
x86 Network Booting: Integrating gPXE and PXELINUX

H. Peter Anvin
rPath, Inc.

<hpa@zytor.com>

Marty Connor
Etherboot Project

<mdc@etherboot.org>

Abstract

On the x86 PC platform, network booting is most com-
monly done using software that follows the Preboot Ex-
ecution Environment (PXE) specification. PXELINUX

from the SYSLINUX Project and gPXE from the Ether-
boot Project are popular Open Source implementations
of key PXE components.

In this presentation, we will describe how these two
projects were able to jointly develop an integrated PXE-
compatible product that provides additional network
booting capabilities that go well beyond the PXE spec-
ification. We will also discuss some of the organiza-
tional challenges encountered during this collaboration
between two Open Source projects with different prior-
ities, design goals, and development strategies.

1 Motivation

Open Source software development by definition allows
and encourages code sharing and collaboration between
projects. There are, however, costs associated with these
endeavors, and these costs must be weighed against po-
tential benefits associated with using code developed by
another project.

In the case of improving integration between gPXE and
PXELINUX, developers from SYSLINUX and the Ether-
boot Project were motivated to collaborate because they
believed there might be significant benefits to leverag-
ing work already done by the other project. Although
the process of creating better interoperability between
products required significant communication and effort,
it was a useful and rewarding exercise for both develop-
ment teams.

To understand how these two Open Source projects
reached this point of collaboration we will examine the
history of network booting on the x86 PC platform, as
well as the development journey each project took prior
to this collaborative effort.

2 The PC Platform: Ancient History

Network booting has been implemented in various
forms for many years. To appreciate how it evolved it
is instructive to examine the early days of PC comput-
ing when standards were few, and achieving consensus
between vendors on any technical innovation was even
more difficult than it is today.

The x86 PC platform has a direct lineage to the origi-
nal IBM PC 5150 released in 1981. This machine, an
open platform, and its successors, the 1983 IBM XT
and the 1984 IBM AT, were widely copied by a num-
ber of manufacturers. The PC industry largely followed
IBM’s technical lead until the disastrous 1987 attempt
at reclaiming their initial monopoly position with the
closed platform PS/2 line erased their technical and mar-
ketplace leadership positions in the industry.

As a result, for the first half of the 1990s there was no
clear path for new standards to become accepted on the
PC platform, and PCs were becoming little more than
massively sped-up versions of the IBM AT. Thus, even
as new media such as networking and CD-ROMs be-
came available to the platform, there was little support
for booting from anything other than the initially sup-
ported floppy and hard disk, although PCs could option-
ally use an expansion card carrying proprietary booting
firmware.

TCP/IP networking, as something other than a niche
product, came late to the x86 PC platform. For many
years, memory limitations when running MS-DOS and
its derivatives meant that simpler, proprietary network
stacks were used; the primary ones being NetBIOS from
IBM and Microsoft, and IPX from Novell.

The response of early network card manufacturers, to
the extent they supported booting from networks at all,
was simply to provide a socket into which a ROM (usu-
ally an EPROM) could be inserted by the end user. This
ROM had to be preprogrammed with firmware specific

• 9 •



10 • x86 Network Booting: Integrating gPXE and PXELINUX

both to the network card and the network protocol used;
as a result, these ROMs were frequently expensive, and
few PCs were ever so equipped. To further complicate
the situation, the size of ROMs varied widely depend-
ing on the card. Some cards supported as little as 8K of
ROM space, greatly limiting the amount and complexity
of boot software that could be supplied.

In the early 1990s, as the use of TCP/IP became more
prevalent, some manufacturers provided TCP/IP-based
booting solutions using the then-standard BOOTP and
TFTP protocols, often based on downloading a floppy
image to high memory (above the 1 MB point address-
able by DOS.) These solutions generally did not pro-
vide any form of post-download access to the firmware;
the downloaded floppy image was expected to contain a
software driver for a specific network card and to access
the hardware directly.

By the mid 1990s, the PC industry, including IBM, was
seriously suffering from having outgrown IBM AT stan-
dards. In January 1995, Phoenix and IBM published the
“El Torito” standard [3] for booting PCs from CD-ROM
media. Support for this standard was initially poor, and
for the rest of the decade most operating systems that
were distributed on CD-ROM media generally shipped
with install floppies for booting PCs that lacked func-
tional CD-ROM booting support.

3 NBI and PXE: Network Booting Strategies

As the cost of network interface cards (NICs) dropped
dramatically in the early 1990s, the cost of a network
boot ROM could be a substantial fraction of the cost of
the NIC itself. The use of OS-dependent, user-installed
ROMs as the only method for network booting had be-
come a significant limitation. In the Open Source world,
this issue was further complicated by the need to supply
a physical piece of hardware, since a software-only dis-
tribution would require end users to have access to an
expensive EPROM burner to program the software into
an EPROM.

In 1993, Jamie Honan authored a document titled “Net
Boot Image Proposal” [4] which defined image formats
and methods for downloading executable images to a
client computer from a server. A key feature of Jamie’s
proposal was the specification of Network Boot Image
(NBI) file format, “a vendor independent format for boot
images.” This may have been the first attempt in the

Open Source world at specifying an OS-independent
method for network booting on the PC platform.

To keep NBI loader code uncomplicated, a utility called
mknbiwas used to convert OS specific files such as ker-
nels and initrds into NBI format for loading into mem-
ory. This simplified loader code because it only needed
to load a single, uncomplicated image format. It did,
however, require an extra step to convert OS images to
NBI format prior to booting.

NBI was never used in the closed-source OS world.
Instead, vendors continued to offer incompatible solu-
tions, usually based on their respective proprietary net-
work stacks.

In 1997, Intel et al. published the Wired for Manage-
ment Specification (WfM) [5]. It included as an ap-
pendix a specification for the Preboot Execution En-
vironment (PXE), a TCP/IP-based, vendor-neutral net-
work booting protocol for PCs, which included an appli-
cation programming interface (API) for post-download
access to the firmware driver. The specification, as well
as its current successor [6], both have numerous techni-
cal shortcomings, but it finally made it possible for NIC
and motherboard vendors to ship generic network boot-
ing firmware. Higher-end NICs began to have onboard
flash memory preprogrammed with PXE from the fac-
tory instead of providing a socket for a user-installable
ROM. Motherboards began to have PXE firmware inte-
grated into their BIOSes.

The PXE specification defines a set of software com-
ponents (Figure 1) including a PXE Base Code (BC)
stack, a Universal Network Driver Interface (UNDI)
driver—both in ROM—and a Network Boot Program
(NBP), which loads from a server. Of these compo-
nents, only the UNDI is specific to a certain NIC. Just
as with the Open System Interconnect (OSI) networking
model, this model does not completely reflect the actual
division into components, but is nevertheless useful as a
basis for discussion.

The PXE approach is significantly different from the one
taken by NBI. NBI simply loads a mknbi-prepared
bootable OS image into memory with no further ac-
cess to the ROM-resident network routines.1 In contrast,
PXE BC first loads an NBP, which then loads a target

1Some NBI-compliant ROMs would provide APIs to request ad-
ditional services, but those APIs were never standardized.



2008 Linux Symposium, Volume One • 11

Network Boot
Program (NBP)

OS loadBIOS

ROM

PXE BC

UNDI driver
UNDI API

TFTP and UDP API

Initial load via TFTP

Figure 1: The PXE concept model

OS using still-resident BC and/or UNDI stacks from the
ROM using an API defined in the PXE specification.

These differences in approach allow PXE ROMs to con-
tain simple, compact loader code while enabling more
specific and capable second-stage loader code to load
native OS image formats without pre-processing. Fur-
ther, NBP code resident on a network server can be up-
graded centrally to fix bugs or add capabilities. Added
costs to this approach versus NBI include extra time and
server load to transfer an NBP before the target OS im-
age is loaded, and the need to maintain multiple com-
ponents on the boot server. These costs have minimal
impact when using modern servers and LAN hardware.

4 The SYSLINUX Project

The SYSLINUX [1] project was started in 1994 by H. Pe-
ter Anvin as a way to allow creation of Linux boot flop-
pies without requiring Linux-specific tools. Until that
point Linux boot floppies, universally required to install
Linux on the PC platform, had been distributed as raw
images to be written to a bare floppy disk. On an MS-
DOS machine this meant using a tool called RAWRITE.
The resulting floppy was an opaque object and was con-
sidered unformatted by most non-Linux operating sys-
tems.

The SYSLINUX installer (named by analogy to the MS-
DOS SYS command) ran directly under MS-DOS and all
data was stored in conventional files on an MS-DOS FAT
filesystem. Since it was designed for running on flop-
pies it had to be small (the 18K overhead from the FAT

filesystem itself was a point of criticism in the early
days): as of version 1.30 (November 3, 1996) the SYS-
LINUX binary was 4.5K in size. Even so, it contained a
reasonably flexible configuration system and support for
displaying online help; the latter was particularly impor-
tant for install disks.

In 1999 Chris DiBona, then of VA Linux Systems, pro-
vided an early PXE-equipped system as a development
platform for a PXE loader. Since the Intel PXE specifi-
cation at the time specified that only 32K was available
to the NBP it was decided that basing the PXE loader
code on SYSLINUX—an existing, compact, configurable
loader—would make sense. Thus, SYSLINUX 1.46, re-
leased September 17, 1999, included PXELINUX, a PXE
network bootstrap program with a SYSLINUX-based
user interface. Subsequently SYSLINUX acquired sup-
port for other media, specifically ISO 9660 CD-ROMs
in El Torito “native mode” and hard disks with standard
Linux ext2/ext3 filesystems.

As support for CD-ROM booting—and later, USB
booting—on PCs became more universal, pressure to
keep code size minimal waned since storage capacities
were less restrictive. At the same time network adminis-
trators in particular requested a more configurable user
interface. To avoid burdening the SYSLINUX core (writ-
ten in assembly language and challenging to maintain)
with additional user interface features, an API was de-
veloped to allow user interfaces to be implemented as
independent, loadable modules. The first such interface
was a very sophisticated system written by Murali Kr-
ishna Ganapathy, based on a text-mode windowing in-
terface. Though very advanced and capable of almost



12 • x86 Network Booting: Integrating gPXE and PXELINUX

Figure 2: The SYSLINUX simple menu system

infinite customization, it turned out to be too difficult
for most users to configure. To address this issue, the
“simple menu system” (Figure 2) was implemented and
is now used by most SYSLINUX users.

The API also allows support for new binary formats to
be written as well as “decision modules” (boot selection
based on non-user input, such as hardware detection).
An 88,000-line library, derived from klibc, is avail-
able to developers to make module development easier
and as similar to standard applications-level C program-
ming as possible.

Historically SYSLINUX has focused on the PC BIOS
platform, but as the bulk of the code has been migrated
from the core into modules and from assembly language
into C, the feature set of the core has become bounded.
The intent is for the core to become a “microkernel”
with all essential functionality in (possibly integrated)
modules; this would permit the core to be rewritten to
support other platforms such as EFI.

PXELINUX has not, however, implemented any proto-
cols other than TFTP. The PXE APIs only permit access
at one of three levels: TFTP file download, UDP, or raw
link layer frames. No method to access the firmware
stack at the IP layer is provided. This means that to
support TCP-based protocols, such as HTTP, a full re-
placement IP stack is required.

It is worth noting that although a large number of peo-
ple have contributed to SYSLINUX over the years, it has
largely remained a one-person project. As of this writ-
ing there is a serious effort underway to grow the SYS-
LINUX project developer base. To facilitate this process

the SYSLINUX project will participate in Google Sum-
mer of Code for the first time in 2008.

5 The Etherboot Project

In 1995 Markus Gutschke ported a network bootloader,
Netboot, from FreeBSD. Netboot followed Jamie Ho-
nan’s 1993 “Net Boot Image Proposal.” Since the first
OS targeted for loading was Linux, mknbi was used to
combine kernel and initrd images into a single NBI file
before loading.

Since Netboot did not support his network card and Net-
boot drivers at the time had to be written in assembly
language, Markus implemented a new driver interface
allowing drivers to be written in C. He called his code
Etherboot.

Markus released Etherboot 1.0 in 1995 and it proved to
be popular enough that a small community called the
“Etherboot Project” [2] formed to support and improve
it with additional functionality and drivers. In late 1996
one of the group’s more active contributors, Ken Yap,
took over leadership of the project.

In 1997, when Intel published the PXE specification,
Ken began work on NILO, a first attempt at an Open
Source PXE implementation. In 1998 Rob Savoye, with
funding from NLnet Foundation, took over NILO de-
velopment. For various reasons the project was unsuc-
cessful, and development of NILO officially ceased in
2000 [7].

Etherboot development continued, however, and in 1999
Marty Connor became involved with the project, having
discovered it through conversation with Jim McQuillan
of LTSP (Linux Terminal Server Project). Marty ported
several of Donald Becker’s Linux NIC drivers to Ether-
boot to provide support in Etherboot for popular cards
of the day.

In 2000, Marty created rom-o-matic.net [8], a
web-based Etherboot image generator that created cus-
tomized Etherboot images on demand. This made it
much easier for people to create and test Etherboot be-
cause no specific build environment or command line
expertise was required. Usage and testing of Etherboot
increased dramatically.

Another boost to Etherboot use came in 2001 when the
Etherboot Project first exhibited in the .ORG Pavilion



2008 Linux Symposium, Volume One • 13

at the IDG LinuxWorld Expo and invited LTSP to share
their booth. Live demos of Etherboot network booting
and LTSP thin clients sparked the interest of many po-
tential users.

In 2002 Michael Brown first encountered Etherboot
while trying to find a solution for booting wireless thin
clients. He developed and submitted an Etherboot driver
to support Prism II-based wireless cards, and became a
regular contributor to the project.

About this time Marty became concerned that PXE was
fast becoming a de facto standard for network boot-
ing since it was being included in a significant num-
ber of motherboards and mid-to-high-end NICs. Al-
though there was strong opposition within the project
to supporting PXE for technical reasons, he felt that un-
less Etherboot supported the PXE specification Ether-
boot would quickly become irrelevant for most users.

Added incentive to support PXE came in 2004 when
Marty and H. Peter Anvin spoke about creating a com-
plete, compliant Open Source PXE implementation to
support PXELINUX. Later in 2004 Michael added par-
tial PXE support to Etherboot, which was then capa-
ble of supporting PXELINUX though it lacked full PXE
functionality.

In 2005 Marty and Michael created gPXE, a major
rewrite of Etherboot with PXE compatibility as a key
design goal. Soon after, Marty became the third Ether-
boot Project Leader and Michael became the project’s
Lead Developer. Primary development energy was then
redirected from Etherboot to gPXE.

In 2006 Michael, with help from Google Summer of
Code student Nikhil C. Rao, added more robust and
compliant TCP support to gPXE. This enabled Michael
to add TCP-based protocols such as iSCSI, which in turn
allowed gPXE to network-boot exotic operating systems
such as Windows Server 2003.

In 2007 the Etherboot Project exhibited in the Linux-
World Expo .ORG Pavilion for the 12th time, this time
demonstrating gPXE booting of various OSes via HTTP,
iSCSI, AoE, and other protocols. Michael and Peter cre-
ated, coded, and demonstrated a first API for gPXE to
PXELINUX integration.

As of 2008 rom-o-matic.net had generated over
two million Etherboot and gPXE images, with a typical
size of 40K for a ROM image containing support for

DHCP, DNS, TFTP, HTTP, iSCSI, AoE, and multiple
image formats including PXE, bzImage, Multiboot, and
gPXE scripts.

A large number of people have generously contributed
to the success of the Etherboot Project over the years.
Many of their names can be found on the project’s ac-
knowledgments web page [9]. There are also many
users who contribute on the project’s mailing lists and
IRC channel. Their help with documentation, testing,
and support greatly contributes to the quality and popu-
larity of Etherboot and gPXE.

6 The Strengths of Each Project

Given the primary focuses of the projects it is not sur-
prising that each brings different strengths to the col-
laboration. gPXE supports a wide range of protocols,
can be integrated in ROM rather than relying on shipped
firmware, and supports other architectures; however, its
user interface is limited. PXELINUX has advanced user
interfaces and, because it is a part of the SYSLINUX

suite, has cross-media support, but its protocol support
is limited to TFTP.

Within the PXE concept model PXELINUX strictly acts
as the NBP, whereas gPXE can act either as NBP, BC,
or BC and UNDI combined depending on how it is con-
figured and compiled. gPXE configured to function as
BC and UNDI is most common when it is used in ROM
or loaded from disk.

gPXE is also able to be loaded from a server as an NBP
and then take over the functions of either the BC only,
or the BC and UNDI combined, and then load another
NBP such as PXELINUX to perform a target OS load.
This configuration, referred to as “chainloading,” can be
used either to substitute functionality from a partially
working PXE stack or to get the enhanced capabilities
of gPXE, either way without having to actually modify
the ROM on the device.

7 Choosing a Strategy for Collaboration

Collaborative projects carry significant risks and re-
wards over single-team development. Because of this,
potential costs and benefits should to be considered
carefully before embarking on such a journey.



14 • x86 Network Booting: Integrating gPXE and PXELINUX

Rather than seeking to collaborate with the Etherboot
Project, the SYSLINUX project could have implemented
its own TCP/IP stack, HTTP client, and iSCSI and AoE
initiators for PXELINUX. Alternatively, it could have re-
used the code from gPXE or used another Open Source
TCP/IP stack, such as lwIP [10].

Collaboration, though requiring some additional devel-
opment effort, had several potential advantages:

• Using gPXE’s protocol support would mean that
SYSLINUX maintainers would not have to integrate
and support additional code to support new proto-
cols.

• Code improvements to either project could be of
benefit to users of both projects.

• Users of both gPXE and PXELINUX could share a
single user interface for accessing features.

In light of these potential advantages, the developers of
both projects decided to explore ways of working to-
gether.

Popular strategies for collaboration between Open
Source projects differ primarily based on whether it is
the intention of one project to take over maintenance
of code produced by another project or whether the
projects intend to maintain separate code bases which
interoperate based on well-defined interfaces.

Some common strategies for collaboration between
projects are:

• Componentization, where one project’s code and
development team simply becomes part of another
project. The second project then ceases to exist as
an independent project.

• Aggregation, where one project includes the other’s
code as a component, possibly in modified form,
but the second project’s code continues to be de-
veloped as a separately maintained project. In this
model, the first project can be considered a con-
sumer of the second project. This is particularly
common with application programs that depend on
libraries that are not widely available.

• Cooperation, where the two projects mutually
agree on a set of APIs and independently imple-
ment their respective parts. The projects are main-
tained separately, and aggregation into a combined
product is performed by the distributor or end user.

• Stacking, in which one project independently de-
fines an interface available to all potential users of
the code, which is completely sufficient (without
modification) for the needs of the second project.
In this case, the combination is strictly a case of
the second project being a consumer of the first,
and final aggregation is typically performed by the
distributor or end user; this strategy is typified by
widely used libraries.

Each of these strategies has advantages and pitfalls,
based on the nature of the projects, the development
teams, and any corporate entities that may be involved.
The tradeoffs between these strategies can be quite dif-
ferent in the Open Source world over what they might
be in analogous corporate environments.

8 Integration, so Far

Initial steps toward integrating gPXE and PXELINUX

were taken in 2004 when Etherboot first became capa-
ble of acting as a PXE ROM (BC and UNDI combined).
This allowed Etherboot to replace defective vendor PXE
implementations, either by replacing the ROM or by
chainloading, but did not provide any additional capa-
bilities. Nevertheless, this approach has been widely
used, especially with SiS900 series NICs, a briefly pop-
ular NIC with a notoriously buggy vendor PXE stack.

PXELINUX users had been requesting additional proto-
col support for quite some time, especially the ability to
download via HTTP. Not only is HTTP, a TCP-based
protocol, faster and more reliable than TFTP (based on
UDP), but HTTP servers have better support for dy-
namic content, which is frequently desired for generat-
ing configuration files.

At LinuxWorld Expo San Francisco in 2006, SYSLINUX

and Etherboot Project developers met to discuss the sit-
uation. At that meeting, the following constraints were
established:

• The primary focus of gPXE is as ROM firmware.
The continued utility of gPXE in ROM must be
maintained.



2008 Linux Symposium, Volume One • 15

• Extended protocol support must work in PX-
ELINUX when it is loaded from a vendor PXE
stack. Supporting extended protocols only with
gPXE in ROM is not acceptable.

• Although gPXE already had support for extended
protocols by accepting a URL via the PXE API’s
TFTP (PXENV_TFTP_OPEN) routine, the PXE
TFTP interface is inadequate for PXELINUX; a new
API is necessary for PXELINUX to access function-
ality beyond what standard PXE APIs permit.

In electronic discussions afterwards, the following high-
level plan was agreed to by both development teams:

• An extended PXE API for PXELINUX will be de-
veloped.

• A technique will be developed to aggregate gPXE
and PXELINUX into a single binary to simplify de-
ployment in existing PXE environments.

Unfortunately around this time both projects became
distracted by other priorities: the Etherboot Project fo-
cused on providing new and improved network drivers,
support for SAN protocols (iSCSI and AoE), and com-
pleting an initial gPXE release; the SYSLINUX project
on user interface and module API improvements. A test
version without the aggregate binary (and certainly not
stable enough to be deployed in a real environment) was
demonstrated at IDG LinuxWorld Expo 2007, but after
that the collaboration languished for months.

Toward the end of 2007 improved protocol support was
becoming a high priority for the SYSLINUX project,
while Etherboot developers were pushing toward a mid-
February initial release (gPXE 0.9.3). Over the holi-
days developers from both projects conducted a sizable
joint development and debugging effort, implementing
binary encapsulation support and tracking down a num-
ber of issues that occurred when gPXE was chainloaded
from a network server, as opposed to running from
ROM. Having more developers testing the code helped
find bugs that only manifested on certain hardware and
particular PXE implementations. Fortunately (for some
meaning thereof), the combined team had access to to a
large and eclectic collection of troublesome hardware.

After the initial beta release of gPXE 0.9.3 on February
14, 2008, the original plan was reviewed by both devel-
opment teams. As there had been significant changes in
both code bases, the plan was revised as follows:

Figure 3: gpxelinux.0 loading its config file via
HTTP

• An initial implementation will be based on the al-
ready implemented extended PXE API, plus any
additions necessary.

• This API will be considered private and not guar-
anteed to be stable between revisions. Thus, the
only supported use will be between gPXE and an
an embedded PXELINUX; if gPXE is used in ROM
it should still chain-load the combined image.

• As SYSLINUX code has increasingly moved to-
ward having most of its code in modules, with
a well-defined application binary interface (ABI),
the projects will eventually migrate to a model
where gPXE implements the SYSLINUX module
ABI directly; at that time the private API will be
deprecated.

The third item on this list was accepted as a Google
Summer of Code project under Etherboot Project men-
torship for 2008.

More powerful functionality is possible when gPXE
is also used in ROM (or provided on CD-ROM, USB
stick, or floppy). gPXE can either be used as the na-
tive PXE stack on the system using its own network de-
vice drivers, or it can use the UNDI driver from the ven-
dor PXE stack. With suitable configuration gPXE can
download an initial NBP image from a specific URL set
at compile time or saved in nonvolatile storage. This ca-
pability can be used to invoke a service facility with a
very small investment in ROM; the only local network
resources required are working DHCP and DNS. If the
downloaded image is gpxelinux.0, a full range of
PXELINUX modular functionality becomes available.



16 • x86 Network Booting: Integrating gPXE and PXELINUX

UI module

Format module

OS load

Vendor UNDI

gPXE
PXELINUX

gpxelinux.0

gPXE

OS native loader

BIOS

SAN bootROM

Figure 4: gPXE loading gpxelinux.0, using a vendor UNDI driver

Ultimately SYSLINUX and the Etherboot Project de-
cided not to combine code or development teams but
rather to modify both of their code bases to support
a jointly developed API (a cooperation). However, to
make it easier for end users, the SYSLINUX distribution
now contains a snapshot of gPXE sources so that the
combined image can be built from a single download;
in this sense, it is also an aggregation. However, the
intent or the projects to emphasize the cooperative as-
pects of supporting a common API and to have the SYS-
LINUX combined source code tree have minimal differ-
ences from the primary gPXE distribution.

It is the desire of both projects that this will permit each
project to retain its particular focus and identity, while
giving end users access to functionally contained in both
code bases.

As of April 15, 2008, the combined product is avail-
able in beta form as part of SYSLINUX 3.70-pre9. This
distribution includes a slightly modified snapshot of the
gPXE git repository (containing a few changes neces-
sary for the usage model, but in need of cleanup before
being fed upstream into the gPXE tree). When built,
this produces gpxelinux.0, a combined binary, in
addition to the conventional pxelinux.0. If loaded
from a standard vendor PXE stack, gpxelinux.0 can
be redirected to non-TFTP protocols via the PXELINUX

Path Prefix DHCP option [11] or via explicit URL syn-
tax in the configuration file. A DHCP option, in par-
ticular, allows even the PXELINUX configuration file to
be acquired through non-TFTP protocols such as HTTP,
making it much easier to generate configuration files dy-
namically.

As of the SYSLINUX 3.70-pre9 release, gpxelinux.0
is not yet a drop-in replacement for pxelinux.0 in all
situations because some issues relating to chainloading
another NBP remain. It is expected that these issues will
be relatively easy to resolve.

9 Next Steps

At the time of this writing the primary collaborative
development focus of the projects is to resolve a few
remaining interoperability issues and to clean up SYS-
LINUX-local modifications to gPXE so that they may be
integrated into the official gPXE source base.

The combined gpxelinux.0 image using the current
approach is expected to be released with SYSLINUX

3.70. Over the summer of 2008 considerable progress
on implementing the SYSLINUX module API in gPXE
will hopefully be made. This effort will also serve as a
trailblazing project for the “microkernelized” rewrite of
the SYSLINUX core across all media.

10 Lessons Learned Along the Way

When integrating Open Source projects, especially ones
developed outside the influence of a corporate or spon-
sorship structure, one must consider at least the follow-
ing pitfalls and concerns:

• Motivation: For collaboration between two
projects to succeed it is important that there be in-
centives for both of their user communities and de-



2008 Linux Symposium, Volume One • 17

velopment teams. Without a shared sense of pur-
pose, enthusiasm for the project may quickly wane
on the part of one or both projects.

In the case of the SYSLINUX-Etherboot collabora-
tion, both projects recognized the opportunity to
leverage each others work and both were moti-
vated to explore how they might productively work
together. Understanding the motivations of other
project participants was an important part of keep-
ing the collaboration moving forward.

• Focus: The primary reason for combining two
projects is that each brings different strengths to
the table. It is likely that each project has develop-
ment goals aimed toward improving its respective
strengths. A goal related to facilitating code com-
bination might therefore be relatively low on the
priority of either one or both the parent projects!
A good working relationship is likely to improve
joint focus, but other driving forces may still pre-
vail, such as funding issues.

Focus differences were a significant issue early
in the SYSLINUX-Etherboot collaboration. Rather
than completely executing the original project plan,
each project ended up working more on other pri-
orities, especially SAN support for gPXE and im-
proved user interfaces for SYSLINUX. Not until
late 2007 discussions did both projects agree on the
priority of the joint development effort and commit
to the shared goal of producing a test release in the
March 2008 timeframe.

• Culture: Every Open Source project has a unique
culture that generally depends on the preferences
of the original or principal developers or admin-
istrators. Just as in a corporate collaboration or
merger, culture clashes can manifest themselves as
subtle but significant roadblocks to progress. In
Open Source projects, such issues may include fre-
quency and style of developer communication, re-
view and commit policies, and coding style. In
large projects, these processes are often more for-
malized than in smaller projects. Nevertheless, it
is important to recognize, respect, and address dif-
ferences between collaborative partners as they can
significantly affect the success of the joint effort.

Whereas the SYSLINUX project has a single cen-
tral maintainer responsible for all technical direc-
tion, Etherboot Project decision making is some-
what more distributed. This difference complicated

some early discussions until it became clear that
for actionable agreement to be achieved, all rele-
vant Etherboot Project team members needed to be
included in technical discussions.

• Credit where credit is due: These days many, if
not most Open Source software developers are de-
riving their income either directly or indirectly
from Open Source work. Others, such as stu-
dents, may be concerned about future marketabil-
ity. Still others may consider recognition a ma-
jor driver for their Open Source involvement. Ac-
cordingly, recognition is very valuable currency in
the Open Source world. A perception, true or not,
that one project is trying to usurp credit for another
project’s work is likely to create ill will and poor
relations.

Discussions of credit can be sensitive, as some
people may feel their concerns aren’t appropri-
ate or valid. In the particular case of the SYS-
LINUX-Etherboot Project collaboration, both sides
had concerns, but some went unvoiced for a long
time. Although both sides had good intentions,
these unresolved concerns slowed the collabora-
tion considerably, until they were discussed and ad-
dressed as legitimate issues.

By recognizing that with the best intentions such issues
can and do occur—even in a collaboration involving rel-
atively small projects—one can significantly improve
the chances for a successful and timely joint project.

Learning to work together benefited the code bases and
development teams of both projects. Code changes
needed to support jointly developed interfaces required
optimization and auditing of critical code sections. In
addition, communication, confidence, and trust between
developers significantly improved during the process of
working together to achieve a shared goal.

References

[1] SYSLINUX project web site,
http://syslinux.zytor.com/

[2] Etherboot Project web site,
http://www.etherboot.org/

[3] C. Stevens and S. Merkin, “El Torito” Bootable
CD-ROM Format Specification, Version 1.0,



18 • x86 Network Booting: Integrating gPXE and PXELINUX

January 25, 1995,
http://www.phoenix.com/NR/rdonlyres/

98D3219C-9CC9-4DF5-B496-A286D893E36A/

0/specscdrom.pdf or
http://tinyurl.com/99c5f

[4] J. Honan and G. Kuhlmann, “Draft Net Boot
Image Proposal,” Version 0.3, June 1997, http:
//www.nilo.org/docs/netboot.html

[5] Intel Corporation et al., Network PC System
Design Guidelines, Version 1.0b, August 5, 1997,
http://www.intel.com/design/
archives/wfm/

[6] Intel Corporation, Preboot Execution
Environment (PXE) Specification, Version 2.1,
September 20, 1999, http://download.
intel.com/design/archives/wfm/
downloads/pxespec.pdf

[7] K. Yap, “NILO; organization and status,” May
2000, http://www.nlnet.nl/project/
nilo/how.html

[8] Etherboot project, rom-o-matic.net,
http://www.rom-o-matic.net/

[9] Etherboot project, Acknowledgements,
http://etherboot.org/wiki/
acknowledgements

[10] A. Dunkels et al., The lwIP TCP/IP Stack,
http://lwip.scribblewiki.com/

[11] D. Hankins, Dynamic Host Configuration
Protocol Options Used by PXELINUX
(RFC 5071), December 2007, http:
//www.ietf.org/rfc/rfc5071.txt



Proceedings of the
Linux Symposium

Volume One

July 23rd–26th, 2008
Ottawa, Ontario

Canada



Conference Organizers

Andrew J. Hutton, Steamballoon, Inc., Linux Symposium,
Thin Lines Mountaineering

C. Craig Ross, Linux Symposium

Review Committee

Andrew J. Hutton, Steamballoon, Inc., Linux Symposium,
Thin Lines Mountaineering

Dirk Hohndel, Intel
Gerrit Huizenga, IBM
Dave Jones, Red Hat, Inc.
Matthew Wilson, rPath
C. Craig Ross, Linux Symposium

Proceedings Formatting Team

John W. Lockhart, Red Hat, Inc.
Gurhan Ozen, Red Hat, Inc.
Eugene Teo, Red Hat, Inc.
Kyle McMartin, Red Hat, Inc.
Jake Edge, LWN.net
Robyn Bergeron
Dave Boutcher, IBM
Mats Wichmann, Intel

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.


