PATting Linux

Venkatesh Pallipadi
Suresh Siddha
Intel Open Source Technology Center
{venkatesh.pallipadi|suresh.b.siddha}@intel.com

Abstract

The Page Attribute Table (PAT), introduced in Pentium
III, provides the x86 architecture with an option to as-
sign memory types to physical memory, based on page
table mappings. The Linux kernel, however, does not
fully support this feature, though there were many ear-
lier efforts to add support for this feature over the years.

The need for PAT in Linux is becoming critical with the
latest platforms supporting huge memory; these cannot
be supported by limited number of MTRRs, often lead-
ing to poor graphics and IO performance.

In this paper, we will provide insight into earlier at-
tempts to enable PAT in the Linux kernel and details
of our latest attempt, highlighting various issues that
were encountered. We will describe the new APIs
for userspace/drivers for specifying various memory at-
tributes.

1 Introduction

Page Attribute Table (PAT) has been a hardware feature
in x86 processors starting from the Pentium III gener-
ation of processors. The PAT extends the IA-32 archi-
tecture’s page-table format to allow memory types to be
assigned to regions of physical memory based on linear
address mappings [1].

PAT is a complementary feature to Memory Type Range
Registers (MTRR). The MTRRs are used to map regions
in physical address space with specific memory types.

PAT and MTRR together allow the processor to op-
timize operations for different types of memory such
as RAM, ROM, frame-buffer memory, and memory-
mapped I/O devices. The MTRRs are useful for stati-
cally describing memory types for physical ranges, and
are typically set up by system firmware. The PAT allows

dynamic assignment of memory types to pages in linear
address space.

The Linux kernel (as in linux-2.6.25 [2]) does not fully
support PAT. It only uses PAT for write-back and un-
cached mappings, and uses MTRR to dynamically as-
sign write-combining memory type. This results in
over-dependence on MTRR, causing issues like perfor-
mance problems with the display driver (X), for exam-
ple.

The Linux kernel also does not enforce the no-aliasing
requirement while mapping memory-types, potentially
resulting in various linear addresses from the same or
different processes, mapping to the same physical ad-
dress with different effective memory types. This alias-
ing can potentially cause inconsistent or undefined op-
erations that can result in system failure [1].

In this paper, we present details about our recent ef-
fort towards adding PAT support for the x86 architec-
ture in the Linux kernel [13]. We start with an architec-
ture primer on PAT and MTRR in Section 2, followed
by a description of the Linux kernel status (as in linux-
2.6.25) in Section 3. Section 4 provides details about
our proposed PAT implementation. APIs for drivers and
applications to set memory types is discussed in Sec-
tion 5. We conclude the paper with a look at the future
in Section 6.

2 Architectural Background

In this section, we provide an architectural overview of
PAT, MTRR, and interactions between PAT and MTRR.
Refer to the chapter on Memory Cache Controlin
[1] for a complete reference.

2.1 PAT

The PAT extends the IA-32 architecture’s page-table for-
mat to allow memory type to be assigned to pages based

e 135 o

136 e PATting Linux

4K Page Table Entry
N— — \L

L

—~—
Page Base Address P

P

ge Flags

—->
oo
—Hs7

Figure 1: PAT flags in a 4K Page Table Entry

|Res| |Res| |Res| |Res| |

|Res| |Res| |Res| |Res| |

Figure 2: IA32_CR_PAT MSR

on linear address mappings. Figure 1 shows a regular
4K page table entry, with bits 12-51 forming the phys-
ical frame number. Bits O-11 have various page flags
associated with this mapping. Page flags PAT, PCD, and
PWT together represent the PAT attribute of the page.
These three bits index into 8-page attribute types in the
IA32_CR_PAT MSR. This MSR’s content is depicted
in Figure 2, with each Page Attribute (PAO through PA7)
mapping to a particular memory type encoding.

The memory types that can be encoded by PAT are listed
in Figure 3. PAO through PA7 in the TA32_CR_PAT
MSR can contain any encoding from Figure 3.

The IA32_CR_PAT MSR is set with a predefined de-
fault setting for each PAT entry (PAO through PA7) upon
power up or reset. System software can write different
encodings to these entries with the WRMSR instruction.
On a multi-processor system, the TA32_CR_PAT MSR
of all processors must contain the same value.

The PAT allows any memory type to be specified in the
page tables, and therefore it is possible to have a sin-

Encoding Memory Type
0 Uncacheable (UC)
1 Write Combining (WC)
2 Reserved
3 Reserved
4 Write Through (WT)
5 Write Protected (WP)
6 Write Back (WB)
7 Uncached (UC-)

Figure 3: Memory types that can be encoded with PAT

gle physical region mapped to two or more different lin-
ear addresses, each with different memory types. These
mappings may be the part of the same address space,
or may be in the address spaces of different processes.
Such a mapping of a single physical region with multi-
ple linear address ranges with different memory types is
referred to as aliasing. Architecturally, any such alias-
ing can lead to undefined operations that can result in a
system failure. It is the operating system’s responsibility
to prevent such aliasing when PAT is being used.

2.2 MTRR

The MTRR provides a mechanism for associating the
memory types with physical address ranges in system
memory. MTRR capability can be determined by the
IA32_MTRRCAP MSR. The encodings supported by
MTRR are listed in Figure 4. The MTRRs are defined
as a combination of:

e Fixed Range MTRRs: A Fixed Range MTRR
consists of predetermined regions of size 64K,
16K, and 4k in the 0-1MB physical memory
range. This includes eight 64K ranges, sixteen 16K
ranges, and sixty-four 4K ranges. Each such range
can be defined as a particular memory type encod-
ing.

e Variable Range MTRRs: Most x86 processors
support up to eight Variable Range MTRRs. They
are specified using a pair of MSRs: TA32_MTRR__
PHYSBASEnN defines the base address; and TA32
MTRR_PHYSMASKn contains a mask used to de-
termine the range.

e Default MTRR Type: Any physical memory
range not covered by a fixed or variable MTRR
range takes the memory type attributes from the
IA32_MTRR_DEF_TYPE MSR.

When MTRRs are enabled, MTRR range overlaps are
not defined, except for:

e Any range overlap, with one of the ranges being of
uncached type, will result in the effective memory
type of uncached.

e Any range overlap, with one range being write-
back and another range being write-through, will
result in the effective memory type of write-
through.

2008 Linux Symposium, Volume Two e 137

Encoding Memory Type
0 Uncacheable (UC)
1 Write Combining (WC)
2 Reserved
3 Reserved
4 Write Through (WT)
5 Write Protected (WP)
6 Write Back (WB)
7-0xFF | Reserved

Figure 4: Memory types that can be encoded with
MTRR

While MTRRs are enabled and being used, the operat-
ing system has to make sure that there are no overlap-
ping MTRR regions with overlapping types not defined
above.

2.3 MTRR and PAT overlap

PAT and MTRR may define different memory types for
the same physical address. The effective memory type
resulting from this overlap is architecturally defined as
in the chapter on Memory Cache Control inrefer-
ence [1]. Specifically,

e The PAT memory type of write-combine takes
precedence over any memory type assigned to that
range by MTRR.

e The PAT memory type of uncached-minus gives
precedence to any MTRR write-combine setting
for the same physical address. If there are no
MTRR memory types or if the memory type in
MTRR is write-back, the effective memory type for
that region will be uncached.

3 Linux Kernel Background

All references to the Linux kernel in this section refers
to version 2.6.25. The Linux kernel supports PAT in
a very restrictive sense, with PAT memory types un-
cached and uncached-minus being used by kernel APIs
like ioremap_noncache (), set_memory_uc (),
pgprot_noncached (), etc. User-level APIs that
use the PAT uncached memory type are the /proc,
and /sys PCI resource interfaces and mmap of /dev/
memn.

Linux also supports adding new MTRR ranges using
the kernel API mtrr_add (). There is also a user-
level API to set MTRR ranges by using /proc/mtrr
writes.

The kernel does not do any aliasing checks while setting
the PAT mappings. The kernel only makes sure that ker-
nel identity mapping of physical memory is consistent
while changing the PAT memory type with some of the
APIs above. The kernel does check for any overlap with
existing MTRR ranges, while adding a new MTRR.

Following is an example of MTRR usage on a typical
server. Figure 5 shows the contents of /proc/mtrr.
The effective memory type on this system will be as in
Figure 6.

Below we will look at the memory-attribute-related
problems that we have in the Linux kernel.

3.1 Limited number of MTRRs

As explained in Section 2, typically there are only eight
variable-range MTRRs supported on x86 CPUs. With
an increasing amount of physical memory in the plat-
form, the platform firmware ends up using most of those
MTRRSs to statically define memory types for the system
memory range. When a driver later wants to use MTRR
to map some range as write-combining, for example,
there may not be any free MTRRs available for use.
This results in the driver not being able to set a memory
type. This can appear to the end user as (for instance)
the video driver running less optimially, as it ends up us-
ing an uncached memory type for frame-buffer instead
of the desired write-combine memory type.

3.2 MTRR conflict with BIOS MTRRs

As described in Section 2, certain overlapping MTRR
memory types like write-combine and uncached re-
sult in causing the effective type to be uncached. On
some platforms, the BIOS sets up PCI ranges explicitly
mapped as uncached and a potential overlapping write-
back for RAM. Later, when some driver which wants to
map the same range as a write-combine memory type
using MTRRs, there will be a conflict which results in
the effective memory type being uncached. This results
in the driver not being able to get optimal performance.

This has been reported a few times by end users on
1kml [10] [3] [11] on various platforms. Unfortunately,

138 e PATting Linux

cat /proc/mtrr

reg00: base=0xd0000000 (3328MB), size= 256MB: uncacheable, count=l
reg0l: base=0xe0000000 (3584MB), size= 512MB: uncacheable, count=1
reg02: base=0x00000000 (OMB), size=8192MB: write-back, count=1
reg03: base=0x200000000 (8192MB), size= 512MB: write-back, count=1l
reg04: base=0x220000000 (8704MB), size= 256MB: write-back, count=1
reg05: base=0xcff80000 (3327MB), size= 512KB: uncacheable, count=1l
Figure 5: Variable MTRR example
3327MB
oMB 3328MB 8192MB
3584MB 8704MB
1MB 4096MB 8960MB
Fixed Range |:|
MTRR

Variable Range
MTRR
-uncached

-write-back

[1]

Default MTRR

]

Figure 6: Effective memory types due to MTRR set by BIOS

there is no way to resolve this with existing PAT and
MTRR support in the 2.6.25 kernel.

3.3 No well-defined APIs

Poorly defined APIs across PAT and MTRRs have led to
various issues like:

e Drivers making assumptions about the underly-
ing kernel implementation. For instance, the
frame buffer driver is assuming that ioremap ()
will use PAT uncached-minus mapping and the
driver follows the ioremap () callby anmtrr_
add () call to set a write-combine memory type
to the same range. Changing ioremap () from
uncached-minus to uncached resulted in poor
frame buffer performance in this specific case.

Drivers setting the page table entries along with
the PAT memory types natively, either by us-
ing pgprot_noncached () or by directly using
PAT, PCD, and PWT bits. This results in flaky code,
where the driver depends on kernel PAT usage.

4 Current PAT effort

4.1 Earlier PAT attempts

As was emphasised earlier, PAT as a hardware feature
has been around for few years. During those years, there
were quite a few attempts to enable PAT support in the
Linux kernel.

One of the initial attempts was from Jeff Hartmann [8]
in January, 2001. The patch proposed a vmalloc ()
kind of interface to support per 4K-page level write-
combining memory type control. There were no re-
sponses on the mailing list archive, and so we conclude
that the patch did not make its way into the Linux kernel
for some unknown reason.

Terence Ripperda proposed PAT support with [9] in
May, 2003, which supported adding write-combining
mapping for AGP and framebuffers. There were con-
cerns expressed about this patch in the mailing list,
mainly related to keeping the memory type consistent
for a physical address across different virtual mappings
that may exist in the system.

2008 Linux Symposium, Volume Two e 139

mtrr: type mismatch for e0000000,8000000 old: write-back new: write-combining
mtrr: type mismatch for e0000000,4000000 old: write-back new: write-combining

Figure 7: common MTRR error message in kernel log

Terence followed it up with [4] in April, 2004, adding
memory type tracking. That patch never made into the
Linux kernel either, due to some concerns about various
CPU errata on the mailing list.

Eric W. Biederman proposed PAT support with [6] in
August, 2005, which started a fresh discussion on the
mailing list about aliasing and PAT-related processor er-
rata. Andi Kleen took up this patch and included it in
his test tree [12]. However, the PAT support never got
wide enough testing and did not get into the upstream
Linux kernel. Also, none of the patches fully addressed
attribute aliasing concerns.

4.2 Current PAT Proposal

Our initial proposals [7] [5] were based on Eric and
Andi’s patchset, with changes around identity mapping
of reserved regions or holes and a few other cleanups
and bug fixes. Those patches broke a lot of systems and
provided us with a lot of feedback about what was not
being done correctly.

Based on the feedback and breakage reports, we
changed our patches to eliminate the issues around not
having identity mapping for reserved regions and elim-
inated the changes for early_ioremap, simplifying
our approach along the way. We also got benefits from
other changes like x86 change_page_attr ().

The patches here [13] are version 3 of the patchset
which was included in 1inux-2.6.25-rc8-mm2.
The patchset also took a slightly different top-down ap-
proach, defining the PAT-related APIs and the eventual
PAT bit setting for those APIs in different use cases, try-
ing to ensure backward compatibility with the older ver-
sions of drivers and applications. All of the APIs related
to PAT and memory type changes are described in detail
in Section 5.

4.3 Preventing PAT aliasing

One of the big roadblocks for earlier PAT patches was
aliasing related to PAT attributes. As per the processor

specification [1], single physical address mapped to two
or more different linear addresses should not have differ-
ent memory types. Such aliasing can lead to undefined
operations that can result in system failure.

The current PAT proposal handles this by using two in-
ternal functions, reserve_memtype () and free_
memtype (). Any API that wants to change the mem-
ory type for a region first has to go through reserve_
memtype to be sure that there are no aliases to the
physical address, reserving the memory type for the
region in the process. At the time of unmapping the
memory type, API will free the range with a free_
memtype () call. APIs will fail if reserve fails due
to existing aliases.

Internally, the reserve function goes through a linked
list which keeps track of physical address ranges with a
specific memory type. The linked list is maintained in
sorted order, based on the start address. The linked list
may contain ranges with different sizes, and will detect
partial or full overlaps with a single existing mapping or
overlaps with multiple regions, with conflicting memory

types.

If there is more than one user for a specific range with
same memory type, the reference counting for such
users are tracked by having multiple entries in the linked
list.

To keep the implementation simple, this list is imple-
mented as a simple doubly linked list. In the future,
if there are any bottlenecks around this list, it can be
optimized to have some cache pointers to previously re-
served or freed regions, and changing the list into a more
efficient data structure.

5 PAT APIs

One of the major challenges with PAT was to add the
support in a clean manner, causing as few issues with
existing applications and drivers as possible. As de-
scribed in Section 3, the current memory type usage in
Linux has some API-level confusion. That highlighted

140 e PATting Linux

API RAM | ACPL, ... | Rsvd/
e Holes
ioremap() - UC- UC-
ioremap_cache() - WB WB
ioremap_nocache() - ucC ucC
ioremap_wc() - wC wC
set_memory_uc() uC - -
set_memory_wb()
set_memory_wc() wC - -
set_memory_wb()
pci /sys resource file - - UC-
pci /sys resource_wc file - - wC
pci /proc/ device file - - ucC-
pci /proc/ device file - - WwC
ioctl PCIIOC_
WRITE_COMBINE
/[dev/imemread-write | WB | UC [UC |
/dev/mem mmap - ucC ucC
with O_SYNC
/dev/mem mmap - alias alias
no O_SYNC
/dev/mem mmap - WB WB
no O_SYNC
with no alias
MTRR type WB
/dev/mem mmap - - ucC-
no O_SYNC
with no alias
MTRR type not WB

Table 1: PAT related API cheat-sheet

the need to establish a clear API for everything related
to memory type changes.

The API defined with the proposed PAT patches is de-
scribed in detail below.

5.1 ioremap

ioremap (), 1oremap_cache(), ioremap_
nocache (), and ioremap_wc () are the interfaces
that a driver can use to mark a physical address range
with some memory type. The expected usage of these
interfaces is over a physical address range that is either
reserved/hole or a region used by ACPI, etc. 1ioremap
and friends should never be used on a RAM region that
is being used by the kernel.

ioremap interfaces, when they change the memory
type, keep the memory type consistent across the vir-
tual address where the address is being remapped into,
and the kernel identity mappings.

ioremap interfaces may fail if there is an existing
stricter memory type mapping. Example: If there is
an existing write-back mapping to a physical range, any
request for uncached and write-combine mappings will
fail.

ioremap interfaces will succeed if there is an existing,
more lenient mapping. Example: If there is an existing
uncached mapping to a physical range, any request for
write-back or write-combine mapping will succeed, but
will eventually map the memory as uncached.

5.2 set_memory

set_memory_uc, set_memory_wc, and set_
memory_whb are used to change the memory type of
a RAM region. A driver can allocate a memory buffer
and then use set_memory APIs to change the mem-
ory type for that region. It is the driver’s responsibility
to change the memory type back to write-back before
freeing the page. A failure to do that can have nasty
performance side effects as the page gets allocated for
different usages later.

As with the ioremap interfaces, the kernel makes sure
that the identity map aliases, if any, are kept consistent.

set_memory APIs can fail if there is a different mem-
ory type that is already in use for the same physical
memory region.

5.3 /proc access to PCI resources

User-level drivers/applications can access a PCI re-
source region through the /proc interface. The re-
source file at /proc/bus/pci/<dev>/ is mmap-
able and an application can use that mmapped address
to access the resource.

By default, such an mmap will provide uncached access
to the region. Applications can use PCITOC_WRITE_
COMBINE ioctl and get write-combine access to the re-
source, in cases where the region is prefetchable.

A request to uncached access can fail if there is already
an existing write-combine mapping for that region. A
request for write-combine access can succeed with un-
cached mapping instead, in the case of already existing
uncached mapping for this region.

2008 Linux Symposium, Volume Two e 141

5.4 /sys access to PCI resource

Apart from the /proc interface described above, there
is also a / sy s-based interface that can be used to access
PCI resources. It resides under devices/pci<bus>
/<dev>/. This is again an mmap-able interface. The
file resource is useful to get a UC access, and file
resource_wc, to get write-combing access (in case
the region is prefetchable).

The success and failure conditions of a mmap of the
/sys PCI resource file are the same as in the /proc
resource file description above.

5.5 read and write of /dev/mem

The existing API that allows read and write of memory
through /dev/mem will internally use ioremap ()
and hence read and write using the uncached memory
type. To read/write RAM, we use the identity mapped
address, with existing WB mapping.

5.6 mmap of /dev/mem

/dev/mem mmap is an interface for applications to ac-
cess any non-RAM regions. Applications have been us-
ing a mmap of /dev/mem for multiple uses. Chang-
ing mmap of /dev/mem behavior to go along well with
PAT changes was one of the major challenges we had.

For example, X drivers use mmap to map a PCI re-
source first, followed by adding a new MTRR to make
that physical address either uncached or write-combine.
This will work, as the current mmap will just use write-
back mapping in PAT, and MTRR uncached or write-
combine takes higher precedence and changes the effec-
tive memory type for this region.

We will look at all the different usage scenarios of
/dev/mmap below:

e mmap with O_SYNC: Applications can open
/dev/mem with the O_SYNC flag and then do
mmap on it. With that, applications will be access-
ing that address with an uncached memory type.
mmap will succeed only if there is no other con-
flicting mappings to the same region.

o mmap without O_SYNC and existing mapping for
the same region: Applications that do not use
O_SYNC, when there is an existing mapping for
the same region, will inherit the memory type from
the existing mapping. This will be the case with ap-
plications mapping memory with a driver already
having used ioremap to set the memory as write-
back, write-combining, or uncached.

o mmap without O_SYNC, no existing mapping, and
write-back region: The ACPI data region and a few
other such regions are non-RAM, but can be ac-
cessed as write-back. There are applications like
acpidump that mmap such regions. There is also
a legacy BIOS region that is write-back that appli-
cations like dmidecode want to mmap. To be
friendly to such usages, on an mmap of /dev/mem
without O_SYNC and with no existing mappings,
we look at the MTRR to figure out the actual type.
If the MTRR says that region is write-back, then
we use write-back mapping for the /dev/mem
mmap as well.

o mmap without O_SYNC, no existing mapping, and
not a write-back region: For an mmap that comes
under this category, we use uncached-minus type
mapping. In the absence of any MTRR for this
region, the effective type will be uncached. But
in cases where there is an MTRR, making this re-
gion write-combine, then the effective type will
be write-combine. This behavior was added for a
very special case, to handle existing X drivers with-
out breakage. The X model of mmaping graphics
memory and then adding write-combining MTRR
to it will work with this mapping.

Table 1 is a API cheat-sheet for application/driver inter-
faces to make any memory type changes.

6 Future Work

Given the success rate of earlier PAT patches, our first
goal here is to ensure that the basic PAT patches make
it to the upstream kernel with minimal disruptions, and
also to provide APIs to applications and drivers that will
remove long-standing MTRR limitations. As a result,
our initial patchset does not address all the problems as-
sociated with PAT. Specifically, we have the following
items in our immediate to-do list.

142 e PATting Linux

e Provide an API for drivers using pgprot_
noncached () or handling the page table flags
by hand to manipulate PAT, PCD, and PWT bits, so
that they can do so ensuring no aliases. Currently,
such drivers (mostly framebuffer and video drivers)
do various things like mapping the pages as write-
back in the page table and then calling MTRR to
mark it write-combine, directly map the pages as
uncached, etc.

e Ensure that PAT is not breaking any architectural
guidelines while changing memory type attributes.
Specifically, [1] mentions a sequence of steps that
needs to be followed while changing the memory
type attribute of a page from cacheable to write-
combining. We need to make sure that the Linux
kernel is not breaking any such rules.

e The future of the /proc/mtrr and mtrr_
add () interfaces needs to be determined. The
options are: deprecate those APIs and encourage
the drivers and applications to switch to new PAT
APIs, or emulate those APIs using PAT internally.
This can be better addressed as current PAT patches
makes into upstream and we get more feedback
from the users about the PAT APIs and their us-
ability.

7 Acknowledgements

Thanks to the developers and testers in the community
who took time to comment on, report issues with, and
contribute to PAT discussion on the mailing list. Special
thanks to Asit Mallick and Arjan van de Ven for their
continued support during our work on PAT pacthes; Ingo
Molnar, Thomas Glexiner, H Peter Anvin for reviewing
and fixing problems with PAT patches and also push-
ing the PAT patches through into x86 testing tree; Andi
Kleen, Eric Biederman for their PAT patches which
formed the basis for our first implementation; and every-
one else who worked on PAT feature before or affected
by PAT/MTRR issues on their platform and took time to
report it on lkml mailing list.

References

[1] Intel® 64 and IA-32 architectures software
developer’s manuals: Volume 3A.
http://developer.intel.com/
products/processor/manuals.

(2]

(3]

[4]

[5]

[6]

(7]

[8]

[9]

[10]

[11]

[12]

[13]

Linux 2.6.25.
http://kernel.org/pub/linux/
kernel/v2.6/linux-2.6.25.tar.bz2.

Mailing list archive. MTRR initialization. http:
//1kml.org/lkml/2007/9/14/185.

Mailing list archive. PAT support.
http://www.ussg.iu.edu/hypermail/
linux/kernel/0404.1/0686.html.

Mailing list archive. [patch 00/11] PAT
x86: PAT support for x86.
http://www.uwsg.iu.edu/hypermail/

linux/kernel/0801.1/1428.html.

Mailing list archive. [PATCH] 1386, x86_64
initial PAT implementation.
http://www.ussg.iu.edu/hypermail/
linux/kernel/0508.3/1321.html.

Mailing list archive.
[REC PATCH 00/12]
for x86_64.
http://www.uwsg.iu.edu/hypermail/
linux/kernel/0712.1/2268.html.

PAT 64b: PAT support

Mailing list archive. [RFC] PAT
implementation.
http://www.ussg.iu.edu/hypermail/

linux/kernel/0101.3/0630.html.

[PATCH]

Mailing list archive. pat support in the kernel.
http://www.ussg.iu.edu/hypermail/
linux/kernel/0305.2/0896.html.

Mailing list archive. type mismatch for
€0000000,8000000 old: write-back new:
write-combining on kernel 2.6.12.
http://lkml.org/lkml/2005/6/18/52.

Mailing list archive. type mismatch for f0000000,
1000000 old: write-back new: write-combining.
http://lists.us.dell.com/
pipermail/linux-poweredge/
2006-March/025043.html.

Mailing list archive. What will be in the
x86-64/x86 2.6.21 merge.
http://www.ussg.iu.edu/hypermail/
linux/kernel/0702.1/0832.html.

Mailing list archive. x86: PAT support updated -
v3.
http://lwn.net/Articles/274175/.

2008 Linux Symposium, Volume Two e 143

This paper is (c) 2008 by Intel. Redistribution rights are
granted per submission guidelines; all other rights reserved.
* Other names and brands may be claimed as the property of
others.

144 e PATting Linux

Proceedings of the
Linux Symposium

Volume Two

July 23rd-26th, 2008
Ottawa, Ontario
Canada

Conference Organizers

Andrew J. Hutton, Steamballoon, Inc., Linux Symposium,
Thin Lines Mountaineering

C. Craig Ross, Linux Symposium

Review Committee

Andrew J. Hutton, Steamballoon, Inc., Linux Symposium,
Thin Lines Mountaineering

Dirk Hohndel, Intel

Gerrit Huizenga, IBM

Dave Jones, Red Hat, Inc.
Matthew Wilson, rPath

C. Craig Ross, Linux Symposium

Proceedings Formatting Team

John W. Lockhart, Red Hat, Inc.
Gurhan Ozen, Red Hat, Inc.
Eugene Teo, Red Hat, Inc.

Kyle McMartin, Red Hat, Inc.
Jake Edge, LWN.net

Robyn Bergeron

Dave Boutcher, /IBM

Mats Wichmann, Intel

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.

