
The Simple Firmware Interface

A. Leonard Brown
Intel Open Source Technology Center

len.brown@intel.com

Abstract

The Simple Firmware Interface (SFI) was developed as
a lightweight method for platform firmware to commu-
nicate with the Operating System.

Intel’s upcoming “Moorestown” hand-held platform
will be deployed using SFI.

Here we summarize the motivation for SFI, summarize
the contents of the SFI specification, and detail choices
made in the Linux kernel implementation.

1 Introduction

The SFI project home page is http://
simplefirmware.org.

This paper starts by briefly summarizing the site’s con-
tent, including the content of the SFI specification. Then
we describe the implementation of SFI on Linux.

For more details, readers are encouraged to look over the
specification, to read and participate on sfi-devel@
simplefirwmare.org, and to review and suggest
enhancements to the source code.

2 Motivation

Intel’s upcoming Moorestown hand-held platform is the
reason that SFI exists. However, SFI is intended to be
both general and open, such that it could be re-used for
other platforms.

While Moorestown contains an Intel R© AtomTM proces-
sor and PCI Express R©, it does not contain the legacy ele-
ments of a system that make it PC compatible, or ACPI1

compatible.

1Advanced Configuration & Power Interface, http://www.
acpi.info

Moorestown cannot run in ACPI mode because its
chipset does not include the required ACPI hardware,
and it cannot run in legacy mode because the PC-
compatible elements of the system simply do not exist.

3 SFI vs. ACPI

System platforms are either “SFI-platforms” support-
ing SFI firmware tables, or “ACPI-platforms” support-
ing ACPI tables.

An Operating System (OS) kernel that supports SFI is
an “SFI-OS.” An OS that supports ACPI is an “ACPI-
OS.”

An SFI-platform requires an SFI-OS to boot and run op-
timally. An ACPI-platform requires an ACPI-OS to boot
and run optimally.2

A single OS binary can boot and run optimally on both
SFI-platforms and ACPI-platforms. It simply includes
the capabilities of the SFI-OS and ACPI-OS, making an
“ACPI-SFI-OS.”

It is conceivable to build an ACPI-SFI-platform, and
such a lab prototype is useful for testing. However,
it makes little sense to ship such a system as a prod-
uct. Were an ACPI-SFI-OS to boot on an ACPI-SFI-
platform, the SFI-platform support would simply be ig-
nored in favor of the ACPI-platform.

That said, SFI-platforms can provide access to selected
ACPI-defined and ACPI-reserved tables. However, ex-
tending SFI with ACPI tables does not make the plat-
form into an ACPI-platform.

2ACPI platforms can often also boot in legacy PC mode, but no
known SFI platforms are able to boot in legacy PC mode.

• 55 •



56 • The Simple Firmware Interface

4 SFI and UEFI

SFI is agnostic as to whether a platform supports UEFI3

or not.

However, for platforms that choose not to implement
UEFI, SFI does define a static “MMAP” table that
returns the information defined by UEFI’s GetMemo-
ryMap() API.

5 SFI Tables

SFI tables are simply a data structure in memory popu-
lated by system firmware for the benefit of the OS.

5.1 SFI Table Header

All SFI tables share a common table header format
shown in Figure 1. The format is a proper sub-set of

Signature (4)
Length (4)
Revision (1)
Checksum (1)
OEMID (6)
OEM Table ID (8)
Table Payload
...

Figure 1: SFI Common Table Format

ACPI’s static table format4 and the semantics and use of
the fields in SFI is exactly the same as in ACPI.

However, even though they share a similar format, SFI
table signatures are entirely independent of ACPI table
signatures. Were a future version of the specifications
to define a table signature used by the other, they would
refer to two entirely different tables, unless explicitly
defined to refer to the same table.

Today SFI’s “XSDT” explicitly refers to the exact same
XSDT as defined by ACPI. Indeed, the XSDT is the
mechanism used by SFI to prevent name-space colli-
sions between SFI and ACPI.

3UEFI, Unified Extensible Firmware Interface, http://www.
uefi.org

4SFI deleted the OEM Revision, Creator ID, and Creator Revi-
sion because they had no apparent function.

5.2 SFI System Table (SYST)

The payload of the SFI System Table (SYST) is an array
of pointers to other tables.

While the SYST must reside within a fixed memory re-
gion, using an array of pointers allows system firmware
the flexibility to locate the actual tables and any conve-
nient address.

It is not uncommon, however, for all of the tables shown
in Figure 2 to reside on the same physical page of mem-
ory.

5.3 SFI CPUS Table

The optional CPUS table is an array of 32-bit Local
APIC IDs, enumerating all the logical processors in the
system.

5.4 SFI MMAP Table

The optional MMAP table describes the RAM present in
the system. It contains memory descriptors as defined in
UEFI’s GetMemoryMap() API.

5.5 SFI (IO) APIC Table

The optional APIC table is an array of physical ad-
dresses of the IO-APICs in the system.

5.6 SFI FREQ Table

The optional FREQ table describes the available proces-
sor frequencies in the system, in addition to the transi-
tion latency and the actual control word used for native
hardware performance-state control.

The entries in the FREQ table apply to all processors in
the system. The table applies to every logical processor
in the system. If there are topology dependencies be-
tween processors, the OS must discover those via native
hardware methods.



2009 Linux Symposium • 57

SYST CPUS

MTMR

WAKE

MMAP

APIC

FREQ

IDLE

MCFG
XSDT

OEMx

MRTC

Figure 2: SFI 0.6 table structure

5.7 SFI IDLE Table

The optional Idle Table describes the power saving CPU
idle states (e.g., ACPI C-states) available to the OS.
These are accessed via the native hardware MWAIT in-
struction. The IDLE table also enumerates the worst-
case exit-latency for each state.

The table applies to every logical processor in the sys-
tem. If there are topology dependencies between pro-
cessors, the OS must discover those via native hardware

methods.

5.8 SFI WAKE Table

The optional WAKE vector table contains the 64-bit
physical address of the location where the OS writes its
resume vector.

5.9 SFI MTMR Table

The optional MTMR table describes the location, fre-
quency, and IRQ of the platform timers present in the
Moorestown chip set.

5.10 SFI MRTC Table

The optional MRTC table describes the location and
IRQ of the real time clock present in the Moorestown
chip set.

5.11 SFI OEMx Table

The optional OEMx table allows OEMs to define
vendor-specific SFI tables while avoiding name-space
collisions with other platform vendors. The OS and
drivers search for tables not only on their base signature,
but also using the “6-byte” OEM-id and 8-byte “OEM
table id.”

OEMx is intended to mean OEM1, OEM2, OEM3, etc.
But the reality is that if a unique OEM-id and OEM-
table-id are used in a table search, any arbitrary table
signature would work. However, to avoid confusion in
the table signature name-space, it is highly encouraged
that the OEMx signature be used for vendor specific ta-
bles.

5.12 SFI XSDT Table

The optional SFI XSDT is a standard ACPI XSDT. A
standard ACPI XSDT can appear in the SYST as a valid
SFI table because the SFI table header is a proper sub-
set of the ACPI table header. (SFI simply views the extra
ACPI header fields as part of the table body.)

The purpose of the XSDT is to allow SFI to be extended
by access to tables and table signatures defined and re-
served by the ACPI specification in their standard for-
mat. It is not meant to imply that the same system should
support both SFI and ACPI at the same time.



58 • The Simple Firmware Interface

5.13 ACPI Tables, and the PCI MCFG

The PCI Memory Configuration Table (MCFG) is de-
fined by the PCI Firmware Specification. It is shown
in Figure 2 as an example of a standard ACPI table ac-
cessed via SFI.

6 Linux SFI Implementation

The SFI tables can be classified based on when in the
boot process they are accessed.

6.1 Early Boot time

First the SYST is located in a reserved region of physical
memory. The SYST must be properly aligned and must
not cross a 4 KB boundary, which also puts an upper
bound on its length.

Linux has several methods to discover the machine’s
physical memory map, including BIOS e820, UEFI, or
boot parameters. If none of those are available, SFI
SYST can point to an MMAP table, which must be lo-
cated and parsed before the MMU is enabled.

6.2 Early OS Initialization

Parts of the kernel will parse SFI tables during the pe-
riod after the MMU is enabled, but before the OS can
set up permanent virtual mappings with ioremap().
During this period, the tables are temporarily mapped
via early_ioremap() for the duration of the pars-
ing routine.

sfi_init() is responsible for sanity checking all the
SFI tables. It also prints out the table headers to the
console.

Linux takes several steps to harden itself against
firmware bugs. For a given table signature and version
number, it will compare the table length to that listed in
the specification before calculating the check-sum.

If any SFI tables fail to check-sum properly, SFI is dis-
abled (and the system will likely not boot).

Linux parses the CPUS and (IO) APIC tables during this
period, to enable the processors and interrupts.

6.3 Late OS Initialization

SFI tables can be parsed after the system is up and run-
ning and __init memory has been freed. Indeed, the
main table parsing entry point is exported by the SFI
core code such that drivers can parse SFI tables at any
time.

6.4 Implementation Choices

In the original prototype, we copied the table headers
into a static array in kernel .data to make scanning
for table signatures fast and compact. However, at Andi
Kleen’s suggestion, the SFI core no longer copies any
tables. Instead they are all parsed in place. The reason
is that in the common case, the tables all reside on the
same page of memory, so scanning the headers in-place
requires no MMU operations and is thus the same speed
as doing compares in a data structure optimized for that
purpose. Also, most of the tables are scanned at boot
and initialization time and never accessed again, so there
seems little justification to keep a copy of all the headers
around in kernel memory for the up-time of the system.

Of course the driver supplied parsing routine is still free
to do whatever it wants with the table, including copying
its data into local data structures.

Earlier we mentioned that Linux will sanity check each
table signature, version, length, and compute a check-
sum. However, old versions of Linux must be able to
handle tables that are defined by new versions of the
specification. Obviously, it can not look up a future ta-
ble’s signature and version number to check its length.
So for unknown tables, Linux uses an arbitrary 1 MB
length limit before it check-sums a table.

6.5 Source Code

The core SFI patch is about 1,000 lines of code.

This includes the basic SFI table parsers. Drivers that
consume SFI tables will provide their own table-specific
parsers.

The source code is targeted to go upstream in Linux-
2.6.32.



2009 Linux Symposium • 59

7 Conclusion

The Simple Firmware Interface is indeed simple.

The Linux Kernel patches to implement SFI have been
public since late-June. They are currently running on
Moorestown hardware, and are expected to be upstream
in Linux-2.6.32.

To get involved, please go to the SFI home page, http:
//simplefirmware.org. Review the latest speci-
fication, join the mailing list, review and comment on
the source code.

8 Acknowledgements

The author thanks Jacob Pan for prototyping the initial
Linux SFI support, Feng Tang, for writing most of the
final code—and testing it on pre-production hardware—
Ingo Molnar, Andi Kleen, and everybody on the lists for
their thoughtful code review.



60 • The Simple Firmware Interface



Proceedings of the
Linux Symposium

July 13th–17th, 2009
Montreal, Quebec

Canada



Conference Organizers

Andrew J. Hutton, Steamballoon, Inc., Linux Symposium,
Thin Lines Mountaineering

Programme Committee

Andrew J. Hutton, Steamballoon, Inc., Linux Symposium,
Thin Lines Mountaineering

James Bottomley, Novell
Bdale Garbee, HP
Dave Jones, Red Hat
Dirk Hohndel, Intel
Gerrit Huizenga, IBM
Alasdair Kergon, Red Hat
Matthew Wilson, rPath

Proceedings Committee

Robyn Bergeron
Chris Dukes, workfrog.com
Jonas Fonseca
John ‘Warthog9’ Hawley

With thanks to
John W. Lockhart, Red Hat

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.


