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1 Subvolume Quota Concepts
The concept of quota has a long-standing tradition in the Unix world. Ever
since computers allow multiple users to work simultaneously in one filesystem,
there is the need to prevent one user from using up the entire space. Every user
should get his fair share of the available resources.

In case of files, the solution is quite straightforward. Each file has an “owner”
recorded along with it, and it has a size. Traditional quota just restricts the
total size of all files that are owned by a user. The concept is quite flexible: if
a user hits his quota limit, the administrator can raise it on the fly.

On the other hand, the traditional approach has only a poor solution to re-
strict directories. At installation time, the harddisk can be partitioned so that
every directory (e. g. /usr, /var, ...) that needs a limit gets its own partition.
The obvious problem is, that those limits cannot be changed without a reinstal-
lation. The btrfs subvolume feature builds a bridge. Subvolumes correspond in
many ways to partitions, as every subvolume looks like its own filesystem. With
subvolume quota, it is now possible to restrict each subvolume like a partition,
but keep the flexibility of quota. The space for each subvolume can be expanded
or restricted on the fly.

As subvolumes are the basis for snapshots, interesting questions arise as to
how to account used space in the presence of snapshots. If you have a file shared
between a subvolume and a snapshot, whom to account the file to? The creator?
Both? What if the file gets modified in the snapshot, should only these changes
be accounted to it? But wait, both the snapshot and the subvolume belong to
the same user home. I just want to limit the total space used by both! But
somebody else might not want to charge the snapshots to the users.

Btrfs subvolume quota solves these problems by introducing groups of sub-
volumes and let the user put limits on them. It is even possible to have groups of
groups. In the following, we refer to them as “qgroups”. Each qgroup primarily
tracks two numbers, the amount of total referenced space and the amount of
exclusively referenced space.

Referenced space is the amount of data that can be reached from any of
the subvolumes contained in the qgroup, while exclusive is the amount of data
where all references to this data can be reached from within this qgroup.
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Figure 1: Sample qgroup hierarchy

2 Subvolume Quota Groups
The basic notion of the Subvolume Quota feature is the qouta group, short
qgroup. Qgroups are notated as <level>/<id>, e. g. the qgroup 3/2 is a qgroup
of level 3. For level 0, the leading “0/” can be omitted. Qgroups of level 0 get
created automatically when a subvolume/snapshot gets created. The ID of the
qgroup corresponds to the ID of the subvolume, so 0/5 is the qgroup for the
root subvolume. For the “btrfs qgroup” command, the path to the subvolume
can also be used instead of 0/<ID>. For all higher levels, the ID can be choosen
freely.

Each qgroup can contain a set of lower level qgroups, thus creating a hi-
erarchy of qgroups. Figure 1 shows an example qgroup tree. At the bottom,
some extents are depicted showing which qgroups reference which extents. It
is important to understand the notion of referenced versus exclusive. In the
example, qgroup 0/2 references extents 2 and 3, while 1/2 references extents
2–4. 2/1 references all extents.

On the other hand, extent 1 is exclusive to 0/1, extent 2 is exclusive to 0/2,
while extent 3 is neither exclusive to 0/2 nor to 0/3. But because both references
can be reached from 1/2, extent 3 is exclusive to 1/2. All extents are exclusive
to 2/1. So exclusive does not mean there is no other way to reach the extent,
but it does mean that if you delete all subvolumes contained in a qgroup, the
extent will get deleted. Exclusive of a qgroup conveys the useful information
how much space will be freed in case all subvolumes of the qgroup get deleted.

All data extents are accounted this way. Metadata that belongs to a specific
subvolume (i. e. its filesystem tree) is also accounted. Checksums and extent
allocation information are not accounted.

In turn, the referenced count of a qgroup can be limited. All writes beyond
this limit will lead to a “Quota Exceeded” error.
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3 Inheritance
Things get a bit more complicated when new subvolumes or snapshots are cre-
ated. The case of (empty) subvolumes is still quite easy. If a subvolume should
be part of a qgroup, it has to be added to the qgroup at creation time. To add
it at a later time, it would be necessary to at least rescan the full subvolume for
a proper accounting.

Creation of a snapshot is the hard case. Obviously, the snapshot will refer-
ence the exact amount of space as its source, and both source and destination
now have an exclusive count of 0 (4 kB to be precise, as the roots of the trees are
not shared). But what about qgroups of higher levels? If the qgroup contains
both the source and the destination, nothing changes. If the qgroup contains
only the source, it might lose some exclusive. But how much? The tempting an-
swer is, “subtract all exclusive of the source from the qgroup”, but that is wrong,
or at least not enough. There could have been an extent that is referenced from
the source and another subvolume from that qgroup. This extent would have
been exclusive to the qgroup, but not to the source subvolume. With the cre-
ation of the snapshot, the qgroup would also lose this extent from its exclusive
set.

So how can this problem be solved? In the instant the snapshot gets cre-
ated, we already have to know the correct exclusive count. We need to have a
second qgroup that contains all the subvolumes as the first qgroup, except the
subvolume we want to snapshot. The moment we create the snapshot, the ex-
clusive count from the second qgroup needs to be copied to the first qgroup, as
it represents the correct value. The second qgroup is called a tracking qgroup.
It is only there in case a snapshot is needed.

4 Use Cases

4.1 Single-user machine
4.1.1 Replacement for partitions

The simplest use case is to use qgroups as simple replacement for partitions.
Btrfs takes the disk as a whole, and /, /usr, /var etc. are created as subvol-
umes. As each subvolume gets it own qgroup automatically, they can simply be
restricted. No hierarchy is needed for that.

4.1.2 Track usage of snapshots

When a snapshot is taken, a qgroup for it will automatically be created with
the correct values. Referenced will show how much is in it, possibly shared with
other subvolumes. Exclusive will be the amount of space that gets freed when
the subvolume is deleted.
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4.2 Multi-user machine / Hosting
4.2.1 Restricting homes

When you have several users on a machine, with home directories probably
under /home, you might want to restrict /home as a whole, while restricting
every user to an indiviual limit as well. This is easily accomplished by creating
a qgroup for /home, e. g. 1/1, and assigning all user subvolumes to it. Restricting
this qgroup will limit /home, while every user subvolume can get its own (lower)
limit.

4.2.2 Accounting snapshots to the user

Let’s say the user is allowed to create snapshots via some mechanism. It would
only be fair to account space used by the snapshots to the user. This does not
mean the user doubles his usage as soon as he takes a snapshot. Of course, files
that are present in his home and the snapshot should only be accounted once.
This can be accomplished by creating a qgroup for each user, say 1/<uid>. The
user home and all snapshots are assigned to this qgroup. Limiting it will extend
the limit to all snapshots, counting files only once. To limit /home as a whole, a
higher level group 2/1 replacing 1/1 from the previous example is needed, with
all user qgroups assigned to it.

4.2.3 Do not account snapshots

On the other hand, when the snapshots get created automatically, the user has
no chance to control them, so the space used by them should not be accounted
to him. This is already the case when creating snapshots in the example from
section 4.2.1.

4.2.4 Snapshots for backup purposes

This scenario is a mixture of the previous two. The user can create snapshots,
but some snapshots for backup purposes are being created by the system. The
user’s snapshots should be accounted to the user, not the system. The solution
is similar to the one from section 4.2.2, but do not assign system snapshots to
user’s qgroup.

5 Implementation

5.1 Update algorithm
The update algorithm is the core of the quota implementation. Whenever a
reference is added or removed, the update algorithm is called.

The algorithm is called with the address of the extent for which to add/remove
the reference, the root of the reference, the amount of space to add/remove, and
of course the operation to perform.
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Figure 2: Extent with lazy references

A call could look like this

qgroup_record_ref(ref_root, start, num_bytes, operation);

In fact, these parameters are all contained in the delayed ref structure, so just
the delayed ref node is passed instead. This function gets called from the central
point where backrefs are added to the filesystem, btrfs_add_delayed_*_ref.

The algorithm works in multiple steps:

1. Find all referencing roots

2. Calculate refcnt for all qgroups

3. Tag qgroups

4. Update exclusive

5.1.1 Find all referencing roots

The first step is to find all roots that are currently referencing the extent.
Though btrfs is fully back-referenced, this step is not as easy as it may seem,
because of the lazy refcounting scheme. The back references that are recorded
for the extent may not tell the full truth. In figure 2, a tree is depicted where
the actual extent only has two back references recorded, whereas there are five
roots referencing it.

The solution is to walk up the tree and follow all back references until all
roots are found. This looks like a classic problem for a recursive tree walk, but
recursion here is not possible for two reasons:

1. The code runs in kernel space with very limited stack space. With a
recursion, the stack may overflow.
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2. To follow a back reference, the referenced extent has to be searched. This
is due to the nature of the indirect back references used. These back
references point to a key in the tree, not to the address of an extent.

The code solves this by keeping two lists, one for all roots found and one for all
backrefs to follow. Initially, the list of roots is empty, while the list of backrefs
is filled with only one item, the reference to the extent for which all backrefs
are to be found.

The following pseudo-code describes how all roots are found:

foreach ref (0 ... #refs in ulist)

find extent for ref
add all refs for extent to ulist
if (extent is root)

add root to ulist of roots

The lists here are called “ulists”, because they only accept new items if they are
not already in the list, i. e. if they are unique.

The step to add all backrefs for an extent involves finding all recorded inline
backrefs, all in-tree backrefs and all delayed refs for the extent up to the moment
the algorithms starts to run. Because this code might run some time, new
delayed refs for any extent in the tree might be added in the meantime. To
avoid a race condition here, each delayed ref gets a sequence number. Only
delayed refs with seq < own seq are considered. Also, no delayed ref with a
higher seq than own seq must be run while the roots are searched for.

The code will never include the reference to add/delete.

5.1.2 Calculate refcnt for all qgroups

After the list of referencing roots is known, the next three steps all operate on
the qgroup hierarchy. A sample hierarchy is depicted in figure 1.

The first operation on the tree is to calculate the number of references that
can be reached from every given qgroup. This is done by walking the tree
upwards from every root found in the previous step and incrementing a count
on each qgroup visited, where each root can only increment the count by one
for every qgroup it can reach, even if it can reach it by several paths. The
calculated count is called the refcnt.

As in the previous step, the tree is walked iteratively with the help of ulists
to avoid recursion. Figure 4 depicts the state after this step is done for extent 3,
where the ref from 0/2 should get deleted. The Figure omits the fs trees and
their roots, as qgroups of level 0 directly correspond to a root.

As the refcnt is part of the qgroup struct, the algorithm would require that
all refcnts in all qgroups be set to zero before it can run. To avoid this, a global
sequence number is used to determine the refcnt. Only one thread at a time can
currently do refcounting on the tree (this is easily changable, should it impose
a limit). This thread grabs the next sequence number and walks up the tree.
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Figure 3: qgroup tree after refcnt augmentation for extent 3

If the refcnt of the visited qgroup is smaller than the seq, it is not yet set and
known to be 0. Otherwise, it is incremented. After the algorithm has run, the
global sequence number is incremented by the max refcnt found.

5.1.3 Tag qgroups

The next step is to walk up the tree again, but this time starting with ref_root,
the root to add/remove. Remember that the previous step does not include
the ref_root. Every qgroup that is being visited on the way up will be tagged
in preparation for the next step. Additionally, under certain conditions, a first
adjustment is made to the values of the visited qgroups.

• If the refcnt is zero and the operation is to add a reference, this means
this qgroup is not yet referencing this extent, but after the operation, it
will, so the referenced value of the qgroup is increased by num_bytes.

• If the refcnt is zero and the operation is to remove a reference, this means
this qgroup is currently referencing the extent, but through the opera-
tion, it will lose its last reference, so the referenced value is decreased by
num_bytes.

• If the refcnt is zero and the number of roots found in the first step is also
zero, this means:

• In case of addition: the added reference will be the only reference, so
exclusive of the qgroup is increased by num_bytes.

• In case of removal: the reference is the last to remove, which means it is
currently exclusive to ref_root, so exclusive of the qgroup is decreased by
num_bytes.

Figure 4 depicts the situation given the reference for 0/2 to extent 3 is to be
deleted. Referenced of 0/2 and 1/1 will get decreased.
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Figure 4: qgroup tree after tagging
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Figure 5: Update of exclusive on qgroup tree

5.1.4 Update exclusive

The last step adjusts the exclusive counts of all untagged qgroups. The exclusive
counts of the tagged qgroups already got adjusted in the previous step. All roots
from step 1 are walked again, tagged qgroups are skipped. If the refcnt equals
the number of roots found in step one, exclusive gets increased if the ref is to
be removed and decreased otherwise. Figure 5 shows the outcome of this step.
Extent 3 is now exclusive to 0/3. All other exclusives are untouched. Extent 3
was exclusive to 1/2 and 2/1 and still is, while it was not exclusive to 0/2 and
1/1 and still is not.

5.2 Tracking Groups
As seen in the introductory chapter, when taking a snapshot, the values of
several qgroups might need to be adjusted. This is easiest to see when looking
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Figure 7: A tracking qgroup is needed for 1/2

at some examples. Figure 6 shows a simple example where tracking groups are
needed.

The exercise is to track referenced and exclusive for all snapshots of a subvol-
ume. The gray qgroups 0/2–0/4 are all snapshot of 0/1. Before 0/4 is created,
1/2 contains 0/2 and 0/3. The moment 0/4 gets created, it is added to 1/2.
The exclusive count of 1/2 will not change, as all extents that become reachable
from 1/2 are also reachable from 1/1. More problematic is the referenced count,
as not all extents from 0/4 might be new to 1/2. The solution is to add another
qgroup, 1/3, that tracks 0/1 and all subvolumes of it (figure 7).

The moment the snapshot gets created, 1/3 holds the correct referenced
count for all snapshots. To get 1/2 back to the correct values, referenced from
1/3 has to be copied to 1/2, while exclusive of 1/2 stays untouched.

In the next step, we want to take a snapshot of 0/2. The resulting snapshot
should not be part of 1/2. This poses another problem: while referenced does
not change, exclusive needs to be corrected. For this, we need another tracking
group, 1/4 (figure 8).

When 0/5 is created, exclusive from 1/4 needs to be copied to 1/2. Snap-
shotting 0/2 also invalidates the exclusive of 1/3. Also, another snapshot of 0/1
would invalidate 1/4. So one more tracking groups is needed, containing 0/1,
0/4 and 0/3.

It is planned that the btrfs userland utility will keep track of the needed
tracking groups and takes care that all the necessary copies happen. For this,
a format needs to be found how a user can describe what snapshots he intends
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Figure 8: A snapshot of 0/2

to take. Keeping tracking groups for all possible combinations would lead to an
exponential number of tracking groups.

5.3 On-disk quota tree layout
Qgroups add a new tree, the quota tree. Four new keys are used in this tree.
The overall status is recorded in a status item, and each qgroup has two items,
one to record the user configured limits and one to record the current refer-
enced/exclusive counts. Each parent/child-relationship between qgroups gets
two qgroup_relation items, one per direction. The on-disk structure is still
preliminary.

/*
* Records the overall state of the qgroups.
* There is only one instance of this key present,
* (0, BTRFS_QGROUP_STATUS_KEY, 0)
*/
#define BTRFS_QGROUP_STATUS_KEY 240
/*
* Records the currently used space of the qgroup.
* One key per qgroup, (0, BTRFS_QGROUP_INFO_KEY, qgroupid).
*/
#define BTRFS_QGROUP_INFO_KEY 242
/*
* Contains the user configured limits for the qgroup.
* One key per qgroup, (0, BTRFS_QGROUP_LIMIT_KEY, qgroupid).
*/
#define BTRFS_QGROUP_LIMIT_KEY 244
/*
* Records the child-parent relationship of qgroups. For
* each relation, 2 keys are present:
* (childid, BTRFS_QGROUP_RELATION_KEY, parentid)
* (parentid, BTRFS_QGROUP_RELATION_KEY, childid)
*/
#define BTRFS_QGROUP_RELATION_KEY 246
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The keys are chosen in a way such that STATUS_KEY comes first, followed by all
INFO_KEYs, followed by all LIMIT_KEYs. After that, for each qgroup present, all
relations follow. Only the INFO_KEYs and the STATUS_KEY get updated regularly.
The idea is that those keys stay close to each other to minimize writes. The
RELATION_KEY is chosen in a way that, by a simple enumeration, all children
and parents for a given qgroup can be found. The qgroupid is composed of a
16-bit “level” field, followed by a 48-bit “id” field. A qgroupid is represented as
level/id, e. g. 2/100. In the case of a subvolume, the level is 0, and the “id” is
just the internal tree objectid (5 or >= 256). On the command line, the user
will be able to use the subvolume path as the identifier.

/*
* is subvolume quota turned on?
*/
#define BTRFS_QGROUP_STATUS_FLAG_ON (1ULL << 0)
/*
* SCANNING is set during the initialization phase
*/
#define BTRFS_QGROUP_STATUS_FLAG_SCANNING (1ULL << 1)
/*
* Some qgroup entries are known to be out of date,
* either because the configuration has changed in a way that
* makes a rescan necessary, or because the fs has been mounted
* with a non-qgroup-aware version.
* Turning qouta off and on again makes it inconsistent, too.
*/
#define BTRFS_QGROUP_STATUS_FLAG_INCONSISTENT (1ULL << 2)
#define BTRFS_QGROUP_STATUS_VERSION 1
struct btrfs_qgroup_status_item {

__le64 version;
/*
* the generation is updated during every commit. As older
* versions of btrfs are not aware of qgroups, it will be
* possible to detect inconsistencies by checking the
* generation on mount time
*/
__le64 generation;
/* flag definitions see above */
__le64 flags;
/*
* only used during scanning to record the progress
* of the scan. It contains a logical address
*/
__le64 scan;

} __attribute__ ((__packed__));
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Instead of hosting the scan cursor in the structure, one could also make a sep-
arate key instead that is only present during scanning.

struct btrfs_qgroup_info_item {

/*
* only updated when any of the other values change
*/
__le64 generation;
__le64 rfer;
__le64 rfer_cmpr;
__le64 excl;
__le64 excl_cmpr;

} __attribute__ ((__packed__));

For all uncompressed data, the same value will be recorded for compressed and
uncompressed. The *_cmpr values represent the amount of disk space used, the
other values the amount of space from a user perspective. The uncompressed
values are hard to get, so a first version might not support them yet and just
record the on-disk values instead.

/* flags definition for qgroup limits */
#define BTRFS_QGROUP_LIMIT_MAX_RFER (1ULL << 0)
#define BTRFS_QGROUP_LIMIT_MAX_EXCL (1ULL << 1)
#define BTRFS_QGROUP_LIMIT_RSV_RFER (1ULL << 2)
#define BTRFS_QGROUP_LIMIT_RSV_EXCL (1ULL << 3)
#define BTRFS_QGROUP_LIMIT_RFER_CMPR (1ULL << 4)
#define BTRFS_QGROUP_LIMIT_EXCL_CMPR (1ULL << 5)
struct btrfs_qgroup_limit_item {

__le64 flags;
__le64 max_referenced;
__le64 max_exclusive;
__le64 rsv_referenced;
__le64 rsv_exclusive;

} __attribute__ ((__packed__));

The flags record which of the limits are to be enforced. The last two flags indicate
whether the compressed or the uncompressed value is to limit. This structure
also contains reservations, though they might be hard to implement, as btrfs
has no clear understanding of how much free space is left. A straightforward
implementation might be very inaccurate and the first version will probably not
implement it. Those values are nevertheless included here as a means for future
expansion.
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5.4 Estimation
In btrfs, each file operation is encapsulated into a transaction. All necessary
space for the transaction has to be reserved before any modification is done to
the structures, as there is no way to back out in the middle. That is what block
reserves are used for.

The same holds for quota: it is not possible to deny an operation in the
middle of it. The only point where an EDQUOT (Quota exceeded) error can be
generated is before the start of the operation. The easiest way would be to
only deny it if one of the affected qgroups is already over quota, but that would
allow large operations to exceed the quota by far. This implementation tries to
estimate the needed space for the operation and reserves it at the start of the
operation. If the reservation fails, the operation is denied.

The reservation is recorded in each qgroup. Also, it is saved in the trans_handle,
so it can be freed on end_transaction. The estimation is not a worst-case es-
timation like the block reservation. It should not deny requests too early. On
the other hand, it might be possible that a qgroup goes slightly over quota.
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