
Developing Out-of-Tree Drivers alongside In-Kernel Drivers

Jesse Brandeburg
LAN Access Division, Intel Corporation
jesse.brandeburg@intel.com

Abstract

Getting your driver released into the kernel with a GPL
license is promoted as the holy grail of Linux hardware
enabling, and I agree. That said, producing a qual-
ity GPL driver for use in the entire Linux ecosystem
is not a task for the faint of heart. Releasing an Eth-
ernet driver through kernel.org is one delivery method,
but many users still want a driver that will support the
newest hardware on older kernels.

To meet our users’ requirements for more than just hard-
ware support in the latest kernel.org kernel, we in Intel’s
LAN Access Division (LAD) developed a set of coping
strategies, processes, code, tools, and testing methods
that are worth sharing. These learnings help us reuse
code, maintain quality, and maximize our testing re-
sources in order to get the best quality product in the
shortest amount of time to the most customers. While
not the most popular topic with core kernel developers,
out-of-tree drivers are a necessary business solution for
hardware vendors with many users. Our Open Source
drivers generally work with all kernel releases 2.4 and
later, and I’ll explain many of the details about how we
get there.

1 Introduction

This paper’s goal is to lay out a roadmap for others to
use in order to streamline the out-of-tree development
process. Since many developers are able to live solely
in the kernel, a secondary goal is to expose some of
the business realities that our product group has to cope
with, and the solutions we have developed.

Our business goal is simple: Sell hardware. This hard
reality guides many of our decisions. To do this, we
enable drivers for as many users and operating systems
as possible. In an ideal world we would have unlim-
ited resources, and a fully staffed development and test-
ing team with plenty of idle time, but instead we have

to make do with busy developers, constrained testing
resources, and of course business and customer needs.
As such, we’ve developed tricks and common practice
within our code and development process in order to
maximize the number of Operating Systems supported.

Intel R© Wired Ethernet developers actively maintain
multiple (eight) drivers in the kernel, and strive to be
good open-source contributors and supporters while still
creating an out-of-tree driver, i.e. we are not the enemy.

2 Reasons You Might Need an Out-of-tree
Driver

Business Need

Our software support opens new business opportunities
for network hardware sales by leveraging the (awesome)
environment of the Open Source community and ven-
dors. We sample silicon and boards months before we
ship, and need something to deliver to customers to al-
low them to test.

We avoid a lot of thrash and introduction of last minute
OS support requirements from hardware vendors by
having a tested and ready “out-of-tree” driver that OEM
system integrators and vendors can use to ship our hard-
ware. We also make our out-of-tree drivers available
via e1000.sourceforge.net in the e1000 project,
and on intel.com.

Provide More Complete Hardware Support

Customers are happier if our hardware works in every
kernel they might use right out of the box.

No Pre-announcing Hardware

We are unable to ship driver support to the kernel for
hardware that either hasn’t shipped or won’t ship “real
soon now.” We try not to give up any competitive ad-
vantage we might achieve by not informing our com-
petitors of our plans. The out-of-tree driver allows for

• 35 •



36 • Developing Out-of-Tree Drivers alongside In-Kernel Drivers

a testable and feature rich launch of hardware with sup-
porting drivers, even if the driver hasn’t made it all the
way through net-next into the upstream kernel. It also
means we have something to ship on the software CD
“in the box.”

Users on Old Kernels

Some customers are using 2.4 kernels (still) in produc-
tion. This creates a bit of a headache for drivers like
ixgbe that have many new features that depend on newer
kernels. For operating systems and kernels this old we
have a policy of “just make it work” which is generally
all that is required. Some customers upgrade to the latest
and greatest system and network hardware but will not
or cannot upgrade their OS for their own business rea-
sons. For example, we have met enterprise customers
who have an application that will not run on any OS
newer than RedHat Enterprise Linux 3. However, Red-
Hat is still supporting RHEL3, at least for now. In our
case the right thing to do here is follow the lead of the
OS Vendor and try to provide basic support. In some
cases, only new hardware is available to replace exist-
ing failing hardware, forcing users to upgrade hardware
while keeping their existing infrastructure and certifica-
tions in place.

Silicon Validation

One of the tasks we have as driver developers is to val-
idate that the silicon we ship will work with our driver
code as well as validating new silicon features. This
often needs a lot of “non-production” code to be de-
veloped and we do that development in our out-of-tree
driver, usually on a branch.

Dirty Laundry

The out-of-tree driver source contains many comments
and even some code that is never published, that al-
low us to reference internal bug tracking databases, in-
vestigation notes, and debug code (possibly for silicon
validation.) There is no value in shipping this code to
the open source community and the process of building
source allows us to maintain higher quality code, while
still having the functionality in the code that we need.

3 Implementation

Shared Code

Our definition of “shared code” is code that is usable un-
der multiple operating systems, with a non-encumbering
license. In our environment we have factored out the
code that supports functions/features common to all
driver hardware tasks like initialization, reset, link man-
agement, etc.

The shared code makes up almost 10,000 lines of code
(out of 24,961) in our current ixgbe driver. It is shared
across multiple OS drivers, including Linux, FreeBSD,
Windows drivers (all versions), Windows Testing tools
(control panel), Manufacturing/Test tools, as well as
customers.

In order to do such a thing without GPL violations, we
maintain exclusive copyright to the shared code files,
allowing us to release the code with any license we (as
the exclusive copyright holder) need. Another option
would be to dual license the code, but this has some legal
implications that we weren’t interested in dealing with,
and that are beyond this paper’s scope.

When we design this code for a family of silicon, we
use function pointers to cover the initialization and setup
sections that might have differing implementations for
each release of silicon.

This code has #defines that are typically negatively de-
fined to allow drivers that don’t want to compile in sup-
port for a given piece of hardware to strip all the unused
code from their driver build. The code typically looks
like:

#ifndef NO_NNN_HARDWARE_SUPPORT

/* some code specific to NNN */

#endif

We also use #defines to mark pre-release sections of
code for new hardware or feature support, allowing us
to control the driver/features and hardware implemented
for a particular driver build. Often for cleanliness of the
code those #defines are removed after hardware or the
feature first ships.

Some of the other advantages to sharing pieces of the
driver initialization code are: More consumers of the
code means more developers available to work bugs;
more testing coverage because the shared code gets used
repeatedly. This maximizes limited testing and develop-
ment resources to achieve the most productivity.



2010 Linux Symposium • 37

Build the Code

Our drivers’ code base is actually built via a Makefile.
The Makefile takes several passes over the code. The
major innovation is using unifdef.c from the kernel to
clean out #defines and code that we don’t want included.
This is done via a list of #defines in the Makefile that
declare which code we want to keep or strip. Using
this method we implement our new hardware support,
allowing us the flexibility to add/remove new hardware
to a particular driver build right up to the ship date. Af-
ter the hardware and software support ships for a given
release, we typically leave in #defines for hardware sup-
port that we might want to discard to reduce code size
(as above), but remove #defines that we might have used
for new hardware support in the base driver portion of
the code. The assumption here is that once the driver
supports a given piece of hardware it always will. An-
other advantage of this build process is that the driver
source can be branched and stabilized with a particular
set of hardware and features supported, without the code
forking from the mainline development.

Create New Drivers

One of the lessons we’ve learned is that a driver should
not have endless hardware revisions added to it. It cre-
ates too much regression testing load, and new hardware
support too often breaks existing functionality. While it
is immensely seductive to reuse all the code in a driver,
experience has shown us that driver code is typically
brittle. Our conclusion is that whenever possible create
a new driver for "the next generation" of silicon. This
of course creates more work and more code to maintain.
This is an issue that we are continuing to struggle with,
but we believe is the correct way forward.

Coding Style

We allow ONLY Linux kernel style for the “shared
code” files. In the kernel, there is a Documenta-
tion/CodingStyle file and we have implemented an in-
ternal process that requires the shared code (and our
drivers’ core code) to conform to the that document.
This causes some discussion among the differing soft-
ware camps, but saves many headaches in the long run.
This is especially useful when keeping code in the out-
of-tree and in-kernel drivers the same.

Internal Maintainers

We have implemented mailing lists and automated
check-in notification emails that encourage and ease

peer review of code. In particular for our shared code
we have a single committer that is the only user allowed
to commit changes. This guarantees code goes through a
minimum level of review by the maintainer before com-
mit to ensure process is followed and that code meets
requirements. This has prevented many hours of pain
and suffering of developers having to fix bugs or quality
issues other users introduce to the shared code.

Consistent External Maintainer Interface

The internal development of the out-of-tree driver is
typically followed by changes for the in-kernel driver,
which are all pushed through our primary maintainer.
Over the past several years we’ve developed and re-
fined a relationship with the maintainers of the network-
ing stack and networking drivers. Having a single per-
son that is our contact with the maintainers guarantees
consistent communication, process, and dramatically in-
creases our chances of getting patches accepted. Jeff
Kirsher’s paper in other proceedings of the 2010 Linux
Symposium explains this in greater detail.

Patch All the Time

We’ve consistently been asked by the upstream main-
tainers to not "patch bomb" the lists every 6-12 weeks.
We’ve also found that during development the best way
to do kernel (upstream) patches is to immediately intro-
duce any change made to our out-of-tree driver to our
internal kernel patch process. We have eased this pro-
cess by mimicking the kernel development process in-
ternally. We use internal mailing lists, an internal patch-
work server, and internal git servers. A developer who
has just created a patch for the out-of-tree code is in the
perfect position (just the right knowledge) to create the
kernel patch for the same change. The developer creates
the patch, typically uses stgit to email it to the list, and
then the patch is tracked in patchwork through testing
and then eventual submittal via email to the networking
maintainer.

Kernel Compatibility Layer

We follow a similar model that is used by libata to pro-
vide backport compatibility to some distribution ker-
nels. Our Ethernet driver kcompat.h and kcompat.c files
allow for “upstream” looking core driver code which
works on older kernels (yes it’s GPL, so you can use it
too.) When combined with strategically placed #defines
in our driver core code, our drivers can compile and load



38 • Developing Out-of-Tree Drivers alongside In-Kernel Drivers

on almost all 2.4 and 2.6 kernel versions. Of course #de-
fines for certain OS capabilities are unavoidable and end
up breaking up mainline source with #ifdefs, but using
flags in the driver to advertise driver/hardware features
and capabilities can minimize the “#ifdef thrash.”

4 Version Control

Our current infrastructure uses CVS but we could easily
switch to any other version control system that has a suf-
ficient ecosystem to allow easy cross platform (aka Win-
dows) development. The large features that we rely on
version control to provide are branching, tagging, and
change tracking. We have taken great pains to enforce
adherence to committing only a single change at a time.

Nightly Labels - auto-builds

We have recently started the nightly process of auto-
matic labeling and building of certain components of
our software. The shared code is built in both a DOS
and UNIX linefeed version. The drivers then consume
that “built” version in our build tool when the “check-
out” is prepared before a driver source build. Finally
the source is built on a Linux machine via make, and
compile tested on several different distributions.

Reproducible Build Process

One of the benchmarks for our process is reproducible
builds. We take steps to make sure that any given build
can be rebuilt in the future should something go wrong.
We periodically make practice runs to prove it is work-
ing.

5 Pitfalls

Kernel standards can conflict with internal require-
ments

One of the issues we ran into is that the kernel commu-
nity requested e1000e use C99 initializers for function
pointers. We made that change, but it required our in-
kernel driver to fork from the internal shared code be-
cause C99 syntax doesn’t work with DOS compilers.

GPL concerns

We must maintain exclusive copyright in order to multi-
license the shared code. We can’t take in code changes

to our shared code, when submitted against GPL
source, unless we transfer copyright or rewrite code and
counter-propose to maintain authorship/copyright. We
don’t expect everyone to understand our licensing con-
cerns, but we do try to offer changes and alternatives to
patches on the list that allow us to maintain our copy-
right and still not allow too much drift between our out-
of-tree shared code and the kernel version.

Distributions and Backports

Backports typically come from upstream changes only,
which means that the distribution engineers are often re-
inventing the wheel we’ve already created in our stand-
alone driver.

In all fairness Novell has a great KMP (kernel module
package) model that allows us to provide them a driver
from our out-of-tree code that they build and provide to
users.

Bug fixes often go into distributions but sometimes
don’t make it upstream. Even when they do make it
upstream, it is difficult to track what is required to be
changed in the out-of-tree driver.

What to Test?

Pre-production

Pre-production testing tests mostly the out-of-tree
driver, looking for hardware bugs and verifying
driver functionality. If we had unlimited time and
resources we would ideally make the driver back-
port for the distribution, and then test. Often dis-
tribution code submittal windows are closed before
we have final silicon, and yet the silicon will ship
before the distribution in question.

Early Release

Early (before release of the hardware) kernel sub-
mittal often has just basic functionality. Testing
this gives you a warm fuzzy feeling and can be
the basis of the initial kernel submittal, and so is
a worthwhile effort.

Distributions

Testing our driver that is included in the distribu-
tion is the hardest because they likely don’t even
have hardware support yet for the device you’re



2010 Linux Symposium • 39

testing. The distribution is assumed to have basi-
cally the same driver that is upstream, but in prac-
tice because of the backporting the distribution has
to do, the driver is an actual fork. The confusion
due to differing version numbers in drivers must be
managed in some way or another. In our case we
add -kN to our version numbers for drivers submit-
ted to the kernel. In addition we also ask the dis-
tributions if they make any changes to our driver to
update the -kN to the next odd value, with the goal
of having in-kernel drivers have all even numbers
for N, i.e. 2,4,6, and distribution backports would
hopefully have odd values of N, i.e. 1,3,5.

Limitations to This Path

Double work

Most driver changes must be made once to the in-
ternal version and once to the kernel version. After
that, changes to the distribution drivers need to be
initiated and tracked through the relevant methods.

Upstream vs Out-of-tree

Keeping the drivers in sync is a significant effort.
Our solution is diligence, patience, and a signif-
icant time and resource commitment. The whole
team participates in the open source community via
monitoring mailing lists and submitting patches.

6 Common Questions

Why not release code earlier?

We have: 82599 driver released 4 weeks before general
hardware availability. 82580 driver released November
7 2009, at least 8 weeks before general hardware avail-
ability.

Why not develop in the open?

By this, I believe the question to be "why don’t we have
a public git tree?" We push patches upstream as soon
as they are ready. Developing in a public git repository
only allows us to target one kernel version, and our re-
quirements include other delivery vehicles besides the
upstream kernel.

How come you don’t just develop for the upstream
kernel?

Our customers demand support in older kernels, not just
the upstream kernel driver.

Why don’t you use a “real” version control system?

We’d like to use GIT, but training Windows, BSD de-
velopers, technical marketing engineers, and software
configuration management engineers to use GIT is a big
effort. In short, we’re working on it but don’t expect
quick changes.

7 Conclusion

Developing in-kernel and out-of-tree drivers can be
done with a common source base and a minimum of
work. This paper shows some of the methods and prac-
tices Intel Wired Ethernet developers utilize. We wel-
come any follow-up questions and discussion either di-
rectly to the author or on our public email list.

e1000-devel@lists.sourceforge.net



40 • Developing Out-of-Tree Drivers alongside In-Kernel Drivers



Proceedings of the
Linux Symposium

July 13th–16th, 2010
Ottawa, Ontario

Canada



Conference Organizers

Andrew J. Hutton, Steamballoon, Inc., Linux Symposium,
Thin Lines Mountaineering

Programme Committee

Andrew J. Hutton, Linux Symposium
Martin Bligh, Google
James Bottomley, Novell
Dave Jones, Red Hat
Dirk Hohndel, Intel
Gerrit Huizenga, IBM
Matthew Wilson

Proceedings Committee

Robyn Bergeron

With thanks to
John W. Lockhart, Red Hat

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.


