties regarding location
with as well, but rather from the viewpoint of transparency and availability as system nodes,
being exceptions than as the general rule. but they don’t need full physical connectivity

clusters than on the Internet.
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to the rest of the cluster. One link to one systenthe lower and upper boundary of the instance
node is sufficient, although there may be morgange. By allowing a socket to bind to a se-
for redundancy reasons. guence, instead of just an individual port name,

N o itis possible to partition a service’s scope of re-
All entities within a TIPC network are accessedsponsibility into sub-ranges, without having to

using a TIPC network address, a 32-bit valuggate a vast number of sockets to do so.
subdivided into a zone, cluster, and node field.
This address is internally mapped to the ad:
dress type for the communication media actu:
ally used, e.g., an Ethernet address or an IF Cliont Process
address/port number tuplet.

Server Process,
Partition B

57 bind{type = foo,
lower=100,
upper=199)

sendto(type = foo,
instance = 13)

Server Process,
Partition A

4 Location-Transparent
Functional Addressing

To present a cluster as one computer, the ad- Figure 3:Functional Addressing
dressing scheme used must hide the physical

location of a requested service to its users. To

achieve this, TIPC provides a functional ad-This addressing scheme is illustrated by the
dress type, callegort name to be used both example in Figure 3. Two processes, partition
for connectionless messaging and connectioA and partition B of the servicio, bind their
setup calls. Binding a socket to a port namesockets to the port name sequenfes,0,99]
corresponds to binding it to a port number inand[foo,100,199]respectively foo represents
other protocols, except that the port name ighe name type part of the sequence). A
unigue and has validity for the whole cluster, process wanting to send a message to instance
not only the local node. A caller wanting to setnumber 33 of that service, uses the port name
up a connection needs only to specify this ad{foo,33] as destination address. The TIPC
dress, and the TIPC internal translation servicemame translation function will find that the
ensures that the request ends up in the righhdicated instance is within the range bound to
socket, on the right node. by partition A, and directs the message to As

. - socket.
A port name consists of two 32-bit fields. The

first field is called thename typeand typically  there are very few

identifies a certain service type or function. 5 me sequences may be bound to sockets. One
The second field is theame instanceand is may bind many different sequences, or many
used as a key for accessing a certain instanGRsiances of the same sequence, to the same
of the requested service. This address structurg, et to different sockets on the same node

gives excellent support for both service parti-or 1 gifferent sockets anywhere in the cluster.
tioning and service load sharing.

limitations on how

Further support for service partitioning is pro-4-1 Binding Scope

vided by an address type callpdrt name se-

guence This is a three-integer structure defin-Although complete location transparency is de-
ing arange of port names, i.e., a name type plusirable and sufficient for most applications,
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there must be ways to control this property for
those who may need to do so. Hence, whel
binding a name sequence to a socket, it's pos
sible to qualify it with abinding scopgparam- | sliee=tee.
eter, indicating how far the knowledge of the
binding should be distributed in the network.
The typical behavior is to spread it to the nodes
in the binder’s cluster, but it is possible to ex-
tend the scope to the whole zone, or limit it to

the local node. Figure 4:Reliable Functional Multicast

Server Process,
Partition B

Client Process. L_ bind(type = foo,

lower=100,
upper=199)

Server Process,
Partition A

upper = 133)

» bind(type = foo,
lower=0,
upper=99)

4.2 Lookup Domain

Only one replica of the message is sent to each
Similarly, a client may indicate &@okup do- jdentified target port, even if it is bound to more
main for a message or connection setup rethan one matching sequence. Whenever pos-
quest. This is a TIPC network address not Onl)éib|e’ this function will make use of the mul-
indicating where the lookup, i.e., the transla-ticast/broadcast properties of the carrying me-
tion from a port name to socket address, shoul@jia. In such cases, reliability is ensured by a
first be done, but |mp|IC|t|y even the |OOkUp al- Specia"‘e”ab]e cluster broadcaqﬂ,][s] proto_
gorithm to be used. col implemented internally in TIPC.

Two such algorithms are available: @und-
robin lookup is used when the lookup do-6 Name Translation Table
main is non-zero and there is more than one

matching server. Internally TIPC selects the .
server from a circular list; which root entry is _Translatlon from port name to socket address_es
stepped between each lookup. Gpsest-first ' performed transparently and on-the-fly via
lookup is used when the lookup domain is sero@n internal translation table, replicated on each

Here, the translation is always performed at theUOde' When a socket is pound to a port hame
client's node and will first look for a match- S€dUence, a corresponding table entry is dis-

ing socket on the local node. If none such isfmbu'[ed to all nodes within the binding scope,

found, the algorithm will successively look for l.e., the local cluster in most cases.
matches elsewhere in the cluster and finally in

the whole zone. 7 Topology Services

5 Reliable Functional Multicast TIPC also provides a mechanism for inquiring
or subscribing for the availability of port names

Functional addressing is also used to providé?r ranges of port names.

a reliable multicastservice. If the sender of

a message indicates a port name sequence il Functional Topology Service

stead of a port name as destination, a replica

of the message is sent to all sockets bound t@hisfunctional topology servicis built on and

a name sequence fully or partially overlappinguses the contents of the local instance of the
with that sequence (Figure 4). name translation table.
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To access this service, a user makes a bloclegy, and can be kept track of in the same
ing or nonblocking request to TIPC, asking itway. Hence, to subscribe for the availabil-
to indicate when a name sequence within théty/disappearance of a specific node, a group
requested range is bound to or unbound. Thef nodes, or a whole cluster, the user specifies
request is associated with a timer, giving thea dedicated port name sequence, representing
duration of the subscription. A timer value of this function and the range of nodes he wants
zero causes the call to return or issue a sulto subscribe for. A special name type (zero)
scription event immediately, making it a pureis used for this purpose, while the lower and
inquiry, while a value of -1 makes it stay for- upper boundaries are represented by TIPC net-
ever, indicating every change pertaining to thework addresses—as described earlier, those are
requested name sequence. in reality 32-bit numbers.

Server Process,
Partition B

Node <1.1.3>

Node <1.1.1>

Client Process 7 bind(type = foo,
lower=100,
upper=188)

bind(type = node,
lower=0x1001003,
upper=0x1001003)

Client Process

subscribe(type = foo,
lower = 0,
upper = 500) =5

Server Process,
Partition A

'subscribe(type = node,

lower = 0x1001000, Node <1.1.2>

upper = 0x1001009) |

1 bind(type = foo,
lower=0,
upper=45)

bind(type = node,
5 lower=0x1001002,
upper=0x1001002)

Figure 5:Functional Topology Subscription

Figure 6:Physical Topology Subscription

Figure 5 illustrates this service: If the client

process (see also example in Figure 3) wantft the example in Figure 6, the client process
to syncronize itself with the servers beforesubscribes for the node range [0,9] within zone
starting any communication he issues@b- number 1, cluster number 1. Hence, when
scribe()callto TIPC, telling it to indicate when node <1.1.3> (i.e., zone 1, cluster 1, node
a server overlapping with the subscribed rangg) establishes a link to the client’s node, the
becomes available. Since both ranges of palient will immediately be informed about this.
tition A and B are within the given range For this particular service, TIPC will by it-
[fo0,0,500] the client will receive two such in- self bind/unbind the corresponding port name
dications, informing about the exact range ofas soon as it discovers or loses contact with a
the new bindings. If there is only a partial node.

overlap, e.g., if the client should subscribe for

[fo0,0,150] instead, he will only be informed ) _ _

about the actual overlap, i.¢fpo,100,150[for 8 Lightweight Connections

partition B.

The number of active user connections within
7.2 Physical Topology Service a big cluster may be extremely large, and each

cluster node must be able to establish and ter-
The physical network topology may be con-minate thousands of such connections per sec-
sidered a special case of the functional topolond.
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8.1 Simple Setup/Shutdown 9 Link-Level Protocol

_ ) ) . Assuming that most clusters are relatively
To deal with this dynamism, TIPC connectionsg;a+ic in size, some of the tasks normally per-

are made very lighweight, in reality leaving the ¢y -meq at the transport protocol level have

user to decide the setup/shutdown sequencgeen moved down to the signalling link level.
The protocol as such does not specify how con-

nections are established and shut down, so an

application caring about performance is freeg 1 |Link-level Retransmission

to use its own scheme, e.g., only exchanging

payload-carrying messages.

Implementing the retransmission protocol at

nection type is also provided on Linux, with this level has several advantages. First, it

exchange of hidden protocol messages ang'tVes b(:]trt]er [_esn?urce ur:'(;'zat'r?rr: S'tr.lcﬁ a”r.pi(t:ké
stream-oriented data exchange. €S, connectionless and connection oriented,

are funneled into one single packet sequence
per node pair. Each packet can hence carry
the acknowledge of many received packets, re-
8.2 Reactive Connections gardless of their origin, and we need not keep
transmission buffers longer than strictly neces-
sary. Second, packet losses can be detected and
restransmission performed earlier than would
TIPC connections are highly reactive and giveotherwise be the case. Third, packet delivery
the users almost immediate failure indicationand sequentiality guaranteed at the link level
if anything should happen at the endpoints, okliminates any need for per packet timers at the
to the media between them. This is due taransport level—a background timer per link
a connection supervision and abortion mechis sufficient to ensure those properties. As a
anism, which takes advantage of the propertiegesult, we obtain a packet flow that is both
of the local operating system to detect processmoother and more “traffic driven” than with
crashes, or the status of the concerned links teorresponding transport level protocols, which
detect node crashes or carrier failure. Wherften rely on timers to keep traffic running.
any of this happens, a spec@nnection shut-
down message is spontaneously generated by
TIPC and sent to the affected endpoint or end9.2 Link-level Node Supervision
points, along with an appropriate error code.
This error code delivered up to the user in the
failure indication. In some cases, when thelnternode connectivity is also ensured at the
failure is detected due to inability to deliver link level. First, a background timer for each
a message, the original message is returned tmk endpoint supervises the traffic flow on the
the sender along with the error code, to furthetink and initiates a probing procedure if the
enable him to analyze the situation and takepeer is silent too long. Second, if a link is
proper action. Thignessage rejectiomech- found to have failed after probing, there is a
anism is also used when connection-less mesnechanism to steer its traffic over to the re-
sages are undeliverable. maining link to the same node, if there is one.

For convenience an alternative, TCP-style con



354 ¢ Linux Symposium 2004 ¢ Volume Two

9.3 Link-level Redundancy and Load Sharing 11 Performance

The performance figures we have are from the

In fact, having two links and two carriers be- Linux-2.4 version of TIPC. We have not yet
tween each node pair is considered the norbeen able to do code optimizations and corre-
mal configuration when using TIPC, as it elim- SPonding measurements on the Linux-2.6 ver-
inates any single point of failure in the commu-SIon.

nication service. The failover procedure usquerformance was measured by letting a set of

on such occations is completely transparent t(16 rocess pairs on two nodes exchanae mes-
the users, and complies to the same QOS as P P g

. . o “Sages in a ping-pong like manner at full speed.
is guaranteed by each individual link: no mes This ensures that the CPUs always runs at

sage losses, no duplicates, and in-sequence dgex
>ag uplica quen £00% load, and we can assume that almost all
livery. The relationship between dual links . . . .
. . ) : o execution time is spent on transferring TIPC
is configurable; while full load sharing is the : .

) ) .messages. We measured the time it took to
default behavior, an active-standby scheme is o

exchange a message of a certain size 16 X 10

also supported.

000 000 times, and divided the obtained value

Detection time for a failed link, and conse- With number of messages. The result gives
quently for a crashed node, is configurable andPure CPU execution time per message, auto-

is by default set to 1500 ms in the current im-matically excluding latency times on the net-
plementation. work and in the OS’s sceduling queues, which

is anyway the same for all protocols. For com-
parison, a similar measurement sequence was
done for TCP, on the same OS and hardware.

10 Automatic Nelghbour Detection Table 1 shows measured execution time for

transferring a message process-to-process be-
tween two 750 Mhz Pentium Il based nodes.

. . . . The communication media used was two par-
Signalling links may be configured manually, allel 100 Mb Fast Ethernet switches.

but this is a tedious task if the size of a cluster
runs up to dozens or even hundreds of nodes.
Therefore, TIPC uses a designated neighbour
detection protocol to establish links between

nodes. Within a cluster this protocol is very

simple. Each starting node uses the multicast
or broadcast capability of the carrying media 2096 176 178
to tell about its existence, and expects a corre- 16384 204 | 716
sponding unicast response from all nodes rec- 65408 | 3200 | 2800
ognizing it as part of the cluster.

Msg Size | TIPC | TCP
[bytes] | [us] | [ps]
64 25 38

256 29 42
1024 44 52

Table 1:Inter Node Execution time (send + re-

Between clusters, both multicast and a uni-' <
ceive) for TIPC and TCP messages

cast “pilot” link may be used, and results in a
link pattern where each node in one cluster has

links to a configurable (default two) number of The overall result shows that TIPC is around
nodes in the other cluster. 35% faster than TCP for inter-node messages
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smaller than Ethernet MTU, while perfor- 12.3 Roadmap
mance is about the same for larger messages. A

similar measurement, where all processes werghe goal is to have TIPC accepted as an in-
kept on the same node, showed that TIPC igegrated part of the Linux kernel in future
about four times faster (@s vs 25us) than  releases (2.7/2.8). Before the end of 2004,
TCP for 64 byte intra-node messages; the difywe also want to have it accepted as the pre-
ference decreasing linearly with message sizgerred protocol for intra cluster transport of the
At 64 Kbyte messages performance was eveporCES protocol. Also, before the end of this
here almost the same. year, we plan to have developed full support for

inter-cluster and inter-zone communication, as

well as a redesigned slave node communication
12 Implementation framework.

12.1 Source Code 13 Conclusion

, , _ , . Within Ericsson, TIPC has proven to be a very
The latest implementation on Linux is ava_ll- useful toolbox for design of high-availability
able as a source code packgge c_)f 12,500 I'm':'c<‘ius,ters.. It is our hope that this experience will
of C-code from [1]. It compiles into a load- o oneated by others now as the potential of

able module of 167 Kbyte for the Linux-2.6 ;4 anced clustering is becoming more widely
kernel, and it requires no kernel patches to b‘?ecognized

installed. This version, just as an earlier one

for Linux-2.4, is stable, but still has some limi-

tations. Most notably, only single-cluster com-References

munication is supported for now; it is not pos-
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Abstract Many in the memory management community
considered this very inefficient. Page aging and

Physical to virtual translation of user addresse§emoval could be made much more efficient if
(reverse mapping) has long been sought afthe page could be directly unmapped when it
ter to improve the pageout algorithms of theWas ready to be removed. Some form of rmap
VM. An implementation was added to 2.6 Was clearly needed for this to work.

that uses back pointers from each page to its

mapping (pte chains). While pte chains do .

work, they add significant spaceoverhead an@ PTE Chains

significant time overhead during page map-

ping/unmapping and fork/exit. Rik van Riel implemented an rmap mecha-

| will describe an alternative method of reversenism that added a chain of pointers to each
mapping based on the object each page belondk@9€ back to all its mappings, commonly called
to. | will discuss the partial implementation Pté_chains . Itworks by adding a linked list

| did last year as well as the work done by© the control structure for each physical page
Hugh Dickins and Andrea Arcangelli to com- (Struct page) which points to all the page ta-
plete it. | will describe the current implemen- Pl€ entries that map that page. His code was
tations, their relative strengths and weaknesse&@ccepted into mainline early in the 2.5 devel-
and what plans if any there are for solutions ta®Pment cycle.

the remaining issues. Once this rmap implementation was in place

the page aging and removal algorithm was
1 Introduction changed to use it, streamlining the code and al-
lowing better tuning.

Up through ver_sion 2.4, the _Linux® I_<erne| One negative to thete_chain  implemen-
had no mechanism for translating physical adiation was a significant performance cost to
dresses to user virtual addresses, common%rk exec . andexit . The cost to these
called reverse mapping, or rmap. This meant if;n tions was related to the amount of mem-

was not possible for the memory managemenry mapped to the process, but was close to an
subsystem to point to a physical page and reg,qer of magnitude worse.
move all its mappings. There was a mechanism

that walked through each process’s mapping# second cost was space. In its original form
and selected pages to unmap. Only after all ate_chains  cost two pointers per mapping.
page’s mappings were removed could it be seAn optimization eliminated the extra structure
lected for pageout. for singly-mapped pages and another optimiza-
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tion added multiple pointers per list entry, buttermines the virtual address of that page and a
the space taken by the _chain  structures page table walk finds the page table entry.

was still significant. o _
This implementation recovers the performance

of fork , exec, andexit and eliminates the

3 A Brief History of Object-based space penalty used fpje_chain  structures.
Rmap It introduces a performance penalty when it

walks the linked list ofvmas, but this is in-

P q I curred by the page aging code instead of the
rocesses do not really map memory one pag§pplication code. It could still be significant,

at a time. They map a range of data from Ahowever, since it rises linearly with the num-

offset within some object (usually a file) to a er of times any part of the file is mapped while
range of addresses. The virtual addresses of lith pte_chains  the cost rises linearly with

pages within that range can be calculated fron?h ber of ti that : q
their offset in that object and the base mapping © Umber ortimes that page s mappec.

address of the range. 3.2 First Cut at Full Object-based Rmap

The kernel has the information to do object-

based reverse mapping for files. Eattuct Hugh Dickins took my implemenation and
page for a file has an offset and a pointer toextended it to handle anonymous mappings,
a struct address_space , which is the eliminating pte_chains  entirely. He did

base anchor for all memory associated with dhis by creating aranonmm object for each
file. Every time a range of data from that file process that all anonymous pages belong to.
is mapped to a processym_area_struct All anonmmstructures are linked together by
or vma is created. Theyma contains the vir- fork . A newanonmmstructure is allocated
tual address of the mapping and the base offse&nexec . The offset stored istruct page

within the file. It is then added to a linked list is the virtual address of the page, while the ob-
of all vmas in theaddress_space for that ject pointer points to aanonmmthat the page
file. is mapped in.

The remaining problem in the kernel is anony-Finding all mappings of a page is simple. The
mous memory. Blocks of anonymous memorypointer instruct page is followed to the
havevmas but thesemas are not connected to anonmmchain, which is then walked looking
any common object that can be used for reverstor mappings of that page at the virtual address
mapping. specified in the offset.

Hugh’s initial patch ignored the problem of
shared anonymous pages that were remapped
_ o _ _ by an mremap call. The problem with
legn this |nformat|on, Ia§t year | did a sam- mremap is that it allows an anonymous page
ple implementation of object-based rmap fory, pe at different virtual addresses in different

files, but left thepte_chain  implementation processes, but there is only one offset for the
in place for anonymous memory. It works by page.

following the pointer in thestruct page to

the struct address_space , then walk-  After some initial discussion among the com-
ing the linked list ofvmas to find all that con- munity, both Hugh and | moved on to other
tain the page. A simple calculation then de-things.

3.1 Partial Object-based Rmap
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3.3 A Second Cut at Full Object-based Rmap  anonymous pages.

In February of this year Andrea Arcangeli be-5 Thevma List Problem
gan to investigate what could be done about

the problems opte_chains . He took my _ : _
partial object-based rmap patch and imple-A” these implementations still include the

mented his own solution for anonymous mem__original implementation for_file pages, includ-
ory, calledanon_vma. ing the need to walk the linked list afmas

- attached to theaddress_space  structure.
The basic mechanism ainon_vma is the This has been identified as a possible per-
addition of ananon_vma structure linked to formance issue for massively mapped files,
eachvma that has anonymous pages. Thethough few if any real-life examples have been
anon_vma structure has a linked list of found. A few optimizations have been tried,
all vmas that map that anonymous range.ncluding sorting the list by start address and
The pointer instruct page  points to the making a two level list based on start and end
anon_vma and the index is the offset into the address. Both these solutions share the prob-
current mapping. lem that adding or modifying &ma is fairly

expensive and holds the associated lock for a
An advantage of Andrea'anon_vma struc- |ong time.

ture is that it solves the mremap problem that
theanonmmstructure did not. Since the offset A recent contribution by Rajesh Venkatasubra-
stored in each page is relative to the base of thenanian is the use of prio_tree , which is
vma that maps it, the region can be remappedimilar to a radix tree but supports sorting ob-
without changing the offset. However, sincejects by both start and end addresses. It adds
vmas can be merged, it is not an an absolutelysome complexity to the/ma list but greatly
painless solution. reduces the potential performance impact of a
large number of mappings.

4 Advancements All Around
6 Theremap file _pages

In response to Andrea’s patch, Hugh resumed Problem
work on hisanonmmpatch. Prompted by a

discussion among the community and an apyyhjle object-based rmap appears relatively
proach suggested by Linus, Hugh implementedpie, there is one new feature that greatly

a simple scheme for handling the remap casgompjicates the problem. This feature is
For each page, if there is only one reference|rernalo file_pages

that page can simply have its offset changed.

If the page is shared, a copy is forced and th&he remap_file_pages system call was
new unshared page is mapped at the new adAtroduced during the 2.5 development cycle.
dress. Since all anonymous pages are alreadyworks on a range of shared memory mapped
copy-on-write, it is likely that the page would from a file, and allows an application to change
be written to eventually and the copy taken.the memory range to map a different offset
It is possible that some read-only pages mightithin that file. This is done without modifying
be duplicated, but to date there is no evidencéhe vma describing the mapping. This means
that any code actually remaps shared read-onlthe offsets specified within thema are now
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wrong. Since theaddress_space pointer IBMis aregistered trademark of International Busi-
and offset within thepage structure are intact, ness Machines Corporation in the United States,
the page can still be mapped back to its place ither countries, or both.

the file, but it is no longer possible to use this
information to find its virtual mappings. The

vma is ca!led_ ano_nli_near vma and is put  other company, product or service names may be
on a special list within thaddress_space .  the trademarks or service marks of others.

Linux is a registered trademark of Linus Torvalds.

Andrea and Hugh have provided two different
solutions to the problem of what to do when a
nonlinear page is called to be unmapped. An-
drea’s solution is the more draconian in that it
walks the list of nonlineavmas and unmaps all
pages in them until the page in question has no
more mappings. Hugh’s solution only unmaps
a fixed number of nonlinear pages and makes
no attempt to unmap the actual page passed in.

7 Release Status

As of the date this was written, Hugh has been
submitting incremental rmap changes to An-
drew Morton for the -mm tree over the past
couple of months. The early submissions were
primarily cleanup, but later patches included
first my partial object-based rmap implementa-
tion followed by hisasnonmmimplementation,
which completely removed thpte_chain

code.

Hugh has just submitted a final set of patches to
Andrew that removes hisnonmmimplemen-
tation and replaces it with Andrea@non_
vma implementation.

The general expectation among the VM devel-
oper community is that once this code has been
adequately tested in the -mm tree that it will
replace the existingte_chain  implementa-
tion in mainline 2.6.

Legal Statement

This paper represents the views of the author and
does not necessarily represent the view of IBM.
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Abstract o LGPL-the familiar, and best Lesser GPL.

o SISSL - essentially X11 with trip-wires

In this talk | will present some of the is- for malicious UNO API. and XML file
sues facing OpenOffice.org, particularly re- format compatibility breakage.
lated to: performance, interoperability, build-

bility, ABI / [ [ drel tice. . . . . .
abrity SNINSEring and release practice While it is necessary to share copyright with

We'll look at how to build the beast, the UNO Sun by sianina the Joint C iaht ASSi ¢
component model, and iterate a quick hack be: un by sighing the Joint ~opyright Assignmen

fore your eyes. We'll also show some of the(JCA)[Z]’ th? use of OO'.O code'in Staroffice
flash new features including the Gnome desk&@" be conS|d_ered as being achieved under the
top integration work. SISSL[3] provisions.

Thus there is clearly huge potential for add-
1 A friendly giant ins, integration with proprietary data-feeds,
macros, etc.

The OpenOffice.org source base is one of the _
largest monolithic Free software projectsinex-2  Sun’s dilemma
istence, even with the pre-compiled mozilla bi-

of the OpenOffice.org core, as seen in public

Project Source bz2 CVS, with the addition of a few extra propri-
(MB) etary modules. While this means that all the
Mozilla 1.4.1 31 latest bug fixes are available in public CVS, it
Linux 2.6.7 33 creates a number of frustrating artificial prob-
GNOME 2.6.2 108 lems:
00.01.1.2 160
2.1 Release Engineering
OpenOffice.org (O0.0) represents one of the « minor release cycles —thereisa

largest single contributions to Free software correct separation of commercial updates;
ever. Given this, it is somewhat incredible that of around once per quarter; thus this tends
Sun immediately settled on a licensing scheme  to be the frequency of minor OO.0 re-
in that is both liberal and substantially symmet- leases regardless of bugginess.

ric.
» release patch-size — there is a

OpenOffice.org is licensed under two licenses: fixed upper-bound on the size of a cus-
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tomer patch download, thus ABI alter- < chkfontpath — Red Hat, and others
ations in low-level libraries which would once shipped this tool which dumps a list
have a large knock-on effect, are forbid- of font paths; we try tgpopen and parse
den. the output.
* ultra conservatism — since cus-
tomer updates are infrequent there is little * hard-coded paths — various direc-
incentive to back-port fixes to the stable tories such asusr/X11R6/lib/X11/
branch; so many, trivial but high-impact fonts/truetype are known to be a
fixes don’'t make it. good bet, and are scanned for fonts, in-
_ cluding several language specific variants.
* major release cycles — for rea-
sons unknown StarOffice works on an 18-
month release cycle, so—at times (given * X server query - the X server is
freezes, etc.), it is possible to punt a fea- queried to see what it can do, and a load
ture / fix by nearly 2 years. of XLFDs are parsed.
Clearly many of these problems make the OO.0 , internal fonts _ whatever internal

development process somewhat cumbersome. ot and font-metric files we distribute

are added to the mix.
2.2 Portability Engineering

In contrast to many Free software project,
StarOffice and hence 0O.o, is designed to rumNaturally, after doing all this work, we build a
on a broad spectrum of operating systems an®0.0 specific cache of much of the informa-
versions. By contrast, e.g. GNOME appnca_tion, to accelerate subsequent startup.

tions, would typically require the latest version

of GNOME to run. This heavily engineered approach is not con-

strained to any one API-set, or technology—

This creates a number of interesting, hard-cor&0, €.9., 00.0 will attempt to use either Ipr or
engineering issues, and shows up the true staféps for printing in a dynamic fashion.

of Linux as a robust platform for ISVs. Even glibc problems show up in Figure 1.

For example, for font discovery much Linux In addition, the cross-platform nature of OO.o

software will link to the pl_easar_lt fontconfig li- and the unpredictability of the Linux feature-
brary, and use purely client-side font render-

. . set (particularly the C++ ABI), leads to a
ing. OO0.0 in contrast has to run on older (or S
. large number of software packages being in-
newer) platforms where there is either no font- L o
7 : .. Cluded inside the OO.0 build itself. Thus, a
config install, or it has a changed ABI, or it is stock 000 would include it's own compiles
badly configured. Thus the OO.o font discov- P

: o of (at least): python , freetype , zlib
ery method uses the following heuristics: expat , libdb , NAS neon, curl . sane ,

. ) ) myspell , Xrender .
« fontconfig — since this may not be

available, we try tallopen it, hook out As is probably obvious, this level of old plat-
various symbols, and extract a simple listform support, and dependency aversion is hard
of font filenames. to get enthusiastic about.
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typedef struct {
struct { long status; int spinlock; } sem_lock;
int sem_value;
void *sem_waiting;
} glibc_21 sem_t;
/*
* XXX this a hack of course. since sizeof(sem_t) changed
* from glibc-2.0.7 to glibc-2.1.x, we have to allocate the
* larger of both XXX
*
#ifdef LINUX
if (sizeof(glibc_21 sem_t) > sizeof(sem_t))
Semaphore = malloc(sizeof(glibc_21 sem_t));

else
#endif
Semaphore = malloc(sizeof(sem_t));
}
Figure 1: compatibility with oldylibc  versions
3 Community Issues 4 The other side of the coin

4.1 http://ooo.ximian.com/

To make up for the existing inadequate web-

In additi h | , h tools, and documentation we provide several
n addition to these unusual constraints, the,,iomal’ tools of interest.

00.0 project is encumbered by acute tooling

and collaboration inadequacies. : .
a » hackers guide - a Linux focused,

Perhaps the most serious problem, is that it ap- hackers guide on how to build, iterate, and
pears CVS was not designed with 200+ MB of some basics of the OO.o code structure.
source / binaries in mind. Thus, even basic op-
erations, such as@/s tag can take up to a
couple of hours, and are frequently blocked by
robots slowly traversing the repository.

* LXR/Bonsai - basic web tools without
which navigating the OO.0 source is sub-
stantially more difficult.

* bug filing — a gateway that de-
mangles the curious user-focused issue fil-
ing process, and allows bug filing directly
against given code modules.

Secondarily, the collab.net SourceCast system
adds a level of bureaucracy, and lack of re-

sponsiveness which when combined with be-
ing totally un-fixable makes for an unneces-

sarily painful experience. It seems likely that * Planet OO.0 - the obligatory RSS ag-

SourceCast is ideal for the use of existing, es-  gregator.

tablished Free software projects, or even newly

formed projects—but it stumbles with 00.0. 4.2 ooo-build

Furthermore, using closed software for Open

Source collaboration is an intrinsically inter- The process of productising OO.o into a Linux
esting decision. package is filled with pain; so to amortise this
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a collaboration has coalesced between variousot by the main binary—but by other shared
Linux vendors: Novell ne Ximian, Debian, component libraries, linked at run-time.
Red Hat, SuSE, Ark, and PLD Linux around

000-build Ulrich’s analysis of OO.o [1] shows that

20,000 relocations are performed during
000-build provides a growing set of useful startup, which combined with lookups across
patches many of which may arrive in OO.o inmultiple libraries gives 1,700,000 string com-
many months time; indeed all our work is in- parisons to startup. The sheer size of the sym-
tended to go up-stream into OO.0. We also probol tables and the lack of locality of reference
vide a simple patch sub-setting system, to alin the linking process causes much of this work
low vendors to select a suitable set of patchesto fall outside the processors’ cache—giving

_ ) _abnormally poor performance.
Many of the features associated with ooo-build

are desktop integration, system integration, and

GUI cleanup pieces; e.g.:
5.2 C++issues

attractive new icons

* native-widget rendering Some features of C++ exacerbate the problems

« GNOME-VFS integration of large symbol tables, and poor startup perfor-
_ o mance. The stripping / re-working of static ini-
* ergonomic & aesthetic fixes tialisers has helped accelerate performance—

these being replaced with a thread-safe late
instantiation based on accessor method local
static variables.

The o0o00-build wrapper is also intended to

make 0O.0 substantially easier to compile withCt* is a very symbol-hungry language—

a familiar ./configure; ./download; particularly with respect to virtual functions,
make: make install process. which create an unnecessary burden (Figure 2).

Virtual functions, despite resolving to a sim-

ple function pointer export a symbol, which is
5 Performance referred to directly to chain to parent imple-

mentations. While of course this can often be
Performance is an area ripe for substantialesolved away at link time, in a cross-library
improvement in OO.0, however, poor perfor- situation it would perhaps be more efficient to
mance is caused by many factors, and identifydereference a parent vtable function pointer.
ing the most important of these is not always
easy.

system library usage

Similarly, since in theory at least, a single class
can be implemented across multiple shared ob-

51 Linking jects, even ‘private:’” methods export symbols.

In addition to these problems, a more pro-
The linker has a very hard time linking OO.0, active approach to pruning old, and redun-
and while this can be reduced by pre-linking,dant code has been adopted in the development
the architecture of OO.0—whereby the major-branch, to reduce code footprint, and symbol
ity of the code is in shared libraries requiredcount.
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class Foo : public Baa { much of the 00.o code into memory before at-
virtual void VFunc();

private: te_mptin_g to run it. This gave avery noticeable
void ExportsSymbol(); win; this was implemented in a simple fash-

h ion with mmap, and a loop reading a byte from
each page. ldeally of course, the underling op-

void VFunc() erating system would be able to do better here.

{

Baa::VFunc();

Figure 2:C++ virtual functions 6 Interoperability

5.3 Binary filter code

To shrink the 00.0 footprint, a large chunk In a world where a tiny fraction of people are

of creaking binary format code has been exusing Free software, the ability to share docu-

tracted, along with compatible chunks of theMents in a loss-less fashion with other people

core. This code pre-dating the XML file IS crucialto the adoption of 0O.o.

formats scattered the process of serialisation; ,ch work has been done in this area for 2.0

across the code, and resulted in @ complexyt naricular note the row-limit in calc has been
hard-to-maintain and increasingly irrelevant,gised to that of Excel. and much work has
maintenance problem. In ©O.o 2.0 it will be yaan done on form cont’rols.

used only on the rare occasions it is necessary

as a binary to XML filter. There are also exciting developments in VBA
interoperability. 0OO.o provides a VBA-like
5.4 system libraries language: StarBasic, and by devious means it

has been possible to extract VBA text from Of-
Shrinking the large number of internal Ii- fice files for some while. Office fo_r perfor- )
mance reasons however stores VBA in 3 forms:

braries, on Linux systems, and increasing the )
y g an SRPstream, a compiled form, and a com-

number of libraries shared with the system is : :
: . ressed text form. Since these are authorita-
an important part of performance mprovemen[ﬁ

) . ve in that order (the text providing only a fi-
in 2.0. It clearly makes little sense to have an : .

. : . nal fallback), it was thought that effective ex-
internal gtk+ library when the system version

is ABI compatible, and better maintained. port would er_1ta|I reverse engineering at least
the the compiled form.

Using system libraries—e.g., neon—also re- : . .
. . : . However in recent time, yet more devious
duces the pain of handling security updates in .
o : means have been discovered to export macros
the built-in libraries.
as text to Excel and have them run transpar-
ently to the user. This it turns out is the founda-
tion of macro interoperability between Office
versions 97 through XP. Thus work is ongoing
Possibly the most significant speedup in the 1.@ improve the macro support so crucial for ef-

to 1.1 transition was the process of forcing adective Excel interoperability.

5.5 mmap performance
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7 Desktop integration ically (at run time) construct bridges to other
languages, and allow dynamic method invo-
cation. While this adds a compiler version /

Mducrl[ gf_ the V\?ork of ooot-rt])uild hats beefn ABI dependency to the OO.o core, it avoids the
adopted in one form or another up-stream orproblem of creating stub / skeleton code which
2.0, giving the prospect of a highly desktop in-

tegrated OO.o experience out-of-the-box. ﬁg?n?g ;Spﬁggzﬁ Tv:é; ;jigi/el(\jﬂ_B before the dy
To achieve this, the lowest levels of OO.0’s

cross-platform abstraction: the Visual Classg conclusions

Library (VCL) have been virtualised, and now

the main-loop, and top-level windows on a _ _
GNOME system are handled by the gtk+OO.o provides an unusualm and particularly

toolkit. In order to avoid a complete re-write of Pathalogical case of a gigantic C++ project.
the widget system—we use a simplified them-TNiS léads us to push the boundaries of the sys-
ing system that virtualises only the renderingt®M. showing up several areas for potential im-
of widgets, allowing basic widgets to match theProvement.

ook ofthe rest of the deskiop. The ooo-build infrastructure provides a solid

Similarly main-loop integration makes things base for contributing work to ©O.0 in a famil-
such as integrating the gtk+ file-selector and@r and accessible manner, and seeing the de-
other GNOME dialogs fairly simple. The Ployed results of your work quickly.

main-loop integration was made substantiallyo

more pamful by the r_ms-match between themance, code-cleanliness and interoperability
recursive 00.o toolkit lock, and the non-

: . improvements, in addition to many new fea-
recursive gtk+ lock. In order to reconcile thesetures.
and provide a single, comprehensible locking
pattern—after considerable thought we added
hooks to gtk+ to allow a shared (recursive) lockReferences

to be used. This makes gtk+ use in OO.0 virtu-

ally seamless. [1] Ulrich Drepper. How to write shared
libraries, 2004.
http://people.redhat.com/
drepper/dsohowto.pdf

penOffice 2.0 will give substantial perfor-

8 UNO component model

Sun Microsystems, Inc. Joint copyright
assignment.
http://www.openoffice.org/
licenses/jca.pdf

00.0 provides a rich, and well documented[z]
component model, which is exported for the
use of language bindings. The power of this,
and its flexibility have resulted in active bind-
ings for StarBasic, Java, and Python. [3] Sun Microsystems, Inc. Sun industry
standards source license.

http://www.openoffice.org/
licenses/sissl_license.html

The UNO model is particularly interesting,
since it consumes little overhead beyond a
stock C++ virtual function call. In addition
each class has associated, small compiled IDL
type information. This can be used, to dynam-
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Abstract Also de experience of porting the NetBEUI
and LLC code released as GPL by Procom
Inc. from the 2.0 Linux kernel networking in-
frastructure to 2.4 and then to 2.5/6, working
on a BSD sockets API foPF_LLC, initially
contributed by Jay Schullist was instrumental
in realising the existing similarities in the in-

In this paper | will describe the work | am

doing on the Linux networking infrastructure,
with emphasis on cleaning the code, but with
important “side effects” like reduction of core

structures already saving over 600 bytes %Y astructure needs required by several protocol
UDP sockets all over the net in 2.5/2.6 (tcp,families

etc.), elimination of data dependencies, reduc- '

tion of the non-mainstream network families

maintenance cost by making them use cod2 TCP/IP Evolves Faster

that now is innet/ipv4  but can be moved

to neticore , leaving only the really ipv4- \oqt of the attention is given, of course,
specific code and maklng_LLC use it as a proof; TCP/IP, and in the process new infras-
of concept (work done in my net-exp Uree,y cyre is created, with TCP/IP using it at

pending submission). first and sometimes leaving things like the
TCP code becomes used by the poor cousingeliver_to_old_ones  function to sim-
they appreciate that! ulate the previously existing big networking
lock and theSOCKOPS_WRAPPIEicro, to
allow the other protocol families to continue
1 How This Started working, hoping that their maintainers do the
necessary work, but this sometimes doesn't

) _ happen for a long time.
Making IPX uptodate with regards to advances

in the core networking infrastructure, to kill In other cases code is added to TCP/IP that,
deliver_to_old_ones , 1.e., special cases upon further inspection, could be moved to
in the core kernel for protocols that hasn’'t beemet/core  and be useful for the other proto-
converted to shared skbs and multithreading. col families.

In the process | noticed several areas wher®oing this factorization will help make these
code was replicated or used a different, oldermprovements to TCP/IP be taken advantage of
framework, due to the evolution of the core net-by the other protocol families and will help in
working infrastructure. realising the ultimate goal of keep the proto-



368 ¢ Linux Symposium 2004  Volume Two

col families code with just what is completely socket” used to represent TCP connections

specific. in the TIME_WAIT state. To accomplish
this, struct sock _common was intro-
duced, that is the minimal required set of mem-

3 Trimming struct sock bers common to these structs. With this data
layout we will certainly avoid bugs introduced
when changing only one of the structs, like has

In 2.4,struct sock  has a big fat union that Pappened at least once to my knowledge.

has most of the private data for each protoco
family, so when any change had to be done to a

specific protocol family the layout adtruct 4 Usinglist.h in the Networking
sock would change, generating unnecessary Code

recompilation of most of the network related

code in the kernel.
With the advent of the hashed liststruct

In 2.6 this has changed argiruct sock  hlist_node) it turned out to be useful to
nowadays is mostly free of details specific tomake the networking code follow the general
network protocol families. kernel trend of using thdinux/list.h

In the process two ways were devised to stordnacros, replacing the ad-hoc lists presentin the

the network protocol private area, one for pro_networklng code.

tocols that have stringent performance requireThe work consisted of introducing a set of
ments, like TCP/IP, using per-protocol slabhelper macros to handistruct sock list

caches and another one, simpler, that allowfandling, namelysk_add_node and sk
protocol families to just allocate a chunk of ge| node init , and bind list variants.

memory and store its pointer in thetruct

sock membersk_protinfo . As most These functions also bump the reference count
stacks now use helper macros to access its prfor the socket, something that was not being
vate area, the eventual switch to the slab cachéone by some protocols, that have since been
approach is easily done. converted to use this new set of helper macros,

thus fixing some bugs in the process.
With this in place the footprint of thstruct

sock , that was of about 1280 bytes on a UPIt should also be noted thatlist  started
machine in 2.4 to 308 bytes for the genericusing prefetch as part of the process of con-

sock slabcache in 2.6, with theep_sock vincing David Miller, the Linux Networking
slabcache using 1004 bytasjp_sock slab- maintainer, to accept such changes. Perfor-
cache using 484 bytes and finally thaix_ mance gains are an important technique in get-

sock (PF_UNIX sockets) using just 356 ting code-cleaning patches accepted.
bytes.

This changes also resulted in a performanc® Socket Timers Manipulation
gain in the establishment of connections, as  Helpers
was verified with thémbench tool.

Another related change was to diminish theAnother area that received attention was the
data dependency amorsgruct sock and socket timers manipulation routines, that in
struct tcp_tw_bucket , that is a “mini  some protocols aren’t always bumping the ref-
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erence count as they should and do in the Blue7 BSD Sockets Layer
tooth and TCP/IP code.

There is some duplication of work at the BSD

sockets level among the network protocol fam-
ilies implementation. Trying to reduce the

code required to implement a protocol fam-

ily is being investigated, with some proofs-of-

concept already implemented, where the func-
tions now used for TCP/IP are being shared
with LLC.

To abstract this handling thek reset
timer andsk_stop_timer  functions were
introduced recently to do themer_list
handling and deal witlstruct sock  refer-
ence counting.

6 Factorization of net/ipv4 Code The idea here is to to reduce the protocol-

specific implementation to just that, i.e., what
is absolutely specific to each protocol.
In the past Alan Cox worked on having data- o _ _
gram code that could be shared among sever&l€rhaps this will make it easier to stack pro-
network families shared at theet/core/ tocols, allowing combinations that are possible
datagram.c file, moving chunks of code out in other kernels but not on Linux right now.

of the UDP implementation. The extra function pointers isk->sk_prot

Now with this work I'm trying to do the same Probably won’t be a problem because they

with the stream code, now moving chunks ofill make it possible to eliminatesock->
TCP code to the core infrastructure. proto_ops by calling directly thesk->sk_
prot functions.

Initial steps are just moving code around,
like tcp_eat_skb , that becamesk eat_

skb ; tcp_data_wait becamesk_wait_ 8 Future Developments

data ; and here we see something interest-

ing, namely the fact that this function correctly With this newly common infrastructure, it may
sets theSOCK ASYNC WAITDATs inthe be possible to add features like network async
struct socket_ f|ags_ member, something I/O to all protocols. More sharing will be in-
that some protocols aren’t doing now but will vestigated, trying to avoid pitfalls that appeared

as soon as they start usigly_wait_data . in similar work done in other kernel subsys-
tems.
In my net-experimental tree | have in-

troduced some new members to steuct :

sock membersk_prot , allowing both TcP 9 Conclusion

and LLC to use commostream_sendmsg

andstream_sendpage functions, that are Looking every other year at how core infras-
generalizations ofcp_sendmsg andtcp_ tructures evolve and how the implementations
sendpage . Further work is needed to fully of subsystems attached to those infrastructure
determine the performance implications ofevolve is something that should be done, pay-
such changes, but no noticeable performancing off in terms of code clarity, reduction of the
drop or stability problems have been verified incost of maintaining code that has come out of
using this patched kernel in my main machinemainstream but are still used in lots of legacy
for over a month. setups.
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Another eventual benefit gained is the perfor-
mance one, as making the code clear and more
general is not incompatible with having fast
code.

Reuse the code, Luke.
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Abstract MIPv6 provides all IPv6 nodes with mobility
service which allows nodes to remain reach-

_ _ _ able while moving around IPv6 networks.

USAGI Project [8] has improved Linux o g 50t mobility, We need some signal-

IPV6 [1] stack. IPV6 IPsec is one of the prod-j, 4rchitecture to notify movement and de-
ucts of our efforts. Linux IPsec [6] stack is im- liver mechanisms to assure reachability. Us-

plgmented ba;eq on XFRM architgcture Whichng MIPv6, we can keep routability to mobile

IS mtroduced-ln linux-2.5. We design and im- node’s home link address and deliver a packet
plement Mobile IPv6 (MIPV6) [4] Stack onthe 1, ipije node wherever it is on the network.
ar chltlt_ecture. M|P_v6|uses IPsec for its securgzec ise 1PV is able to process these extension
s:gnallng. According thPvE IPsecsnd MIPV6 peoaders natively, we no longer need to arrange
closely cooperatg each other. In this paper W‘f"oreign agents to all links where mobile node
describe the architecture and how they work. may move to as Mobile IPv4 does, so that IP

mobility is easier to be introduce in IPv6 than

1 Introduction IPv4.

Linux supported IPsec at version 2.5.47. How-
ever it supporting only IPv4 IPsec, we imple-

IPv6 is the next version of an Internet Protocol. ted IP tack for IPV6. Li ion 2.6
The protocol was developed against IPv4 agneNted IFsec stack for fFvo. Linux version <.

dress exhaustion. It was developed for not onlf

. . . hitecture and stackable destination were in-
spreading address space but improvin som%rc :
P g P P g téoduced into the kernel for IPsec packet pro-

f h I I I :
eatures such as plug and play, aggregatab essing [7]. They can be not only for IPsec

routing architecture, IPsec native support an .

smooth transition. packet processing, but also general packet pro-
cessing such as MIPv6. USAGI Project de-

IPsec provides security services which are incided to expand the architecture to implement

tegrity, authentication, anti-replay attacks andVIPv6.

confidentiality. Because IPsec is mandatory i . .
IPv6 specification, we must implement IPs.e(r:]T0 develop Linux MIPV6, we cooperate with

to conform to it. GO/Core Project [2] which is proven in linux-
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2.4. by a key exchange daemon in user space.

2 XERM and stackable destination 3.1 IPsec database and packet processing

) _ ) ) IPsec packet processing is realized with XFRM
XFRM architecture is mainly consist of three ;5 cpitecture and stackable destination. Out-

structures which are xfrm_policy, xfrm_state ,, nq process is explained in previous sec-

and xfrm_tmpl. xfrm_policy corresponds 10 i, with searching XFRM database and

IPsec policy and xfrm_state to IPsec SA.yiging stackable destination, the kernel gets
xfrm_tmpl is intermediate structure between|is; o¢ gst entry structure. To process each
xfrm_policy and xfrm_state. Each IPsec pol- nction which are ah6_output, esp6_output
icy and SA database are realized with list of;,q jhcomp6 output, the kernel searches inser-
the structures which are also contained hasnOn point on a packet because a packet is cre-

database. ated including IPv6 header and other extension

The kernel provides three interface to configurd€aders before stackable destination process
xfrm structures about IPsec. One is PF_KEY(Figure 1). The insertion point is before up-
interface which is standard interface to manipP€f layer payload, fragmentable destination op-

ulate IPsec database. another is netlink sockdons header, IPsec header or fragment header.
interface. The last is socket option interface. This is not efficient because the kernel searches

the insertion point every time when processing
Stackable destination is architecture for effi-one dst_entry.
cient outbound packet processing. It is a link o
list of dst_entry structure which is cached in!NPound process is simpler than outoound pro-
xfrm_policy. To create stackable destination,C€SS- When packet containing AH or ESP,
the kernel linearly searches xfrm_policy with € kemel finds xfrm_state corresponding to
flow information for a sending packet after '€ceived packet and keep pointers of used

routing looking up. After finding xfrm_policy xfrm_state in sec_path of skb structure. Af-
corresponding to the flow information, the '€ Process of IP layer, the kernel checks

kernel searches and gathers xfrm_state frorf'€ Packet correctly processed with comparing
xfrm_state database by xfrm_tmpl in the S€c_path and xfrm_policy which is searched

xfrm_policy. Gathering xfrm_states, the ker- with flow information of the packet (Figure 2).

nel builds up stackable destination and sub-

stitutes it into its own member “bundles” to 3-2 Interface for user and IKEd

cache it. Additionally xfrm_policy itself is

cache in flow_cache. Therefore the kernel onlycurrent linux kernel provides users with

needs to lookup xfrm_policy after second until PF_KEY interface, which however is speci-
xfrm_state expired. fied only for IPsec SA interface and it needs

some extension to configure IPsec policy. Be-

cause this extension is not standardized, there
3 IPsec are some different extensions and it prevents

compatibility of IKEd. Linux adopts the ex-
IPsec functionality is consist of packet processiension which is compatible with KAME [5]
ing and key exchanging for automatic keying.so that racoon is the IKEd for linux. Racoon
In the implementation of Linux packet process-is originally product of KAME project and
ing runs in the kernel and key exchange is dondés could not compile on Linux. Fortunately
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xfrm_architecture

output sequence a processed packet

xfrm_ policy(lPsec)

xfrm_tnpl (AH) ™ xfrm state(AH) . Lr\égeg:t put .
bundl es : :
_____________________________ 17 Casowpn > 7 Original packet
dst_entry . . | Pv6
xfrm . .
ohifa ! = _esp6_output_> +  encapsul ate
. . | |Pv6| ESP | Payl oad |
dst _entry . .
xfrm : :
out put () : @@ . append auth header
) '||Pva| AH|ESP| Payl oad |
dst_entry . .
stackable destination ' '
xfrm . .
B0 e >
child dev_queue_xmi t :

Figure 1: IPsec output process

xfrm policy(lPsec) input sequence a processed packet

xfrmtopl (AH) [T -7

xfrm_t npl (ESP)

.
|

|

|

|

upper | ayer

| i nput

komparing sec_path

Payl oad

]
|
I '
I '
l | Wwith xfrm_policy .
e

decapsul at e

|
|
sk_buf f xfrmstate(ESP) [ T %@@
|
|

sec_path ] I . | IP\/6| ESP | Payl oad |

aut henti cate

'—xfrmfst at e( AH) ‘ @put

XFRM architecture

Figure 2: IPsec input process

|IPV6| AH|ESP| Payl oad |
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ported racoon which is provided by ipsec-toolscedure is divided two steps. First is making
project [3] is available. IPv6 over IPv6 tunnel between MN and HA
(1-4). After this step, HoOA of MN becomes
routable and MN is able to communicate with
all nodes by using HoA via HA through the
tunnel. Second is route optimization between
4.1 Mobile IPv6 MN and CN because MN always communicat-
ing via HA (5-8), a packet goes through a su-
In MIPv6, nodes are classified into 3 types.perfluous route and communication uses more
One is a Mobile Node (MN) which moves in network resource.
the IPv6 Internet bringing its home address

(HoA) assigned in a home link which is a o
base of mobility and in which there is a home 1. MN sends a Binding Update (BU) to HA.

e s . 2 HA updates a binding cache and reuns
g Binding Acknowledgment (BA) to MN.

dresses and supports its signaling and ensures

reachability. The other is a correspondent node 3 \N updates a binding update list.

(CN) which is a node communicating with a

MN. CN may be either mobile or stationary. 4. Atthis time, there is a tunnel between MN
and HA.

4 Mobile IPv6

When MN in a foreign link, it uses a care-of ad-

dress (CoA) which is the address of a foreign 5 MN sends HoTl to CN through the tunnel

link. MIPv6 accordingly needs to manage rela- and CoTl to CN directly from CoA.
tionship between CoA and HoA. A MN sends

a packet including HoA in an extension header 6. CN keeps contents of HoTl and CoTI. CN
from CoA. returns HoT via HA and CoT to CoA.

MIPv6 appends two extension headers and one7. When MN receives HoT and CoT, MN
option for destination options header. Mobility sends BU to CN and updates its own bind-
Header (MH) is an extension header for sig- ing list.

naling to manage binding cache which is a ad-

dress list for optimized routing. Type2 rout- 8. Then MN and CN have binding between
ing header (RT2) which is different from rout- HoA and CoA. They communicate di-
ing header in RFC2460 effects destination ad-  rectly with appending HAO and RT2 to
dress in IPv6 header and realizes direct rout-  packets. They have an optimized route.
ing according to binding cache. Home Address

Option (HAO) is an option carried by destina-
tion options header to contain HoOA which is
an address of a MN in home link and swapped

with CoA. HAO effects source address in IPve Ve design MIPV6 in Linux consisted with two
header. part. One is packet processing for RT2 and

HAO in the kernel and the other is MIPv6 dae-
We describe an outline of the procedure tak-mon (MIPd) to handle the signaling and man-
ing as an example that MN making binding age binding cache and binding update list. It
cache on HA and communicating CN after MN is similar to separation of packet process and
moving to a foreign link (Figure 3). This pro- IKEd in IPsec.

4.2 Implementation
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7:BU

3:Update BUL 5:CoTI 8:Update BC

Co [=

BUL

4:Making a tunnel

Figure 3: MIPv6 procedure outline

Packet processing for MIPV6 is realized with4.3 XFRM operation
XFRM and stackable destination architecture,

because they are general way to process a

packet which matches some selector. Usind? this section, we describe MIPd XFRM op-
XFRM, we can avoid to implement duplicate eration relating each nodes state with an exam-

functionality in the kernel. MIPv6 needs to PI& which is a phase of binding update to HA

manage a binding cache which specifies an MN"d making tunnel for routability. It is called
address on the network on CN and HA. It alsohome registration. At first, we initialize MN
needs to manage a binding update list whicrfnd HA to send and receive _blndln_g message.
is list of sending binding update request forON MN MIPd sets a xirm_policy which allows
CN on MN. We have two choices to implement @ outbound packet from HoA to HA, proto
this functionality in the kernel or userland. Be- MH and type BU with appending HAO and a
cause we should implement functionalities inXfrm_state which appends HOA with CoA to a
userland if it is possible, we consider to basi-Packet from HoA to HA and including MH of
cally implement it in userland. Implementing BU; It alsg set Xfrm_pollpy to receive BA, the
in userland brings us advantages which are ea®licy which allows an inbound packet from
ier extension its functionality than implement- HA 10 HoA including MH of BA with append-

ing in the kernel and reducing the kernel size. N9 RT2 and the inbound xfrm_state which pro-
cesses RT2. Because MIPd on HA can not ex-

Our MIPd’s roles are pect the source address of BU from MN, it sets
a xfrm_policy which allows an inbound packet
) i ) , _from Any to HA with MH of BU if it has HAO.
processing a signaling message mcluqut also set xfrm_state which processes HAO in-
an error message cluded in a packet from ANY to HA with MH

. : of BU. See Figure 6:INITIALIZE.
* managing xfrm_policy and xfrm_state of

MIPV6 in the kernel through the netlink  MIPd on MN sends BU to HA, the packet
matches with the xfrm_policy and process with
* managing binding cache and binding up-the xfrm_state which appends HAO destina-
date list tion option and swap a source address in IPv6
header with a CoA. HA received the BU from
« moving detection and changing COA MN. In the kernel the packet matching the
when MIPd running on MN xfrm_state, the kernel swaps addresses. Then
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MIPd on HA receives BU and updates a bind-two xfrm databases and mediate them be-
ing cache. MIPd configures xfrm_policy and cause it is difficult to manage xfrm_tmpl in
xfrm_state for route optimization with high a xfrm_policy via userland interface by two
priority. See Figure 6:Routing Optimization. management daemons and the xfrm_policies

] o ] have probably different granularity (Figure 7).
At this moment, route optimization is available |, ~rrent outbound process, the kernel looks
for all packets between MN and HA. It also setsUIO single xfrm_ policy database and gets a

up a tunnel between MN and HA. After someqm nolicy which includes xfrm_tmpl for
xfrm_policy and xfrm_state configurationitre- \psec and xfrm tmpl for MIPv6.  How-
turns BA with RT2. The kernel of MN receives gyer we will change the kernel to separately
BA with RT2 and processes it with the inbound 5 up IPsec and MIPv6 xfrm databases

xfrm_state and throws up BA packet to MIPd. g create temporary xfrm_policy which holds
MIPd on MN updates a binding update list a”dxfrm_tmpl gathered from each xfrm_policy.
sets up the tunnel. Each nodes has totally §he jist of xfrm_tmpl must be serialized as
policies at the end of registration. the order of packet processing. For instance,
the kernel must put xfrm_state for AH at the
end of the list. For inbound process, it is
not so difficult, the kernel processes a packet
by using xfrm_state which is searched and

MIPV6 uses IPsec for its secure signaling bel'€€ds 10 check sec_path in skb against each

tween MN and HA. Our design uses XFRM xfrm_policy. To make it be efficient, the kernel
and stackable destination for both IPsec anghould use flow_cache for inbound process.
MIPV6. MIPV6 needs two kind of IPsec SA |t \ye could merge two policies correctly, we

one is a transport mode SA which is used Oy another issue. MIPV6 needs two IPsec

signaling. The other is a tunnel mode SAga petween NM and HA. One is a transport
which is used instead of IPv6 over IPv6 tunnel.., J4a sA for signaling and the other is a tunnel
We consider two steps to implement MIPV6 46 A for other packet. Taking outbound
with IPsec about IPesc policy and SA managegp 45 an example, a transport mode SA is ap-

ment. Atfirst, we implement MIPd to notonly pjieq py the policy whose selector is from HoA
manage xfrm_policy and xirm_state of MIPV6 1, a and protocol MH. On the other hand a

but also IPsec and a Xfrm_policy for MIPV6 tunnel mode SA is applled by the pO“Cy whose
holds both MIPV6 and IPsec xirm_tmpl. This ggjactor is from HoA to ANY and protocol
implementation has a couple of issues. One iqny The packet should be applied the trans-

separation of management of xfrm_policy and, s+ mode SA has possibility to be applied the

xfrm_state of IPsec into MIPv6 and ordinary tunnel mode SA. We can avoid this mismatch
IPsec. Another issue is interaction between th%y using priority in xfrm_policy.

kernel and IKE daemon. xfrm_policy includ-

ing a xfrm_tmpls of Mobile IPv6 and IPsec racoon has a couple of issues as IKE daemon
sends a signal for only MIPd. The other isfor MIPv6. One is that racoon can not han-
the order of xfrm_policy. When some situa- dle multiple peers which have address ANY as
tion such as configuration done with wrong or-peer’s address in its configuration. When it be-
der, a packet which would be originally applied haves as responder on HA, the issue occurs be-
MIPv6 and IPsec not be applied only IPsec. cause despite multiple peers being, each con-

] _ figuration has addresses from ANY to HA thus
For improvement, we will let the kernel hold

5 Cooperation of IPsec and MIPv6
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xfrm architecture

output sequence a processed packet

xfrm_policy(M Pv6)

o (90

xfrmtnpl (RT2) ™ xfrmstate(RT2) . Lr’\égeg:t put .
bundl es : :
_____________________________ |t Csiowpn > Original packet
dst_entry . . | Pv6
xfrm . .
gﬁitlpgt() . @@ + append HAO and swap src
. . |IPv6|HAO| Payl oad |
dst_entry . .
xfrm : :
out put () : @@ . append RT2 and swap dst
) '||Pv6|RT2|HAo| Payl oad |
dst_entry . .
stackable destination ' '
xfrm . .
i X
child ; dev_queue_xmi t :
Figure 4: MIPv6 output process
xfrm policy(M Pv6) input sequence a processed packet
xfrmtmpl (RT2) [T~ ———7 -

1
|
I upper | ayer
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. IP\/6|RT2|HAO|PId|
komparing sec_path | ay’ oa

| with xfrm_policy
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|
|
sk_buf f xfrmstate(HAQ [ T w@
|
|

sec_path ] I .

XFRM architecture

||Pve|RT2 |HAO| Payl oad |

¥

append RT2 and swap dst

|IP\/6|RT2 |HAO| Payl oad |

i p6_i nput _fini sh

Figure 5: MIPVv6 input process
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xfrm_policy xfrm_tmpl INITALIZE xfrm_policy xfrm_tmpl
src: HoA src:  HoA src: ANY src:  ANY
dst:  HA dst: HA dst: HA dst: HA
proto: MH proc HAO - proto: MH proc HAO
type: BU > type: BU
priority:normal BU priority:normal
direct: out direct: in
xfrm_tmpl xfrm_tmpl
src:_ HoA | IPv6 | HAO | ESP | MH | src:_ ANY
dst: HA dst: HA
proc ESP proc ESP
mode TR mode TR
xfrm_policy xfrm_tmpl xfrm_policy xfrm_tmpl
src: HoA src:  HoA < src: HA ™ src: HA
dst:  HA dst: HA BA dst:  ANY dst:  ANY
proto: MH proc RT2 proto: MH proc ESP
type: BU type: BA mode TR
priority:normal | IPv6 | RT2 | ESP | MH | priority:normal
direct: in direct: out
xfrm_tmpl
src:  HoA
dstt  HA *Type 2 routing header is added by MIPd.
proc ESP *TR is IPsec transport mode.
mode TR *TNL is IPsec tunnel mode.
xfrm_policy xfrm_tmpl Routing Optlmlzatlon xfrm_policy xfrm_tmpl
src: HoA src:  HoA src: HoA src:  HoA
dst:  HA dst: HA > dst: HA dst: HA
proto: ANY ] proc HAO proto: ANY ™ proc HAO
type: none level use | IPV6 | HAO | Payload | type: none addr CoA
priority:high addr CoA priority:high
direct: out direct: in
| xfrm_policy xfrm_tmpl xfrm_policy xfrm_tmpl
src: HA src:  HA < src: HA src: HA
dst:  HoA dst:  HoA dst: HoA dst:  HoA
proto: ANY ] proc RT2 | IPv6 | RT2 | Payload | proto: ANY ™ proc RT2
type: none addr CoA type: none addr CoA
priority:high priority:high
direct: in direct: out
xfrm_paolicy xfrm_tmpl Makmg a tunnel xfrm_palicy xfrm_tmpl
src: HoA src:  HoA src: HoA src:  HpA
dst:  ANY dst:  ANY > dst:  ANY dst:  ANY
proto: MH [ proc ESP proto: MH [ | proc ESP
type: HoTI mode TNL type: HoTI mode TNL
priority:low | IPvé | ESP | IPv6 | Payload | priority:low
direct: out direct: in
xfrm_policy xfrm_tmpl xfrm_palicy xfrm_tmpl
src:  ANY src:  ANY < src:  ANY src:  AMY
dst:  HoA dst:  HoA dst:  HoA dst:  HoA
proto: MH ] proc ESP | IPv6 | ESP | IPv6 | Payload | proto: MH ™ proc ESP
type: HoT mode TNL type: HoT mode TNL
priority:low priority:low
direct: in direct: out

Figure 6: Binding update procedure to Home Agent
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racoon can not distinct peer and fails to searclirom the head. We should improve its packet
proper key. The other issue is update ISAKMPprocessing with keeping xfrm architecture and
SA end-point address. When MN moves, IKEscache mechanism.

on MN and HA need to detect movement in

some way and update its ISAKMP SAs be-

cause an address of those SAs is CoA. TéReferences

solve these issues, we will make racoon handle

the multiple peers listen netlink socket for the[1] S. Deering and R. Hinden. Internet
detection and make the kernel notify address Protocol, Version 6 Specification.
changing via netlink socket. RFC2460, December 1998.

[2] GO/Core Project. MIPL Mobile IPv6 for

6 Summary Linux.
http://www.mobile-ipv6.org

USAGI Project implements IPv6 IPsec and[3] |Psec Tools. IPsec Tools Web Page.
MIPv6 by using XFRM and stackable desti- http://WWW.ipSEC-tOO|S.

nation architecture. In this paper we describe  sourceforge.net/

our design, implementation and issues. We

also describe future design of IPv6 IPsec and4] D. Johnson, C. Perkins, and J. Arkko.
MIPv6 which improves flexibility of xfrm con- Mobility Support in IPv6. Work in
figuration. Progress, June 2003.

[5] KAME Project. KAME Project Web
7 future work Page.http://www.kame.net

[6] S. Kentand R. Atkinson. Security
Our future works about MIPv6 are Architecture for the Internet Protocol.
RFC2401, November 1998.

* implement our new design [7] Kazunori Miyazawa, Hideaki Yoshifuij,

Networking—Past, Present, and Future.
* NEMO In Proceedings of the Linux Symposium

Ottawa, July 2003.

Multihome
[8] USAGI Project. USAGI Project Web
vertical hand-over Page.

http://www.linux-ipv6.org

Additionally we consider that we should im-
prove or change stackable destination itself be-
cause stackable destination runs after building
a packet. Thus, IPv6 packet processing is not
efficient itself because an IPv6 packet has some
extension header and the order of headers is not
always same as the order of process so that ev-
ery process searches correct point on a packet
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Abstract posed in this paper.

The X window system is generally imple- 1.1 Original Architecture

mented by directly inserting hardware manip- .
ulation code into the X server. Mode selectionOne of the first 2D accelerated targets for X11

and 2D acceleration code are often executed ias the Digital QDSS (Dragon) board. The
user mode and directly communicate with thePragon included a 1024x768 frame buffer with
hardware. The current architecture provided OF 8 bits for each pixel. The frame buffer
for separate 2D and 3D acceleration code, wit{¥as not addressable by the CPU, rather every
the 2D code executed within the X server anddraphics operation was performed by the co-
the 3D code directly executed by the applicaProcessor. The Dragon board had only a sin-
tion, partially in user space and partially in the9/€ Video mode supporting the monitor sup-
kernel. Video mode selection remains withinPlied with the machine. A primitive terminal
the X server, creating an artificial dependencyemulator in the kernel provided the text mode
for 3D graphics on the correct operation of the"€cessary to boot the machine.

window system. This paper lays out an altema'Graphics commands to the processor were

tive structure for X within the Linux environ- queued to a shared DMA buffer. The X server

ment where the responsibility for accelerationWoulol block in the kernel waiting for space in
lies entirely within the existing 3D user/kernel the buffer when full. This is similar to the ar-

library, th? mode selection is delegated to Althitecture used by the DRI project for acceler-
external library and the X server becomes &ted 3D graphics today

simple application layered on top of both of

these. Various technical issues related to thiXeyboard and mouse support were provided
architecture along with a discussion of inputby another shared memory queue between the
device handling will be discussed. kernel and X server. Abstract event struc-
tures were constructed by the kernel from the
raw device data, timestamped and placed in
the shared queue. A file descriptor would
be signalled when new data were inserted to
The X11[SG92] server architecture was de-awaken the X server, and the X server could
signed assuming significant operating assisalso directly examine the queue indices which
tance for supporting input and output deviceswere stored in the shared segment. This low-
How that has changed over the years will in-overhead queue polling was used by the X
form the discussion of the design direction pro-server to check for new input after every X re-

1 History
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guest was executed to reduce input latency. the kernel as files from which events could be

. ) read. The lack of any shared memory mech-
The._hardware sprite was handled in the kerynism 1o signal available input meant that the
nel; its movement was directly connected Withgyiginal driver would not notice input events

the mouse driver so that it could be moved a i the X server polled the kernel, something

interrupt time, leading to a responsive pointenyhich could take significant time. As there was
even in the face of high CPU load within the g emel support for the pointer sprite, the X

X server and other applications. The keyboardseyer was responsible for updating it as well,

controller managed the transition from ASCII leading to poor mouse tracking when the CPU
console mode to key-transition X mode inter-, o busy.

nally; abnormal termination of the X server
would leave the underlying console sessionfo ameliorate the poor mouse tracking, the

working normally. X server was modified to receive a signal
when input was present on the file descrip-
1.2 The Slippery Slope tors and immediately process the input. When

supported, the hardware sprite would also be

Early Sun workstations had unacceleratednoved at this time, leading to dramatically im-
fixed monitors and had no need to support multhat the X server itself was responsible for con-
tiple video modes. As the hardware advanced(€cting the mouse motion to the sprite loca-
they did actually gain programmable timing tion meant that under high CPU load, the sprite
hardware, but that was not configurable fromwould noticeably lag the mouse.

the user mode applications. Kernel support for the keyboard consisted of

The X server simply mapped the frame buffer@ special mode setting which \_/vould traqsform
into its address space and manipulated the pixd€ keyboard from an ASCII input device to

values directly. Around 1990, Sun shipped the'®Porting raw key transition events. Because
cgsix frame buffer which included an acceler-the kernel didn't track what state the keyboard
ator. Unlike the QDSS, the cgsix frame buffer Was in, the X server had to carefully reset the
could be mapped by the CPU, and the accelekeyboard on exit back to ASCII mode or the

ator documentation was not published by SuntSer would no longer be able to interact with

X11R4 included support for this card as a sim-the console.

|fole durgbﬁframe bu:‘fer. AtShCPU.S]CCSeSS, to thq:’lacing the entire graphics driver in user mode
rame bulter was slower than with Sun's €arg; ,inated the need to write a kernel driver,

lier unaccelerated frame buffers, the result wag, ¢ marginalized overall system performance
amuch slower display. by forcing the CPU to busy-wait for the graph-

By disassembling the provided SunWindowsiCS engine. Placing responsibility for manging
driver, the author was able to construct an acthe sprite led to poor tracking, while requiring
celerated X driver for X11R5 entirely in user the X server to always reset the keyboard mode
mode. This driver could not block waiting for frequently resulted in an unusable system when
the accelerator to finish, rather it would spin,X terminated abnormally.

polling the accelerator until it indicated it was

e Fixing the kernel to address these problems

was never even considered; the problems didn’t
Keyboard and mouse support were provided byrevent the system from functioning, they only
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made it less than ideal. Mouse support really was just a kernel serial
driver—PS/2 mice didn’t exist, and so bus and
serial mice were used. The X server itself
would open the device, configure the commu-
nication parameters and parse the stream of

With widespread availability of commodity PYtes. As there was no hardware sprite sup-
386-based PC hardware, numerous vendors b80rt, the X server would also have to draw the
gan shipping Unix (and Unix-like) operating CUrsor on the screen; tha_t operation had to be
systems for them. These originally did not in_synchrongd with renderlng. and so would be
clude the X window system. A disparate groupdelayed until the server was idle.

of users ported X to these systems without an
support from the operating system vendors.

1.3 The Dancing Bear

Because the X server itself was managing
video mode configuration, an abnormal X

That these users managed to get X running ofi€rver termination would leave the video card
the early 386 hardware was an impressive fea{plsconflgured and unusable as the console.

but that they had to do everything without anySimilarly, the keyboard driver would be left in
kernel support only increased the difficulty. ~ Untranslated mode, so the user couldn't even

operate the computer blind to reboot.
Early PC graphics cards were simple frame
buffers as far as graphics operations went, buf Nis caused the X server to assume the same

configuring them to generate correct video tim-reliability requirements as the operating sys-
ings was far from simple. Because monitorstém kernel itself; bugs in the X server would
varied greatly, each graphics card could be proténder the system just as unusable as bugs in
grammed to generate many different video timthe kernel.

ings. Incorrect timings could destroy the mon-
itor. 1.4 The Pit of Despair

Keyboard support in these early 386-basedyjih the addition of graphics acceleration to
Unix systems was very much like the Sun 0p-he x86 environment, the X server extended its
erating system; the keyboard was essentially §ser-mode operations to include manipulation
serial device and could be placed in a modeys the accelerator. As with the Sun GX driver
which translated key transitions into ASCIl or gescriped above, these drivers included no ker-

placed a mode which would report the rawpe| sypport and were forced to busy-wait for
bytes emitted from the keyboard. the hardware.

The X server would read these raw bytes anci—lowever, unlike the GX hardware, PC graph-
convert them to X events. Again, there wasjcq hardware would often tie down the PCI

latency here as the X server would not pro- g while transferring data between the CPU
cess them except when polling for input acros$ng the graphics card. Incorrect manipulation
all X clients and input devices. As with the ot the hardware would result in the PCI bus
Sun dr_lver_, if the X server terminated with- locking and the system not even responding
out switching the keyboard back to translateqq petwork or disk activity. Unlike the simple

mode, it would not be usable by the consoleyeyhoard translation problem described above,

This particular problem was eventually fixed in tyis cannot be be fixed in the operating system.
some kernels by adding special key sequences

to reset the keyboard to translated mode. Because the graphics devices had no kernel
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driver support, there was no operating systenup the hardware when applications terminated
management of their address space mappingabnormally.

If the BIOS included with the system incor- ) o )
rectly mapped the graphics device, it fell to The result is a sysf[em_ which is stab_le in t_he
the X server to repair the PCI mapping spacesf.ace of broken applications, and provides high
Manipulating the PCI address configurationP€rformance and low CPU overhead.

from a user-mpde application wpuld work only However, the DRI environment remains reliant
on systems without any dynamic managemeny, yhe x server to manage video mode selec-

within the kernel. tion and basic device input.

If the machine included multiple graphics de-
vices controlled through the standard VGA ad-2  Eorward to the Past
dresses, the X server would need to manipulate

these PCI mappings on the fly to address the _ ) _
active card. Given the dramatic changes in system architec-

ture and performance characteristics since the
The overall goal was not to build the best sys-original user-mode X server architecture was
tem possible, but rather to make the code apromulgated, it makes sense to look at how the
portable as possible, even in the face of obvisystem should be constructed from the ground
ously incorrect system architecture. up. Questions about where support for each
operation should live will be addressed in turn,
first starting with graphics acceleration, then
video mode selection and finally (and most
briefly) input devices.
The Mesa project started as a software-only
rasterizer for the OpenGL API. By providing a
freely available implementation of this widely
accepted API, people could run 3D applica-
tions on every machine, even those withoutX has always directly accessed the lowest lev-
custom 3D acceleration hardware. Of courseels of the system to accelerate 2D graphics.
performance was a significant problem, espeEven on the QDSS, it constructed the register-
cially as the 3D world moved from simple col- level instructions within the X server itself.
ored polygons to textures and complex lightingWith the inclusion of OpenGL[SAe99] 3D
environments. graphics in some systems, the system requires

) two separate graphics drivers, one for the X
The Mesa developers started adding hardwarggper operating strictly in 2D mode and the

support for the few cards for which documenta-giher inside the GL library for 3D operations.

tion was available. At first, these were Wh°|e'lmprovements to the 3D support have no effect
screen drivers, but eventually the DRI projecty, op performance.

was started to support multiple 3D applica-

tions integrated into the X window system. Be-As a demonstration of how effectively OpenGL
cause of the desire to support secure direatan implement the existing X server graphics
rendering from multiple unprivileged applica- operations, Peter Nilsson and David Reveman
tions, the DRI project had to include a kernelimplemented the Glitz library[NRO4] which
driver. That driver could manage device map-supports the Render[Pac01] API on top of the
pings, DMA and interrupt logic and even cleanOpenGL API. In a few months, they managed

1.5 A Glimmer of Hope

3 Graphics Acceleration
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to provide dramatic acceleration for the CairoThis architecture has been implemented
graphics library[WPO03] on any hardware with by Eric Anholt in his kdrive-based Xati
an OpenGL implementation. In contrast, theserver[Anh04]. Using the existing DRI driver
Render implementation within the X samplefor the Radeon graphics card, he developed
server using custom 2D drivers has never seea 2D X driver with reasonable acceleration
significant acceleration, even three and a halfor common operations, including significant
years after the extension was originally de-portions of the X render API. The driver uses
signed. Only a few drivers include even half-only a small fraction of the Radeon DRI driver,
hearted attempts at acceleration. a significantly smaller kernel driver would

_ suffice for a ground-up implementation.
The goal here is to have the X server use the

OpenGL API for all graphics operations. Elim- In summary, graphics cards should be sup-
inating the custom 2D acceleration code will ported in one of two ways:

reduce the development burden. Using accel-

erated OpenGL drivers will provide dramatic

performance improvements for important oper- 1. With an OpenGL-based X server

ations now ill-supported in existing X drivers.
Work in this area will depend on the availabil-
ity of stand-alone OpenGL drivers that work in
the absence of an underlying window system.
Fortunately, the Mesa project is busy develop-
ing the necessary infrastructure. M(_aanwhileg_l Implications for Applications

development can progress apace using the ex-

isting window-system dependent implementa-

tions, with the result that another X server isNone of the architectural decisions about the
run just to configure the graphics hardware andnternal X server architecture change the na-
set up the GL environment. ture of the existing X and Render APIs as the

_ fundamental 2D interface for applications. Ap-
For cards without complete OpenGL acceleryyjications using the existing APIs will simply

ation, the desired goal is to provide DRI-like fing them more efficient when the X server
kernel functionality to support DMA and in- provides a better implementation for them.
terrupts to enable efficient implementation ofThis means that applications needn’t migrate

whatever useful operations the card does suy non-X APIs to gain access to reasonable ac-
port. For 2D graphics, the operations need¢g|eration.

ing acceleration are those limited by memory

bandwidth—large area fills and copies. In par-However, applications that wish to use
ticular acceleration of image composition re-OpenGL should find a wider range of sup-
sults in dramatic performance improvementsported hardware as driver writers are given
with minimal amounts of code. The spectacu-the choice of writing either an OpenGL or 2D
lar amounts of code written in the past that pro-driver, and aren’t faced with the necessity of
vide modest acceleration for corner cases in thetarting with a 2D driver just to support X.

X protocol should be removed and those cases , o
left to software to minimize driver implemen- N @ny case, use of the cairo graphics library
tation effort. provides insulation from this decision as it sup-

ports X and GL requiring only modest changes
in initialization to select between them.

2. With a 2D-only X server based on a sim-
ple loadable driver API.



386 ¢ Linux Symposium 2004 ¢ Volume Two

4 Video Mode Configuration the pixel size of the screen and allow program-
matic selection among available video modes.

The area of video mode selection involvesthe RandR extension solved the simple single
many different projects and interests; one sigmonitor case well enough, even permitting the
nificant goal of this discussion is to identify et of available modes to change on the fly as
which areas are relevant to X and how thosengnitors were switched. However, it failed to

can be separated from the larger project. address the wider problem of supporting mul-
tiple different video outputs and the dynamic
4.1 Overview of the Problem manipulation of content between them.

Back in 1984 when X was designed, graphicsStatlca”y’ the X server can address each video

devices were fundamentally fixed intheirrela—OUtpUt correctly and even select between a

tionship with the attached monitor. The hard-Iarge display spanning a collectpn of out-
: .. __puts or separate displays on each video screen.
ware would be carefully designed to emit video

timings compatible with the included monitor; However, there is no capability to adjust these

. o . .’ configurations dynamically, nor even to auto-
there was no provision for adjusting video tim- . .
. . . ., _matically adapt to detected changes in the en-
ings to adapt to different monitors, each video

. : vironment.
card had a single monitor connector.

Fast forward to 2004 when common video4.3 Xis Only Part of the Universe

cards have two or more monitor connectors

along with outputs for standard NTSC, SE-With 2D performance no longer a signifi-

CAM, or PAL video formats. The desire to cant marketing tool, graphics hardware ven-

dynamically adjust the display environment todors have been focusing instead on differenti-

accommodate different use modes is well supating their products based on video output (and

ported within the Macintosh and Microsoft en- input) capabilities. This has dramatically ex-

vironments, but the X window system has re-tended the options available to the user, and in-

mained largely stuck with its 1984 legacy. creased the support necessary within the oper-
ating system.

4.2 X Attempts to Fix Things . . . . .
As the suite of possible video configuration op-

_ tions continues to expand, it seems impossi-
X servers for PC operating systems adapted {g¢ 1g construct a fixed, standard X extension
simple video mode selection by creating a Vir-canaple of addressing all present and future
tual’ desktop at least as large as the largest d&jeeds. Therefore, a fully capable mechanism
sired mode and making the current mode view,, st provide some “back door” through which
a subset of that, panning the display around tQyispay drivers and user agents can communi-
keep the mouse on the screen. For users able {3ye jnformation about the video environment

accept this metaphor, this provided usable, i{yhich js not directly relevant to the window
less than ideal support. Most of the time, hOW'system or applications running within it.

ever, having content off of the screen which

could only be reached by moving the mouseOne other problem with the current environ-
was confusing. To help address this, the X Rement is that video mode selection is not a re-
size and Rotate extension (RandR)[GP01] waguirement unique to the X window system.
designed to notify applications of changes inNumerous other graphical systems exist which
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are all dependent on this code. Currently, thab Input Device Support
is implemented separately for each video card

supported by each system. The MxN combma—ln days of yore, the X environment supported

n .
that only a few systems have support for awide‘gxactIy one kind of mouse and one (perhaps of

) _.an internationalized family) keyboard. Sadly,
range of video cards. Support for systems aSIdf\his is no longer the case. The wealth of avail-
from X is pretty sparse. '

able input devices has caused no small trouble
in X configuration and management. Add to
that the relative failure of the X Input extension
to gain widespread acceptance in applications
and the current environment is relegated to em-
ulating that available in 1984.

4.4 Who's in Charge Here, Anyway?

X itself places relatively modest demands orn5.1 Uniform Device Access
the system. The X server needs to be aware

of what video cards are available, what videoThe first problem to attack is that of the cur-
select the current mode. Within that modeserver jtself is responsible for parsing the raw
there may be a wealth of information that ispytestreams coming from the disparate input
not relevant to the X server; it really only devices. Fortunately, the kernel has already
needs to know the pixel dimensions of eachsg|yed that problem—the netdev/input -
frame buffer, the physical dimension of pixels hased drivers provide a uniform description of
on each monitor and the geometric relationshigyevices and standard interface to all. Con-

among monitors. Details about which videoyerting the X server over to those interfaces is
port are in use, or how the various ports re|at%traightforward.

to the frame buffer are not important. Infor-

mation about video input mechanisms are evehlowever, the/dev/input/mice interface

less relevant. has a significant advantage in todays world; it
unifies all mouse devices into a single stream

As the X server need have no way of inter-gg that the X server doesn't have to deal with

preting the complexity of the video mode en-qeyices that come and go. So, to switch input

vironment, it should have no role in managingmechanisms, the X server must first learn to
it. Rather, an external system should assumgeg| with that.

complete control and let the X server interact
in its own simple way. 5.2 Hotplug and HAL

This external system could be implemented

partially in the kernel and partially in user- Mice (and even keyboards) can be easily at-
mode. Doing this would allow the kernel to tached and detached from the machine. With
share the same logic for video mode selectiotJSB, the system is even automatically notified
during boot time for systems which don’t auto- about the coming and going of devices. What
matically configure the video card suitably onis missing here is a way of getting that noti-

power-on. In addition, alternate graphics sys{ication delivered to the X server, having the

tems would be able to share the same API folX server connect to the new device (when ap-
their own video mode configuration. propriate), notifying X applications about the
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availability of the new device and integrating quires some changes to the X protocol in the
the devices events into the core pointer or keyform of new or modified extensions.
board event stream.

is?
The Hardware Abstraction Layer (HAL)[Zeu] 6.1 Whose Mouse s This

project is designed to act as an intermediary

between the Linux Hotplug system and appli-Input devices are generally located in physical
cations interested in following the state of de-Proximity to the related output device. In a sys-
vices connected to the machine. By interposingem with multiple output devices and multiple

this mechanism, the complexity of discover-Input devices, there is no existing mechanism
ing and selecting input devices for the X servert0 identify which device is where. Perhaps
can be moved into a separate system, leavingome future hardware advance will include ge-
the X server with only the code necessary tg?9raphic information along with the bus topol-

read events from the devices specified by th@9Y-

HAL. One open question is whether this shoul :
be done by a direct connection between the ?(The best we can probably do for now is to

server and the HAL daemon or whether an ngi:t()jaess trrlneel((:n h?gzmrgﬁ ?:C%??nmutt:li dH(;AL‘JIE_
client could listen to HAL and transmit device 9 grouping P

ut devices. That way the X server would re-
iart/ee;:hanges through the X protocol to the xf:)eive from the HAL the set of devices to use at

startup time and then accept ongoing changes

One additional change needed is to extend th# that as the system was reconfigured.

X Input Extension to i_nclude notification of One problem with this simplistic approach is
new and de_parted qu'CeS' That exten_smn a%hat it doesn’t permit the migration of input
ready permits the list of available devices todevices from one aroupind to another: one
change over time, all that it lacks is the mech- grouping ’

anism to notify applications when that occurs can easily imagine the user holding a wireless
PP ‘pointing device to attempt to interact with the

Inside the X server implementation, the exten-, 1 )
wrong” display. Some mechanism for dynam-

sion is in for some significantly more chal- . 0 L
. ically reconfiguring the association database
lenging changes as the current codebase as-.

sumes that the set of available devices is fixeg\’III heed to be included.

at server initialization time. _ _
6.2 Hotplugging Video Hardware

6 Migrating Devices While most systems have no ability to add or
remove graphics cards, it's not unheard of—
) . _many handheld computers support CF video
With X was developed, each display consisted,gapters. On the other hand, nearly all systems
of a single keyboard and mouse along withy, support “hotplugging” of the actual display

a fixed set of monitors. That collection was javice or devices. Many can even detect the

used for a single login session, and the inyresence or absence of a monitor enabling true
put devices never moved. All of that has now

i ) auto-detection and automatic reconfiguration.
changed; input devices come and go, comput-

ers get plugged into video projectors, multi-When a new monitor is connected, the X server
ple users login to the same display. The dy-needs to adapt its configuration to include it. In
namic nature of the modern environment rethe case where the set of physical screens are



Linux Symposium 2004 ¢ Volume Two * 389

gathered together as a single logical screen, th&/ith the HAL providing some indication of
change can be reflected by resizing that singlevhich devices should be affiliated into a sin-
screen as supported by the RandR extensioigle session configuration, the X server can at
However, if each physical screen is exposed tdeast select them appropriately. Similarly, the
applications as a separate logical screen, theX server should be able to detect which device
the X server must somehow adapt to the press the console keyboard and manage virtual ter-
ence of a new screen and report that informaminals from there. Whether the kernel needs to
tion to applications. This will require an exten- add support for virtual terminals on the other
sion. graphics/keyboard devices is not something X

. _ needs to answer.
In terms of the existing X server implemen-

tation, the changes are rather more dramaticT he final problem is that of other input devices;
Again, it has some deep-seated assumptionghen switching virtual terminals, the X server
that the set of hardware under its control will conventionally drops its connection to the other
not change after startup. Fixing these will keepinput devices, presuming that whatever other
developers entertained for some time. program is about to run will want to use the
same ones. While that does work, it leaves
open the possibility that an error in the X server
6.3 Virtual Terminal Switching will leave these devices connected and deny
other applications access to them. Perhaps it
would be better if the kernel was involved in
the process and directing input among multi-

is the apility to. rapiqlly switch among multi- ple consumers automatically as VT affiliation
ple sessions with “virtual terminals.” The X changed.

server itself uses this to preserve a system con-

sole, running on a separate terminal ensures

that the system console can be viewed by sim7  Conclusion

ply switching to the appropriate virtual termi-

nal. Given this, multiple X servers can be

started on the same hardware, each one on/Adapting the X window system to work ef-
different virtual terminal and rapidly switched fectively and competently in the modern envi-
among. ronment will take some significant changes in

) ) ) architecture, however throughout this process
The virtual terminal mechanism manages onlyayisting applications will continue to operate

the primary graphics device and the systenygely unaffected. If this were not true, the
keyboard. Management of other graphics angyngamental motivation for the ongoing exis-

input devices is purely by convention. The re-ence of the window system would be in doubt.
sult is that multiple simultaneous X sessions

are not easily supported by the standard buildigrating responsibility for device manage-
of the X server. The X server targeted at a nonment out of the X server and back where it
primary graphics device needs to avoid configbelongs inside the kernel will allow for im-
uring the virtual terminal. However, this also provements in system stability, power manage-
eliminates the ability for that device to supportment and correct operation in a dynamic envi-
multiple sessions; there cannot be virtual terronment. Performance of the resulting system
minal switching on a device which is not asso-should improve as the kernel can take better ad-
ciated with any virtual terminals. vantage of the hardware than is possible in user

One capability Linux has had for a long time
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mode.

Sharing graphics acceleration between 2D and

3D applications will reduce the effort needed[NR04]
to support new graphics hardware. Migrating

the video mode selection will allow all graph-

ics systems to take advantage of it. This should
permit some interesting exploration in system
architecture.

Significant work remains in defining the pre- [Pac01]
cise architecture of the kernel video drivers;

these drivers need to support console opera-
tions, frame buffer device access and DRI (or

other) 3D acceleration. Common memory allo-

cation mechanism seem necessary, along with
figuring out a reasonable division of labor be-

ConferenceBoston, MA, June
2001. USENIX.

Peter Nilsson and David Reveman.
Glitz: Hardware Accelerated Image
Compositing using OpenGL. In
FREENIX Track, 2004 Usenix
Annual Technical Conference
Boston, MA, July 2004. USENIX.

Keith Packard. Design and
Implementation of the X Rendering
Extension. IFREENIX Track, 2001
Usenix Annual Technical
ConferenceBoston, MA, June
2001. USENIX.

tween kernel and user mode for video mode selSA€99] Mark Segal, Kurt Akeley, and

lection.

Other work remains to resolve conflicts over
sharing devices among multiple sessions and
creating a mechanism for associating specifi&Sng]
input and output devices together.

The resulting system regains much of the fla-
vor of the original X11 server architecture. [w
The overall picture of a system which provides
hardware support at the right level in the archi-
tecture appears to have wide support among the
relevant projects making the future prospects

bright. [Zeu]
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Abstract Like all other operating systems, Linux uses

this technique calledeadaheadto improve
dahead desian i fh il read throughput. Although readahead is a great
Readahead design Is one of the crucia aSPEClRachanism for improving sequential reads, it

of filesystem_perfc_)rmance. In this PapEr, Weean hurt the system performance if used blindly
analyze and identify the bottlenecks in the r'®%or random reads

designed Linux 2.6 readahead code. Through
various benchmarks we identify that 2.6 readawe studied the performance of the readahead
head design handles database workloads inefigorithm implemented in 2.6.0 and noticed the
ficiently. We discuss various improvementsfollowing behavior for large random read re-
made to the 2.6 readahead design and their peguests.
formance implications. These modifications
resulted in impressive performance improve-
ments ranging from 25%-100% with various
benchmarks. We also take a closer look at our
modified 2.6 readahead algorithm and discuss
current issues and future improvements. 2. reads more data than required and hence
wasted resources.

1. reads smaller chunks of data many times,
instead of reading the required size chunk
of data once.

1 Introduction . :
In Section 2, we discuss the readahead algo-

rithm implemented in 2.6 and identify and fix
Consider an application that reads data sequeihe inefficient behavior. We explain the perfor-
tially in some fixed-size chunks. The kernelmance benefits achieved through these fixes in
reads data sufficiently enough to satisfy the reSection 3. Finally, we list the limitations of our
quest from the backing storage and hands itixes in Section 4.
over to the application. In the meantime the
application ends up waiting for the data to ar- . .
ri\li;eIO from the backilzg store?. The next requesl2 Readahead Algorithm in 2.6
also takes the same amount of time. This is
quite inefficient. What if the kernel anticipated 2-1 Goal
the future requests and cached more data? If it
could do so, the next read request could be safur initial investigation showed the perfor-
isfied much faster, decreasing the overall readnance on Linux 2.6 of the Decision Support
latency. System (DSS) benchmark on filesystem was
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about 58% of the same benchmark run on rammumber of pages read in the current win-
devices. Note that the DSS workload is characdow depends upon the estimated size of the
terized by large-size random reads. In generakeadahead_window . If the estimated size
other micro-benchmarks like rawio-bench andof the readahead_window drop down to
aio-stress showed degraded performance withero, the algorithm stops reading ahead, and
random workloads. The suboptimal readaheaénters the slow-read mode till page request pat-
behavior contributed significantly toward de-tern become sufficiently contiguous. Once the
graded performance. With these inputs, we setequest pattern become sufficiently contiguous
the following goals. the algorithm re-enters into readahead-mode.

1. Exceed the performance of 2.4 large ran2-3  Optimization For Random Workload

dom workloads. _
We developed a user-level simulator program

2. DSS workload on filesystem performs atthat mimicked the behavior of the above reada-
least 75% as well as the same on raw dehead algorithm. Using this program we studied

vices. the read patterns generated by the algorithm in
- . response to the application’s read request pat-
3. Maintain or exceed sequential read perfor-terrf) PP a P

mance.

In the next few subsections we identify the bot-

2.2 Introduction to the 2.6 readahead algo- tlenecks, provide fixes and then explain the re-
rithm sults of the fix. As a running example we use a
read sequence consisting of 100 random read-

Figure 1 presents the behavior of 2.6.0requests each of size 16 pages.

readahead. Theurrent_window holds

pages that satisfy the current requests. The _ .

readahead_window holds pages that sat- 2:3-1 First Miss

isfy the anticipated future request. As more

page requests are satisfied by therent_ Using the above read pattern, we noticed that
window the estimated size of the nextthe readahead algorithm generated 1600 re-
readahead_window expands. And if quests of size one page. The algorithm penal-

page requests miss thaurrent_window ized the application by shutting down reada-
the estimated size of theeadahead head immediately, for not reading from the be-
window shrinks.  As soon as the readginning of the file. It is sub-optimal to as-

request crosscurrent_window bound- sume that application’s read pattern is ran-
ary and steps into the first page of thedom, just because it did not read the file from
readahead_window , the readahead_ the beginning. The offending code is at line
window becomes thecurrent_window 16 in Figure 1. Once shut down, the slow-

and thereadahead_window is reset. How- read mode made readahead to not resume since
ever, if the requested page misses any pagie current window  never becomes large

in the current_window  and also the first enough. For the ext2/ext3 filesystem, the
page in thereadahead_window , both the current_window must become 32 pages
current_window and thereadahead_ large, for readahead to resume. Since the ap-
window are reset and a new set of pagelication’s requests were all 16 pages large,
are read into theurrent_window . The thecurrent_window  never opened. We re-
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1 for each page in the current request
2 do
3 if readahead is shutdown
4 then // read one page at a time (SLOW-READ MODE)
5 if requested page is next to the previously requested page
6 then
7 open the current_window by one more page
8 else
9 close the current_window entirely
10 fi
11 if the current_window opens up by maximum readahead_size
12 then
13 activate readahead // enter READAHEAD-MODE
14 fi
15 read in the requested page

else // read many pages at a time (READAHEAD MODE)
16 if this is the first read request and is for the first page

of this open file instance
17 set the estimated readahead_size to half the size of
18 maximum readahead_size
19 fi
20 if the requested page is within the current_window
21 increase the estimated readahead_size by 2
22 ensure that this size does not exceed maximum
23 readahead_size
24 else
25 decrease the estimated readahead_size by 2
26 if this estimate becomes zero, shutdown readahead
27 fi
28 if the requested page is the first page in the readahead window
29 then
30 move the pages in the readahead_window to the
31 current_window and reset the readahead_window
32 continue
33 fi
34
35 if the requested page is not in the current_window
36 then
37 delete all the page in current_window and readahead_window
38 read the estimated number of readahead pages starting
39 from the requested page and place them into the current
40 window.
41 if all these pages already reside in the page cache
42 then
43 shrink the estimated readahead_size by 1 and
shutdown readahead if the estimate touches zero
44 fi
45 else if the readahead_window is reset
46 then
47 read the estimated number of readahead pages
48 starting from the page adjacent to the last page
49 in the current window and place them in the
50 readahead_window.
51 if all these pages already reside in the page cache
52 then
53 shrink the estimated readahead_size by 1 and
shutdown readahead if the estimate touches zero

54 fi
55 fi
56 fi
57 fi
58 done

Figure 1:Readahead algorithm in 2.6.0
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moved the check at line 16 to not expect readh realistic expectation for random workload.
access to start from the beginning. Hence, we changed the behavior at line 9 to

_ shrink thecurrent_window by one page if
For the same read pattern the simulator showeg |5t contiguity.

99 32-page requests, 99 30-page requests, one
16-page request, and one 18-page request Tthe simulator and DSS workload did not show
the block layer. This was a significantimprove-any better results because the combination
ment over 1600 1-page requests seen withouwdf First-Hit and First-Miss fixes ensured that
these changes. the algorithm did not switch to the slow-read

. mode. However a request pattern comprising
However, the DSS workload did not show any¢ 19 single page random requests followed by

significant improvement. a continuous stream of 4-page random requests
can certainly see the benefits of this optimiza-
. . tion.
2.3.2 First Hit

T_he_r_eason_ why DSS workload did not show, 5 4 Upfront Readahead

significant improvement was that readahead

shut down because the accessed pages already o

resided in the page-cache. This behavior idVOte that readahead is triggered as soon as
partly correct by design, because there is nGOM€ Page Is accessed in toarrent_
advantage in reading ahead if all the requireqVindow . For random workloads, this is
pages are available in the cache. The corrg?0t ideal because none of the pages in the
sponding code is at line 43. But shutting down®@dahead_window — are accessed. ~We
readahead by just confirming that the initialChanged line 45, to ensure that the reada-

few pages are in the page-cache and assurh€2d is triggered only when the last page in

ing that future pages will also be in the pagelln® current_window  is accessed. Essen-

cache, leads to worse performance. We fixed@!ly, the algorithm waits until the last page
the behavior. to not close theadahead in the current_window  is accessed. This
window the first time, even if all the requested INcréases the probability that the pages in the

pages were in the page-cache. The combind€2dahead_window if brought in, will get
tion of the above two changes ensured contintSed-

uous large-size read activity. With these changes, the simulator generated 99

The simulator showed the same results as tha0-Page requests, one 32-page request, and one
First-Miss fix. 16-page request.

There was a significant 16% increase in perfor-

However, the DSS workload showed 6% im- )
mance with the DSS workload.

provement.

2.3.3 Extremely Slow Slow-read Mode 2.3.5 Largecurrent_window

We also observed that the slow-read mode ofdeally, the readahead algorithm must gen-
the algorithm expected 32 contiguous page acerate around 100 16-page requests. Ob-
cess to resume large size reads. This is naterve however that almost all the page re-
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guests are of size 30 pages. When the algo- access to the requested pages are already
rithm observes that a page request has missed found in the page cache.

the current_window , it scraps both the

Current_window and thereadahead_ 3. Slow-read Fix: In the slow-read path,
window , if one exists. It ends up reading reduce one page from theurrent_

in a newcurrent_window , whose size is window if the request is not contiguous.

based on the estimatedadahead_size

Since all of the pages in a given applica- _ _
tion's read request are contiguous, the esti- readahead_window until the last
mated readahead size tends to reach the max- P29¢ N the current_window IS
imumreadahead_size . Hence, the size of accessed.

the newcurrent_window is too large; most

of the pages in the window tend to be wasted.
We ensured that the negurrent_window

is as large as the number of pages that were
used in the preserurrent_window

4. Lazy-read: Defer reading the

Largecurrent_window  fix: Read one
page more than the number of pages ac-
cessed in the current window if the request
misses the current window.

With this change, the simulator generated 10Grnese collective changes resulted in an impres-

16-page requests, and 100 32-page request§ye 26% performance boost on DSS workload.
These results are awful because the last page

of the application’s request almost always CO- 4 Sequential Workload
incides with the last page of theurrent_

window . Hence, the readahead is triggered , . o
when the last page of treirrent_window The previously described modifications were
is accessed, only to be scrappe_d. not without side effects! The sequential work-

load was badly effected. Trond Myklebust
We further modified the design to read the neweported 10 times worse performance on se-
current_window  with one more page than quential reads using the iozone benchmark on
the number of pages accessed in the presean NFS based filesystem. The lazy read op-
current_window . timization broke the pipeline effect designed

for sequential workload. For sequential work-
With this change, the simulator for the Same|pad, readahead must be triggered as soon as
read pattern generated 99 17-page requesi§ome page in the current window is accessed.
one 32-page request, and one 16-page requeffhe application can crunch through pages in
to the block layer, which is close to ideal! the current_window  as the new pages get

The DSS workload showed another 4% bette,'oa‘cIeOI in theeadahead_window

performance. The key observation is that upfront readahead
helps sequential workload and lazy readahead
helps random workload. We developed logic
that tracked the average size of the read re-
1. Miss fix: Do not close readahead if the quests. If the average size is larger than the
first access to the file-instance does notnaximum readahead size, we treat that work-
start from offset zero. load as sequential and adapt the algorithm to
do upfront readahead. However, if the average
2. Hit fix: Do not close readahead if the first size is less than the maximuraadahead

The collective changes were:
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1 for each page in the current request ; do
3 if readahead is shutdown
4 then // read one page at a time (SLOW-READ MODE)
5 if requested page is next to the previously requested page
6 then
7 open the current_window by one more page
8 else
9 shrink current_window by one page
10 fi
11 if the current_window opens up by maximum readahead_size
12 then
13 activate readahead // enter READAHEAD-MODE
14 fi
15 read in the requested page
else // read many pages at a time (READAHEAD MODE)
16-17 if this is the first read request for this open file-instance ; then
18 set the estimated readahead_size to half the size of maximum readahead_size
19 fi
20 if the requested page is within the current_window
21 increase the estimated readahead_size by 2
22 ensure that this size does not exceed maximum readahead_size
23 else
24 decrease the estimated readahead_size by 2
25 if this estimate becomes zero, shutdown readahead
26 fi
27 if requested page is contiguous to the previously requested page
28 then
29 Increase the size of the present read request by one more page.
30 else
31 Update the average size of the reads with the size of the previous request.
32 fi
33 if the requested page is the first page in the readahead_window
34 then
35 move the pages in current_window to the readahead_window
36 reset readahead_window
37 continue
38 fi
39-40 if the requested page is not in the current_window ; then
41 delete all pages in current_window and readahead_window
42 if this is not the first access to this file-instance
43 then
44 set the estimated number of readahead pages to the
average size of the read requests.
45 fi
46 read the estimated number of readahead pages starting from
the requested page and place them into the current window.
47 if this not the first access to this file instance and
all these pages already reside in the page cache
48 then
49 shrink the estimated readahead_size by 1 and
shutdown readahead if the estimate touches zero
50 fi
51 else if the readahead_window is reset and if the average

size of the reads is above the maximum readahead_size
52 then

53 read the readahead_window with the estimated

54 number of readahead pages starting from the

55 page adjacent to the last page in the current window.

56 if all these pages already reside in the page cache

57 then

58 shrink the estimated readahead_size by 1 and
shutdown readahead if the estimate touches zero

59 fi

60 fi

61 fi

62-63 fi ; done

Figure 2:Optimized Readahead algorithm
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size , we treat that workload as random and . DSS BENCHMARK COMPARISON
adapt the algorithm to do lazy readahead. hitiisi ot ——

hitmiss+lazyread_optimizatign — — -
hitmiss+lazyread+currentwindowtrim_optimizatién —-—-

80

This adaptive-readahead fixed the regressio . e =
seen with sequential workload while sustaining& ,|
the performance gains of random workload.
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Figure 3: Progressive improvement in DSS
benchmark, normalized with respect to the per-

formance of DSS on raw devices.
Andrew Morton rightly noted that reading an

extra page in theurrent_window  to avoid
lazy-readahead was not elegant. Why have
lazy-readahead and also try to avoid lazy-
readahead by reading one extra page? The
logic is convoluted. We simplified the logic

through the following modifications. 2. Hit fix: Do not close readahead if the first
access to the requested pages are already
1. Read ahead only when the average size found in the page cache.

of the read request exceeds the maximum )
readahead_size . This helped the se- 3. Slow-read Fix: Decrement one page from
quential workload. the current_window if the request is

not contiguous in the slow-read path.

2.4.1 Simplification

1. Miss fix; Do not close readahead if the
first access to the file-instance does not
start from offset zero.

2. When the requested page is not in

the current window , rep|ace 4, Adaptive readahead: Keep a running
the current window , with a new count of the average size of the applica-
current window the size of which tion’s read requests. If the average size
is equal to the average size of the IS above the maximunreadahead_

application’s read request. size , readahead up front. If the request

misses thecurrent_window , replace

it with a newcurrent_window  whose
size is the average size of the application’s
read requests.

This simplification produced another percent
gain in DSS performance, by trimming down
thecurrent_window  size by a page. More
significantly the sequential performance re-
turned back to initial levels. We ran the aboveFigure 2 shows the new algorithm with all the
modified algorithm on the simulator with var- optimization incorporated.

ious kinds of workload and got close to ideal

request patterns submitted to the block layer. Figure 3 illustrates the normalized steady in-
crease in the DSS workload performance with

To summarize, the new readahead algorithneach incremental optimization. The graph is
has the following modifications. normalized with respect to the performance of
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DSS on raw devices. Column 1 is the base random workload: reeuest.blocksize upages, sesk betwesn reads Zpages
performance on filesystem. Column 2 is the ’”":3gzgg:ggt:gzs;ggﬂigstm;g@cs;’2ngx;:uea!ﬁmlg:klrage:m —
performance on filesystem with the hit, miss ™| 1
and slow-read optimization. Column 3 is the
performance on filesystem with first-hit, first-
miss, slow-read and lazy-read optimization.
Column 4 is the performance on filesystemg o}
with first-hit, first-miss, slow-read, and large |

800 -

700 -

600

quests

500

of_re

current_window  optimization. Column 5 e

is the performance on filesystem with first-hit, ™ |

first-miss, slow-read, and adaptive read simpli- ~ "® ®  © Y e, 2

fication. Column 6 is the performance on raw

device. 26.0| 26.7
Average Size 31 30

Pages Read 61010| 29535
Wasted Pages | 31490 15
No Of Read Requests 1970| 987

3 Overall Performance Results

In this section we summarize the results col-_. _ L
lected through simulator, DSS workload and'9ure 4: Application generates 30-page read
iozone benchmark ’ ’ request followed by 2-page seek, repeating 984

times. Totally 29520 pages requested.

3.1 Results Seen Through Simulator

random workload: request-blocksize 16pages, seek between reads 117pages
1600

We generated different types of input read pat: e e s e O

terns. There is no particular reason behinc ™| |
these particular read pattern. However, we en
sured that we get enough coverage. Overa g ™|
the read requests generated by our optimize £ o}
readahead algorithm outperformed the origina -
algorithm. The graphs refer to our optimized  wo|
algorithm as 2.6.7 because all these optimiza |
tions are merged in the 2.6.7 release candidat

1200 H

] 5 10 15 20 25 30 35
no_of pages

Figure 4 shows the output of readahead algo-

rithm with and without optimization for 30- 2.6.0] 26.7
page read request followed by 2-page seek, re- Average Size 1 16
peated 984 times. Pages Read | 1600| 1600

Figure 5 shows the output of readahead algo- Wasted Pages 0 0
rithm with and without optimization for 16- No Of Read Requests1600| 100

page read request followed by 117-page seelfiqre 5: Application generates 16-page read

repeated 100 times. request followed by 117-page seek, repeating

Figure 6 shows the output of readahead algoloo times. Totally 1600 pages requested.

rithm with and without optimization for 32-




random workload: request-blocksize 32pages, seek between reads 3pages

35000
2J6.0 block Iéyer reques't statistics in pages, total=32000 5varage=1.l:lu
2.6.7 block layer request statistics in pages, total=32009 average=31.95

30000 -

25000 -

quests

20000 |

quests

15000 |

no_of_re
no_of_re

10000 -

5000 -

. . . L
15 20 25 30
no_of_pages

35

26.0| 2.6.7

Average Size 1| 31.95
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Average Size 31.31| 31.91
Pages Read 93970| 32099
Wasted Pages | 61970 99
No Of Read Requests 3001| 1006
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Figure 6: Application generates 32-page read rigyre 7: Application generates 32-page read

request followed by 3-page seek,
1000 times. Totally 32000 pages requested.

page read request followed by 3-page seek, re
peated 1000 times.

Figure 7 shows the output of readahead algo §
rithm with and without optimization for 32-
page read request followed by 68-page seel ¢
repeated 1000 times.

=]8]

of_re

Figure 8 shows the output of readahead algo
rithm with and without optimization for 40-
page read request followed by 5-page seek, re-
peated 1000 times.

Figure 9 shows the output of readahead al-
gorithm with and without optimization for 4-
page read request followed by 96-page seek,
repeated 1000 times.

random workload: request-blocksize 40pages, seek between reads Spages

1600

repeatingequest followed by 68-page seek, repeating
1000 times. Totally 32000 pages requested.

1400 |
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2[6.0 block layer request statistics in pages, total=50801 average=31.13
216.7 block layer request statistics in pages, total=51176 average=31.97 <-i-==-
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26.0| 2.6.7

Average Size 31.13| 31.91
Pages Read 50810| 51176
Wasted Pages | 10801| 11176
No Of Read Requests 1631| 1601

35

Figure 10 shows the output of readahead all_:igure 8: Application generates 40-page read

gorithm with and without optimization for 16-

request followed by 5-page seek, repeating

page read request followed by 0-page seek, ret000 times. Totally 40000 pages requested.

peated 1000 times.
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random workload: request-blocksize 4pages, seek between reads 96pages 3 . 2 DSS Workload

1000 T T T T T
216.0 block layer request statistics in pages, total=61914 average=30|94 11—
gop | 267 bfodk layer request statistics in pages, total=4023 average=4{03 {1+ |

ann | ] The configuration of our setup is as follows:

700 -
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no_of_re

300 -
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0 . " e . .
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no_of pages

2.6.0] 2.6.7
Average Size 30.94| 4.02
Pages Read 61914| 4023
Wasted Pages | 57914 23
No Of Read Requests 2001 | 1001

Figure 9: Application generates 4-page read
request followed by 96-page seek, repeating
1000 times. Totally 4000 pages requested.

8-way Pentium Il machine.
4GB RAM

5 fiber-channel controllers connected to
50 disks.

250 partitions in total each containing a
ext2 filesystem.

30GB Database is striped across all these
filesystems. No filesystem contains more
than one table.

Workload is mostly read intensive, gener-
ating mostly large 256KB random reads.

500
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400 -

350 -

uests

no_of_re

150 -

100
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300 |-

250

sequential workload: request-blocksize 16pages, seek between reads Opages

b 6.0 block [ayer request statistics in pages, total=16031 average=30.08 J——
2.6.7 block layer request statistics in pages, total=16050 average=31.85 {--{----

“nﬂ ; T T = P
26.0, 26.7
Average Size 30.08| 31.85
Pages Read 16031 | 16050
Wasted Pages 31 50
No Of Read Requests 533 504

With this setup we saw an impressive 26% in-
crease in performance. The DSS workload on
filesystems is roughly about 75% to DSS work-

load on raw disks. There is more work to do,

although the bottlenecks may not necessarily
be in the readahead algorithm.

3.3 lozone Results

The iozone benchmark was run a NFS based
filesystem. The command used wagone

-c -t1 -s 4096m -r 128k . This com-
mand creates one thread that reads a file of
size 4194304 KB, generating reads of size 128
KB. The results in Table 1 show an impres-
sive 100% improvement on random read work-
loads. However we do see 0.5% degradation
with sequential read workload.

Figure 10:Application generates 16-page read4 Future Work
request with no seek, repeating 1000 times. To-
tally 16000 pages requested.

There are a couple of concerns with the above
optimizations. Firstly, we see a small 0.5%
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26.0+

Read Pattern 2.4.20 2.6.0 o
optimization
Sequential Read | 10846.87| 14464.20 13614.49
Sequential Re-read 10865.39| 14591.19 13715.94
Reverse Read | 10340.34| 10125.13 20138.83
Stride Read 10193.87| 7210.96 14461.63
Random Read | 10839.57| 10056.49 19968.79
Random Mix Read 10779.17| 10053.37 21565.43
Pread 10863.56| 11703.76 13668.21

Table 1:l0zone benchmark Throughput in KB/sec for different workloads.

degradation with the sequential workload usingent page without considering the size of the
the iozone benchmark. The optimized code aseurrent request. This idea has merit and needs
sumes the given workload to be random to beinvestigation. We probably can ensure that we
gin with, and then adapts to the workload de-at least read the requested number of pages if
pending on the read patterns. This behavior careadahead has been shutdown because of page-
slightly affect the sequential workload, since itmisses.

takes a few initial sequential reads before the

algorithm adapts and does upfront readahead .
g P P 5 Conclusion

The optimizations introduce a subtle change

in behavior. ~ The modified algorithm does ths work has significantly improved random
not correctly handle inherently-sequential clussyqrkioads. but we have not yet reached our
tered read patterns. It wrongly thinks thaty,41 \We believe we have squeezed as much as
such read patterns seek after every ID‘5‘91‘3're‘5‘ao:~7sible performance from the readahead algo-
The original 2.6 algorithm did accommodaterithm’ though there is some work to be done to
such patterns to some extent. AsSUMe aflnrove some special case workloads, as men-
application with 16 threads reading 16 cOn-joneq in Section 4. There may be other sub-

tiguous pages in parallel, one per threéadgysiems that need to be profiled to identify bot-
Based on how the threads are scheduled, thgnecks. There is a lot more to do!

read patterns could be some combination of
those 16 pages. An example pattern could
be 1,15,8,12,9,6,2,14,10,7,5,3,4,11,12,13. Th® Legal Statement
original 2.6.0 readahead algorithm did not care

which order the page requests came in as 10nghis work represents the view of the authors and

as the pages were in the current-window. Withyoes not necessarily represent the view of IBM.
the adaptive readahead, we expect the pages to
be read exactly in sequential order. IBM is aregistered trademark of International Busi-

ness Machines, Incorporated in the United States,
Issues have been raised regularly that thether countries, or both.
readahead algorithm should consider the size _
of the current read request to make intelligenfOther company, product, and service names may be
decisions. Currently, the readahead logic basg&ademark or service marks of others.
its readahead decision on the read patterns seen
in the past, including the request for the cur-
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| would hate user space locking if it weren’t that
sexy...

(fusyn+RTNPTL: The making of a real-time synchronization infrastructure for Linux)
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Abstract kernel and user space locking and synchroniza-
tion infrastructure that will meet the require-

, ments of those applications needing to use and
Linux has seen a lot of new features and dey, . complex multithreaded real-time code.
velopments in the last years in order to ac-
commodate better scalability, interactivity, re-
sponse time and POSIX compliance. Withl A look at the requirements
these changes, Telecom developers began to

get serious about using Linux and started port- , ,
ing their systems to it. By doing that they The Carrier Grade Working group, or CGL,

brought new usage models and needs to th&as created under the auspices of the OSDL;
community; and among those needs was sudt prowdes_a meeting p(_)lnt for all parties who
port for threads, mutual exclusion, priority in- SN@ré an interest on Linux use for Telecom:
version protection and robust synchronizatior'€tWork equipment vendors, Linux distributors

for mission critical and fault-proof systems on 2"d developers, carriers, etc.

both timesharing and soft real-time environ-; a5 in this forum where missing features
ments. This paper describes our experiencegere identified. Carrier Grade Linux needed
trying to meet this need, the current state anqlo,4 goft real-timk features, specially with
where are we headed. We will detail how 0rig-p, i threaded programs. As well, it needed a

inally we tried to modify the futex code, but .,mmon feature provided by Solaris’ mutexes
later found we had to abandon that in favor of

a similar design based on a layered implemen- irqr short, we'll use real-time to refer &oft real-
tation. This implementation accommodates aime.
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that was not present in Linuxobustness (c) Minimization of priority inversion

This project was started to provide a kernel

(given the importance of this item, it
will be treated in its own section):

synchronization infrastructuréusyr with the

indicated characteristics, as well as the proper I. lock stealing: in SMP systems,
modifications to the NPTL user space library during on the acquisition of the
(RTNPTI) for it to use the new infrastructure lock a lower priority thread can
and provide the new features. steal the lock from a higher pri-
ority thread.
The basic immediate requirements could be i. when a high priority thread A
summarized in: is waiting for a lower priority
owner B to relinquish the mu-
» The infrastructure should provide the tex and B is preempted by a
primitives needed by NPTL to support the medium priority thread C.
following POSIX tags: A. priority protection
— TPS: thread priority scheduling B. priority inheritance
— TPI: priority inheritance in mutexes 2 Robustness: when a mutex owner dies, the
— TPP: priority protection in mutexes mutex switches to dead-ownesstate and

Or simply: anything that is needed for

the first waiter gets ownership with a spe-
cial error code.

soft-real time support

* The implementation should support ro-
bust mutexes similar to those of Solaris.

3. Uncontested locks/unlocks must happen
without kernel intervention.

 The implementation should provide 4- Deadlock detection
equivalent features at the kernel level for

use by drivers and subsystems.

As well, in order to provide the benefits of this
infrastructure to all the levels of a Linux sys-

With this in mind, we aimed to satisfy the fol- tem, it must be possible to use it not only by the
lowing detailed requirements: user space code, but also by the kernel code.

1. mutexes and conditional variables musti.1 The real time expectancies
work according to real-time expectancies

(a) All operations (lock, unlock, prior- Real-time is all about beindeterministic, so

(b)

ity promotion and demotion, etc.) a!l algorithm execution times r_1eed to b_e as pre-
should be deterministic in time, dictable or bounded as possible. Usifgl)
and O(1) when possible (except of &lgorithms helps with thié.

course, for waits).

2It is possible to be deterministic with @(f(N))
The order of lock acquisition by operation, as long af(N) is known; however, in most,
waiters (in mutexes) and wake up (in if not all, of the cases involving mutex operation, it

.. . is highly impractical or plainly impossible to find out
condWonal variables) ha_s to be de- f(N), and thus a possibly simpler implementation has
termined by the scheduling proper- ig pe replaced with one potentially more complex, but
ties of each blocked task/thread. o(1).
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POSIX dictates that upon unlock of a mutex, B waits for A B gets R, after missing
the scheduling policy shall determine who is to release R the deadline
the next owner. An obvious way of doing this &» s deadline /
would be to wake up all of the waiters and 4

let them compete for the lock—the schedulel ‘) |
would determine that the highest priority task @B | |
would get there first. | |
However, this causes scheduling storms, un: |

necessary context switches and general avoic | !
able overhead. Itis easier and more effective t [ Taska }
determine which is the highest priority waiter | |
and only wake that one up. To implement this | |
task in anD(1) way, we need to queue the wait-

ers in a sorted list that provides constant time_,

gueuing and unqueuing. On unlock or wake u igure 1. A case .Of priqrity inver_sion: high-
time, the first waiter in the list will be the high- Prority task B misses its deadline because
est priority one. lower-priority task A holds for too long a re-

source it needs, as mid-priority task C pre-
empted it. A lower priority task C blocks a
high-priority task B.

rority

P

v

Time

1.2 Priority inversion

This condition happens when a lower prior-
ity thread blocks a higher priority one. The _ _
most general case (Figure 1) is the lower priorfore B had the chance to do it and it would cre-
ity thread that holds a resource needed by thate a priority inversion scenario (see Figure 2).
higher priority one—a situation that has to be

ided h ible. As indicated b The solution to this problem is simple: do
avoided—as much as possile. As INCICAled begq njock the mutex, just transfer the owner-
fore, we aim to solve three different flavors.

ship without unlocking it. We call thiserial-

The first islock stealing For performance rea- 1zedunlock (versuparallel, wake and claim).
sons, to avoid the convoy phenomehft], the This method severely_ limits performance in
unlockoperation is done by unlocking the mu- Many cases, because it forces a context switch
tex and then waking up the first waiter (eg: A). (causing the already mentioned convoy phe-
The waiter claims the mutex and then become§0omenon). There has to be a compromise be-
owner. On a single CPU system it can be prefween protection and performance and by of-
empted only by higher priority tasksso lock fering the option to unlock a mutex in either
stealing is not a problem; however, on multi-Way, a developer can dynamically adapt ac-
CPU systems, a lower priority task C running€0rding to her needs.

on another CPU could claim the lock just be'The other two cases (of priority inversion) are

3Summarizing: if task A (high priority) unlocks by more complex. They solve the scenario de-
transferring ownership to the first waiter B (lower prior- picted in Figure 1 where task B is waiting for
ity), it forces a context switch to B, and if then A recon- a mutex owned by task A and task C preempts

tends for the lock it will create a convoy of waiters that L
is difficult to dissolve. task A. When the priorities arg B) > p(C) >

“We will use the terms tasks or threads indistinctly to?(A4), we have a priority inversion; task B will
refer to any entity that can acquire a mutex. miss its deadline because C is blocking A from
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B returns to B sleeps again as

B’s deadline
user space and  the lock is taken A VW
A unlocks, triestolock  and misses deadline
wakes B up A crit. section
\ |
_ | T | TaskB
o= Nr | ‘
Sl— Ny VLI e N
8“) = ‘ Task A Task A goes on its business B runable
A | Ef'
| g
= 2 | Wiizaiza 7 Y, R N
3 2 () (wiose) (05558577 el
| - ! ) C runabl 5
o 2 | S s
) S ‘ Task C Task C v "o
Ay = o/ N AN
S t | ! Aruhable )

d

y C locks ! - WW},//
| >

Time B’s deadline Tlme

Figure 2: Low priority task C running on CPUQ Figure 3: Priority protection: task A locks and
ning on CPU1. C cannot preempt it and it finishes its critical

section (and is demoted) in time for B to meet
its deadline.

completing its mutex-protected critical section.

h diff deal with th b have a similar situation, but there is no prior-
There are different ways to deal with this prob-iy., ceiling. What happens in this case is that

lem, b_Ut _the most common involve bumping UPthe priority of the owner is boosted up to that
the priority of the owner of the lock to a certain

I of the highest priority waiter, the first one (see
value. Figure 4). Similarly to the previous case, if a
In priority protection (or PP), apriority ceil- task owns many Pl-mutexes, its priority will be

ing is determined as part of the design cycle e highest of them all. There is no need now
This is normally the highest of all the priori- {0 d0 design-time analysis; the system solves it
ties among the threads that will share a giverfutomatically. Of course, there are drawbacks—
mutex; as soon as it is locked, the priority of it d0es not come for free. This operation is
the owner is raised to match that of the pri-MOre expensive, especially in the presence of
ority ceiling (see Figure 3. When a thread@Wner/wait chairs The propagation of the
owns many priority-protected mutexes, its pri-Priority boost can be long (and will b&(N)
ority is that of the highest ceilings. This ap- ©n the depth of the chain) and this can lead to
proach is simple and guaranteed to be troubldN€xpected surprises if the interaction across
free. However, it is laborious; determining the different threads and mutexes in the system is
priority ceiling might not be an easy task at all "0t kept on a tight leash (see [2] and [3]).

in a moderately complex system where mod-

ules from different parties need to interact.

STask A waits for mutex M that is owned by task B

o _ _ _ that is waiting for mutex N that is owned by task C that
Enterpriority inheritance (PI): in this case we is waiting for mutex O. ..
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Robustness embeds all these in the mutex

\ ____________ _i\ mechanism. When a task owns a mutex, the
|_A runs promoted | mutex knows who is its owner, and asks to be

notified if the owner dies. If and when this

............

------------

/

L/
“ B claims

(B waits for lock/)
2 thelock | » happens, the mutex will be moved to an spe-
k=hl C sleeps A Crunable J cial consistency statedead-ownerand effec-
= % v/ . . . .
~ \ v A unlocks l i tively unlocked; this will give control to the
et ¥ first waiter (or remain unlocked aead-owner
A precmpted ; 5 emee i,éf‘,‘,“fiﬁ‘ej until somebody else claims it).
Time Threads claiming a dead mutex will re-

ceive ownership with a special error code,
Figure 4: Priority inheritance: Task A (lock -EOWNERDEADThis serves as a warninghe
owner) is promoted to task B’s priority when data protected by this mutex might be inconsis
B waits for the lock; as soon as A unlocks, ittent, it should be fixedThe new locker can do
gets demoted and B gets the lock. C never hadifferent things at this point:
a chance to preempt A.

* it canignore it (scary choice!)

it might be unqualified for the job and pass
the responsibility on to somebody else (by
unlocking).

Priority inheritance needs to be used with care—
it is not a straight solution for a system with
deadlock problems to make a mutex PI. What
if that mutex is being shared with some low pri- ¢ it can try to fix the data and succeed-then
ority timesharing task that is not aware of the it will healthe mutex, setting its consis-
fact? In these cases, if a task does some kind tency state back to normal and proceed.
of CPU spinning, the system is dead. The con-
cept of priority inheritance and the simplicity

it gives to designs provides enough rope as to . oy it can fail and deem the state com-
hang oneself, as the effects can propagate way pletely broken; to notify about this sit-

* or it can fail and passiton...

far more than expected. uation, it can mark the mutexot-
recoverable so all waiters and future

1.3 Robustness claimers will get 2 ENOTRECOVERABLE
error code so other recovery strategies can
kick in.

Mutex robustness is a key feature for imple-

menting systems tolerant to certain kind of fail-
ures. A certain task A is holding a normal, The mostimportant aspect to take into account

non-robustmutex M with one or more wait- IS that the user of the mutex has means to detect
ers W, blocked in the kernel. If it receives a this situation instantly without having to rely
fatal signal and is killed, the mutex will still ©n timeouts or other overheads.

be locked and the waiters will be never wo-

ken up. There are different ways to detect and-4 Deadlock detection

recover from this situation, but they usually

involve painful and complicated designs with A situation of deadlock happens when a task
watchdogs, timeouts, etc. A that owns a mutex M tries to lock it again.
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This is the simplest case, of course. The genfastlock operation is performed entirely in user
eral case is: space; if the word is unlocked, then it becomes
locked and work proceeds. If it is locked, the
program sets a different value in the user space
word and then goes down to the kernel and
walits.

task7; owns mutex)M; and tries to lock
mutex M,

taskT> owns mutex)M, and is waiting to

When the unlock operation is performed, the
lock mutex\/;

unlocker will check the value of the word; if
task T3 owns mutexi; and is waiting to it indicates that only afast-_lock was performeql
lock mutex)//, (and thus there are no waiters in the kernel), it

will be simply unlocked in user space; other-
. ... wise, it will ask the kernel to wake up one or
more waiters. These waiters will come back
to user space and reclaim the lock; only one
will get it, the rest will go back to the kernel to
sleep.

taskTy owns mutex\/y and is waiting to
lock mutex\/;

Construct like these are calledvnership-wait
chains And it is obvious that in this particular
case, this chain would deadlock, &§ would
never be released; is allowed to block wait-
ing for M. « To allow wake-the-highest-priority waiter
behavior on a bound time, the hash table
model had to be modified.

With this in mind, we performed the following
modifications:

The only way to detect this situation is, upon
lock time, to walk the chain and verify if the

task that is about to lock owns any lock on the One node per waiter was replaced by one
chain. node per futex, and each node would have

its own priority-ordered list of waiters.
By definition this is a linear operation that is Although the lookup of the futex-node in

goir)g to take timg to execute. The bestwayto  the hash table i©(V), at least the manip-
avoid this expensive check is to make sure our  ylation of the waiter-list (or wait list) can

design uses proper locking techniques (like for be madeO(1).
example, acquire and release multiple locks in

LIFO order). This introduced the need of having to al-

locate the futex-node, as it could not live
in the stack of some waitér

2 The first try: rtfutex
* In order to support robustness, dead-

. ) ) lock detection and priority inheritance, the
Once the requirements were laid out, we first

tried modifying the futex code irkernel/ ®note this means that the lock is actually unlocked
futex.c adding functionality while main- for an unspecified amount of time in an unlock to lock

.. .. . transition.
taining the Or'gmal futex interface. "This raises extra issues; allocation can fail and is

In a alimpse. the locking mode used with fu- not time-predictable; it can be slow, so it is needed
giimpse, 9 to cache the nodes (as normally they are frequently

texes works like this (see [4]): there is a Wordyeysed); caching means a strategy is needed to purge
in user space that represents the mutex. Thiem (garbage collection).
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concept ofownershiphad to be added to it suffered from race conditions: the mod-
the futex. This would savevhich task ification of the different back pointers in

owns the futex on each moment. It also the task struct was being done without
required to note in the task struct which protection.

futex was being waited for, as well as a
list of owned futexes. * the priority inheritance engine was very

limited (to the most simple cases of in-

» A different method had to be used for heritance) and it didn’t suppo&CHED _
locking in user space, the fast lock and un- NORMALasks.
lock paths.

* serialized unlocking is slow, it causes the
convoy phenomenon, and the code did not
provide flexibility to allow the user to bal-
ance performance vs. robustness or prior-
ity inversion protection depending on the
situation.

The user space word representing the fu-
tex would store the PID of the locker
while on the fast path and indicate with
a bit the presence of waiters in the ker-
nel. This way if a locker died after having
done a fast-lock operation in user space
(and thus the kernel not having any notion
of it), a potential waiter could check if the
lock was stalg& When a futex went into
the dead-owneror not-recoverablestate,
the kernel would modify the user space
word with special values to mark these
states.

* it didn’t provide the functionality at the
kernel level, for usage by kernel code.

* itdidn’t support changing the priority of a
task while it was waiting for a futex while
at the same time properly repositioning it
on the wait list according to its new prior-

As well, the unlock operation had to al- ity.

ways be serialized, with the kernel as-

signing ownership and modifying the user

space word, ensuring robustnasd that While broken, it was perfect as a prototype—
no lock stealing happened. it gave an indication of what was wrong, how

things should not be done and hinted which

methods were a good idea. It was time to re-
This design (and its implementation) was bro-think all over again.

ken: the futexes are designed to be queues, and

they cannot be stretched to become mutexes— _ )

it is simply not the same. The result was a3 Trying again: fusyn
bloated implementation.

With rtfutexes we found that stretched designs
are not a good idea, however, experience tells
layered designs are a better idea.

8This is a very simple method that cannot guarantee
conflicts when PIDs are reused; we implemented a naivd he fusyn design follows the same basic prin-
task-signature system to try to avoid this case. We didn'ciples of the futexes, providing the same ser-
realize how broken it was until later. vice in kernel and user space. Enforcing a strict

°If waiters coming up from the kernel died before . . .
locking again and there were still some others Waiting,mOdUIarIty among the different units that com-

the kernel would never know about it and the remainingPrise€ it, it is possible to accomplish much more
tasks would wait for ever. with less bloat and complexity.

As well, the code itself missed many fine (and
not so fine) detalils:
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The four main blocks that comprise the fusyn foqueve | | fuqueue| | fuqueue
architecture are: — waiter waiter waiter
fuqueue I I I
. .. (- M ™ N
 fuqueuesre the wait queues (very similar ' | Task A ‘ Task B Task C
- - ~7| prio9 | | nice 0 )

‘\7pr1/0 2 )

to the Linux kernel's waitqueues) and are W —
the basic building block.

[ .

« fulocksprovide the mutex functionality by \ 7/
adding the concept of ownership on top of

fugqueues and dealing with all the priority Figure 5: A fuqueue with three waiters,
promotion. p(4) > p(B) > p(C), showing the different
pointers on each structure.

 vlocators serve as the link between
user space words and the kernel ob-
jects (fuqueues and fulocks) associated t

?uqueue_waiter ;. that structure and the
them.

fuqueue being waited for are linked to from
« vfulock syncmaintains synchronization the task struct struct fuqueue_waiter

between the fulocks and thdulocks the  *fuqueue_waiter and struct fuqueue
user space word associated to them. Ifuqueue_wait ), so that the signal delivery
also is responsible for identifying owners code (througtuqueue_waiter_cancel() )
from the cookies stored in the vfulocks. and the scheduler priority changing functions
(through fuqueue_waiter_chprio() ) can
fuqueues properly locate which fuqueue to act upon.
A spinlock protects these pointers in the task
We start with a simple queue struc- structure.
ture, struct fuqueue , declared in Thjs satisfies the real-time requirements of
linux/fuqueue.h . It merely contains a \ake-up order by priority. As well, the addi-

priority-sorted list where to register the waiterstion to the waiters list is bounded in time to the
for the queue, a spinlock and an operationgnaximum number of different priority levels
pointer. The operations are for managing a;sed—being this 140 for the Linux kernel, that

reference count (used when associated to Us@fiakes the addition operatigh(140) = O(1).
space), for canceling a task’s wait on a fuqueue

and notifying the fuqueue of a priority change Note the fuqueue structure has to be protected,
on a waiter (most functions are defined insimilarly to waitqueues with an IRQ-safe spin-
kernel/fuqueue.c ). lock, as they will be accessed for wake-up from

o ) ~ atomic contexts.
A fuqueue can be initialized, waited on with

fuqueue_wait() or a number of waiters for fulocks
it can be woken up witHuqueue_wake()

All the functions for doing that are conve- ]
niently broken up so they can be used by othefPnce we have a queue structure that is real-

layers. time friendly, we can build mutexes on top of
them. Adding the concept of ownership, we
Whenever a task waits on a fuqueue, itcreate atruct fulock in linux/fulock.

registers itself by filling up astruct h that contains a fuqueue (for the waiters), a
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pointer to a task struct (the owner), some flagsEOWNERDEA®rTor codé’.

and a node for a priority-sorted ownership list
(to register all the fulocks owned by a task). This introduces the need to have a way for the
user to switch the fulock from one state to the

Let’'s ignore for a while the secondary effectsother. fulock_ctl() provides this capabil-
of priority inheritance and protection. Come ity.

lock time, fulock_lock() . if the fulock is

unlocked, the current task is assigned ownerpeadlock detection

ship by setting the owner pointer in the fu-
lock to point to the task, the fulock is added
to thetask->fulock_olist ownership list
through itsolist_node

The process of checking for deadlocks is done
via a hook in the__fulock_lock() function
that calls__fulock_check_deadlock()

If the fulock_is locked (unless just try-locking) This function will query the owner of the fu-
thektask W‘Z'ts on dt_he fquEks fuqlueuz; W]t]ehnlock the current task wants to wait for and in-
woken up, depending on the resuilt code of t %uire which fulock this owner is waiting for.

wake up, it wil own th_e !OCk (and thus PIO~ it not waiting for anyone, there is no possible
ceed) or try again (serialized vs. paralle“l'zeddeadlock, so all resources are dropped and suc-
unlocks). cess is returned.

The unlock operationfulock_unlock() is If it is waiting, the fulock is safely acquired

?une S|mp!e|:_ |fdthe Enlock_et:r_ d(iswhes to p(terr]'(the ugliest part is to get the spinlocks properly
orm a seriafized wakeup, 1t Just changes Meyq o) a5 the reference counts); if the owner
owner to be the first waiter, removes it from

- ) . is the current task, then that is a deadlock; if
the wait list and wakes him up with a O re-

s not, then the operation repeats with the owner
sult code. If the unlock has to be parallelized P P

'of th fulock.
it unlocks the fulock and unqueues and Wakes0 € hewtuloc

up the first waiter (or the firslv waiters) with
a -EAGAIN code—that will lead the sleeping
__fulock_lock() call to retry. The unlock
mode can be automatically determined baseflow let's take priority inheritance and protec-
on the policy of the first waiting task: serialized tion into consideration. The key here is that in

for real-timers, parallelized for timesharers.  the priority-sorted list (plist), every node, in-
cluding the list head, has a priority field, and

Priority inheritance and protection

All this code is defined ilkernel/fulock.c . that in a consistent plist, the priority of the list
is that of the head, that in turn is that of the
Robustness highest priority node queued.

Thus, by virtue of the priority-sorted list, each
fuqueue has griority. Fulocks inherit this
property and when doingriority inheritance ,

Robustness comes into play with a hook in
kernel/exit.c:do_exit() . When a pro-

cess dies,exit_fulocks() goes over the o
list of fulocks owned by the exiting task; for they set that prionity on the node for the

each of them, the operation registered for tas'prlorlty-based ownershlp_ list.Priority bro-
exit is executed, and that leads to setting théectedfulocks set as priority that of the priority

dead flag fULOCK_FL_DEAPand serially un- 10as well, a warning is issued if the fulock wasn't de-
locking the fulock to the next waiter with the clared robust.
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€ - Ownership list
~ No propagation

Task T1 fulock F(P1) | fulock H (PP) ‘fulock G (PT) | fulockl |
. Owns /) -

prio 1 . / \ L . .
effective prio 32 | prio 32&\}\ \ prioceiling 9> . prio 7 - | prio-1 |
| effective prio 32 | ST - . - T T

/
~— _ /7///,/ ‘

Prio propagation N ( N
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Figure 6: A task that owns four contested fulocks (two PI, one PP and one normal) showing the
priority propagation flow. Note how fulock I, not being priority inheriting or protecting, has the
minimal priority, -1 (which effectively disables all side effects).

ceiling of the fulock. prio_update() to the fulock’s ownership list

) ) _node fulock->olist_node , that as we said
This way, each task has a list of the fulocks ityhaye, is inserted in the ownership list of the

owns sorted by priority. The ordering of the f,10ck owner. The propagation could mean
list means that the first fulock in the list has theinat 4 new maximum might be set in the own-
minimum priority the task should have to meetg ghi Jist, case in which the boost priority is

the priority protection and/or priority inheri- updated for the scheduler to pick it up.
tance criteria—and thus, the scheduler just has

to select as effective task priority the highestOn top of that, the change might need to be
between the task’s final dynamic priority and propagated further on if the fulock owner is
that of the first fulock on its ownership Iist  waiting for another fuqueue or fulock.
See Figure 6. fuqueue_waiter_chprio() will take care

of propagating that change until a task is

The process then becqmes extremely ?imp|er'eached that is higher priority or is not waiting
when a task queues waiting for a fulock (in ¢, 5 priority-inheriting fulock.

fuqueue_waiter_queue() ), it might mod-
ify the plist priority because it sets a new
higher priority—the function returng0 in this
case. This is propagated, with fulock

Linking to user space

So far, the infrastructure presented is accessi-

— , . : . ble only from kernel space. We have to al-
1This is accomplished with a simple mechanism (im-

provement required to reduce invasiveness) that adds t”gw user space programs to take advantage ’Of
concept of boost priority to the task strudigost_ these features, and for that, we copy the futex’s

prio ), and modified through prio_boost() . method: associate a virtual address (word) to
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test—35.out. SERIAL

TL[O]
T TF[l] exits
2000 TP(0] exits 1
TL[OJ exits
TB waited 20.38
g 1500 downprioritizing TB
g TB wait—lock
=
2 1000 TB dtarts 1
TL[O] starts
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51019[1] starts i e
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Figure 7: Testing priority inheritance: four threads of increasing priority (TL<TP < TB < TF) in
an infinite loop counting up (progress); TF stays in CPUL as a reference; TP sleeps from time to
time in CPUO to give TL a change; TL progresses what TP allows it. When TB staf8s{ait

claims a priority-inheriting fulock owned by TL and thus it gets boosted, TP doesn’t progress any
more. At almostiOs, TB is down prioritized and that deboosts TL, allowing TP to progress again.

an object in memorystruct vlocator ). ufuqueues and vfugueues: imitating futexes

The API exposed itinux/vlocator.h pro-

vides a generic method for doing this by justye need to create an interface equal to that
embedding a vlocator; as well, this viocatorgf fytexes for implementing conditional vari-

provides a reference-counting interface to simypjes with real-time friendly functionality (for
plify the object’s life cycle management. And the wake up ordering).

when it’'s use count is zero, it will be automati-

cally disposed df. We create atruct ufuqueue  where we em-
_ _ N _ _ bed a vlocator and a fuqueue. A thin adap-
This also improves scalability a little bit as the tgtion layer §ys_ufuqueue_wait() and

taken just to do the look up; once found, theca|| from user space, do the look up using the

vlocator is referenced before dropping the locky|ocator API, verify that the user space word
(vfuqueue ) hasn’t changed and pass it down
to the fuqueue layer.

?Here is where the caching kicks in; the hash table )
is cleaned up of zero ref-counted items every certainl N€ rest of the code ikernel/ufuqueue.c

amount of time, allowing for reuse. deals with creating the operation functions for
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the vlocator structure. storing a cookie that can directly map to a task
struct in the kernel space. The most obvious
Exposing the fulocks to user space choice for the cookie would be the PfD

. However, this operation must be atomic—this
fheans that we need an atomic compare-and-
exchange operation, and thus, the lock oper-
Ation becomes the following: compare-and-
exchange the cookie against O (meaning un-
However, more aspects have to be taken int¢?Cked); if it succeeds, then the viulock is
consideration: locked, if not, dive into the kernel. The ker-
nel will map the address to a fulock (pos-
sibly creating a new ufulock) get the value
« If the fulock is not contested, the lock and of the vfulock 6ys_ufulock_lock() and
unlock operations must happen entirely inyfulock_lock() ) and map it to a task (in
user space (and thus the kernel will not fylock_sync() . If the kernel is able to
know about it; this is théast-pat) find the task, that task is made the owner and
« When a lock has been locked through thethe caller is put to wait. As well, the vfulock

fast path, the kernel has to be able to iden-> updated to a special valierULOCK_WpP

tify who locked it as well as its consis- meaning waiters are present in the kernel.

tency status; this operation is called syn-if the kernel cannot find it, that will mean the
chronization. task that fast-locked it in user space has died,
* When a lock becomes contested, the ker'Ehe fUquk will be declar_edead-(_)wneand the
nel has to update the user space word t(galler will _get ownership. In this process, the
indicate that future operations need to pro-VfUIOCk will be set t.o a.mother. special value,
ceed in the kernel—as well. when it is eli- VFULOCK_DEAEINhat indicates it as dead even

gible to be a fast-path only fulock again, across the kernel forgetting about its existence.

the kernel must undo this, put the fulock yniocks are equally simple:  atomically
structure in the cache tagged as requirtompare-and-exchange 0 VRULOCK_
ing synchronization from user space andynLoCKEp against the cookie of the lock
make sure the user space word has thgwner; if it succeeds, the job is done; else,
consistency state of the fulock. the kernel does it. After mapping the vfulock
to a ufulock, ufulock_unlock() is used
Fo do the job and the vfulock is updated to
reflect the new state:VFULOCK_UNLOCKED
if unlocked, if there will be no waiters the
new owner's cookie—enabling fast-path,
VFULOCK_WH waiters are still in the kernel,
or VFULOCK_DEAI the fulock is dead.

fulocks to user space; in a similar fashion to
fuqueues, we wrap together a vlocator and
fulock to create &truct ufulock

* The fulock structure in the kernel will
be disposed if no task goes to the kerne
querying about or operating on it for a
while; as in the previous case, the infor-
mation will be kept in user space word to
enable proper synchronization.

For this we need some more information tharif Parallelized unlocks are desired, the pro-
the one used by the same futex mechanism for 13This would break unique identification as PIDs are

the fast path. A locker needs to identify itself reysed: a solution could be crypting the PID with the
in the user space word (that we cdllilock by  task creation date, but it needs to be tested.
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cess is a little bit different. In the kernel, ing FULOCK_FL_KCan the flags. That is an
__ufulock_unlock() will unlock the vfu- acronym for Kernel Controlled Ownership, or
lock and then wake up the first waiter, who thenbasically, the kernel takes care of everything.
will contend (in the kernel) for the vfulock and It needs to be called for locking and unlocking,
possibly wait, as described abdtie there is no fast path (strictly speaking there is
) o still a choice for fast path on some operations,
Note the two key moments in switching from 45 the vfulock is used to cache the consistency
fast-path enabled or not: the fulock becomes;aie of the fulock and any user space operation

fast-path when it has no waiters in the kemelean check it before deciding if it should go to
or when it is heale® without waiters. It looses the kernel).

the fast-path conditions as soon as a single

waiter is queued. This means that to maintainThis feature also provides the highest level
proper semantics during the lifetime of a pro-of protection for robustness. The per-thread
gram that uses many locks, once a fulock hasookie for the vfulock, be it the PID or any
gone through the slow path, it needs to be deether, is not required, and the kernel deals di-
stroyed in the kernel using thgs_ufulock_ rectly with the task struct, so there is no possi-
ctl) system call once it is not needed any-ble collision conflict.

more. If not, there could be inconsistencies if a

new lock is created in the same address wherlt Nas 1o be noted that priority-protected ufu-
a previous one lived before. locks always work in KCO mode. Even on un-

contended acquisition or release the priority of
KCO: When the fast-[un]lock path is not an op- the .thread has to be changed to that of the pri-
tion oceiling, and that task can only be done by the
kernel.

The fast path, as we have seen, requires an

atomic compare-and-exchange operation. Nof Using it in the kernel

all architectures provide this capability, so dif-

ferent strategies need to be considered here. The fulock is a simple type like any other

If robustness, and priority inversion protec-Struct. To use it, we just need to do the fol-
tion' can be spared, the mutexes and condil®Wing declarations:

tional variables can be implemented as with fu-

texes using fuqueues; the rest of the real-time

featurettes are there (priority-based wake-ups#include <linux/fulock.h>

and priority change semantics). If that can also .

be spared, futexes are still an option.

) struct mystruct {
However, when that is not the case, the only  ggryct fulock lock:

possible choice is to use KCO mutexes, by OR-

- , my shared data;
Not going back to user space to retry the operatlons}.

has advantages: speed and maintaining the condition
for robustness.

5Moved fromdead-ownerconsistency state back to It ds to b v initialized bef
normal (or healthy) needas 10 be properly nitalize erore use,

16| ock stealing avoidance, priority inheritance and @nd of course, after releasing it (or more prop-
priority protection. erly, telling all waiters to bail out) it shall not
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be used. Note some flag combinations are not...
allowed (for example, querying for priority in- /* do our thing */
heritance and protection at the same time is il- ..

legal) and will trigger 8BUG() *'. fulock_unlock (&my->lock,
FULOCK_FL_AUTO);
In this example we ask for a robust fulock with

priority inheritance. It must be noted that fu- return O;

locks are always robust—but clearly telling the

kernel that we handle robust situations will Notrecoverable:
suppress a kernel warning if the owner dies and/* Put it out of its misery,

it goes intodead-ownemode. * release waiters, clean up,
* user has to reload the
* driver. */
my_driver_probe(...) fulock_ctl (&my->lock,
{ FULOCK_CTL_NR);
struct mystruct *my; my_put (my);
return -ENOTRECOVERABLE;
my = kmalloc (...); h
if (my == NULL)
goto err_alloc; int my_try_recover (struct
fulock_init (&my->lock, *mystruct my) {
FULOCK_FL_ROBUST int result, mode;
| FULOCK_FL_PI); ... try to recover *my ...
if (successful) {
h result = O;
mode = FULOCK_CTL_HEAL;

As we see in the following snippet, the basic }else {
usage is the same as for every lock. However, regyit
in this case we add some recovery code for mode
the case when some owner digdNote also  }

that the only fulock operation that is guaran- fulock ctl (&my->lock, mode);

10;
FULOCK_CTL_NR);

teed to be safe in an atomic contexu®ck return result;

unlock() . }

void my_something( Finally, when we are done, we release all re-
struct mystruct *my) { sources associated to the fulock to clean up. As
indicated above, this merely makes sure that
result = fulock_lock(&my->lock, any waiter queued is woken up with an error
_ 0); condition and nobody can acquire it or queue
if (result == -EOWNERDEAD

again.
&& my _try recover (my)) J

goto notrecoverable;

"For user space code, they will simply fail with VOId my_cleanup (
-EINVAL . struct mystruct *my)

18This is kind of an useless exercise, correct kernef
code doesn't crash.
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fulock_release (&my->fulock); To simplify the code, this function returns true

if it was successful in performing the swap op-

} eration. With this, we can create a generic,
fast-path, user space lock operation:

The benefits that a fulock gives over a

semaphore are the real-time characteristicsnt viulock_timedlock (
priority inheritance and protection and dead- volatile unsigned *vfulock,
lock detection. The decision to use one or the unsigned flags, int pid,
other depends on the user needs, as it has to batruct timespec *rel)
taken into account that fulocks are somehow{

more heavyweight than semaphores. if (acas(vfulock,
VFULOCK_UNLOCKED,pid))
return O;
5 Usage from user space return SYSCALL (ufulock_lock,

vfulock, flags,

The main intention of the user space code ij rel);

to do as little as possible in the fast path an
delegate the rest to the slow path that will, in

most cases, end up in the kernel. We are using the thread's PID as the cookie for

Note these code snippets have been slightlthe viulock, the user space memory word asso-

e . iated to the lock. Note the special syntax for
simplified; for the authoritative reference, see; i
: . . timeouts understood by the kernel:
the file src/include/kernel-lock.h in

the test packagdéusyn-package  available

from the web site. » PassingNULL means we don't want to
wait, and this operation effectively be-
Locking comes a trylock in the kernel.

« A (void *)-1 timeout means block

As mentioned, the fast lock operation needs an .
forever—no timeout.

atomic compare and swap operation; for exam-

ple, on i386: - Any other specifies a pointer to a valid

timeout structure.
unsigned acas (
volatile unsigned *value,

unsigned old_value, From user space we have to always pass the

unsigned new_value) same flags to the kernel for an specific vfulock,
{ as it will check we are consistent during the
unsigned result; lifetime of the fulock—when it dissapears from
asm __ volatile_ ( the cache, it is up to us to use still the same
“lock cmpxchg %3, %1" flags to maintain consistency in our program.
"=a"(result),"+m"((*value))
"a"(old_value),"r"(new_value) With a few additions, we can have a lock func-
: "memory"); tion that also works in KCO mode and that im-
return result == old_value; itates the behavior of non-robust mutexes when

} owners dieig: block forever):
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int vfulock_timedlock ( if (old_value < VFULOCK WP) {
*vfulock, flags, pid, *rel) if (acas (vfulock, old_value,
{ VFULOCK_UNLOCKED))
int result; return O;
if (I(flags & FULOCK_FL_KCO) && old_value = *vfulock;
acas(vfulock, goto retry;
VFULOCK_UNLOCKED,pid)) }
return O; straight:
result = SYSCALL (ufulock_lock, return old_value == VFULOCK_NR?
vfulock, flags, -ENOTRECOVERABLE
rel); : SYSCALL (ufulock_unlock,
if (I(flags & FULOCK_FL_RM) && vfulock, flags,
(result == -EOWNERDEAD unlock_type);
[result == -ENOTRECOVERABLE)) }

waiting_on_dead_fulock(vfulock);

}return result As with the lock() operation, we first check if

the fulock is KCO; if so jump straight into the
kernel (except if it is markedot-recoverable
There are only two simple differences. Firstin which case we fail).

is to avoid the fast-path if we want to use
KCO mode (and thus dive directly into the In the case of the fast-path, we read the value

kernel). The second one takes care of non9f the vfulock; if it is looks like a cooki¥ then
robust mutexes returning idead-ownesstate; Ve try the fast-unlock, returning if successful.

in that case we block imaiting_on_dead If it failed we retry from the beginning. When
fulock() a dummy function that blocks for- the value of the vfulock doesn’t look like a

ever whose only purpose is to show up in pro_cookie, we dive into the kernel, as it means that

gram traces to indicate us the reason of a threal§ IS €ither dead or there are waiters (and thus
blocking. the kernel handles it).

_ Note this unlock operation allows any thread
Unlocking to unlock the fulock, it doesn't need to be the
owner.
The unlock operation is somehow more hairy.
Although we could just make it simpler calling Other operations
the kernel and letting it do all of the operations

for us (as if it were in KCO que),we wantto p trylock() operation is implemented in
have the fast-unlock path available: similar terms (please refer to the sample li-
brary code in thdusyn-test package, file
int __ vfulock_unlock ( src/include/kernel-lock.h ; this pack-
*vfulock, flags, unlock_type) age is available for download from the project’s
{ website).

unsigned old_value = *vfulock; ) . . .
Operations for manipulating or querying the

if (flags & FULOCK_FL_KCO) 19The three valuesVFULOCK_WPVFULOCK_
goto straight; DEADandVFULOCK_NRre purposely chosen to be
retry: the last three values of thensigned  domain.
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state of the fulock are implemented by calling
theufulock_ctl() system call directly, pro-
viding the vfulock and flags.

6 Integration with NPTL

The patches for integration with NPTL (that we
call RTNPTL for short) allow any POSIX pro-

gram to use these features, via a certain set of

pthread_mutexattr_setserial

np() and

pthread_mutex_setserial_np()

allows setting the unlock method to use
for lock-stealing avoidance out of
PTHREAD MUTEX_ SERIAL_NP
PTHREAD MUTEX_ PARALLEL_N&
PTHREAD_MUTEX_AUTO_Kthis one

can be switched during the lifetime of the
mutex).

standard calls and ways to customize the op-

eration mode of the fulock under the mutex’s
hood with other non-POSIX extensions.

RTNPTL uses the same or very similar user
mode integration code than the one explained

above, sitting down at thé_  layer in glibc.
This code provides all the intended functional-
ity only to the POSIX mutexes and conditional
variables. Locks used internally by the library
still need work (see théuture directionssec-
tion).

By default, RTNPTL provides non-robust fast-

path enabled mutexes that unlock in automatic

mode®, without any priority inheritance and
protection. However, by modifying the mu-
tex attributes with thethread_mutexattr_

set*() calls, different parameters can be set:

» Manipulating the priority inversion pro-
tections:

pthread_mutexattr_

setprotocol() takes a mutex
attribute and a protection protocol,
PTHREAD_ PRIO_INHERITOr
PTHREAD PRIO_PROTECT

pthread_mutex_setprioceiling()

pthread_mutexattr_setrobust_

np() enables robustness in the mutex to
be.pthread_mutex_

setconsistency_np() is used to heal
or makenot-recoverablea dead-owner
mutex. The consistency state can be
queried withpthread_mutex_
getconsistency_np()

pthread_mutexattr_setfast_np()

is used to select the use of a KCO fulock
or not, effectively enabling/disabling
fast-path operation.

The non-standard interfaces are still subject to
some unlikely flux.

7 Current status and future direc-
tion

At the time of writing, the project has met most
of the requirements that were set as targets,
reaching stability and meeting performance
goals of sub-millisecond latencies. The added
overhead does not seem to affect too much
compared to NPTL, being generally slightly
slower.

can be used to query and change the

priority ceiling of a mutex.

20serialized or parallelized depending on the policy
priority of the first waiter

Compatibility

We routinely test RTNPTL+fusyn by running:
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» Miscellaneous multi-threaded applica- 30-05 L "rg" —o—i |
tions (e.g.: Mozilla) 1
* SUN jdk-1.42_03 with SPECjbb2080 2 201 - T TT
2
« MySQL 2.23.58 withsuper-smack and £ 22e-05[ .
sql-bench )
S 1.8e-05 .
&
This has helped us to catch some bugs (with g 1.4e-05 [ .
some pending for certain combinations) and to C§>
test the compatibility of our approach. Perfor- le=05 - | L 7
mance wise, no obvious differences have been - - -
found with plain NPTL running on futexes. 6e-06 - ‘ ]! n L 7]
0 2 4 6 8 10
This set of macro benchmarks is incomplete Number of waiters

and will be expanded in the future, time and

resource availability permitting. Figure 8: Scalability of the ownership-change

latencyvs. the number of waiters stays stable

Latency up until ten waiting threads.

The current code performs fairly well latency
wise (given the extra overhead). In an un-
loaded systens, the latency of the serialized
ownership change operatidhis in the range of
60 4+ 10us. Adding some network load (ten si-
multaneous downloads of 40 MiB files) bumps
it up to 110 £+ 10us. Simultaneous reading of

1 GiB from/dev/hda to/dev/null  raisesit Note: these numbers have been produced with
up to130 + 10us. a home-grown swiss-knife test program (to be

The code exposes a strange behavior when teé%ybI'Shed on the web site) callec_zl/n_ershlp_
change_latency . Most of our timing efforts

ing the ownership change latency in an un- . . .
g the ownership change latency in an Uny . e” concentrated in this particular case, al-

loaded system while increasing the number o :
. hough we have some other micro benchmarks
waiters. The average latency stays stable for

the first ten-to-fifteen waiters (threads of a Sin_planned.
gle program) at around8 + 10us (see Fig-
ure 8).

on Figure 9. Of course this is an extremely un-

realistic scenario, but it helps to test the scala-
bility of the code, and nevertheless, we are try-

ing to proof the root cause, being cache issues
the most likely ones.

Jitter

However, when the number of queued waitersat this point, we haven’t done yet any formal
goes up to 2000 threads, the latency climbs ujjitter studies.

to 50 + 10us, stabilizing from there on, as seen

Informally speaking, using the ownership

22as measured in a 2xP3 850 MHz 2.5 GiB RAM run change latency benchmark in unloaded sys-
ning version 2.3 of the code tems, we have seen jitter increases over NPTL

Z3ime since a serialized unlock is done until the first Of @boutlyus, 0.3us on a system fairly loaded
waiter gets the lock and executes. with IDE and network traffic. However, bear in

21SPEC Java Business Benchmark 2000.
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Figure 9: Scalability of the ownership-change latemsythe number of waiters only stabilizes

after two thousand waiters.

mind that these numbers are completely mean- « Accessing user space memory from the

ingless because the finest dependable clock
resolution we can get (using the High Resolu-

tion Timers patch) is well highet0us. We can
use them only to provide a hint.

Future direction

The project has reached an important milestone
of maturity with the 2.2 release during the

spring of 2004—nonetheless there is still much
work to do. These some of the areas where we

plan to target our future efforts:

* Some parties have asked for all these
concepts (real-time, robustness, priority-
protection) applied to read-write mutexes,
much more complex than simple mutexes.
We are still evaluation how worth is this.

» Some elusive bugs are still present.

kernel bykmapping it poses some issues
on architectures witlstrangecache con-
sistency designs, such as some ARM and
PA-RISC 8000. Itis still not clear how to
proceed for them and we would welcome
any help.

The kernel hash table for location of ob-
jects is a potential bottleneck in a system
populated with many active user-space
fusyn objects. We want to implement a
proof of concept where a cookie identify-
ing the object is placed in user space along
the vfulock/vfuqueue. This cookie would
consist of a two pointers crypted with
two different keys by the kernel. In or-
der to map a vfulock/vfuqueue to it’s cor-
responding fusyn object, the kernel just
has to decrypt the pointers. Having two
crypted with different keys is used to en-
force validity against garbage being writ-
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ten by user space by mistake or to com-10 Trademarks and acknowledge-

promise the system.

ments

is OK, as long as it is used.

Internally,

Intel is a registered trademark of Intel Corporation.

glibc uses locks to protect many of its data

structures—in order to be able to provideSun and Solaris are registered trademarks of Sun
true robustness, we need to add robustneddicrosystems, Inc.

to those internal locks, as well as recovery

strategies.

» Extend the coverage of our macro and m
cro benchmarks.

8 Downloading

The project maintains a website at:

http://developer.osdl.org/dev/
robustmutexes/

Other names and brands may be claimed as the
property of others.

i_The views expressed in this paper and work do not
necessarily represent Intel Corporation.

During development we kept discovering road-
blocks, situations, and side effects we failed to
spot or details we missed in the POSIX specifi-
cations. A lot of hair pulling that was counter-

acted by the thrill of the challenge, producing
a love-and-hate relationship with the topic (and
hence the title of this paper). We want to thank
all of those who helped out by pointing out is-

sues, contributing, reviewing, criticizing, and

testing ideas and code.

from where all the current and older snapshots

of the code can be obtained. As well, it offers
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Abstract complex over the last few years. Contempo-

rary 1/0O solutions include hardware, firmware,

The 2.6 release introduced the option to selec?S Well as software support for features such
a particular 1/0 scheduler at boot time. TheS réquest coalescing, adaptive prefetching,
2.4 Linus elevator was retired, incorporated aréalutomated 'r_“’ocat'?” of ‘?"feCt /O, or asyn-
now the anticipatory (AS), the deadline, thechronous erte.-behl_nd pollceg. From a hard-
noop, as well as the completely fair queuing™ar® Perspective, incorporating large cache
(CFQ) /O schedulers. Each scheduler has itSUPSystems onamemory, RAID controller, and
strengths and weaknesses. The question is uRNYsical disk layer allows for a very aggres-
der what workload scenarios does a particula?'_ve utilization of these I/O optimization tech-

I/O scheduler excel, as well as what is the per_nlques. The interaction of the different opti-

formance gain that is possible by utilizing the mlzatlon methods that are inco_rporgted in the
available tuning options. different layers of the I/O stack is neither well

understood nor been quantified to an extent
This study quantifies the performance of the 4necessary to make a rational statement on /O
I/O schedulers under various workload scenarperformance. A rather interesting feature of
ios (such as mail, web, and file server basedhe Linux operating system is the I/O sched-
conditions). The hardware is being varied fromuler [6]. Unlike the CPU scheduler, an 1/O
a single-CPU single-disk setup to machinesscheduler is not a necessary component of any
with many CPUs that are utilizing large RAID operating system per se, and therefore is not
arrays. In addition to characterizing the per-an actual building block in some of the com-
formance behavior and making actual recommercial UNIX® systems. This study elabo-
mendations on which scheduler to utilize un-rates how the 1/O scheduler is embedded into
der certain workload scenarios, the study lookghe Linux 1/O framework, and discusses the
into ways to actually improve the performance4 (rather distinct) implementations and perfor-
through either the existing tuning options ormance behaviors of the I1/0O schedulers that are
any potential code changes/enhancements. available in Linux 2.6. Section 1 introduces
the BIO layer, whereas Section 2 elaborates on
the anticipatory (AS), the deadline, the noop,
as well as the completely fair queuing (CFQ)
I/O schedulers. Section 2 further highlights
This study was initiated to quantify I/O perfor- some of the performance issues that may sur-
mance in a Linux 2.6 environment. The I/O face based on which 1/O scheduler is being
stack in general has become considerably moratilized. Section 3 discusses some additional

Introduction



426  Linux Symposium 2004 * Volume Two

hardware and software components that imthe kernel such as the kswapd or the pdflush
pact I/0O performance. Section 4 introduces thehreads. The producers of I/O requests ini-
workload generator used in this study and outtiate a call to__make_request() , which
lines the methodology that was utilized to con-invokes various 1/0 scheduler functions such
duct the analysis. Section 5 discusses the reaselevator_merge_fn() . The enqueue
sults of the project. Section 6 provides somdunctions in the I/O framework intend to merge
additional recommendations and discusses fuhe newly submitted block I/O unit (a bio in
ture work items. 2.6 or abuffer_head in the older 2.4 ker-
nel) with previously submitted requests, and
. to sort (or sometimes just insert) the request
1 /O Scheduling and the BIO into one or more internal 1/0 queues. As a
Layer unit, the internal queues form a single logi-
cal queue that is associated with each block

The I/O scheduler in Linux forms the interface 9€ViCe. At a later stage, the low-level device
driver calls the generic kernel functiaiv_

between the generic block layer and the low- _
level device drivers [2],[7]. The block layer NeXt_request()  to obtain the next request
provides functions that are utilized by the file ffom the logical queue. Thelv_next_
systems and the virtual memory manager tgequest()  call mter_acts with the 1/0 sched-
submit I/O requests to block devices. Thesg!ler's dequeue functioelevator_next_
requests are transformed by the /O sched®d_fN0 ., and the latter has an opportunity

uler and made available to the low-level devicel® Sélect the appropriate request from one of

drivers. The device drivers consume the transtN€ intérnal queues. The device driver pro-
esses the request by converting the 1/0 sub-

formed requests and forward them (by using®

device specific protocols) to the actual devicdMSSion into (potential) scatter-gather lists and
controllers that perform the 1/0 operations. AsProtocol-specific commands that are submitted
prioritized resource management seeks to red® the device controller. From an I/O scheduler
ulate the use of a disk subsystem by an appncagerspectlve, the block layer is conS|de_1red as the
tion, the 1/O scheduler is considered an imperproducer of I/O requests and the device drivers

ative kernel component in the Linux I/O path. 2'€ labeled as the actual consumers.

_It is further possible to regulate the disk usage-.5 1, 4 generic perspective, every read or write
in the kernel layers above and below the 1/0,qqestlaunched by an application results in ei-
scheduler. Adjusting the I/O pattern generateqy gy yiilizing the respective I/O system calls or
by the file sygtem or the virtual Memory Man-in memory mapping (mmap) the file into a pro-
ager (VMM) is considered as an option. An-oqo'q address space [14]. 1/O operations nor-
other option is to adjust the way specific de-p )y result in allocating PAGE_SIZE units of
vice drivers or device controllers consume andphysical memory. These pages are being in-
manipulate the I/0 requests. dexed, as this enables the system to later on

The various Linux 2.6 /O schedulers can belocate the page in the buffer cache [10]. A

abstracted into a rather generic /0 modelC2che subsystem only improves performance
The 1/0 requests are generated by the bloclf the data in the cache is being reused. Fur-
ther, the read cache abstraction allows the sys-

layer on behalf of threads that are access _ _
ing various file systems, threads that are perl€M t0implement (file system dependent) read-

forming raw I/O, or are generated by virtual ahead functionalities, as well as to construct
memory management (VMM) components offarge contiguous (SCSI) I/O commands that
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can be served via a single direct memory acces®8 The 2.6 Deadline 1/0O Scheduler
(DMA) operation. In circumstances where the

cache represents pure (memory bus) overheagq qeadiine I/0 scheduler incorporates a per-

I/O features s.uch as Qiregt I/0O should be €Xyequest expiration-based approach and oper-
plored (especially in situations where the sys

: ‘ates on 5 1/0 queues [4]. The basic idea behind
tem is CPU bound). the implementation is to aggressively reorder
fequests to improve 1/O performance while si-
multaneously ensuring that no 1/0 request is
being starved. More specifically, the scheduler

mally results in overwriting the contents in the Introduces the notion of a per-request deadline,
first place. Therefore, the write cache emphaVNich is used to assign a higher preference to

sizes other aspects such as asynchronous uPa_ad than write requests. The scheduler main-

dates, as well as the possibility of omitting [&inS 5 /O queues. During the enqueue phase,
some write requests in the case where multipl

gach 1/0 request gets associated with a dead-
write()  operations into the cache subsyste

nline, and is being inserted in I/O queues that are
result in a single 1/0 operation to a physica|either organized by the starting logical block
disk. Such a scenario may occur in an envi

number (a sorted list) or by the deadline fac-
ronment where updates to the same (or a si

nor (a FIFO list). The scheduler incorporates
ilar) inode offset are being processed withinSeparate sort and FIFO lists for read and write
a rather short time-span. The block layer in

requests, respectively. The 5th I/O queue con-
Linux 2.4 is organized around tHauffer tains the requests that are to be handed off to
head data structure [7]. The culprit of that Fhe device driver. During a dequeue operation,
implementation was that it is a daunting taski" the case where the dispatch queue is empty,
to create a truly effective block 1/0 subsys-€guests are moved from one of the 4 (sort or
tem if the underlyingbuffer_ head  struc- F_IFO) /0 I|s_ts in batches. The next step_ con-
tures force each 1/0 request to be decomposetiStS Of Passing the head request on the dispatch
into 4KB chunks. The new representation ofdueue to the device driver (this scenario also
the block I/O layer in Linux 2.6 encourages holds true in the case that the dispatch-queue is

large 1/0 operations. The block I/O layer now "0t €MPty). The logic behind moving the 1/0

tracks data buffers by using struct page point_requests from either the sort or the FIFO lists
ers. Linux 2.4 systems were prone to Ioosés based on the scheduler’s goal to ensure that

sight of the logical form of the writeback cache €aCh read request is processed by its effective

when flushing the cache subsystem. Linux 2.é/€2adline, without starving the queued-up write
utilizes logical pages attached to inodes to flusieduests. In this design, the goal of economiz-
dirty data, which allows multiple pages that be-I"d the disk seek time is accomplished by mov-

long to the same inode to be coalesced intd"d & larger batch of requests from the sort_list
a single bio that can be submitted to the 1o{logical block number sorted), and balancing
layer [2]. This approach represents a procesg with a controlled number of requests from

that works well if the file is not fragmented on the FIFO list. Hence, the ramification is that
disk. the deadline 1/0 scheduler effectively empha-

sizes average read request response time over
disk utilization and total average 1/0 request
response time.

In a general write scenario, the system is no
necessarily concerned with the previous con
tent of a file, as awrite() operation nor-

To reiterate, the basic idea behind the deadline
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scheduler is that all read requests are satisfietime. It introduces a controlled delay compo-
within a specified time period. On the othernent into the dispatching equation [5],[9],[11].
hand, write requests do not have any specifidhe delay is being invoked on any new read
deadlines associated with them. As the blockequest to the device driver, thereby allowing
device driver is ready to launch another diska thread that just finished its read 1/O request
I/O request, the core algorithm of the dead-to submit a new read request, basically en-
line scheduler is invoked. In a simplified form, hancing the chances (based on locality) that
the fist action being taken is to identify if there this scheduling behavior will result in smaller
are /0O requests waiting in the dispatch queueseek operations. The tradeoff between reduced
and if yes, there is no additional decision toseeks and decreased disk utilization (due to
be made what to execute next. Otherwise it ishe additional delay factor in dispatching a re-
necessary to move a new set of 1/0 requests tquest) is managed by utilizing an actual cost-
the dispatch queue. The scheduler searches fbenefit analysis [9].

work in the following places, BUT will only )
migrate requests from the first source that reJ € next few paragraphs discuss the general

sults in a hit. (1) If there are pending write /0 9€Sign of an anticipatory 1/0 scheduler, outlin-
requests, and the scheduler has not selected affig) the different components that comprise the
write requests for a certain amount of time, al/© framework. Basically, as a read I/O request
set of write requests is selected (see tunablegomPpletes, the I/O framework stalls for a brief

in Appendix A). (2) If there are expired read amou_nt of time, a_waiting_ additional requests
requests in theead_fifo list, the system to arrive, before dispatching a new request to

will move a set of these requests to the disthe disk subsystem. The focus of this design
patch queue. (3) If there are pending read relS N applications threads that rapidly gener-
quests in the sort list, the system will migrateate another 1/0 request that could potentially be
some of these requests to the dispatch queué?rViced before the scheduler chooses another
(4) As a last resource, if there are any pend{@sk, and by doing so, deceptive idleness may
ing write 1/0 operations, the dispatch queue isP€ avoided [9]. Deceptive idleness is defined as
being populated with requests from the sorted® condltlo.n. that forces the sgheduler into mgk-
write list. In general, the definition of a cer- ING @ decision too early, basically by assuming
tain amount of time for write request starva-that the thread issuing the last request has mo-
tion is normally 2 iterations of the scheduler Mentarily no further disk request lined up, and
algorithm (see Appendix A). After two sets of hence the scheduler selects an 1/O request from
read requests have been moved to the dispat&FOther task. The design discussed here argues
queue, the scheduler will migrate some writethat the fact that the disk remains idle during
requests to the dispatch queue. A set or batcie short stall period is not necessarily_ detri-
of requests can be (as an example) 64 contigyhental to 1/0 performance. The question of
ous requests, but a request that requires a didknether (and for how long) to wait at any given

seek operation counts the same as 16 Corltingl_ecision point is key to the effectiveness and
ous requests. performance of the implementation. In prac-

tice, the framework waits for the shortest pos-
sible period of time for which the scheduler ex-
2.1 The 2.6 Anticipatory I/O scheduler pects (with a high probability) the benefits of
actively waiting to outweigh the costs of keep-

The anticipatory (AS) I/O scheduler’s designing the disk subsystem in an idle‘ste‘lte. An as-
attempts to reduce the per thread read responSESSMent of the costs and benefits is only pos-



Linux Symposium 2004 * Volume Two * 429

sible relative to a particular scheduling policy framework first passes the request to the an-
[11]. To elaborate, a seek reducing scheduleticipation heuristic for evaluation. A return
may wish to wait for contiguous or proximal value (result) of zero indicates that the heuris-
requests, whereas a proportional-share schetie has deemed it pointless to wait and the core
uler may prefer weighted fairness as one of itsherefore proceeds to dispatch the candidate
primary criteria. To allow for such a high de- request. However, a positive integer as a re-
gree of flexibility, while trying to minimize the turn value represents the waiting period in mi-
burden on the development efforts for any parcroseconds that the heuristic deems suitable.
ticular disk scheduler, the anticipatory schedul-The core initiates a timeout for that particu-
ing framework consists of 3 components [9].lar time period, and basically enters a new wait
(1) The original disk scheduler, which imple- state. Though the disk is inactive, this state is
ments the scheduling policy and is unaware otonsidered different from idling (while having
any anticipatory scheduling techniques. (2) Anpending requests and an active timeout). If the
actual scheduler independent anticipation cordimeout expires before the arrival of any new
(3) An adaptive scheduler-specific anticipationrequest, the previously chosen request is dis-
heuristic for seek reducing (such as SPTF or Cpatched without any further delay. However,
SCAN) as well as any potential proportional- new requests may arrive during the wait pe-
share (CFQ or YFQ) scheduler. The antici-riod and these requests are added to the pool of
pation core implements the generic logic and/O requests. The anticipation core then imme-
timing mechanisms for waiting, and relies ondiately requests the scheduler to select a new
the anticipation heuristic to decide if and for candidate request from the pool, and initiates
how long to wait. The actual heuristic is im- communication with the heuristic to evaluate
plemented separately for each disk schedulethis new candidate. This scenario may lead to
and has access to the internal state of the schedn immediate dispatch of the new candidate re-
uler. To apply anticipatory scheduling to a newquest, or it may cause the core to remain in the
scheduling policy, it is merely necessary to im-wait state, depending on the scheduler’s selec-
plement an appropriate anticipation heuristic. tion and the anticipation heuristic’s evaluation.
. ) In the latter case, the original timeout remains
Any traditional work-conserving I/O sched- j, effect, thus preventing unbounded waiting

uler operates in two states (known as idle andjyations by repeatedly re-triggering the time-
busy). Applications may issue I/O requestsy ;.

at any time, and these requests are normally

being placed into the scheduler’s pool of re-As the heuristic being used is disk scheduler
quests. If the disk subsystem is idle at thisdependent, the discussion here only general-
point, or whenever another request completeszes on the actual implementation techniques
a new request is being scheduled, the schedhat may be utilized. Therefore, the next few
uler’s select function is called, whereupon a reparagraphs discuss a shortest positioning time
guest is chosen from the pool and dispatchedirst (SPTF) based implementation, where the
to the disk device driver. The anticipation coredisk scheduler determines the positioning time
forms a wrapper around this traditional schedfor each available request based on the cur-
uler scheme. Whenever the disk becomes idlagent head position, and basically chooses the
it invokes the scheduler to select a candidate rerequest that results into the shortest seek dis-
quest (still basically following the same philos- tance. In general, the heuristic has to evalu-
ophy as always). However, instead of dequeuate the candidate request that was chosen by
ing and dispatching a request immediately, thehe scheduling policy. The intuition is that if
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the candidate I/O request is located close to thef the write requests (see Appendix A).
current head position, there is no need to wait
on any other requests. Assuming synchronou§_2 The 2.6 CFQ Scheduler
I/O requests initiated by a single thread, the
task that issued the last request is likely to sub-
mit the next request soon, and if this request iShe Completely Fair Queuing (CFQ) /O
expected to be close to the current request, thecheduler can be considered to represent an
heuristic decides to wait for this request [11].extension to the better known Stochastic Fair
The waiting period is chosen as the expecte@ueuing (SFQ) implementation [12]. The fo-
YZ percentile (normally around 95%) think- cus of both implementations is on the concept
time, within which there is a XZ probability of fair allocation of I1/0 bandwidth among all
(again normally 95%) that a request will ar-the initiators of I/O requests. An SFQ-based
rive. This simple approach is transformed andscheduler design was initially proposed (and
generalized into a succinct cost-benefit equaultimately being implemented) for some net-
tion that is intended to cover the entire rangework scheduling related subsystems. The goal
of values for the head positioning, as well asto accomplish is to distribute the available I/O
the think-times. To simplify the discussion, thebandwidth as equally as possible among the
adaptive component of the heuristic consists of/O requests. The implementation utilizes n
collecting online statistics on all the disk re- (normally 64) internal I/O queues, as well as
quests to estimate the different time variablesa single I/O dispatch queue. During an en-
that are being used in the decision making progueue operation, the PID of the currently run-
cess. The expected positioning time for eacning process (the actual 1/0 request producer)
process represents a weighted-average over tle utilized to select one of the internal queues
time of the positing time for requests from that(normally hash based) and hence, the request
process (as measured upon request complés basically inserted into one of the queues (in
tion). Expected median and percentile think-FIFO order). During dequeue, the SFQ design
times are estimated by maintaining a decayedalls for a round robin based scan through the
frequency table of request think-times for eachnon-empty 1/0 queues, and basically selects re-
process. guests from the head of the queues. To avoid
] ) _ .. encountering too many seek operations, an en-
The Linux 2.6 implementation of the anticipa- e yound of requests is collected, sorted, and
tory I/_O schedt_jler follows the basic idea that 'fultimately merged into the dispatch queue. In
the disk drlvg just operated on a read req.uesta next step, the head request in the dispatch
the assumption can be made that there is anj e e is passed to the device driver. Concep-
other read request in the pipeline, and hence {51y a CFQ implementation does not utilize
is worth while to wait [5]. As discussed, the 5 phagh function. Therefore, each 1/0 process
I/O scheduler starts a timer, and at this pomtgets an internal queue assigned (which implies
there are no more 1/O requests passed dOWfat the number of 1/0 processes determines
to the device driver. If a (close) read requesine nymper of internal queues). In Linux 2.6.5,
arrives during the wait time, it is serviced im- the CFQ I/O scheduler utilizes a hash func-
mediately and in the process, the actual disgign (and a certain amount of request queues)
tan(?e that the kernel cons_lders as close 9roWgng therefore resembles an SFQ implementa-
as time passes (the adaptive part of _the heurigion The CFQ, as well as the SFQ implemen-
tic). Eventually the close requests will dry out 44iqns strives to manage per-process I/0 band-
and the scheduler will decide to submit SOMEidth, and provide fairness at the level of pro-
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cess granularity. block information as the yardstick for sorting,
as well as determining the seek distance. In the
2.3 The 2.6 noop I/O scheduler case that the seek distance to the request behind

the elevator is less than half the seek distance to

The Linux 2.6 noop 1/O scheduler can bethe requestin front of the elevator, the request
considered as a rather minimal overhead l/@ehind the elevator is chosen. The backward
scheduler that performs and provides basigeek operations are limited to a maximum of
merging and sorting functionalities. The mainMAXBACK (1024 * 1024) blocks. This ap-
usage of the noop scheduler revolves aroun@roach favors the forward movement progress
non disk-based block devices (such as mernOf the elevator, while still aIIOWing short back-
ory devices), as well as specialized software ofvard seek operations. The expiration time for
hardware environments that incorporate theithe requests held on the FIFO lists is tune-
own 1/0O scheduling and (large) caching func-able via the parameteri®ad_expire  and
tionality, and therefore require only minimal Write_expire  (see Appendix A). When a
assistance from the kernel. Therefore, in largéead or a write operation expires, the AS I/0
/0 subsystems that incorporate RAID con-scheduler will interrupt either the current ele-
trollers and a vast number of contemporaryvator sweep or the read anticipation process to
physical disk drives (TCQ drives), the noopService the expired request(s).

scheduler has the potential to outperform the

other 3 1/0 schedulers as the workload in-2.5 Read and Write Request Batches

creases.

An actual 1/0 batch is described as a set of
2.4 1/0 Scheduler—Performance Implications  read or write requests. The AS scheduler alter-

nates between dispatching either read or write
The next few paragraphs augment on the I/(batches to the device driver. In a read sce-
scheduler discussion, and introduce some addnrario, the scheduler submits read requests to
tional performance issues that have to be takethe device driver, as long as there are read
into consideration while conducting an I/0O per-requests to be submitted, and the read batch
formance analysis. The current AS implemen+ime limit (read_batch_expire ) has not
tation consists of several different heuristicsbeen exceeded. The clock cead_batch_
and policies that basically determine when andxpire only starts in the case that there are
how 1I/O requests are dispatched to the 1/0O conwrite requests pending. In a write scenario, the
troller(s). The elevator algorithm that is being scheduler submits write requests to the device
utilized in AS is similar to the one used for driver as long as there are pending write re-
the deadline scheduler. The main differencequests, and the write batch time limatite_
is that the AS implementation allows limited batch_expire has not been exceeded. The
backward movements (in other words supportheuristic used insures that the length of the
backward seek operations) [1]. A backwardwrite batches will gradually be shortened if
seek operation may occur while choosing bethere are read batches that frequently exceed
tween two /O requests, where one request igheir time limit.
located behind the elevator’s current head po- o )
sition while the other request is ahead of the/Vhen switching between read and write re-
elevator’s current position. guests, the scheduler waits until all the re-

guests from the previous batch are completed
The AS scheduler utilizes the lowest logicalbefore scheduling any new requests. The read
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and write FIFO expiration time is only being associated with each process, but these statis-
checked when scheduling 1/0O for a batch oftics are not associated with a specific 1/0O de-
the corresponding (read or write) operation.vice per se To illustrate, the approach works
To illustrate, the read FIFO timeout values aremore efficiently if there is a one-to-one corre-
only analyzed while operating on read batcheslation between a process and a disk. In the case
Along the same lines, the write FIFO timeoutthat a process is actively working I/O requests
values are only consulted while operating onon separate devices, the actual statistics reflect
write batches. Based on the used heuristics anal combination of the /O behavior across all
policies, it is generally not recommended to sethe devices, skewing the statistics and therefore
the read batch time to a higher value than thelistorting the facts. If the AS scheduler guesses
write expiration time, or to set the write batch right, very expensive seek operations can be
time to a greater value than the read expiratioomitted, and hence the overall I/O through-
time. As the 10 scheduler switches from a readout will benefit tremendously. In the case that
to a write batch, the 1/0 framework launchesthe AS scheduler guesses wrong, amic_
the elevator with the head request on the writeexpire  time is wasted. In an environment
expired FIFO list. Likewise, when switching that consists of larger (HW striped) RAID sys-
from a write to a read batch, the I/O sched-tems and tag command queuing (TCQ) capable
uler starts the elevator with the first entry ondisk drives, it is more beneficial to dispatch an
the read expired FIFO list. entire batch of read requests and let the con-
trollers and disk do their magic.

2.6 Read Anticipation Heuristic From a physical disk perspective, to locate
specific data, the disk drive’s logic requires

The process of read anticipation solely occurdn® cylinder, the head, and the sector infor-

when scheduling a batch of read requests. ThE!ation [17]. The cylinder specifies the track
AS implementation only allows one read re-ON which the data resides. Based on the lay-

quest at a time to be dispatched to the con€ring technique used,_ the tracks unde_rneath
troller. This has to be compared to either€@ch other form a cylinder. The head infor-

the many write request scenario or the mam;nation identifies the specific read/write head

read request case if read anticipation is deact@nd therefore the exact platter). The search

vated. In the case that read anticipation is en!S NOW narrowed down to a single track on a
abled @ntic_expire = 0 ), read requests single platter. Ultimately, the sector value re-
are dispatched to the (disk or RAID) controller fleCts the sector on the track, and the search
one at a time. At the end of each read requestS completed.  Contemporary disk subsys-
the I/O scheduler examines the next read relems do not communicate in terms of cylin-
quest from the sorted read list (an actual rb_de_rs, heads and_sectors. Instead, modern disk
tree) [1]. If the next read request belongs todVES Map a unique block number over each

the same process as the request that just Corﬁyli'nder/head/sector construct. Therefore, thgt
pleted, or if the next request in the queue is(umque) reference number.lde.ntlfles aspeglflc
close (data block wise) to the just completedCYlinder/head/sector combination. Operating
request, the request is being dispatched imsystems address the dlsk_ drives by utilizing
mediately. Otherwise, the statistics (averagdn€Se block numbers (logical block address-

think-time and seek distance) available for thdn9), and hence the disk drive is responsible for

process that just completed are being examiranslating the block number into the appropri-

ined (cost-benefit analysis). The statistics ar@!€ cylinder/head/sector value. The culprit is
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that it is not guaranteed that the physical mapscheduler, however all SCSI devices in Linux
ping is actually sequential. But the statemenutilize the scheduler by virtue of the SCSI
can be made that there is a rather high probabimid-layer [1]. Thescsi_alloc_queue()

ity that a logical blockn is physically adjacent function callsblk_init_queue() , Which
to a logical blockn+1. The existence of the sets the request functions$asi_request_
discussed sequential layout is paramount to then() . Thescsi_request_fn() function

I/O scheduler performing as advertised. Basethkes requests from the 1/0 scheduler (on de-
on how the read anticipatory heuristic is imple-queue), and passes them down to the device
mented in AS, I/O environments that consist ofdriver.

RAID systems (operating in a hardware stripe

setup) may experience a rather erratic perfor3.1 SCSI Operations

mance behavior. This is due to the current

AS implementation that is based on the notion,, he case of a simple SCSI disk access, the

that an 1/0 device has only one physical (seek}eCIuest has to be processed by the server, the
head, ignoring the fact that in a RAID environ- =g host adapter, the embedded disk con-
ment, each physical disk has its own physicaj;q|ier, and ultimately by the disk mechanism
seek head construct. As this is not recognizeglcoir  As the OS receives the I/O request
by the AS schedule_r, _the data being used Toft converts the request into a SCSI command
the statistics analysis is skewed. Further, d'SIf)acket. In the case of a synchronous request
drives that support TCQ perform best whenyg cajling thread surrenders the CPU and tran-

being able to operate om (and not 1) pend- jtions into a sleep state until the I/O operation
ing I/0 _reques’;s. The read anticipatory heurl_s-IS completed. In a next step, the SCSI com-
tic basically disables TCQ. Therefore, envi-manq is transferred across the server's 1/0 bus
ronments that support TCQ and/or consist 0ty the SCSI host adapter. The host adapter is
RAID systems may benefit from either cho0s-yggn5nsiple for interacting with the target con-
ing an alternate I/O scheduler or from settingy o)y and the respective devices. In a first step,

theantic_expire ~ parameter to 0. The tun- o oot adapter selects the target by asserting
ing allows the AS scheduler to behave S|m|IarI3_/itS control line onto the SCSI-bus (as the bus

to the deadline I/O scheduler (the emphasis i§acomes available). This phase is known as

on behave and not performance). the SCSI selection period. As soon as the tar-
get responds to the selection process, the host

3 1/0O Components that Affect Per- adapter transfers the SCSI command to the tar-
formance get. This section of the 1/O process is labeled

as the command phase. If the target is capa-

ble of processing the command immediately, it

In any computer system, between the disksither returns the requested data or the status
drives and the actual memory subsystem i$hformation.

a hierarchy of additional controllers, host

adapters, bus converters, and data paths that & most circumstances, the request can only be
impact I/O performance in one way or anotherprocessed immediately if the data is available
[17]. Linux file systems submit I/O requests by in the target controller’s cache. In the case of
utilizing submit_bio() . This function sub- aread() request, the data is normally not
mits requests by utilizing the request functionavailable. This results into the target discon-
as specified during queue creation. Techninecting from the SCSI bus to allow other SCSI
cally, device drivers do not have to use the I/Ooperations to be processed. If the I/O opera-
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tion consists of awrite() request, the data case where the fence is set to 255 (the maxi-
phase is followed immediately by a commandmum), the disk will wait until almost all the re-
phase on the bus, as the data is transferred intguested data has been accumulated in the con-
the target’s cache. At that stage, the target distroller's memory before contending for the bus.
connects from the bus. After disconnecting o _

from the bus, the target resumes its own proJ "€ performance implication of setting the
cessing while the bus can be utilized by othef€NC€ t0 a low value is a reduced response
SCSI requests. After the physical /0 opera—t'me’ but _results in a data transfer that hap-
tion is completed on the target disk, the targeP€NS basically at disk speed. On the other

controller competes again for the bus, and reh@nd, a high fence value will delay the start

connects as soon as the bus is available. THef the data transfer, but results in a data trans-
reconnect phase is followed by a data phase (iff" that occurs at near burst speed. Therefore,
the case ofead() operation) where the data N Systems with multiple disks per adapter, a
is actually being moved. The data phase is folhigh fence value po_tentlal_ly increases overall
lowed by another status phase to describe thfroughput for /O intensive workloads. A

results of the I/O operation. As soon as theStudy by Shriver [15] observed fairness in ser-

SCSI host adapter receives the status updat¥icing sufficiently large I/O requests (in the

it verifies the proper completion of the request:6KB 10 128KB range), despite the fact that
and notifies the OS to interrupt the requesting"® SCSI disks have different priorities when
worker thread. Overall, the simple SCSI 1/0 contending for the bus. Although each pro-
request causes 7 phase changes consisting of§SS attempts to progress through its requests
select, a command, a disconnect, a reconned‘f‘,"th‘)“t any coordination with other processes,
a data, a status, and a disconnect operatiof CONVOY behavior among all the processes was

Each phase consumes time and contributes foPServed. Namely, all disk drives received a
the overall I/O processing latency on the Sys_request and transmitted the data_back to the
tem. host adapter before any disk received another

request from the adapter (a behavior labeled
as rounds). The study revealed that the host
3.2 SCSIDisk Fence adapter does not arbitrate for the bus, despite
having the highest priority, as long as any disk

When discussing SCSI disks, it is imperative'S arbitrating.

to understand the performance impact of a rel-

atively obscure disk control parameter that is3-3 Zone Bit Recording (ZBR)

labeled as the fence. When a SCSI disk recog-

nizes a significant delay (such as a seek opecontemporary disk drives utilize a technology
ation) in aread() request, the disk will sur- called Zone Bit Recording to increase capacity
render the bus. At the point where the disk is[17]. Incorporating the technology, cylinders
ready to transfer the data, the drive will againare grouped into zones, based on their distance
contend for the bus so that thead() request from the center of the disk. Each zone is as-
can be completed. The fence parameter detesigned a number of sectors per track. The outer
mines the time at which the disk will begin to zones contain more sectors per track compared
contend for the SCSI bus. If the fence is set tao the inner zones that are located closer to the
0 (the minimum), the disk will contend for the spindle. With ZBR disks, the actual data trans-
SCSI bus after the first sector has been trander rate varies depending on the physical sector
ferred into the disk controller's memory. In the location.
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Read Performance - ZBR Disk revealed a similar picture. On average, the ac-
tual system throughput rates were 13% to 15%
lower than what was cited in the vendor specifi-
cations. Based on the conducted research, this
SN text proposes a first-order ZBR approximation
nominal disk transfer rate model (for a partic-
ular request sizeeq and a disk capacitgap)
that is defined in Equation 1 as:

~
o

B

fe
e

Throughput (MB/sec)
@ W
s R

¥
B

N
R

Zones

Note:
Figure 1 depicts the average throughpu.t per . E 0.35@“ ) B [(Jtrmax "min) "
zone, the benchmark revealed 14 distinct wr max cap
performance steps.

tr = maximum disk specific internal transfer speed

Figure 1: ZBR Throughput Performance max

tr . = minimum disk specific internal transfer speed
min

Given the fact that a disk drive spins at a con-

stant rate, the outer zones thqt contain morgq suggested throughput regulation factor of
sectors will transfer data at a higher rate tham) g5 \yas derived from the earlier observation

the inner zones that contain fewer sectors. Ina¢ throughput rates adjusted for factors such
this study, evaluating I/O performance on an,g gector overhead, error correction, or track
18.4 GB Seagate ST318417W disk drive outng cylinder skewing issues resulted in a drop

lined the throughput degradation for sequenz approximately 15% compared to the man-

tial read() operations based on physical seCysacturer reported transfer rates. This study
tor location. The ZCAV program used in this arqyes that the manufacturer reported transfer
experiment is part of the Bonnie++ bench-yate5 could be more accurately defined as in-
mark suite. Figure 1 outlines the average zongantaneous bit rates at the read-write heads.
read() throughput performance. It has 10 b§¢ pas to be emphasized that the calculated
pointed out that the performance degradation '$hroughput rates derived from the presented

not gradual, as the benchmark results revealegoge| will have to be adjusted onto the target
14 clear distinct performance steps along th%ystem’s ability to sustain the 1/O rate.
throughput curve. Another observation derived

from the experiment was that for this particu-The theories of progressive chaos imply that
lar ZBR disk, the outer zones revealed to beanything that evolves out of a perfect order
wider than the inner zones. The Seagate specwill over time become disordered due to out-
fications for this particular disk cite an internal side forces. The progressive chaos concept can
transfer rate of 28.1 to 50.7 MB/second. Thecertainly be applied to I/O performance. The
measured minimum and maximum through-dynamic allocation (as well as de-allocation)
putread() values of 25.99 MB/second and of file system resources contributes to the pro-
40.84 MB/second, respectively are approxi-gressive chaos scenario encountered in virtu-
mately 8.1% and 19.5% (13.8% on averageplly any file system designs. Form a device
lower, and represent actual throughput ratesdriver and physical disk drive perspective, the
Benchmarks conducted on 4 other ZBR drivegesults of disk access optimization strategies
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are first, that the number of transactions pebenchmarks, the study used a filer server, aweb
second is maximized and second, that the orserver, a mail server, as well as a metadata in-
der in which the requests are being received isensive 1/O profile (see Appendix B). The file,
not necessarily the order the requests are geas well as the mail server workloads (the actual
ting processed. Thus, the response time of anfransaction mix) was based on Intel's lome-
particular request can not be guaranteed. Aer benchmark [18], whereas the mail server
request queue may increase spatial locality byransaction mix was loosely derived from the
selecting requests in an order to minimize theSPECmail2001 I/O profile [19]. The I/O anal-
physical arm movement (a workload transfor-ysis in this study was composed of two distinct
mation), but may also increase the perceivedocal points. One emphasis of the study was
response time because of queuing delays (a ben aggregate I/O performance achieved across
havior transformation). The argument made inthe 4 benchmarked workload profiles, whereas
this study is that the interrelationship of somea second emphasis was on the sequential read
the discussed I/O components has to be takeand write performance behavior. The emphasis
into consideration while evaluating and quanti-on aggregate performance across the 4 distinct
fying performance workload profiles is based on the claim made
that an I/O scheduler has to provide adequate
performance in a variety of workload scenar-
ios and hardware configurations, respectively.
All the conducted benchmarks were executed
The main goal of this study was to quantify with the default tuning values (if not specified
I/O performance (focusing on the Linux 2.6 otherwise) in an ext3 as well as an xfs file sys-
I/O schedulers) under varying workload sce-tem environment. In this paper, the term re-
narios and hardware configurations. Thereforesponse time represents the total run time of the
the benchmarks were conducted on a singleactual FFSB benchmark, incorporating all the
CPU single-disk system, a midrange 8-wayl/O operations that are executed by the worker
NUMA RAID-5 system, and a 16-way SMP threads.

system that utilized a 28-disk RAID-0 config-
uration. The reader is referred to Appendix
B for a more detailed description of the dif-
ferent benchmark environments. As a work-
load generator, the study utilized the flexibleThe normalized results across the 4 workload
file system benchmark (FFSB) infrastructureprofiles revealed that the deadline, the noop, as
[8]. FFSB represents a benchmarking enviwell as the CFQ schedulers performed within
ronment that allows analyzing I/0 performance2% and 1% percent on ext3 and xfs (see Fig-
by simulating basically any 1/O pattern imag- ure 2). On ext3, the CFQ scheduler had a slight
inable. The benchmarks can be executed oadvantage, whereas on xfs the deadline sched-
multiple individual file systems, utilizing an uler provided the best aggregate (normalized)
adjustable number of worker threads, whergesponse time. On both file systems, the AS
each thread may either operate out of a comscheduler represented the least efficient solu-
bined or a thread-based I/O profile. Aging thetion, trailing the other I/O schedulers by 4.6%
file systems, as well as collecting systems utiand 13% on ext3 and xfs, respectively. Not
lization and throughput statistics is part of thesurprisingly, among the 4 workloads bench-
benchmarking framework. Next to the moremarked in a single disk system, AS trailed the
traditional sequential read and sequential writeother 3 I/O schedulers by a rather significant

4 1/0O Schedulers and Performance

5 Single-CPU Single-Disk Setup
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margin in the Web Server scenario (which re-xfs, the study clearly disclosed a profound AS
flects 100% random read operations). On selO inefficiency while executing the metadata
guential read operations, the AS scheduler outoenchmark. The delta among the schedulers
performed the other 3 implementations by amon xfs was much larger than on ext3, as the
average of 130% and 127% on ext3 and xfsCFQ, noop, and AS implementations trailed
The sequential read results clearly support théhe deadline scheduler by 1%, 6%, and 145%,
discussion in this paper on where the design forespectively (see Appendix C). As in the single
cus for AS was directed. In the case of sequendisk setup, the AS scheduler provided the most
tial write operations, AS revealed the most effi-efficient sequential read performance. The gap
cient solution on ext3, whereas the noop schedsetween AS and the other 3 implementations
uler provided the best throughput on xfs. Theshrunk though rather significantly compared to
performance delta (for the sequential write scethe single disk scenarios. The average sequen-
narios) among the 1/0 schedulers was 8% ortial read throughput (for the other 3 schedulers)
ext3 and 2% on xfs (see Appendix C). was approximately 20% less on both ext3 and
xfs, respectively. The sequential write perfor-
mance was dominated by the CFQ scheduler’s
response time that outperformed the other 3 so-
lutions. The delta between the most (CFQ)
and the least efficient implementation was 22%
(AS) and 15% (noop) on ext3 and xfs, respec-
tively (see Appendix C).

Single Disk - Single CPU

RAID-5 - Ext3

S
£

o

©

o
a

Note: In
Figure 2, the x-axis depicts the 1/0O schedulers.
The front row reflects the ext3 setup, whereas
the back row shows xfs. The y-axis discloses
the aggregate (normalized) response time over
the 4 benchmarked profiles per 1/0 scheduler.

Figure 2: Aggregate Response Time (Normal- S o
ized)

Note: In Figure 3, the x-axis depicts the 1/0

schedulers. The front-row reflects the non-
tuned, and the back-row the tuned environ-
ments. The y-axis discloses the normalized re-

In the RAID-5 environment, the normalized re- . .
) ; . sponse time (over the 4 profiles) per /O sched-
sponse time values (across the 4 profiles) dis-

closed that the deadline scheduler provided the "

most efficient solution on ext3 as well as xfsFigure 3: EXT3 Aggregate Response Time
(see Figure 3 and Figure 4). While executing in(Normalized)

an ext3 environment, all 4 I/O schedulers were

within 4.5%, with the AS 1/O scheduler trail- In a second phase, all the 1/0 scheduler setups
ing noop and CFQ by approximately 2.5%. Onwere tuned by adjusting the (per block device)

5.1 8-Way RAID-5 Setup
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RAID-5 - XFS as the response time decreased by 7% and 8%
— on ext3 and xfs, respectively. The conducted
benchmarks revealed another significant inef-
ficiency behavior in the 1/0 subsystem, as the
write performance (for all the schedulers) on
ext3 was significantly lower (by a factor of ap-
proximately 2.1) than on xfs. The culprit here
is the ext3 reservation code. Ext3 patches to
resolve the issue are available from kernel.org.

5.2 16-Way RAID-0 Setup

Note: In Figure 4, the x-axis depicts the /O ... . . ) . _
schedulers. The front-row reflects the non-UtIIIZIng the 28 disk RAID-O configuration

wned. and the back-row the tuned environ-as the benchmark environment revealed that

' o . across the 4 workload profiles, the deadline
ments. The y-axis dISC|OS€‘S_ the normalized reFmplementation was able to outperform the
sponse time (over the 4 profiles) per 1/0 sched-other 3 schedulers (see Appendix C). It has to
uler. be pointed out though that the CFQ, as well
Figure 4: XFS Aggregate Response TimeaS the noop scheduler, slightly outperformed
(Normalized) the deadline implementation in 3 out of the 4
benchmarks. Overall, the deadline scheduler

gained a substantial lead processing the Web

. . server profile (100% random read requests),
tunablenr_requests (/O operations in fly) outperforming the other 3 implementations b
from its default value of 128 to 2,560. The re- P 9 P y

2%. h hedul -
sults revealed that the CFQ scheduler reacte p to 62%. On eth.)’.t € Noop sC ed.u erre
; " ) ected the most efficient solution while op-
in a rather positive way to the adjustment, an

. rating on sequential read and write requests,
ergo was capable to provide on ext3 as wel ) ;
s . whereas on xfs, CFQ and deadline dominated
as on xfs the most efficient solution. The tun

) . : . _the sequential read and write benchmarks. The
ing resulted into decreasing the response time

for CFQ in all the conducted (workload profile performance delta among the schedulers (for

based) benchmarks on both file systems (Sethe 4 profiles) was much more noticeable on

0, 0, i
Appendix C). While CFQ benefited from the Xs (38%) than on ext3 (6%), which reflects a

tunina. the results for the other 3 im Iernen_similar behavior as encountered on the RAID-
g P 5 setup. Increasing nr_requests to 2,560 on the

tgtlons were mco_ncluswe. Bas_ed on t.h € PrORAID-0 system led to inconclusive results (for
file, the tuning either resulted in a gain or a

loss in performance. As CFQ is designed t all the 1/0 schedulers) on ext3 as well as xfs.
P : g The erratic behavior encountered in the tuned,
operate on larger sets of I/O requests, the r

sults basically reflect the design goals of thzarge RAID-0 environment is currently being

scheduler [1]. This is in contrast to the AS im- investigated.
plementation, where by design, any read inten-
sive workload can not directly benefit from the S
change. On the other hand, in the case sequen-

tial write operations are being executed, ASTo further illustrate and basically back up the
was capable of taking advantage of the tuninglaim made in Section 2 that the AS scheduler

.3 AS Sequential Read Performance
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design views the I/O subsystem based on a n@f a file system is supposed to approach the
tion that an 1/O device has only one physicalcapacity of the hardware (workload dependent
(seek) head, this study analyzed the sequerof course). This study clearly outlines that in
tial read performance in different hardware sethe discussed workload scenario, the 2 bench-
tups. The results were being compared to thenarked file systems are capable of achieving
CFQ scheduler. In the single disk setup, theéhese goals, but only in the case the 1/0 sched-
AS implementation is capable of approachingulers are exchanged depending on the physical
the capacity of the hardware, and therefore prohardware setup. The fact that the read-ahead
vides optimal throughput performance. Undercode in Linux 2.6 has to operate as efficiently
the same workload conditions, the CFQ schedas possible (in conjunction with the 1/0 sched-
uler substantially hampers throughput perfor-uler and the file system) has to be considered
mance, and does not allow the system to fullyhere as well.

utilize the capacity of the 1/0 subsystem. The

described beha\(lor holds true for the ext3 8% 4 AS verses deadline Performance

well as the xfs file system. Hence, the state-

ment can be made that in the case of sequen-

tial read operations and CFQ, the 1/0 schedBased on the benchmarked profiles and hard-
uler (and not the file system per se) reflects thevare setups, the AS scheduler provided in
actual 1/0O bottleneck. This picture is being re-most circumstances the least efficient 1/0 so-
versed as the capacity of the I/O subsystem itution. As the AS framework represents
being increased. an extension to the deadline implementation,
this study explored the possibility of tun-

|HWSetup] AS | CFQ | ing AS to approach deadline behavior. The
1 Disk | 52 MB/sec| 23 MB/sec tuning consisted of settingr_requests
RAID-5 | 46 MB/sec| 39 MB/sec to 2,560, antic_expire to 0, read_
RAID-0 | 31 MB/sec| 158 MB/sec batch_expire  to 1,000, read_expire
to 500, write_batch_expire to 250,
Table 1: AS vs. CFQ Sequential Read Perfor-and_ erte__explre to 5,000. Set'gng the
mance antic_expire value to O (by design) ba-

sically disables the anticipatory portion of the
As depicted in Table 1, the CFQ scheduler apscheduler. The benchmarks were executed uti-
proaches first, the throughput of the AS imple-lizing the RAID-5 environment, and the re-
mentation in the benchmarked RAID-5 envi-sults were compared to the deadline perfor-
ronment and second, is capable of approachingnance results reported this study. On ext3,
the capacity of the hardware in the large RAID-the non-tuned AS version trailed the non-tuned
0 setup. In the RAID-0 environment, the AS deadline setup by approximately 4.5% (across
scheduler only approaches approximately 17%he 4 profiles). Tuning the AS scheduler re-
of the hardware capacity (180 MB/sec). To re-sulted into a substantial performance boost, as
iterate, the discussed 1/0O behavior is reflectedhe benchmark results revealed that the tuned
in the ext3 as well as the xfs benchmark resultsAS implementation outperformed the default
From any file system perspective, performanceleadline setup by approximately 6.5% (see Ap-
should not degrade if the size of the file systempendix C). The performance advantage was
the number of files stored in the file system,squandered though while comparing the tuned
or the size of the individual files stored in the AS solution against the deadline environment
file system increases. Further, the performanceith nr_requests set to 2,560. Across
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the 4 workload profiles, deadline again out-thread (instead of per process) granularity, and
performed the AS implementation by approxi-therefore alters the distribution of the 1/O re-
mately 17%. As anticipated, settirzgntic_ guests in the internal queues. In addition, the
expire to O resulted into lower sequential cfq_quantum and cfq_queued parame-
read performance, stabilizing the response timéers of the CFQ framework were exported into
at deadline performance (see Appendix C). Oruser space.

xfs, the results were (based on the rather er- ] )

ratic metadata performance behavior of AS)N @ first step, the default tgid based CFQ ver-
inconclusive. One of the conclusions is thatSioN With cfq_quantum  set to 32 (default

based on the current implementation of the A$duals to 8) was compared to the PID based
code that collects the statistical data, the imiMpPlementation that used the same tuning con-

plemented heuristic is not flexible enough tofiguration. Across the 4 profiles, the PID based

detect any prolonged random 1/O behavior dmplementation reflected the more efficient so-

scenario where it would be necessary to deadution. processing the I/O workloads approxi-
tivate the active wait behavior. Further, settingMately 4.5% and 2% faster on ext3 and xfs, re-

antic_expire to 0 should force the sched- SPectively. To further quantify the performance

uler into deadline behavior, a claim that is notimPact of the different hash methods (tgid

backed up by the empirical data collected forV€rses PID based), in a second step, the study

this study. One explanation for the discrep-compared the default Linux 2.6.5 CFQ setup
ancy is that the short backward seek operation® the PID based code that was configured
supported in AS are not part of the deadlingVith cfg_quantum adjusted to 32 (see Ap-

framework. Therefore, depending on the actuaP€Ndix C). Across the 4 profiles benchmarked
physical disk scheduling policy, the AS back- on ext3, the new CFQ scheduler that hashed on

ward seek operations may be counterproduc? PID grar_lularity outperfo_rmed the status quo
tive from a performance perspective. by approximately 10%. With the new method,
the sequential read and write performance im-

proved by 3% and 4%, respectively. On xfs
5.5 CFQ Performance (across the 4 profiles), the tgid based CFQ im-
plementation proved to be the more efficient

The benchmarks conducted revealed that th&0!ution, outperforming the PID based setup
tuned CFQ setup provided the most efficient?y @Pproximately 9%. On the other hand, the
solution for the RAID-5 environment (see Sec-F!D based solution was slightly more efficient
tion 5.1). Therefore, the study further exploredWhile operating on the sequential read (2%)

varies ways to improve the performance of the?d Write (1%) profiles. The ramification is

CFQ framework. The CFQ I/O scheduler in that based on the conducted benchmarks and
Linux 2.6.5 resembles a SFQ implementationﬁle system configurations, certain workload

which operates on a certain number or interScenarios can be processed more efficiently in

nal I/0 queues and hashes on a per proce%t“”ed’ PID hash based configuration setup.

granularity to determine where to place an /Oy f,rther substantiate the potential of the pro-
request. More specifically, the CFQ schedy,,seq pIp based hashing approach, a mixed
uler in 2.6.5 hashes on the thread group iq,5 \yorkioad (consisting of 32 concurrent

(tgid), which represents the process PID as ife44s) was benchmarked. The environment
POSIX.1 [1]. The approach chosen was 10 aly se reflected the RAID-5 setup. The I/O pro-

ter_ the CFQ code _to hash on the Linux PID file was decomposed in 4 subsets of 8 worker
This code change introduces fairness on a per
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RAID-5 - Mixed Workload load pattern, the hardware setup, as well as the
file system used. To reemphasize the impor-
tance of the discussed approach, an additional
benchmark was conducted utilizing a Linux 2.6
SMP system, the jfs file system, and a large
RAID-0 configuration, consisting of 84 RAID-

0 systems (5 disks each). The SPECsfs [20]
benchmark was used as the workload genera-
tor. The focus was on determining the high-
est throughput achievable in the RAID-0 setup
by only substituting the 1/0 scheduler between
SPECsfs runs. The results revealed that the

Note: In Figure 5, the x-axis depicts the 1/O noop scheduler was able to outperform the
CFQ, as well as the AS scheduler. The result
schedulers. The front row reflects the xfs,

. reverses the order, and basically contradicts the
whereas the back row depicts the ext3 basedznking established for the RAID-5 and RAID-

environment. The y-axis discloses the actuz% environments benchmarked in this study. On

response time for the mixed workload profile. the smaller RAID systems, the noop scheduler
Figure 5: Mixed Workload Behavior was not able to outperform the CFQ imple-
mentation in any random I/O test. In the large

_ _ RAID-0 environment, the 84 rb-tree data struc-
threads, each subset executing either 64KB Sgres that have to be maintained (from a mem-

write, or 256KB sequential write operations yesent g substantial, noticeable overhead factor.
(see Figure 5). The benchmark results revealed

that in this mixed 1/0 scenario, the PID basedThe ramification is that there is no silver bullet
CFQ solution (tuned witlkefq_quantum = (a.k.a. I/0 scheduler) that consistently provides
32) outperformed the other I/O schedulers bythe best possible 1/O performance. While the
at least 5% and 2% on ext3 and xfs, respecAS scheduler excels on small configurations in
tively (see Figure 5 and Appendix C). The a sequential read scenario, the non-tuned dead-
performance delta among the schedulers walhe solution provides acceptable performance
greater on ext3 (15%) than on xfs (6%). on smaller RAID systems. The CFQ sched-
uler revealed the most potential from a tun-
_ ing perspective on smaller RAID-5 systems, as
6 Conclusions and Future Work increasing therr_requests  parameter pro-
vided the lowest response time. As the noop

The benchmarks conducted on varying hargScheduler represents a rather light-way solu-
ware configurations revealed a strong (Setu&or?,.large RA_‘ID syst.ems that conS|§t of many
based) correlation among the 1/O scheduler',”d'v'dual logical devices may benefit from the
the workload profile, the file system, and ul-feéduced memory, as well as CPU overhead en-
timately I/O performance. The empirical datacountered by this solution. On large RAID sys-
disclosed that most tuning efforts resulted in€MS that consist of many logical devices, the
reshuffling the scheduler performance rankOther 3 implementations have to maintain (by
ing. The ramification is that the choice of and€Sign) rather complex data structures as part
/O scheduler has to be based on the work©f the operating framework. Further, the study

Default CF
CFQ & PID
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revealed that the proposed PID based and turputing environments.
able CFQ implementation reflects a valuable

alternative to the standard CFQ implementa-

tion. The empirical data collected on a RAID-5 References
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Appendix A: Scheduler Tunables
Deadline Tunables

Theread_expire

parameter (which is spec- requests.

Hence thefifo_batch parameter controls
the batch size based on the cost of each 1/O re-
guest. Arequestis qualified by the scheduler as
either a seek or a stream request. For additional
information, please see the discussion on the
seek cost as well as thestream_unit
parameters.

Theseek cost parameter quantifies the cost
of a seek operation compared tesmeam_

unit (expressed in Kbytes). Thetream_

unit parameter dictates how man Kbytes are
used to describe a single stream unit. A stream
unit has an associated cost of 1, hence if a re-
guest consists of XY Kbytes, the actual cost
can be determined &ost = (XY + stream_unit

- 1)/ stream_unit To reemphasize, the combi-
nation of thestream_unit , seek cost ,
and fifo_batch parameters, respectively,
determine how many requests are potentially
being moved as an I/O request expires.

The write_starved parameter (expressed
in number of dispatches) indicates how many
times the 1/0O scheduler assigns preference to
read over write requests. As already dis-
cussed, when the I/O scheduler has to move
requests to the dispatch queue, the preference
scheme in the design favors read over write
However, the write requests can

ified in milliseconds) is part of the actual dead-not be staved indefinitely, hence after the read
line equation. As already discussed, the goatequests were favored favrite_starved

of the scheduler is to insure (basically guarannumber of times, write requests are being dis-
tee) a start service time for a given 1/O requestpatched.

As the design focuses manly on read requests,

each actual read I/O that enters the scheduler i5he front_merges

parameter controls the

assigned a deadline factor that consists of thEeduest merge technique used by the scheduler.

current time plus theead_expire
milliseconds).

value (in

The fifo_batch

In some circumstances, a request may enter the
scheduler that is contiguous to a request that is
already in the 1/0O queue. It is feasible to as-

parameter governs the sume that the new request may have a correla-

number of request that are being moved to the
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tion to either the front or the back of the alreadywrite requests.

gueued request. Hence, the new request is la- ) )

beled as either a front or a back merge candil N€ antic_expire parameter controls the

date. Based on the way files are laid out, back"@Ximum amount of time the AS scheduler
merge operations are more common than fronyill idle before moving on to another request.

merges. For some workloads, it is unnecessag/rhe literature suggests initializing the parame-

to even consider front merge operations, ergd®’ slightly higher for large seek time devices.
setting thefront_merges  flag to O disables
that functionality. It has to be pointed out that
dgspite setting the flag to 0, front merges mayAppendix B: Benchmark Environ-
still happen due to the cachederge_last
hint component. But as this feature representgnent
an almost 0 cost factor, this is not considered
as an I/O performance issue.
The benchmarking was performed in a Linux
AS Tunables 2.6.4 environment. For this study, the CFQ I/O
scheduler was back-ported from Linux 2.6.5 to

The parameteread_expire  governs the 2.6.4.

timeframe until a read request is labeled ag 16-way 1.7Ghz Power4+™ [BM p690 SMP
expired. The parameter further controls tosystem configured with 4GB memory. 28
a certain extent the interval in-between eX-15,000_RPM SCSI disk drives Configured in
pired requests are serviced. This approach single RAID-0 setup that used Emulex
basically equates to determining the timeslicq_pggn2-2G Fiber controllers (1 in use for the

a single reader request is allowed t0 US€ inycqq) testing). System was configured with the
the general presence of other 1/O requests.in x 2.6.4 operating system.
The approximationl00 * ((seek time
/ read_expire) + 1) describes the per- 2.8-way NUMA system. IBM x440 with
centile of streaming read efficiency a physicalPentium™ |V Xeon 2.0GHz processors and
disk should receive in a environment that con-512KB L2 cache subsystem. Configured with
sists of multiple concurrent read requests. 4 gla2300 fiber-cards (only one was used in
. this study). The 1/0O subsystem consisted of 2
The parameteread_batch_expire dov= EAStT700 I/O controllers and utilized 15,000-
ems the time assigned to a batch (or setkp\ SCS| 18GB disk drives. The system was
of read requests prior to serving any (pOten'configured with 1GB of memory, setup as a

tially) pending write requests. Obviously, a ga|D-5 (5 disks) configuration, and used the
higher value increases the priority allotted t0| jhux 2.6.4 operating system.

read requests. Setting the value to less than

read_expire  would reverse the scenario, as3.Single CPU system. IBM x440 (8-way, only
at this point the write requests would be fa-one CPU was used in this study) with Pen-
vored over the read requests. The literaturéium™ IV Xeon 1.5GHz processor, and 512k
suggests setting the parameter to a multiplé2 cache subsystem. The system was config-
of the read_expire  value. The parame- ured with a Adaptec aic7899 Ultral60 SCSI
ters write_expire and write_batch_ adapter and a single 10,000 RPM 18GB disk.
expire , respectively, describe and govern theThe system used the Linux 2.6.4 operating sys-
above-discussed behavior for any (potentialfem and was configured with 1GB of memory.
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Workload Profiles 20%, respectively. The workload distribution
in this benchmark was (loosely) derived from

the SPECmail2001 benchmark.
1. Web Server Benchmark. The benchmark

utilized 4 worker threads per available CPU.4. MetaData Benchmark. The benchmark uti-
In a first phase, the benchmark created sewvized 4 worker threads per available CPU. In
eral hundred thousand files ranging from 4KBa first phase, the benchmark created several
to 64KB. The files were distributed across 100hundred thousand files ranging from 4KB to
directories, The goal of the create phase was t64KB. The files were distributed across 100 di-
exceed the size of the memory subsystem byectories. The goal of the create phase was to
creating more files than what can be cached bgxceed the size of the memory subsystem by
the system in RAM. Each worker thread ex-creating more files than what can be cached by
ecuted 1,000 random read operations on rarthe system in RAM. Each worker thread ex-
domly chosen files. The workload distribu- ecuted 1,000 random create, write (append),
tion in this benchmark was derived from Intel’s or delete operations on randomly chosen files.
lometer benchmark. The ratio of create to write to delete operations

_ on a per thread basis was specified as 40% to
2. File Server Benchmark. The benchmark,qo. 1 200

utilized 4 worker threads per available CPU.

In a first phase, the benchmark created severdl) Sequential Read Benchmark. The bench-
hundred thousand files ranging from 4KB tomark utilized 4 worker threads per available
64KB. The files were distributed across 100 di-CPU. In a first phase, the benchmark created
rectories. The goal of the create phase was teeveral hundred 50MB files in a single direc-
exceed the size of the memory subsystem byory structure. The goal of the create phase was
creating more files than what can be cached byo exceed the size of the memory subsystem by
the system in RAM. Each worker thread ex-creating more files than what can be cached by
ecuted 1,000 random read or write operationshe system in RAM. Each worker thread exe-
on randomly chosen files. The ratio of read tocuted 64KB sequential read operations, start-
write operations on a per thread basis was spedng at offset 0 reading the entire file up to off-
ified as 80% to 20%, respectively. The work-set 5GB. This process was repeated on a per
load distribution in this benchmark was derivedworker thread basis 20 times on randomly cho-
from Intel's lometer benchmark. sen files.

3. Mail Server Benchmark. The benchmark(ii) Sequential Write (Create) Benchmark. The

utilized 4 worker threads per available CPU.benchmark utilized 4 worker threads per avail-

In a first phase, the benchmark created severalble CPU. Each worker thread executed 64KB
hundred thousand files ranging from 4KB tosequential write operations up to a target file
64KB. The files were distributed across 100 di-size of 50MB. This process was repeated on a
rectories. The goal of the create phase was tper worker-thread basis 20 times on newly cre-
exceed the size of the memory subsystem byted files.

creating more files than what can be cached by

the system in RAM. Each worker thread exe-

cuted 1,000 random read, create, or delete op-

erations on randomly chosen files. The ratio

of read to create to delete operations on a per

thread basis was specified as 40% to 40% to
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Appendix C: Raw Data Sheets (Mean Response Time in Seconds over 3 Test
Runs)

AS - ext3 | DL-ext3 | NO -ext3| CFQ -ext3|| AS-xfs | DL - xfs | NO - xfs | CFQ - xfs
File Server| 610.9 574.6 567.7 579.1 613.5 572.9 571.3 569.9
AS - ext3 | DL-ext3 | NO -ext3| CFQ -ext3|| AS-xfs | DL - xfs | NO - xfs | CFQ - xfs
MetaData 621 634.1 623.6 597.5 883.8 781.8 773.3 771.7
AS -ext3 | DL-ext3 | NO-ext3| CFQ-ext3| AS-xfs | DL -xfs | NO - xfs | CFQ - xfs
Web Server| 531.4 502.1 498.3 486.8 559 462.7 461.6 462.9
AS - ext3 | DL-ext3 | NO - ext3 | CFQ -ext3| AS-xfs | DL-xfs | NO - xfs | CFQ - xfs
Mail Server| 508.9 485.3 522.5 505.5 709.3 633 648.5 650.4
AS - ext3 | DL-ext3 | NO -ext3| CFQ -ext3|| AS-xfs | DL - xfs | NO - xfs | CFQ - xfs
Seg. Read 405 953.2 939.4 945.4 385.2 872.8 881.3 872.4
AS - ext3 | DL-ext3 | NO - ext3 | CFQ -ext3|| AS-xfs | DL-xfs | NO -xfs | CFQ - xfs
Seq. Write |  261.3 276.5 269.1 282.6 225.7 222.6 220.9 222.4

Table 2: Single Disk Single CPU — Mean Response Time in Seconds

AS - ext3 | DL-ext3 | NO -ext3| CFQ -ext3|| AS-xfs | DL - xfs | NO - xfs | CFQ - xfs
File Server 77.2 81.2 86.5 82.7 83.8 90.3 96.6 90.7
AS -ext3 | DL-ext3 | NO-ext3| CFQ-ext3| AS-xfs | DL-xfs | NO - xfs | CFQ - xfs
MetaData 147.8 148.4 133 145.3 205.8 90.8 101.6 100.8
AS - ext3 | DL-ext3 | NO - ext3 | CFQ -ext3| AS-xfs | DL-xfs | NO - xfs | CFQ - xfs
Web Server| 70.2 58.4 66.2 59.2 82.1 81.3 78.8 75.2
AS - ext3 | DL-ext3 | NO -ext3| CFQ -ext3|| AS-xfs | DL - xfs | NO - xfs | CFQ - xfs
Mail Server| 119.2 114.8 115.3 119.3 153.9 92.1 100.7 92.2
AS - ext3 | DL-ext3 | NO - ext3 | CFQ -ext3|| AS-xfs | DL-xfs | NO - xfs | CFQ - xfs
Seq. Read| 517.5 631.1 654.1 583.5 515.8 624.4 628.7 604.5
AS -ext3 | DL-ext3 | NO - ext3 | CFQ -ext3| AS-xfs | DL-xfs | NO - xfs | CFQ - xfs
Seq. Write | 1033.2 843.7 969.5 840.5 426.6 422.3 462.6 400.4

Table 3: RAID-5 8-Way Setup — Mean Response Time in Seconds
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AS - xfs | DL - xfs
94.1 75
AS - xfs | DL - xfs
189.1 101.1
AS - xfs | DL - xfs
79.4 72.83
AS - xfs | DL - xfs
152.5 100.2
AS - xfs | DL - xfs
518.5 594.8
AS - xfs | DL - xfs
394.3 395.6

AS - ext3
78.3
AS - ext3
127.1
AS - ext3
62.4
AS - ext3
110.2
AS - ext3
523.8
AS - ext3
968.2

DL- ext3
72.1
DL- ext3
133
DL- ext3
58.8
DL- ext3
92.9
DL- ext3
586.2
DL- ext3
782.9

NO - ext3
87.1
NO - ext3
137.3
NO - ext3
75.3
NO - ext3
118.8
NO - ext3
585.3
NO - ext3
1757.8

CFQ - ext3
70.7
CFQ - ext3
124.9
CFQ - ext3
57.5
CFQ - ext3
99.6
CFQ - ext3
618.7
CFQ - ext3
813.2

NO - xfs | CFQ - xfs
89.2 76
NO - xfs | CFQ - xfs
104.6 99.3
NO - xfs | CFQ - xfs
80.6 71.7
NO - xfs | CFQ - xfs
95.1 81
NO - xfs | CFQ - xfs
580.7 594.4
NO - xfs | CFQ - xfs
549.9 436.4

File Server

MetaData

Web Server

Mail Server

Seq. Read

Seq. Write

Table 4: RAID-5 8-Way Setup Ar_requests = 2,560 — Mean Response Time in Seconds

AS -ext3 | DL-ext3 | AS Tuned - ext3|| AS-xfs DL - xfs AS Tuned - xfs
File Server 77.2 81.2 72.1 83.8 90.3 84.5
AS Default | DL Default AS Tuned AS Default | DL Default AS Tuned
MetaData 147.8 148.4 133.7 205.8 90.8 187.4
AS Default | DL Default AS Tuned AS Default | DL Default AS Tuned
Web Server 70.2 58.4 62 82.1 81.3 75.9
AS Default | DL Default AS Tuned AS Default | DL Default AS Tuned
Mail Server 119.2 114.8 103.5 153.9 92.1 140.2
AS Default | DL Default AS Tuned AS Default | DL Default AS Tuned
Seg. Read 517.5 631.1 634.5 515.8 624.4 614.1
AS Default | DL Default AS Tuned AS Default | DL Default AS Tuned
Seq. Write 1033.2 843.7 923.4 426.6 422.3 389.1

Table 5: RAID-5 8-Way - Default AS, Default deadline, and Tuned AS Comparison - Mean
Response Time in Seconds

& cfg_quantum=32

— Mean Response Time in Seconds

CFQ-ext3| PID-Tuned-ext3| CFQ Tuned-ext3| CFQ-xfs | PID-Tuned-xfs| CFQ Tuned-xfs

File Server 70.7 71.1 70.6 76 75.9 74.3
CFQ PID - Tuned CFQ Tuned CFQ PID - Tuned CFQ Tuned

MetaData 124.9 122 125.1 99.3 92.9 97.4
CFQ PID - Tuned CFQ Tuned CFQ PID - Tuned CFQ Tuned

Web Server| 57.5 55.8 58 71.7 73 72.5
CFQ PID - Tuned CFQ Tuned CFQ PID - Tuned CFQ Tuned

Mail Server 99.6 94.5 93.3 81 93.6 93.3
CFQ PID - Tuned CFQ Tuned CFQ PID - Tuned CFQ Tuned

Seq. Read| 618.7 599.5 595.4 594.4 583.7 604.1
CFQ PID - Tuned CFQ Tuned CFQ PID - Tuned CFQ Tuned

Seq. Write 813.2 781.1 758.4 436.4 432.1 414.6

Table 6: RAID-5 8-Way- Default CFQ, PID Hashed CFQc&y_quantum=32 , Default CFQ
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AS - ext3 | DL-ext3 | NO - ext3 | CFQ -ext3| AS-xfs | DL-xfs | NO - xfs | CFQ - xfs
File Server 44.5 40 41.9 40.8 42.5 43 45.9 42.5
AS - ext3 | DL-ext3 | NO -ext3| CFQ -ext3|| AS-xfs | DL - xfs | NO - xfs | CFQ - xfs
MetaData 66.7 64.6 66.2 64 101.8 71.7 72.4 66.7
AS -ext3 | DL-ext3 | NO-ext3| CFQ-ext3| AS-xfs | DL-xfs | NO - xfs | CFQ - xfs
Web Server| 43.4 38.2 37.9 42.9 68.3 42.8 69.3 64.5
AS - ext3 | DL-ext3 | NO - ext3 | CFQ -ext3| AS-xfs | DL-xfs | NO - xfs | CFQ - xfs
Mail Server 60.3 58.5 58.7 58.1 100.3 66.2 65.8 65.1
AS - ext3 | DL-ext3 | NO -ext3| CFQ -ext3|| AS-xfs | DL - xfs | NO - xfs | CFQ - xfs
Seq. Read| 2582.1 470.4 460.2 510.9 2601.2 541 576.1 511.2
AS - ext3 | DL-ext3 | NO - ext3 | CFQ -ext3|| AS-xfs | DL-xfs | NO -xfs | CFQ - xfs
Seq. Write | 1313.8 1439.3 11711 14335 508.5 506.2 508.5 509.8

Table 7: RAID-0 16 — Default /0 Schedulers, No Tuning, Mean Response Time in Seconds

CFQ[CFQ-T| AS | DL | NO
Mixed ext3 | 334.1| 288.1 | 371.2| 301.2| 333.5
CFQ [CFQ-T| AS | DL | NO
Mixed xfs | 295 | 291 | 308.4| 296 | 302.8

Table 8: RAID-5 8-Way Mixed Workload Behavior, Mean Response Time in Seconds
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Abstract characteristics. Often times, software that can
be built natively on different platforms will ex-

Typical OSS packages make assumptiong‘ibit problerr_ls when cross compiling. These
about their build environment that are not necProblems arise because the software fails to

essarily true when attempting to cross compildlistinguish between the build system and the
the software. There are two significant con-host system during one or more of the four dis-

tributors to cross compile problems: platform NCt stages in the process of cross compiling
specific code, and build/host confusion. Sev_software: configuration, compilation, installa-

eral examples of problems existing in currenttion. and verification.
OSS packages are presented for each of thegg,ss compiling is an absolute necessity for a

root causes, along with explanations of howery small number of software packages. In
they can be identified, how they can have beeg, o 555 world, there are several software pack-
avoided, and how they can be resolved. ages that are specifically designed with cross
compiling in mind (binutils, gcc, busybox, the
1 Why Cross Compile? Linux kernel itself, etc.) These packages are
often used to bootstrap a new system, provid-

o . ing a high-quality, low-cost way of obtaining a
Cross Complllqg s the process of bylldlng SOft'minimal working system with a small amount
ware on a particular platform (architecture and

: ) . > ~of effort. Once a minimal OS and related util-
operating system), with the intent of produclngities are present on a system, a developer can
executables that will run on an entirely differ-

then build additional software for the system
ent platform. Generally, the platform the soft- o " y

ware is built on is referred to as the “build” sys- as required.
tem, while the platform the executables are rums Linux becomes more prevalent in the em-
on is referred to as the “host” systém. bedded market space, there is an increased de-
sire among embedded systems developers for
more cross compile friendly software pack-
. . ages. While modern embedded systems are of-
cess of porting soft\_/v_are t9 run on _a_dlffer- ten resource rich in terms of processing power,
ent platform. The critical distinction is in the /0 capabilities, memory, and disk space when
difference between the build and host SySte"&ompared to e;nbedded’systems of only a few
lUnfortunately, not everyone chooses the same teryears ago, compiling software natively on such
minology. For example, the Scratchbox documentatiora system still poses problems for an embedded
(http://www.scratchbox.org/ ) uses the terms developer. In extreme cases, compiling a mod-

“host” and “target” where this paper uses “build” and
“host" to refer to the same concepts. erately complex software package on an em-

The process of cross compiling software is
somewhat related to, but distinct from, the pro-
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bedded system natively may take hours insteadross compiler - a toolchain that runs on a
of minutes. host system but produces output for a

target system
Embedded developers therefore prefer cross

compiling. Most significantly, it gives the

embedded developer the advantage of workIypically, the target system is really only of in-
ing in a more comfortable, resource-richterest to those working on compilers and re-
environment—typically on a high-end work- lated tools, where that extra degree of precision
station or desktop system—where they cars needed in order to specify the final binary
take advantage of superior hardware to reductormat those tools are intended to produce. In
their compile/link/debug cycles. Also impor- the OSS world, aside from binutils, gcc, and
tantly, cross compiling makes it easier to set ugsimilar software packages, one can usually ig-
a system by which an entire system can easilyiore the additional possibilities and complica-

be built from scratch in a reproducible mannertions introduced by variations in the target sys-
tem.

2 Terminology and Assumptions The remainder of this paper will assume the ex-
istence of a cross compifethat runs on an un-

o . ifi il [ le of pro-

Cross compiling is a specialized subset of theSpeCI led build system, and is capable of pro

ducing executables that will run on a different
software development world, and as such, em- g

. ) i unspecified host system. The paper ignores the
ploys its own terminology in an attempt un- P y paperig

. . . . process of porting software to run on a new

ambiguously identify certain concepts. The | . )
. - atform, in order to concentrate solely on is-

following terms are definitions based on thosep .

. .~ sues that arise from the process of cross com-
provided by the GNU autoconf documentation iling the software
2, and used commonly in OSS projects such ag g '
binutils, gcc, etc.

3 Configuration Issues

platform - an architecture and OS combina- _
tion All but the most simple software packages gen-

erally require some means of configuration.

build system - the platform that a software This is a process by which the software deter-
package will beconfiguredandcompiled mines how it should be built—which libraries

on it should reference, which headers it may in-

clude, any particular quirks or workarounds in
host system- the platform that a software system calls it needs to deal with, etc.
package willrun on
Configuration is an area ripe for introducing
target system - the platform that the software cross compile problems. It provides software

package willproduceoutput for packages with the unique opportunity to com-

. . , pletely confuse a build by assuming that the
toolchain - the collection of tools (compller,. build system and the host system are one and

Ilnkgr, etc.) along with th_e headers, |i- the same. All cross compile configuration
braries, etc. needed to build software for

a platform 3Those interested in building their own cross com-
piler may wish to consult the 'Resources’ section at the
2Available athttp://www.gnu.org/manual/ end of this paper.
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problems are some reflection of this confusiorsystems.
between the identity of the build and host sys-
tems. 3.2 Be cautious when executing code on the
build system

3.1 Avoid using the wrong tools

As part of the configuration process, many
This particular problem is caused by misiden-software packages—particularly those built on
tifying which tools are to be used as part of thetop of autoconf —will try to compile, link,
build process. Some software packages expeor even execute code on the host system.
to be able to build and execute utility programs _
as part of their build process; a good exampld ©F autoconf  based projects, most of the
of this is the Linux kernel configuration utility. standard autoconf macros AC_CHECK_

While the final output of the software packageLIB , AC_CHECK_HEADERtc.) do a good

will need to run on the host system, these utiIJob of_deahng with cross compile issues. In
ity programs will need to be run on the build some instances, though, these standard macros

system. fail when trying to test for the presence of an
uncommon header file or library. Developers

Figure 1 shows an example of this problem. Intypically deal with these case by writing cus-

this caseCC_FOR_BUILDis set to the same tomautoconf macros.

value asCG which would be appropriate if it

wasn'’t for the fact that earlier in the configura-

tion processCCwas explicitly set to reference ]E)rod_uce a custom macro thﬁt T(ndhs up Eer-
the cross compiler being used for the build. orming a more extensive check than what

is really needed. Often times, a developer

If the developer is not cautious, s/he may

# compilers to use to create programs will create a custom macro that makes use of

# which b in the build i . .

CC FOR BUILD = s(ogy o e environment the autoconf AC_TRY_RUN macro. This

-CXX_FOR_BUILD = $(CXX) macro attempts to compile, link, and execute

+CC_FOR_BUILD = gcc .

+CXX_FOR_BUILD = g++ an arbitrary code fragment. The problem here
is that the conditions being tested for may not

SUBDIRS = "this i t vi i o\ . . .
ot edi thice OHTE actually require that the resulting binary be ex-

OTHERS = ecuted.

_ _ When cross compiling a package that uses cus-

Figure 1. Using the wrong tools tom macros, this leads to a situation where test
_ ) _ code will compile and link properly (thanks to
In th_|s particular instance, there are severajna cross compiler), but will then fail to run,
solutions.  The most correct, and most x-or will run and produce incorrect output. In
pensive, is to update the makefile templategiher case, it is highly unlikely that the con-
to use the proper variable€C_FOR_BUILD  iqyre script will reach the proper conclusion

andCQ in their proper context. Another pos- 5t whether or not the header file or library
sible solution is to override the definition of ;o actually available.

CC_FOR_BUILDandCCprior to invoking the

makefile. The solution presented in Figure 1A simple solution to this problem is to check
is a simple, straightforward, get-it-working ap- and see if the output from the test program
proach whereCC_FOR_BUILDis simply set is ever actually used. If not, then the call to
to an appropriate value for the majority of build AC_TRY_RUNN the test macro can be re-
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placed with a call tcAC_TRY_COMPILEor  been set before attempting to automatically de-
AC_TRY_LINK, as shown in Figure 2. These duce its value.
two macros implement checks for the ability to

compile and link the provided code fragment,!" those cases, the configuration script may
be modified to guard the detection code by

respectively. - _ )
checking to see if the variable has already been
SKEY_MSG="yes" assigned a value. If a value has already been
AC_MSG._CHECKING((for shkey suppori) aSS|g_rPed, the conflgura}tlon scrlpt can use the
- AC_TRY_RUN( specified value, and skip executing the detec-
* AC—TRY—L['NK( tion code. In other cases, it may be more ap-
#include <stdio.h> propriate to fix the detection code itself so that

#include <skey.h>

it sets the variable to the proper value.

Figure 2: Avoiding execution when linking

. . 4 Compilation Issues
will suffice

For the majority of portable software pack-
ages, attempting to cross compile will gener-
ally not uncover any issues with the code it-
self> Even though individual source files may
In some cases, use &C_TRY_RUNs ab- compile when pushed through the cross com-
solutely essential; the automatic configurationpiler, though, the overall way in which the soft-

process may need to be able to compile, linkware is built can still exhibit problems.
and execute code in order to determine the

characteristics of the host system. Thisisadefs 1 ayoid hard-coded tool names
inite stumbling block when trying to configure
a software package for cross compiling.

3.3 Allow the user to override a ‘detected’ con-
figuration value

Figure 4 shows a makefile fragment that origi-
A good configuration script allows the user nally made an explicit call tar . In a package
to explicitly identify or override what would that is otherwise cross compile friendly, this is
otherwise be an automatically detected valuea particularly annoying occurrence. Depending
For autoconf based projects, this typically on the specifics of the cross compiler, the call
means addingAC_ARG_ENABLEnacros to to ar may succeed, but produce an unusable
your configure.in file that allow the user static library.
to explicitly set the value of questionable

autoconf variables. Correcting this kind of problem is

straightforward—replace the hard-coded
In the case of existing software packages, thertool name with a reference to a make variable

may not be an explicit method for setting a 4For autoconf  based software packages, keep in

questionable variable. In this case, it may b&ning that theconfigure  script is generated by pro-
possible to set the appropriate variable by handessing configure.in . Editing theconfigure
before configuring the software package, in orscript direclty can be helpful for testing fixes, but
der to force the desired outcome. This mayFhanges will have to be made teonfigure.in  ~ as
still fail under some circumstances; for exam-mzléac;reangre they persist if theonfigure  script is
ple, some configuration scripts do not bother to “sproyided, of course, that the software has already

check to see if the a configuration variable haseen ported to the host platform.




Linux Symposium 2004 ¢ Volume Two ¢ 453

that names the appropriate tool for the systenmn fact be harmless, particularly if the build sys-

the binary is intended to run on. tem and host system have roughly the same OS
version, library versions, etc. However, even
4.2 Avoid decorated tool names slight differences in structure definitions, enu-

merated constants, etc. between build system

- . . , .. and host system headers can very easily re-
Occaisionally, project makefiles will avoid o N .
sult in either compilation errors, or in the cross

hardcoded tool names by defining a variable; ompiler producing an unusable binar
but then attempt to eliminate the an "unneeded”CMPIer producing an unu Y-

variable by combining a tool reference with the rigyres 5 and 6 shows a simple and straightfor-
default flags that should be passed along to thard solution—remove the hard-coded include
tool, as shown in Figure 3. path. If the include path is required, then you

will need to alter it so that it can be specified

relative to the location of the include files ap-

propriate for the host system.

While the intent was noble, this type of def-
inition makes it difficult for a user to sup-
ply a different definition for a tool. In-
stead of simply setting the value of of the
tool when invoking the makefile (exnake 4.4 Avoid assumptions about the build system
AR=ppc7xx-linux-ar ), a user now has

to know to define AR in a way that in- While this is nominally a porting issue, some-
cludes the default arguments (exnake times a software package will make what
AR="ppc7xx-linux-ar cr’ )- seems to be a reasonable assumption about the
build system. In particular, software pack-
ages that are intended to run only on a partic-
ular class of operating systems (Linux, POSIX
l:omplaint systems, etc.) may assume that even
liﬁ‘ they are cross compiled, they will at least be
cross compiled on a build system that has char-

Again, correcting this type of problem is
straightforward—split the definition of the tool
reference into a reference to the simple too

flags that should be passed to the tool.

AR = @AR@ cq acteristics similar to the host system.

+AR = @AR@ . . . .

+ARFLAGS = cq Figure 7 illustrates this problem. This make-

all: $(0BJS) file fragment assumes that the build system will
s;(rzR)-fI,lti)bsuppotrt.a$(OBJS) have a case-sensitive file system, and that the

- Iosupport.a - ) ’ ’ H

+ $(AR) $(A££LAG5) libsupport.a $(OBJS) file patterns*.os ’and *.0S ’ will therefore
@RANLIB@ libsupport.a refer to a distinct set of files—in this case, files

for inclusion in a static library and files for in-

Figure 3: Avoiding execution when linking clusion in a shared library, respectively.

will suffice This particular assumption breaks down when

compiling on a case-insensitive file system
4.3 Avoid hard-coded paths like VFAT, NTFS, or HPFS. When encoun-
tering this type of problem, there is no easy

It is very easy for an otherwise cross Comp”eworkaround—the build logic for the software

friendly SOﬂWare package to mistakenly set up SWhile these file systems are case-insensitive, they
an absolute InC|Ude path that |OOkS reasonabl%re case preserving7 which sometimes he|ps mask po-
In many situations, the added include path mayential case-sensitivity issues.
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will need to be altered in order to adjust to the5.2 Avoid hard-coded installation paths
conditions of the unexpected build system.

. . . When cross compiling software, it is often con-
In this case, the solution was to replat@s venient to treat a directory on the build sys
with **.on “, a file pattern that is distinct from tem as the logical root of tr)(e host s stem’s);ile
'* 0S ' on either a case-insensitive or a case- . . 9 y .

L system’ This allows a developer to “install
sensitive file system. , : : .

the software into this logical root file system

(RFS); often times, the RFS is made available

. to the host system via NFS.
5 Installation Issues

Autoconf packages typically use variables to

specify the prefix for installation paths, which
Software installation is sometimes seen as &akes installing them into an RFS a simple
simple problem. After all, how hard can it be matter. As Figure 9 shows, nautoconf
to just copy files around and make sure theymakefiles may need to be modified to make the
all end up in the right place? As with con- same sort of adjustments to installation paths.
figuration and compilation, though, cross com-
piling software introduces additional complex-
ities when installing software.

Even if the software package already makes
use ofprefix  or a similar variable, it may
overload the meaning of that variable. This
can happen in any type of software package,
5.1 Avoidinstall -s autoconf  based or not. For example, a

package may use thpefix  variable to both

control the installation path, and also generate
Figure 8 shows a makefile fragment that at firs#define  statements that specify paths to con-
glance looks reasonable; as originally written figuration files or other important data. In this
it attempted to install a binary using the de-case, it may still be necessary to modify the
tected version of thastall program avail- makefile to introduce the idea of an installation
able on the build system. prefix, as shown in Figure 10.

The problem here is that the originastall

- i - 5.3 Create the required directory structure
command specified thes option, which in-

structsinstall to strip the binary after in- ften times. software packages assume that
stalling it. Because the command uses the buil ov are bei’n installetljo on a% existirtlj full
system’s version ahstall  , this means that y 9 9,

featured system—uwhich implies the existence
of a certain directory structure. A cross com-
piled software package may be installed on the
guild system into a location that is lacking part
or all of a normal directory structure. In this
case, the install steps of the software package
The solution here is to avoid the use ofmust be pessimistic, and assume that it will al-
install -s , and instead explicitly strip ways be necessary to create whatever directory
the binary after installation using the version™ 75 e scraichbox websitenttp:/Awww.

of strip  provided with the cross compile scratchbox.org ) for more information on the hows
toolchain that built the binary. and whys of build sandboxing.

the stripping will be accomplished using the
build system’s version oftrip . Depending
on the version os$trip  installed on the build
system, this command may appear to succee
yet result in a useless binary being installed.
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structure it requires for the installation to suc-7 Conclusions
ceed.

Figure 11 shows a patch for a makefile frag-By now, it should be apparent that while there

ment that originally assumed the pre-existenc&'€ any number of subtle ways that cross com-

of a particular directory structure. Appropriate Piling software can fail, they are for the most
calls tomkdir -p are enough to ensure that part simple problems with simple solutions.

the exi_sting directory structure is in place priorDeveIopers interested in supporting cross com-

to the install. piling of software packages they maintain can
use these problems as a guideline of potential

6 Verification Issues problem areas in their own projects. Detecting
potential cross compile issues is often a sim-
ple matter of examining project source code

There are a number of OSS packages thaind identifying the potential for confusing the

very conveniently provide self-test capabilities.meaning of build and host systems.

Along with the usual targets in their makefiles,

they include targets that allow the user to buildFinally—the best possible way to examine a

and run a test suite against the software after goftware package to see if (or how well) it

is built, but before it is installed. supports cross compiling is to actually try and
cross compile it. While the truly adventurous

The main problem here is that these test tarmay wish to try and build their own cross com-
gets generally run each individual test in thepiler, there are any number of locations on the
suite using a “compile, execute, analyze” cy-web where an interested developer can obtain
cle. Even if the compilation and result analy-a pre-built toolchain for this purpose. Those
sis steps succeed on the build system, test exyorking primarily on an x86 Linux host may
ecution will most likely fail if the package has wish to consider using one of the available pre-
been cross compiled, since the tests were builiuilt cross compilers that can be found through
with the host system in mind. If you are for- the rpmfind bttp://www.rpmfind.net )
tunate, these tests will simply fail; otherwise, service. For those interested in building their
you will not be able to gauge the accuracy ofown cross compiler, or in researching other
the tests, as they may be picking up informa-cross compile issues, are a number of resources
tion or artifacts from the build system. (see Table 8) on the net that deal specifically

: o . with cross compile issues. The emphasis of
A simple solution is to rewrite test targets to oo’ recorces is generally on embedded sys-

separate test compilation from test executioqem development, though much of the infor-
and result analysis. Providing a distinct mstallmation available is still applicable when dis-

or packaging target for the test suite so that itcussing cross compiling in general
can be easily moved over to a host system for '

execution is an added bonus.

Don’t assume that you can execute self-tests as
part of the normal build cycle (see Figure 12).

If you do include a test target as part of your
default target dependencies, at least make sure
that it is only enabled or run if it knows that it
can execute the tests on the build system.
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8 Appendix—Code Examples

The following figures are referred to in the pa-
per, and are collected here (instead of presented
inline) for the sake of providing clarity in the
text. Each figure represents a patch (or a par-
tial patch) for a common OSS package that was
used at TimeSys to work around cross compile
problems. These selections were chosen to il-
lustrate, in a compact fashion, both the prob-
lems described in the text and some possible
solutions.

decompress.o \
bzlib.o

-all: libbz2.a bzip2 bzip2recover test
+all: libbz2.a bzip2 bzip2recover #test

bzip2: libbz2.s0 bzip2.c
$(CC) $(CFLAGS) -0 bzip2 $\»

Figure 12: Avoid making tests part of the de-
fault build target



The CrossGCC Mailing List

http://sources.redhat.com/ml/crossgcc/
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A list for discussing embedded (‘cross’) programming using the GNU

tools.

The CrossGCC FAQ

http://www.sthoward.com/CrossGCC/

crosstool

http://www.kegel.com/crosstool/

A set of scripts to build gcc and glibc for most architectures suppdarted

by glibc.

Linux from Scratch

http://www.linuxfromscratch.org/
A project that provides you with the steps necessary to build your
custom Linux system.

Scratchbox

http://www.scratchbox.org/ A cross-compile toolkit for
embedded Linux application development.

Embedded Gentoo

http://www.gentoo.org/proj/en/base/embedded/

index.xml

Gentoo project concerned with cross compiling and embec
systems.

The GNU configure and build
system

http://www.airs.com/ian/configure/

own

ided

Document describing the GNU configure and build systems. A bit out

of date (circa 1998), but still very useful.

GNU Autoconf, Automake, an
Libtool

1 http://sources.redhat.com/autobook/
Online version of the classic book covering GNU autotools.

Table 1. Selected internet resources on cross compiling
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libbz2.a: $(OBJS)
rm -f libbz2.a
- ar cq libbz2.a $(OBJS)
- @if ( test -f /usr/bin/ranlib -0 -f /bin/ranlib -0 \
- -f Jusr/ccs/bin/ranlib ) ; then \
echo ranlib libbz2.a ; \
ranlib libbz2.a ; \

fi

+ $(AR) cq libbz2.a $(OBJS)

+ $(RANLIB) libbz2.a

+ #@if ( test -f /usr/bin/ranlib -o -f /bin/ranlib -0 \
+ # -f Jusr/ccs/bin/ranlib ) ; then \

+ # echo ranlib libbz2.a ; \

+ # ranlib libbz2.a ; \

+ #i

libbz2.s0: libbz2.s0.$(somajor)

Figure 4: Avoiding hard-coded tool references

export GCC_WARN = -Wall -W -Wstrict-prototypes -Wshadow $(ANAL_WARN)
-export INCDIRS = -l/usr/include/ncurses

-export CC = gcc

+#export INCDIRS = -llusrf/include/ncurses

+#export CC = gcc

export OPT = -02
export CFLAGS = -D_GNU_SOURCE $(OPT) $(GCC_WARN) -I$(shell pwd) $(INCDIRS)

Figure 5: Avoiding hard-coded include paths

INSTALL = install -0 $(BIN_OWNER) -g $(BIN_GROUP)

# Additional libs for Gnu Libc
-ifneq ($(wildcard /usr/lib/libcrypt.a),)

LCRYPT = -lcrypt
-endif
all: $(PROGS)

Figure 6: Avoiding tests for hard-coded path names

# Bounded pointer thunks are only built for *.ob
elide-bp-thunks = $(addprefix $(bppfx),$(bp-thunks))

-elide-routines.oS += $(filter-out $(static-only-routines),\
+elide-routines.on += $(filter-out $(static-only-routines),\
$(routines) $(aux) $(sysdep_routines)) \
$(elide-bp-thunks)
elide-routines.os += $(static-only-routines) $(elide-bp-thunks)

Figure 7: Avoiding assumptions about the build system
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$(INSTALL) -m 0755 -s ssh $(DESTDIR)$(bindir)/ssh
+ $(INSTALL) -m 0755 ssh $(DESTDIR)$(bindir)/ssh
+ $(STRIP) $(DESTDIR)$(bindir)/ssh

Figure 8: Replacing install -s with an explicit call to strip

NAME = proc

# INSTALLATION OPTIONS

-TOPDIR = Jusr

+TOPDIR = $(DESTDIR)/usr

HDRDIR = $(TOPDIR)/include/$(NAME)# where to put .h files
LIBDIR = $(TOPDIR)/lib# where to put library files
-SHLIBDIR = /lib# where to put shared library files
+SHLIBDIR = $(DESTDIR)/lib# where to put shared library files
HDROWN = $(OWNERGROUP) # owner of header files
LIBOWN = $(OWNERGROUP) # owner of library files
INSTALL = install

Figure 9: Avoiding hard-coded install paths

# Where is include and dir located?
prefix=/
+installdir=/

.C.0:
$(CC) $(CFLAGS) -c $<
@@ -47,28 +48,32 @@
4f [ ! -d pic ]; then mkdir pic; fi

install: lib install-dirs install-data
- -if [ -f $(prefix)/lib/$(SHARED_LIB) ]; then \
- mkdir -p $(prefix)/lib/backup; \
- mv $(prefix)/lib/$(SHARED_LIB) \
$(prefix)/lib/backup/$(SHARED_LIB).$$$$; \
-if [ -f $(installdir)/$(prefix)/lib/$(SHARED _LIB) ]; then \
mkdir -p $(installdir)/$(prefix)/lib/backup; \
mv $(installdir)/$(prefix)/lib/$(SHARED_LIB) \
$(installdir)/$(prefix)/lib/backup/$(SHARED_LIB).$$$$; \

+ + + 4+

fi
cp $(SHARED_LIB) $(prefix)/lib
chown $(OWNER) $(prefix)/lib/$(SHARED_LIB)
+ cp $(SHARED_LIB) $(installdir)/$(prefix)/lib
+ chown $(OWNER) $(installdir)/$(prefix)/lib/$(SHARED_LIB)
if [ -x /sbin/ldconfig -0 -x /etc/ldconfig ]; then \
Idconfig; \

Figure 10: Working around the use of an overloaded prefix variable
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install-only:
n='echo gdbserver | sed '$(program_transform_name)”; \
if [ x$8n = x ]; then n=gdbserver; else true; fi; \

+ mkdir -p $(bindir); \

+ mkdir -p $(manldir); \
$(INSTALL_PROGRAM) gdbserver $(bindir)/$$n; \
$(INSTALL_DATA) $(srcdir)/gdbserver.1 $(manldir)/$$n.1

Figure 11: Creating required directories at install time
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Abstract would be needed in an API or code changes to
enable user-space applications.

Today's received network data is copied fromThe consequences and possible benefits of this
kernel-space to user-space once the protocgbchnology are called out within the conclu-
headers have been processed. What is needgfhns of this study. Also described are the pos-
Is to provide ahardware (NIC) to user-space sjp|e next steps needed to make this technology
zero-copy path. This paper discusses a pag&jiable for general use. As faster networks like
flip technique where a page fipped from 19 Gigabit Ethernet become more common-
kernel memory into user-space via page-tablg|ace for servers and desktops, understanding
manipulation. Gigabit Ethernet was used togng developing zero-copy receive mechanisms

produce this zero-copy receive path within theyithin the Linux kernel and networking stack
Linux stack which can then be extrapolated tGs hecoming more critical.

10 Gigabit Ethernet environments where the
need is more critical. Prior experience in the _
industry with page-flip methodologies is cited. Introduction

The performance of the stack and the over- o
all system is presented along with the testing?@t@ arriving at a network port undergoes two

methodology and tools used to generate th&°PY Operations (a) from the device memory

performance data. All data was collected us{© kernel memory as a DMA by the device

ing a modified TCP/IP stack in a 2.6.x kernel.iNto host memory and (b) from kernel memory
The stack modifications are described in detail!© @Pplication memory, copied by the proces-
Also discussed is what hardware and softwar&©"- Techniques that avoid the second copy are

features are required to achieve page-flipping.désignated zero-copy; no additional copy op-
erations are involved once the data is copied

The issues involving page-flipping are de-into host memory. Avoiding the second copy
scribed in detail. Also discussed are problemsan potentially improve throughput and reduce
related to this technology concerning the Vir-CPU utilization. This has been demonstrated
tual Memory Manager (VMM) and processor in [Hurd] [Duke] and [Gallatin]. Several tech-
cache. Another issue that is discussed is whatiques have been discussed in the literature for
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avoiding the second copy namely page flip-For our final experiments we used 2.6.4 or
ping, direct data placement (DDP) and remotenewer kernels with what eventually amounted
DMA (RDMA). to small changes to the kernel to support page

N _ flipped PAGE_SIZE data.
Significant performance benefits were demon-

strated with the zero copy implementation inThe kernel code consisted of these changes
the transmit path. We investigate the effective{see patch at the end of this document):

ness of the page flipping on newer platforms
(faster processor(s) and faster memory). Ad-
ditional motivation for this experiment and pa-
per came from a discussion on the netdev (and
linux-kernel) mailing list where David Miller
mentioned his idea of

1. Driver modifications to support header
and data portions of a packet in separate
buffers, where the data buffer is always
aligned to a PAGE_SIZE boundary.

2. Add a flag to the skb structure to indi-

On receive side, clever RX buffer cate to the stack that the hardware and
flipping tricks are the way to go driver prepared a zero copy capable re-
and require no protocol changes ceive structure.

and nothing gross like TOE or
weird buffer ownership protocols
like RDMA requirest

3. Modifications to the skb_copy
datagram_iovec() function to
support calling the newlip_page_
mapping()  function when zero copy

Approaches capable skbs are received.

I ) _ 4. A newflip_page_ mapping() func-
Our initial approach consisted of attemptingto  tjon that executes the installation of the

modify the 2.4 kernel to support direct modifi- driver page into the user’s receive data
cation of PTE’s in user and kernel space. This space. This routine handles fixing up per-

method was based on the assumption that any  missions.

PTE could represent any location in memory

which we later found out not to be true. Our 5. A modification was made to the skb free
findings indicated that we needed to rely more  routines to handle a frags[i] where the
upon the OS abstraction layers to complete our  -Page member was zero after that page had
page-flip implementation. This had the side  changed ownership to user space.

benefit of making our changes less x86 spe-

cific as well. Eventually we settled upon a 2.6 .
based kernel and effectively implemented ourEXperlment

original idea but instead just install a new page

into the application space in much the sameOur test platform consisted of a pre-release
way as the swapper does. The biggest hurdlesystem with a dual 2.4 GHz Intel® Pentium® 4
came from understanding how the Linux mem-processor supporting Hyper-Threading Tech-
ory manager and its various kernel structuresiology, and 512 megabytes of RAM. This ma-

work and relate to each other. chine had a network card that supported split-
Ihitp:/imarc.theaimsgroup.com/ fung th_e header and data portl_ons_ of a packet
2l=linux-netdev&w=28&r=1&s=TCP+ into different buffers, and validating the IP,

offloading+interface&g=b TCP and Ethernet checksums.
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ASSUmptionS 2x1.8 GHz no HT
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For this experiment we made some assump *°[| | | | ]
tions to simplify and to work with the hardware '
that we had available.

400
600.0

1 8244 MTU throughput]

500.0 +—— ] L1 30,0 |J4148 MTU throughput
26.5 26.1 B8244 MTU CPU %
L 014148 MTU CPU %

Mb/s

400.0

3
19.4 3439

« Our application had to allocate a re-| e I I E
ceive data area in multiples of 4K bytes,| " e memmon  somon  moesome
and that memory had to be PAGE_SIZE

aligned. Figure 1: 1.8 GHz comparison

 We modified the freely available nttcp-
1.47 to use valloc instead of malloc, re-
sulting in PAGE_SIZE aligned memory

starting addresses. data point.

Oprofile was used to record the hot-spots for

e Our network used Maximum Transmis-
each run.

sion Units (MTU) to allow for 4KB or

For every instance of the test, three runs were
done and the results were averaged for each

Methodologies

8KB of data to be packaged in every cpu utilization and network utilization were
packet. measured with sar from the sysstat package.
NOTE: Our initial results were skewed by a
version of sar that incorrectly measured CPU
and network utilization (showing more than
1Gb/s transferred in a single direction), be
aware that some versions of sar that shipped
with your distribution may need to be updated.

Upon splitting of the packet into header
and data portions, this resulted in an
aligned data block

The 2.6.4 kernel was configured for stan-
dard 4KB PAGE_SIZE and debugging op-

tions were turned off. _
Results of Performance Analysis

It is apparent from the touch graphs in Fig-
ure 1 that the page flip slightly reduces CPU

After making the required code changes andn slower processors. However, the touch

debugging, we measured the performance ahroughput decreases as well, with a decrease

the new “page flip” code against the “copy in efficiency (Mbits/CPU = eff) for the 4148
once” method of receiving data. MTU from 6.52 (original) to 6.48 (page-flip).
_ _ The decrease in efficiency is even smaller for
These measurements consisted of two Majogo44 MTUs, where the efficiency went from
test runs, one where the application neveg gg 1o 6.85. The difference in CPU from the

touched the data (notouch) being received, angs44 tg the 4148 MTU case is most likely due
the other where the application did a comparyy header processing as the data throughput is
ison of the data to an expected result (touch)very similar.

effectively forcing the data into the cache and
also validating that data was not corrupted inThe difference between Figure 1 and Figure 2

any way through this process. is simply the processor’s speed being adjusted
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Conclusions

100001 944 59488 94539486

900.0 +—f

506 49,8
800.0

700.0

We had several surprises along the way, but
== fE€l confident that at least with our current code
e base, we can conclude that using a page-flip
methodology to receive network data is less ef-
ficient than simply doing a copy. The major
contributors to this counterintuitive result seem
to be cache issues (especially obvious in the
“touched data” tests), and a heavier cost asso-
ciated with the work necessary to prepare and
complete the page-flip.

600.0

500.0

Mbfs

400.0

20.5 20.4

14.9| H

original notouch  page-fip notouch  original touched  page-fip touched

300.0
200.0

1

100.0

Figure 2: 2.4 GHz comparison

_ _ _ o There may be environments such as embedded
in the bios using a multiplier change. The ré-systems and slower processors where page-

sults from Figure 2 show that the faster pro-fligping will help significantly in decreasing

there is a slight increase in throughput for the

page-flip case, the efficiency is still less thanOur feeling is that page flipping will not scale
if the copy was being done. The efficiencyin CPU utilization as well as a plain copy does.
for the 4148 MTU touch data case went from , L
8.59 to 8.45. For the 8244 byte MTU the effi- There is much room however for optimization

ciency goes from 9.02 to 8.93, even though th&' the page-flip code path, which will be fol-
throughput goes up. lowed up with the community. Our expecta-

tion is that this optimization will be fighting an

uphill battle just to achieve parity with a copy,

and then will mostly likely not be able to keep
Surprises and Unexpected Results up with speed advances in the processor.

Also, we had to remind ourselves that the cache
warming cost must be paid somewhere along

We expected that the copy may actually havedll receive paths. Using page-flip methods only

some beneficial side effects, and our datdnoves the costofthe cache miss to the applica-

shows that it does. Especia"y as processo‘jon instead of tak|ng the cost of the miss in the

clock rate increases, the copy becomes ledéernel. If the application is waiting impatiently

costly in CPU-utilization, while the page flip for data, its likely that the cache will be seeded

maintains a constant load which is heavier thavith the data and the application will get all of

the copy was initially. its data out of cache and have very fast access
at that point.

Oprofile analysis indicated that the locks asso-

ciated with the page-flip code cause the major-

ity of the stalls in this code path. Current issues

Oprofile also showed that the stall associated
with the TLB (translation look-aside buffer) The current patch has several outstanding is-
flush was very painful. sues that we worked around.
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1. There isn't much (if any) commercially the copy necessary in the driver to do this made
available hardware that supports headethe differences between “driver with copy fol-
split receives. lowed by a flip in the stack” and a “driver with

) _.a copy followed by another copy in the stack”

2. Idgally hardware (as mentioned by Da\,"dalmost nonexistent. We believe this is because
Mlllgr) WOU|d. be able to have flow |de.nt|- of the cache warming done by the Appendix B
fication ar_1d f|IIPAGETS!ZEbuckets W't_h driver as it prepares the flip capable structure.
data. This W_O_UId e||m|_nate the require- Making this code behave more like the flip ca-
ment for specific MTU sizes. pable hardware (possibly with a cache flush)

3. The current code has a bug when a netwould be very useful to increase the amount

work data consumer causescione of experimentation that could be done with the
skb() to occur. If a page-flipped page Non-hardware specific kernel patches.
pointer nr_frags[].page is refer-

enced in the skb being cloned, then a Ze'RQeferences
pointer is read and the system faults. This

is due to the ownership of the page chang-

ing from kernel space to user space beforéHurd] Dana Hurd Zero-copy interfacing to
the clone is completed. It is not immedi- TCP/IP Dr. Dobbs Journal Sep 1995

ately clear if this is an easily surmount-
able problem, but is easy to work around
for our tests.

[Duke] Trapeze  Project: http:
Ilwww.cs.duke.edu/ari/trapeze/
slides/freenix/sld001.htm

4. The assumptions we made to enable test- . . )
ing this new code path, like specifying iGaIIIOatcljn] D;f\ll(v G/allatmhttp.///people.
MTU, recompiling the application, etc, reebsd.orgi=ken/zero_copy.
create such strict requirements that the
usefulness of this code outside of an acaAppendix A Kernel Patch
demic environment is severely limited.

This patch will be available athttp:
Future directions possible Ilwww.aracnet.com/~micro/flip/
flip_2 6 _4.patch.bz2
It is likely that on a system with lots of context
switching going on (high load) that the page'AppendiX B mock zero copy e1000
flip would be more beneficial. Testing in these
environments would provide useful results. patch

If tested on other architectures besides x861his patch will be available athttp:
such as x86-64, 1A64 and PPC this code mayw.aracnet.com/~micro/flip/
yield significantly different results. e1000_flip.patch.bz2

We did create a driver patch (Appendix B) for

the currently available e1000 driver and hard-
ware that prepares packets (using a copy) for
processing through the page-flip modified net-
work stack to the user application. We saw that
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Abstract

sor architectures are providing advanced error

correction and detection techiniques. CPU hot-

During the 2.5 development series, many peo:
ple collaborated on the infrastructure to add
(easy) and remove (hard) CPUs under Linux.
This paper will cover the approaches we used,
tracing back to the initial PowerPC hack with
Anton Blanchard in February 2001, through
the multiple rewrites to inclusion in 2.6.5.

After the brief history lesson, we will de-
scribe the approach we now use, and then the
authors of the various platform-specific code
will describe their implementations in detail:
Zwane Mwaikambo (i386) Srivatsa Vaddagiri
(1386, ppc64), Joel Schopp (ppc64), Ashok Raj
(ia64). We expect an audience of kernel pro-
grammers and people interested in dynamic
cpu configuration in other architectures.

1 The Need for CPU Hotplug

Linux is growing steadily in the mission crit-
ical data-center type installations. Such in-
stallations requires Reliability, Availability and
Serviceability (RAS) features. Modern proces-

plug provides a way to realize these features
n mission critical applications. CPU hotplug
feature adds the following ability to Linux to
compete in the high end applications.

Dynamic Partitioning

Within a single system multiple Linux
partitions can be running. As workloads
change CPUs can be moved between par-
titions without rebooting and without in-
terrupting the workloads.

Capacity Upgrade on Demand

Machines can be purchaced with extra
CPUs, without paying for those CPUs
until they are needed. Customers can
at a later date purchase activiation codes
that enable these extra CPUs to match in-
creases in demand, without interrupting
service. These activiation codes can either
be for temporary activation or permanant
activation depending on customer needs.
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» Preventive CPU Isolation cate if the CPU was actually online. Much
of the original patch consisted of removing the

Advanced features such as CPU Guard iflUMPer remapping, and rewriting loops appro-
PPC64 architectures, and Machine CheciP"ately.

Abort (MCA) features in Itanium® Prod- rpis change went into Linus’ tree in 2.5.24,

uct Family (IPF) permit the hardware t0 j,ne 2002, which made the rest of the work
catch recoverable failures that are symp+y,ch less intrusive.

tomatic of a failing CPU and remove that
CPU before an unrecoverable failure oc-In the next month, as we were trying to get
curs. An unused CPU can later be broughthecpu_up() function used for booting, Li-
online to replace the failed CPU. nus insisted that we also change the boot order
so that we boot as if we were uni-processor,
and then bring the CPUs up. Unfortunately,
2 The Initial Implementation this patch broke Linus’ machine, and he par-
tially reverted it, leaving us with the current
In February 2001, Anton Blanchard and Situationwhere a little initialization is done be-

Rusty Russell spent a weekend modifyingfore secondary CPUs come online, and nor-
the ppc32 kernel to switch CPUs on angmal_initcall functions are done with all
off. Stress tests on a 4-way PPC crash bofPUs enabled. This change also introduced
showed it to be reasonably stable. Thehecpu_possible() macro, which can be
resulting 60k patch to 2.4.1 was postedusedtodetectwhetheraCPU could ever be on-
to the linux-kernel on February the 4th; linein the future.
http://www.uwsg.iu.edu/hypermail

_ The old boot sequence for architectures was:
Nlinux/kernel/0102.0/0751.html

Now we know that the problem could be 1. smp_boot_cpus() was called to ini-
solved, we got distracted by other things. Upon  i5jize the CPUs. then
joining IBM, Rusty had an employer who ac- ’

tually had a use for hotplugging CPUs, and in o smp_commence() was called to bring
2002 the development started up again. them online.

The 2.4 kernels usedpu_number_map()

to map from the CPU number given Dby |n addition, each arch optionally implemented
smp_processor_id() (between O and 3 “maxcpus” boot argument. This was made

NUM_CPUSto a unique number between jntg an arch-independent boot argument, and
0 and sSmMp_num_cpus. This allows sim- the boot seguence became:

ple iteration between 0 anemp_num_cpus

to cover all the CPUs, but this cannot

be maintained easily in the case where 1. smp_prepare_cpus(maxcpus)

CPU are coming and going. Given my was called to probe for cpus and set up
experience thattpu_number_map() and cpu_present(cpu) ', then

cpu_logical_ma which are noops on
26_ g _f Y t ( f P Rust 10n arch's that dont fill incpu_present(cpu)
x86) are a frequent source of errors, Rus Yhe function fixup_cpu_present_map just uses

chose to eliminate them, and introduce ayhatcpu_possible_map  was set during probe. See
cpu_online() function which would indi- the section in 1A64 for more details.
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2. __cpu_up(cpu) was called for each 3. Workqueue and other infrastructure was

CPU wherecpu_present(cpu) was introduced which used per-cpu threads,
true, then which had to be cleanly added and re-
moved.
3. smp_cpus_done(maxcpus) was
called after every CPU has been brought 4. More per-CPU statistics were used in
up. the kernel, which sometimes need to be

merged when a CPU went offline (or each
sum must be for every possible CPU, not

At this stage, the CPU notifier chain and the ) .
just currently online ones)

cpu_up() function existed, but CPU removal

was not in the mainstream kernel. Indeed, sig- 5. Sysfs was included, meaning that the in-
nificant scheduler changes occurred, preemp-  terface should be there, instead of in proc,
tion went into the kernel, and Rusty was dis- along with structure for other CPU fea-
tracted by the module reworking. The result: tures

hotplug CPU development floundered outside

the main tree for over a year. Various approaches were discussed and tried:

some architectures (like i386) merely simu-
3  The Problem of CPU Removal late CPUs going away, by looping in the idle
thread. This is useful for testing. Others

o ~ (like PPC64 and 1A64) actually need to re-start
The initial CPU removal patch was very sim- cps.

ple: the process scheduled on the dying CPU,
moved interrupts away, sepu_online() The following were the major design points
to false, and then scheduled on every othewhich were tested and debated, and the reso-
CPU to ensure that noone was lookinglution of each:

at the old CPU values. The scheduler’s

can_schedule() ~ macrowaschangedtore- .« How should we handle userspace tasks
turn false if the CPU was offline, so the CPU bound to a single CPU?

would always run the idle task during this time.
Finally, the arch-specificpu_die()  func-
tion actually killed the CPU.

Our original code sent a SIGPWR to tasks
which were bound such that we couldn’t
move them to another CPU. This has
Three things made this approach harder as the the default behaviour of killing the task,

2.5 kernel developed: which is unfortunate if the task merely in-

herited the binding from its parent. The
ideal would be a new signal which would

also be delivered on other reconfiguration
events (like addition of CPUs, memory),

but the Linux ABI does not allow the ad-

dition of new signals.

1. Ingo Molnar's O(1) scheduler was in-
cluded. Rather than checking if the
CPU was offline every time we ran
schedule() , we wanted to avoid

touching the highly-optimized code paths. _
The final result was to rely on the hotplug

2. The kernel became preemptible. This scripts to handle this information, and rely
means that scheduling on every CPU is on userspace to ensure that removing a
not sufficient to ensure that noone is us- CPU was OK before telling the kernel to
ing the old online CPU information. switch it off.
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e How should we handle kernel threads

bound to a single CPU?

Unlike userspace, kernel threads often
have a correctness requirement that they
run on a particular CPU. Our original
approach used a notifier between mark-
ing the CPU offline, and actually tak-
ing it down; these threads would then
shut themselves down. This two-stage ap-
proach caused other complications, and
the legendary Ingo Molnar recommended
a single-stage takedown, and that the ker-
nel threads could be cleaned up later.
While that simplified things in general,
it involved some new considerations for
such kernel threads.

Issues Creating And Shutting Down Ker-
nel Threads

In general, the amount of code required
to stop kernel threads proved to be sig-
nificant. barriers and completions at the
very least. The other issue is that most
kernel threads assume they are started at
boot: they don’t expect to be started from
whatever random process which brought
up the CPU.

This lead Rusty to develop the “kthread”
infrastructure, which encapsulated the
logic of starting and stopping threads in
one place. In particular, it uses keventd
(which is always started at boot) to create
the new thread, ensuring that there is no
contamination by forking the userspace
process. Thedaemonize() function at-
tempts to do this, but it's more certain to
start from a clean slate than to try to fix a
existing one.

Issues Using keventd for CPU Hotplug

keventd is used as a general purpose
kernel thread for performing some de-
ferred work in a thread context. The

“kthread” infrastructure uses this frame-
work to start and stop threads. In addition
when various kernel code attempts to
call user-space scripts and agents use
call_usermode_helper() This
function used the keventd thread to spawn
the user space program. This approach
caused a dead lock situation when the
call_usermode_helper() is called

as part of the cpu_disable() , since
keventd threads are per-CPU threads.
This results in queueing work to keventd
thread via schedule_work() , then
waiting for completion. This results in
blocking the keventd thread. Unless the
work queued gets to run, this keventd
thread would never be woken again. To
avoid this scenario, Rusty introduced the
create_singlethread_workqueue

which now provides a separate thread that
is not bound to any particular CPU.

» How to Avoid Having To Lock Around

Every Access to Online Map

Naturally, we wanted to avoid
locking around every access
to cpu_online_map (via
cpu_online() for example). The

method was one Rusty invented for the
module code: the so-called “bogolock”.
To make a change, we schedule a thread
on every CPU and have them all si-
multaneously disabled interrupts, then
make the change. This code was gener-
alized from the module code, and called
stop_machine_run() This means
that we only need to disable preemption
to accesscpu_online_map reliably.

If you need to sleep, thepu_control
semaphore also protects the CPU hotplug
code, so there is a slow-path alternative.

* How to Avoid Doing Too Much Work

With the Machine Stopped
While all CPUs are not taking interrupts,
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we don’t want to take too long. The ini- 8. If that call fails, we restore thepu_
tial code walked the task list while the ma- online_map . Otherwise we call
chine was frozen, moving any tasks away sched_idle_next() to ensure that
from the dying CPU. Nick Piggin came when we exit the CPU will be idle.

up with an improvement which only mi- _ _ _ )
grated the tasks on the CPU’s runqueue, 9. At this point, back in thfe caller, we wait
and then ensured no other tasks were mi-  for the CPU to become idle, then call the

grated to the CPU, which reduced the hold ~ @rch-specific__cpu_die()  which ac-
time by an order of magnitude. Finally tually k_|IIs the .offllne CPU, by settmg_ a
Srivatsa Vaddagiri went one better: by flag which the idle task polls for, or using
simply raising the priority of the idle task an IPI, or some other method.

with a specialsched_idle_ne_xt() 10. Finally, theCPU_DEADnotifier is called,

function, we ensure that nothing else runs which the scheduler uses to migrate tasks

on the dying CPU. off the dead CPU, the workqueues use to
remove the unneeded thread, etc.

The process by which the CPU actually goes

offline is as follows: The implementation specifics of each architec-

ture can be found in the following sections.

1. Takecpu_control  semaphore,
- 4 Remaining Issues
2. Check more than one CPU is online (a bug
Anton discovered in the first implementa-

tion!) The main remaining issue is the interaction

of the NUMA topology and addition of new

3. Check that the CPU which they are takingcPUS:  An architecture can choose a static
down is actually online, NUMA topology which covers all the possible
CPUs, but for logical partitioning this might

4. Take the target CPU out of the CPU maskot be possible (we might not know in ad-
of this process. When the other steps ar&ance).
finished, they will wake us up, and we

must not migrate back onto the dead CPU! | 5. ~pyy variables are allocated using

__alloc_bootmem_node() at boot,

S Usestop_'machlne_run() 0 .freeze for performance reasons. Unknown CPUs
the machine and run the following steps are usually assumed to be in the boot
on the target CPU node, which will impact performance.

6. Take the CPU out afpu_online_map « sysfs node topology entries need to be up-

» node association is not known at boot.
7. Call the arch-specific _ cpu_

disable() which must ensure that <« The NUMA topology itself should be up-
no more hardware interrupts are received  dated if it is only known when a CPU
by this CPU (by reprogramming interrupt comes online. This is now possible, using
controllers, or whatever), the stop_machine_run() function,
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5

but no architectures, other than PPC64,
currently do this.

There are likely some tools in use today
that would require minor changes as well.
One such tool identified is the top(1) util-
ity, which has trouble dealing with the
fact that CPU's available in the system are
not logically contiguous. For e.g in a 4-
way system, if logical cpu2 was offlined,
when cpuO, cpul, cpu3 were still func-
tional, top would display some error in-
formation. Also the tool does not update
the CPU information and not able to dy-
namically update them when new CPU'’s
are added, or removed from the system.

1386 Implementation

Commercial i386 hardware available today of-
fer very limited support for CPU Hotplug.
Hence the i386 implementation, as it exists,
is more of a toy for fun and experimentation.
Nevertheless, it was used intensively during
development for exercising various code paths

and, needless to say, it exposed numerous bugs.

Most of these bugs were in arch-independent
code.

Since the hardware does not support physical
hotplugging of CPUs, only logical removal of
a CPU is possible. Once removed from the sys-
tem, a dead CPU does not participate in any
OS activity. Instead, it keeps spinning, wait-
ing for a online command, in the context of
its idle thread. Once it gets the online com-
mand, it breaks out of the spin loop, puts it-

self in cpu_online_map

, flushes TLB and

comes alive!

Some important i386 specific issues faced dur-
ing development are described below:

* Boot processor

There are a few interrupt controller con-

figurations, which necessitate that we not
offline the boot processor. Systems may
be running with the 1/O APIC disabled
in which case all interrupts are being
serviced by the boot processor via the
iI8259A, which cannot be programmed to
direct interrupts to other processors. An-
other being interrupts which may be con-
figured to go via the boot processor’'s LVT
(Local Vector Table) such as various timer
interrupt setups.

smp_call_function

smp_call_function is one tricky function
which haunted us a long time. Since it
deals with sending IPIs to online CPUs
and waiting for acknowledgement, num-
ber of races was found in this function wrt
CPUs coming and going while this func-
tion runs on some CPU. Fortunately, when
CPU offline was made atomic, most of
these race conditions went away. CPU on-
line operation, being still non-atomic, ex-
poses a race wherein an IPI can be sent
to a CPU coming online and the sender
will not wait for it to acknowledge the IPI.
The race was fixed by taking a spinlock
(call_lock ) before putting CPU in the
online_map.

Interrupt redirection

If /O APIC is enabled, then its redirec-
tion table entries (RTES) need to be re-
programmed every time a CPU comes and
goes. This is so that interrupts are deliv-
ered to only online CPUs.

According to Ashok Raj, a safe time to re-
program I/O APIC RTE for any interrupt
is when that interrupt is pending, or when
the interrupt is masked in RTE.

Going by the first option, we would have
to wait for each interrupt to become pend-
ing before reprogramming its RTE. Wait-
ing like this for all interrupts to become
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ing CPU Hotplug. Hence the method

Linux Symposium 2004 * Volume Two * 473

IA64 Implementation

followed currently is to reprogram RTES g 1 \whatis Required to Support CPU Hotplug

from the dying CPU and wait for a small
period ( 20 microseconds) with interrupts

in IA64?

enabled to flush out any pending inter-jag4 CPU hotplug code was developed once
rupts. This, in practice, has been enougii sty had the base infrastructure support

to avoid lost interrupts.

The right alternative however would be to
mask the interrupt in RTE before repro-
gramming it, but also accounting for the
case where the interrupt might have been
lost during the interval the entry was left
masked. A detailed description of this
method is provided in 1A64 implementa-
tion section.

Disabling Local Timer Ticks

Local timer ticks are local to each CPU
and are not affected by I/O APIC repro-
gramming. Hence when a CPU is brought
down, we have to stop local timer ticks
from hitting the dying CPU. This feature
is not implemented in the current code.
As a consequence, local timer ticks keep
hitting and are discarded in software by
a cpu_is_offline check in its inter-
rupt handler. There are a few solutions un-
der consideration in order to avoid adding
a conditional in the timer interrupt path.
One method was setting up an offline pro-
cessor IDT (Interrupt Descriptor Table)

ready. Some of the work that was done to bring
the code to stable state include:

Remove section identifiers marked with
__init  that are required after complet-
ing SMP boot. for e.gcpu_init() ,

do_boot_cpu() used to wakeup a
CPU from SAL_BOOT_RENDEZ mode,
fork_by hand() used to fork idle

threads for newly added CPUs on the fly.

Perform a safe interrupt migration from
the CPU being removed to another CPU
without loss of interrupts.

Handing off the CPU being removed
to SAL_BOOT_RENDEZ mode back to
SAL.

Handling platform level dependencies
that trigger physical CPU hotplug in a
platform capable of performing it.

6.2 Handling IA64 CPU removal

which would be loaded when the proces-The arch-specific callcpu_disable()  im-
sor was in the final offline state. The of- plements the necessary functionality to offline
fline IDT would be populated with an en- a CPU. The different steps taken are:

try stub which simply returns from the
interrupt. This method would mean that
any interrupts hitting the offline proces-
sor would be blindly discarded, something
which may cause problems if an ACK was
required. So what may be safer and suffi-
cient is simply masking the timer LVT for

that specific cpu and unmasking it again 2.

on the way out of the offline loop.

1. Check if the platform has any restrictions

on this CPU being removed. Returning
an error from_cpu_disable() en-
sures that this CPU is still part of the
cpu_online_map

Turn of local timer interrupt. In 1A64
there is a timer interrupt per CPU and not
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an external interrupt as in i386 case. Ithotplug patches, the write fproc/irq en-

is required that thémer_interrupt tries are stored in an array and performed when

does not happen any further. It is possiblethe interrupt is serviced, rather than calling it

there is one pending, hence check if thispotentially when an interrupt can also be fired.

interrupt is from an this is an offline CPU, Due to the delayed nature of these updates,

and ignore the interrupt, but just returnwith CPU hotplug, the new destination CPU

IRQ_HANDLED, so that the local SAPIC may be offlined before an interrupt fired and

can honour other interrupt vectors now. the RTE can be re-programmed. Hence before

setting IRQ destination CPU for an RTE, the

3. Ensure that all IRQs bound to this CPUcode should check if the new destination pro-

are now targeted to a different CPU by cessor is in thepu_online_map

programming the RTEs for a new CPU

destination. On return from this step,

there must be no more interrupts sent 1.3 2 wWhy Turn Off Interrupt Redirection

this CPU being removed from any 10S- Hint With CPU Hotplug?

APIC.

4. Now the idle thread gets scheduled Iast,InterlrUpt destination in any I0SAPIC RTE

and waits until the CPU state indicates YS! be re-programmed to a different CPU if

that this CPU must be taken down. Then;[jhe CPU beinsgl removed is a poss.iblfe intr]errypt
it hands the CPU to SAL. estination. Since we cannot wait for the in-

terrupt to fire to do the reprogramming, we

must force the interrupt destination in safe way.
6.3 Managing I1A64 Interrupts IA64 interrupt architecture permits a platform
chipset to perform redirection based on lowest
priority based on a hint in the interrupt vec-
tor (bit 31) provided by the operating system.
If platform interrupt redirection is enabled, it
would imply that we need to reprogram all the
IOSAPIC RTE entries should not be pro-interrupt destinations, because hotplug code in
grammed when its actively receiving inter- 0S cannot be sure which CPU the chipset is
rupt signals. The recommended method is tQyoing to direct this interrupt to. Hence if CON-
mask the RTE, reprogram for new destinationF|G HOTPLUG CPU is enabled, then we dis-

and then re-enable the RTE. Thproc/irg able platform redirection hint at boot time.
write handlers were calling the set affinity

handlers immediately which can cause loss

of interrupts, including IOAPIC lockups. In 6.3.3 Safely Migrating Interrupt Destina-
i386 the introduction of IRQ_BALANCE tions

did this the right way, which is to per-

form the reprograming operation when an in- o _
The functionfixup_irgs() performs all

terrupt is pending by storing the intend to S alt
change interrupt destinations in a deferred arth® necessary tasks for safely migrating in-
ray pending_irq_balance t_errupts, angl reprogramming interrupt destina-
tions for which this CPU being removed was a
The same concept was extendedidé4 as destination. The handling of IRQ is managed

well for the proc write handlers. With the CPU in 3 distinct phases.

6.3.1 When Is It Safe to Reprogram an
IOSAPIC?
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* migrate_irgs() performs the job of ] la_64_get_vr(
identifying all IRQs with this CPU as
the interrupt destination. This iteration
also keeps track of IRQs identified in Valid Vector? No —»{ To Phase 3
vectors_in_migration(] for later
processing to cover cases of missed inter-

Yes

rupts, since we mask RTEs during repro- ‘
gramming, if the device asserted an inter-
rupt during that time, they get lost. do_IRQ()
Y
g 1o o Ack Isapic eoi
cpu after Migrate_IRQ
reprogramming RTE (CPU#) +
Clear pending | Reprogram RTE - —1 Clear irgs_in_migration[irq]

IRQ cpumask

1 }
Se.lec( nev.v targgl from Select new target from . . ] )
‘h'sma"':”""“b'e cpuonine e Figure 2: Phase2: Processing Pending intr

Yes

for in phase 2, and issues interrupt han-
e dler callbacks as if an interrupt happened.
It is likely there were no interrupts as-

serted. We rely on the fact that most de-
vice drivers can tolerate calls even if there
was no work to perform due to the fact

that IRQs may be shared.

Pending IRQ
migration not
empty?

Is IRQ on
CPU#?

Irgs_in_migration[irq] = 1

6.3.4 Managing Platform Interrupt

Sources
Figure 1. Phasel: Migrate IRQ

IA64 architecture specifies platform interrupt
sources to report corrected platform errors to
the OS. ACPI specifies these sources via the
Platform Interrupt Source Structures. These
are communicated to the OS with data such as
the following.

* ia64_process_pending_intr()
Does normal interrupt style process-
ing. During this phase, we look at the
local APIC interrupt vector register
ivr and process all pending interrupts
on this CPU. For each processed in-

terrupt, we also clear the bits set in . nierrupt Type, indicating if the interrupt
vectors_in_migration[] : is Platform Management Interrupt (PMI),

. Phase 3 accounts for cases where a de- N1, OF CPEL

vice possibly attempted to assert an in- , |0SAPIC vector the OS should program.
terrupt, but got lost during the window

the RTE was also being re-programmed. < The processor that should receive this in-
This phase looks at entries not accounted  terrupt, by specifying the APIC id.
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The motivation for restricting certain proces-
> For each IRQ sors was that for some platforms that are asym-
metric, not all CPUs can retrieve the platform
ot error registers. Hence it is required that only
No certain processors are permitted. Most plat-
forms that support interruptible model are sym-
metric in nature. Hence any CPU is capable of
accepting the interrupt for CPEI.

Irgs_in_migration[irq] set?

A We are working with the ACPI specification
team to try and address this capability to sup-

Yes Return port platforms supporting CPU hotplug. In the
¥ interim before a specification change permits

either specifying any CPU as a target, or a
method to dynamically update the processors
} before a CPU gets removed, the code would
fail removal of a CPU that is a target of CPEI.
do_IRQ( In the case of polling, the last processor in the
list would be made non-removable.

Clear irgs_in_migration[irg]

Figure 3: Phase3: Account for Lost Interrupts 6-4 g\,/o\hl_y? Should the CPU be handed off to

* The interrupt l_'n_e used to signal the Intf':'r'The [tanium® processor architecture provides
rupts by specifying the global system in- , \achine check abort mechanism for report-
terrupt. ing and recovering from a variety of errors that

can be detected by the processor or chipset.

In the event of global MCA, it is required

tthat the slave processors perform checkin with

godhe | flo;fretrlevmg pollatform ertr ors via C.PI.EI' the 