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Abstract

CAS (Content Addressable Storage) is virtual disk with
deduplication, which merges same-content chunks and
reduces the consumption of physical storage. The per-
formance of CAS depends on the allocation strategy of
the individual file system and its access patterns (size,
frequency, and locality of reference) since the effect of
merging depends on the size of a chunk (access unit)
used in deduplication.

We propose a method to evaluate the affinity be-
tween file system and CAS, which compares the degree
of deduplication by storing many same-contents files
throughout a file system. The results show the affinity
and semantic gap between the file systems (ext3, ext4,
XFS, JFS, ReiserFS (they are bootable file systems),
NILFS, btrfs, FAT32 and NTFS, and CAS.

We also measured disk accesses through five bootable
file systems at installation (Ubuntu 10.10) and at boot
time, and found a variety of access patterns, even if same
contents were installed. The results indicate that the five
file systems allocate data scattered from a macroscopic
view, but keep block contiguity for data from a micro-
scopic view.

1 Introduction

Content Addressable Storage (CAS) is becoming a pop-
ular method to manage virtual disks for many instances
of virtual machines [2, 6]. In CAS systems, data is man-
aged in chunks, and it is addressed not by its physical
location but by a name derived from the content of that
data (usually a secure hash is used as a unique name). A
CAS system can reduce the use of physical disk space
by deduplication, which merges same-content chunks
with a unique name.

CAS provides a universal virtual block device and ac-
cepts any file system on it. The performance depends on
data allocations and their access patterns through the file
system, because each file system has techniques to op-
timize space usage and I/O performance. The optimiza-
tions include data alignment, contiguous allocation, disk
prefetching, lazy evaluation, and so on. These factors
make the file system a key factor for the performance of
CAS.

From the view of the disk, a file system works as a
“filter” to allocate data. Even if the same contents are
saved, access patterns differ between file systems. Espe-
cially Linux has many file systems, because Linux sup-
ports a wide variety of targets, from mobile devices to
super computers. In this paper, we propose a method to
evaluate the affinity between file system and CAS. The
method evaluates the effect of deduplication when many
same-content files are stored throughout a file system.

We also analyze the real behavior of bootable file sys-
tems on CAS. We measure access patterns at installation
(write-centric processing) and boot time (read-centric
processing). From the results, we investigate the affinity
between file system and CAS behavior.

This paper is organized as follows. Section 2 reviews
features of CAS systems and Section 3 describes fea-
tures of Linux file systems. Section 4 proposes the
method to measure the affinity between file system and
CAS. Section 5 report the results, the affinity and real
behavior at installation and boot time. Section 6 dis-
cusses future works. Section 7 summarizes our conclu-
sions.

2 Content Addressable Storage

This section describes features of CAS (Content Ad-
dressable Storage) systems. A pioneering CAS system
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Figure 1: Virtual disk managed by CAS system.

is Venti developed for the Plan9 data archive [9]. Venti
is a block storage system in which chunks are identified
by a collision-resistant cryptographic hash.

Figure 1 shows a virtual disk managed by CAS. The vir-
tual disk is divided by chunk for each region. Each
chunk is named by its hash-value, and stored in a
database of the CAS system. The chunks are man-
aged by the mapping table, which translates from ad-
dress to hash-value. If the contents of chunks are the
same, the hash-value is same and the CAS system can
reduce its storage space consumption. A chunk is also
self-verifying with its hash digest and can keep data in-
tegrity.

In this paper we use LBCAS (LoopBack Contents Ad-
dressable CAS) version 2 [11, 12]. LBCAS offers a
loopback block file (virtual disk) which is managed by
FUSE (Filesystem in Userspace) [1]. Chunk data is cre-
ated when a write access is issued to the virtual disk.
The chunks are stored in a Berkeley DB [8] and man-
aged by their SHA-1 hash-value. The size of a chunk
is defined by the configuration (32 KB – 512 KB). The
driver of LBCAS has a memory cache for 32 chunks.
When a chunk overflows from the cache, the data is writ-
ten to the Berkeley DB.

3 File Systems

Many file systems are developed for Linux, and each of
them has its own advantages. In this paper, we treat 9 file
systems: ext3, ext4, XFS, JFS, ReiserFS, NILFS, btrfs,
FAT32 and NTFS. Unfortunately, not all of them can be
used a root file system, because boot loader and installer
have to recognize them. We used five file systems (ext3,
ext4, XFS, JFS, ReiserFS) to investigate the behavior at
installation and boot time.

3.1 Linux File Systems

This section describes the features of 9 file systems used
in this paper.

Ext3 is the default file system on many Linux distribu-
tions. It extends ext2 with journaling. ext3 keeps com-
patibility with ext2, including some limitations, such as
no extent allocation, no dynamic allocation of i-nodes,
etc.

Ext4 [7] succeeds ext3 and extends it with extent allo-
cation and delayed allocation. Extent allocation keeps
contiguous physical blocks for a file and reduces frag-
mentation. Delayed allocation is a technique to reduce
file fragmentation, which is also used by XFS.

JFS is a 64-bit journaling file system originally cre-
ated by IBM for AIX. JFS uses a B+ tree to accelerate
lookups in directories. JFS dynamically allocates space
for i-nodes as necessary. JFS increases disk I/O perfor-
mance by using allocation groups and extent allocation.
An allocation group is a sub-volume in a file system that
keeps track of free blocks and file data on its own. JFS
contains effective methods to use allocation groups.

XFS is a high-performance journaling file system orig-
inally created by Silicon Graphics. XFS increases disk
I/O performance by using allocation groups, extent allo-
cation, delayed allocation, and variable block size. Vari-
able block size allows XFS to be created with block
sizes ranging between 512 B and 64 KB, increasing I/O
bandwidth when large files are created. Delayed alloca-
tion makes it possible to allocate a contiguous group of
blocks, reducing fragmentation.

ReiserFS (version 3) is the first journaling file system to
be included in the standard Linux kernel. ReiserFS has
the tail packing optimization which allocates last partial
blocks of multiple files into a single block. The tech-
nique can reduce the internal fragmentation of files.

NILFS [4] is a stackable file system which is also called
log-structured file system. NILFS allocates data in suc-
cession from the top of a disk. The sequential write
achieves high I/O throughput on a real block device. The
data on the log-structured format are only appended and
never overwritten. In particular, a previous version of a
file can be retrieved in the file system.

Btrfs is a new file system which features copy-on-write.
Copy-on-write is used for creating a snapshot and for
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Figure 2: Affinity evaluation between file system and CAS. The left figure shows bad allocation and the right figure
shows good allocation for CAS.

cloning. Btrfs has many new features which includes
extent allocation implemented on ext4.

FAT32 and NTFS are file systems for Windows. They
are not UNIX-style file systems and do not use i-nodes.
The data is managed by a unit called “cluster”, which
is a contiguous groups of hardware sectors. The orig-
inal development of FAT32 comes from floppy disks
and has simple structure. FAT32 manages the clusters
with an array, and does not perform well on large disks.
NTFS developed for WindowsNT and has several im-
provements over FAT, which includes extent allocation.
NTFS manage a file with the Master File Table (MFT)
containing meta-data about every file and directory. The
details of NTFS are not open, and the drivers for Linux
are developed in many ways. Currently most Linux dis-
tributions use the NTFS-3G driver.

3.2 Bootable File System

The boot loader has to recognize a file system in order
to load the kernel. The currently popular boot loader
GRUB recognizes some file systems. In order to analyze
the behavior at installation and boot time, we select five
popular file systems (ext3, ext4, XFS, JFS, and ReiserFS
version3) recognized by GRUB.

3.3 System Installation on a File System

Even if the same applications are installed on a file
system, the installer of a Linux distribution recognizes
the target file system, and customizes some files for it.

For example, the initial ram disk image “initrd” is cus-
tomized for a file system. A kernel and initrd are loaded
by GRUB from a file system at boot time, and the kernel
uses the configuration files to mount a file system on a
disk as the root file system.

The root file system has to include additional files to
maintain itself. Some of them are management tools for
the file system. Furthermore, each file system has spe-
cial features. For example ext3 and 4 file systems have a
lost+found directory to retrieve lost files, which other
file systems lack. However, the differences are small and
they are negligible for installation and booting.

4 Affinity between File System and CAS

File systems allocate data on a disk; in doing so, the act
as a filter. Each filter changes the location of data by its
own strategy. Depending on the location, the effect of
deduplication changes. We evaluate the difference from
the view of deduplication.

We develop a method to evaluate the affinity between
file system and CAS. The idea is simple. Ideally, even
if many same-content files are saved on CAS, the total
disk usage of CAS will be close to the size of one file,
because all files are deduplicated. Namely, the closer the
total disk usage is to the size of one file, the better the
allocation strategy for CAS.

For example, when 1,000 files with 1MB same-content
data are stored on a disk through a normal file system,
it will use 1,000 MB. However, if deduplication of CAS
works perfectly, the increase will amount to only 1MB.
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Figure 3: The increase of CAS space when 10,000 100 KB-files, 1,000 1,000 KB-files, 100 10,000 KB-files, 3,968
252 KB-files and 3,906 256 KB-files (which consume nominal 1GB) are stored on each file system (ext3, ext4, XFS,
JFS, ReiserFS, NILFS, btrfs, FAT32 and NTFS). The upper figure shows the results on 32 KB LBCAS and the lower
figure shows the results on 256 KB LBCAS. A small increase indicates good deduplication.

Figure 2 shows the image of the evaluation. The right
of Figure 2 shows poor allocation by a file system. At
that time, the locations of data are scattered and will not
deduplicated, except the non-used (zero-cleared by ini-
tialization) region. The left of Figure 2 shows good al-
location. The whole data is deduplicated and the con-
sumption of CAS is close to the size of the file.

The affinity comes from (1) Alignment matching, (2)
Contiguous allocation of data blocks, and (3) Non-
contamination with other data in a CAS chunk. If the
allocation strategy of a file system aligns data of a file at
the alignment of a CAS chunk, it increases the chance
of the file being deduplicated. Contiguous allocation of
data blocks is also important to fill a chunk with same-
content data. Non-contamination comes into play when
a chunk is not entirely filled up with contiguous allo-
cation of data blocks. At that time, the remainder of a
chunk should not be filled with other data. However,
some techniques pack data into a small empty region
and reduce the chance of data to be deduplicated. For
example, tail packing will contaminate a chunk.

The evaluation measures the affinity by determining the
total volume used by CAS. Unfortunately, this method-
ology is still simple, because it does not care of the vol-
ume management mechanism (for example, bitmap ta-
ble to manage free space) and meta-data which is used to
identify the locations of contents with file names. A vol-
ume management mechanism is fixed-size and the up-
date may be small and negligible. However, meta-data
is created for each file and the volume consumption of
meta-data is non-negligible when a file is small. On a
real evaluation we must care about the use of meta-data.

5 Affinity and Performance Evaluation

This section evaluates the affinity and performance be-
tween file system and CAS. The affinity of deduplica-
tion is described in section 5.1, and the real performance
of CAS on a file system is described in section 5.2.
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5.1 Affinity evaluation between File System and
CAS

We measure the effect of deduplication, when many
same-content files are saved. We used random data as
contents, because they are not deduplicated with other
files. We tried to save 100 KB, 1,000 KB (1 MB),
10,000 KB (10 MB) random data files to fill 1 GB in
4 GB LBCAS system. Namely, 10,000 files for 100 KB,
1,000 files for 1 MB, 100 files for 10 MB were used.

The evaluation has to consider meta-data for each file.
We assume that a meta-data consists of 256 bytes for a
file. This means that the 10,000 files consume 256 KB
on disk for meta-data. The consumption of meta-data
is non-negligible when the deduplicated file is small.
For example, at the 100 KB case, 256 KB is used for
meta-data (256 B * 10,000) and the ideal consumption
of CAS is 356 KB (100 KB + 256 KB). We have to
care the increase. However, in the 1,000 KB case, the
total is 1,025.6 KB and at 10,000 KB case, the total is
10,002.56 KB.

We also tried to save 256 KB and 252 KB random data
files to check the suitable size for CAS deduplication.
If file system allocates the files in succession, 256 KB
(64 4 KB-file-system-blocks) files will fit to 256 KB
and 32 KB chunks many times. We assume a stack-
able file system corresponds to this case. When 252 KB
(63 4 KB-file-system-blocks) files are saved, 256 KB
chunks will each fit to 64 allocations. If a block (4KB) is
used between 2 contiguous files for meta-data or some-
thing, 252 KB data will also fit to 256 KB.

5.1.1 Experimental results

Figure 3 shows the increase of CAS when the files are
stored on 32 KB LBCAS and 256 KB LBCAS. The re-
sults are the average of three trials. They show the dif-
ferent effect of deduplication on each file system. When
the chunk size is larger than the size of test file, a file
does not fill a chunk, even if a file is allocated continu-
ously. At that time, a chunk is subject to contamination
by other data. For example, a 256 KB chunk is not filled
up with 100 KB, and 252 KB files. 256 KB file can
fill up a 256 KB chunk, but there is no big difference
between the 252 KB and 256 KB cases on any file sys-
tems.

Figure 4: Details on the increase of CAS described in
Figure 3. The maximum range is 35 MB. The figure
includes line which indicates ideal deduplication. The
upper figure shows the results on 32 KB LBCAS and
the lower figure shows the results on 256 KB LBCAS.
NTFS and ext3 are eliminated because they are out of
range. The results of 252 KB and 256 KB files are also
eliminated because we could not get alignment match-
ing cased by contiguous allocation of data blocks.
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Ext3 and NILFS show the worst results on 100 KB,
252 KB, and 256 KB files on 256 KB CAS. Their total
space usage reaches 1 GB, which means no deduplica-
tion. The results become better on 32 KB CAS, but they
are still worse than on the other file systems. The results
of ext3 and NILFS on 100 KB files are about 2.5 times
worse than for 252 KB and 256 KB on 32 KB CAS. We
guess the results come from the ease of contamination
when the chunk size is larger than a file. If a file is al-
located at a contiguous region, such as a stackable file
system, the chance to being contaminated is inversely
proportional to the size of file.

XFS and FAT32 show good results except for the 10 MB
file case on 256 KB CAS. We guess the data in a large
file is not allocated contiguously, which hampers dedu-
plication.

ReiserFS shows bad results on 256 KB CAS. We guess
it comes from tail packing, which contaminates a chunk.
256 KB chunks are large and the penalty of not to being
deduplicated has a big impact. ReiserFS also shows bad
results on the 10 MB file case on 256 KB CAS. This is
also caused by non-contiguous allocation for large files.

Figure 4 shows details of Figure 3, which limits the
maximum (35 MB), eliminates two file systems (ext3
and NILFS) and 2 trials (252 KB and 256 KB files), and
includes a line which indicates ideal deduplication. The
results indicate ext4, btrfs, and NTFS on 32 KB CAS
are close to the ideal case on any file size. They keep
three features; alignment matching, contiguous alloca-
tion of data blocks, and non-contamination with other
data. On 256 KB CAS, ext4 and btrfs show bad results
on 10,000 KB and 100,000 KB files, although they show
good results on 100 KB files. We guess ext4 and btrfs
cannot keep contiguous allocation of data blocks, and
suffer from contamination with other data on larger files.

5.1.2 Impact by chunk size

Figure 5 shows the ratio of consumption between 32 KB
and 256 KB CAS. The ratio indicates the improvement
by the smaller 32 KB chunk size. In the ideal case
the ratio is 8 times. It means 256 KB chunks are not
aligned or include slightly different data. For example,
JFS in the 100 KB file case reduces the space consump-
tion by 8 times on 32 KB CAS compared to 256 KB
CAS. From another view, small ratios indicate that there
is no improvement for small chunks when compared to

Figure 5: The ratio of space consumption on each file
system. It shows the improvement of 32 KB CAS from
256 KB CAS.

larger 256 KB chunks. At that time, the user should use
256 KB chunks because the mapping table of 256 KB
CAS is 8 times smaller than 32 KB CAS. For exam-
ple, ext4 and NTFS show that there is a little impact on
10 MB file case.

5.1.3 Future work

The experiments were tried on an initial disk image
which does not have fragmentation. We eliminate such
evaluations, because of it is not clear which metrics to
use to compare fragmented file systems, and we can-
not decide factors for deduplication. We recognize these
conditions to be important in real cases. Evaluations un-
der these conditions are our next challenge.

5.2 CAS performance at installation and at boot
time

We evaluated LBCAS performance at Linux installation
and at boot time. We installed Ubuntu 11.04 desktop
(Linux 2.6.38) on five file systems (ext3, ext4, XFS,
JFS, and ReiserFS) of 4 GB LBCAS on KVM [3] vir-
tual machine with 768 MB memory. KVM ran on a
ThinkPAD T400 with an Intel Core2 Duo processor with
2 GB of memory. We compared the effect of 32 KB
chunk and 256 KB chunk of LBCAS.
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Figure 6: Access pattern at installation (left) and boot time (right) of Ubuntu on each file system. The X axis
indicates elapsed time and Y indicates the address of the disk access (4GB). The green “X” plots indicate write
accesses, and red “+” plots indicate read accesses. The file systems are ext3, ext4, JFS, XFS, and ReiserFS from top
to bottom.
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5.2.1 Access Trace at installation and boot time

Figure 6 shows the trace of access on each file system
at installation and boot time. The graphs indicate that
access patterns are different on each file system.

The left graphs show the installations. Most accesses
are write operations. The installation includes creating
the file system on CAS. The creation of a file system
is started after 50 sec. Before 50 sec, the installation
requires some preparations in memory.

The graphs show that the accesses of the five file sys-
tems are scattered in the 4 GB disk space. This prop-
erty remains the same even if the disk size is changed
to 2 GB or 8 GB. The results indicate that the five file
systems have different allocation strategies and allocate
data scattered from the macroscopic view of disk frag-
mentation.

The right graphs show booting. Booting is a read-centric
process, but there are write operations at the end of boot,
because several configuration files are updated. The ac-
cess distributions follow the written data at installation,
and there are no localities of reference from the macro-
scopic view.

5.2.2 Installation Time (Dynamic Feature)

Table 1 shows statistics of read and write accesses on
each file system at installation time. Installation is a
write-centric process and writes about 10 times as much
data as it reads.

The upper three rows show the accesses issued by file
system, access times, total volume of accesses, and the
average. The results show the ability of a file system.
Lower access times and fewer accesses are better. Ext4
shows the fewest access times and largest average access
on write operations. This result may be the effect of
delayed allocation, and it yields the fastest installation
time (Figure 6). JFS shows the smallest total volume
on write operations, but installation time is the worst,
because the number of accesses is large. A CAS system
is sensitive to access times, because the access unit is
the chunk size even if an access is only 1 bit. The boot
times of five file systems are almost proportional to the
write access times, and do not follow the total volumes.
Fewer accesses are better on a CAS system.

The lower four rows in Table 1 show the number of read
and write chunks of 32 KB and 256 KB size. Fewer
chunks are better. ReiserFS shows the best performance
on read and write, respectively, on both 32 KB and
256 KB chunks. This indicates ReiserFS is good at
locality of access, but accesses the same chunks many
times.

5.2.3 Disk Image of LBCAS (Static Feature)

Table 2 shows statistics of a static LBCAS disk image
with 32 KB and 256 KB chunks.

ReiserFS shows the fewest chunks, the smallest total
volume used by chunks, and the largest volume of zero-
cleared chunks on 32 KB and 256 KB chunks. The re-
sults of the number of chunks and total volume is about
10% less than other file systems, which might come
from tail packing to reduce disk consumption. This is
a good feature for a normal disk but it ruins the effect of
deduplication mentioned in Section 5.1.1.

The efficiency, which indicates the ratio of effective data
in a chunk, is more than 99% on all file systems using
32 KB chunks, although Figure 6 shows that data ac-
cesses look to be scattered. It shows that the allocation
strategies of the file systems pack data in small region.
However, the efficiencies of ext4 and XFS decrease to
less than 94% when using 256 KB chunks. These re-
sults indicate that ext4 and XFS allocate data discretely
for larger units. This feature suggests a suitable chunk
size of a file system.

On deduplication, ext4 is the best on 32 KB and 256 KB
chunks, which indicates that many same-content chunks
are created. We guess the effect comes from align-
ment matching, contiguous allocation of data blocks,
and non-contamination. This effect is predicted by the
results mentioned in Section 5.1.1 Figure 4. Currently
btrfs and NTFS are not bootable file systems and they
are out of scope on current experiments.

We compared the ratio of same chunks between 2 CAS
images which are installed same OS. Figure 7 shows
the image of comparison. The ratios are measured on
two types. One type is the ratio between 2 CAS images
of different file systems. The results indicate the affin-
ity between file systems from the view of CAS. It helps
the understanding the effect of mixture of CAS images
which has different file systems.
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File system ext3 ext4 JFS XFS ReiserFS
read write read write read write read write read write

Access times 13,618 182,971 14,945 164,124 13,409 247,981 11,650 265,981 10,739 186,432
Total volume(MB) 385.6 3,808.2 413.3 3,745.1 393.3 3,194.8 385.4 4,740.6 327.0 3,946.4
Average (KB) 29.0 21.3 28.3 23.4 30.0 13.2 33.9 18.3 31.2 21.7
32KB LBCAS
Number of chunks 13,152 68,759 14,978 70,401 14,209 65,141 15,260 66,337 11,784 57,087
Total volume (MB) 411.0 2,148.7 468.1 2,200.0 444.0 2,035.7 476.9 2,073.0 368.3 1,784.0
256KB LBCAS
Number of chunks 2,314 8,684 2,712 9,222 2,687 8,207 2,839 8,499 2,066 7,170
Total volume (MB) 578.5 2,171 678.0 2,305.5 671.8 2,051.8 709.8 2,124.8 516.5 1,792.5

Table 1: Statistics of read/write accesses on each file system at installation time (dynamic feature). The bold figures
indicate the best performance.

File system ext3 ext4 JFS XFS ReiserFS
32 KB LBCAS

Number of chunks 67,157 67,819 64,770 65,415 56,671
Total volume (MB) 2,148.1 2,192.3 2,035.0 2,059.2 1,783.7

Zero-cleared chunk (MB) 1,947.9 1,903.7 2,061.0 2,036.8 2,312.3
Effectiveness (%) 99.88 99.93 99.90 99.99 99.94

Dedupication (Total MB / Unique MB) 49.47/8.75 73/19.16 10.94/3.75 15.03/7.06 12.69/5.44
256 KB LBCAS

Number of chunks 8,554 9,020 8,190 8,475 7,156
Total volume (MB) 2,169.8 2304.0 2,050.5 2,124.0 1,792.0

Zero-cleared chunk (MB) 1,926.3 1,792.0 2,045.5 1,972.0 2,304.0
Effectiveness (%) 98.40 93.13 99.12 92.10 99.47

Dedupication (Total MB / Unique MB) 31.25/2.0 49.0/8.25 3.0/1.75 5.25/1.75 3.0/0.5

Table 2: Statistics of a virtual disk for each file system (static feature). The row of effectiveness shows the ratio of
blocks of file system in a chunk. It shows coverage of effective region in a chunk. The row of deduplication shows
two data; total and unique. The total indicates the summation of same-content chunks. The unique indicates the
summation of merged chunks with deduplication. The bold figures indicate the best performance.

File system ext3 ext4 JFS XFS ReiserFS
read write read write read write read write read write

Access times 6,115 3,653 5,663 3,458 6,260 2,894 6,199 4,383 5,195 2,625
Total volume (MB) 209.7 39.7 228.0 40.7 198.1 17.2 216.8 22.7 187.7 27.2
Average (KB) 35.1 11.1 41.2 12.1 32.4 6.1 35.8 5.31 37.0 10.6
32 KB LBCAS
Number of chunks 8,065 1,491 8,548 1,522 8,130 1,204 8,507 1,094 7,402 1,295
Total volume (MB) 252.0 46.6 267.1 47.6 254.1 37.6 265.8 34.2 231.3 40.5
256KB LBCAS
Number of chunks 1,508 292 1,624 247 1,941 712 1,767 372 1,500 367
Total volume (MB) 377.0 73.0 406.0 61.8 485.3 178 441.7 93.0 375.0 91.8

Table 3: Statistics of read/write accesses on each file system at boot time (dynamic feature). The bold figures indicate
the best performance.
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Figure 7: Compare ratio of same chunks between 2 CAS
images which are installed same OS. The ratios are mea-
sured on 2 types. One type is the ratio between 2 CAS
images of different file systems. Another type is the ra-
tio between 2 CAS images which install same OS on
same file system at different time.

Another type of measurement is the ratio between 2
CAS images which install same OS on same file sys-
tem at different time. The results indicate the suitable
file systems which reduce consumption of physical re-
sources, when some users install same OS on the CAS
system with same file system.

Figure 8 shows the results. We measure the ratio on dif-
ferent chunk sizes from 4KB to 256KB, in order to know
the effect. The upper figure shows the ratio between
different file systems, which are illustrated in Figure 7
with solid lines. The results indicate that there are small
differences on any combination. It means there are not
strong affinities among the 5 file systems. The ratios
of same chunks depend on chunk size. On 4KB chunk
size, the ratio is very high from 80% to 90%, because
chunk size matches the block size of most file systems,
and most data blocks having the same contents will be
same. The most difference comes from meta-data and
file system management data, except ReiserFS which
has tail packing. Tail packing reduced the consumption
of storage 10% more than other file systems in Table 2.
Unfortunately, it was known to cause negative impact
on deduplication, because it contaminates a block for a
file. The effect was measured in a single CAS which
had many same files, mentioned in Section 5.1.1. How-
ever, the ratio of same chunks between 2 CAS images on
4KB chunk size is almost same to other file systems. It
means that tail packing assigned same fractions of files
in a block and keeps same chunk on different installa-

Figure 8: Ratio of same chunks between 2 CAS images
on different chunk size from 4KB to 256KB. The up-
per figure shows the ratio between different file systems.
The lower figure shows the ratio between different in-
stallations on same file system.

tion.

More than 8KB chunks show a ratio reduced inversely
proportional to chunk size. 8KB and 16KB chunk sizes
have 40% and 20% same chunks respectively on any
file systems. The results indicate it is difficult to get
same chunks between different file systems. It means
we should not use different file systems on CAS system.

The lower in Figure 8 of shows ratio of same chunks
between 2 CAS images which install same OS on same
file system at different time. The ratios also depend on
chunk size but the effects are different. Both jfs and
Reiser do not reduce the ratio inversely proportional to
chunk size. They keep high ratio of same chunk on
larger chunk sizes. Especially jfs and ReiserFS keep
50% same chunks on 256KB chunk size. The results
indicate that jfs, Reiser and ext4 allocate most files at
same addresses on an installation, but ext3 and xfs allo-
cate different addresses. We will investigate block allo-
cation repeatability in next challenge. The results means
we should use same file system on CAS system and the
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file system is one of jfs or ReiserFS.

Figure 9 shows the statistics of installed files on ext3.
The upper figure indicates the number of files classified
by size, and lower figure indicates total volume occu-
pied by files classified by size. The number of files
shows the case on ext3 but the results on different file
systems are almost same. The lower figure is calculated
using a minimum unit of 4KB block and each file is
rounded up by 4KB. The calculation causes the big dif-
ference on ReiserFS case measured in Table 2, because
tail packing reduces the consumption.

The upper figure indicates 77.9% files are less than 4KB.
Less than 4KB file use only 1 block and do not affect
contiguous allocation of data blocks. The result implies
that we do not need to care about contiguous allocation,
but less than 4KB files use only 20.1% of the storage
showed in lower figure. The remaining portion, consist-
ing of files larger than 4KB, requires contiguous alloca-
tion in order to achieve high deduplication. The inves-
tigation of the relation of file size and deduplication is
not finished. We will continue the research.

5.2.4 Boot Time (Dynamic Feature)

Table 3 shows statistics of read and write accesses for
each file system at boot time. Boot is a read-centric pro-
cess and has about twice as many read than write opera-
tions. The table format is the same as Table 1.

From the view of disk accesses (upper three rows), Reis-
erFS and XFS are the best in read and write operations,
respectively. These features may be responsible for the
fastest boot time shown in Figure 6. The largest average
access size, however, occurs under ext4 for both opera-
tions. It might be a result of disk-prefetching contiguous
data blocks allocated by extent allocation.

The lowest number of chunks on 32 KB occurs on Reis-
erFS and XFS on read and write operations, respec-
tively. The lowest number of chunks on 256 KB oc-
curs on ReiserFS and ext4 on read and write operations,
respectively. The lowest number of read operations on
ReiserFS explains the fast boot time.

6 Discussions

In this paper we treat CAS, which offers block-level
deduplication, but there is another level of deduplica-
tion. We compare them in Section 6.1. The results in

Figure 9: Statistics of installed files on ext3. The upper
figure indicates the number of files classified by size,
and lower figure indicates total volume occupied by files
classified by size. Circular graphs show the percentage
of each items (total 100%).

Section 5.2 lead us the importance of optimization on
file system and CAS. We discuss two type of optimiza-
tion in Sections 6.2 and 6.3.

6.1 Deduplication on file system level

CAS offers block-level deduplication, but deduplication
is not limited to the block level. Deduplication can be
applied at the file system level, as implemented by lessfs
[5] and SDFS [10]. In this case, file system is limited to
the original one, and there is no affinity problem with
the file system.

File system deduplication means that file system in-
cludes the function of deduplication. It detects identical
content in files, and merges the same content at the file
system level. It does not care about block level restric-
tions. Namely, it does not care about block alignment
matching, contiguous allocation, and contamination by
other files.
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The evaluation we proposed in this paper is not applied
on file system deduplication, because all same-content
files are deduplicated perfectly. We already confirm the
effect of our evaluation method on lessfs and SDFS.
They deduplicate all files well. In order to evaluate file
system deduplication, we should use partially-similar-
content files. For example, we tried files in which 256-
bytes or 257-bytes of random data are repeated. The
case with 256-bytes is deduplicated well, but files con-
taining 257-bytes of repeated random data are not dedu-
plicated well on lessfs and SDFS. It means they offer
fixed-length deduplication. On fixed-length type, lo-
cation of same-content data in a file is very important.
Variable-length deduplication does not care about loca-
tion and deduplicates both files well, but requires more
comparison time.

File system deduplication has another disadvantage. A
file system which has deduplication is usually a pseudo
file system and is not usable as a bootable file system,
because it is not recognized by boot loader. An operat-
ing system on a virtual machine has to use a loop-back
file which is a pseudo block device, to install bootable
file system. Therefore the affinity problem between file
system on a virtual machine and loop-back file sup-
ported by file system deduplication will occur again.

6.2 FS Optimization for CAS

Boot time optimization for CAS is proposed in paper
[12]. It takes a trace of block accesses on ext3 and re-
allocates data blocks in the file system. The data blocks
in ext3 which are required to boot are arranged in line on
the disk. This increases the read-ahead coverage of ker-
nel prefetching. As a result, both the number of accesses
and the number of CAS chunks are reduced.

This optimization is necessary for each file system on
CAS. Optimization should consider the access profile
as well as storage deduplication. Storage deduplica-
tion could be further increased by using a binary patch
technique. We will investigate a delta encoding method
which reuses existing block data.

6.3 CAS Optimization for FS

In cloud computing, the storage system can optimize a
virtual disk for the file system used. Classically file sys-
tems have been optimized for a disk device. However,

a virtual disk on cloud computing, which is managed
by key-value storage, could change its behavior for a
file system. For example, when a file system prefetches
extra data, virtual storage could push the data to mem-
ory in advance. We will investigate an intelligent virtual
storage based on the analysis of file system features.

7 Conclusions

We analyzed the affinity between nine Linux file sys-
tems (ext3, ext4, XFS, JFS, ReiserFS, which are
bootable file systems, and NILFS, btrfs, FAT32 and
NTFS) and CAS with 32 KB and 256 KB chunks. We
proposed a method to evaluate the degree of deduplica-
tion by storing many same-content files through a file
system and showed the affinity between file system and
CAS. We also evaluated file systems on CAS by mea-
suring the access patterns at installation and boot time.

The evaluations with same-content files indicate the de-
gree of deduplication in a file system and show the affin-
ity between file system and CAS. We estimate the ef-
fects come from the alignment matching, contiguous
allocation of data blocks, and non-contamination with
other data. Ext4, btrfs, and NTFS show good affinity for
CAS.

At installation and boot time, ReiserFS shows good re-
sults, attributable mainly to reduced read and write ac-
cesses. The effect of deduplication on ReiserFS is not
so high in a single image. ext4 shows good results on
deduplication. The affinities between different file sys-
tems are little from the view of same chunks in CAS, but
jfs and ReiserFS have many same chunks between dif-
ferent installations respectively. The results suggest that
there is block allocation repeatability on jfs and Reis-
erFS. We will investigate it as next challenge.

The results of two types of experiments suggest the pos-
sibility of optimization of a file system and a virtual
disk. On cloud computing, an intelligent storage system
could change its behavior for a file system.
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