/* * PowerPC version * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org) * * Modifications by Paul Mackerras (PowerMac) (paulus@cs.anu.edu.au) * and Cort Dougan (PReP) (cort@cs.nmt.edu) * Copyright (C) 1996 Paul Mackerras * Amiga/APUS changes by Jesper Skov (jskov@cygnus.co.uk). * * Derived from "arch/i386/mm/init.c" * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds * * Dave Engebretsen * Rework for PPC64 port. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include int mem_init_done; unsigned long ioremap_bot = IMALLOC_BASE; static unsigned long phbs_io_bot = PHBS_IO_BASE; extern pgd_t swapper_pg_dir[]; extern struct task_struct *current_set[NR_CPUS]; unsigned long klimit = (unsigned long)_end; unsigned long _SDR1=0; unsigned long _ASR=0; /* max amount of RAM to use */ unsigned long __max_memory; /* info on what we think the IO hole is */ unsigned long io_hole_start; unsigned long io_hole_size; void show_mem(void) { unsigned long total = 0, reserved = 0; unsigned long shared = 0, cached = 0; struct page *page; pg_data_t *pgdat; unsigned long i; printk("Mem-info:\n"); show_free_areas(); printk("Free swap: %6ldkB\n", nr_swap_pages<<(PAGE_SHIFT-10)); for_each_pgdat(pgdat) { for (i = 0; i < pgdat->node_spanned_pages; i++) { page = pgdat_page_nr(pgdat, i); total++; if (PageReserved(page)) reserved++; else if (PageSwapCache(page)) cached++; else if (page_count(page)) shared += page_count(page) - 1; } } printk("%ld pages of RAM\n", total); printk("%ld reserved pages\n", reserved); printk("%ld pages shared\n", shared); printk("%ld pages swap cached\n", cached); } #ifdef CONFIG_PPC_ISERIES void __iomem *ioremap(unsigned long addr, unsigned long size) { return (void __iomem *)addr; } extern void __iomem *__ioremap(unsigned long addr, unsigned long size, unsigned long flags) { return (void __iomem *)addr; } void iounmap(volatile void __iomem *addr) { return; } #else /* * map_io_page currently only called by __ioremap * map_io_page adds an entry to the ioremap page table * and adds an entry to the HPT, possibly bolting it */ static int map_io_page(unsigned long ea, unsigned long pa, int flags) { pgd_t *pgdp; pud_t *pudp; pmd_t *pmdp; pte_t *ptep; unsigned long vsid; if (mem_init_done) { spin_lock(&init_mm.page_table_lock); pgdp = pgd_offset_k(ea); pudp = pud_alloc(&init_mm, pgdp, ea); if (!pudp) return -ENOMEM; pmdp = pmd_alloc(&init_mm, pudp, ea); if (!pmdp) return -ENOMEM; ptep = pte_alloc_kernel(&init_mm, pmdp, ea); if (!ptep) return -ENOMEM; pa = abs_to_phys(pa); set_pte_at(&init_mm, ea, ptep, pfn_pte(pa >> PAGE_SHIFT, __pgprot(flags))); spin_unlock(&init_mm.page_table_lock); } else { unsigned long va, vpn, hash, hpteg; /* * If the mm subsystem is not fully up, we cannot create a * linux page table entry for this mapping. Simply bolt an * entry in the hardware page table. */ vsid = get_kernel_vsid(ea); va = (vsid << 28) | (ea & 0xFFFFFFF); vpn = va >> PAGE_SHIFT; hash = hpt_hash(vpn, 0); hpteg = ((hash & htab_hash_mask) * HPTES_PER_GROUP); /* Panic if a pte grpup is full */ if (ppc_md.hpte_insert(hpteg, va, pa >> PAGE_SHIFT, HPTE_V_BOLTED, _PAGE_NO_CACHE|_PAGE_GUARDED|PP_RWXX) == -1) { panic("map_io_page: could not insert mapping"); } } return 0; } static void __iomem * __ioremap_com(unsigned long addr, unsigned long pa, unsigned long ea, unsigned long size, unsigned long flags) { unsigned long i; if ((flags & _PAGE_PRESENT) == 0) flags |= pgprot_val(PAGE_KERNEL); for (i = 0; i < size; i += PAGE_SIZE) if (map_io_page(ea+i, pa+i, flags)) return NULL; return (void __iomem *) (ea + (addr & ~PAGE_MASK)); } void __iomem * ioremap(unsigned long addr, unsigned long size) { return __ioremap(addr, size, _PAGE_NO_CACHE | _PAGE_GUARDED); } void __iomem * __ioremap(unsigned long addr, unsigned long size, unsigned long flags) { unsigned long pa, ea; void __iomem *ret; /* * Choose an address to map it to. * Once the imalloc system is running, we use it. * Before that, we map using addresses going * up from ioremap_bot. imalloc will use * the addresses from ioremap_bot through * IMALLOC_END (0xE000001fffffffff) * */ pa = addr & PAGE_MASK; size = PAGE_ALIGN(addr + size) - pa; if (size == 0) return NULL; if (mem_init_done) { struct vm_struct *area; area = im_get_free_area(size); if (area == NULL) return NULL; ea = (unsigned long)(area->addr); ret = __ioremap_com(addr, pa, ea, size, flags); if (!ret) im_free(area->addr); } else { ea = ioremap_bot; ret = __ioremap_com(addr, pa, ea, size, flags); if (ret) ioremap_bot += size; } return ret; } #define IS_PAGE_ALIGNED(_val) ((_val) == ((_val) & PAGE_MASK)) int __ioremap_explicit(unsigned long pa, unsigned long ea, unsigned long size, unsigned long flags) { struct vm_struct *area; void __iomem *ret; /* For now, require page-aligned values for pa, ea, and size */ if (!IS_PAGE_ALIGNED(pa) || !IS_PAGE_ALIGNED(ea) || !IS_PAGE_ALIGNED(size)) { printk(KERN_ERR "unaligned value in %s\n", __FUNCTION__); return 1; } if (!mem_init_done) { /* Two things to consider in this case: * 1) No records will be kept (imalloc, etc) that the region * has been remapped * 2) It won't be easy to iounmap() the region later (because * of 1) */ ; } else { area = im_get_area(ea, size, IM_REGION_UNUSED|IM_REGION_SUBSET|IM_REGION_EXISTS); if (area == NULL) { /* Expected when PHB-dlpar is in play */ return 1; } if (ea != (unsigned long) area->addr) { printk(KERN_ERR "unexpected addr return from " "im_get_area\n"); return 1; } } ret = __ioremap_com(pa, pa, ea, size, flags); if (ret == NULL) { printk(KERN_ERR "ioremap_explicit() allocation failure !\n"); return 1; } if (ret != (void *) ea) { printk(KERN_ERR "__ioremap_com() returned unexpected addr\n"); return 1; } return 0; } /* * Unmap an IO region and remove it from imalloc'd list. * Access to IO memory should be serialized by driver. * This code is modeled after vmalloc code - unmap_vm_area() * * XXX what about calls before mem_init_done (ie python_countermeasures()) */ void iounmap(volatile void __iomem *token) { void *addr; if (!mem_init_done) return; addr = (void *) ((unsigned long __force) token & PAGE_MASK); im_free(addr); } static int iounmap_subset_regions(unsigned long addr, unsigned long size) { struct vm_struct *area; /* Check whether subsets of this region exist */ area = im_get_area(addr, size, IM_REGION_SUPERSET); if (area == NULL) return 1; while (area) { iounmap((void __iomem *) area->addr); area = im_get_area(addr, size, IM_REGION_SUPERSET); } return 0; } int iounmap_explicit(volatile void __iomem *start, unsigned long size) { struct vm_struct *area; unsigned long addr; int rc; addr = (unsigned long __force) start & PAGE_MASK; /* Verify that the region either exists or is a subset of an existing * region. In the latter case, split the parent region to create * the exact region */ area = im_get_area(addr, size, IM_REGION_EXISTS | IM_REGION_SUBSET); if (area == NULL) { /* Determine whether subset regions exist. If so, unmap */ rc = iounmap_subset_regions(addr, size); if (rc) { printk(KERN_ERR "%s() cannot unmap nonexistent range 0x%lx\n", __FUNCTION__, addr); return 1; } } else { iounmap((void __iomem *) area->addr); } /* * FIXME! This can't be right: iounmap(area->addr); * Maybe it should be "iounmap(area);" */ return 0; } #endif EXPORT_SYMBOL(ioremap); EXPORT_SYMBOL(__ioremap); EXPORT_SYMBOL(iounmap); void free_initmem(void) { unsigned long addr; addr = (unsigned long)__init_begin; for (; addr < (unsigned long)__init_end; addr += PAGE_SIZE) { ClearPageReserved(virt_to_page(addr)); set_page_count(virt_to_page(addr), 1); free_page(addr); totalram_pages++; } printk ("Freeing unused kernel memory: %luk freed\n", ((unsigned long)__init_end - (unsigned long)__init_begin) >> 10); } #ifdef CONFIG_BLK_DEV_INITRD void free_initrd_mem(unsigned long start, unsigned long end) { if (start < end) printk ("Freeing initrd memory: %ldk freed\n", (end - start) >> 10); for (; start < end; start += PAGE_SIZE) { ClearPageReserved(virt_to_page(start)); set_page_count(virt_to_page(start), 1); free_page(start); totalram_pages++; } } #endif static DEFINE_SPINLOCK(mmu_context_lock); static DEFINE_IDR(mmu_context_idr); int init_new_context(struct task_struct *tsk, struct mm_struct *mm) { int index; int err; #ifdef CONFIG_HUGETLB_PAGE /* We leave htlb_segs as it was, but for a fork, we need to * clear the huge_pgdir. */ mm->context.huge_pgdir = NULL; #endif again: if (!idr_pre_get(&mmu_context_idr, GFP_KERNEL)) return -ENOMEM; spin_lock(&mmu_context_lock); err = idr_get_new_above(&mmu_context_idr, NULL, 1, &index); spin_unlock(&mmu_context_lock); if (err == -EAGAIN) goto again; else if (err) return err; if (index > MAX_CONTEXT) { idr_remove(&mmu_context_idr, index); return -ENOMEM; } mm->context.id = index; return 0; } void destroy_context(struct mm_struct *mm) { spin_lock(&mmu_context_lock); idr_remove(&mmu_context_idr, mm->context.id); spin_unlock(&mmu_context_lock); mm->context.id = NO_CONTEXT; hugetlb_mm_free_pgd(mm); } /* * Do very early mm setup. */ void __init mm_init_ppc64(void) { #ifndef CONFIG_PPC_ISERIES unsigned long i; #endif ppc64_boot_msg(0x100, "MM Init"); /* This is the story of the IO hole... please, keep seated, * unfortunately, we are out of oxygen masks at the moment. * So we need some rough way to tell where your big IO hole * is. On pmac, it's between 2G and 4G, on POWER3, it's around * that area as well, on POWER4 we don't have one, etc... * We need that as a "hint" when sizing the TCE table on POWER3 * So far, the simplest way that seem work well enough for us it * to just assume that the first discontinuity in our physical * RAM layout is the IO hole. That may not be correct in the future * (and isn't on iSeries but then we don't care ;) */ #ifndef CONFIG_PPC_ISERIES for (i = 1; i < lmb.memory.cnt; i++) { unsigned long base, prevbase, prevsize; prevbase = lmb.memory.region[i-1].physbase; prevsize = lmb.memory.region[i-1].size; base = lmb.memory.region[i].physbase; if (base > (prevbase + prevsize)) { io_hole_start = prevbase + prevsize; io_hole_size = base - (prevbase + prevsize); break; } } #endif /* CONFIG_PPC_ISERIES */ if (io_hole_start) printk("IO Hole assumed to be %lx -> %lx\n", io_hole_start, io_hole_start + io_hole_size - 1); ppc64_boot_msg(0x100, "MM Init Done"); } /* * This is called by /dev/mem to know if a given address has to * be mapped non-cacheable or not */ int page_is_ram(unsigned long pfn) { int i; unsigned long paddr = (pfn << PAGE_SHIFT); for (i=0; i < lmb.memory.cnt; i++) { unsigned long base; #ifdef CONFIG_MSCHUNKS base = lmb.memory.region[i].physbase; #else base = lmb.memory.region[i].base; #endif if ((paddr >= base) && (paddr < (base + lmb.memory.region[i].size))) { return 1; } } return 0; } EXPORT_SYMBOL(page_is_ram); /* * Initialize the bootmem system and give it all the memory we * have available. */ #ifndef CONFIG_NEED_MULTIPLE_NODES void __init do_init_bootmem(void) { unsigned long i; unsigned long start, bootmap_pages; unsigned long total_pages = lmb_end_of_DRAM() >> PAGE_SHIFT; int boot_mapsize; /* * Find an area to use for the bootmem bitmap. Calculate the size of * bitmap required as (Total Memory) / PAGE_SIZE / BITS_PER_BYTE. * Add 1 additional page in case the address isn't page-aligned. */ bootmap_pages = bootmem_bootmap_pages(total_pages); start = abs_to_phys(lmb_alloc(bootmap_pages<> PAGE_SHIFT, total_pages); max_pfn = max_low_pfn; /* Add all physical memory to the bootmem map, mark each area * present. */ for (i=0; i < lmb.memory.cnt; i++) { unsigned long physbase, size; unsigned long start_pfn, end_pfn; physbase = lmb.memory.region[i].physbase; size = lmb.memory.region[i].size; start_pfn = physbase >> PAGE_SHIFT; end_pfn = start_pfn + (size >> PAGE_SHIFT); memory_present(0, start_pfn, end_pfn); free_bootmem(physbase, size); } /* reserve the sections we're already using */ for (i=0; i < lmb.reserved.cnt; i++) { unsigned long physbase = lmb.reserved.region[i].physbase; unsigned long size = lmb.reserved.region[i].size; reserve_bootmem(physbase, size); } } /* * paging_init() sets up the page tables - in fact we've already done this. */ void __init paging_init(void) { unsigned long zones_size[MAX_NR_ZONES]; unsigned long zholes_size[MAX_NR_ZONES]; unsigned long total_ram = lmb_phys_mem_size(); unsigned long top_of_ram = lmb_end_of_DRAM(); printk(KERN_INFO "Top of RAM: 0x%lx, Total RAM: 0x%lx\n", top_of_ram, total_ram); printk(KERN_INFO "Memory hole size: %ldMB\n", (top_of_ram - total_ram) >> 20); /* * All pages are DMA-able so we put them all in the DMA zone. */ memset(zones_size, 0, sizeof(zones_size)); memset(zholes_size, 0, sizeof(zholes_size)); zones_size[ZONE_DMA] = top_of_ram >> PAGE_SHIFT; zholes_size[ZONE_DMA] = (top_of_ram - total_ram) >> PAGE_SHIFT; free_area_init_node(0, NODE_DATA(0), zones_size, __pa(PAGE_OFFSET) >> PAGE_SHIFT, zholes_size); } #endif /* ! CONFIG_NEED_MULTIPLE_NODES */ static struct kcore_list kcore_vmem; static int __init setup_kcore(void) { int i; for (i=0; i < lmb.memory.cnt; i++) { unsigned long physbase, size; struct kcore_list *kcore_mem; physbase = lmb.memory.region[i].physbase; size = lmb.memory.region[i].size; /* GFP_ATOMIC to avoid might_sleep warnings during boot */ kcore_mem = kmalloc(sizeof(struct kcore_list), GFP_ATOMIC); if (!kcore_mem) panic("mem_init: kmalloc failed\n"); kclist_add(kcore_mem, __va(physbase), size); } kclist_add(&kcore_vmem, (void *)VMALLOC_START, VMALLOC_END-VMALLOC_START); return 0; } module_init(setup_kcore); void __init mem_init(void) { #ifdef CONFIG_NEED_MULTIPLE_NODES int nid; #endif pg_data_t *pgdat; unsigned long i; struct page *page; unsigned long reservedpages = 0, codesize, initsize, datasize, bsssize; num_physpages = max_low_pfn; /* RAM is assumed contiguous */ high_memory = (void *) __va(max_low_pfn * PAGE_SIZE); #ifdef CONFIG_NEED_MULTIPLE_NODES for_each_online_node(nid) { if (NODE_DATA(nid)->node_spanned_pages != 0) { printk("freeing bootmem node %x\n", nid); totalram_pages += free_all_bootmem_node(NODE_DATA(nid)); } } #else max_mapnr = num_physpages; totalram_pages += free_all_bootmem(); #endif for_each_pgdat(pgdat) { for (i = 0; i < pgdat->node_spanned_pages; i++) { page = pgdat_page_nr(pgdat, i); if (PageReserved(page)) reservedpages++; } } codesize = (unsigned long)&_etext - (unsigned long)&_stext; initsize = (unsigned long)&__init_end - (unsigned long)&__init_begin; datasize = (unsigned long)&_edata - (unsigned long)&__init_end; bsssize = (unsigned long)&__bss_stop - (unsigned long)&__bss_start; printk(KERN_INFO "Memory: %luk/%luk available (%luk kernel code, " "%luk reserved, %luk data, %luk bss, %luk init)\n", (unsigned long)nr_free_pages() << (PAGE_SHIFT-10), num_physpages << (PAGE_SHIFT-10), codesize >> 10, reservedpages << (PAGE_SHIFT-10), datasize >> 10, bsssize >> 10, initsize >> 10); mem_init_done = 1; #ifdef CONFIG_PPC_ISERIES iommu_vio_init(); #endif /* Initialize the vDSO */ vdso_init(); } /* * This is called when a page has been modified by the kernel. * It just marks the page as not i-cache clean. We do the i-cache * flush later when the page is given to a user process, if necessary. */ void flush_dcache_page(struct page *page) { if (cpu_has_feature(CPU_FTR_COHERENT_ICACHE)) return; /* avoid an atomic op if possible */ if (test_bit(PG_arch_1, &page->flags)) clear_bit(PG_arch_1, &page->flags); } EXPORT_SYMBOL(flush_dcache_page); void clear_user_page(void *page, unsigned long vaddr, struct page *pg) { clear_page(page); if (cpu_has_feature(CPU_FTR_COHERENT_ICACHE)) return; /* * We shouldnt have to do this, but some versions of glibc * require it (ld.so assumes zero filled pages are icache clean) * - Anton */ /* avoid an atomic op if possible */ if (test_bit(PG_arch_1, &pg->flags)) clear_bit(PG_arch_1, &pg->flags); } EXPORT_SYMBOL(clear_user_page); void copy_user_page(void *vto, void *vfrom, unsigned long vaddr, struct page *pg) { copy_page(vto, vfrom); /* * We should be able to use the following optimisation, however * there are two problems. * Firstly a bug in some versions of binutils meant PLT sections * were not marked executable. * Secondly the first word in the GOT section is blrl, used * to establish the GOT address. Until recently the GOT was * not marked executable. * - Anton */ #if 0 if (!vma->vm_file && ((vma->vm_flags & VM_EXEC) == 0)) return; #endif if (cpu_has_feature(CPU_FTR_COHERENT_ICACHE)) return; /* avoid an atomic op if possible */ if (test_bit(PG_arch_1, &pg->flags)) clear_bit(PG_arch_1, &pg->flags); } void flush_icache_user_range(struct vm_area_struct *vma, struct page *page, unsigned long addr, int len) { unsigned long maddr; maddr = (unsigned long)page_address(page) + (addr & ~PAGE_MASK); flush_icache_range(maddr, maddr + len); } EXPORT_SYMBOL(flush_icache_user_range); /* * This is called at the end of handling a user page fault, when the * fault has been handled by updating a PTE in the linux page tables. * We use it to preload an HPTE into the hash table corresponding to * the updated linux PTE. * * This must always be called with the mm->page_table_lock held */ void update_mmu_cache(struct vm_area_struct *vma, unsigned long ea, pte_t pte) { unsigned long vsid; void *pgdir; pte_t *ptep; int local = 0; cpumask_t tmp; unsigned long flags; /* handle i-cache coherency */ if (!cpu_has_feature(CPU_FTR_COHERENT_ICACHE) && !cpu_has_feature(CPU_FTR_NOEXECUTE)) { unsigned long pfn = pte_pfn(pte); if (pfn_valid(pfn)) { struct page *page = pfn_to_page(pfn); if (!PageReserved(page) && !test_bit(PG_arch_1, &page->flags)) { __flush_dcache_icache(page_address(page)); set_bit(PG_arch_1, &page->flags); } } } /* We only want HPTEs for linux PTEs that have _PAGE_ACCESSED set */ if (!pte_young(pte)) return; pgdir = vma->vm_mm->pgd; if (pgdir == NULL) return; ptep = find_linux_pte(pgdir, ea); if (!ptep) return; vsid = get_vsid(vma->vm_mm->context.id, ea); local_irq_save(flags); tmp = cpumask_of_cpu(smp_processor_id()); if (cpus_equal(vma->vm_mm->cpu_vm_mask, tmp)) local = 1; __hash_page(ea, pte_val(pte) & (_PAGE_USER|_PAGE_RW), vsid, ptep, 0x300, local); local_irq_restore(flags); } void __iomem * reserve_phb_iospace(unsigned long size) { void __iomem *virt_addr; if (phbs_io_bot >= IMALLOC_BASE) panic("reserve_phb_iospace(): phb io space overflow\n"); virt_addr = (void __iomem *) phbs_io_bot; phbs_io_bot += size; return virt_addr; } kmem_cache_t *zero_cache; static void zero_ctor(void *pte, kmem_cache_t *cache, unsigned long flags) { memset(pte, 0, PAGE_SIZE); } void pgtable_cache_init(void) { zero_cache = kmem_cache_create("zero", PAGE_SIZE, 0, SLAB_HWCACHE_ALIGN | SLAB_MUST_HWCACHE_ALIGN, zero_ctor, NULL); if (!zero_cache) panic("pgtable_cache_init(): could not create zero_cache!\n"); } pgprot_t phys_mem_access_prot(struct file *file, unsigned long addr, unsigned long size, pgprot_t vma_prot) { if (ppc_md.phys_mem_access_prot) return ppc_md.phys_mem_access_prot(file, addr, size, vma_prot); if (!page_is_ram(addr >> PAGE_SHIFT)) vma_prot = __pgprot(pgprot_val(vma_prot) | _PAGE_GUARDED | _PAGE_NO_CACHE); return vma_prot; } EXPORT_SYMBOL(phys_mem_access_prot);