
Looking Inside Memory
Tooling for tracing memory reference patterns

Ankita Garg, Balbir Singh, Vaidyanathan Srinivasan
IBM Linux Technology Centre, Bangalore

{ankita, balbir, svaidy}@in.ibm.com

Abstract

Memory is a critical resource that is non-renewable and
is time consuming to regenerate by reclaim. While there
are several tools available to understand the amount of
memory utilized by an application, there is presently lit-
tle infrastructure to capture the physical memory refer-
ence pattern of an application on a live system. This
knowledge would enable the software developers and
hardware designers to not only understand the amount
of memory used, but also the way the references are laid
out across RAM. The temporal and spatial reference pat-
terns can provide new insights into the benchmark char-
acteristics, which would enable memory related opti-
mizations. Additional tools could be developed on top to
extract useful data from the reference information. For
example, a tool to understand the working set size of an
application, and how it varies with time. The data could
also be used to optimize the application for NUMA sys-
tems. Kernel developers could use the data to check
fragmentation and generic data placement issues.

In this paper, we introduce a memory reference instru-
mentation infrastructure in the Linux kernel that is built
as a kernel module, on top of the trace framework. It
works by collecting memory reference samples from
page table entries at regular intervals. The data obtained
is then post processed to plot various graphs for visual-
ization. In this paper, we would provide information on
the design and implementation of this instrumentation,
along with the challenges faced by such a generic mem-
ory instrumentation infrastructure. We will demonstrate
few additional tools built on this infrastructure to obtain
interesting data collected from several benchmarks. The
target audience are people interested in kernel based in-
strumentation, application developers and performance
tuning enthusiasts.

1 Introduction

Typically, application developers are abstracted from the
physical view of the memory by the memory manage-
ment subsystem of the operating system. An application
would request for memory using several well-defined
APIs, which is then serviced by the operating system.
The OS uses sophisticated algorithms to ensure that
the memory allocation for a particular application takes
place from the most appropriate location, for example,
on a NUMA system, memory requests should be satis-
fied from a local node to reduce overhead in accessing
remote memory. However, a developer looking for op-
timizations, can greatly benefit by having a good under-
standing of the way the memory is being used by the ap-
plication. Finding a program’s memory usage on Linux
is complex. However, utilities like ps,free, vmstat,
and proc filesystem interfaces like /proc/meminfo
etc, provide a goof estimate of the various memory us-
age statistics.

Most of the existing tools, however, generally only pro-
vide information about the memory usage statistics of
an application and/or system. There is very little infor-
mation available on the way the memory is being refer-
enced or the classification of accesses into kernel, user
and buffers. Also, it is difficult to obtain read/write ac-
cess patterns. All this information can however be ob-
tained from hardware simulation but at a much slower
speed. The infrastructure we propose here enables gath-
ering the above missing pieces of information on a live
system, running real-world applications.

2 Memory Organization

Memory is typically organized in a hierarchical manner
in modern systems to have the right balance of access
speed and cost. Accesses to memory addresses or pages
are first looked up in TLBs (or page tables) to get the

• 63 •

64 • Looking Inside Memory

physical address (which is needed for physically tagged
cache) and then searched in several levels of caches (L1,
L2 and/or L3). If the addresses are not found, then the
right cache line is looked up in the main memory and
loaded into the cache and registers for use. A hierar-
chy of page tables or similar address translation mech-
anisms are used by the hardware memory management
unit (MMU) in the processor to map a virtual address to
a physical address in memory. On most architectures,
a page table entry (PTE) consists of mainly the page’s
physical address, and other attributes like access permis-
sions and a referenced or accessed bit. The processor
sets this bit when the page is accessed. Once set, the pro-
cessor itself does not clear the bit. Software is expected
to clear this bit to record new accesses. PTE also typ-
ically contains another bit called the dirty or changed
bit, which indicates whether a page has been written to
or not.

Memory pages can be broadly classified into :

• Kernel pages – This corresponds to the kernel code
including device drivers and its data

• User pages – The application pages (both code and
data)

• Page cache or buffer pages – Indirectly used by ap-
plications (unless mapped)

3 Memory Reference Pattern Instrumentation
Infrastructure

The objective of the instrumentation is to track refer-
ences to every page of memory over a given time inter-
val. As explained before, memory is referenced using
the page tables. Using these page table entries, memory
references could be tracked in a number of ways.

3.1 Tracking Page Faults

One of the approaches to capture references is to modify
the PTE entries such that a page fault is generated at ev-
ery access. The fault could then be handled in a custom
page fault handler routine. This could be achieved fairly
easily for user pages. One could also use this data to find
the exact task/routine referencing the memory. The ref-
erence data obtained thus would be very accurate. How-
ever, the disadvantages of the approach out-weigh the
benefits:

• Page fault for every memory reference would slow
down the system tremendously, resulting in diffi-
culty in running long-running, real-world bench-
marks and also interfere with the benchmark ex-
ecution itself.

• Reference data obtained would be voluminous and
cumbersome to post process unless this level of ac-
curacy is needed

• Complex to capture kernel page reference pattern
with this approach, as all the kernel pages are
present in memory and not demand paged in or out.
Most parts of the kernel will expect the translation
to be available and do not expect a page fault.

Alternatively, to get an estimate of the reference pat-
tern and to reduce the overhead, we could periodically
reclaim or unmap several pages and follow what gets
faulted in. Also, by setting up a trace event in the page
fault handler (to be triggered occasionally) and forcing
reclaim to reduce the RSS, we can get information on
the address range of pages that are being referenced by
an application. However, this technique would not be
useful in getting system-wide memory reference data.
While this approach can estimate the RSS and virtual
address range, it cannot estimate the per-page reference
rate over a short sampling interval compared to just sam-
pling the page reference bit as explained below in sec-
tion 3.3

3.2 Performance Counters

Performance counters are special hardware registers
available on most modern platforms. These registers
keep a track of the count of certain types of hardware
events, like, instructions executed, cache misses suf-
fered, or branches mis-predicted. Since the counting is
done in the hardware, it does not slow down the kernel
or applications. The Linux Performance Counter sub-
system provides an abstraction of these hardware capa-
bilities, which would work depending on the support in
the underlying hardware platform.

We could use the hardware cache miss counter to ap-
proximate the memory accesses, since a cache miss im-
plies a memory reference. However, the absolute num-
ber of cache misses does not reflect the distribution of
physical memory accesses, as a memory reference could
happen without a miss as well (when the page is in

2010 Linux Symposium • 65

cache). Besides, as noted before, it might not be pos-
sible to use this approach on platforms with no such
counter. Further, it might not be possible to classify ac-
cesses into read/write.

3.3 Sampling Using PTE Reference bit

As explained in section 2 the referenced bit of the PTE
tracks references to pages. In this method we adopt a
sampling based approach, in which, at every sampling
interval, we scan all the PTEs, looking for all the ref-
erence bits that were set to one since the previous sam-
pling interval, indicating that those pages were accessed.
We make a note of all such PTEs, along with their phys-
ical addresses. The reference bit is then cleared1, to en-
able data capture for the next sampling interval. This
process is repeated at every sampling interval. The par-
ticular page tables that are scanned define the type of
pages that were referenced. For user space page refer-
ences, the page tables of either a given task or of all
the tasks are sequentially scanned for the reference bits
To capture kernel page reference pattern, different ap-
proaches are needed for different platforms. On x86 sys-
tems, the pgd field in struct mm of the init_task
points to the kernel page table directory. Using this
pointer, the kernel page tables can be walked in a man-
ner similar to user space pages. However, on Power
platform, the page tables are handled differently. The
hypervisor maintains a hash table of the page table en-
tries. The entries corresponding to the kernel are bolted
in the hash table. For every address, a key is generated,
called vsid, that is used to hash into the table to obtain
the PTE.

It is important to note here that if page access is served
from the hardware cache, the reference bit in the PTE
would still be set by the hardware and not strictly based
on cache miss and memory access.

3.4 Design Overview

We have adopted the approach described in section 3.3
in our implementation. It can be easily seen that if
the data is captured for every single page in the sys-
tem, a lot of memory would be consumed in just cap-
turing the information and also would pose difficulties

1The disadvantage of this approach is that it could interfere with
the LRU algorithm that the reclaim subsystem uses. We therefore
run these tests in a system that has sufficient memory to not enforce
reclaim of pages, while we run our tracing framework

Seq ID Phys Addr Kernel User Page Cache R/W

Figure 1: Output Data Format

in post-processing. Thus, instead of gathering data for
every page, we group the pages in chunks and collect
data for the group instead of individual pages. If any
page within a group was accessed, the entire group of
pages is marked as having been accessed in a particu-
lar sampling interval. On Power systems, we use the
logical memory blocks (LMBs) as a means to group
pages. LMBs are groups of contiguous memory, usually
of 64MB or 128MB (tunable), that the hyperviser uses
to give out memory to the partitions. On x86 systems
however, there is presently work in progress [5] to create
a notion of LMBs, in the absence of which, contiguous
pages are internally grouped for the purpose of collect-
ing data. The granularity of this group determines the
accuracy of the reference pattern captured. The smaller
the group size, the more accurate the data.

At every sampling interval, the data that is captured is
illustrated in Figure 1

The sequence id is a unique identifier associated
with a sampling interval. The physical address
corresponds to the physical address of the first page in
a given group. The next three fields, kernel, user
and page cache, indicate the count of the number
of pages referenced in each types of page within the
group. This helps in estimating the working set size of
an application and also how it varies with time. We can
derive more information by classifying the references
into kernel, page cache or user pages. The last fields,
read and write, indicate the number of pages in
the group that had reads and writes, which is detected
using the dirty or the changed bit in the PTE.

By default, the page tables of all the processes in the sys-
tem are scanned for references, in addition to the kernel
page tables. The user can also specify the pid of a task
for restricting the PTE scanned.

3.5 perf Integration

To make it easy to use the memory reference pattern
tracing infrastructure, we have integrated it with the
perf(1) [2] framework. A trace event called memref

66 • Looking Inside Memory

memref-2680 [005] 3549.112460: memref_log_data: 1230 268435456 12 0 0 1
memref-2680 [005] 3549.112461: memref_log_data: 1230 301989888 20 0 0 0
memref-2680 [005] 3549.112461: memref_log_data: 1230 335544320 0 0 0 3
memref-2680 [005] 3549.112462: memref_log_data: 1230 369098752 0 56 0 0
memref-2680 [005] 3549.112462: memref_log_data: 1230 402653184 0 10 0 1
memref-2680 [005] 3549.112463: memref_log_data: 1230 436207616 19 34 0 0
memref-2680 [005] 3549.112463: memref_log_data: 1230 469762048 0 0 0 3
memref-2680 [005] 3549.112464: memref_log_data: 1230 503316480 0 45 0 0

Figure 2: memref, integration with perf

is defined, which when enabled, starts capturing the
reference pattern data. The pid is specified by echo-
ing a value in the memref_pid file, created under the
tracing directory. The binary data obtained can then
be post-processed to obtain useful information, as dis-
cussed in the next subsection. Figure 2 shows a sample
output from the memref trace event.

The first 3 columns indicate the process running,
CPU number and time when the trace was captured.
memref_log_data is the name of the trace event.
Fifth column indicates the sequence number associated
with the particular sampling interval. The next column
indicates the physical address (corresponds to the start
of the page group or a LMB). The next three columns
are for kernel, user and page cache respectively. The
value of the column indicates the number of pages of
a particular type referenced with the group. The last
column provides information on whether the access was
read (0), write(1) or none (2). Also, within a group,
there would be both reads and writes. However, here
we trade off accuracy for the ease of data capture, by
marking the whole group as having write reference.

3.6 Data Representation

The data obtained, either in raw binary or ASCII format,
needs to be post-processed to obtain useful information
about the reference pattern. A few useful representa-
tions of the data are as follows:

• Temporal Reference Pattern – With sampling time
plotted on the X-axis and the total number of LMBs
referenced on the Y-axis, we get the temporal refer-
ence pattern plot, which indicates the total amount
of memory referenced at a particular time.

• Spatial Reference Pattern – The spatial reference
plot indicates the number of times a given LMB
was referenced over the period for which the data
was collected. The LMBs are plotted on the X-axis

 0

 10

 20

 30

 40

 50

 60

 5 10 15 20 25 30

T
ot

al
 N

o.
 o

f L
M

B
s

re
fe

re
nc

ed
 (

si
ze

 =
 6

4M
B

)

Sample Number

Temporal Span of Memory References

Figure 3: Temporal Reference Pattern for pagetest

and the reference count on the Y-axis. The plot also
helps in understanding how the memory accesses
are laid out in the RAM.

• Working Set Size – The working set size of any
process is defined as the set of all pages referenced
by it in a given time interval. From the instrumenta-
tion data, we can compute the working set size of a
process for a given sampling interval, by summing
up the total number of pages referenced in each
group of pages within that sampling interval, for
a particular type of reference. Assuming that the
page references are stable across sampling interval,
one could extend it further by grouping samples to
form a large time interval for computing working
set size. It is important to note here that if a page is
being referred to by both user and the kernel space,
the kernel and user references would be accounted
for separately for that page.

4 Data Verification

In order to verify the functionality of the framework, we
obtain the memory reference pattern for the pagetest
program. Pagetest allocates a chunk of memory, as
specified by the user, using either malloc, anonymous
mmap, file mmap or shared memory. It then performs
either a write or a read operation on every single
page that was allocated, for a specified number of itera-
tions. To verify that the instrumentation indicates all the
memory touched by the program as having been refer-
enced, we tweak the test program to make it sleep for a

2010 Linux Symposium • 67

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 50000

 5 10 15 20 25 30

T
ot

al
 N

o.
 o

f P
ag

es
 R

ef
er

en
ce

d
(6

4k
)

Sample Number

Temporal User Memory Reference Pattern

Figure 4: Temporal User Memory Reference Pattern for
pagetest

 0

 50

 100

 150

 200

 250

 5 10 15 20 25 30

T
ot

al
 N

o.
 o

f P
ag

es
 R

ef
er

en
ce

d
(6

4k
)

Sample Number

Temporal Kernel Memory Reference Pattern

Figure 5: Temporal Kernel Memory Reference Pattern
for pagetest

fixed amount of time after every iteration of touching all
the pages. We run the instrumentation in parallel, at an
interval that ensures that the reference data is captured
after an iteration of pagetest is complete or in be-
tween iterations. This ensures that the instrumentation
does not interfere with the reference information of the
benchmark (solely for the purpose of verification). We
run the benchmark to allocate 3GB of memory using
malloc. We let the program run for 10 iterations. The
temporal reference pattern span is as shown in Figure 3.

From the graph we can see that there are 10 spikes, with
a height of about 52 LMBs, corresponding to the 10 it-
erations and usage of 3GB in each iteration. Flat lines
at the bottom indicate periods when the benchmark was
sleeping and no references were generated to its pages.
We also verify the data obtained regarding classification

 0

 50

 100

 150

 200

 250

 300

 5 10 15 20 25 30

T
ot

al
 N

o.
 o

f P
ag

es
 R

ef
er

en
ce

d
(6

4k
)

Sample Number

Temporal Page Cache Reference Pattern

Figure 6: Temporal Page Cache Memory Reference Pat-
tern for pagetest

of accesses into user, kernel and page cache. Figure 4
indicates the number of user pages accessed in a given
sampling interval. About 49165 pages (each of size 64k)
were marked as being referenced. This equals 3GB.
Similarly, Figure 5 and Figure 6 indicate the number of
kernel and page cache pages that were referenced re-
spectively. Both the kernel and page cache account for
less than 2MB of references each.

5 Errors & Approximations

The proposed method of aggregating memory reference
patterns has known approximations and errors as de-
tailed below:

• Effect of cache hierarchy – The primary mecha-
nism through which the reference pattern is aggre-
gated is the reference bit in the hardware memory
management unit’s page table entry. This bit is up-
dated (or set) whenever there is a memory access
to the region translated by this page. That region of
memory could have been in the caches as well. Ba-
sically the reference bit is updated independent of
whether the actual access was a cache hit or a cache
miss. Hence if we have been looking to model bus
traffic or traffic at memory controller level, then
this metric needs to be correlated with last level
cache miss counts to get a reasonable estimate.

• Effect of sampling – As described earlier, this
method is based on periodic sampling and hence
the resolution of information obtained depends on

68 • Looking Inside Memory

 0

 50000

 100000

 150000

 200000

 250000

 300000

 0 200 400 600 800 1000 1200 1400 1600

W
S

S
 (

kB
)

Sample Number

Working Set Size (User)

Figure 7: User Memory Working Set Size of kernbench
with 64 threads

the sampling interval. There are severe constraints
in the lower bound of the sampling interval. Based
on the size of the system and amount of data to
be collected, the sampling interval may have to be
larger leading to further approximation of the ref-
erence data. However one can assume that refer-
ences with high temporal and spatial locality will
most likely be cached and hence will not actually
hit the bus and memory chips, leaving scope for
optimization.

• Missing reference information – The memory re-
gions used to store the page tables themselves may
not be marked as referenced by the MMU hard-
ware, though they may have significant reference
rate. Similarly, IO DMA activities and other di-
rect memory manipulation that does not traverse
the processor MMU unit may not have been cap-
tured.

6 Sample Use Cases

The reference pattern information can be useful in sev-
eral scenarios. Below we present information on some
sample use cases for the different type of data obtained.

6.1 Working Set Size of an Application

Working Set Size (WSS) of an application is the amount
of memory that is required to be present in the main

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 200 400 600 800 1000 1200 1400 1600

W
S

S
 (

kB
)

Sample Number

Working Set Size (Kernel)

Figure 8: Kernel Memory Working Set Size of kern-
bench with 64 threads

memory at any time during its execution. The work-
ing set size could vary at different times of execution,
depending on the application design and the amount of
data being worked upon. If the WSS for an application
is much bigger than the memory present on the system,
some of the application pages would be swapped out to
accommodate newer pages. This could lead to reduced
performance as the swapping activity increases.

Accurately finding out the total memory that is being
used by a process is complex. There is very little tool-
ing that exists which can indicate the WSS of an ap-
plication. An estimate of the instantenous WSS of an
application could be obtained using the memory refer-
ence pattern data. The WSS information can be derived
from the data about the number of pages accessed within
a sampling interval. Ideally, the sum of the total num-
ber of kernel, user and page cache pages would be the
WSS of the application for a given period. However, we
present the data for each category separately, to high-
light the capability of the framework. Figure 7, Fig-
ure 8 and Figure 9 show the WSS we obtained for the
kernbench benchmark, running 64 threads on a ma-
chine with 16GB RAM and 8 processors. The WSS for
user memory remains below 1MB for most times, how-
ever, hits a maximum of about 250MB. On the other
hand, the maximum amount of kernel memory refer-
enced is around 150-160KB, throughout the benchmark
execution time. Page Cache memory references consti-
tute to most of the memory references, the maximum
instantaneous WSS being slightly over 500MB. This in-

2010 Linux Symposium • 69

 0

 100000

 200000

 300000

 400000

 500000

 600000

 0 200 400 600 800 1000 1200 1400 1600

W
S

S
 (

kB
)

Sample Number

Working Set Size (Page Cache)

Figure 9: Page Cache Memory Working Set Size of
kernbench with 64 threads

dicates that if the performance of kernbench has to be
improved from memory perspective, its the optimiza-
tions in the page cache layer that would have the biggest
impact. Besides, this information also indicates that
if 64 threads of kernbench are to be run on this plat-
form, maximum memory requirement would be atleast
500MB, for minimal performance impact.

Contrast this observation with the graphs in Figure 10,
Figure 11 and Figure 12, which corresponds to kern-
bench run with only 16 threads on the same machine.
It can be seen that the time taken for the benchmark is
almost 50% more than the previous run. The amount of
kernel memory referenced remains the same. User and
page cache memory referenced are below 40MB.

6.2 Usage of Large pages

A virtual address in the virtual memory is translated into
the physical address by a combination of hardware and
software operations. A page is the smallest entity of ad-
dress translation. Page tables store the mapping of vir-
tual addresses to physical page addresses. There is some
overhead involved in a single page translation. The to-
tal number of translations required for a program de-
pends on the number of pages that are accessed by it.
The overhead increases as the number of pages accessed
are increased. Translation Lookaside Buffers (TLB) are
used to reduce the overhead, by caching the frequently
used page table entries. Depending on the workload, the
TLB may not be sufficient to cache all the translations

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 50000

 0 500 1000 1500 2000 2500 3000

W
S

S
 (

kB
)

Sample Number

Working Set Size (User)

Figure 10: User Memory Working Set Size of kern-
bench with 16 threads

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 500 1000 1500 2000 2500 3000

W
S

S
 (

kB
)

Sample Number

Working Set Size (Kernel)

Figure 11: Kernel Memory Working Set Size of kern-
bench with 16 threads

70 • Looking Inside Memory

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 0 500 1000 1500 2000 2500 3000

W
S

S
 (

kB
)

Sample Number

Working Set Size (Page Cache)

Figure 12: Page Cache Memory Working Set Size of
kernbench with 16 threads

0 10000 20000 30000 40000 50000 60000 70000 80000 90000
Sample Number

0

5

10

15

20

25

30

35

40

No
 o

f L
M

Bs
 a

cc
es

se
d

(L
M

B
si

ze
 =

 6
4M

B)

Figure 13: Temporal Reference Pattern for a JAVA
Benchmark

needed by the application. Large page [4] support was
thus developed to improve the performance for such ap-
plications. Large pages enable fewer TLBs to translate
larger address ranges, thus allowing more entries to fit
into the TLBs.

Use of large pages benefits applications that have a
dense memory reference pattern. If the workload refer-
ence pattern is very sparse and making a small number
of references, usage of large pages might in fact neg-
atively impact performance, depending on the number
of large page entries supported by the TLB and also
due to memory fragmentation. Thus, the memory ref-
erence pattern would enable the application developer
to estimate if the usage of large pages would yield per-
formance improvement. Figure 13 indicates the tempo-

 0

 10

 20

 30

 40

 50

 60

 0 200 400 600 800 1000 1200 1400 1600

N
o.

 o
f L

M
B

s
(L

M
B

 s
iz

e
=

 6
4M

B
)

Sample No.

Temporal Reference Pattern

Figure 14: Temporal Reference Pattern for kernbench
run with 64 threads

ral reference pattern of a JAVA benchmark. The graph
shows a dense reference pattern and on an average, the
memory reference span is about 10 LMBs, which equals
about 640MB of memory. Thus, it can be inferred that
this benchmark could benefit from usage of large pages.

As an example of an application that would not bene-
fit from using large pages is kernbench. From the Fig-
ure 14, we see that its reference pattern is not dense and
varies with time. Usage of large pages could potentially
lead to memory fragmentation. This is a hypothetical
analysis, but could serve as a good starting point when
analyzing benchmark performance issues.

6.3 Understanding Memory Usage in NUMA Sys-
tems

On a NUMA system, memory allocation becomes
slightly more complex due to the presence of local and
remote node. There are a number of NUMA policies
that determine where the memory for a particular pro-
cess will be allocated from. For example, by default,
memory is allocated on the node of the CPU that trig-
gered the allocation. It is important to determine which
NUMA allocation policy works best for a given appli-
cation, since a wrong policy could lead to performance
degradation as there is an additional overhead incurred
when accessing memory from a remote node. The mem-
ory reference instrumentation framework can aid in un-
derstanding the way memory is utilized by an applica-
tion on a NUMA system. Figure 15 indicates the spa-
tial reference plot for kernbench, run on a JS22 blade

2010 Linux Symposium • 71

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 50 100 150 200 250 300

T
ot

al
 N

o.
 o

f S
am

pl
es

 in
 w

hi
ch

 r
ef

er
en

ce
d

LMB Number (size = 64MB)

Spatial Memory Reference Pattern

Figure 15: Without NUMA Biasing: Spatial Memory
Reference Pattern of kernbench

POWER6 blade, which had 16GB of RAM (8GB on
each node). The LMB size used was 64MB. Thus, about
128 LMBs correspond to one NUMA node. It can be
seen that the memory references come from both the
NUMA nodes. Figure 16, Figure 17 and Figure 18 show
the way references are spread across for user, kernel
and page cache memory. However, when kernbench
threads were tied to processors belonging to only a sin-
gle NUMA node, we can see from Figure 20 that the
user memory references originate from that node only.
However, kernel and page cache references still spread
across the nodes, as seen from Figure 21 and Figure 22,
still giving an overall memory reference pattern as in
Figure 19, similar to the one in Figure 15.

Today, one could use numastat[1] to obtain
information on NUMA access statistics that are ob-
taied from hardware and maintained by the kernel,
like numa_hit, numa_miss, local_node,
other_node, etc. When an application is run in iso-
lation, these counters would be a representative of the
application itself. Also, /proc/<pid>/numa_maps
gives information about how the process user pages
are laid out across the NUMA nodes. However, with
the help of the proposed instrumentation, we can
also classify the NUMA accesses to kernel, user and
page cache and also into read/write accesses. Such
information would prove helpful to developers, chasing
the cause of peculiar benchmark performance issues on
NUMA platforms. This also serves as an effective tool
to evaluate NUMA policy implementation in the Linux
kernel.

 0

 200

 400

 600

 800

 1000

 1200

 0 50 100 150 200 250 300

T
ot

al
 N

o.
 o

f S
am

pl
es

 in
 w

hi
ch

 r
ef

er
en

ce
d

LMB Number (size = 64MB)

Spatial User Memory Reference Pattern

Figure 16: Without NUMA Biasing: Spatial User Mem-
ory Reference Pattern of kernbench

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 50 100 150 200 250 300

T
ot

al
 N

o.
 o

f S
am

pl
es

 in
 w

hi
ch

 r
ef

er
en

ce
d

LMB Number (size = 64MB)

Spatial Kernel Memory Reference Pattern

Figure 17: Without NUMA Biasing: Spatial Kernel
Memory Reference Pattern of kernbench

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 50 100 150 200 250 300

T
ot

al
 N

o.
 o

f S
am

pl
es

 in
 w

hi
ch

 r
ef

er
en

ce
d

LMB Number (size = 64MB)

Spatial Page Cache Memory Reference Pattern

Figure 18: Without NUMA Biasing: Spatial Page Cache
Memory Reference Pattern of kernbench

72 • Looking Inside Memory

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 50 100 150 200 250 300

T
ot

al
 N

o.
 o

f S
am

pl
es

 in
 w

hi
ch

 r
ef

er
en

ce
d

LMB Number (size = 64MB)

Spatial Memory Reference Pattern

Figure 19: Biased to a NUMA Node: Spatial Memory
Reference Pattern of kernbench biased to one NUMA
node

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 50 100 150 200 250 300

T
ot

al
 N

o.
 o

f S
am

pl
es

 in
 w

hi
ch

 r
ef

er
en

ce
d

LMB Number (size = 64MB)

Spatial User Memory Reference Pattern

Figure 20: Biased to a NUMA Node: Spatial User
Memory Reference Pattern of kernbench biased

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 50 100 150 200 250 300

T
ot

al
 N

o.
 o

f S
am

pl
es

 in
 w

hi
ch

 r
ef

er
en

ce
d

LMB Number (size = 64MB)

Spatial Kernel Memory Reference Pattern

Figure 21: Biased to a NUMA Node: Spatial Kernel
Memory Reference Pattern of kernbench

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 50 100 150 200 250 300

T
ot

al
 N

o.
 o

f S
am

pl
es

 in
 w

hi
ch

 r
ef

er
en

ce
d

LMB Number (size = 64MB)

Spatial Page Cache Memory Reference Pattern

Figure 22: Biased to a NUMA Node: Spatial Page
Cache Memory Reference Pattern of kernbench

7 Challenges

The goal of the instrumentation is to ensure that the data
is captured with minimal impact on performance and no
interference with the benchmark data. Some of the chal-
lenges that we faced are as follows:

• Missing information in Software – It is important
to understand that memory references, either from
caches or from main memory, are transparent and
concurrent to the operating system. Due to this,
the precise count of the number of times a partic-
ular page was referenced cannot be obtained from
software. Hardware support in the form of coun-
ters that maintain a per-page reference data could
improve the accuracy, as in System-Z [3]. Thus,
from inside the software, we can only obtain infor-
mation about whether a page was referenced or not
within a sampling interval.

• Indeterminate run time of the instrumentation –
The size of the kernel page table remains almost
a constant during system runtime. Thus the time
taken to scan it also remains a constant. However,
the amount of time taken to scan the user page ref-
erences is directly proportional to the number of
processes active and their memory footprint. The
larger the number of such processes, or larger their
memory footprints, the greater the time required to
collect the reference samples and vice versa. As a
result, the run time of the scanning framework in-
creases, leading to fewer samples being collected.

2010 Linux Symposium • 73

The data thus obtained may not be a true represen-
tation of the actual memory reference pattern.

• Concurrent execution of software and instrumenta-
tion – The reference data that is being obtained is
simultaneously being updated or changed by soft-
ware running on other CPUs. This also has an
effect on the software where one of the software
threads are delayed due to reference collection ker-
nel thread thereby potentially delaying other soft-
ware and affecting normal program execution like
inducing lock contention.

8 Future Enhancements

Based on the limitations and challenges listed above, we
have a good list of things to work on. Potential future
improvements are:

• Compress or reduce data that is logged – Basi-
cally use simple encoding techniques to reduce the
amount of memory used and data transferred to
user space.

• Adaptively sample interesting areas of memory –
Start with scanning full memory and page tables,
but if we can quickly figure out the stale areas, i.e,
memory areas that are rarely being accessed, we
can make a note of them and scan them less fre-
quently. We keep updating our statistics of such
areas.

9 Conclusions

The rapidly developing Linux runtime tracing frame-
work enables low overhead, complex and intrusive
instrumentation to get interesting data and facilitate
deeper insights into application behavior. Application
memory reference tracing is one example where a com-
bination of known techniques can be easily packaged
and aptly used to get new insights into the way memory
is accessed by an application, that could lead to opti-
mizations.

10 Acknowledgements

The authors wish to thank their team at Linux Technol-
ogy Centre, IBM and the management for their encour-
agement and support during the creation of the instru-
mentation framework and the paper. We would like to

thank all colleagues who reviewed the patches and gave
valuable feedback. Special thanks to Dipankar Sarma
for his guidance all throughout.

The authors wish to thank the IBM management who
generously provided an opportunity to work on this fea-
ture and paper, without which its presentation at the
Linux Symposium 2010 wouldn’t have been possible.

11 Legal Statement

c©International Business Machines Corporation 2010. Per-
mission to redistribute in accordance with Linux Symposium
submission guidelines is granted; all other rights reserved.

This work represents the view of the author and does not nec-
essarily represent the view of IBM.

IBM, IBM logo, ibm.com are trademarks of International
Business Machines Corporation in the United States, other
countries, or both.

Linux is a registered trademark of Linus Torvalds in the
United States, other countries, or both.

Other company, product, and service names may be trade-
marks or service marks of others.

References in this publication to IBM products or services
do not imply that IBM intends to make them available in all
countries in which IBM operates.

INTERNATIONAL BUSINESS MACHINES CORPORA-
TION PROVIDES THIS PUBLICATION “AS IS” WITH-
OUT WARRANTY OF ANY KIND, EITHER EX-
PRESS OR IMPLIED, INCLUDING, BUT NOT LIM-
ITED TO, THE IMPLIED WARRANTIES OF NON-
INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not al-
low disclaimer of express or implied warranties in certain
transactions, therefore, this statement may not apply to you.
This information could include technical inaccuracies or ty-
pographical errors. Changes are periodically made to the in-
formation herein; these changes will be incorporated in new
editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) de-
scribed in this publication at any time without notice.

References

[1] numastat. Linux kernel Documentation,
src/linux/Documentation/numastat.txt.

74 • Looking Inside Memory

[2] Performance counter frameowrk for linux.
http://perf.wiki.kernel.org/.

[3] System z performance counters. .

[4] Large page support in the linux kernel, August
2002. http://lwn.net/Articles/6969/.

[5] Use lmb with x86, June 2010.
http://lkml.org/lkml/2010/6/16/32.

Proceedings of the
Linux Symposium

July 13th–16th, 2010
Ottawa, Ontario

Canada

Conference Organizers

Andrew J. Hutton, Steamballoon, Inc., Linux Symposium,
Thin Lines Mountaineering

Programme Committee

Andrew J. Hutton, Linux Symposium
Martin Bligh, Google
James Bottomley, Novell
Dave Jones, Red Hat
Dirk Hohndel, Intel
Gerrit Huizenga, IBM
Matthew Wilson

Proceedings Committee

Robyn Bergeron

With thanks to
John W. Lockhart, Red Hat

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.

