Warning

此文件的目的是为让中文读者更容易阅读和理解,而不是作为一个分支。 因此, 如果您对此文件有任何意见或更新,请先尝试更新原始英文文件。

Note

如果您发现本文档与原始文件有任何不同或者有翻译问题,请联系该文件的译者, 或者请求时奎亮的帮助:<alexs@kernel.org>。

Original

Detailed Usages

翻译

司延腾 Yanteng Si <siyanteng@loongson.cn>

校译

详细用法

DAMON 为不同的用户提供了下面三种接口。

  • DAMON用户空间工具。 为有这特权的人, 如系统管理员,希望有一个刚好 可以工作的人性化界面。 使用它,用户可以以人性化的方式使用DAMON的主要功能。不过,它可能不会为特殊情况进行高度调整。 它同时支持虚拟和物理地址空间的监测。更多细节,请参考它的 使用文档

  • debugfs接口。 是为那些希望更高级的使用DAMON的特权用户空间程序员准备的。 使用它,用户可以通过读取和写入特殊的debugfs文件来使用DAMON的主要功能。因此,你可以编写和使 用你个性化的DAMON debugfs包装程序,代替你读/写debugfs文件。 DAMON用户空间工具 就是这种程序的一个例子 它同时支持虚拟和物理地址 空间的监测。注意,这个界面只提供简单的监测结果 统计。对于详细的监测 结果,DAMON提供了一个:ref:跟踪点 <tracepoint>

  • 内核空间编程接口。 This 这是为内核空间程序员准备的。使用它,用户可以通过为你编写内 核空间的DAMON应用程序,最灵活有效地利用DAMON的每一个功能。你甚至可以为各种地址空间扩展DAMON。 详细情况请参考接口 文件

debugfs接口

DAMON导出了八个文件, attrs, target_ids, init_regions, schemes, monitor_on, kdamond_pid, mk_contextsrm_contexts under its debugfs directory, <debugfs>/damon/.

属性

用户可以通过读取和写入 attrs 文件获得和设置 采样间隔聚集间隔区域更新间隔 以及监测目标区域的最小/最大数量。要详细了解监测属性,请参考 :doc:/vm/damon/design 。例如, 下面的命令将这些值设置为5ms、100ms、1000ms、10和1000,然后再次检查:

# cd <debugfs>/damon
# echo 5000 100000 1000000 10 1000 > attrs
# cat attrs
5000 100000 1000000 10 1000

目标ID

一些类型的地址空间支持多个监测目标。例如,虚拟内存地址空间的监测可以有多个进程作为监测目标。用户 可以通过写入目标的相关id值来设置目标,并通过读取 target_ids 文件来获得当前目标的id。在监 测虚拟地址空间的情况下,这些值应该是监测目标进程的pid。例如,下面的命令将pid为42和4242的进程设 为监测目标,并再次检查:

# cd <debugfs>/damon
# echo 42 4242 > target_ids
# cat target_ids
42 4242

用户还可以通过在文件中写入一个特殊的关键字 “paddrn” 来监测系统的物理内存地址空间。因为物理地 址空间监测不支持多个目标,读取文件会显示一个假值,即 42 ,如下图所示:

# cd <debugfs>/damon
# echo paddr > target_ids
# cat target_ids
42

请注意,设置目标ID并不启动监测。

初始监测目标区域

在虚拟地址空间监测的情况下,DAMON自动设置和更新监测的目标区域,这样就可以覆盖目标进程的整个 内存映射。然而,用户可能希望将监测区域限制在特定的地址范围内,如堆、栈或特定的文件映射区域。 或者,一些用户可以知道他们工作负载的初始访问模式,因此希望为“自适应区域调整”设置最佳初始区域。

相比之下,DAMON在物理内存监测的情况下不会自动设置和更新监测目标区域。因此,用户应该自己设置 监测目标区域。

在这种情况下,用户可以通过在 init_regions 文件中写入适当的值,明确地设置他们想要的初 始监测目标区域。输入的每一行应代表一个区域,形式如下:

<target idx> <start address> <end address>

目标idx应该是 target_ids 文件中目标的索引,从 0 开始,区域应该按照地址顺序传递。 例如,下面的命令将设置几个地址范围, 1-100100-200 作为pid 42的初始监测目标 区域,这是 target_ids 中的第一个(索引 0 ),另外几个地址范围, 20-4050-100 作为pid 4242的地址,这是 target_ids 中的第二个(索引 1 ):

# cd <debugfs>/damon
# cat target_ids
42 4242
# echo "0   1       100
        0   100     200
        1   20      40
        1   50      100" > init_regions

请注意,这只是设置了初始的监测目标区域。在虚拟内存监测的情况下,DAMON会在一个 区域更新间隔 后自动更新区域的边界。因此,在这种情况下,如果用户不希望更新的话,应该把 区域的更新间隔 设 置得足够大。

方案

对于通常的基于DAMON的数据访问感知的内存管理优化,用户只是希望系统对特定访问模式的内存区域应用内 存管理操作。DAMON从用户那里接收这种形式化的操作方案,并将这些方案应用到目标进程中。

用户可以通过读取和写入 scheme debugfs文件来获得和设置这些方案。读取该文件还可以显示每个 方案的统计数据。在文件中,每一个方案都应该在每一行中以下列形式表示出来:

<target access pattern> <action> <quota> <watermarks>

你可以通过简单地在文件中写入一个空字符串来禁用方案。

目标访问模式

<目标访问模式> 是由三个范围构成的,形式如下:

min-size max-size min-acc max-acc min-age max-age

具体来说,区域大小的字节数( min-sizemax-size ),访问频率的每聚合区间的监测访问次 数( min-accmax-acc ),区域年龄的聚合区间数( min-agemax-age )都被指定。 请注意,这些范围是封闭区间。

动作

<action> 是一个预定义的内存管理动作的整数,DAMON将应用于具有目标访问模式的区域。支持 的数字和它们的含义如下:

- 0: Call ``madvise()`` for the region with ``MADV_WILLNEED``
- 1: Call ``madvise()`` for the region with ``MADV_COLD``
- 2: Call ``madvise()`` for the region with ``MADV_PAGEOUT``
- 3: Call ``madvise()`` for the region with ``MADV_HUGEPAGE``
- 4: Call ``madvise()`` for the region with ``MADV_NOHUGEPAGE``
- 5: Do nothing but count the statistics

配额

每个 动作 的最佳 目标访问模式 取决于工作负载,所以不容易找到。更糟糕的是,将某个 动作的方案设置得过于激进会导致严重的开销。为了避免这种开销,用户可以通过下面表格中的 <quota> 来限制方案的时间和大小配额:

<ms> <sz> <reset interval> <priority weights>

这使得DAMON在 <reset interval> 毫秒内,尽量只用 <ms> 毫秒的时间对 目标访 问模式 的内存区域应用动作,并在 <reset interval> 内只对最多<sz>字节的内存区域应 用动作。将 <ms><sz> 都设置为零,可以禁用配额限制。

当预计超过配额限制时,DAMON会根据 目标访问模式 的大小、访问频率和年龄,对发现的内存 区域进行优先排序。为了实现个性化的优先级,用户可以在 <优先级权重> 中设置这三个属性的 权重,具体形式如下:

<size weight> <access frequency weight> <age weight>

水位

有些方案需要根据系统特定指标的当前值来运行,如自由内存比率。对于这种情况,用户可以为该条 件指定水位。:

<metric> <check interval> <high mark> <middle mark> <low mark>

<metric> 是一个预定义的整数,用于要检查的度量。支持的数字和它们的含义如下。

  • 0: 忽视水位

  • 1: 系统空闲内存率 (千分比)

每隔 <检查间隔> 微秒检查一次公制的值。

如果该值高于 <高标> 或低于 <低标> ,该方案被停用。如果该值低于 <中标> , 该方案将被激活。

统计数据

它还统计每个方案被尝试应用的区域的总数量和字节数,每个方案被成功应用的区域的两个数量,以 及超过配额限制的总数量。这些统计数据可用于在线分析或调整方案。

统计数据可以通过读取方案文件来显示。读取该文件将显示你在每一行中输入的每个 方案 , 统计的五个数字将被加在每一行的末尾。

例子

下面的命令应用了一个方案:”如果一个大小为[4KiB, 8KiB]的内存区域在[10, 20]的聚合时间 间隔内显示出每一个聚合时间间隔[0, 5]的访问量,请分页出该区域。对于分页,每秒最多只能使 用10ms,而且每秒分页不能超过1GiB。在这一限制下,首先分页出具有较长年龄的内存区域。另外, 每5秒钟检查一次系统的可用内存率,当可用内存率低于50%时开始监测和分页,但如果可用内存率 大于60%,或低于30%,则停止监测“:

# cd <debugfs>/damon
# scheme="4096 8192  0 5    10 20    2"  # target access pattern and action
# scheme+=" 10 $((1024*1024*1024)) 1000" # quotas
# scheme+=" 0 0 100"                     # prioritization weights
# scheme+=" 1 5000000 600 500 300"       # watermarks
# echo "$scheme" > schemes

开关

除非你明确地启动监测,否则如上所述的文件设置不会产生效果。你可以通过写入和读取 monitor_on 文件来启动、停止和检查监测的当前状态。写入 on 该文件可以启动对有属性的目标的监测。写入 off 该文件则停止这些目标。如果每个目标进程被终止,DAMON也会停止。下面的示例命令开启、关 闭和检查DAMON的状态:

# cd <debugfs>/damon
# echo on > monitor_on
# echo off > monitor_on
# cat monitor_on
off

请注意,当监测开启时,你不能写到上述的debugfs文件。如果你在DAMON运行时写到这些文件,将会返 回一个错误代码,如 -EBUSY

监测线程PID

DAMON通过一个叫做kdamond的内核线程来进行请求监测。你可以通过读取 kdamond_pid 文件获 得该线程的 pid 。当监测被 关闭 时,读取该文件不会返回任何信息:

# cd <debugfs>/damon
# cat monitor_on
off
# cat kdamond_pid
none
# echo on > monitor_on
# cat kdamond_pid
18594

使用多个监测线程

每个监测上下文都会创建一个 kdamond 线程。你可以使用 mk_contextsrm_contexts 文件为多个 kdamond 需要的用例创建和删除监测上下文。

将新上下文的名称写入 mk_contexts 文件,在 DAMON debugfs 目录上创建一个该名称的目录。 该目录将有该上下文的 DAMON debugfs 文件:

# cd <debugfs>/damon
# ls foo
# ls: cannot access 'foo': No such file or directory
# echo foo > mk_contexts
# ls foo
# attrs  init_regions  kdamond_pid  schemes  target_ids

如果不再需要上下文,你可以通过把上下文的名字放到 rm_contexts 文件中来删除它和相应的目录:

# echo foo > rm_contexts
# ls foo
# ls: cannot access 'foo': No such file or directory

注意, mk_contextsrm_contextsmonitor_on 文件只在根目录下。

监测结果的监测点

DAMON通过一个tracepoint damon:damon_aggregated 提供监测结果. 当监测开启时,你可 以记录追踪点事件,并使用追踪点支持工具如perf显示结果。比如说:

# echo on > monitor_on
# perf record -e damon:damon_aggregated &
# sleep 5
# kill 9 $(pidof perf)
# echo off > monitor_on
# perf script