
Hardware Breakpoint (or watchpoint) usage in Linux Kernel

Prasad Krishnan
IBM Linux Technology Centre

prasad@linux.vnet.ibm.com

Abstract

The Hardware Breakpoint (also known as watchpoint or
debug) registers, hitherto was a frugally used resource
in the Linux Kernel (ptrace and in-kernel debuggers
being the users), with little co-operation between the
users. The role of these debug registers is best exem-
plified in a) Nailing down the cause of memory cor-
ruption, which be tricky considering that the symptoms
manifest long after the actual problem has occurred
and have serious consequences—the worst being a sys-
tem/application crash. b) Gain better knowledge of data
access patterns to hint the compiler to generate better
performing code. These debug registers can trigger ex-
ceptions upon events (memory read/write/execute ac-
cesses) performed on monitored address locations to
aid diagnosis of memory corruption and generation of
profile data.

This paper will introduce the new generic interfaces and
the underlying features of the abstraction layer for HW
Breakpoint registers in Linux Kernel. The audience will
also be introduced to some of the design challenges
in developing interfaces over a highly diverse resource
such as HW Breakpoint registers, along with a note on
the future enhancements to the infrastructure.

1 Introduction

Hardware Breakpoint interfaces introduced to the Linux
kernel provide an elegant mechanism to monitor mem-
ory access or instruction executions. Such monitoring
is very vital when debugging the system for data cor-
ruption. It can also be done to with a view to understand
memory access patterns and fine-tune the system for op-
timal performance.

The hardware breakpoint registers in several processors
provide a mechanism to interrupt the programmed ex-
ecution path to notify the user through of a hardware

breakpoint exception. We shall examine the details of
such an operation in the subsequent sections.

Possibly, the biggest convenience of using the hardware
debug registers is that it causes no alteration in the nor-
mal execution of the kernel or user-space when unused,
and has no run-time impact. The most notable limitation
of this facility is the fewer number of debug registers on
most processors.

2 Hardware Breakpoint basics

A hardware breakpoint register’s primary (and only)
task is to raise an exception when the monitored loca-
tion is accessed. However these registers are processor
specific and their diversity manifests in several forms—
layout of the registers, modes of triggering the break-
point exception (such as exception being triggered ei-
ther before or after the memory access operation) and
types of memory accesses that can be monitored by the
processor (such as read, write or execute).

2.1 Hardware breakpoint basics—An overview of
x86, PPC64 and S390

Table 1 provides a quick overview of the breakpoint fea-
ture in various processors and compares them against
each other [1, 2].

3 Design Overview of Hardware Breakpoint
infrastructure

3.1 Register allocation for kernel and user-space
requests

While debug registers would treat every breakpoint ad-
dress in the same way, there is a fundamental dif-
ference in the way kernel and user-space breakpoint

• 149 •

150 • Hardware Breakpoint (or watchpoint) usage in Linux Kernel

Features /
Processor

Register Name Number of
Breakpoints

Data(D) / In-
structions(I)

Breakpoint lengths (length
in Bytes)

x86/x86_64 Debug register (DR) 4 D / I 1, 2, 4 and 8 (x86_64 only)
PPC64 Data(Instruction) Address Break-

point register (DABR / IABR)
1 D / I (on

selected
processors
only)

8

S390 Program Event Recording (PER) 1 D / I Varied length. Can monitor
range of addresses

Table 1: Processor Support Matrix

requests are effected. A user-space breakpoint be-
longing to one thread (and hence stored in struct
thread_struct) will be active only on one proces-
sor at any given point of time. The kernel-space break-
points, on the other hand should remain active on all
processors of the system to remain effective since each
of them can potentially run kernel code any time. This
necessitates the propagation of kernel-space requests for
(un)registration to all processors and is done through
inter-processor interrupts (IPI). The per-thread user-
space breakpoint takes effect only just before the thread
is scheduled. This means that a system at run-time
can have as many breakpoint requests as the number
of threads running and the number of free (i.e., not in
use by kernel) breakpoint registers put together (number
of threads x number of available breakpoint registers)
since they can be active simultaneously without inter-
fering with each other.

On architectures (such as x86) containing more than one
debug register per processor, the infrastructure arbitrates
between requests from multiple sources. To achieve
this, the implementation submitted to the Linux commu-
nity (refer [3]) makes certain assumptions about the na-
ture of requests for breakpoint registers from user-space
through ptrace syscall, and simplifies the design based
on them.

The register allocation is done on a first-come, first-
serve basis with the kernel-space requests being accom-
modated starting from the highest numbered debug reg-
ister growing towards the lowest; while user-space re-
quests are granted debug registers starting from the low-
est numbered register. Thus in case of x86, the infras-
tructure begins looking out for free registers beginning
from DR0 while for kernel-space requests it will begin
with DR3 thus reducing the scope for conflict of re-
quests.

In order to avoid fragmentation of debug registers upon
an unregistration operation, all kernel-space breakpoints
are “compacted” by shifting the debug register values by
one-level although this is not possible for user-space re-
quests as it would break the semantics of existing ptrace
implementation. This implies that even if a user-thread
downgraded its usage of breakpoints from n to n - 1,
the breakpoint infrastructure will continue to reserve n
debug registers. A solution for this has been proposed
in Section 8.1.

3.2 Register Bookkeeping

Accounting of free and used debug registers is essential
for effective arbitration of requests, and allows multiple
users to exist concurrently. Debug register bookkeeping
is done with the help of following variables and struc-
tures.

hbp_kernel[] – An array containing the list of
kernel-space breakpoint structures

this_hbp_kernel[] – A per-cpu copy of hbp_
kernel maintained to mitigate the problem discussed
in Section 7.2.

hbp_kernel_pos – Variable denoting the next avail-
able debug register number past the last kernel break-
point. It is equal to HBP_NUM at the time of initialisa-
tion.

hbp_user_refcount[] – An array containing re-
fcount of threads using a given debug register number.
Thus a value x in any element of index n will indicate
that there are x number of threads in user-space that cur-
rently use n number of breakpoints, and so on.

A system can accommodate new requests for break-
points as long as the kernel-space breakpoints and those

2009 Linux Symposium • 151

of any given thread (after accounting for the new re-
quest) in the system can be fit into the available debug
registers. In essence,

Debug registers >= Kernel Breakpoints
+ Max(Breakpoints in use by any given
thread)

3.3 Optimisation through lazy debug register
switching

The removal of user-space breakpoint, happens not im-
mediately when it is context switched-out of the proces-
sor but only upon scheduling another thread that uses
the debug register in what we term as lazy debug regis-
ter switching. It is a minor optimisation that reduces
the overhead associated with storing/restoring break-
points associated with each thread during context switch
between various threads or processes. A thread that
uses debug registers is flagged with TIF_DEBUG in the
flag member in struct thread_info, and such
threads are usually sparse in the system. If we must clear
the user-space requests from the debug registers at the
time of context-switch (in __switch_to() itself), it
could be done either

• unconditionally on all debug registers not used by
the kernel or

• only if the thread exiting the CPU had TIF_
DEBUG flag set (which is false for a majority of
the threads in the system).

In both the cases, we would add a constant overhead
to the context-switching code irrespective of any thread
using the debug register.

4 The Hardware Breakpoint interface

4.1 Hardware Breakpoint registration

The interfaces for hardware breakpoint registration for
kernel and user space addresses have signatures as noted
in Figure 2.

A call to register a breakpoint is accompanied by a
pointer to the breakpoint structure populated with cer-
tain attributes of which some are architecture-specific.

int register_kernel_hw_breakpoint(struct hw_breakpoint *bp);

int register_user_hw_breakpoint(struct task_struct *tsk,

 struct hw_breakpoint *bp);

Figure 2: Hardware Breakpoint interfaces for registra-
tion of kernel and user space addresses

struct hw_breakpoint {

 void (*triggered)(struct hw_breakpoint *,

 struct pt_regs *);

 struct arch_hw_breakpoint info;

};

Figure 3: Hardware Breakpoint structure

The generic breakpoint structure in the Linux kernel of
-tip git tree presently looks as seen in Figure 3.

The triggered points to the call-back routine to be
invoked from the exception context, while info con-
tains architecture-specific attributes such as breakpoint
length, type and address.

A breakpoint register request through these interfaces
does not guarantee the allocation of a debug register and
it is important to check its return value to determine suc-
cess.

Unavailability of free hardware breakpoint registers can
be most common reason since hardware breakpoint reg-
isters are a scarce resource on most processors. The re-
turn code in this case is -ENOSPC.

The breakpoint request can be treated as invalid if one
of the following is true.

• Unsupported breakpoint length

• Unaligned addresses

• Incorrect specification of monitored variable name

• Limitations of register allocation mechanism

4.1.1 Unsupported breakpoint length

While the breakpoint register can usually store one ad-
dress, the processor can be configured to monitor ac-
cesses for a range of addresses (using the stored address

152 • Hardware Breakpoint (or watchpoint) usage in Linux Kernel

User-space debuggers

(GDB)

ptrace()

register_user_hw_breakpoint() register_kernel_hw_breakpoint()

CPU 0 CPU 1 CPU 2

CPU (NR_CPUS -1)

In-kernel debuggers
(ksym_tracer)

struct thread_struct {

...

...

Hardware breakpoint regs

struct hw_breakpoint *hbp[HBP_NUM]

...

...

}

arch_update_kernel_hw_breakpoint() arch_update_kernel_hw_breakpoint() arch_update_kernel_hw_breakpoint()

IPI

arch_update_kernel_hw_breakpoint()

HBKPT HBKPT HBKPT HBKPT

IPI IPI IPI

on_each_cpu(arch_update_kernel_hw_breakpoint)

arch_install_thread_hw_breakpoint()

schedule()

arch_install_thread_hw_breakpoint()

schedule()

arch_install_thread_hw_breakpoint()

schedule()

arch_install_thread_hw_breakpoint()

schedule()

Context Switch - switch_to() Context Switch - switch_to() Context Switch - switch_to() Context Switch - switch_to()

USER-SPACE

KERNEL-SPACE

USER-SPACE BREAKPOINTSKEY KERNEL-SPACE BREAKPOINTS
IPI - Inter Processor Interrupts

HBKPT - Hardware Breakpoint registers

NR_CPUS - Number of CPUs in the system

arch_update_user_hw_breakpoint()

Figure 1: This figure illustrates the handling of requests from kernel and user-space by the breakpoint infrastructure

as a base). For instance, in certain x86_64 processor
types, up to four different byte ranges of addresses can
be monitored depending upon the configuration. They
are byte length of 1, 2, 4, and 8. However on PPC64 ar-
chitectures, this is always a constant of 8 bytes. Thus a
given breakpoint request can be treated as valid or oth-
erwise depending upon the host processor. The arch-
specific structure is designed to contain only those fields
that are essential for proper initiation of a breakpoint re-
quest and all constant values are hard-wired inside the
architecture code itself.

4.1.2 Unaligned addresses

Certain processors have register layouts that impose
alignment requirements on the breakpoint address. The
alignment requirements are in consonance with the
breakpoint lengths supported on these processors. For
instance, in x86 processors the supported lengths as we
know are 1, 2, 4, and 8 bytes which in turn dictates that
the addresses must be aligned to 0, 1, 3, and 7 bytes.

2009 Linux Symposium • 153

4.1.3 Incorrect specification of monitored variable
name

The breakpoint interface is designed to accept kernel
symbol names directly as input for the location to be
monitored by the breakpoint registers. Invalid values
can be the result of incorrect symbol name. Since user-
space symbols cannot be resolved to their addresses in
the kernel, their breakpoint requests would fail if accom-
panied by a symbol name. As a means to resolve a con-
flict, that may arise when incoherent kernel symbol and
address are mentioned, the address is considered valid
and the supersedes the kernel symbol name.

4.1.4 Limitations of register allocation mechanism

The register allocation mechanism (as discussed in the
Design overview section above) may also result in fail-
ure of registration due to lack of debug registers despite
availability of a different numbered physical register.
This is identified as a limitation of the present debug
register allocation scheme, and virtualisation of debug
registers is planned as a solution for the same.

At the end of a successful registration request the user
can assume that the request for breakpoints are effected
by storing kernel-space request on all CPUs and user-
space requests only when the process is scheduled.

4.2 Hardware Breakpoint handler execution

Almost all of the hardware breakpoint exception han-
dling code is in architecture specific code. This is due
to the fact that each architecture handles the breakpoint
exception in its handler code differently.

However a few operations are common to the han-
dlers designed for x86 and PPC64. The primary ob-
jective of the exception handler is to trigger the func-
tion registered as a callback during breakpoint regis-
tration, which requires access to the correct instance
of struct hw_breakpoint that was provided to
the breakpoint interface during registration. The correct
breakpoint structure has to be deciphered from a set of
user-space and kernel-space breakpoint requests.

4.2.1 Identification of stray exceptions

But before that, the handler execution code must be re-
silient to recognise stray exceptions and ignore them.
Such stray exceptions can be the result of one of causes
detailed below.

Memory access operations on addresses that are outside
the monitored variable’s address range but within the
breakpoint length. For instance, on PPC64 processors
the DABR always monitors for memory access opera-
tions (as specified in the last two bits of DABR) in the
double word (8 bytes) starting from the address in the
register. However the user’s request would be limited to
only a given kernel variable (whose size is smaller than
a double-word). Hence any accesses in the memory re-
gion adjacent to the monitored variable falling within
the breakpoint length’s scope causes the breakpoint ex-
ception to trigger.

Lazy debug register switching causes stale data to be
present in debug registers (as discussed above in Sec-
tion 3.3) and can give rise to spurious exceptions. This
typically happens when a process accesses memory lo-
cations that were monitored previously by a different
process but are not reset due to lazy switching.

4.2.2 Identification of breakpoint structure for in-
vocation of callback function

The user-space breakpoint requests are thread-specific
and so, stored in the struct thread_struct,
while kernel-space breakpoints being universal are
stored in global kernel data structures, namely hbp_
kernel as noted above in Section 3.2.

On x86 processors, which provide four debug registers it
is more challenging to identify the corresponding break-
point structure, when compared to architectures that al-
low only one breakpoint at any point in time. Upon
encountering a breakpoint exception, the bit settings in
the status register for debugging DR6 is looked upon.
Based on the bits that are set, the appropriate breakpoint
address register (DR0-DR3) is understood to have been
the cause for the exception. Depending upon whether
the register was used by the kernel or user-space the
breakpoint structure is retrieved from either the kernel’s
global data structure or the process’ instance of the per-
thread structure respectively.

154 • Hardware Breakpoint (or watchpoint) usage in Linux Kernel

void unregister_kernel_hw_breakpoint(struct hw_breakpoint *);

void unregister_user_hw_breakpoint(struct hw_breakpoint *,

 struct task_struct *);

Figure 4: Hardware Breakpoint interfaces for unregis-
tration of kernel and user space addresses

Using such architecture-specific methods to identify the
appropriate breakpoint structure, the user-defined call-
back function is invoked.

This will be followed by post processing, which may
include single-stepping of the causative instruction in
architectures where the breakpoint exception is taken
when the impending instruction will cause the memory
operation monitored by the debug register.

Since the breakpoint handler is invoked through a noti-
fier call chain, the return code is used to decide if the
remaining handlers have to be invoked further. Detec-
tion of multiple causes for the exception will then be
required to choose the appropriate return code and will
form part of the post processing code.

4.3 Hardware Breakpoint unregistration

Hardware breakpoint unregistration is done by invoking
the appropriate kernel or user interface with a pointer to
the instance of breakpoint structure. An invocation to
the interface always results in successful removal of the
breakpoint and hence doesn’t return any value to indi-
cate success or failure. The interfaces are as shown in
4.

4.3.1 Need for per-cpu kernel breakpoint struc-
tures

It is much safer and easier to remove user-space break-
points, compared to kernel-space requests (refer to 7
section for a related issue). It requires updating of
the appropriate bookkeeping counters and per-thread
data structures containing breakpoint information (apart
from clearing the physical debug registers). While pro-
cessing user-space unregistration requests, if the break-
point removal causes the any member of hbp_user_
refcount[] to turn into zero (i.e., result in a state
where there are no threads using the debug register cor-
responding to the array index of the member that turned

Sample output from ksym tracer
tracer: ksym_tracer
#
TASK-PID CPU# Symbol Type Function
| | | | |
bash 30897 3 pid_max RW .do_proc_dointvec_minmax_conv+0x78/0x10c
bash 30897 3 pid_max RW .do_proc_dointvec_minmax_conv+0xa0/0x10c
bash 30897 3 pid_max RW .alloc_pid+0x8c/0x4a4
bash 30897 1 pid_max RW .alloc_pid+0x8c/0x4a4

Figure 5: Sample output from ksym tracer collected
when tracing pid_max kernel variable for read and write
operations

zero), it indicates the availability of one new free debug
register since the last user of that debug register has re-
leased the resource.

Kernel-space breakpoints are loaded onto all debug reg-
isters to the obvious fact that the kernel-code may be
executed on any and all processors at any given point
of time unlike the thread-specific breakpoints which run
only on one processor at any given instant.

Thus a removal request for kernel-space breakpoints
should be propagated to all processors (in the same fash-
ion as a registration request) through inter-processor in-
terrupts. The process of unregistration is complete only
when the callbacks through the IPI in each of the CPU
returns.

5 Beyond debugging of memory corruption—
Ftrace, memory access tracing and data pro-
filing

The ksym tracer is a plugin to the ftrace framework that
allows a user to quickly trace a kernel variable for cer-
tain memory access operations and collect information
about the initiator of the access.

It provides an easy-to-use interface to the user to accept
the kernel variable and a set of memory operations for
which the variable will be monitored. While, it is cur-
rently restricted to trace only in-kernel global variables,
the ksym_tracer’s parser can be extended to accept mod-
ule variables and kernel-space addresses as input.

These traces can help in profiling memory access oper-
ations over data locations such as read-mostly or write-
mostly.

2009 Linux Symposium • 155

Operation / Machine register_kernel unregister_kernel
System A System B System A System B

Trial 1 5066 5770 244 24
Trial 2 5319 6279 204 21
Trial 3 5309 6193 228 20
Trial 4 6068 6092 206 18

Table 2: Time taken for (un)register_kernel operation in
micro-seconds

6 Overhead measurements of triggering
breakpoints

Readings of the following measurements have been tab-
ulated.

• Table 2 – Contains overhead measurements for reg-
ister and unregister requests on two systems.

• Table 3 – Average time taken for the breakpoint
handler execution with a dummy trigger in four dif-
ferent trials on two systems.

The trials were conducted on two machines, System A
and B whose specifications are as below.

System A – 24 CPU x86_64 machine Intel(R) Xeon(R)
MP 4000 MHz

System B – 2 CPU i386 Intel(R) Pentium(R) 4 CPU
3.20GHz

These systems, chosen for tests are sufficiently diverse
in the number of CPUs in them to expose the overhead
caused by of IPIs in the (un)register_kernel_
hw_breakpoint() operations. The readings were
taken without any true workload on the systems.

While the overhead for unregister operations is greater
in System A (with many CPUs), interestingly this be-
haviour does not manifest during the register operations
(Refer to Table 2).

7 Challenges

Among the the goals set during the design of the hard-
ware breakpoint infrastructure, a few to mention are:

• provide a generic interface that abstracts out
the arch-specific variations in breakpoint facility
and allowing the end-user to harness this facility
through a consistent interface

Operation / Machine Breakpoint handler
System A System B

Trial 1 2230 4677
Trial 2 1980 4255
Trial 3 1805 4224
Trial 4 1644 4035

Table 3: Time taken for breakpoint handler with a
dummy callback function (in nano-seconds)

• provide a well-defined breakpoint execution han-
dler behaviour despite the nuances in such
as trigger-before-execute and trigger-after-execute
(which are dependant on the type of breakpoint and
the host processor)

• balance between the the need for a uniform be-
haviour and exploitation of unique processor fea-
tures

The implementation of such goals gave rise to chal-
lenges, some of which are discussed here.

7.1 Ptrace integration

The user-space has been the most common user of hard-
ware breakpoints through the ptrace system call. Ptrace
interface’s ability to read or write from/into any phys-
ical register has been exploited to enable breakpoints
for user-space addresses. While it required little or no
knowledge about the host architecture’s debug registers,
it remained the responsibility of the application invoking
ptrace (such as GNU Debugger GDB) to be a knowl-
edgeable user and activate/disable them through appro-
priate control information.

For instance, on x86 processors containing multiple de-
bug registers and dedicated control and status registers
(unlike in PPC64 where the control and debug address
registers are composite), operations such as read and
write become non-trivial—i.e., every request for a new
breakpoint must require one write operation on the de-
bug address register (DR0 - DR3) and one for the control
register.

Since ptrace is exposed to the user-space as a system
call it is important to preserve its error return behaviour.
Achieving this becomes complicated because of the fact
that ptrace and its user in the user-space assumes exclu-
sive availability of the debug registers and are ignorant

156 • Hardware Breakpoint (or watchpoint) usage in Linux Kernel

of any kernel space users. Hence, the number of avail-
able registers may be lesser than the ptrace user’s as-
sumption and may result in failure of request when not
expected.

On architectures like x86 where the status of multiple
breakpoint requests can be modified through one ptrace
call (using a write operation on debug control register
DR7), care is taken to avoid a partially fulfilled request
to prevent the debug registers from gaining a set of val-
ues that is different from the ptrace’s requested values
and its past state. Consider a case where, among the
four debug registers, one was active and the remaining
three were disabled in the initial state. If the new re-
quest through ptrace was to de-activate the single active
breakpoint and enable the rest of them, then we do not
effect the breakpoint unregistration first but begin with
the registration requests and this is done for a reason.

Supposing that one of the breakpoint register operation
fails (due to one of the reasons noted above in Section
4.1) and if it was preceded by the unregister operation
the result of the ptrace call is still considered a failure.
The state of the debug registers must now be restored to
its previous one which implies that the breakpoint un-
registration operation must be reversed. Under certain
conditions this may not be possible leaving the debug
registers with an altogether new set of values.

Thus all breakpoint disable requests in ptrace for x86 is
processed only after successful registration requests if
any. This prevents a window of opportunity for debug
register grabbing by other requests thereafter leading to
a problem as described above.

7.2 Synchronised removal of kernel breakpoints

A kernel breakpoint unregistration request would re-
quire updating of the global kernel breakpoint structure
and debug registers of all CPUs in the system (similar
to the process of registration). However every processor
is susceptible to receive a breakpoint exception from the
breakpoint that is pending removal although the related
global data structures may be cleared by then causing
indeterminate behaviour.

This potential issue was circumvented by storing a per-
cpu copy of the global kernel breakpoint structures
which would be updated in the context of IPI process-
ing. It enables every processor to continue to receive and

handle exceptions through its own copy of the break-
point data until removed. Although this generates mul-
tiple copies of the same global data, it is much preferred
over the alternatives such as global disabling of break-
points (through IPIs) before every unregister operation,
due to the overhead associated with processing the IPIs
(Refer Table 2 for data containing turnaround time for
register/unregister operations).

8 Future enhancements

Enhanced abstraction of the interface to include defini-
tions of attributes that are common to several architec-
tures (such as read/write breakpoint types), widening the
support for more processors, improvements to the ca-
pabilities, interface and output of ksym_tracer; cre-
ation of more end-users to support the breakpoint infras-
tructure such as “perfcounters” and SystemTap in inno-
vative ways are just a few enhancements contemplated
at the moment for this feature.

Virtualised debug registers was a feature in one of the
versions of the patchset submitted to the Linux commu-
nity but was eventually dropped in favour of a simplified
approach to register allocation. The details of the feature
and benefits are detailed below.

8.1 Virtualisation of Debug registers

In processors having multiple registers such as x86, re-
quests for breakpoint from ptrace are targeted for spe-
cific numbered debug register and is not a generic re-
quest. While this mechanism works well in the absence
of any register allocation mechanism and when requests
from user-space have exclusive access to the debug reg-
isters, their inter-operability with other users is affected.

The hardware breakpoint infrastructure discussed here,
mitigates this problem to a certain extent by using the
fact that requests from ptrace tend to grow upwards—
i.e., starting from the lower numbered register to the
higher ones.

A true solution to this problem lies in creating a thin
layer that maps the physical debug registers to those re-
quested by ptrace and allow the any free debug regis-
ter to be allocated irrespective of the requested regis-
ter number. The ptrace request can continue to access
through the virtual debug register thus allo-
cated.

2009 Linux Symposium • 157

8.2 Prioritisation of breakpoint requests

Allow the user to specify the priority for breakpoint re-
quests to be handled. If a breakpoint request with a
higher priority arrives, the existing breakpoint yields the
debug register to accommodate the former. An accom-
paniment to this feature would be the callback routines
that are invoked whenever a breakpoint request is pre-
empted or regains the debug registers on the processor.
This is done at the time of every new registration to bal-
ance the requests and accommodate requests based on
their priorities.

This feature was a part of the original patchset but was
subsequently removed based on community feedback
[4].

9 Conclusions

The Hardware Breakpoint infrastructure and the as-
sociated consumers of the infrastructure such as
ksym_tracer makes available a hitherto scarcely
used hardware resource to good use in newer ways such
as profiling and tracing apart from their vital roles in de-
bugging. The overhead in taking a breakpoint, as our
results in Section 6 show are tolerable even in produc-
tion environments and if any would be the result of the
user-defined callback function. It is hoped that when
the patches head into the mainline kernel, a wider user-
feedback and testing will help evolve the infrastructure
into a more powerful and robust one than the proposed.

10 Acknowledgements

The author wishes to thank his team at Linux Technol-
ogy Centre, IBM and the management for their encour-
agement and support during the creation of the hardware
breakpoint patchset and the paper.

The profound work done by Alan Stern, whose patch-
set and ideas were the foundation for the present code in
-tip tree, and an earlier patchset from Prasanna S Pan-
chamukhi need a mention of thanks from the author.

The design of this feature is heavily influenced by sug-
gestions from Ingo Molnar and code was vetted by
Ananth N Mavinakayanahalli, Frederic Weisbecker and
Maneesh Soni; also benefiting from the in-depth review

of the patches by Alan Stern. The author gratefully ac-
knowledges their contribution.

Special thanks to Balbir Singh for initiating the author
into the creation of this paper and being a great source
of encouragement throughout.

The author wishes to thank Naren A Devaiah and the
IBM management who generously provided an oppor-
tunity to work on this feature and paper, without which
its presentation at the Linux Symposium 2009 wouldn’t
have been possible.

11 Legal Statements

c© International Business Machines Corporation 2007. Per-
mission to redistribute in accordance with Linux Symposium
submission guidelines is granted; all other rights reserved.

This work represents the view of the author and does not nec-
essarily represent the view of IBM.

IBM, IBM logo, ibm.com are trademarks of International
Business Machines Corporation in the United States, other
countries, or both.

Linux is a registered trademark of Linus Torvalds in the
United States, other countries, or both.

Other company, product, and service names may be trade-
marks or service marks of others.

References in this publication to IBM products or services
do not imply that IBM intends to make them available in all
countries in which IBM operates.

INTERNATIONAL BUSINESS MACHINES CORPORA-
TION PROVIDES THIS PUBLICATION “AS IS” WITH-
OUT WARRANTY OF ANY KIND, EITHER EX-
PRESS OR IMPLIED, INCLUDING, BUT NOT LIM-
ITED TO, THE IMPLIED WARRANTIES OF NON-
INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not al-
low disclaimer of express or implied warranties in certain
transactions, therefore, this statement may not apply to you.
This information could include technical inaccuracies or ty-
pographical errors. Changes are periodically made to the in-
formation herein; these changes will be incorporated in new
editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) de-
scribed in this publication at any time without notice.

158 • Hardware Breakpoint (or watchpoint) usage in Linux Kernel

References

[1] Intel Corporation. Intel 64 and IA-32 Architectures
Software Developer’s Manual, 2008.
www.intel.com/Assets/PDF/manual/
253669.pdf.

[2] International Business Machines Corporation.
Power ISATMVersion 2.05, 2007.
http://www.power.org/resources/
reading/PowerISA_V2.05.pdf.

[3] K. Prasad. Hardware breakpoint interfaces, June
2009.
http://lkml.org/lkml/2009/6/1/282.

[4] K. Prasad. Introducing generic hardware
breakpoint handler interfaces, March 2009. http:
//lkml.org/lkml/2009/3/10/183.

Proceedings of the
Linux Symposium

July 13th–17th, 2009
Montreal, Quebec

Canada

Conference Organizers

Andrew J. Hutton, Steamballoon, Inc., Linux Symposium,
Thin Lines Mountaineering

Programme Committee

Andrew J. Hutton, Steamballoon, Inc., Linux Symposium,
Thin Lines Mountaineering

James Bottomley, Novell
Bdale Garbee, HP
Dave Jones, Red Hat
Dirk Hohndel, Intel
Gerrit Huizenga, IBM
Alasdair Kergon, Red Hat
Matthew Wilson, rPath

Proceedings Committee

Robyn Bergeron
Chris Dukes, workfrog.com
Jonas Fonseca
John ‘Warthog9’ Hawley

With thanks to
John W. Lockhart, Red Hat

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.

