
Real-Time Performance Analysis in Linux-Based Robotic Systems

Hobin Yoon, Jungmoo Song, and Jamee Lee
Advanced Software Laboratories,

Samsung Advanced Institute of Technology,
Samsung Electronics Co. Ltd.

{hobin.yoon, jmsong, jamee.lee}@samsung.com

Abstract

Mobile or humanoid robots collect environmental data
and reflect back as robotic behaviors via various sensors
and actuators. It is crucial this occurs within a specified
time. Although real-time flavored Linux has been used
to control robot arms and legs for quite a while, it has
not been reported much whether the current real-time
features in Linux could still meet this requirement for a
much more complicated system - a humanoid with about
60 servo motors and sensors with multiple algorithms
such as recognition, decision, and navigation running
simultaneously. In this paper, in order to meet such re-
quirement, adopting EtherCAT technology is introduced
and its Linux implementation is illustrated. In addition,
results of real-time experiments and timing analysis on
a multi-core processor are presented showing Linux is
a viable solution to be successfully deployed in various
robotic systems.

1 Introduction

One of the key requirements of mobile or humanoid
robot is precise control period. It is crucial in robot de-
sign in several ways. First it guarantees response time
so that robot is able to react properly from external stim-
ulus within a specified time. For example, when a robot
hits an obstacle while it walks, if a proper re-balancing
of the motion is not executed in a fraction of time, it falls
down to the ground. Second, it enables smooth control
of each joint which is controlled by a micro controller.
Each micro controller tries to compensate movement of
each servo motor if it goes too fast or slow and high jitter
brings about high current consumption and even noise.

To achieve real-time communication of distributed de-
vices, a field-bus system is used. We have se-
lected EtherCAT over other field-bus systems for

its flexible topology, simple configuration, and cost-
effectiveness [18, 2]. The technology is supported
and promoted by ETC (EtherCAT Technology Group)
and standardized by IEC (International Electrotechnical
Commission) in 2007.

Figure 1: Deployment of EtherCAT master and slave
devices

Figure 1 shows schematic diagram of EtherCAT in our
robot system. Network interface card on main board in
torso plays an EtherCAT master and all other rectangles
represent EtherCAT slave devices. They are connected
by Ethernet cables which forms various topologies such

• 331 •

332 • Real-Time Performance Analysis in Linux-Based Robotic Systems

as star, tree, and daisy chain. Each EtherCAT slave de-
vice is connected by a couple of actuators or sensors.

For EtherCAT master implementation, EtherLab was se-
lected from other master implementations for its proper
license and active community [12]. EtherCAT slave
hardware is implemented by a few vendors as low-price
ASIC. We have selected Beckhoff ET1100 [9].

Real-time scheduling is essential for precise control pe-
riod. Traditionally, RT OSes such as QNS, RTLinux,
VxWorks and Windows CE have been major players in
real-time computing. Linux has been evolved a lot for
the past few years in terms of real-time. Since in-kernel
preemption on kernel 2.4, a lot of real-time enhance-
ments has been added including thread-context interrupt
handling, preemptible mutex, priority-inheritance mu-
tex, high-resolution timer, user-space real-time mutex.
With the help of these efforts, Linux is becoming com-
parable with traditional RT OSes [11, 13].

Although many efforts have been made to enhance pre-
emption latency, there are still lots of non-preemptible
critical sections and interrupt off regions. Some of the
major sources of these latencies are disk IO and network
IO [11].

There are several clock sources on x86 architecture
such as PIT, ACPI PM, HPET, TSC. The most reliable
counter with highest priority is chosen on Linux kernel
start-up. TSC is usually chosen for its highest resolu-
tion. One shortcoming of the TSC was its inability to
adapt dynamic voltage scaling, however, it is solved by
constant TSC.

We use a multi-core processor for better efficiency in
terms of power usage. However, it has a drawback in de-
terministic timing. On SMP kernel, preemption latency
increases as more processors are added, because they
contend for shared interrupt-off region and/or preempt-
off region. Affinitizing task and interrupt handling can
reduce preemption latency to some extent [11]. To deal
more with real-time, some robotic systems use multiple
OSes and boards to separate real-time task and non real-
time task, although it adds more complexity and power
consumption to the system [8, 20].

Tuning real-time application is dependent on application
model and often underlying hardware, so it requires a lot
of experiments. We followed good real-time program-
ming guides [4, 17, 19] and the experimental result will
be presented.

This paper is organized as follows. Section 2 describes
design and implementation of RCKS (Robot Control
Kernel Subsystem). Section 3 presents real-time per-
formance analysis of our robotic system. Section 4 ad-
dresses further tunings. Finally, Section 5 presents con-
cluding remarks.

2 Design and Implementation of RCKS

Figure 2 shows software architecture of our robotic sys-
tem which especially details in kernel components. At
the bottom of the layer, modified Ethernet device driver
communicates with NIC. It has been modified to fetch
received packets without interrupt. As a controlling
task is guaranteed to be executed periodically, interrupts
from network device driver were considered redundant.
EtherCAT master which is layered on top of NIC does
EtherCAT protocol handling and monitoring slave de-
vice status [12]. ECCI (EtherCAT Control Interface) is
implemented on top of EtherCAT master as an interface
to user-space applications.

Figure 2: Software architecture of Robot Control Kernel
Subsystem

We started from adopting EtherCAT master implemen-
tation. EtherLab is implemented in kernel space for
two reasons. One is to avoid mode switching between
kernel-space and user-space and the other is to commu-
nicate directly with network device driver. The driving
application is also implemented as a kernel module [12].
Its design is optimized for performance, thereby suits
for relatively small applications. However, our robot -
as a humanoid robot - needs complex application logic
and uses many user-space libraries that makes it in-
evitable to implement these in user-space. ECCI was

2009 Linux Symposium • 333

implemented to provide interface to user-space appli-
cations while keeping EtherCAT protocol handling in-
tact in kernel-space. The interface includes configuring
slaves, controlling actuators, reading sensor data and no-
tifying slave status changes. It also presents a proc file
system interface for exporting timing statistics.

In every cycle, ECCI receives one read-write request
from the real-time task, Motion Controller. Asyn-
chronously to this request, several non real-time tasks
make read requests to ECCI. ECCI internally maintains
cache of cyclic data obtained from EtherCAT master for
efficiency and controls concurrent accesses from mul-
tiple tasks using a mutex which is enabled by FUTEX
or PREEMPT_RT. To prevent long waiting of real-time
task, ECCI employs RT-mutex [5]. RT-mutex supports
priority inheritance and priority queuing which help our
real-time task wait at most 1 non real-time task as shown
in Figure 3.

Figure 3: Concurrency control of ECCI buffer by RT-
mutex: (A) Real-time task D arrives after non real-time
task B and C. (B) Real-time task D acquires lock before
non real-time task B and C.

Data flow in each cycle is depicted in Figure 4. The
Motion Controller process sends commands which tra-
verse through several layers to reach each actuator. Sim-
ilarly, each sensor’s data go through the layers to get to
the Motion Controller. Data flow starts from the Mo-
tion Controller process. The process issues a read-write
command which, in turn, fetches sensor data from the
NIC’s (Network Interface Card) buffer and composes
and sends actuator commands. The sensor data have
been ready at the NIC’s buffer in previous cycle. The
actuator commands are packetized in Ethernet frame
which traverses through all slave devices. EtherCAT
master returns immediately without waiting for the Eth-
ernet frame and the thread of execution returns back
to the Motion Controller. Now, the Motion Controller

computes next cycle’s motion plan and goes to sleep to
keep steady control period. EtherCAT datagram which
has been encapsulated in Ethernet packet is updated as
it passes through the ESC (EtherCAT Slave Controller)
on each slave device. The ESC generates interrupt to the
micro controller which fetches new data from ESC’s in-
ternal memory, controls actuators, gathers sensor data,
and updates ESC’s memory.

Sensor data take 1.5 to 2.5 cycles to reach to the Motion
Controller depending on the time of occurrence. Com-
mand from the Motion Controller takes 1.5 cycles to be
delivered to each actuator. Therefore it takes 3 to 4 cy-
cles until our robot reacts to an external event—that is,
3 to 4 ms.

3 Real-Time Performance Analysis

The accuracy of the Motion Controller’s control period
depends on the accuracy of the sleep time in Figure 4.
If the motion planning consumes reasonable amount of
time, optimizing control period is essentially similar to
optimizing the preemption latency of Linux kernel, and
general real-time performance tunings can be applied.

3.1 General Real-Time Tunings

Linux kernel provides several tuning knobs for real-time
applications. We applied some of the typical real-time
tunings to achieve deterministic timing of the Motion
Controller.

First, the Motion Controller process should have the
highest real-time priority. It sleeps at the end of ev-
ery cycle to keep constant control period which makes
the task being moved from run queue to wait queue in
Linux kernel. When the time expires it comes back to
run queue. After that, when Linux scheduler exam-
ines the run queue, our Motion Controller should be
on the highest priority run queue. Linux system call
sched_setscheduler() provides this facility.

Second, dedicating one CPU for the Motion Controller
is desirable. CPU shielding is a strategy in multi-
processor system which dedicates one CPU to a real-
time task and other CPUs to non real-time tasks and
interrupt handlers. This is beneficial to the Motion
Controller for two reasons. First, it prevents latencies
caused by a non real-time task or interrupt handler. They

334 • Real-Time Performance Analysis in Linux-Based Robotic Systems

Figure 4: Data flow in a cycle. Data is exchanged through several layers.

may be in an interrupt-off and/or preemption-off region
when the Motion Controller is about to be executed,
thereby increasing latency. Second, high cache coher-
ence - high coherence of instruction cache, data cache,
and TLB (Translation Lookaside Buffer) - helps fast ex-
ecution of the Motion Controller. Linux provides sys-
tem call sched_setaffinity() for setting CPU affinity of
a process. For interrupt affinity, proc file system in-
terface /proc/irq/<irq_number>/smp_affinity and kernel
API set_ioapic_affinity_irq() are provided. taskset is
also a useful tool to get and set a process’s CPU affinity
from a shell. In addition, kernel can be configured to
support CPUSETS which constrains the CPU and mem-
ory placement of tasks [1]. It is desirable to setup a re-
source management policy and enforce it using a global
resource manager from which all child processes inher-

its the policy.

Last, the Motion Controller should not be paged-out to
prevent high cost of fetching the page from swap area.
Linux provides system call mlock() for locking the pro-
cess’s virtual address space into RAM.

3.2 Spinning nanosleep

RTLinux provides TIMER_ADVANCE option in its
clock_nanosleep() API to enhance accuracy of sleep
time. This mechanism wakes a task up before its dead-
line has arrived and puts it into a busy-wait loop until
the deadline has arrived. This busy-wait loop improves
latency for real-time task, but the process is in a busy-
wait loop while waiting for the deadline [6, 10]. We

2009 Linux Symposium • 335

implemented this idea in Linux and applied to the Mo-
tion Controller. Since our robotic system dedicate one
CPU core to the Motion Controller exclusively, spinning
in the Motion Controller doesn’t affect performance of
other tasks. One shortcoming of this busy-waiting is in-
creased power consumption in the core. However, this
increase would be small enough compared to the over-
all power consumption of the robot where most power
is consumed by the actuators of the joints. One word of
caution is that spinning nanosleep should really sleep for
some time or yield CPU to other higher or equal priority
tasks before spinning on CPU. Otherwise it causes the
starvation of other important kernel threads like watch-
dog, migration and timer thread which can lead to ab-
normal system behavior.

3.3 Experiment Planning

For the robot to move smoothly, it is important for the
Motion Controller to send command to ECCI at the ex-
act time of each cycle. We measured the time and gener-
ated statistics. The idea is similar to the latency analysis
of cyclictest or realfeel [21, 7, 3]. Ideal period of be-
tween each consecutive time should be 1 ms; however,
in practice, before the Motion Controller wakes up from
sleep, the kernel may be in a critical section, which re-
sults in an additional wake-up delay of the Motion Con-
troller.

To verify the effect of real-time tunings to the Motion
Controller, we tested with all the combinations of the
following options.

• Highest Priority

• CPU Shielding

• Memory Locking

In addition, spinning nanosleep is tested with all the
above options turned on. Maximum spinning time is
set to 50 us. When more sleep time is requested, it first
nanosleep()s until 50 us remains and spins for the re-
maining time.

To ensure real-time performance of an operational sys-
tem, it is advised to keep system load under 50% [16].
Nevertheless measuring performance under heavy load
is important to observe worst-case performance. Fig-
ure 5 shows the test script which generates extremely
high disk IO and network IO [14]. Figure 6 describes
test environment.

• Linux kernel version: 2.6.26.8-rt16

• CPU: x86 2.4GHz Quad-core

• RAM: 2GBytes

• Robot slave devices: 59 sensors and actuators

Figure 6: Test Environment

3.4 Experimental Results

Figure 7 and 8 shows test results on unloaded system
and on heavily loaded system respectively. Each combi-
nation of test was performed for 10 minutes.

Without any real-time tuning, measured maximum con-
trol period was 1,482 us on unloaded system and
346,148 us on heavily loaded system. The latter was
intolerable in our robotic system.

With general real-time tunings applied—with maxi-
mum priority, memory locking and CPU shielding set—
unloaded system showed average 1,017.60 us and max-
imum 1,044 us control period and heavily loaded sys-
tem showed average 1,006.12 us and maximum 1,100
us control period.

Memory locking showed little improvement compared
with other real-time tunings. It is assumed that the little
improvement was due to the enough physical memory
—which is 2GBytes—on our test environment which
might not cause many page fault and paging-out.

Spinning nanosleep, in addition to general real-time tun-
ings, showed best real-time performance. Control pe-
riod was average 1,002.77 us and maximum 1,020 us on
unloaded system and average 1,002.11 us and maximum
1,071 us on heavily loaded system which are satisfac-
tory for smooth motion control of our robot.

Maximum values are highly unpredictable and may vary
from experiment to experiment, which is because pre-
dicting longest kernel path—nested interrupt-off and
preemption-off regions—is nearly impossible on heav-
ily loaded system. For example, if the test duration is
too short, the order of performance can differ from Fig-
ure 7 and 8, however when distribution is considered—
like from low 99% range to low 99.999% range—we
could conclude that the results are easily reproducible.

336 • Real-Time Performance Analysis in Linux-Based Robotic Systems

while true; do dd if=/dev/zero of=bigfile bs=1024000 count=1024; done &
while true; do killall hackbench; sleep 5; done &
while true; do $HACK_BENCH 20; done &
ping -l 100000 -s 10 -f localhost &
while true; do du -s / > /dev/null 2>&1 ; done &

Figure 5: Stress on Testing

4 Further Enhancements

Further fine-tunings are possible depending on system.
In real-time systems, the ext2 file system is recom-
mended if journaling is not required. Runlevel should
be set to multi-user mode without the graphical interface
to avoid additional load. Out-of-memory killer could be
customized to select victim process which is least sig-
nificant in terms of a robotic system. Proper tuning of
sched_nr_migrate parameter is desired to limit the num-
ber of task that will move at a time [4, 17, 19].

Delayed locking technique can be applied to our sys-
tem which execute a real-time task at a predefined in-
terval [15]. This technique allows a non real-time task
to enter a critical section only if the operation does not
disturb the future execution of the real-time application.

5 Conclusions

Our robotic system needed a real-time OS for deter-
ministic control of actuators and sensors, and, at the
same time needed a general OS for running many
processes simultaneously and using rich user-space li-
braries. Linux with complete in-kernel preemption
patch was selected to meet the requirements and our
robot system had the benefit of exploiting plentiful
open-source software available in Linux.

Robot control kernel subsystem is implemented us-
ing EtherLab, an EtherCAT master implementation
to control various sensors and actuators in real-time.
Robot-specific application logic is implemented in user-
space, while EtherCAT-specific protocol handling stays
in kernel-space so the kernel can be robust from user-
space bugs.

On our system, 1,000 us control period was met most of
the time, with average 1,002.11 us and maximum 1,071
us on heavily loaded system which was good enough
for smooth motion control. As our robotic system is

still in development, we expect to get better real-time
performance with further fine tunings.

References

[1] CPUSETS. Linux kernel documentation:
kernel/Documentation/cpusets.txt.

[2] EtherCAT Technical Introduction and Overview.
http://www.packagingdigest.com/
contents/pdf/EtherCAT_
Introduction_en.pd%f.

[3] Linux Real Time Patch Review - Vanilla vs. RT
patch comparison.
http://www.captain.at/
howto-linux-real-time-patch.php.

[4] Real-Time Linux Wiki. Project site:
http://rt.wiki.kernel.org.

[5] RT-mutex subsystem with PI support. Linux
kernel documentation:
kernel/Documentation/rt-mutex.txt.

[6] RTLinuxPro CPU Reservation Technology.
http://www.linuxdevices.com/
articles/AT7665542109.html.

[7] Andrew Webber. Realfeel Test of the Preemptible
Kernel Patch. http://www.
linuxjournal.com/article/6405.

[8] Berthold Bäuml and Gerd Hirzinger. When hard
realtime matters: Software for complex
mechatronic systems. Robotics and Autonomous
Systems, 56(1):5–13, 2008.

[9] Beckhoff. Hardware Data Sheet ET1100
EtherCAT Slave Controller, Jan 2008.

[10] Cort Dougan and Zwane Mwaikambo. Lies,
Misdirection, and Real-Time Measurements.
http://www.ddj.com/cpp/184401780.

2009 Linux Symposium • 337

[11] S. Dietrich and D. Walker. The evolution of
real-time linux. In Proceedings of Seventh
Real-Time Linux Workshop, Nov 2005.

[12] EtherLab. IgH EtherCAT Master 1.4.0
Preliminary Documentation, Feb 2009.

[13] Thomas Gleixner and Douglas Niehaus. Hrtimers
and beyond: Transforming the linux time
subsystems. In Ottawa Linux Symposium, 2006.

[14] Ingo Molnar. dohell script. Linux kernel mailing
list: http:
//lkml.org/lkml/2005/6/22/347.

[15] Jupyung Lee and Kyu-Ho Park. Delayed locking
technique for improving real-time performance of
embedded linux by prediction of timer interrupt.
In Real Time and Embedded Technology and
Applications Symposium, 2005. RTAS 2005. 11th
IEEE, pages 487–496, March 2005.

[16] Paul E McKenny. ’real time’ vs ’real fast’: How
to choose? In Ottawa Linux Symposium, 2008.

[17] Montavista. Real-time Application Programmer’s
Guide, 2008.

[18] S. Potra and G. Sebestyen. Ethercat protocol
implementation issues on an embedded linux
platform. In Automation, Quality and Testing,
Robotics, 2006 IEEE International Conference
on, volume 1, pages 420–425, May 2006.

[19] Redhat. Red Hat Enterprise MRG 1.1 Realtime
Tuning Guide, 2008.

[20] R. Tellez, F. Ferro, S. Garcia, E. Gomez, E. Jorge,
D. Mora, D. Pinyol, J. Oliver, O. Torres,
J. Velazquez, and D. Faconti. Reem-b: An
autonomous lightweight human-size humanoid
robot. In Humanoid Robots, 2008. Humanoids
2008. 8th IEEE-RAS International Conference on,
pages 462–468, Dec. 2008.

[21] Thomas Gleixsner. Cyclictest.
http://rt.wiki.kernel.org/index.
php/Cyclictest.

338 • Real-Time Performance Analysis in Linux-Based Robotic Systems

No Tuning M C MC P PM PC PMC PMCS
min 1,005.00 1,006.00 1,005.00 1,005.00 1,005.00 1,005.00 1,004.00 1,004.00 1,001.00

Low max 1,023.00 1,032.00 1,030.00 1,028.00 1,029.00 1,030.00 1,029.00 1,032.00 1,006.00
99% avg 1,013.45 1,020.54 1,020.01 1,014.19 1,019.46 1,019.75 1,014.48 1,017.43 1,002.72

SD 5.02 4.94 4.51 5.10 4.03 4.37 5.34 4.21 0.48
Low max 1,060.00 1,061.00 1,072.00 1,062.00 1,034.00 1,035.00 1,030.00 1,037.00 1,008.00

99.9% avg 1,013.56 1,020.65 1,020.11 1,014.33 1,019.56 1,019.86 1,014.61 1,017.58 1,002.76
SD 5.17 5.06 4.65 5.33 4.15 4.50 5.50 4.48 0.65

Low max 1,351.00 1,085.00 1,355.00 1,331.00 1,038.00 1,038.00 1,034.00 1,039.00 1,013.00
99.99% avg 1,013.62 1,020.70 1,020.19 1,014.41 1,019.57 1,019.88 1,014.62 1,017.60 1,002.77

SD 5.76 5.32 5.82 6.16 4.17 4.53 5.52 4.52 0.69
Low max 1,474.00 1,394.00 1,463.00 1,444.00 1,043.00 1,040.00 1,040.00 1,041.00 1,016.00

99.999% avg 1,013.66 1,020.71 1,020.22 1,014.44 1,019.57 1,019.88 1,014.63 1,017.60 1,002.77
SD 6.96 5.59 6.86 7.08 4.18 4.53 5.52 4.52 0.70
max 1,482.00 1,464.00 1,484.00 1,477.00 1,064.00 1,044.00 1,044.00 1,044.00 1,020.00

100% avg 1,013.67 1,020.71 1,020.23 1,014.45 1,019.58 1,019.88 1,014.63 1,017.60 1,002.77
SD 7.12 5.74 7.02 7.23 4.18 4.53 5.52 4.52 0.70

Maximum value and statistics of control periods on unloaded system. 100% row shows distribution of entire range,
while other rows show data distribution without peak values. (Unit:us, P: maximum priority, M: memory locking,

C: CPU shielding, S: spinning nanosleep)

Distribution of control periods

Figure 7: Control periods on unloaded loaded system

2009 Linux Symposium • 339

No Tuning M C MC P PM PC PMC PMCS
min 1,002.00 1,003.00 1,004.00 1,004.00 1,004.00 1,004.00 1,004.00 1,004.00 1,001.00

Low max 36,967.00 37,019.00 1,249.00 1,215.00 1,020.00 1,026.00 1,027.00 1,027.00 1,004.00
99% avg 2,072.05 2,066.02 1,006.85 1,006.66 1,006.96 1,007.08 1,005.83 1,005.81 1,002.03

SD 3,935.35 3,915.51 13.03 11.83 1.85 2.11 3.28 3.23 0.20
Low max 88,376.00 87,678.00 2,004.00 2,004.00 1,050.00 1,051.00 1,048.00 1,048.00 1,019.00

99.9% avg 2,529.41 2,521.51 1,013.85 1,013.33 1,007.17 1,007.30 1,006.09 1,006.07 1,002.08
SD 6,314.70 6,283.76 78.55 76.08 2.90 3.25 4.29 4.26 0.74

Low max 156,548.00 152,964.00 16,513.00 19,003.00 1,173.00 1,160.00 1,068.00 1,071.00 1,038.00
99.99% avg 2,624.61 2,615.18 1,016.26 1,016.09 1,007.23 1,007.36 1,006.13 1,006.11 1,002.10

SD 7,081.89 7,029.08 138.80 161.27 3.57 3.84 4.52 4.51 0.99
Low max 236,548.00 228,477.00 39,079.00 33,098.00 1,387.00 1,319.00 1,081.00 1,088.00 1,055.00

99.999% avg 2,640.65 2,630.67 1,018.49 1,018.29 1,007.25 1,007.38 1,006.13 1,006.12 1,002.11
SD 7,284.39 7,219.58 280.70 285.45 4.23 4.36 4.56 4.56 1.06
max 346,148.00 284,092.00 50,158.00 56,006.00 1,510.00 1,464.00 1,098.00 1,100.00 1,071.00

100% avg 2,643.59 2,633.28 1,018.92 1,018.73 1,007.25 1,007.39 1,006.14 1,006.12 1,002.11
SD 7,341.15 7,264.35 310.66 317.71 4.46 4.53 4.57 4.57 1.08

Maximum value and statistics of control periods on heavily loaded system. 100% row shows distribution of entire
range, while other rows show data distribution without peak values. (Unit:us, P: maximum priority, M: memory

locking, C: CPU shielding, S: spinning nanosleep)

Distribution of control periods (Values greater than 1,500 us were not depicted)

Figure 8: Control periods on heavily loaded system

Proceedings of the
Linux Symposium

July 13th–17th, 2009
Montreal, Quebec

Canada

Conference Organizers

Andrew J. Hutton, Steamballoon, Inc., Linux Symposium,
Thin Lines Mountaineering

Programme Committee

Andrew J. Hutton, Steamballoon, Inc., Linux Symposium,
Thin Lines Mountaineering

James Bottomley, Novell
Bdale Garbee, HP
Dave Jones, Red Hat
Dirk Hohndel, Intel
Gerrit Huizenga, IBM
Alasdair Kergon, Red Hat
Matthew Wilson, rPath

Proceedings Committee

Robyn Bergeron
Chris Dukes, workfrog.com
Jonas Fonseca
John ‘Warthog9’ Hawley

With thanks to
John W. Lockhart, Red Hat

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.

