/* * i8253.c 8253/PIT functions * */ #include #include #include #include #include #include #include #include #include #include #include "io_ports.h" DEFINE_SPINLOCK(i8253_lock); EXPORT_SYMBOL(i8253_lock); void setup_pit_timer(void) { unsigned long flags; spin_lock_irqsave(&i8253_lock, flags); outb_p(0x34,PIT_MODE); /* binary, mode 2, LSB/MSB, ch 0 */ udelay(10); outb_p(LATCH & 0xff , PIT_CH0); /* LSB */ udelay(10); outb(LATCH >> 8 , PIT_CH0); /* MSB */ spin_unlock_irqrestore(&i8253_lock, flags); } /* * Since the PIT overflows every tick, its not very useful * to just read by itself. So use jiffies to emulate a free * running counter: */ static cycle_t pit_read(void) { unsigned long flags; int count; u32 jifs; static int old_count; static u32 old_jifs; spin_lock_irqsave(&i8253_lock, flags); /* * Although our caller may have the read side of xtime_lock, * this is now a seqlock, and we are cheating in this routine * by having side effects on state that we cannot undo if * there is a collision on the seqlock and our caller has to * retry. (Namely, old_jifs and old_count.) So we must treat * jiffies as volatile despite the lock. We read jiffies * before latching the timer count to guarantee that although * the jiffies value might be older than the count (that is, * the counter may underflow between the last point where * jiffies was incremented and the point where we latch the * count), it cannot be newer. */ jifs = jiffies; outb_p(0x00, PIT_MODE); /* latch the count ASAP */ count = inb_p(PIT_CH0); /* read the latched count */ count |= inb_p(PIT_CH0) << 8; /* VIA686a test code... reset the latch if count > max + 1 */ if (count > LATCH) { outb_p(0x34, PIT_MODE); outb_p(LATCH & 0xff, PIT_CH0); outb(LATCH >> 8, PIT_CH0); count = LATCH - 1; } /* * It's possible for count to appear to go the wrong way for a * couple of reasons: * * 1. The timer counter underflows, but we haven't handled the * resulting interrupt and incremented jiffies yet. * 2. Hardware problem with the timer, not giving us continuous time, * the counter does small "jumps" upwards on some Pentium systems, * (see c't 95/10 page 335 for Neptun bug.) * * Previous attempts to handle these cases intelligently were * buggy, so we just do the simple thing now. */ if (count > old_count && jifs == old_jifs) { count = old_count; } old_count = count; old_jifs = jifs; spin_unlock_irqrestore(&i8253_lock, flags); count = (LATCH - 1) - count; return (cycle_t)(jifs * LATCH) + count; } static struct clocksource clocksource_pit = { .name = "pit", .rating = 110, .read = pit_read, .mask = CLOCKSOURCE_MASK(32), .mult = 0, .shift = 20, }; static int __init init_pit_clocksource(void) { if (num_possible_cpus() > 4) /* PIT does not scale! */ return 0; clocksource_pit.mult = clocksource_hz2mult(CLOCK_TICK_RATE, 20); return clocksource_register(&clocksource_pit); } module_init(init_pit_clocksource);